

# PHASE I RCRA FACILITY INVESTIGATION REPORT

AL Tech Specialty Steel Corporation Dunkirk, New York

VOLUME 1 of 6
Text, Tables, and Figures
October 22, 1998



# ENVIRONMENTAL STRATEGIES CORPORATION PITTSBURGH, PENNSYLVANIA

# ENVIRONMENTAL STRATEGIES CORPORATION

PHASE I RCRA FACILITY INVESTIGATION REPORT AL TECH SPECIALTY STEEL CORPORATION DUNKIRK, NEW YORK FACILITY





RECEIVED

#### **ENVIRONMENTAL STRATEGIES CORPORATION**

Four Penn Center West • Suite 315 • Pittsburgh, Pennsylvania 15276 • (412) 787-5100 • Fax (412) 787-8065

OCT 2 3 1998

NYSDEC - REG. 9
FOIL
REL\_UNREL

#### PHASE I RCRA FACILITY INVESTIGATION REPORT AL TECH SPECIALTY STEEL CORPORATION DUNKIRK, NEW YORK FACILITY

#### **PREPARED**

BY

# ENVIRONMENTAL STRATEGIES CORPORATION OCTOBER 22, 1998

Date: 10/22/98 Page: i of xi

#### Contents

| Exec | cutive S | Summary                                                                                                       | Page           |
|------|----------|---------------------------------------------------------------------------------------------------------------|----------------|
| 1.0  | Intro    | oduction                                                                                                      | 1-6            |
|      | 1.1      | Background                                                                                                    | 1-6            |
|      | 1.2      | Project Objectives                                                                                            | 3-6            |
|      | 1.3      | Scope of Work                                                                                                 | 3-6            |
|      |          | 1.3.1 Soils Investigation                                                                                     | 4-6            |
|      |          | 1.3.2 Groundwater Investigation                                                                               | 4-6            |
|      |          | 1.3.3 Surface Water and Sediment Investigation                                                                | 5-6            |
|      |          | 1.3.4 Air Pathway Analysis                                                                                    | 5-6            |
|      |          | 1.3.5 Miscellaneous Investigation Tasks                                                                       | 5-6            |
|      | 1.4      | Report Format                                                                                                 | 5-6            |
| 2.0  | Phas     | se I RFI Implementation                                                                                       | 1-23           |
|      | 2.1      | Soils Investigation                                                                                           | 1-23           |
|      |          | 2.1.1 Surface Soil Sample Collection and Analysis                                                             | 3-23           |
|      |          | 2.1.1.1 Background                                                                                            | 3-23           |
|      |          | 2.1.1.2 Transformer Areas                                                                                     | 4-23           |
|      |          | 2.1.1.3 Ground Surface Locations                                                                              | 6-23           |
|      |          | 2.1.1.4 Soil and Well Borings                                                                                 | 6-23           |
|      |          | 2.1.1.5 Test Pits                                                                                             | 7-23           |
|      |          | 2.1.2 Subsurface Soil Sample Collection and Analysis                                                          | 8-23           |
|      |          | 2.1.2.1 Soil and Well Borings                                                                                 | 9-23           |
|      | 2.2      | 2.1.2.2 Test Pits                                                                                             | 10-23          |
|      | 2.2      | Hydrogeologic Investigation                                                                                   | 11-23          |
|      |          | <ul><li>2.2.1 Monitoring Well Installation</li><li>2.2.2 Groundwater Sample Collection and Analysis</li></ul> | 11-23          |
|      |          | 2.2.2 Groundwater Sample Collection and Analysis 2.2.2.1 Well Purging                                         | 12-23<br>12-23 |
|      |          | 2.2.2.1 Well Fulging 2.2.2.2 Groundwater Sample Collection                                                    | 13-23          |
|      |          | 2.2.2.3 Groundwater Analytical Program                                                                        | 13-23          |
|      |          | 2.2.3 Aquifer Characterization                                                                                | 14-23          |
|      | 2.3      | Surface Water and Sediment Investigation                                                                      | 15-23          |
|      | 2.5      | 2.3.1 Surface Water Sampling and Analysis                                                                     | 16-23          |
|      |          | 2.3.2 Sediment Sampling and Analysis                                                                          | 16-23          |
|      |          | 2.3.3 Crooked Brook Evaluation                                                                                | 17-23          |
|      | 2.4      | Air Pathway Analysis                                                                                          | 18-23          |
|      | 2.5      | Process Pit Inspection and Process Sewer Identification                                                       | 18-23          |
|      |          | 2.5.1 Process Pit Inspection                                                                                  | 18-23          |
|      |          | 2.5.2 Process Sewers Identification                                                                           | 19-23          |
|      | 2.6      | Miscellaneous Activities                                                                                      | 19-23          |

Date: 10/22/98 Page: ii of xi

|     |        |          |                                              | Page  |
|-----|--------|----------|----------------------------------------------|-------|
|     |        | 2.6.1    | Well Integrity Evaluation                    | 20-23 |
|     |        | 2.6.2    | Potable Well Survey                          | 20-23 |
|     |        | 2.6.3    | Site Survey                                  | 21-23 |
|     |        | 2.6.4    | Data Validation                              | 21-23 |
|     |        | 2.6.5    | Materials Handling                           | 22-23 |
| 3.0 | Site l | Physical | Conditions                                   | 1-19  |
|     | 3.1    | Geolog   | gic Conditions                               | 1-19  |
|     |        | 3.1.1    | Regional Geology                             | 1-19  |
|     |        | 3.1.2    | Site Geology                                 | 1-19  |
|     |        |          | 3.1.2.1 Lithologic Units                     | 2-19  |
|     |        |          | 3.1.2.2 Geologic Cross Sections              | 4-19  |
|     | 3.2    | Site H   | ydrology                                     | 5-19  |
|     | 3.3    | Hydro    | geology                                      | 6-19  |
|     | 3.4    | Proces   | ss Pit Inspections                           | 8-19  |
|     |        | 3.4.1    | Drawing Oil Storage Rooms                    | 9-19  |
|     |        |          | Melt Cooling Water Pit                       | 10-19 |
|     |        | 3.4.3    | Shark Pit                                    | 10-19 |
|     |        |          | Olson Quench Pit                             | 11-19 |
|     |        |          | Olson Pump Pit                               | 11-19 |
|     |        |          | Vaughn Cooling Water Pit                     | 11-19 |
|     |        |          | Mill Pits                                    | 12-19 |
|     |        | 3.4.8    | Howard Avenue Plant Pump Pit                 | 12-19 |
|     |        |          | Medart Straightener Pits                     | 13-19 |
|     |        |          | Clarifier Pit                                | 13-19 |
|     |        |          | Spent Thickener Pit                          | 14-19 |
|     |        |          | Serpentine Outfall                           | 14-19 |
|     | 3.5    | Proces   | ss Sewer Identification                      | 15-19 |
|     |        | 3.5.1    | Lucas Avenue Plant Pickling Effluent         | 15-19 |
|     |        | 3.5.2    | Bar Finishing and Storage Pickling Effluent  | 16-19 |
|     |        | 3.5.3    | Brigham Road Plant Pickling Effluent         | 17-19 |
|     |        | 3.5.4    | Metallurgical Laboratory Discharge           | 18-19 |
|     |        | 3.5.5    | Shark Pit Effluent                           | 18-19 |
|     |        | 3.5.6    | Willowbrook Pond Recirculating Cooling Water | 18-19 |
|     |        | 3.5.7    | Outfall Monitoring Data                      | 19-19 |
|     |        | 3.5.8    | Spill Reports                                | 19-19 |

Date: 10/22/98 Page: iii of xi

| 1.0 | Cher | nical An | alytical Data                                                                            | <b>Page</b> 1-76 |
|-----|------|----------|------------------------------------------------------------------------------------------|------------------|
|     | 4.1  | Dl       |                                                                                          | 2.76             |
|     | 4.1  | _        | round Soils                                                                              | 2-76             |
|     |      | 4.1.1    | <u>O</u>                                                                                 | 2-76             |
|     |      |          | TCL SVOCs                                                                                | 3-76             |
|     | 4.0  |          | Miscellaneous Parameters                                                                 | 4-76             |
|     | 4.2  |          | former Soil Sample Data                                                                  | 4-76             |
|     |      | 4.2.1    | 3                                                                                        | 4-76             |
|     |      |          | TCL PCBs                                                                                 | 5-76             |
|     | 4.2  |          | Miscellaneous Parameters                                                                 | 6-76             |
|     | 4.3  |          | Vide Surface and Subsurface Soil Sample Data                                             | 6-76             |
|     |      | 4.3.1    | SWMU Locations                                                                           | 7-76             |
|     |      |          | 4.3.1.1 SWMU 5 – Former Grinding Room Pickling Process                                   | 7-76             |
|     |      |          | 4.3.1.2 SWMU 9 – Former Trichloroethane Container Storage Area                           | 8-76             |
|     |      |          | 4.3.1.3 SWMU 11 – Shark Pit Residual Material Loading Area                               | 9-76             |
|     |      |          | 4.3.1.4 SWMUs 13 and 14 – Crucible Disposal Areas and Waste                              | 10.76            |
|     |      |          | Disposal Facilities                                                                      | 10-76            |
|     |      |          | 4.3.1.5 SWMU 15 – Former Waste Acid Surface Impoundments                                 | 17-76            |
|     |      |          | 4.3.1.6 SWMU 16 – Willowbrook Pond                                                       | 18-76            |
|     |      |          | 4.3.1.7 SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewater Treatment Plant Areas  | 20-76            |
|     |      |          |                                                                                          |                  |
|     |      |          | 4.3.1.8 SWMU 18 – Grinding Dust Transfer Pile<br>4.3.1.9 SWMU 19 – Former Waste Pile     | 22-76<br>23-76   |
|     |      |          | 4.3.1.10 SWMU 19 – Former waste Pile 4.3.1.10 SWMU 20 – Waste Asbestos Accumulation Area | 23-76            |
|     |      |          |                                                                                          | 25-76            |
|     |      |          | 4.3.1.11 SWMU 21 – Grinding Swarf Storage Area                                           | 27-76            |
|     |      | 4.3.2    | 4.3.1.12 SWMU 23 – API Oil/Water Separator AOC Locations                                 | 28-76            |
|     |      | 4.3.2    |                                                                                          | 28-76            |
|     |      |          | 4.3.2.1 AOC 3 – Process Pits and Cooling Towers                                          | 31-76            |
|     |      |          | 4.3.2.2 AOC 6 – Former Aboveground Fuel Tank 4.3.2.3 AOC 7 – Scrap Steel Storage Areas   | 31-76            |
|     |      |          |                                                                                          | 31-76            |
|     |      |          | 4.3.2.4 AOC 8 – Former Coal Storage Area                                                 |                  |
|     |      | 122      | 4.3.2.5 AOC 11 – Former Coal Gasification Plant CAMU Locations                           | 35-76<br>36-76   |
|     |      | 4.3.3    |                                                                                          | 36-76<br>36-76   |
|     |      |          | 4.3.3.1 CAMUA – Former LAP West Pickling Facility                                        |                  |
|     |      |          | 4.3.3.2 CAMUS – Former BRP Pickling Facility                                             | 40-76            |
|     |      |          | 4.3.3.3 CAMUC – BFS Pickling Facility                                                    | 42-76            |
|     |      | 121      | 4.3.3.4 CAMU D – Former LAP East Pickling Facility                                       | 43-76            |
|     |      | 4.3.4    |                                                                                          | 47-76            |
|     |      |          | 4.3.4.1 Ground Surface Locations                                                         | 47-76            |
|     |      |          | 4.3.4.2 Site and Perimeter Locations                                                     | 48-76            |

Date: 10/22/98 Page: iv of xi

|     |       |          | <b>(</b>                                                 | Page  |      |
|-----|-------|----------|----------------------------------------------------------|-------|------|
|     | 4.4   | Site G   | Froundwater                                              | 53-76 |      |
|     |       | 4.4.1    | SWMU 16 – Willowbrook Pond                               | 54-76 |      |
|     |       | 4.4.2    | SWMU 17/Closed Surface Impoundment and                   |       |      |
|     |       |          | SWMU 22/Wastewater Treatment Plant Areas                 | 57-76 |      |
|     |       | 4.4.3    | CAMU A – Former LAP West Pickling Facility               | 61-76 |      |
|     |       | 4.4.4    | CAMU B – Former BRP Pickling Facility                    | 63-76 |      |
|     |       |          | CAMU C – BFS Pickling Facility                           | 65-76 |      |
|     |       | 4.4.6    | CAMU D – Former LAP East Pickle Facility                 | 67-76 |      |
|     |       | 4.4.7    |                                                          | 70-76 |      |
|     |       |          | 4.4.7.1 TAL Inorganics                                   | 70-76 |      |
|     |       |          | 4.4.7.2 TCL VOCs                                         | 72-76 |      |
|     |       |          | 4.4.7.3 TCL SVOCs                                        | 72-76 |      |
|     |       |          | 4.4.7.4 TCL PCBs                                         | 72-76 |      |
|     |       |          | 4.4.7.5 Miscellaneous Parameters                         | 73-76 |      |
|     | 4.5   |          | ce Water and Sediment                                    | 73-76 |      |
|     |       |          | Surface Water                                            | 74-76 |      |
|     |       | 4.5.2    | Sediments                                                | 75-76 |      |
| 5.0 | SWM   | IU 17 –  | Closed Surface Impoundment                               | 1-8   |      |
|     | 5.1 G | roundwa  | ater Investigation and Evaluation                        | 2-8   |      |
|     |       | 5.1.1    | Compliance Well Groundwater Quality                      | 3-8   |      |
|     |       | 5.1.2    | Site Groundwater Quality                                 | 4-8   |      |
|     |       |          | estigation and Evaluation                                | 5-8   |      |
|     | 5.3 C | onclusio | ons                                                      | 6-8   |      |
| 6.0 | Evalu | ation o  | of Analytical Data and Potentially Applicable Criteria   | 1-24  |      |
|     | 6.1   | Soils    | Evaluation                                               |       | 1-24 |
|     |       | 6.1.1    | Background Soils                                         | 2-24  |      |
|     |       | 6.1.2    | Transformer Soils                                        | 3-24  |      |
|     |       | 6.1.3    | SWMU Soils                                               |       | 3-24 |
|     |       |          | 6.1.3.1 SWMU 5/Former Grinding Room Pickling Process     | 3-24  |      |
|     |       |          | 6.1.3.2 SWMU 9/Former TCA Container Storage Area         | 4-24  |      |
|     |       |          | 6.1.3.3 SWMU 11/Shark Pit Residual Material Loading Area | 4-24  |      |
|     |       |          | 6.1.3.4 SWMU 13/Crucible Disposal Areas and SWMU 14/     |       |      |
|     |       |          | Waste Disposal Areas                                     | 4-24  |      |
|     |       |          | 6.1.3.5 SWMU 15/Former Waste Acid Surface Impoundments   | 6-24  |      |
|     |       |          | 6.1.3.6 SWMU 16/Willowbrook Pond                         | 6-24  |      |
|     |       |          | 6.1.3.7 SWMU 17/Closed Surface Impoundment and SWMU 22/  |       |      |
|     |       |          | Wastewater Treatment Plant Areas                         | 6-24  |      |

Section: TOC Revision: 0 Date: 10/22

Date: 10/22/98
Page: v of xi

|     |      |           |                                                           | Page  |
|-----|------|-----------|-----------------------------------------------------------|-------|
|     |      |           | 6.1.3.8 SWMU 18/Grinding Dust Transfer Pile               | 7-24  |
|     |      |           | 6.1.3.9 SWMU 19/Former Waste Pile                         | 7-24  |
|     |      |           | 6.1.3.10SWMU 20/Waste Asbestos Accumulation Area          | 7-24  |
|     |      |           | 6.1.3.11SWMU 21/Grinding Swarf Storage Area               | 8-24  |
|     |      |           | 6.1.3.12SWMU 23/API Oil/Water Separator                   | 8-24  |
|     |      | 6.1.4     | AOC Soils                                                 | 8-24  |
|     |      |           | 6.1.4.1 AOC 3/Cooling Towers                              | 8-24  |
|     |      |           | 6.1.4.2 AOC 6/Former Above Ground Fuel Oil Tank           | 9-24  |
|     |      |           | 6.1.4.3 AOC 7/Scrap Steel Storage Areas                   | 10-24 |
|     |      |           | 6.1.4.4 AOC 8/Former Coal Storage Area                    | 11-24 |
|     |      |           | 6.1.4.5 AOC 11/Former Coal Gasification Plant             | 11-24 |
|     |      | 6.1.5     | CAMU Soils                                                | 12-24 |
|     |      |           | 6.1.5.1 CAMU A/Former LAP West Pickling Facility          | 12-24 |
|     |      |           | 6.1.5.2 CAMU B/Former BRP Pickling Facility               | 13-24 |
|     |      |           | 6.1.5.3 CAMU C/BFS Pickling Facility                      | 13-24 |
|     |      |           | 6.1.5.4 CAMU D/Former LAP East Pickling Facility          | 13-24 |
|     |      | 6.1.6     | General Site Soils                                        | 14-24 |
|     | 6.2  |           | dwater Evaluation                                         | 16-24 |
|     |      |           | SWMU 16 - Willowbrook Pond                                | 17-24 |
|     |      | 6.2.2     | SWMU 17 - Closed Surface Impoundment and SWMU 22/Wastewat |       |
|     |      |           | Treatment Plant Areas                                     | 18-24 |
|     |      |           | CAMU A - Former LAP West Pickling Facility                | 19-24 |
|     |      |           | CAMU B - Former BRP Pickling Facility                     | 19-24 |
|     |      |           | CAMU C - BFS Pickling Facility                            | 19-24 |
|     |      |           | CAMU D - Former LAP East Pickle Facility                  | 20-24 |
|     |      |           | Site Groundwater                                          | 21-24 |
|     | 6.3  |           | ce Water and Sediment Evaluations                         | 21-24 |
|     |      |           | Surface Water                                             | 22-24 |
|     |      | 6.3.2     | Sediment                                                  | 22-24 |
| 7.0 | Inve | stigation | Analysis                                                  | 1-21  |
|     | 7.1  | Analy     | sis of SWMU Conditions                                    | 2-21  |
|     |      | 7.1.1     |                                                           | 2-21  |
|     |      | 7.1.2     | SWMU 9/Former TCA Container Storage Area                  | 2-21  |

Date: 10/22/98 Page: vi of xi

|     |       |          |                                                          | Page  |
|-----|-------|----------|----------------------------------------------------------|-------|
|     |       | 7.1.3    | SWMU 11/Shark Pit Residual Material Loading Area         | 3-21  |
|     |       | 7.1.4    | SWMU 13/Crucible Disposal Areas and SWMU 14/Waste        |       |
|     |       |          | Disposal Areas                                           | 4-21  |
|     |       | 7.1.5    | SWMU 15/Former Waste Acid Surface Impoundments           | 5-21  |
|     |       | 7.1.6    | SWMU 16/Willowbrook Pond                                 | 5-21  |
|     |       | 7.1.7    | SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewate |       |
|     |       |          | Treatment Plant                                          | 6-21  |
|     |       |          | C                                                        | 6-21  |
|     |       |          | SWMU 19/Former Waste Pile                                | 7-21  |
|     |       | 7.1.10   | SWMU 20/Waste Asbestos Accumulation Area                 | 7-21  |
|     |       | 7.1.11   | SWMU 21/Grinding Swarf Storage Area                      | 8-21  |
|     |       |          | SWMU 23/API Oil/Water Separator                          | 8-21  |
|     | 7.2   | Analys   | sis of AOC Conditions                                    | 9-21  |
|     |       | 7.2.1    | AOC 1/Transformers                                       | 9-21  |
|     |       | 7.2.2    | AOC 3/Cooling Towers                                     | 10-21 |
|     |       |          | 7.2.2.1 AOC 3A/Rust Furnace Cooling Tower                | 10-21 |
|     |       |          | 7.2.2.2 AOC 3B/HAP Cooling Tower                         | 11-21 |
|     |       |          |                                                          | 11-21 |
|     |       | 7.2.4    | AOC 7/Scrap Steel Storage Areas                          | 12-21 |
|     |       | 7.2.5    | AOC 8/Former Coal Storage Area                           | 13-21 |
|     |       | 7.2.6    | AOC 11/Former Coal Gasification Plant                    | 13-21 |
| 7.3 | Analy | sis of C | AMU Conditions                                           | 14-21 |
|     |       | 7.3.1    | $\varepsilon$                                            | 14-21 |
|     |       |          | CAMU B/Former BRP Pickling Facility                      | 15-21 |
|     |       |          | CAMU C/BFS Pickling Facility                             | 15-21 |
|     |       | 7.3.4    | CAMU D/Former LAP East Pickling Facility                 | 16-21 |
|     |       | 7.3.5    | CAMU E/ Northwest Quadrant Fill Area                     | 17-21 |
|     | 7.4   | Analys   | sis of General and Perimeter Site Conditions             | 18-21 |
|     | 7.5   | Unnan    | ned Tributary to Crooked Brook                           | 19-21 |
|     |       | 7.5.1    | Surface Water                                            | 19-21 |
|     |       | 7.5.2    | Sediment                                                 | 19-21 |
|     | 7.6   | Air Pa   | thways Analysis Summary                                  | 20-21 |
|     | 7.7   | Proces   | ss Pits and Sewers                                       | 20-21 |
|     |       | 7.7.1    | Process Pits                                             | 20-21 |
|     |       | 7.7.2    | Process Sewers                                           | 21-21 |
| 8.0 | Sumi  | naries a | nd Recommendations                                       | 1-13  |
|     | 8.1   | Site Si  | ummaries                                                 | 2-13  |
|     |       | 8.1.1    | Site Soil                                                | 2-13  |
|     |       |          | 8.1.1.1 TAL Inorganics                                   | 3-13  |

Date: 10/22/98 Page: vii of xi

## Contents (continued)

|     |       |                                           | Page  |
|-----|-------|-------------------------------------------|-------|
|     |       | 8.1.1.2 TCL VOCs                          | 3-13  |
|     |       | 8.1.1.3 TCL SVOCs                         | 4-13  |
|     |       | 8.1.1.4 TCL PCBs                          | 4-13  |
|     | 8.1.2 | Site Groundwater                          | 4-13  |
|     |       | 8.1.2.1 TAL Inorganics                    | 5-13  |
|     |       | 8.1.2.2 TCL VOCs                          | 7-13  |
|     |       | 8.1.2.3 Miscellaneous Parameters          | 8-13  |
|     | 8.1.3 | Surface Water and Sediment                | 8-13  |
| 8.2 | Recon | nmendations for Additional Work           | 8-13  |
|     | 8.2.1 | Phase II RFI                              | 9-13  |
|     | 8.2.2 | ICMs                                      | 11-13 |
|     |       | 8.2.2.1 NYSDEC-Approved ICMs              | 11-13 |
|     |       | 8.2.2.2 Proposed ICMs                     | 12-13 |
|     | 8.2.3 | Process Pits and Tanks and Process Sewers | 13-13 |

#### References

Section: TOC Revision: 0
Date: 10
Page: vii

10/22/98 viii of xi

#### **List of Tables**

| Table No.  | File No. | Title                                                 |
|------------|----------|-------------------------------------------------------|
| Table 1-1  | pir00050 | Solid Waste Management Units                          |
| Table 1-2  | pir00051 | Areas of Concern                                      |
| Table 1-3  | pir00052 | Summary of SWMU and AOC Information                   |
| Table 1-4  | pir00053 | Environmental Media Sample Applicability              |
| Table 2-1  | pir00063 | Well Construction Summary                             |
| Table 2-2  | pir00006 | Process Pits                                          |
| Table 2-3  | pir00064 | Existing Well Evaluation                              |
| Table 3-1  | pir00038 | Geotechnical Testing Summary                          |
| Table 3-2  | pir00065 | Groundwater Elevation Summary                         |
| Table 3-3  | pir00005 | In Situ Hydraulic Conductivity Test Results           |
| Table 4-1  | pir00007 | Background Soil Sample Data                           |
| Table 4-2  | pir00008 | Transformer Soil Sample Data                          |
| Table 4-3  | pir00018 | TCLP Metals Data for Soils                            |
| Table 4-4  | pir00032 | Surface and Subsurface Soil TAL Inorganic Plus        |
|            | _        | Molybdenum Data                                       |
| Table 4-5  | pir00033 | Surface and Subsurface Soil TCL VOC and VOC TIC Data  |
| Table 4-6  | pir00035 | Surface and Subsurface Soil TCL SVOC and SVOC TIC     |
|            |          | Data                                                  |
| Table 4-7  | pir00037 | Surface and Subsurface Soil TCL PCB and Miscellaneous |
|            |          | Parameter Data                                        |
| Table 4-8  | pir00010 | Subsurface Soil Sample Data (CAMUs A, B, and D)       |
| Table 4-9  | pir00013 | Groundwater Sample TAL Inorganic Plus Molybdenum      |
|            |          | Data                                                  |
| Table 4-10 | pir00015 | Groundwater Sample SCL VOC and VOC TIC Data           |
| Table 4-11 | pir00017 | Groundwater Sample TCL SVOC and SVOC TIC Data         |
| Table 4-12 | pir00019 | Groundwater Sample TCL PCB and Miscellaneous          |
|            |          | Parameter Data                                        |
| Table 4-13 | pir00012 | Surface Water Sample Data                             |
| Table 4-14 | pir00011 | Sediment Sample Data                                  |
| Table 5-1  | pir00030 | SWMU 17, Post-Closure Groundwater Monitoring Data     |
| Table 6-1  | pir00039 | Potentially Applicable Soil Criteria                  |
| Table 6-2  | pir00044 | Soil Samples in Exceedance of Potentially Applicable  |
|            |          | Criteria                                              |
| Table 6-3  | pir00040 | Potentially Applicable Groundwater Criteria           |
| Table 6-4  | pir00045 | Groundwater Samples in Exceedance of Potentially      |
|            |          | Applicable Criteria                                   |
| Table 6-5  | pir00042 | Potentially Applicable Surface Water Criteria         |
| Table 6-6  | pir00041 | Potentially Applicable Sediment Criteria              |
| Table 7-1  | pir00100 | RCRA Corrective Action Program Summary                |

Date: 10/22/98 Page: ix of xi

#### **List of Figures**

| Figure No. | Dwg. No.   | Title                                                                  |
|------------|------------|------------------------------------------------------------------------|
| Figure 1-1 | 483803-A3  | Site Location Map                                                      |
| Figure 1-2 | 483803-E7  | Site Layout                                                            |
| Figure 2-1 | 483803-E16 | Site Layout and RFI Locations                                          |
| Figure 2-2 | 483803-B3  | Transformer and Process Pit Locations                                  |
| Figure 2-3 | 483803-D08 | Storm Water Discharge to Crooked Brook                                 |
| Figure 2-4 | 483803-B7  | Potable Well Locations                                                 |
| Figure 3-1 | 483803-E20 | Weathered Shale Surface Contour Map                                    |
| Figure 3-2 | 483803-E18 | Geologic Cross Sections A-A' and B-B'                                  |
| Figure 3-3 | 483803-E17 | Geologic Cross Sections C-C' and D-D'                                  |
| Figure 3-4 | 483803-E14 | Groundwater Potentiometric Surface Contour Map (November 1996)         |
| Figure 3-5 | 483803-E15 | Groundwater Potentiometric Surface Contour Map (March 1997)            |
| Figure 3-6 | 483803-E12 | Process Sewer Identification                                           |
| Figure 5-1 | 483803-B13 | SWMU 17 – Closed Surface Impoundment                                   |
| Figure 6-1 | 483803-E25 | Exceedances of Potentially Applicable Criteria for Groundwater Samples |

Date: 10/22/98 Page: x of xi

#### List of Appendices

- Appendix A Transformer Area Soil Sample Location Maps and Wipe-Test Data
- Appendix B CAMU Boring and Soil Sample Location Maps
- Appendix C Project Status Reports
- Appendix D Soil Boring and Monitoring Well Construction Diagrams
- Appendix E Test Pit Logs
- Appendix F Groundwater Purge and Sample Forms
- Appendix G Project Correspondence
- Appendix H Geotechnical Testing Report
- Appendix I Velocity Calculations and In Situ Hydraulic Conductivity Test Data
- Appendix J Process Pit Plan Maps and Photographs
- Appendix K WWTP Effluent Data
- Appendix L Reportable Release History
- Appendix M Data Validation Reports
- Appendix N Chemical Analytical Data Tables
- Appendix O 95 percent UCL Calculations for Background Soils
- Appendix P Asbestos Analysis Reports
- Appendix Q Statistical Evaluation of SWMU 17 Groundwater Data
- Appendix R Air Pathway Analysis
- Appendix S CAMU A Summaries
- Appendix T Process Line Activities Summary

Date: 10/22/98 Page: xi of xi

#### **List of Acronyms**

40 CFR Title 40

ANOVA Code of Federal Regulations

AOC areas of concern

BFS bar finishing and storage BRP Brigham Road Plant

CAMU corrective action management unit

CMS corrective measures study
COD chemical oxygen demand
HAP Howard Avenue Plant
ICM interim corrective measure

ISCST3 Industrial Source Complex Short-Term

LAP Lucas Avenue Plant

NTU nephelometric turbidity unit

NYSDEC New York State Department of Environmental Conservation

PAH polynuclear aromatic hydrocarbon

PCB polychlorinated biphenyl

PE polyethylene

PID photoionization detector

PIECM Pre-Investigation Evaluation of Corrective Measures

POTW publicly-owned treatment works

PVC polyvinyl chloride

QAPiP Quality Assurance Project Plan

OC quality control

RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment
RFI RCRA Facility Investigation
SVOC semi-volatile organic compound
SWMU solid waste management unit

TAGM Technical and Administrative Guidance Memorandum

TAL Target Analyte ListTC toxicity characteristicTCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

TOC total organic carbon

TPH/Pet.I.D. total petroleum hydrocarbons/petroleum identification

TSS total suspended solids
UCL upper confidence limit
VOC volatile organic compound
WWTP wastewater treatment plant

Date: 10/22/98

Page: 1 of 6

ES

#### **Executive Summary**

In 1995, an Order on Consent (Order) was entered into by the New York State Department of Environmental Conservation (NYSDEC) and AL Tech Specialty Steel Corporation (AL Tech). The Order required the implementation of a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) at AL Tech's facility in Dunkirk, New York (site) under the RCRA Corrective Action Program.

The Order identified 24 solid waste management units (SWMUs) and 11 areas of concern (AOCs) at the site. Based on the information presented in a RCRA facility assessment and the description of current conditions for site, the need for investigation of one SWMU and three AOCs as part of the RFI was deleted from the requirements of the Order.

A Phase I RCRA Facility Investigation Work Plan was prepared and submitted to NYSDEC in 1996. The work plan identified four corrective action management units (CAMUs) that incorporated one or more SWMUs (a total of 7 SWMUs) located within the facility's four pickling areas (CAMUs A, B, C, and D). The work plan was subsequently approved and the scope of work was implemented in 1996 and 1997. The findings of the investigation and recommendations for supplemental activities are presented in this Phase I RCRA Facility Investigation Report.

The Phase I scope of work included:

- the completion of soil borings and test pits
- the installation of monitoring wells within the unconsolidated overburden
- the collection of environmental media samples for laboratory analysis, including surface and subsurface soils, groundwater, and surface water and sediment
- the collection of surface and subsurface soil samples for geotechnical testing
- the evaluation of aquifer characteristics, including water-level monitoring and insitu hydraulic conductivity testing
- the inspection of process pits and tanks
- the identification of process sewers
- the identification of storm water discharge locations to a nearby stream
- the modeling of predicted impact at the facility's boundary from metals in surficial soils

10/22/98 Date:

Page: 2 of 6

Recommendations for no further action, additional investigation (i.e., Phase II RFI), and interim corrective measures have been made for each SWMU, AOC, or CAMU based on the data and information generated via the implementation of the Phase I RFI and pursuant to the requirements of the RCRA Corrective Action Program.

#### No Further Action

No further action is recommended for 12 of the 16 individual SWMUs and 7 of the 8 AOCs investigated during the RFI. However, individual units in AOC 1, Transformers (Transformer T3), and AOC 3, Cooling Towers and Process Pits (AOC 3B, Howard Avenue Plant [HAP] Cooling Tower) have been identified for further investigation during the Phase II RFI or implementation of an interim corrective measure.

#### Additional Investigation

Additional investigation as part of the Phase II RFI is recommended for:

- SWMU 11, Shark Pit Residual Material Loading Area
- SWMU 15, Former Waste Acid Surface Impoundments
- SWMU 16, Willowbrook Pond (area)<sup>1</sup>
- AOC 3A, HAP Cooling Tower
- AOC 9, Unnamed Tributary to Crooked Brook
- CAMU B, Former Brigham Road Plant (BRP) Pickling Facility
- CAMU D, Former Lucas Avenue Plant (LAP) East Pickling Facility
- CAMU E, Northwest Quadrant Fill Area
- RFI-08 (groundwater)

CAMU E has been proposed within this Phase I RFI report to incorporate an area with historically diverse operations. Well RFI-08 was installed to provide a perimeter monitoring location for groundwater quality. The surficial soil sample collected from this location and one of two groundwater samples collected from this location indicated impact from lead. Consequently, RFI-08 has been identified as an additional area of interest.

Investigation as part of the Phase II RFI is recommended to provide better locations for sampling of environmental media than those previously sampled for SWMUs 11 and 15, AOCs 3A and 9, and CAMU B.

<sup>&</sup>lt;sup>1</sup> Groundwater samples that were collected from monitoring wells hydraulically upgradient of Willowbrook Pond contained volatile organic compounds. The source of these constituents is not believed to be associated with operation of the pond. The SWMU designation has merely been used to identify the "area" of interest.

Date: 10/22/98 Page: 3 of 6

Volatile organic compounds were detected in soil or groundwater samples, or both, collected from the area of SWMU 16, and CAMUs D and E. The focus of the Phase II activities for these locations is the delineation of the impact and potential identification of the source areas.

Lead was detected in the total (unfiltered) sample collected during one of two groundwater sampling events from RFI-08 at a concentration above potentially applicable criteria. Because RFI-08 is located along a downgradient boundary of the facility and because lead was also detected in the surficial soil sample collected at this location above the toxicity characteristic limit, additional evaluation of groundwater quality at this location was recommended.

Additional recommendations for the Phase II RFI include the calculation of site-specific risk-based action levels for select metals and PAHs in site soils, a comparison of surface soil data with these action levels, and an assessment of surface soil and its relationship to conditions in the unnamed tributary.

The site-specific risk-based concentrations will be used to determine if it is necessary to evaluate site soils as part of the CMS. These values will also be used to develop necessary and appropriate health and safety requirements for potential remedial construction scenarios in which exposure to subsurface soils might occur.

The sediment investigation results generated for the AOC 9, Unnamed Tributary to Crooked Brook, during the Phase I RFI were inconclusive. If the results of the Phase I and Phase II investigations suggest impact to these sediments from facility operations, surface soil conditions will be assessed to determine if it is necessary to establish engineering controls to prohibit further impact to the stream.

#### Interim Corrective Measures

Interim corrective measures (ICMs) are recommended for:

- AQC 1, Transformer T3
- CAMU A, Former LAP West Pickling Facility
- CAMU C, Bar Finishing and Storage (BFS) Pickling Facility
- RFI-08 (soil)

During implementation of the Phase I RFI, impact to groundwater quality from historical pickling operations was identified in the areas of CAMU A and CAMU C. An ICM work plan was prepared for both CAMUs and was subsequently approved by the NYSDEC. The first phase of the ICM for CAMU A was implemented in 1997. It is anticipated that the second phase of this ICM will be implemented in late 1998. Implementation of the ICM for CAMU A was identified as a priority because the Former Lucas Avenue Plant West Picking Facility is located near the site's property boundary. The ICM for CAMU C, located in the central portion of the facility has not yet been implemented.

ES 0

Date: Page: 10/22/98 4 of 6

A supplemental ICM activity has been identified for CAMU A. In addition to the groundwater impact observed in this area during the Phase I RFI, lead was detected above the TC limit in the surface soil sample collected from RB-04. The recommended supplemental activity includes delineation of the surficial extent of impact and removal of the soil for offsite disposal or construction of an engineering control to prevent future potential migration of lead to groundwater and exposure to onsite workers.

Polychlorinated biphenyls (PCBs) were detected in one of four surface soil samples collected from AOC 1, Transformer T3, at a concentration above the PCB Spill Cleanup Policy limit for restricted soil of 25 mg/kg. The recommended ICM includes delineation of the surficial extent of PCBs above this limit and removal of the soil for offsite disposal or construction of an engineering control to prohibit access to onsite workers.

As stated above, lead was detected above the TC limit in the surface soil sample collected from RFI-08. The recommended ICM includes delineation of the surficial extent of impact and removal of the soil for offsite disposal or construction of an engineering control to prevent future potential migration of lead to groundwater and exposure to onsite workers.

#### **Anticipated Future Activities**

It is anticipated that the results of the Phase II RFI will indicate that no further action is required for the following SWMUs and AOCs:

- SWMU 11, Shark Pit Residual material Loading Area
- SWMU 15, Former Waste Acid Surface Impoundments
- AOC 3B, HAP Cooling Tower
- RFI-08 (groundwater only)

The following SWMUs, AOCs, CAMUs, and area of interest are anticipated to be evaluated as part of the corrective measures study (CMS) for the site:

- SWMU 16, Willowbrook Pond (area)
- AOC 1, Transformer T3
- AOC 9, Unnamed Tributary to Crooked Brook
- CAMU A, Former LAP West Pickling Facility
- CAMU B, Former BRP Pickling Facility
- CAMU C, BFS Pickling Facility
- CAMU D, Former LAP East Pickling Facility
- CAMU E, Northwest Quadrant Fill Area
- RFI-08

Date:

10/22/98

Page:

5 of 6

Limited evaluation of site soils is anticipated to be performed as part of the CMS based on potential exceedances of some metals and PAHs above the site-specific risk-based action levels or identified impact to the unnamed tributary, or both.

Corrective measures are anticipated to be required for:

- SWMU 16, Willowbrook Pond, to address the potential closure of the pond and to address the presence of volatile organic compounds detected in groundwater samples collected near the pond (but not necessarily impacted by the pond)
- AOC 9, Unnamed Tributary to Crooked Brook, to address the implementation of engineering controls to limit impact to the stream from storm water runoff from the site.
- CAMU A, Former LAP West Pickling Facility, to address soil and groundwater conditions in this area. The corrective measure is anticipated to include, in part, the ICM.
- CAMU B, Former BRP Pickling Facility, to address potential soil or groundwater impact in this area.
- CAMU D, Former LAP East Pickling Facility, to address soil and groundwater conditions in this area.

Limited areas of the site may potentially require corrective measures based on exceedances of the site-specific risk-based action levels for metals and PAHs in soil.

Corrective measures are not anticipated for the following areas:

- AOC 1, Transformer T3, as the recommended ICM is anticipated to be adequate
- RFI-08, as the recommended ICM for soil is anticipated to be adequate
- CAMU C, BFS Pickling Facility, as the recommended ICM is anticipated to be adequate and offsite migration of impacted groundwater from this CAMU (located in the central portion of the facility) is not likely
- CAMU E, Northwest Quadrant Fill Area, as the extent of impact is anticipated to be limited and offsite migration of impacted groundwater from this CAMU (located in the north-central portion of the facility) is not likely

Date: 10/22/98 Page: 6 of 6

The final measure for the site is anticipated to include provisions for a groundwater compliance monitoring program along the facility's downgradient boundaries. The absence of groundwater exposure pathways (i.e., there is no downgradient potable usage) and implementation of this program will eliminate the need for corrective measures for groundwater, except as discussed above.

Date: 10/22/98

Page:

1 of 6

1.0

#### 1.0 Introduction

This report presents the findings of the Phase I Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) implemented at the AL Tech Specialty Steel Corporation (AL Tech) facility in Dunkirk, New York (site) (Figure 1-1). The Phase I RFI was performed in partial fulfillment of Appendix B of the Order on Consent (Order) issued by the New York State Department of Environmental Conservation (NYSDEC) (Order No. R4-1467-93-02) (NYSDEC 1995) under the RCRA Corrective Action Program.

#### 1.1 **Background**

AL Tech initiated the Corrective Action Program at the Site in 1990. A RCRA Facility Assessment (RFA) was performed to identify inactive and active solid waste management units (SWMUs) and areas of concern (AOCs), which, based on process knowledge and historical and current practices, could potentially release hazardous waste or hazardous constituents (substances of concern) to the environment which may pose an unacceptable risk to human health or the environment. The findings of the RFA (McLaren/Hart 1992a) formed the basis for the development of the corrective action requirements specified for the site in Appendix B of the Order.

Appendix B of the Order identifies seven key project tasks to be implemented during the RFI process, including:

Task I

Description of Current Conditions

Task II

Pre-Investigation Evaluation of Corrective Measures

Task III

RFI Management Plans

Task IV

Facility Investigation

Task V

Investigative Analysis

Task VI

Laboratory, Bench-Scale, and Pilot Studies

Task VII

Reports

Date: 10/22/98

Page: 2 of 6

A study of current conditions was implemented to provide background information on the site in support of the RFA. The Current Conditions Report (McLaren/Hart 1992b) includes information on the physical setting and history of the site and facility features, process and support operations, waste generation, spill history, past enforcement actions, preliminary identification of SWMUs and AOCs, identification of constituents of interest associated with these units and the potentially impacted environmental media.

Appendix B, Section A.2 of the Order identifies the site's 24 SWMUs and 11 AOCs. Four corrective action management units (CAMUs) have been identified which encompass several of the SWMUs or AOCs or a combination of these units which represent the historical and existing pickling operations areas. The individual units were combined and classified as CAMUs, due to their proximity and compatible nature of the processes and general wastes. The units, unit numbers, and descriptions are presented in Tables 1-1 and 1-2; the locations are identified in Figure 1-2. The potential SOCs for each of the units and summaries of operational histories for the units are presented in Table 1-3. The Pre-Investigation Evaluation of Corrective Measures (PIECM) (ESC 1996a) identified potential remedial technologies that may be considered for implementation at the site and was used to focus the data requirements for the Phase I RFI Work Plan (Work Plan) (ESC 1996b).

RFI Management Plans were developed for the site to document the scope of the Phase I RFI and to provide supporting information and protocols to be implemented in support of the investigation. These documents were appended to the Work Plan:

- Quality Assurance Project Plan (QAPjP)
- Health and Safety Plan
- Data Management Plan
- Community Relations Plan

The RFI Management Plans were approved by NYSDEC in September 1996 (NYSDEC 1996).

The implementation of the approved Work Plan, including the field investigation, addressed the requirements of Task IV. Analysis and reporting of the Phase I (Tasks V and VII) are addressed within the context of this Phase I RFI Report.

Section:

1.0 Revision:

10/22/98

Date: Page:

3 of 6

If a Corrective Measures Study (CMS) is necessary, Task VI will be completed as applicable to the SWMUs, AOCs, and CAMUs identified.

#### 1.2 **Project Objectives**

The objectives of the Phase I RFI were:

- to establish facility baseline conditions for potential substances of concern in the site environmental media
- to characterize the nature of the potential substances of concern (locations, media, and concentrations)
- to determine if the potential substances of concern have the potential to migrate offsite
- to provide data for use in evaluating potential corrective measures, if any, as identified in the PIECM
- to determine if the potential substances of concern pose potential unacceptable risks to human health and the environment
- to determine appropriate subsequent action based on potential risk, i.e.,
  - no further action
  - additional investigations (e.g., Phase II RFI)
  - interim corrective measure (ICM)
  - CMS

#### 1.3 Scope of Work

The Phase I RFI included physical and chemical characterization of several environmental media and implementation of miscellaneous activities including inspection of inactive and active process tanks and pits, identification of process sewers, and a preliminary assessment of Crooked Brook (east-northeast of the site).

A brief summary of the activities performed is presented below. Implementation of these activities was performed in accordance with the NYSDEC-approved Work Plan or as modified based on conditions encountered. A summary of the implementation activities and identification of modifications to the scope of work are presented in Section 2.0.

Date: Page:

10/22/98 4 of 6

1.0

r ugo.

All environmental media analytical data were compared to the potentially applicable regulatory guidelines to evaluate the nature and extent of potentially impacted media.

#### 1.3.1 Soils Investigation

Site soils from various units were evaluated through the collection and analysis of surface and subsurface soil samples. The relationships between the SWMUs, AOCs, and CAMUs and specific sampling locations are presented in Table 1-4.

Surface soil samples were collected from the following areas:

- 7 offsite (background) locations
- 3 transformer substations (AOC 1)
- 53 facility locations

The results of analysis for the Target Analyte List (TAL) Inorganics (plus hexavalent chromium and molybdenum) for soil samples collected from the offsite locations were used to calculate background concentrations. The TAL Inorganic and geotechnical data for the onsite surface soil samples were also used to perform an Air Pathway Analysis for the Site.

Subsurface soil samples were collected from 44 locations within the facility boundary. The analytical data for these samples were also compared to calculated background concentrations to evaluate potential relative impact from facility operations with depth. Geotechnical data for the subsurface soils was used to evaluate general site characteristics and evaluate the vertical permeability of the confining clay layer underlying the site.

Several surface and subsurface soil samples were submitted for Toxicity Characteristic Leaching Procedure (TCLP) extraction and analysis of the extract for various metals. The purpose of the extraction and analysis was to evaluate the potential effect of soils, impacted by metals, on groundwater quality.

#### 1.3.2 Groundwater Investigation

Groundwater monitoring wells were completed during the Phase I RFI, in accordance with the approved Work Plan, along the facility boundaries and within the facility.

Groundwater quality data were generated from two groundwater sampling and analytical events. Both events included the collection of samples from all newly installed wells and select existing wells. Physical groundwater data were used to determine aquifer characteristics.

Date: 10/22/98

Page:

5 of 6

1.0

#### 1.3.3 <u>Surface Water and Sediment Investigation</u>

Surface water and sediment samples were collected for laboratory analysis from three locations in the unnamed southern tributary to Crooked Brook, which transverses the southwestern corner of the site.

#### 1.3.4 Air Pathway Analysis

Data for the site surface soil samples submitted for analysis of TAL Inorganics (plus hexavalent chromium and molybdenum) were used to perform an Air Pathway Analysis. The objective of this analysis was to predict concentrations of these constituents at the property boundary and for the nearest offsite receptor(s) and to compare the predicted concentrations to established regulatory criteria.

#### 1.3.5 Miscellaneous Investigation Tasks

Additional activities that were performed during the Phase I RFI to supplement the interpretation of other site data included:

- evaluation of the integrity of the existing monitoring wells at the site
- evaluation of the integrity of various process pits and tanks
- identification of the process sewer lines.

Other activities were also implemented in accordance with the Work Plan to support the aforementioned tasks. Each of these tasks are discussed in Section 2.0.

#### 1.4 Report Format

Section 2.0 of this report presents a brief summary of the investigation activities. In general, all activities were completed in accordance with the NYSDEC-approved Work Plan. Necessary modifications to the Work Plan protocols are also identified in Section 2.0.

A summary of site physical conditions is presented in Section 3.0 and chemical analytical results generated during the investigation presented in Section 4.0. Section 5.0 addresses conditions proximate to SWMU 17, Closed Surface Impoundment, and includes a summary discussion of historical groundwater monitoring data for this unit.

Evaluation of the environmental media data and potentially applicable state and federal regulations and guidance are presented in Section 6.0. An interpretation of the Phase I RFI

1.0

Date: Page: 10/22/98 6 of 6

e: 6 o

findings, including the results of the Air Pathways Analysis, is presented in Section 7.0. Conclusions and recommendations, largely developed on the basis of the data interpretation and evaluation, are presented in Section 8.0.

## Solid Waste Management Units Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| SWMU Category (a)                                         | Unit No. (b)  | Unit Description                                        |
|-----------------------------------------------------------|---------------|---------------------------------------------------------|
| Tank Systems                                              | 1             | Former Lucas Avenue Plant West Pickle Facility (CAMU A) |
|                                                           | 2             | Former Brigham Road Plant Pickle Facility (CAMU B)      |
|                                                           | 3             | Bar Finishing and Storage Pickle Facility (CAMU C)      |
|                                                           | 4             | Former Lucas Avenue Plant East Pickle Facility (CAMU D) |
|                                                           | 5             | Former Grinding Room Pickling Process                   |
|                                                           | 6             | Former Barium Chloride Bath (CAMU A)                    |
|                                                           | 7             | Former Plating Operations                               |
|                                                           | ,<br>7A       | (CAMU D - Continuous Lead Coating)                      |
|                                                           | 7B            | (CAMU A - Continuous Lead Coating)                      |
|                                                           | 7C            | (CAMU A - Continuous Lead Coating)                      |
|                                                           | 7D            | <del>-</del>                                            |
|                                                           | 7E (c)        | (CAMU D - Copper Coating)                               |
|                                                           | • *           | (CAMU A - Non-Electrolytic Copper Coating)              |
|                                                           | 8 (d)         | Former Lucas Avenue Plant Neutralization Plant (CAMU A) |
| Container Storage Units                                   | 9             | Former Trichloroethane Container Storage Area           |
|                                                           | 10            | Waste Container Accumulation Areas                      |
|                                                           | 10A (d)       | (near Bar Finishing and Storage)                        |
|                                                           | 10B (d)       | (in Old Hot Top Building/Howard Avenue Plant)           |
|                                                           | 10C (d)       | (in Warehouse/Howard Avenue Plant)                      |
|                                                           | 11            | Shark Pit Residual Material Loading Area                |
| Waste Disposal Units                                      | 12            | Former Lime Disposal Area                               |
| •                                                         | 13            | Crucible Disposal Areas                                 |
|                                                           | 13A           | (near Bar Finishing and Storage)                        |
|                                                           | 13B           | (near Howard Avenue Plant Parking Lot)                  |
|                                                           | 13C           | (near Brigham Road Plant)                               |
|                                                           | 14            | Waste Disposal Facilities                               |
|                                                           | 14A           | (near Bar Finishing and Storage)                        |
|                                                           | 14B           | (near Howard Avenue Plant Parking Lot)                  |
|                                                           | 14C           | (near Brigham Road Plant)                               |
| Surface Impoundments                                      | 15            | Former Waste Acid Surface Impoundments                  |
| Surface Impoundments                                      | (15A and 15B) | rottier waste Acid Surface Impoundments                 |
|                                                           | 16            | Willowbrook Pond                                        |
|                                                           | 17            |                                                         |
|                                                           | 17            | Closed Surface Impoundment                              |
| Waste Piles                                               | 18            | Grinding Dust Transfer Pile                             |
|                                                           | 19            | Former Waste Pile                                       |
|                                                           | 20            | Waste Asbestos Accumulation Area                        |
|                                                           | 21            | Grinding Swarf Storage Area                             |
| Wastewater Treatment Units                                | 22            | Wastewater Treatment Plant                              |
| Waste Oil Handling Units                                  | 23            | API Oil/Water Separator                                 |
| Sewers handling hazardous waste or hazardous constituents | 24            | Process Sewers                                          |

a/ SWMU = solid waste management unit; CAMU = corrective action management unit.

b/ Unit numbers are as defined in the Order on Consent, not necessarily as defined in the RCRA Facility Assessment (RFA).

c/ As discussed in the Phase I RFI Work Plan, the non-electrolytic copper-coating unit identified in the Order on Consent as SWMU 7E was never constructed.

d/ The Order on Consent. Appendix B. Section C.1. indicates that no further action is required for these units. based on information provided in the RFA.

#### Table 1-2

# Areas of Concern Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| AOC Category (a)            | Unit No. (b) | Unit Description                               |
|-----------------------------|--------------|------------------------------------------------|
| Electrical Equipment        | 1            | Transformers                                   |
|                             | 2 (c)        | Battery Storage Areas                          |
|                             | 2A           | (Brigham Road Plant - northwest)               |
|                             | 2B           | (Lucas Avenue Plant - south central)           |
|                             | 2C           | (Bar Finishing and Storage)                    |
|                             | 2D           | (Howard Avenue Plant - southwest)              |
|                             | 2E           | (Howard Avenue Plant - north central)          |
|                             | 2F           | (Howard Avenue Plant - northeast)              |
|                             | 2G           | (near Lucas Avenue Plant West Pickle Facility) |
| Tank Systems                | 3            | Cooling Towers and Process Pits (c)            |
|                             | 3A           | (Rust Furnace Cooling Tower)                   |
|                             | 3B           | (Howard Avenue Plant Cooling Tower)            |
|                             | 4 (c)        | Former Heat Treating Facility                  |
|                             | 5 (d)        | Lucas Avenue Oil Tanks                         |
|                             | 5A           | (Lucas Avenue West Oil Tanks)                  |
|                             | 5B           | (Lucas Avenue East Oil Tanks)                  |
|                             | 6            | Former Aboveground Fuel Oil Tank               |
| Raw Materials Piles         | 7            | Scrap Steel Storage Areas                      |
|                             | 7A           | (Howard Avenue Plant)                          |
|                             | 7B           | (Bar Finishing and Storage - east)             |
|                             | 7C           | (Bar Finishing and Storage - west)             |
|                             | 8            | Former Coal Storage Area                       |
| Surface Water               | 9            | Unnamed Tributary to Crooked Brook             |
| Dust Control Areas          | 10           | Oiled Roads                                    |
| Process Waste Disposal Area | 11           | Former Coal Gasification Plant                 |

a/ AOC = area of concern; CAMU = corrective action management unit.

The tanks identified in the Order on Consent as AOC5 are subsequently referenced as Lucas Avenue West Oil Tanks (AOC 5A).

b/ Unit numbers are as defined in the Order on Consent, not necessarily as defined in the RCRA Facility Assessment (RFA).

c/ The Order on Consent, Appendix B, Section C.1, indicates that no further action is required for these units, based on information provided in the RFA.

d/ During preparation of the Phase I RFI Work Plan, AL Tech identified a series of oil tanks at the Lucas Avenue Plant. These tanks, which were not identified in the Order on Consent, are subsequently referenced as the Lucas Avenue East Oil Tanks (AOC 5B).

Table 1-3

Summary of SWMU and AOC Information
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|                    |                                                  |                                                                                                                       | Description                                                                                                                                                                                        |
|--------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit No. (a)       | Description                                      | Materials Handled/SOCs (b)                                                                                            | (Period of Operation)                                                                                                                                                                              |
| CAMU A<br>(SWMU I) | Former Lucas Avenue Plant West Pickle Facility   | Caustie, nitric acid, sulfurie acid, hydrofluorie acid, lime, chromum, and niekel                                     | Abandoned wire pickling operation consisting of 15 process tanks, 2 waste pits, an acid neutralizing pt, and 2 acid storage tanks (1921-1989).                                                     |
| (SWMU 6)           | Former Barium Chloride Bath                      | Barium chloride and metal salts/metals                                                                                | Abandoned molten barium chloride annealing tank in LAP (1960-1988).                                                                                                                                |
| (SWMU 7)           | Former Plating Operations (c) (SWMUs 7B and 7C)  | Copper, lead, cyanide, and trichloroethane                                                                            | Abandoned lead-coating operations (1909-1964).                                                                                                                                                     |
| CAMU B<br>(SWMU 2) | Former Brigham Road Plant Pickle Facility        | Caustic, nitric acid, sulfuric acid, hydrofluoric acid, lime, chromium, and nickel                                    | Previous bar and coil picking operation consisting of 8 process tanks, a waste acid pit, and 2 acid storage tanks. Also included an abandoned acid neutralization plant consisting of mixing tanks |
| CAMU C<br>(SWMU 3) | Bar Finishing and Storage Pickle Facility        | Caustic, nitric acid, sulfuric acid, hydrothoric acid, line,<br>chromium, nickel, oxalic acid, and sodium thiosulfate | and lime storage area (1948-1991).  Current har pickling operation consisting of 11 process tanks, a waste acid tank, and 2 acid storage tanks (1969-present).                                     |
| CAMU D<br>(SWMU 4) | Former Lucas Avenue Plant East Pickle Facility   | Caustie, nitrie acid, sulfurie acid, hydrothuorie acid, lime<br>chromium, niekel, and trichloroethane                 | Abandoned fine wire pickling operation (1935-1972). Process and product storage tanks have been removed. Wastewater, and academicalization wite more abandoned.                                    |
| (SWMU 7)           | Former Plating Operations (c) (SWMUs 7A and 7D)  | Cupper, lead, cyanide, and trichloroethane                                                                            | area, and requestratoring has were aromormed.  Abandoned copper and lead coating operations (1909 - 1982).                                                                                         |
| SWMU 5             | Former Grinding Room Picking Process             | Nitric acid, sulfuric acid, lime, chromium, and nickel                                                                | Abandoned grinding department pickling process consisted of 4 tanks and a neutralization pit (1951-1965).                                                                                          |
| SWMU 9             | Former Trichloroethane Container Storage Area    | Trichtoroethane, oils, solvents, paints, and thinners                                                                 | Temporary 55-gallon container storage area for various wastes awaiting offsite disposal (1968-1988).                                                                                               |
| SWMUTI             | Shark Pit Residual Material Loading Area         | Metal oxides, oil, oily sludges, and PCBs (d)                                                                         | Rolloff container for temporary storage of oils and shudge from process areas (1940-present).                                                                                                      |
| SWMU 12            | Former Lime Disposal Area                        | Lime and stag                                                                                                         | Lime (calcium and magnesium oxide).                                                                                                                                                                |
| SWMU 13            | Crucible Dispusal Area (SWMUs 13A, 13B, and 13C) | Crucibles, melted steel, metal salts, mill scale, and grinding dus/metals                                             | Crucible from melt operations disposed in area and covered with sail (1908-1901; 1968 tor SWMO 13B).                                                                                               |

Summary of SWMU and AOC Information Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 2 of 3

| Description<br>(Period of Operation) | Onsite fill areas used for solid waste disposal (1908-1970). | Abandoned carthen surface impoundments previously used to store waste acid from pickling processes (1950-1965). | Recirculation reservoir for cooling and process waters (1952-present).                     | RCRA pickle liquor surface impoundment (1976-1988);<br>impoundment "clean closed" in 1989. (f) | Temporary outdoor storage area for grinding dust from the BFS plant (1948-present). | <ul> <li>Abandoned outdoor waste storage. Trash and contaminated<br/>soils have been removed (1940-1967).</li> </ul> | Previous storage area for ashestos removal operation (1975-1978). | Waste grinding swarf was previously placed on the ground. Swarf currently stored in rolloff transport boxes (1969-present). | Current WWTP consisting of chromium reduction, lime neutralization and metal hydroxide precipitation processes. The WWTP has 6 process tanks, 2 sulfamators, and lime storage. | 100,000-gallon concrete tank for separating floating oil from HAP cooling waters (1976-present). | Pipelines used to convey wastewaters to Willowbrook Pond, API Oil/Water Separator and Wastewater Treatment Plant. | Releases from the various units facility-wide (1920-present). | Potential releases from the units facility-wide (1908-present).                     |              |
|--------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|
| Materials Handled/SOC's              | Grinding swarf, refractories slag, crucibles, and metals     | Nitric acid, sulfuric acid, hydrofhuaric acid, lime, and metals                                                 | Cooling water, process water, condensate, stormwater runoff, groundwater, metals, and PCBs | Caustie, sulfurie, nitrie, and hydrofluorie acids, barium ethoride, chromium, and niekel       | Grinding wheel grit, metal grindings, oil, soap, and metals                         | Grinding wheels, scrap metal, shavings and pile, general refuse, metals, eval, and oils                              | Ashesius                                                          | Grinding wheels, serap metal, and metals                                                                                    | Pickle liquor wastes, sulfuric acid, sulfur dioxide, lime, metal tydroxide sludge, and metals                                                                                  | Lubricating and hydraulic oils, mill scale, metals, and oil                                      | Contact, non-contact cooling waters/oils, and metals                                                              | PCBs and oil                                                  | Coolants, oils, metals, soap, PCBs, and pesticides                                  | Various      |
| Description                          | Waste Disposal Facilities<br>(SWMUs 14A, 14B, and 14C)       | Former Waste Acid Surface Impoundments                                                                          | Willowbrook Poud                                                                           | Closed Surface Impoundment                                                                     | Grinding Dust Transfer Pile                                                         | Former Waste Pile                                                                                                    | Waste Asbetos Accumulation Area                                   | Grinding Swarf Storage Area                                                                                                 | Wastewater Treatment Plant                                                                                                                                                     | API Oil/Water Separator                                                                          | Process Sewers                                                                                                    | Transformer Substations<br>(T1 through T6)                    | Cooling Towers<br>AOC 3A - Rust Furnace Cooling Tower<br>AOC 3B - HAP Cooling Tower | Process Pits |
| Unit No.                             | SWMU 14                                                      | SWMU 15                                                                                                         | SWMU IG                                                                                    | SWMU 17                                                                                        | SWMU 18                                                                             | SWMU 19                                                                                                              | SWMU 20                                                           | SWMU 21                                                                                                                     | SWMU 22                                                                                                                                                                        | SWMU 23                                                                                          | SWMU 24                                                                                                           | AOC 1                                                         | AOC 3                                                                               |              |

# Table 1-3 (continued)

Summary of SWMU and AOC Information Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| Description (Period of Operation) | 12,000-gallon undergrnund storage tanks for supplying LAP drawing machines (1940-1982). 8,000-gallon underground storage tanks for supplying LAP drawing machines (1940-1982). | Storage tank used to store No. 2 fuel oil used in plant operations (1967-1985). | Scrap steel from finishing operations and purchased scrap for melting operations stored outdoors atop soil (19008-present). | Former coal pile storage area used for the coal fined butlers (1908-1968). | alts Early period process water and later period surface water (1942-present). | ted compounds Oil was faid on roads as a means of dust control (1940-1968). | Former coal gasification plant generated shield gas for carbon.<br>All equipment has been removed. |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Materials Handled/SOCs            | Drawing oil                                                                                                                                                                    | Fuel oil                                                                        | Oils and metals                                                                                                             | Aromatics                                                                  | Coolants, oils, metals, and metal salts                                        | PCBs, and aromatic and halogenated compounds                                | Coal derivatives and eyanide                                                                       |
| Description                       | Lucas Avenue Oil Tanks<br>AOC 5A - Lucas Avenue West Oil Tanks<br>AOC 5B - Lucas Avenue East Oil Tanks                                                                         | Former Aboveground Fuel Oil Tank                                                | Serap Steel Storage Areas (AOC's 7A, 7B, and 7C)                                                                            | Former Coal Storage Area                                                   | Unnamed Tributary to Craoked Braok                                             | Oiled Roads                                                                 | Former Coal Gasification Plant                                                                     |
| Unit No.                          | ۸۵۲ ۶                                                                                                                                                                          | 400.6                                                                           | 400.7                                                                                                                       | AOC 8                                                                      | AOC 9                                                                          | AOC 10                                                                      | 400.11                                                                                             |

at CAMU = corrective action management unit; SWMU = solid waste management unit; AOC = area of concern.
Unit numbers are as defined in the Order on Consent, and not necessarily as defined in the RCRA Facility Assessment (RFA).

N SOC = substance of concern.
A As discussed in the Physical RFH Work Plan, the non-electrolytic copper-coating unit (identified in the Order on Consent as SWMU 7E) was never constructed. Consequently, the unit was never operational and is not identified leveni.
UP PCB = polychlorinated highenyl.

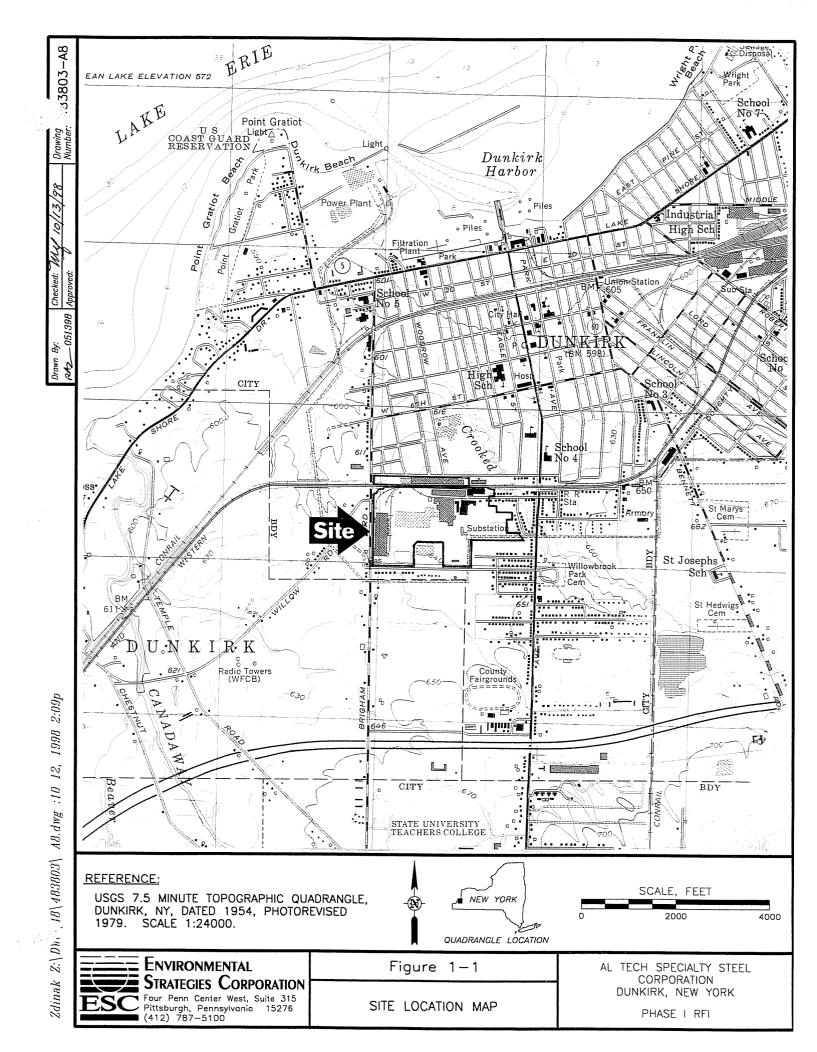
Table 1-4

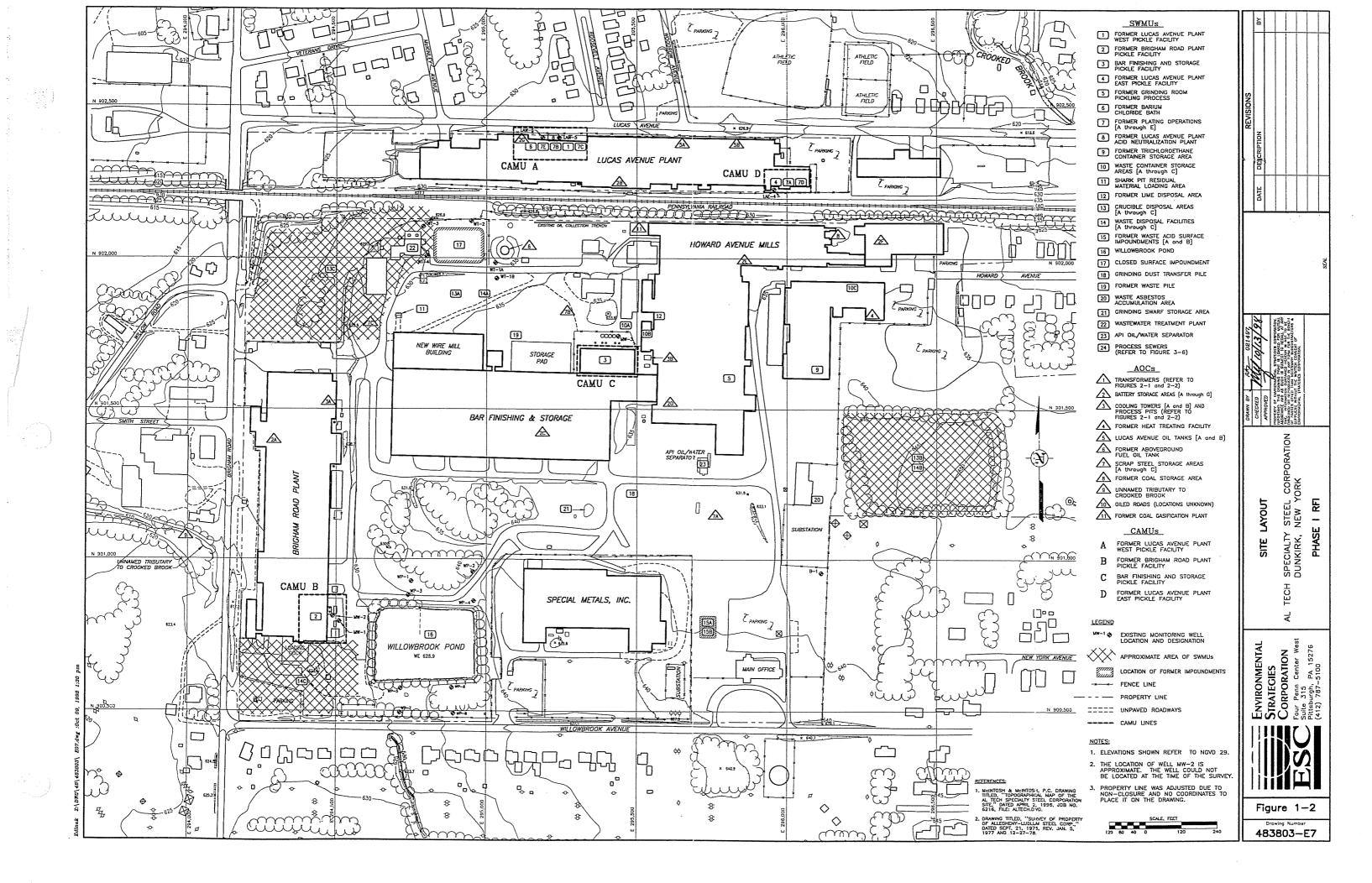
# Environmental Media Sample Applicability Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Applicable Units (a) | Sample<br>Location               | Applicable<br>Units |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|---------------------|
| distribution of the state of th |                      | Surface Soil Samples (continued) |                     |
| Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                  | SWMU 13A            |
| Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00-dL pu             |                                  | AOC 6               |
| Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1d TP-10             |                                  | AOC 7C              |
| Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd TP-11             |                                  | SWMU 14C            |
| Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d RFI-01             |                                  | General             |
| Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d RFI-02             |                                  | SWMU 15             |
| Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J RFI-03             |                                  | SWMU 23             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RFI-04               |                                  | SWMUs 13B and 14B   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RFI-05               |                                  | General             |
| SWMU 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RFI-06               |                                  | A0C11               |
| SWMU 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RFI-07               |                                  | CAMUC               |
| General (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RFI-08               |                                  | General             |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RFI-09               |                                  | SWMU 22             |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RFI-10               |                                  | SWMU II             |
| SWMU 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RFI-11               |                                  | SWMU 13C            |
| 6 NWWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RFI-12               |                                  | General             |
| AOC 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RFI-13               |                                  | CAMUB               |
| CAMU A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RFI-14               |                                  | SWMU 16             |
| CAMU A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RFI-15               |                                  | SWMU 16             |
| AOC 3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RFI-16               |                                  | General             |
| A0C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RFI-17               |                                  | CAMUC               |
| AOC 7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                  |                     |
| SWMU 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trans                | Transformer Surface Soil Samples |                     |
| SWMU 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T1-01                |                                  | AOC I/TI            |
| SWMUs 13B and 14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114B T1-02           |                                  | A0C 1/T1            |
| AOC 7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T1-03                |                                  | AOC 1/T1            |
| 6I UWWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T1-04                |                                  | AOC I/TI            |
| SWMU 14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                  | AOC I/TI            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A TI-05              |                                  |                     |

# Table 1-4 (continued)

Environmental Media Sample Applicability Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility


|                                              |                     |                                     | Page 2 of 3           |
|----------------------------------------------|---------------------|-------------------------------------|-----------------------|
| Sample Location                              | Applicable<br>Units | Sample<br>Location                  | Applicable<br>Units   |
| Transformer Surface Soil Samples (continued) |                     | Subsurface Soil Samulae (continued) |                       |
| T1-06                                        | AOC I/T1            | BRB-03                              | M<br>M<br>M           |
| T1-07                                        | AOC I/TI            | TP-01                               | AOC7A                 |
| T1-08                                        | AOC I/T1            | TP-02                               | SWMU 18               |
| T2-01                                        | AOC 1/T2            | TP-03                               | SWMU 21               |
| T2-()2                                       | AOC 1/T2            | TP-04                               | SWMUs 13B and 14B     |
| T2-03                                        | AOC 1/T2            | TP-05                               | AOC 7B                |
| T2-()4                                       | AOC 1/T2            | TP-06                               | SWMU 19               |
| T3-01                                        | AOC I/T3            | TP-07                               | SWMU 14A              |
| T3-02                                        | AOC I/T3            | TP-08                               | SWMU 13A              |
| T3-03                                        | AOC 1/T3            | TP-09                               | AOC 6                 |
| T3-04                                        | AOC 1/T3            | TP-10                               | AOC 7C                |
|                                              |                     | TP-11                               | SWMU 14C              |
| Subsurface Soil Samples                      |                     | RFI-01                              | General               |
| RB-01                                        | SWMU 5              | RFI-02                              | SWMU 15               |
| RB-02                                        | SWMU 9              | RFI-03                              | SWMU 23               |
| RB-03                                        | AOC 8               | RFI-04                              | SWMUs 13B and 14B     |
| RB-04                                        | CAMU A              | RFI-05                              | CAMUD                 |
| RB-05                                        | CAMUA               | RFI-06                              | A0C11                 |
| RB-06                                        | AOC 3B              | RFI-07                              | CAMUC                 |
| RB-07                                        | AOC 3A              | RFI-08                              | General               |
| TP-01                                        | CAMUD               | RFI-09                              | SWMUs 13C, 17, and 22 |
| LEB-02                                       | CAMU D              | RFI-10                              | SMWU II               |
| LEB-03                                       | CAMUD               | RFI-11                              | SWMU 13C              |
| LWB-01                                       | CAMUA               | RFI-12                              | General               |
| LWB-02                                       | CAMUA               | RFI-13                              | CAMU B                |
| LWB-03                                       | CAMUA               | RFI-14                              | SWMU 16               |
| LWB-04                                       | CAMUA               | RFI-15                              | SWMU 16               |
| BRB-01                                       | CAMU B              | RFI-16                              | General               |
| BRB-02                                       | CAMU B              | RFI-17                              | CAMUC                 |


Table 1-4 (continued)

# Environmental Media Sample Applicability Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

|                                                  |                     |                                         | Page 3 of 3                    |
|--------------------------------------------------|---------------------|-----------------------------------------|--------------------------------|
| Sample Location                                  | Applicable<br>Units | Sample<br>Location                      | Applicable<br>Units            |
| Existing Monitoring Well Groundwater Samples (d) | (p) ss              | RFI Monitoring Well Groundwater Samples | \$3)                           |
| B-1                                              | Background          | RFI-01                                  | Background                     |
| Wp-1                                             | SWMU 16             | RFI-02                                  | SWMU 15                        |
| WP-2                                             | SWMU 16             | RFI-03                                  | SWMU 23                        |
| WP-3                                             | SWMU 16             | RFI-04                                  | SWMUs 13A and 14A              |
| WP-4                                             | SWMU 16             | RFI-05                                  | CAMUD                          |
| WP-5                                             | SWMU 16             | RFI-06                                  | A0C11                          |
| WP-6                                             | SWMU 16             | RFI-07                                  | CAMU C                         |
| WP-7                                             | SWMU 16             | RFI-08                                  | Perimeter                      |
| WP-8                                             | SWMU 16             | RFI-09                                  | SWMU 13C and SWMU 22           |
| MW-I                                             | CAMU B              | RFI-10                                  | SWMUII                         |
| MW-2                                             | CAMU B              | RFI-11                                  | SWMU 13C                       |
| WT-1A                                            | SWMU 17             | RFI-12                                  | Perimeter                      |
| WT-1B                                            | SWMU 17             | RFI-13                                  | CAMUB                          |
| WT-2                                             | SWMU 17             | RFI-14                                  | SWMU 16                        |
| WT-3                                             | SWMU 17             | RFI-15                                  | SWMU 16                        |
| WT-4                                             | SWMU 17             | RFI-16                                  | Perimeter                      |
| LAE-4                                            | CAMUD               | RFI-17                                  | CAMU C                         |
| LAW-5                                            | CAMU A              |                                         |                                |
| LAW-6                                            | CAMUA               | Surface Water and Sediment Samples (e)  |                                |
|                                                  |                     | S-01                                    | Immediately Upstream of Site   |
|                                                  |                     | S-02                                    | Immediately Downstream of Site |
|                                                  |                     | S-03                                    | Downstream of Site             |
|                                                  |                     |                                         |                                |

a/ CAMU = corrective action management unit; SWMU = solid waste management unit; AOC = area of concern. Unit numbers are as defined in the Order on Consent, not necessarily defined in the RCRA Facility Assessment (RFA). b/ Surface soil samples from indoor locations are not included. c/ Surface soil samples were collected from the "general" locations to provide information on conditions not otherwise evaluated. c/ Surface soil samples were collected from the "general" locations to provide information on conditions not otherwise evaluated. d/ Only existing wells which are deemed to be appropriate will be included in the groundwater sampling and analytical program. c/ The applicability of these samples was modified from that identified in the Work Plan due to modifications in the sample locations.





2.0

Date:

10/22/98

Page:

1 of 23

## 2.0 Phase I RFI Implementation

The methods and procedures that were followed during the implementation of the Phase I RFI are presented in the following sections. To the extent practicable, and unless otherwise identified below, all work was performed in accordance with the NYSDEC-approved Work Plan.

The scope of work for the RFI included the following:

- soils investigation
- hydrogeologic investigation
- surface water and sediment investigation
- process pit inspections
- process sewer identification
- Air Pathway Analysis
- miscellaneous investigation tasks
- miscellaneous activities

The objectives, scope of work, and means of implementation for each are provided in the following locations; the findings are presented in the subsequent sections.

#### 2.1 Soils Investigation

The soils investigation included: (1) collection and analysis of surface soil samples and (2) collection and analysis of soil samples from subsurface locations, including soil and well borings and test pits.

The locations of four well borings, one soil boring, and four test pits were modified following NYSDEC approval of the Work Plan. The modifications to the well locations (RFI-04, RFI-05, RFI-10, and RFI-17) and soil boring location (LEB-04) were made on the basis of known or perceived site conditions. The locations identified for excavation of Test Pits TP-03, TP-07, TP-08 and TP-09 were modified in the field because of recent construction activities or underground utilities.

Two aliquots of each surface and subsurface soil sample were prepared for analysis of the TAL Inorganics plus molybdenum and hexavalent chromium by the analytical laboratory. One unsieved aliquot was used for analysis of hexavalent chromium, mercury, and cyanide. A second aliquot, sieved through a number 4 standard sieve, was used for analysis of the remaining

2.0

Date:

10/22/98

Page:

2 of 23

constituents. Sieving was performed to eliminate potential interference from steel particles that were anticipated to be present throughout the site. Sieving of soils for mercury, cyanides, and hexavalent chromium was not appropriate due to potential inhalation hazards, volatility, and the absence of these constituents in the steel particles.

Three aliquots were prepared for each of the surficial soil samples (0 to 3 inches below ground surface [in-bgs]). Two aliquots were identical to those described above. The third aliquot was prepared for analysis of the TAL Inorganics (plus molybdenum and excluding hexavalent chromium, mercury, and cyanides) after sieving through a number 400 standard sieve. The results of analysis for the aliquots sieved using the number 400 sieve (and the unsieved results for mercury, cyanides, and hexavalent chromium) were used for the Air Pathway Analysis. The Air Pathway Analysis addressed potential airborne migration of soils. Consequently, it was necessary to quantify the concentrations of metals and cyanide which might be present in airborne-size particles (e.g., equated to soils passing the number 400 standard sieve).

Approximately 10 percent of the soil samples submitted for analysis of metals and cyanide were submitted for TCLP extraction and analysis of the extract for the toxicity characteristic (TC) metals. These samples were selected on the basis of elevated total concentrations for one or more of the TC metals (i.e., arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). NYSDEC also requested analysis of the TCLP extract for these facility-related metals:

- aluminum
- beryllium
- cobalt
- copper
- iron
- manganese
- magnesium
- molvbdenum
- nickel
- vanadium
- zinc

2.0

Date:

10/22/98

Page:

3 of 23

The results were used to determine if the metals concentrations identified in the soil samples posed a potential to impact groundwater quality.

Eighteen soil samples were collected for geotechnical testing to evaluate general site conditions and evaluate the potential migration of substances of concern.

## 2.1.1 Surface Soil Sample Collection and Analysis

Surface soil samples were collected from two intervals: 0 to 3 in-bgs and 0 to 2 feet below ground surface (ft-bgs). All analytical and geotechnical results for both intervals were used to determine the presence and potential extent of potential substances of concern in the near surface and, in conjunction with subsurface data, to evaluate potential migration within the subsurface.

Samples were collected from the following areas:

- background locations
- transformer substation areas
- ground surface locations
- soil and well borings
- test pits

Each of the surface soil samples was analyzed for various analytical parameters which were selected on the basis of nearby areas (SWMUs, AOCs, and SWMUs), as identified in the Work Plan, necessary to support the Air Pathways Analysis, and to further evaluate subsurface conditions at the same locations.

## 2.1.1.1 Background

Background samples were collected from seven locations south of the site which were not believed to have been affected by migration from the facility with the prevailing wind. The sample locations, BS-01 through BS-07, are shown in Figure 2-1.

Each of the background soil samples was submitted for laboratory analysis of the following parameters:

- TAL Inorganics
- molybdenum
- hexavalent chromium
- free cyanide
- Target Compound List (TCL) semi-volatile organic compounds (SVOCs)

: 2.0 n: 0 10/22/98

Date: Page:

4 of 23

• pH

• total petroleum hydrocarbons/petroleum identification (TPH/Pet. I.D.)

Unlike the site soil samples, two aliquots were prepared for the surficial background soils samples: one which was not sieved and one which was sieved using a number 400 standard sieve. The data generated for metals and cyanide for the total aliquots were used to calculate background concentrations for comparison with the site sample data. The data generated for the number 400 sieve samples (and unsieved results for hexavalent chromium, mercury, and cyanide) were used only for the Air Pathway Analysis.

## 2.1.1.2 Transformer Areas

AOC 1 includes the facility transformers. There are six transformer areas located at the site within which equipment containing polychlorinated biphenyls (PCBs) in oil at concentrations of 50 parts per million (ppm) or greater is present. The locations of these transformers (T1 through T6) are shown in Figure 2-2; Transformers T1 through T3 are located outdoors and Transformers T4 through T6 are located indoors.

Visual inspections of each of the three indoor transformers were performed by representatives of the NYSDEC and ESC at the beginning of the Phase I RFI field investigation in October 1996. Although fine soil was present on the ground surface overlying the concrete floor no staining was evident on the floor in the vicinity of T4. The floor in the vicinity of T5 was stained in several locations. The concrete near T5 was intact and in good condition. The floor in the vicinity of T6 was also in good condition; a limited amount of sorbent material and a small stain were observed on the floor adjacent to the unit. NYSDEC and AL Tech agreed that the floors in these three areas were to be cleaned and that confirmatory wipe test samples from the concrete floors in T4, T5, and T6 would be collected and submitted for laboratory analysis of PCBs.

Cleaning and wipe test activities were performed by AL Tech personnel in T4, T5, and T6. The wipe test results are presented in Appendix A. A summary of the activities and findings is presented below.

Date: Page: 10/22/98 5 of 23

2.0

• T4 - The floor in this area was scrubbed with kerosene twice and the material soaked up with clean absorbent scrubbing. The analysis of the standard wipe test from the concrete floor at T4 indicated Arolor 1254 was present at 740,000 milligrams per 100 square centimeters (mg/100 cm<sup>2</sup>). This level exceeds the 50 mg/100cm<sup>2</sup> classification for a spill. A second wipe test has not yet been performed, but is scheduled to be done in the beginning of October 1998.

• T5 - The analysis of the standard wipe test from the concrete floor at T5 indicated Arochlor 1254 was present at 19 mg/100cm<sup>2</sup>, which is below the spill classification level of 50 mg/100cm<sup>2</sup>. No further action was taken.

• The floor in this area was scrubbed with kerosene twice and the material soaked up with clean absorbent scrubbing. The analysis of the standard wipe test from the concrete floor at T6 indicated Arolor 1254 was present at 3,100 mg/100cm², which exceeds the spill classification level. A second wipe test has not yet been performed, but is scheduled to be done in the beginning of October 1998.

During the Phase I RFI field investigation 16 surface soil samples were collected from the vicinity of the outdoor transformers, T1 through T3. Surface soil samples were collected from eight locations near T1 (01 through 08) and four locations each near T2 and T3 (01 through 04). Plan maps showing the approximate sample locations are presented in Appendix A.

An attempt was made to collect the surface soil samples from the ground surface to a depth of approximately 3 inches at each of these locations. Gravel and slag material had been placed on the surface in the T1 areas. This material was not collected or placed in the sample bottles because (1) these materials were inappropriate for analysis, (2) the soils that have been present for the longest period of time were below these materials, and (3) potential oil leakage from the transformers is more likely to accumulate in the fine-grained materials underlying the coarse fill.

These samples were collected for analysis of TCL PCBs, TPH/Pet. I.D., and total organic carbon (TOC). Approximately one-half of the samples from each transformer were submitted for analysis of TAL Inorganics (plus molybdenum). It was not necessary to prepare a sample from each location for inorganic analyses using the number 400 standard sieve for use in the Air Pathway Analysis. Therefore, only one sample from each transformer area was prepared for analysis using this step. One sample from each transformer area was also tested for pH.

Section:

2.0 Revision:

10/22/98

Date: Page:

6 of 23

Samples collected from Transformer T1, Location 03, and Transformer 3, Location 03, were submitted for TCLP extraction and analysis of the leachate.

A surface soil sample was collected from Transformer T1, Location 03, which was representative of grain-size conditions for these areas. Grain size analysis was performed to evaluate the potential mobility of the soil particles.

#### 2.1.1.3 Ground Surface Locations

Surface soil samples (0 to 3 in-bgs) were collected from five locations (GS-01 through GS-05) (Figure 2-1). The locations were selected from areas otherwise not included in the investigation to provide supplemental area coverage of the site; Locations GS-01 and GS-02 were also selected to evaluate the potential presence of asbestos in surface soils in the vicinity of SWMU 20, Waste Asbestos Accumulation Area.

All of these samples were submitted for laboratory analysis of:

- TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide)
- TPH/Pet. I.D.
- pH
- total phenols

Select samples were also submitted for analysis of TCL volatile organic compounds (VOCs) (refer to Section 4.0).

The sample collected from Location GS-03 was identified for TCLP extraction and analysis of the extract.

#### 2.1.1.4 Soil and Well Borings

Surface soil samples were collected from the soil and well boring locations, as follows:

- 0 to 3 in-bgs (23 locations)
  - Soil Borings RB-03 through RB-07
  - Well Borings RFI-01 through RFI-16
- 0 to 2 ft-bgs (18 locations)
  - Soil Borings RB-01 through RB-07; BRB-01, LEB-03, LWB-02, LWB-03, and LWB-04
  - Well Borings RFI-02, RFI-03, RFI-04, RFI-09, RFI-10, and RFI-11

Date: 10/22/98

Page: 7 of 23

For most locations, samples from both 0 to 3 in-bgs and 0 to 2 ft-bgs were submitted for analysis of TAL Inorganics (plus molybdenum; and in some locations either hexavalent chromium or free cyanide, or both) (refer to Section 4.0). If samples were collected from both intervals, analysis for additional parameters were typically performed for samples collected from 0 to 2 ft-bgs.

Samples were collected from 0 to 3 in-bgs at RFI-03, RFI-13, RFI-14, and RFI-15 for grain-size analysis.

Surface soils from the following borings were selected for TCLP extraction and analysis of the extract:

- 0 to 3 in-bgs
  - RFI-8
  - RFI-9
  - RFI-11
- 0 to 2 ft-bgs
  - RB-4
  - RFI-4

#### 2.1.1.5 Test Pits

Surface soil samples were collected from each of these test pit locations:

- 0 to 3 in-bgs (4 locations)
  - Test Pits TP-02, TP-05, TP-07, and TP-11
- 0 to 2 ft-bgs (10 locations)
  - Test Pits TP-01 through TP-08, TP-10, and TP-11

For most locations, samples from both 0 to 3 in-bgs and 0 to 2 ft-bgs were submitted for analysis of TAL Inorganics (plus molybdenum; and in some locations either hexavalent chromium or free cyanide, or both). If samples were collected from both intervals, analysis for additional parameters were typically performed for samples collected from 0 to 2 ft-bgs.

Surface soils from the following test pits were selected for TCLP extraction and analysis of the extract:

- 0 to 3 in-bgs
  - TP-02

Date: 10/22/98 Page: 8 of 23

- 0 to 2 ft-bgs
  - TP-03
  - TP-05
  - TP-11

In addition, surface soil samples were collected from two locations for grain-size analysis (TP-02 and TP-11).

## 2.1.2 Subsurface Soil Sample Collection and Analysis

Soil samples were collected from various intervals within the unsaturated subsurface to determine the presence and potential extent of SOCs in the soil and potential impact to groundwater quality. Sampling locations included soil and well borings and test pits.

The subsurface soil samples were submitted for analysis of various analytical parameters, as identified in the Work Plan and selected based on nearby potential source areas (SWMUs, AOCs, and CAMUs). In general, analysis for TAL Inorganics (plus molybdenum) was performed for all samples. Analysis typically also included one or more of the following parameters:

- TCL VOCs
- TCL SVOCs
- TCL PCBs
- hexavalent chromium
- free cyanide
- TPH/Pet. I.D.
- total phenols
- TOC
- pH

Subsurface soil sampling data generated during the Phase I RFI were used to evaluate the following issues.

 Potential migration of hazardous waste or hazardous waste constituents in the subsurface through comparison with analytical results for shallower and deeper sample intervals.

Date: 10/22/98

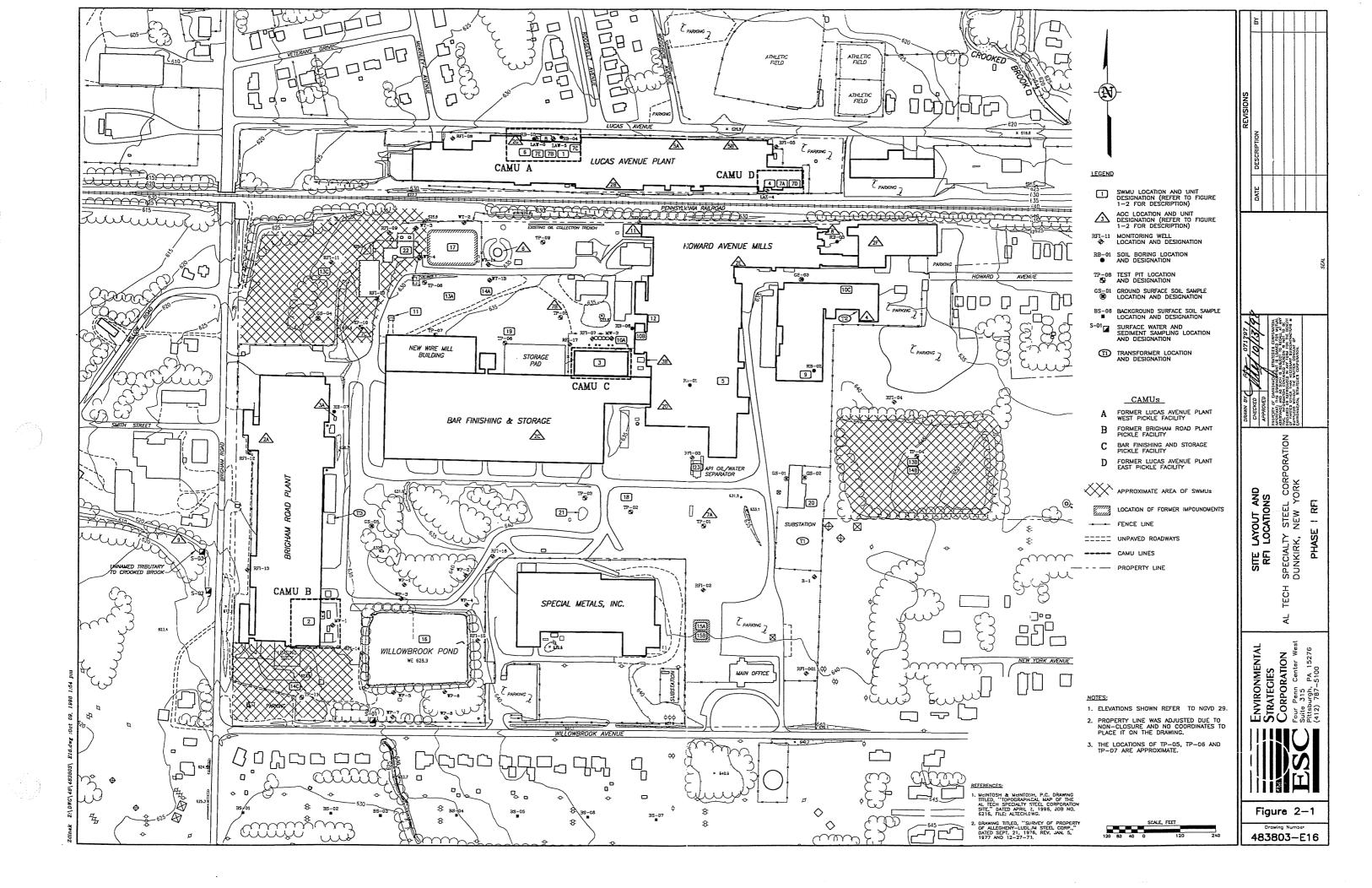
Page:

9 of 23

Potential for migration of hazardous waste or hazardous waste constituents from the subsurface to groundwater based on the comparison of results for shallower and deeper soil intervals, groundwater quality immediately downgradient of the soil sample location, and TCLP results.

Potential future action (no further action, Phase II RFI, ICM, or CMS) based on comparison of results with potentially applicable state or federal criteria.

#### 2.1.2.1 Soil and Well Borings


Seven soil borings (RB-01 through RB-07) were drilled and sampled as part of the Phase I RFI. The borings were completed in the approximate locations identified in the NYSDECapproved Work Plan. Borings RB-01 and RB-02 were completed indoors (Figure 2-1).

Three series of borings were completed indoors at locations proximate to the three idled pickling areas (CAMUs A, B, and D). The exact locations of these borings were not identified in the Work Plan, but were selected in the field based on proximity to the former operations areas and overhead and underground constraints. The approximate locations of the CAMUs are shown in Figure 2-1; the approximate boring locations are shown on plan maps provided in Appendix B.

Four soil borings, LWB-01 through LWB-04, were completed in CAMU A, Former Lucas Avenue Plant (LAP) West Pickling Facility.

Three soil borings, LEB-01 through LEB-03, were completed in CAMU D, Former LAP East Pickling Facility. During the site visit of October 22 and 23, 1997, NYSDEC agreed that one of the CAMU D borings could be relocated from the area of the former pickle operations to the vicinity of the 1,1,1-trichloroethane degreaser tank (Appendix C, Project Status Report No. 1).

Three borings were intended to be completed in CAMU B, Former Brigham Road Plant (BRP) Pickling Facility. Due to the presence of 5-foot thick concrete foundation (6 to 11 ft-bgs) underlying much of the area immediately west of the former pickling area, only one boring (BRB-01) was completed to the intended depth and a second boring (BRB-03) was advanced only to the uppermost portion of the concrete foundation (Appendix C, Project Status Report No. 2).



Date:

10/22/98

2.0

Page:

10 of 23

Boring and well logs indicating stratigraphic information, standard penetration resistance, moisture content, and well construction details are presented in Appendix D. The intervals of subsurface soil sample collection depths are also shown on the boring logs.

Subsurface soil samples were collected from RFI-05 (6.5 to 6.9 ft-bgs) and RFI-10 (4 to 6 ft-bgs) for grain-size analysis.

Samples from the following borings were submitted for TCLP extraction and analysis of the extract.

- RB-4 7 to 9 ft-bgs
- RFI-11 4 to 6 ft-bgs
- LWB-3 6 to 8 ft-bgs

Headspace analysis was performed on a portion of each split-barrel sample to determine if VOCs were present. This information was then used to determine if samples were to be submitted for analysis of TCL VOCs and for waste characterization. For each sample, a sealable plastic bag was partially filled with a portion of the sample. The sample was heated to approximately 65 degrees Fahrenheit; an HNu photoionization detector (PID) was subsequently inserted into the bag to test for VOC vapors.

#### 2.1.2.2 Test Pits

Eleven test pits were excavated at the Site as part of the Phase I RFI. The locations of the completed pits are shown in Figure 2-1. The test pits were excavated using a backhoe to the first saturated zone in the overburden or to the top of weathered bedrock. Impact to the excavated soils was not observed. Therefore, all soils were placed back in the open excavations in the reverse order of removal. The test pit logs are presented in Appendix E.

Samples from the following test pits were submitted for TCLP extraction and analysis of the leachate.

- TP-2 9 to 10 ft-bgs
- TP-5 8 to 9 ft-bgs
- TP-7 3 to 4 ft-bgs
- TP-10 8 to 9 ft-bgs

2.0

Date:

10/22/98

Page:

11 of 23

#### 2.2 Hydrogeologic Investigation

The hydrogeologic investigation included the completion of the following tasks:

installation of overburden monitoring wells

groundwater sample collection and analytical events (Rounds 1 and 2)

aquifer characterization

water-level measurements

in-situ hydraulic permeability tests

groundwater flow evaluation

#### Monitoring Well Installation 2.2.1

The RFI included the installation of overburden monitoring wells RFI-1 through RFI-17 (Figure 2-1). As discussed above, the locations of five wells were modified subsequent to approval of the Work Plan (Section 2.1).

The installation process consisted of borehole advancement, well construction, and well development. In general, the wells were positioned to screen the uppermost saturated zone For almost every well location, saturated conditions were encountered at each location. encountered near the interface between the overburden and weathered bedrock (refer to Section 3 for additional discussion of site geologic and hydrologic conditions). The well logs are presented in Appendix D.

The wells were constructed of 2-inch diameter, threaded, and flush-jointed, Schedule 40 polyvinyl chloride (PVC) screen and riser pipe. The slot size of the screen was based on field evaluation of the grain size of the overburden material and varied from 0.01- to 0.02-inch machineslotted screen. The length of the filter packs (primary and secondary) and bentonite seals were modified as necessary to maintain the surficial integrity, i.e., allowed installation of all materials and a minimum 3-foot bentonite/cement grout. A permanent identification number was painted on each protective casing at the completion of well installation. Well construction details for the new and existing monitoring wells are provided in Table 2-1.

The newly installed monitoring wells were developed a minimum of 48 hours after completion. The wells were developed to remove materials that may have entered the borehole

Date: Page: 10/22/98 12 of 23

or well casing during drilling and installation activities and to ensure that hydraulic

communication between the formation and screen was achieved. Each monitoring well was

developed by removing between 10 to 20 well volumes using a submersible pump.

Development was considered complete when field parameters (pH, temperature, and specific

conductance) stabilized and a turbidity of 50 nephelometric turbidity units (NTUs) or less was

obtained.

2.2.2 Groundwater Sample Collection and Analysis

Two rounds of groundwater samples were collected for laboratory analysis: November 1996 (Round 1) and March 1997 (Round 2). During both rounds, groundwater samples were

collected from the following site wells:

• RFI-01 through RFI-17

B-1

MW-1 and MW-3

• WP-4 and WP-5<sup>1</sup>

• WT-1A, WT-1B, WT-2, WT-3, and WT-4

• LAE-4, LAW-5, and LAW-6

The collection of samples from the existing wells was contingent upon identification of their locations and their acceptable integrity, as determined during the well integrity evaluation (Section 2.6.2). Well MW-2 was never located.

The location of each of these wells (excluding MW-2) is shown in Figure 2-1.

2.2.2.1 Well Purging

Each monitoring well was purged before groundwater samples were collected to ensure that the water present in the well was representative of the formation. A minimum of three well volumes were removed from each well at a low pumping rate using a submersible pump with dedicated polyethylene tubing.

After removal of each well volume, pH, specific conductance, and temperature were measured in accordance with the Work Plan. Well purging was considered complete when consecutive readings of pH, specific conductivity, and temperature measurements were within

The Work Plan stated that the NYSDEC would select two of the eight wells previously installed along the perimeter of SWMU 16, Willowbrook Pond, for inclusion in the RFI groundwater sampling and analytical program; Wells WP-4 and WP-5 were ultimately selected.

**ESC** 

Date:

10/22/98

2.0

Page:

13 of 23

five percent variation and, if possible, turbidity levels of 50 NTUs or less were attained. Well purging was also considered complete if a well was pumped dry. Well purging information for both groundwater sampling rounds is presented in Appendix F.

#### 2.2.2.2 Groundwater Sample Collection

Groundwater samples were collected from each of the wells immediately following completion of purging or after sufficient recovery had occurred in wells that had been pumped dry. The samples were collected using a submersible pump with dedicated polyethylene tubing. The wells were purged at a low pumping rate to reduce the turbidity of the water.

Sample aliquots were collected directly from the discharge tubing into the pre-labeled, laboratory preserved and prepared sample bottles in accordance with the Work Plan. For those wells in which the turbidity readings for the final purge volume were greater than 50 NTUs. aliquots for both total and dissolved metals analysis were prepared. The total aliquots were discharged directly to the preserved sample bottles; dissolved aliquots were discharged into unpreserved sample bottles and subsequently filtered in the field (using a 0.45-micron filter) into the appropriate preserved sample bottle.

## 2.2.2.3 Groundwater Analytical Program

Groundwater samples collected during Round 1, in November 1996, were submitted for analysis of the following parameters in accordance with the NYSDEC-approved Work Plan.

- TCL VOCs
- TCL SVOCs
- TCL PCBs
- TAL Inorganics
- molybdenum
- hexavalent chromium
- free cyanide
- total phenols
- fluoride, chloride, sulfate, nitrate, ammonia, pH, specific conductance, and alkalinity (miscellaneous parameters)

Analysis for total organic carbon (TOC), chemical oxygen demand (COD), and total suspended solids (TSS) was performed for groundwater samples collected from the WT-series wells (and

Date: Page: 10/22/98 14 of 23

RFI-09) to maintain consistency with the periodic monitoring program for the Closed Surface Impoundment, SWMU 17.

Following receipt and review of the analytical results for Round 1 and in accordance with the Work Plan, AL Tech proposed a modified list of parameters for each well for use during the second groundwater sampling round. The modified program was as follows.

| <u>Parameters</u>        | Applicable <u>Wells</u>      |
|--------------------------|------------------------------|
| TCL VOCs                 | select monitoring wells      |
| TCL SVOCs                | select monitoring wells      |
| TCL PCBs                 | no wells                     |
| TAL Inorganics           | all Round 1 monitoring wells |
| molybdenum               | all Round 1 monitoring wells |
| hexavalent chromium      | all Round 1 monitoring wells |
| free cyanide             | all Round 1 monitoring wells |
| total phenols            | select monitoring wells      |
| miscellaneous parameters | all Round 1 monitoring wells |

A detailed explanation for the modifications is provided in correspondence to NYSDEC (ESC 1997), which is presented in Appendix G. It should be noted that, due to the presence of VOCs in groundwater samples collected from Wells WP-4 and WP-5 during Round 1, three additional wells located along the perimeter of Willowbrook Pond were included in the Round 2 sampling program (WP-1, WP-2, and WP-3).

#### 2.2.3 Aquifer Characterization

Aguifer characterization activities included:

- the collection of water-level measurements
- performance of in situ hydraulic conductivity tests (slug tests)
- evaluation of groundwater flow velocities and directions

Water-level measurements (and total well depths) were recorded for all site wells on three occasions:

- November 1996, during implementation of the first groundwater sampling round
- March 1997, during implementation of the second groundwater sampling round
- May 1997, during implementation of the in situ slug tests

Date: 10/22/98

Page: 1

15 of 23

The measurements were recorded from the surveyed measuring point for each well using an electronic water-level indicator.

The water-level data collected were used to generate potentiometric surface maps, evaluate groundwater flow directions in the overburden, and calculate hydraulic gradients. The gradients were subsequently used in conjunction with the slug test data to calculate horizontal flow velocities for the overburden.

In May 1997, falling- and rising-head slug tests were performed in seven of the newly installed monitoring wells (RFI-03, RFI-04, RFI-05, RFI-06, RFI-10, RFI-14, and RFI-17). A Model SE1000C Hermit Environmental Data Logger and downhole pressure transducer were used to measure and record changes in the groundwater levels. The rising-head tests were performed by completing the following procedures:

- measurement of the static water level with the pressure transducer
- gently submersing a 2- to 4-foot long solid PVC slug, depending on the length of the water column in the well to create a head difference in the well
- continuous monitoring of the water levels until static conditions were achieved or a sufficient length of time has passed to generate the necessary data

The falling-head test was then performed by removing the slug and recording falling water levels to near-static conditions. Due to variances in site conditions, each test required 0.5 to 2.5 hours for the static water level to return to near-static conditions. The data were downloaded to a computer and the hydraulic conductivities were then calculated.

## 2.3 Surface Water and Sediment Investigation

A surface water and sediment investigation was conducted for the unnamed creek that flows beneath the southwestern corner of the site and discharges to Crooked Brook approximately 0.75-mile northwest of the site.

The objectives of the investigation were as follows:

Date: 10/22/98 Page: 16 of 23

• identify the concentrations and distribution of potential substances of concern

- identify potential source areas of substances of concern
- evaluate the potential migration of substances of concern
- identify potential soil characteristics that may impact potential substances of concern migration or potential corrective measures

Surface water and sediment sample collection and analysis are addressed in the following two subsections.

During the October 1996 site visit, NYSDEC and AL Tech modified the locations of the surface water and sediment samples identified in the approved Work Plan, based on accessibility and identification of areas of sufficient potential deposition (Appendix C, Project Status Report No.1) (Figure 2-1). The surface water and sediment samples were collected concurrent with the drilling activities, excluding a surface water sample collected for analysis of TCL SVOCs from Location S-02 concurrent with Round 1 of the groundwater sampling program.

An evaluation of Crooked Brook, located east and north of the site and discharging to Lake Erie approximately 1 mile northwest of the site, was also performed.

## 2.3.1 Surface Water Sampling and Analysis

The surface water samples containers were filled from the approximate middle of the stream by tipping the opening of the sample container below the water surface and facing upstream. The samples were collected beginning at the downstream location (S-03) and proceeding to the upstream (S-01) location.

The analytical laboratory neglected to analyze the sample aliquot collected from Location S-02 for TCL SVOCs. Consequently, an additional sample was collected from this location for analysis of TCL SVOCs only, concurrent with the Round 1 groundwater sampling event in November 1996.

## 2.3.2 Sediment Sampling and Analysis

The Work Plan specified that samples were to be collected from up to three intervals at each location using a split-barrel sampler, Shelby tube, or similar sampling device:

2.0

Date: 10/22/98

Page:

17 of 23

• 0 to 3 inches (S-01, S-02, S-03)

• 3 to 12 inches (S-03; and, if there was no differentiation of the material, S-01 and S-02)

• appropriate intervals to be determined in the field based on differentiation of the material (S-02 and S-03)

• 12 to 24 inches (S-03)

Only one sediment sample was collected from Location S-01 for laboratory analysis. This sample was collected from the west bank of the stream at the approximate elevation of the water surface using a dedicated carbon-steel trowel. Sediment could not be collected from the stream bottom due to the presence of large cobbles, which also prevented penetration and the collection of material at depth.

The materials encountered during the collection of sediment samples from Locations S-02 and S-03 included a thin zone of sand and gravel mixed with an underlying silt and clay. Three attempts were made at Locations S-02 and S-03 (using a split-barrel sampler and sledge hammer) to collect samples at the depths identified in the Work Plan. The silty clay material, which was encountered in the onsite borings, was extremely dense and could not be penetrated sufficiently. Consequently, only one sample was collected from each of these locations for laboratory analysis.

Due to the extreme difficulty in collection of the sediment samples, sediment samples were not collected for grain-size analysis as had been anticipated in the Work Plan.

#### 2.3.3 Crooked Brook Evaluation

An evaluation of Crooked Brook was performed to identify the location and nature of discharge sources to the underground section of the stream between the facility gate at Howard Avenue and the vicinity of Sixth Street where the stream resurfaces. The evaluation included a reconnaissance of the stream, mapping of potential discharges, and a review of available city and facility maps to identify such discharge points (Figure 2-3).

Date: Page: 10/22/98 18 of 23

2.4 Air Pathway Analysis

A Baseline Air Pathway Analysis was conducted using the Industrial Source Complex Short-Term model – version 3 (ISCST3). The objective of the Air Pathway Analysis was to determine:

- Fenceline Impacts of Particulate Matter less than 10 microns (PM<sub>10</sub>)
- Impacts of PM<sub>10</sub> on off-site sensitive receptors
- Fenceline impacts of TAL Inorganics
- Impacts of TAL Inorganics on off-site sensitive receptors.

Impacts were evaluated on a 1-hour, 24-hour, and annual basis and compared appropriate to state or federal ambient air levels.

2.5 Process Pit Inspection and Process Sewer Identification

This activity included the inspection of 14 process pits and the identification and description of the facility's process sewer lines. The process pits were visually inspected to evaluate the integrity of each pit and to determine if they pose a potential concern to adjacent soils and groundwater. The locations of the sewer lines were identified to determine the current uses of the lines and evaluate if the lines represent a potential concern to adjacent soils and groundwater. The scope of work for each of these tasks is presented in the following sections.

2.5.1 <u>Process Pit Inspection</u>

In the fall of 1996, a visual examination of 14 facility process pits was conducted. The Medart Straightener pits were inspected in the summer of 1997. Before the examination of each pit, the liquids contained in the pits were pumped out and the walls and floors were cleaned, as necessary. The inspection of the pits involved reviewing the historical uses of the pits and examining the walls and floors for fractures or cracks that could potentially result in a release of product. Pits that were easily accessible were inspected by an ESC engineer; those pits requiring confined space entry permits were inspected by AL Tech personnel with ESC oversight. Table 2-2 identifies the pits included in the inspection consistent with the approved Work Plan. The approximate locations of the pits are shown in Figure 2-2.

Documentation of conditions was supported through the use of sketches and an evaluation of the structural condition.

Section:

Revision: 0

Date: Page: 10/22/98 19 of 23

2.0

# 2.5.2 <u>Process Sewers Identification</u>

The current and former site process sewers were identified during the Phase I RFI. A site reconnaissance of the lines was performed during May 13 and 14, 1997. Information collected during the site visit and facility engineering drawings included:

- physical characterizations of the historic and current process sewers
  - age
  - location of process sewers including laterals
  - diameter and construction materials of pipes and manholes
  - previous repairs
- liquids conveyed by the process sewers
  - dates of operation of the system
  - hazardous constituents or hazardous waste transported by the system
  - concentration of constituents in process water
  - current volume handled by the system
- results of previous integrity evaluations of the historic and current process sewers (if any)
  - reason for evaluation
  - date of evaluation
  - results of evaluation

This information was compiled and used to generate a plan view of these lines and summarize construction information for the lines.

#### 2.6 Miscellaneous Activities

Various miscellaneous activities were performed in order to complete the project in accordance with the Work Plan. Five of the significant activities include the performance of the well integrity evaluation, potable well survey, site survey, data validation, waste handling, and equipment decontamination. Each of these activities is addressed below.

The Work Plan also required evaluation of bedrock within 1,000 feet of the site. Due to the absence of bedrock outcrops in the area and the apparent absence of indications of bedrock structure in the area, no further evaluation was performed.

Date:

10/22/98 20 of 23

2.0

Page:

\_

2.6.1 Well Integrity Evaluation

The previously installed wells at the facility were evaluated to assess the potential for inclusion, abandonment, or replacement in the groundwater monitoring system. The well evaluation consisted of the following tasks:

• assessing the integrity of the surface seal and protective casing

• reviewing the boring logs and construction procedures and diagrams

 reviewing historic groundwater sampling data, including field measurements and analytical results

• obtaining a complete round of groundwater levels and total depth soundings

• labeling each well correctly (as necessary).

Available boring logs and construction diagrams for the existing wells are also presented in Appendix D. The summary evaluation for the existing wells is provided as Table 2-3; well construction information was presented in Table 2-1.

2.6.2 Potable Well Survey

The approximate locations of 10 groundwater production wells in the vicinity of the site are identified in Figure 2-4. Only two of the wells identified are located within approximately 4,000 feet of the site boundary. A residential supply well was identified near Brigham Road, approximately 2,500 feet south-southwest of the site. A supply well was also identified at the Dunkirk Water Treatment Plant, approximately 4,000 feet north of the site. Both of these wells are presumed to be on a lateral hydraulic gradient to the site. The remaining eight identified wells are located a minimum of approximately 9,000 feet southeast and presumably hydraulically upgradient of the site.

The information presented in Figure 2-4 is identical to that presented in the RFA (McLaren/Hart 1992a). No new information, including well construction descriptions, was available through the NYSDEC, local department of health, or database searches.

Date: 19 Page: 2

10/22/98 21 of 23

## 2.6.3 Site Survey

McIntosh and McIntosh, P.C., of Rochester, New York, completed a topographic survey plan of the site, including the locations of existing site monitoring wells, which was presented in the Work Plan. Following implementation of the Phase I RFI field investigation, McIntosh and McIntosh, P.C., performed additional survey activities, including:

|                        | Horizontal  | Eleva   | <u>tion</u> |
|------------------------|-------------|---------|-------------|
|                        | Coordinates | Top-of- | Ground      |
| Location Type          | (NYS)       | Casing  | Surface     |
| soil borings           | X           | =       | X           |
| new and existing wells | X           | X       | X           |
| test pits              | X           | ***     | X           |

The locations and elevations of the BRB-, LWB-, and LEB-series borings were estimated, as the locations are inside. Test pits for which the locations and elevations were estimated (due to regrading of the staked location during facility construction activities) included: TP-05, TP-06, and TP-07. The locations of the GS-series surface soil samples and surface water and sediment sample locations were not surveyed. The ground surface and top of well casing elevations for the newly installed wells are provided in Table 2-1 and on the boring logs (Appendix D). The top of the PVC casing (or other) for each well was permanently marked; this permanent mark provides a point of reference for surveying and water-level monitoring.

### 2.6.4 Data Validation

Approximately 20 percent of the analytical sample results for non-groundwater samples and all of the groundwater analytical sample results were validated in accordance with the Work Plan. Validation was performed by a third-party validator, Heartland Environmental Services, Inc. (Heartland), in accordance with applicable and appropriate protocols.<sup>2</sup> The

<sup>&</sup>lt;sup>2</sup> U.S. Environmental Protection Agency, June 1994, "National Functional Guidelines for Inorganic Data Review." (U.S. EPA 1994a).

U.S. Environmental Protection Agency, June 1994, "National Functional Guidelines for Organic Data Review." (U.S. EPA 1994b).

Specific method requirements from OLM01.8, <u>SW-846</u>, EPA Level IV Data Quality Objectives, and best professional judgment were also applied as appropriate.

Date: Page:

10/22/98 22 of 23

validation notations were subsequently transcribed from Heartland's reports to the data tables presented in Section 4.0.

## 2.6.5 Materials Handling

Materials managed during the Phase I RFI included:

- soil and rock cuttings generated during monitoring well and soil borings advancement.
- groundwater generated during well development and purging activities
- sampling equipment decontamination fluids
- drilling equipment decontamination fluids.

All materials excavated from the test pits were placed back in the excavation on completion in the reverse order of removal, based on the absence of observable impact. Soil and rock cuttings generated during drilling with no apparent potential impact (staining, odors, or volatiles screening using a PID), were discarded to the ground surface. Soil cuttings from the following locations from soil and well borings were contained for the reasons noted:

| Location               | Reason for Containment                          |
|------------------------|-------------------------------------------------|
| RFI-02                 | possible effect from former surface impoundment |
| LWB-borings/<br>CAMU A | odor, potential effect from hexavalent chromium |
| BRB-borings/<br>CAMU B | odor, potential effect from hexavalent chromium |
| RFI-13                 | obstruction in a parking lot                    |
| RB-series              | inside borings, obstruction to operations       |

The soil cuttings mentioned above were contained in a plastic lined covered 55 gallon drums, which were moved to temporary storage area in the south end of the Warehouse. Subsequently, these drums were emptied into a lined 20 yard roll-off box designated as K062 debris, and disposed of through microencapsulation at Envotech Management Services, located in Bellville, Michigan.

All groundwater development and purge water was placed in labeled 55-gallon drums at the point of generation. The drums were then moved to the facility's wastewater treatment plant

Date: 10/22/98

Page: 23 of 23

(WWTP) where they were discharged for treatment prior to discharge to the City of Dunkirk sanitary sewer. Decontamination of the downhole drilling equipment was performed immediately adjacent to the WWTP building and discharged directly to the WWTP.

Table 2-1

Well Construction Summay Phase 1 RF1 Al. Tech Specially Steel Corporation Dunkirk, New York Facility

| Installation Material                           | 1               |                      | 10/21/96 Overhuiden | 10/22/96 Overburden | 10/25/96 Overbuiden | 10/29/96 Overburden | 10/28/96 Overburden | 10/25/96 Overhunden | 10/28/96 Overhunden | 10/29/96 Overhanden | 10/24/96 Overbuiden | 10/2-4/96 Overhurden | 10/25/96 Overhunden | 10/23/96 Overburden | 10/24/96 Overburden | 10/23/96 Overburden | 10/23/96 Overhuiden | 10/22/96 Overhunden | 10/28/96 Overhuden |                           | Bushock         | Bedrack         | Bedrock         | Bedrock         | - Bedrock       | - Bedrock       | . Bedruck       | - Bedrock       | - Bedroek       | - Overhurden    | - Overhunden    | 10/21/85 Bedrock | 10/21/85 Bedrock | 10/15/81 Bedrock | 10/15/81 Bedrock | 10/15/81 Bedrock | - Bedrack       |               |
|-------------------------------------------------|-----------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|-----------------|---------------|
| Screen<br>Interval                              | (ft-hgs)        |                      | 8.5 - 13.5          | 7.5 - 12.5          | 5 - 10              | 15 - 25             | 7 - 15              | = +                 | 7 - 12              | 5 - 11              | H - 9               | 6.5 - 13.5           | 9 - 17              | 10 - 20             | 71-17               | 7 - 14              | 7 - 17              | 5 - 15              | 6.5 - 11.5         |                           | 19 - 24         | 6.5 - 16.5      | ×- 1×           | 9.5 - 14.5      | 8.5 - 18.5      | 6 - 15          | 5 - 15          | 8.5 - 18.5      | 7.5 - 17.5      | 7.5 - 12.5      | 6.5 - 11.5      | 5.5 - 15.5       | 3 - 13           | 4.5 - 9.5        | 5 - 15           | 6.5 - 16.5       | 10 - 20         |               |
| Screen<br>Length/Stot Size                      | (feet/inches)   |                      | 5/0.010             | 010:0/5             | 5/0.010             | 10/0:010            | 8/0.010             | 7/0.010             | 5/0.010             | 5/0.010             | 5/0.010             | 7/0,010              | 8/0.020             | 10/0/010            | 10/0/010            | 010'0/2             | 10/0/01             | 10/0/010            | 5/0.010            |                           | 5/0.010         | 010/0/01        | 10/0.010        | 5/0.010         | 10/0.020        | 10/0:010        | 10/0/010        | 10/0/010        | 10/0.020        | 5/0.01          | 5/0.01          | 10/0/010         | 10/0/010         | 010'0/9          | 10/0/010         | 10/0.010         | 10/0/010        | 2000          |
| Well<br>('onstruction                           | Material (c)    |                      | 2", Sch. 40 PVC      | 2", Sch. 40 PVC     | 2", Sch. 40 PVC     | 2", Sch. 40 PVC     | 2", Sch. 40 PVC     | 2", Seh. 40 PVC     | 2", Sch. 40 PVC     | 2", Seh. 40 PVC    |                           | 3", Sch. 40 PVC | 2", Sch. 40 PVC  | 2", Sch. 40 PVC  | 4", Sch. 40 PVC  | 4", Sch. 40 PVC  | 4", Sch. 40 PVC  | 2", Sch. 40 PVC | 0.00          |
| Total<br>Depth                                  | (ff-bgs)        |                      | 13.4x               | 12.3                | 9,92                | 24.88               | 14.98               | 11.25               | 12.06               | 10.95               | 11.03               | 13.39                | 16.94               | 20                  | 17.04               | 14.07               | 17.04               | 14.9                | 11.58              |                           | 20.38           | 16,44           | 18.27           | 14.58           | 18.66           | 15.78           | 15.14           | 18.55           | 17.48           | 12.62           | 11.33           | 15,63            | 13.04            | 9,42             | 15.19            | 16.45            | 19.84           | ì             |
| Borchole<br>Diameter<br>()verburden/<br>Bedrock | (inches)        |                      | 10.5                | 10.5                | 10.5                | 10.5                | 10.5                | 10.5                | 10.5                | 10.5                | 10.5                | 10.5                 | 10.5                | 10.5                | 10.5                | 10.5                | 10.5                | 10.5                | 10.5               |                           | 10.5/6          |                 | ,               | •               | •               | •               | ,               | ,               | •               |                 | •               | 8.5/3            | 8.5/3            | 10.5/6           | 10.5%            | 10.5%            | 10.5%           | 22.00         |
| Drilling Method<br>HSA (b)/ NX Core             | and Rotary Ream |                      | (b) -/X             | ./X                 | -/X                 | -/X                 | Χ/.                 | -/X                 | Χ/.                 | ./X                 | χ.                  | ./×                  | χ'.                 | ./X                 | ./X                 | ./x                 | ×                   | -/X                 | ××                 |                           | X/X             | X/-             | ./x             | -/X             | .,X             | -/X             | ./X             | -/X             | X/-             | ./X             | .,×             | X/X              | X/X              | X/X              | X/X              | X/X              | X/X             | 21.2          |
| Ground<br>Surface<br>Elevation                  | (ft-msl)        |                      | 640.88              | 638.73              | 635.94              | 6,38,21             | 631.99              | 631.59              | 635.53              | 631.80              | 630.14              | 630,00               | 630.64              | 628.43              | 622.49              | 630.90              | 6-40.27             | 638.77              | 635.28             |                           | 638.80          | 637.78          | 641.72          | 635.17          | 640.37          | 633.59          | 636.57          | 633.06          | 636.79          | ~ 639           | 069 -           | 633.70           | 633.36           | 632.12           | 630.84           | 629.93           | 632.31          | 2721          |
| Top-of-Cusing<br>Elevation                      | (ft-msl) (a)    |                      | 640.72              | 638.54              | 635.87              | 638.48              | 634.26              | 633.87              | 635.12              | 631.50              | 632.22              | 632.16               | 632,65              | 6,30,30             | 622.19              | 633.11              | 642.09              | 641.13              | 637,39             |                           | 638.54          | 639.51          | 15.059          | 1979            | 637.11          | 641.90          | 635.69          | 6.38.22         | 635.11          | 638.75          | 629.38          | 635.17           | 635.62           | 634.60           | 632.35           | 630.18           | 632.28          | 11 467        |
| tate Plane<br>nutes                             | Easting         |                      | 296086.64           | 295744,75           | 295709.08           | 296378.40           | 295989,09           | 295531.68           | 295375.76           | 294910.29           | 294698.61           | 294658.19            | 294505.63           | 294231.17           | 294227,35           | 294609.76           | 294994.16           | 295044.59           | 29,5299,98         |                           | 296113.95       | 294748,88       | 294954.38       | 294729.02       | 294957.61       | 294714.11       | 294883.93       | 294711.32       | 294889.14       | 294510.48       | 295439,16       | 2958029.84       | 295034.08        | 294948.54        | 294787.26        | 294799,41        | 295957.82       | En en control |
| New York State Plane<br>Coordinates             | Northing        | Wells                | 900639.62           | 900912.23           | 901349.23           | 901533.42           | 902372.58           | 902124.68           | 901742.05           | 902397.15           | 902089.56           | 901871.44            | 901992.94           | 901364.00           | 900975.33           | 900703.50           | 900745.06           | 901021.40           | 901723.24          | ne Wells                  | 900955.84       | 900926.95       | 900958.04       | 90,0880,09      | 900861.45       | 900574.39       | 900576.41       | 900494,74       | 900492.09       | 900794.31       | 901743.26       | 901985,49        | 901934.02        | 902122.49        | 902103.94        | 902006.05        | 902228.99       | 11 FOLLOW     |
|                                                 | Well No.        | RFI Monitoring Wells | RF1-01              | RF1-02              | RFF-03              | RFI-03              | RFI-05              | RFI-06              | RFI-07              | RF1-08              | RFI-09              | RFI-10               | RFI-11              | RFI-12              | RFI-13              | RFI-14              | RFI-15              | RFI-16              | RFI-17             | Existing Monitoring Wells | E E             | WP.1            | WP-2            | WP.3            | WP-4            | WP-5            | WP-6            | WP-7            | WP-8            | MW-I            | MW-3            | WT-1A            | WT-1B            | WT-2             | WT-3             | WT1              | LAE-4           | 2 14 14 6     |

at H-msl = feet above mean sea level; all elevations are in H-msl.

H-bys = feet below ground surface.

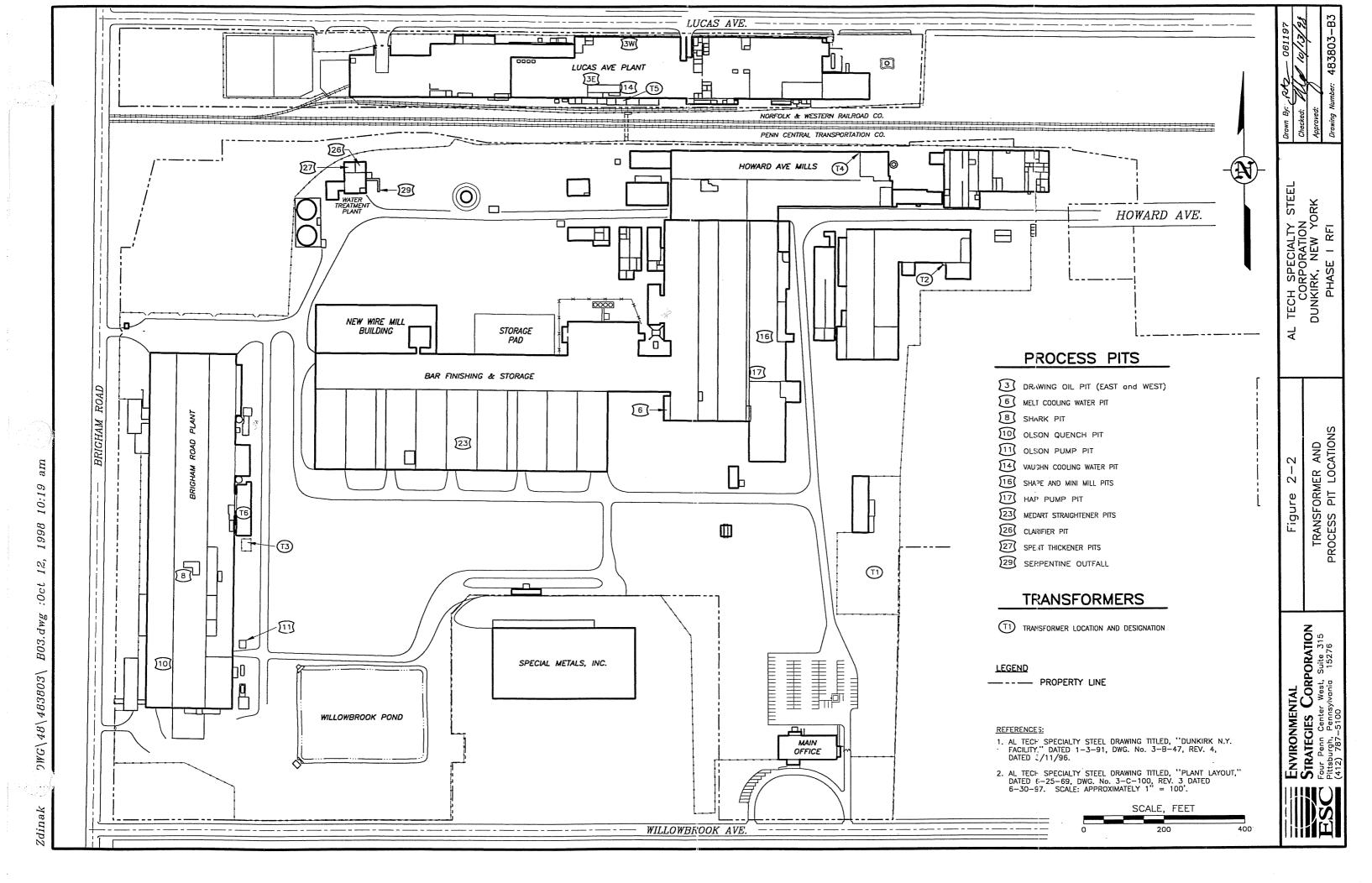
If HSA = hollow-steam anger.

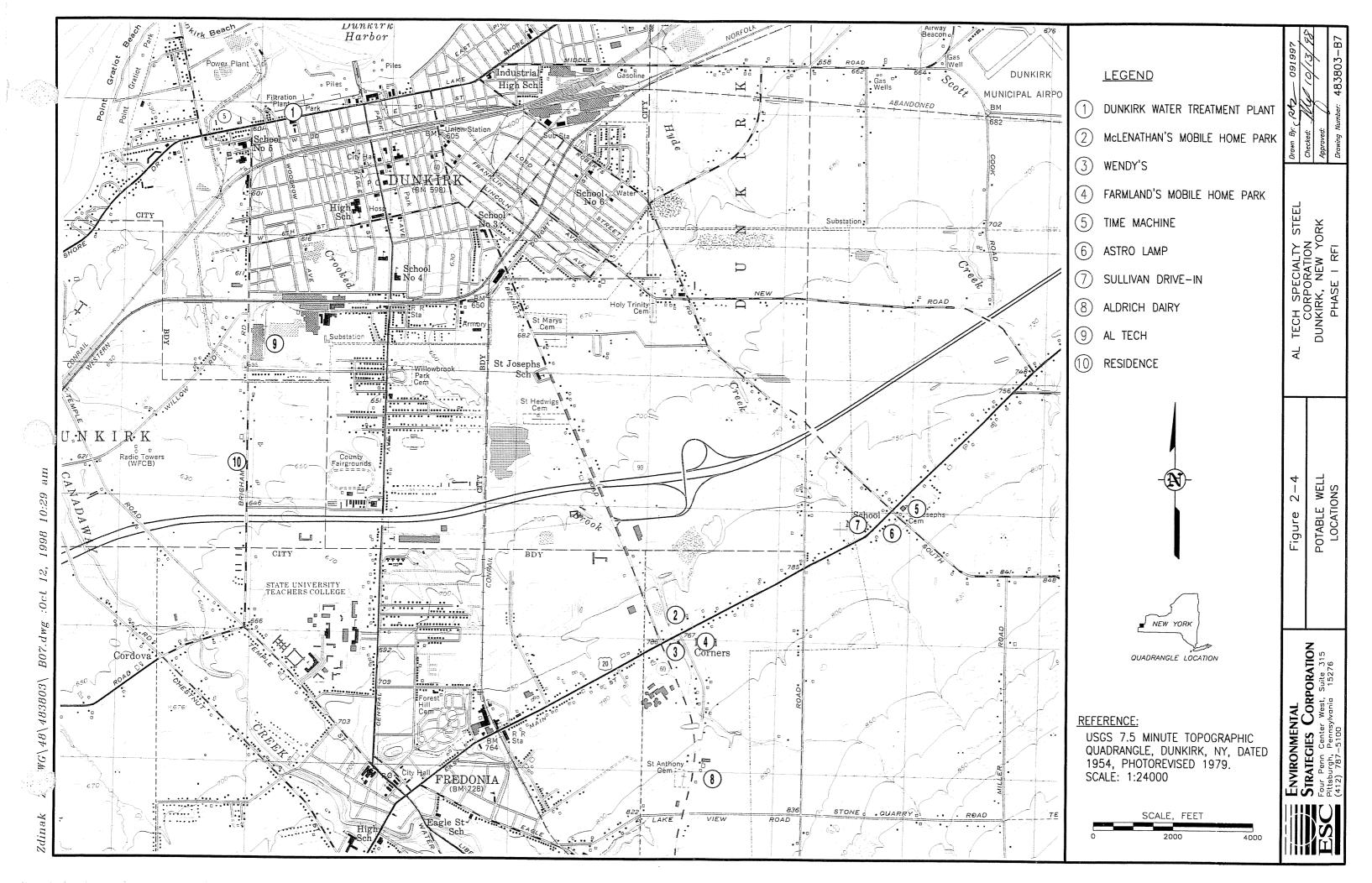
of 2.", Sch-40 PWC = indicates two-inch diameter, Schedule 40 polyvinyl chloride.

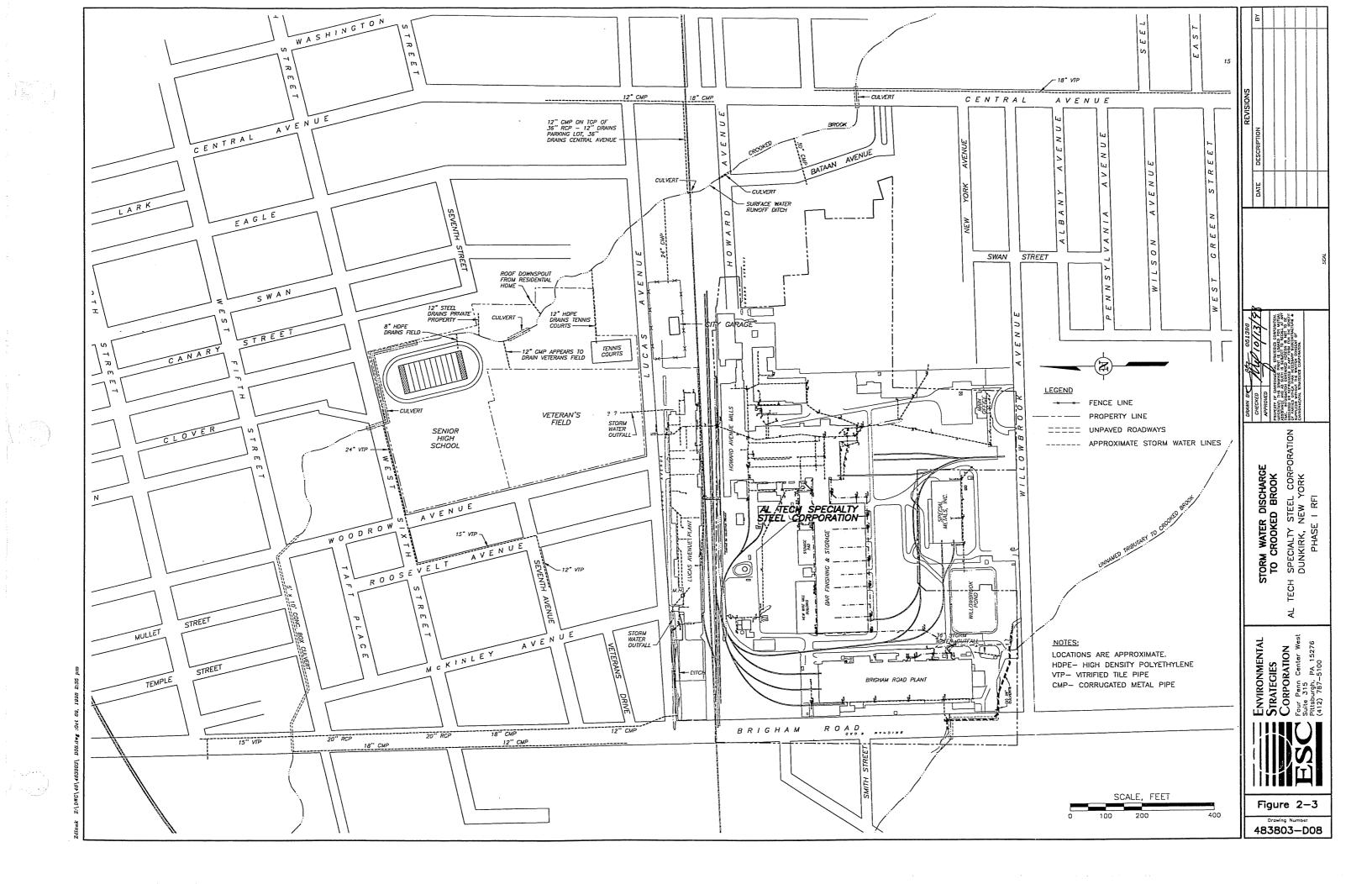
of 2.", indicates not applicable/not available.

Table 2-2

#### Process Pits Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility


| Pit Number | Pit Description           | Pit Location (a)                                                 | Interior/<br>Exterior | Soil Boring/<br>Monitoring Well | Reason for<br>Inspection                                       |
|------------|---------------------------|------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------------------------------------------|
| 3          | Drawing Oil Pit(s) (b)    | SWMU 1/Former Lucas Avenue<br>Plant West Pickle Facility         | Interior              | NA (c)                          | Risk of release                                                |
|            |                           | SWMU 1/Former Lucas Avenue<br>Plant East Pickle Facility         | Interior              | NA                              | Risk of release                                                |
| 6          | Melt Cooling Water Pit    | Southwest Howard Avenue Plant                                    | Interior              | NA                              | Low risk of release                                            |
| 8          | Shark Pit                 | Central Brigham Road Plant                                       | Interior              | NA                              | Risk of release                                                |
| 10         | Olson Quench Pit          | Northeast of SWMU 2/Former<br>Brigham Road Plant Pickle Facility | Interior              | RFI-13                          | Risk of release<br>Soil and groundwater<br>evaluation as noted |
| 11         | Olson Pump Pit            | West of SWMU 2/Former<br>Brigham Road Plant Pickle Facility      | Exterior              | NA                              | Risk of release                                                |
| 14         | Vaughn Cooling Water Pit  | Central Lucas Avenue Plant                                       | Interior              | NA                              | Low risk of release                                            |
| 16         | Shape- and Mini-Mill Pits | Southcentral Howard Avenue Plant                                 | Interior              | NA                              | Risk of release                                                |
| 17         | HAP Pump Pit              | Southcentral Howard Avenue Plant                                 | Interior              | NA                              | Risk of release                                                |
| 23         | Medart Straightener Pits  | Central Bar Finishing and Storage                                | Interior              | NA                              | Little risk of release                                         |
| 26         | Clarifier Pit             | SWMU 22/<br>Wastewater Treatment Plant                           | Exterior              | RFI-09                          | Risk of release<br>Soil and groundwater<br>evaluation as noted |
| 27         | Thickener Pit             | SWMU 22/<br>Wastewater Treatment Plant                           | Exterior              | RFI-09                          | Risk of release<br>Soil and groundwater<br>evaluation as noted |
| 29         | Serpentine Outfall        | SWMU 22/<br>Wastewater Treatment Plant                           | Exterior              | RFI-09                          | Risk of release<br>Soil and groundwater<br>evaluation as noted |


a/ The approximate locations of the pits are shown in Figure 2-2.
 SWMU = solid waste management unit.
 AOC = area of concern.
 b/ Only the LAP West Drawing Oil Pit was identified for inspection in the Phase I RFI Work Plan.
 c/ NA = not applicable: there are no boring or well locations to evaluate soil or groundwater conditions as potentially impacted by these pits.


Table 2-3

Existing Well Evaluation
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|                                                              |                                          |                                         |                                         |                                         | nase I RFI                                            |                                          |                                         |                                          |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                      |                                          |                                          |                                          |
|--------------------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Comments                                                     | labeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | labeled and cap and lock installed during Phase I RFI | labeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | labeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | abeled and cap added during Phase I RFI | be located           | labeled and cap added during Phase I RFI | labeled and cap added during Phase I RFI | labeled and cap added during Phase I RFI |
|                                                              | labeled an                               | labeled an                              | labeled an                              | labeled an                              | labeled and                                           | labeled and                              | labeled and                             | labeled and                              | labeled and                             | labeled and                             | labeled and                             | labeled and                             | labeled and                             | labeled and                             | labeled and                             | could not be located | labeled and                              | labeled and                              | labeled and                              |
| Construction<br>in Accordance<br>with Industry<br>Standards? | Unknown                                  | Yes                                     | Yes                                     | Yes                                     | Yes                                                   | Yes                                      | Yes                                     | Yes                                      | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Unknown                                 | NA                   | Unknown                                  | Unknown                                  | Unknown                                  |
| Protective<br>Casing<br>Integrity<br>Intact?                 | Yes                                      | Yes                                     | Yes                                     | Yes                                     | Yes                                                   | Yes                                      | Yes                                     | Yes                                      | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Yes                                     | NA                   | Yes                                      | Yes                                      | Yes                                      |
| Well<br>Cap?                                                 | No                                       | S                                       | οN                                      | No                                      | Š                                                     | No                                       | No                                      | No                                       | No                                      | No                                      | No                                      | No                                      | No                                      | No                                      | No                                      | √Z                   | No                                       | No                                       | No                                       |
| Sufficient<br>Well Pad?                                      | Yes                                      | No                                      | No                                      | No                                      | Yes                                                   | No                                       | No                                      | No                                       | No                                      | Yes                                     | No                                      | Š                                       | Š                                       | No                                      | No                                      | NA                   | οN                                       | Yes                                      | N <sub>o</sub>                           |
| Secured<br>with Lock?                                        | Yes                                      | Yes                                     | Yes                                     | Yes                                     | No                                                    | Yes                                      | Yes                                     | Yes                                      | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Yes                                     | Yes                                     | NA                   | No                                       | No                                       | No                                       |
| Properly<br>Labeled?                                         | Ŝ                                        | Š                                       | No                                      | Š                                       | No                                                    | No                                       | Š                                       | No                                       | No                                      | No                                      | No                                      | No                                      | No                                      | No                                      | Š                                       | No                   | No                                       | Š                                        | S                                        |
| Well No.                                                     | <br>                                     | WP-1                                    | WP-2                                    | WP-3                                    | WP-4                                                  | WP-5                                     | WP-6                                    | WP-7                                     | WP-8                                    | WT-1A                                   | WT-113                                  | WT-2                                    | WT-3                                    | W.T4                                    | MW-I                                    | MW-2                 | MW-3                                     | LAW-5                                    | LAW-6                                    |







Date:

10/22/98 1 of 19

3.0

Page:

3.0 <u>Site Physical Conditions</u>

The descriptions of general physical conditions of the site, presented in the following subsections, are based on information generated and compiled during implementation of the Phase I RFI. The conditions which are addressed include:

- regional and local geology
- site hydrology
- site hydrogeology
- process pits
- process sewers

## 3.1 Geologic Conditions

## 3.1.1 Regional Geology

The soils of the Dunkirk area are generally comprised of lacustrine silts and clays that were deposited during the formation of proglacial lakes in the Wisconsin glaciation period (McClaren/Hart 1992b).

The uppermost bedrock underlying the Dunkirk area is classified as the Canadaway group of Devonian Age (McClaren/Hart 1992b). This group is comprised of the Dunkirk, South Wales, and Gowanda Shale Members. The Dunkirk Shale is the upper bedrock unit and consists of massive gray to dark gray shale typically 40-feet thick. The South Wales Shale, present beneath the Dunkirk Shale, consists of light gray to dark gray shale with interbedded siltstone. The thickness of this unit ranges between 60 to 80 feet. The bottom member of the Canadaway Group is the Gowanda Shale. This unit consist of a 5- to 15-foot thick dark gray shale underlain by a gray shale with quartz and some interbedded layers of siltstone. The total thickness of Gowanda Shale ranges from 120 to 230 feet.

#### 3.1.2 Site Geology

The geologic evaluation presented herein addresses the physical characteristics of the surface and subsurface conditions at the site interpreted using the geologic information generated and collected during implementation of the Phase I RFI.

Date:

10/22/98 2 of 19

Page:

Soil samples were collected from various locations and depths at the site for grain size analysis (Table 3-1 and Appendix H). Boring logs describing the lithology at each boring location are presented in Appendix D.

The surficial soils at the site are classified as the Niagara Silt Loam Unit (McClaren/Hart 1992b). This soil unit is characterized as being relatively thick and formed on moderately flat areas. The soil properties of this unit include a moderate permeability, high water capacity, slow runoff, and a high water table that may rise to 0.5 to 1.5 feet below the surface during the fall season. A typical soil profile for this unit includes a brown silt loam to 15 inches, dark silty clay to 37 inches, a brown to olive gray silt loam to 60 inches, and a dark gray gravelly silt loam to the top of bedrock.

#### 3.1.2.1 <u>Lithologic Units</u>

The subsurface geologic data collected during implementation of the Phase I RFI indicate that there are generally four significant units underlying the facility. In descending sequence, these units include:

- fill
- lacustrine sediments
- weathered shale
- bedrock

The bedrock is differentiated between weathered shale and (competent) shale bedrock. Weathered bedrock includes the fractured rock zone between the unconsolidated deposits and the shale bedrock. The limit of the Phase I RFI investigation was the interface between the weathered shale and shale bedrock. An elevation contour map of the weathered shale surface is presented in Figure 3-1. Cross sections through the site, showing the unconsolidated materials, weathered shale, and shale bedrock, are shown in Figures 3-2 and 3-3.

Fill

The fill at the site varies between boring locations and reflects the various construction activities that were conducted. The fill is comprised of disturbed soil or mill debris (e.g., slag, metal fragments, brick, concrete, and coal) mixed with soil.

Surface samples of the fill were collected from 10 locations for grain size analysis. The geotechnical results indicate the fill is generally comprised of clay- and sand-sized material with

3.0

Date:

10/22/98 3 of 19

Page:

gravel. The thickness of fill ranges from approximately 1 to 6 feet across much of the site. Greater thicknesses of fill were encountered proximate to RFI-15 (8 feet).

The fill was generally unsaturated.

### Lacustrine Sediments

Two distinct zones of soil, which were deposited as lacustrine sediments, underlie the site: a fine-grained silt and clay zone, which was fairly consistently observed across the site, and a coarser-grained gravelly silt and clay, which was observed with similar frequency. The overall thickness of this lacustrine unit varied from approximately 6 to 10 feet across the site.

The finer-grained soils consist of clay, clayey-silt, and silt. These soils were encountered beneath the fill material and typically included a layer of clayey-silt or clay grading to a silt-rich layer with depth. This zone was typically 4 to 10 feet in thickness. Thicker areas were encountered to the east and west: RFI-05 (approximately 14 feet) and RFI-13 (approximately 15 feet) and reflects the greater depth to the weathered shale surface (Figure 3-1).

These soils vary in color from a brown, olive, and gray. The soils are stiff, and plasticity is typically proportional to the amount of clay (i.e., as the clay content increases the higher the degree of plasticity). The soils contained some mottling and iron staining which increased with depth.

Geotechnical results for grab samples collected from this zone typically were described as a lean clay with sand. Geotechnical testing results for an undisturbed sample (Shelby tube), collected at RFI-05 from 6 to 7.4 ft-bgs, indicate a vertical permeability for this material of 7.1 x  $10^{-6}$  cm/sec (or 2.3 x  $10^{-7}$  ft/sec)

The coarser-grained soils consist of very hard, non-plastic silt and clay with rounded gravel and shale fragments. The thickness of this zone ranges from 2 to 5 feet. Typically this zone is underlies or grades into the silt and clay zone and is present above the weathered shale. These soils are typically brown or olive where bedrock was encountered at a depth of 10 feet or less and gray to dark gray where bedrock was encountered below 10 feet.

Typically this material was encountered at or below the saturated zone and groundwater within this zone is semi-confined by the overlying finer-grained (silt and clay) soils.

Geotechnical results for grab samples collected from this zone were classified as a gravelly lean clay.

Page:

3.0

Date:

10/22/98 4 of 19

## Weathered Shale

The weathered shale is part of the upper Dunkirk Shale Member. The material is very friable, weakly cemented, and ranges in color from gray to dark gray. Typically, groundwater was encountered above the weathered shale. This unit averages 1 to 3 feet in thickness across the site and was encountered at depths of 8 to 10 feet near the center and north-central portions of the facility, approximately 18 to 24 feet along the western boundary of the site, and greater than 24 feet at the location completed farthest east, RFI-04. The depth to bedrock along the northern site boundary varies from approximately 11 to 15 feet. As indicated by the elevations identified above and as illustrated in Figure 3-1, the weathered shale surface slopes to the north, east, and west from the central portion of the site.

## Shale Bedrock

The shale bedrock beneath the site is part of the Dunkirk Shale Member. The color of the shale ranges from gray to dark gray; the shale is well cemented. This unit appears to be acting as a confining layer beneath the unconsolidated material and weathered shale. The thickness and lithogic characteristics of this unit were not investigated during this phase of the investigation.

#### 3.1.2.2 Geologic Cross Sections

Four site-specific geologic cross sections, A-A' through D-D', were constructed to depict the general subsurface lithology at the site based on the geologic data collected during the RFI. The cross-sections present the total depth, well screen placement, and potentiometric groundwater surface for the overburden water-bearing zone. The cross sections are presented in Figures 3-2 and 3-3; key maps on both figures identify the locations of the sections in plan view.

Geologic cross-section A-A' is presented in Figure 3-2. This section is oriented approximately west to east along the northern boundary of the site (RFI-08 to RFI-05). Approximately 4 to 6 feet of fill is present in the western portion of the site, near RFI-08, RB-04, and RB-05; only a thin layer of fill (less than 1 foot) was encountered at RFI-05. The gravelly clay layer was encountered at RFI-08 and RB-05; to the east, this zone graded to a silt and clay at RB-04 and RFI-05. Along this line of section, the elevation of the weathered shale dips from the center to the west (623.5 to 622.5 ft-msl) and to the east (623.5 to 617 ft-msl) at a similar grade.

Geologic cross-section B-B' is also presented in Figure 3-2. This section is oriented northwest to southeast through the site (RFI-08 to RFI-01). The thickness of the fill unit along

Date: 10/22/98 Page: 5 of 19

this traverse ranges from 0.5 foot at RFI-02 to 6 feet at RFI-03. The underlying unit in the southeastern portion consists of silt and clay, which grades into a gravelly clay at RFI-08 and RFI-17. This gravelly clay zone was not encountered at RFI-03, but this zone was present, beneath the silt and clay, at RFI-01 and RFI-02. As shown in Figure 3-1 and in this section, the elevation of the weathered shale surface is approximately 626 to 628 ft-msl across the southern and central portion of the site, but dips to approximately 622.5 ft-msl to north (RFI-08).

Geologic cross-section C-C' is presented in Figure 3-3. The section is oriented west to the east across the central portion of the site (RFI-11 to RFI-06). The thickness of the overburden (fill and lacustrine soils) increases from east to west; the lacustrine soils are dominated by the silt and clay, which grades to gravelly clay to the west. The elevation of the weathered shale dips from the center of the site to the west (627 to 619 ft-msl) and to the east (627 to 625.5 ft-msl).

Geologic cross-section D-D' is presented in Figure 3-3. This section is oriented from west to east along the southern portion of the site (RFI-13 to RFI-01). The thickness of the fill unit encountered along this section varied from 0.5 foot at RFI-02 to approximately 5 feet at other locations. The three overburden zones (fill, silt and clay, and gravelly clay) are present at the central and eastern locations. However, the gravelly clay zone was absent in the west (RFI-13). The weathered shale surface dips gently to the west across much of the site from 627.5 to 621.5 ft-msl (RFI-01 to RFI-14) and then dips steeply from 621.5 to 604 ft-msl from Willowbrook Pond to the western property boundary (RFI-14 to RFI-13).

#### 3.2 Site Hydrology

The surface waters bodies in proximity to or within the site include the unnamed tributary to Crooked Brook, Crooked Brook, and Willowbrook Pond (Figures 1-1 and 2-3). Both portions of the unnamed tributary and Willowbrook Pond are located on the site.

The unnamed tributary is a perennial stream which flows northwest across the southwestern corner of the site. The tributary enters the site at the surface, travels underground for approximately 500 feet through a 36-inch diameter culvert, and resurfaces west of Brigham Road. One 36-inch diameter stormwater outfall from the site discharges to this tributary. The average water depth observed during implementation of the Phase I RFI was approximately 1 foot. The creek discharges to Crooked Brook approximately 0.75 mile northwest of the site.

3.0

Date:

10/22/98

Page:

6 of 19

Crooked Brook is rated as a Class D stream (recreational use), the nearest distance between the stream and the site is approximately 0.1 mile from the site's eastern property boundary. A field reconnaissance was performed during implementation of the Phase I RFI on a 0.5-mile portion of the stream to determine the general characteristics of the stream and associated outfalls. The stream appeared to have a sediment bottom. The stream flows through predominantly residential areas and discharges to Lake Erie located approximately 1 mile northwest of the site.

Willowbrook Pond is located in the southwestern portion of the site. The pond is an earthen reservoir which has been in use since 1952. The size of the pond is approximately 225 by 320 feet with an average distance of 10.5 feet from the top of the dike to the pond bottom. Overflow from the pond passes through an oil skimmer and collection system before being discharged to the city of Dunkirk's POTW.

## 3.3 Hydrogeology

Hydrogeologic conditions across the site were investigated during the Phase I RFI through the installation and evaluation of 17 monitoring wells and use of 18 existing site wells. The investigation included the collection of water-level measurements, performance of in situ permeability tests, and development of potentiometric surface maps.

In general, the unconsolidated deposits underlying the site consist of clay and silt that typically grades, with depth, into a gravelly clay zone. The unconsolidated deposits at the site range in thickness from 8 feet to 24 feet and are underlain by 1 to 3 feet of weathered shale, and shale bedrock. Typically, groundwater was encountered in the gravelly clay layer above the weathered shale. The depth to groundwater measured in the wells ranged from 1 to 8 ft-bgs. The depth to water encountered during drilling compared to the depth to water measured in the wells after installation indicates that the groundwater is under confined conditions (e.g., the fine grained, low permeability clay and silt zone).

Water level measurements were collected in all of the site wells using an electronic water-level indicator in November 1996 and March and May 1997. These data were used in conjunction with the surveyed top-of-casing elevations for the wells to calculate groundwater elevations for the wells. The depth to water and groundwater elevations are provided in Table 3-2; potentiometric

Date: Page: 10/22/98 7 of 19

surface maps developed using the data for November 1996 and March 1997 are presented in Figures 3-4 and 3-5. Because several of the existing wells were installed in the upper portion of the shale bedrock, typically only the groundwater elevations for the newly installed wells (RFI-series) were used to develop the potentiometric surface maps and to determine the direction of groundwater flow.

The direction of groundwater flow at the site appears to be influenced by the weathered shale surface. As shown in Figures 3-4 and 3-5, the highest groundwater elevations appear to be present in the central area of the site; the direction of groundwater flow radiates from this area. In the northern portion of the site, the direction of groundwater flow is north-northwest. In the southern portion of the site, the direction of groundwater flow is south, with a strong western component of flow in the southwest corner of the site where the bedrock elevations drops steeply.

The horizontal gradient at the site was measured along the northern, northwestern, southern, and southwestern groundwater flow directional arrows presented in Figures 3-4 and 3-5. Because the hydraulic gradient at the southwestern portion of the site is significantly different than the remainder of the site, the hydraulic gradient of this area was determined independently. The average hydraulic gradients across the site (excluding the southwestern portion) using the November 1996 and March 1997 data, were estimated at 0.00429 and 0.00580. The hydraulic gradients for the southwestern portion of the site for the same periods were estimated at 0.0514 and 0.514. These data were used to calculate the groundwater flow velocities for the site and the southwestern portion of the site.

The hydraulic conductivity of the unconsolidated water bearing zone was calculated using the Bouwer and Rice method (1976). The Bouwer and Rice methodology and calculations are presented in Appendix I.

The results of the Bouwer and Rice analysis of the slug test data indicate that the hydraulic conductivity of the unconsolidated water-bearing zone ranges from 0.048 to 11.189 ft/day for the rising-head tests and 0.072 to 8.261 ft/day for the falling-head tests (Table 3-3). The average hydraulic conductivity for both the rising- and falling-head tests is 3.509 ft/day. The groundwater velocities were calculated using the equation  $V_s$ = Ki/n<sub>e</sub>, where,

Date: 10/22/98 Page: 8 of 19

 $V_s$  = seepage velocity

K = hydraulic conductivity

i = horizontal hydraulic gradient

 $n_e$  = effective porosity

The geotechnical sampling results for samples collected from the saturated zone at the site indicated the soil is generally described as a sandy clay. The average specific yield (effective porosity) value for a sandy clay soil of 0.12 was used to calculate the groundwater velocity (Walton 1988). The estimated velocities of groundwater flow at the site using the November 1996 and March 1997 data are 0.13 ft/day and 0.17 ft/day. The estimated velocity for the southwestern portion of the site using these data is 1.5 ft/day.

The higher seepage velocity values for the southwestern portion of the site are clearly due to the greater hydraulic gradient which reflects the steeper weathered shale topography in this area.

# 3.4 Process Pit Inspections

Twelve process pits (largely representing AOC 3) and two oil storage rooms (AOC 5) were inspected during the RFI to evaluate the integrity of the structures and to determine if any of the units posed the potential to affect adjacent soils or groundwater. The pits that required confined space entry were inspected by AL Tech personnel in the presence of an ESC representative. The Medart Straightener Pits were inspected by AL Tech personnel, following the protocols established by ESC during the summer of 1997. Other pits not requiring confined space entry were inspected directly by an ESC representative. Inspections were performed on the following process pits:

| <u>Pit</u>                    | AOC No. | Pit No. |
|-------------------------------|---------|---------|
| West Drawing Oil Storage Room | 5       | 3W      |
| East Drawing Oil Storage Room | 5       | 3E      |
| Melt Cooling Water Pit        | 3       | 6       |
| Shark Pit                     | 3       | 8       |
| Olson Quench Pit              | 3       | 10      |
| Olson Pump Pit                | 3       | 11      |
| Vaughn Cooling Water Pit      | 3       | 14      |

3.0 0

Date: Page: 10/22/98 9 of 19

| <u>Pit</u>               | AOC No. | Pit No. |
|--------------------------|---------|---------|
| Shape Mill Pit           | 3       | 16      |
| Mini Mill Pit            | 3       | 16      |
| HAP Pump Pit             | 3       | 17      |
| Medart Straightener Pits | 3       | 23      |
| Clarifier Pit            | 3       | 26      |
| Spent Thickener Pit      | 3       | 27      |
| Serpentine Outfall       | 3       | 29      |

The approximate locations of these pits are shown in Figure 2-2. Detailed drawings or sketches of the pits that illustrate their structural integrity are presented in Appendix J.

#### 3.4.1 Drawing Oil Storage Rooms

The West Drawing Oil Storage Room, located along the north wall of LAP (Figure 2-2, "3W"), is approximately 28 feet wide, 36 feet long, and 10 feet deep. Four open-top oil tanks, several pumps, and miscellaneous piping are present (Appendix J, Figure J-1). Although the tanks are no longer used, approximately 12 inches of oil is present in each.

The groundwater elevation in this area is higher than the bottom elevation of the room. A groundwater drainage/collection system, comprised of a slotted trough, is located along the perimeter of the room. The trough is sloped to drain toward a sump located along the south wall of the room. According to AL Tech personnel, the collected groundwater was pumped from the sump to control water in the room, the result is the groundwater elevation was maintained below the floor elevation. Because this storage room is no longer used, groundwater which accumulates in the room is no longer pumped. Before the inspection, approximately 18 inches of water were observed to be present on the floor of the room. This water was pumped out to facilitate the inspection.

A 0.5-inch thick oily sludge was present over the entire floor area and trough. According to AL Tech personnel, historic releases of oil (from leaking pipes, pumps, tanks, etc.) have occurred.

While the tanks are intact, the presence of groundwater in the storage room, the type of materials handled, and the presence of oily sludge on the floor of the storage room suggest the potential for this unit to affect adjacent subsurface soils and groundwater in this area.

The East Drawing Oil Storage Room, located along the north wall of LAP (Figure 2-2, "3E"), is approximately 19 feet wide, 30 feet long, and 6 feet deep. Similar to the West Drawing

3.0

Date:

10/22/98

Page:

10 of 19

Oil Storage Room, this storage room is no longer used. The room contains four open-top oil tanks, several pumps, and miscellaneous piping; less than 2 inches of oil remains in each tank (Appendix J, Figure J-2). The groundwater elevation in this area is also higher than the bottom elevation of the storage room. A groundwater drainage/collection system, similar to that in the West Drawing Oil Storage Room, is located along the perimeter of the room and was used to pump accumulated groundwater from the room.

A 0.5-inch thick oily sludge was observed on the floor area and trough. Historic releases appear to have occurred in the room.

While the tanks are intact, the presence of groundwater in the storage room, the type of materials handled, and the presence of oily sludge on the floor of the storage room suggest the potential for this unit to affect adjacent subsurface soils and groundwater in this area.

#### 3.4.2 Melt Cooling Water Pit

The Melt Cooling Water Pit (Pit No. 6), which is no longer in use, was previously used to contain cooling water for melting operations at the facility. The pit, which is constructed of concrete, is approximately 10 feet wide, 13 feet long, and 10 feet deep. A sump is located along the west wall (Appendix J, Figure J-3).

No cracks were observed in the walls or floor during the inspection nor did the pit contain any water. The pit appeared very clean and in good condition. Based on these observations and because the pit contained only cooling water, it does not appear to pose a potential to affect adjacent subsurface soils or groundwater quality in this area.

#### 3.4.3 Shark Pit

The Shark Pit (Pit No. 8) is a concrete structure used to collect cooling water generated from BRP. The pit is L-shaped; it is 30 feet wide, 50 feet long, and 15 feet deep.

The drains discharging to the Shark Pit include concrete channels and various types of piping. A sump, located along the south end of the pit with a 12-inch steel riser intake pipe, is used to convey spent cooling water to Willowbrook Pond.

The walls and floor of the Shark Pit were coated with oil and grease at the time of the inspection. One crack was identified in the wall of the northeast corner of the pit (Appendix J, Figure J-4) through which groundwater was observed to be infiltrating at an estimated rate of less than 0.5 gpm.

Date: Page: 10/22/98 11 of 19

# 3.4.4 Olson Quench Pit

The Olson Quench Pit (Pit No. 10) is a 0.125-inch steel-lined tank that contains cooling water that is pumped from Willowbrook Pond. The pit is used for water quenching of steel coils that are exiting the Olson Annealing Furnace. The pit is approximately 6.5 feet wide, 10 feet long, and 4.5 feet deep (Appendix J, Figure J-5). Hot steel coils are mechanically lowered into the pit containing cooling water. The water is supplied to the pit through a 6-inch diameter steel supply pipe and spent cooling water is removed from the pit through a 6-inch diameter steel drain pipe. The pipes are welded to the steel liner of the pit at penetration locations.

Based on a visual inspection of the pit, no apparent cracks were observed in the steel liner. During the inspection no water was observed to be entering the pit; the pit is situated above the groundwater table.

# 3.4.5 Olson Pump Pit

The Olson Pump Pit (Pit No. 11) is a concrete pit that contains cooling water and acts as a reservoir for the Olson Quench Pit. The water is pumped from this pit to the Willowbrook Pond. The pit is approximately 8 feet wide, 9.5 feet long, and 9.5 feet deep (inside dimensions) (Appendix J, Figure J-6). The walls of the pit are composed of 12 inch thick concrete; the thickness of the base varies between 6 inches and 15 inches. Several pipes penetrate the walls of the pit and a 2-foot by 2-foot by 1.5-foot deep sump is located at the southwest corner of the pit.

The pit walls and floor appeared to be clean at the time of the inspection and there was no evidence of oil or grease observed. Two cracks were identified in the south and west walls; groundwater was observed to be infiltrating through each of these cracks at estimated rates of less than 1 gpm. The approximate location of the cracks are shown in the sketches provided in Appendix J (Figure J-6). The remaining portions of the pit appeared to be in good condition at the time of the inspection.

# 3.4.6 <u>Vaughn Cooling Water Pit</u>

The Vaughn Cooling Water Pit (Pit No. 14) is constructed of concrete and used for storing cooling water for the wire drawing operations. The pit is approximately 16 feet wide, 26.5 feet long, and 10 feet deep (Appendix J, Figure J-7). The walls and floor of the pit are lined with a tarlike coating.

Date: Page: 10/22/98 12 of 19

No cracks were observed in the walls or floor during the inspection and the pit appeared very clean. However, the liner was peeling away from the wall at several locations.

#### 3.4.7 Mill Pits

The Shape Mill Pit (Pit No. 16) is constructed of concrete and is located beneath the shape mill in Howard Avenue Plant (HAP). The pit is approximately 3 feet wide, 45 feet long, and 7 feet deep (Appendix J, Figure J-8). The pit is used to collect water and scale generated from the cooling of mill equipment and hot steel products. Cooling water is supplied to the shape mill from the HAP pump pit and Willowbrook Pond. Cooling water from the Shape Mill Pit gravity flows to the shape mill scale pit via a 16- inch diameter drain pipe located at the low end of the pit. The shape mill scale pit is divided into a scale settling area and a pump pit. The scale settling portion of the shape mill scale pit is approximately 4 feet wide, 10 feet long, and 20 feet deep and the pump area is approximately 10 feet wide, 10 feet long, and 20 feet deep.

The bottom and sides of the pits were covered with a thin oily residue. No cracks or leaks were observed in the concrete walls or floor. The pit is situated above the groundwater table and no water was observed leaking into the pit. However, water was observed leaking into the shape mill scale pit through a crack in the concrete floor of the pump area.

The Mini Mill Pit (Pit No. 16) is a concrete pit located in HAP. The pit is located beneath the mini mill and is used to collect water and scale generated while cooling the mill equipment and hot steel products. Cooling water is supplied to the mini mill from the HAP pump pit and Willowbrook Pond. Cooling water from the pit gravity flows to a scale pit at the low end of the pit. The pit is approximately 2.5 feet wide, 65 feet long, and 7 feet deep (Appendix J, Figure J-9).

The bottom and sides of the pit were covered with a thin oily residue. Several cracks were observed in the concrete walls and floors. However, the pit is located above the water table and no groundwater was observed entering the pit.

# 3.4.8 Howard Avenue Plant Pump Pit

The HAP Transfer Pit (Pit No. 17) is constructed of concrete and receives used cooling water from the Bosh Tank (reheat furnace charger cooling tank). The Bosh Tank water is supplied from the Willowbrook Pond, overflows to the HAP Transfer Pit which is pumped to the Willowbrook Pond, via pumps in the pit itself. The pit is approximately 5 feet wide, 10 feet long and 25 feet deep (Appendix J, Figure J-10a and J-10b).

Date: Page: 10/22/98 13 of 19

The bottom and sides of the pit are heavily coated with an oily residue. No cracks were visible in the walls or floor of the pit. Water was observed leaking into the pit along a pipe inlet in the bottom of the pit.

# 3.4.9 Medart Straightener Pits

There are 5 medart straightener pits (Pit No. 23) located in BFS; each specific to a medart. Each is constructed of concrete. Each of the pits is located above the ground water table and without pipe intrusions. The pits serve as coolant reservoirs, containing a water soluble coolant and tramp oil. The bottom and sides of the pits were heavily coated with oily residue. There were no apparent cracks in any of the pits and no groundwater was observed entering any of the pits.

# 3.4.10 Clarifier Pit

The Clarifier Pit (Pit No. 26) is part of the facility's WWTP. The pit is approximately 25 feet wide, 25 feet long, and 17 feet deep. A sludge pocket (sump) is located in the center of the clarifier. The walls and floor of the clarifier are covered with a tar-like coating.

The configuration of the Clarifier Pit is that of a square bottom pit with the four corners rounded and tapered with a concrete filler. His leaves the bottom of the pit with a circular floor, allowing the rotating Clarifier rake to squeegee the sludge on the bottom of the pit, keeping it from solidifying. During construction, the pit was formed with a square bottom. Next the bottom corners were filled with concrete to shape the bottom of the pit like a flat bottom cone. It was at the seem between the filling and the actual pit wall that dampness was observed. The dampness was most likely effluent that was trapped between the concrete filling and the pit walls.

Groundwater was observed to be weeping from a small crack in the floor. The groundwater was present as dampness and no actual flow of water was observed. Also, a separation of approximately 0.125-inch was observed within a concrete joint in the east wall. However, no groundwater was observed flowing through the separation. The crack and joint separation are demarcated on the clarifier drawings presented in Appendix J (Figures J-11a and J-11b).

The pit is lined with a tar-like coating which is peeling and chipping away from the concrete walls and floor. Some weeping of liquid at the southwest corner of the clarifier was noted which appears to be attributed to liquid draining from the void/crack between the clarifier walls and grout chamfered corners.

Date: Page: 10/22/98 14 of 19

The walls could not be visually inspected entirely due to solids adhering to the sides of the clarifier. Groundwater did not appear to be entering the pit through the walls. In addition, the sludge pocket could not be inspected due to the accumulation of precipitation that occurred during the night before the inspection. The water within the sludge pocket remained at a constant level during the inspection and indicates no groundwater is entering from significant cracks in the sludge pocket.

# 3.4.11 Spent Thickener Pit

The Spent Thickener (sludge) Pit (Pit No. 27) is part of the facility's WWTP. The pit is approximately 25 feet wide, 25 feet long, and 17 feet deep (Appendix J, Figures J-12a and J-12b). A sludge pocket (sump) is located in the center of the pit. The walls and floor of the pit are covered with a tar-like liner.

Several "hairline" cracks were observed throughout the floor during the inspection. However, no groundwater appeared to be entering through the cracks. Some weeping of liquid from the corners of the pit was observed and appeared to be attributed to liquid draining from the void/crack between the pit walls and grout chamfered corners.

Due to solids adhering to the sides of the pit, the walls could not be visually inspected entirely. However, groundwater did not appear to be flowing through walls. In addition, the sludge pocket could not be visually inspected due to the accumulation of precipitation that occurred during the night before the inspection. The water within the sludge pocket remained at a constant level during the inspection and indicates that no significant cracks are present.

# 3.4.12 <u>Serpentine Outfall</u>

The Serpentine Outfall (Pit No. 29) is a concrete trough system which is used to transfer the facility's WWTP effluent to the City of Dunkirk's POTW sewer line (Appendix J, Figures J-13a and J-13b). The outfall is comprised of two concrete troughs covered by a grate. The troughs are situated perpendicular to each other and are connected by a 10-inch diameter pipe. The effluent from the WWTP enters the first trough and flows over a weir. The first trough is approximately 3 feet wide, 22 feet long, and 5.5 feet deep. The effluent enters the second trough via a 10-inch diameter pipe. The second trough is approximately 3 feet in width, 20 feet in length, and 5.5 feet in depth. In the second trough, the effluent flow is induced into a serpentine motion created by baffles constructed of acid brick. The concrete walls and floor of this trough are covered with a protective

3.0

Date: Page: 10/22/98 15 of 19

coating. The effluent exits the second trough via a 10-inch diameter pipe which discharges to the

POTW.

No cracks were observed in the walls or floors of either trough. Portions of the concrete

floor of the first trough have begun to spall and portions of the protective coating of the second

trough are beginning to chip and peel away from the concrete at pipe penetration locations. Also,

several voids between the concrete walls and the pipe collars were noted at both troughs.

Based on the inspection, it appears that the integrity of the seals between the trough walls

and penetrating pipes were in poor condition.

3.5 Process Sewer Identification

Historic and current process sewer lines at the facility were evaluated during the Phase I

RFI. This activity included the identification of the locations and uses of the process sewer lines

for the following operations.

• LAP pickling effluent (historic)

• BFS pickling effluent (current)

• BRP pickling effluent (historic)

• metallurgical laboratory discharge (current)

• shark pit effluent (current)

• Willowbrook Pond recirculating cooling water (current)

The approximate locations of the process sewer lines are shown in Figure 3-6.

Descriptions of the piping and their operation are presented in the following sections.

3.5.1 Lucas Avenue Plant Pickling Effluent

The LAP, located within the northern portion of the facility, includes two historic

pickling operation areas: LAP West and LAP East. The rate of effluent flow from these

operations varied depending on the volume of pickling performed and operation schedules.

There is no available information regarding integrity testing of the effluent pipelines.

The original LAP West pickling operations were conducted from 1921 to 1974. During

this period, the system consisted of an integral neutralization system with subsequent discharge

to the City of Dunkirk POTW sanitary sewer. The effluent was comprised of neutralized waste

sulfuric, nitric, and nitric/hydrofluoric pickle liquor baths as well as acidic and caustic rinse

**ESC** 

Date:

10/22/98 16 of 19

Page:

water. The LAP west effluent was no longer neutralized at the Pickle House after the new spent pickle liquor transfer lines were installed. The effluent was comprised of spent sulfuric, nitric, nitric/hydrofluoric pickle liquor baths as well as acidic and caustic rinse waters. The effluent piping consisted of 6-inch diameter clay tile piping.

From 1974 until the operation was idled in 1989, the LAP West pickling effluent was rerouted to the facility's WWTP via two 4-inch diameter polyethylene pipes. The effluent continued to be comprised of neutralized waste sulfuric and nitric acid bath solutions. The nitric acid line discharged to the "octopus" manhole and the sulfuric acid line discharged to the waste sulfuric acid sump (Figure 3-6).

Similar operations were conducted at the LAP East pickle facility, which was operated from 1935 to 1972. Neutralized sulfuric and nitric acid bath solutions from this operation were conveyed and discharged to the City of Dunkirk POTW sanitary sewer system via 4-inch, 6-inch, and 8-inch clay tile pipes. Because this operation was idled in 1972, the effluent was never rerouted to the facility's WWTP.

# 3.5.2 Bar Finishing and Storage Pickling Effluent

The BFS plant is located within the central portion of the facility property; the BFS Pickle House is situated in the northeast section of the BFS building. Operations have been going on since 1969. Before February 1997, the effluent from the BFS pickling operation was conveyed to the WWTP via three 4-inch polyethylene (PE) lines. In February 1997, the rinsewater line was taken out of service. The following shows the transfer of wastes from the BFS Pickle House to the WWTP before and after February 1997:

# Before February 1997

- 4-inch PE line, conveying rinsewater, comprised of acidic and caustic rinse waters and spent oxylic coat and degrease baths, from the BFS Pickle House to the "octopus."
- 4-inch PE line, conveying spent nitric/CLEANOX, comprised of spent nitric and sulfuric/hydrofluoric pickle liquor from the BFS Pickle House to the "octopus."
- 4-inch PE line, conveying spent sulfuric pickle liquor from the Pickle House to the "octopus."

Section:

3.0 Revision: 0

Date: Page:

10/22/98 17 of 19

# After February 1997

• 4-inch PE line, conveying spent nitric, sulfuric/hydrofluoric pickle liquor, acidic and caustic rinse waters, and spent oxylic coat and degrease baths from the BFS Pickle House to the "octopus."

• 4-inch PE line, conveying spent sulfuric pickle liquor from the Pickle House to the WWTP spent sulfuric pit.

The "octopus" flows via a 12-inch PE line to the WWTP grit chamber and, subsequently, to the WWTP spent acid pit.

Flow rates for the effluent vary depending on the volume of pickling and the operations schedule. There is no information available regarding integrity testing of each of the in-service lines.

# 3.5.3 Brigham Road Plant Pickling Effluent

The BRP is located within the southwestern portion of the site. The BRP Pickle House, which operated from 1942 to 1992, was situated in the southeast section of the BRP. The pickling effluent flow rates varied depending on the volume of pickling and operations schedule. There is no information available regarding integrity testing of the effluent conveyance system.

Historically, the effluent system consisted of an integral neutralization system, with subsequent discharged to the City of Dunkirk's POTW sanitary sewer.

In 1974, a 6" polyethylene spent pickle liquor transfer line from the BRP Pickle House to the WTP "octopus" was installed. Prior to 1974, the effluent from the BRP pickling operation was neutralized at the BRP Neutralization Building and sent to the city sanitary sewer system. At that time, the BRP Pickle House effluent consisted of neutralized spent sulfuric, nitric, nitric/hydrofluoric pickle liquor baths as well as acidic and caustic rinse waters.

Following the 1974 installation of the 6" polyethylene, the effluent from the BRP Pickle House consisted of spent sulfuric, nitric, nitric/hydrofluoric pickle liquor baths as well as acidic and caustic rinse waters. The waste stream was transferred directly to the WTP for treatment prior to discharge to the city sanitary sewer.

3.0

Date: Page: 10/22/98 18 of 19

# 3.5.4 <u>Metallurgical Laboratory Discharge</u>

The metallurgical laboratory is located north of BFS. Acid etching of finished products has been performed for quality control purposes at this location since approximately 1960. The acid baths are discharged from a batch process via 4-inch diameter PE and PVC pipe to the rinse water pit adjacent to the BFS Pickle House and then, via a 4-inch diameter PE pipe, to the octopus and grit chamber. The discharge is intermittent and flow rates vary depending on the etching operation schedule. There is no information available regarding integrity testing of the pipeline.

#### 3.5.5 Shark Pit Effluent

The Shark Pit is located within the BRP and collects contact cooling water from the Bar and Rod Mill. The Shark Pit effluent discharges to Willowbrook Pond. Flow rates vary depending on the operation of the Bar and Rod Mill. There is no information available regarding integrity testing of the effluent lines.

#### 3.5.6 Willowbrook Pond Recirculating Cooling Water

Willowbrook Pond is an onsite surface impoundment which recirculates contact and non-contact cooling water and stream condensate from various operations throughout the facility. The pond has been in use since 1952. The overflow from the pond is discharged to the City of Dunkirk's POTW.

Willowbrook Pond collects cooling water from five separate sewer mains. Discharges to the pond include contact and non-contact cooling water, steam condensate, and limited stormwater runoff. The sources of cooling water include the Olson Anneal quench tank, Shark Pits, the BRP and HAP milling and rolling operations, and the HAP charger boom cooling bosh. Waters from the HAP mill and bosh return to Willowbrook Pond via the oil water separators. BRP quench water also recirculates to and from the Willowbrook Pond. Constituents of concern include mill scale (heavy metals), oil, and grease.

Complete data pertaining to pipe sizes and material of construction is not readily available. The discharge to the pond is intermittent and flow rates vary depending on the operation schedule. There is no information available regarding integrity testing of the pipelines associated with this operation.

Section:

3.0

Revision: Date:

10/22/98

Page:

19 of 19

# 3.5.7 Outfall Monitoring Data

Three outfalls (5a, 5b, and 7) discharge from the AL Tech facility to the City of Dunkirk's POTW (Figure 3-6). These discharges include:

- the facility's WWTP (5a)
- non-contact cooling tower water (5b)
- Willowbrook Pond (7)

All discharges are transferred to the City of Dunkirk POTW for ultimate treatment. Recent monitoring data for these outfalls are presented in Appendix K.

# 3.5.8 Spill Reports

Recent spill reports associated with the process sewers have been included as Appendix L. A list of the reported spills are listed below.

- September 1982 Overflow of manhole at the LAP (west??), approximately 20 gallons of caustic quench.
- January 1996 Overflow of manhole at the south side of HAP, approximately 100 gallons.
- February 1986 Broken spent pickle liquor at BRP, approximately 50 gallons.
- May 1992 Blockage in spent pickle liquor line caused rupture at coupling in a manhole and caused a release of an undetermined amount to a stormwater ditch.
- January 1995 Cracked polyethylene line (BFS plant), approximately 50 gallons of spent sulfuric acid.
- August 1996 Overflow of temporary holding tank north of the BFS, approximately 50 gallons of 10 % sulfuric and 2% hydrofluoric acid wastewater.
- January and February 1997 Ruptured underground pickle rinse water line (BFS), approximately 100 gallons.
- March 1997 Valve malfunction associated with the grit chamber, approximately 1,500 gallons of pickle liquor.

The spill reports (associated with the process sewers) were made available by AL Tech from 1979 to the present.

Table 3-1

#### Geotechnical Testing Summary Phase I RFI AL Tech Specialty Steel Corporation

# Dunkirk, New York Facility

|               |                  |             | USCS                              |                                         |          |       |       | Percent  |
|---------------|------------------|-------------|-----------------------------------|-----------------------------------------|----------|-------|-------|----------|
| Sample        | Sample           |             | Classification/                   | *************************************** | USDA Gra |       |       | Finer    |
| Location      | Interval         | Sample I.D. | Description (a)                   | Gravel                                  | Sand     | Silt  | Clay  | #200 (b) |
| Transforme    | r Areas          |             |                                   |                                         |          |       |       |          |
| T1            | 0 - 3 in-bgs (c) | T1-01-03    | gp                                |                                         |          |       |       |          |
|               |                  |             | Poorly graded gravel              | NA (d)                                  | NA       | NA    | NA    | 0.2      |
| Ground Sur    | face Locations   |             |                                   |                                         |          |       |       |          |
| GS-05         | 0 - 3 in-bgs     | GS-05-03    | gc<br>Clayey gravel               | 72.1                                    | 10.58    | 12.41 | 4.9   | 18.6     |
|               |                  |             | Clayey graver                     |                                         |          |       |       |          |
| Soil Boring l |                  |             |                                   |                                         |          |       |       |          |
| RB-07         | 0 - 3 in-bgs     | RB-07-03    | яс                                | 59.23                                   | 26.85    | 11.59 | 2.33  | 15.7     |
|               |                  |             | Clayey gravel with sand           |                                         |          |       |       |          |
| Monitoring '  | Well Locations   |             |                                   |                                         |          |       |       |          |
| RFI-03        | 0 - 3 in-bgs     | RFI-03-03   | gp-gc                             | 60.39                                   | 29.72    | 7.81  | 2.07  | 11.4     |
|               |                  |             | Poorly graded gravel with         |                                         |          |       |       |          |
|               |                  |             | clay and sand                     |                                         |          |       |       |          |
| RFI-05        | 6.5 - 6.9 ft-bgs | RFI-05-0674 | ml                                | 0.77                                    | 9.16     | 77.9  | 12.16 | 94.8     |
|               |                  |             | Silty, clayey sand with gravel    |                                         |          |       |       |          |
| RFI-10        | 4 - 6 ft-bgs     | RFI-10-0406 | sc                                | 17.84                                   | 37.88    | 32.01 | 12.27 | 48.2     |
|               | _                |             | Clayey sand                       |                                         |          |       |       |          |
| RFI-12        | 0 - 3 in-bgs     | RFI-12-03   | gp-gc                             | 78.01                                   | 17.44    | 3.71  | 0.83  | 5.7      |
|               | Č                |             | Poorly graded gravel with         |                                         |          |       |       |          |
|               |                  |             | clay and sand                     |                                         |          |       |       |          |
| RFI-13        | 0 - 3 in-bgs     | RFI-13-03   | gc                                | 55.04                                   | 31.77    | 11    | 2.18  | 15.1     |
|               |                  |             | Clayey gravel with sand           |                                         |          |       |       |          |
| RFI-14        | 0 - 3 in-bgs     | RFI-14-03   | sc                                | 5.63                                    | 75.88    | 14.47 | 4.02  | 22.5     |
|               |                  |             | Clayey sand                       |                                         |          |       |       |          |
| RFI-15        | 0 - 3 in-bgs     | RFI-15-03   | sc                                | 23.05                                   | 35.56    | 30    | 11.4  | 45.5     |
|               |                  |             | Clayey sand                       |                                         |          |       |       |          |
| Test Pit Loc  | ations           |             |                                   |                                         |          |       |       |          |
| TP-01         | 5 - 6 ft-bgs     | TP-01-0506  | cl                                | 12.02                                   | 25.96    | 48.26 | 13.75 | 67.5     |
|               | 0.001            | TD 01 0000  | Sandy lean clay                   | 22.02                                   | 10.21    | 42.02 | 22.82 | 60.1     |
| TP-01         | 8 - 9 ft-bgs     | TP-01-0809  | cl<br>Gravelly lean clay          | 23.93                                   | 10.21    | 43.03 | 22.82 | 69.4     |
| TP-02         | 0 - 3 in-bgs     | TP-02-03    | sc cravery real clay              | 14.91                                   | 63.21    | 20.91 | 0.96  | 30.7     |
| 11-02         | 0 - 5 m-0g3      | 11 02 05    | Clayey sand                       | 14.24                                   | 00.21    | ***** | •., • |          |
| TP-02         | 5 - 6 ft-bgs     | TP-02-0506  | cl                                | 0.54                                    | 9.61     | 83.54 | 6.3   | 97.4     |
|               |                  |             | Lean clay                         |                                         |          |       |       |          |
| TP-03         | 1 - 2 ft-bgs     | TP-03-0102  | sc                                | 38.29                                   | 29.5     | 25.12 | 7.08  | 35.7     |
| TD 04         | 0.061            | TD 04 0000  | Clayey sand with gravel           | 25.69                                   | 28.10    | 34.03 | 12.1  | 50.2     |
| TP-04         | 8 - 9 ft-bgs     | TP-04-0809  | cl<br>Sandy lean clay with gravel | 25.68                                   | 28.19    | 34.03 | 14.1  | 30,2     |
| TP-05         | 3 - 4 ft-bgs     | TP-05-0304  | cl                                | 31.56                                   | 21.23    | 33.49 | 13.73 | 51       |
|               |                  |             | Sandy lean clay with gravel       |                                         |          |       |       |          |
| TP-11         | 0 - 3 in-bgs     | TP-11-03    | sc                                | 51.51                                   | 36.07    | 10    | 2.42  | 16       |
|               |                  |             | Clayey sand with gravel           |                                         |          |       |       |          |
|               |                  |             |                                   |                                         |          |       |       |          |

a/ USCS = Unified Soils Classification System; USDA = United States Department of Agriculture.

b/ Percent of soil passing the =200 sieve.

c/ in-bgs = inches below ground surface; ft-bgs = feet below ground surface.

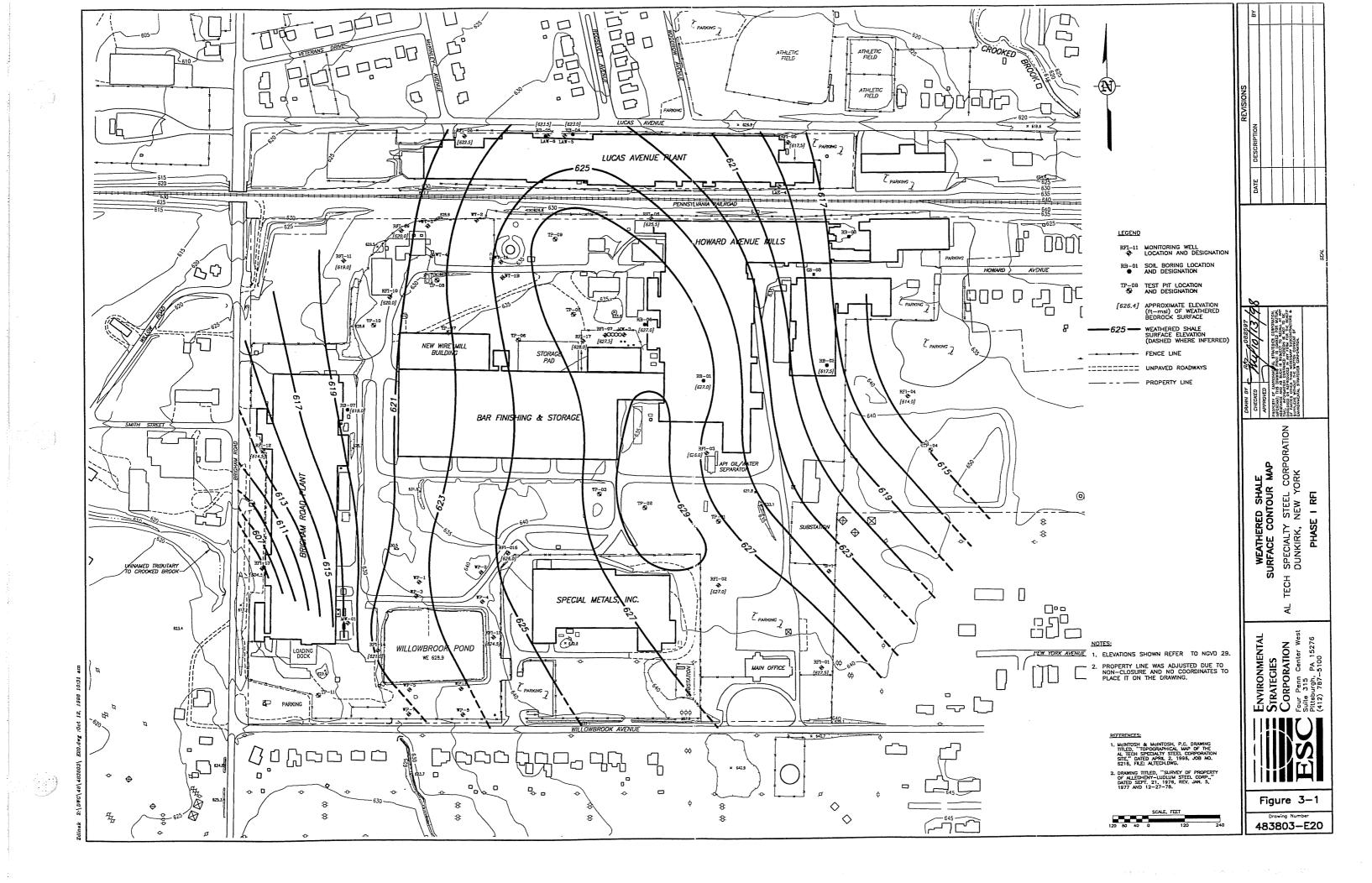
d/ NA = not applicable; sample did not contain sufficient fines for performance of a hydrometer test.

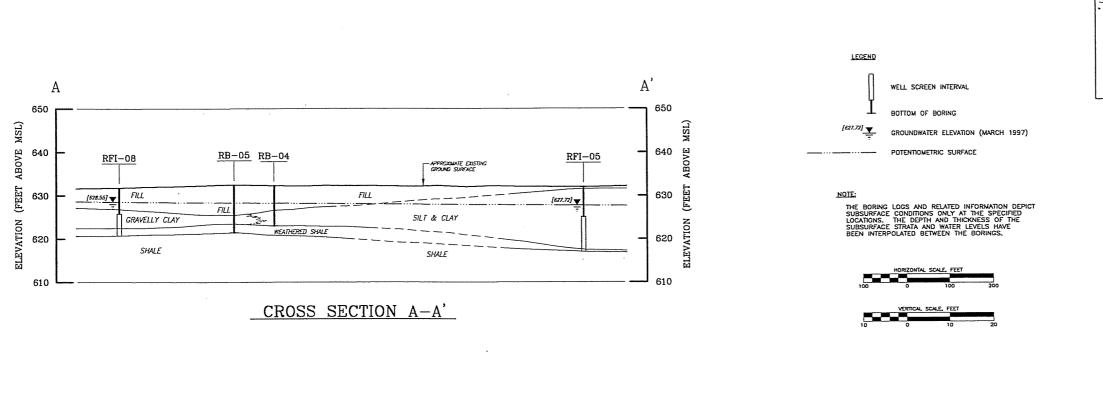
Table 3-2 Groundwater Elevation Summary Phase I RFI

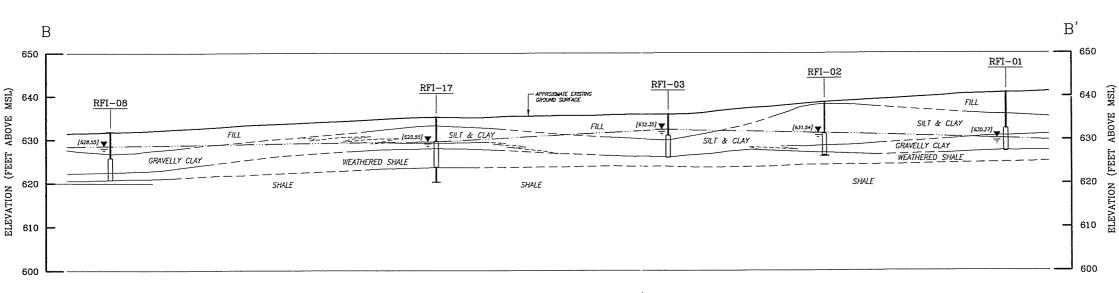
AL Tech Specialty Steel Corporation Dunkirk, New York Facility

|                  | Top-of-Casing | Novembe    | er 18, 1996 | Decemb     | er 6, 1996  | March      | 26, 1997    | May        | 8, 1997     |
|------------------|---------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|
|                  | Elevation     | Depth to   | Groundwater |
| Well No.         | (ft-msl) (a)  | Water (ft) | Elevation   |
| RFI Monitoring   | Wells         |            |             |            |             |            |             |            |             |
| RFI-01           | 640.72        | 9 90       | 630 82      | 10.23      | 630 49      | 10.45      | 630,27      | 10.23      | 630.49      |
| RFI-02           | 638 54        | 6 18       | 632 36      | 6.50       | 632.04      | 7.00       | 631 54      | 6.77       | 631 77      |
| RF1-03           | 635 87        | 3 30       | 632.57      | 3.70       | 632.17      | 3.52       | 632 35      | 3.54       | 632.33      |
| RFI-04           | 638 48        | 5.04       | 633 44      | 4.90       | 633.58      | 5.30       | 633.18      | 5.15       | 633.33      |
| RFI-05           | 634 26        | 5.00       | 629.26      | 6.37       | 627.89      | 6.54       | 627.72      | 6.08       | 628.18      |
| RFI-06           | 633 87        | 7 96       | 625.91      | 6.45       | 627.42      | 6.89       | 626.98      | 6.69       | 627.18      |
| RFI-07           | 635 12        | 4.00       | 631 12      | 4.80       | 630.32      | 4.75       | 630.37      | 4.68       | 630 44      |
| RF1-08           | 631 50        | 2.27       | 629.23      | 2.92       | 628.58      | 2.95       | 628.55      | 2.89       | 628.61      |
| RF1-09           | 632 22        | 2.43       | 629.79      | 3.80       | 628.42      | 4,30       | 627.92      | 3.81       | 628.41      |
| RFI-10           | 632 16        | 2.75       | 629.41      | 3.05       | 629 11      | 3.59       | 628.57      | 3,37       | 628.79      |
| RFI-11           | 632 65        | 3.70       | 628 95      | 4.35       | 628.30      | 5.18       | 627.47      | 4.81       | 627.84      |
| RFI-12           | 630.30        | 7.48       | 622.82      | 8.75       | 621.55      | 8.70       | 621.60      | 8.15       | 622.15      |
| RFI-13           | 622 19        | 6.95       | 615 24      | 7.16       | 615.03      | 7.63       | 614.56      | 7.37       | 614.82      |
| RFI-14           | 633 11        | 3 95       | 629 16      | 4.41       | 628.70      | 4.67       | 628.44      | 5.15       | 627.96      |
| RFI-15           | 642 09        | 11 00      | 631.09      | 11.20      | 630.89      | 11 15      | 630.94      | 10.87      | 631.22      |
| RFI-16           | 641 13        | 6.92       | 634.21      | 7.30       | 633.83      | 7.53       | 633.60      | 7.10       | 634.03      |
| RFI-17           | 637 39        | 7 41       | 629.98      | 7.85       | 629.54      | 7.84       | 629.55      | 7.78       | 629.61      |
| Existing Monitor | ring Wells    |            |             |            |             |            |             |            |             |
| B-1              | 638.54        | 2.70       | 635.84      | 2.90       | 635.64      | 3.34       | 635.20      | 2.96       | 635.58      |
| WP-1             | 639 51        | 8.76       | 630.75      | 8.89       | 630.62      | 8.00       | 631 51      | 7.47       | 632.04      |
| WP-2             | 643 61        | 9 40       | 634.21      | 9.80       | 633.81      | 9.97       | 633.64      | 9.54       | 634.07      |
| WP-3             | 637 11        | 7.73       | 629.38      | 7.85       | 629.26      | 7.95       | 629 16      | 7.93       | 629.18      |
| WP-4             | 641.90        | 9.60       | 632.30      | 9.75       | 632.15      | 10.15      | 631 75      | 10.01      | 631,89      |
| WP-5             | 635 69        | 10.86      | 624 83      | 11.19      | 624.50      | 11.34      | 624 35      | 11.15      | 624,54      |
| WP-6             | 638.22        | 8.95       | 629.27      | 9.17       | 629.05      | 9.10       | 629.12      | 9.09       | 629 13      |
| WP-7             | 635.11        | 10.67      | 624 44      | 11.06      | 624.05      | 11.21      | 623 90      | 11.01      | 624,10      |
| WP-8             | 638.75        | 11.33      | 627.42      | 11.68      | 627.07      | 11.65      | 627 10      | 11.60      | 627 15      |
| MW-1             | 629.38        | 5 22       | 624.16      | 5.45       | 623.93      | 6.10       | 623 28      | 5.90       | 623,48      |
| MW-3             | 635.17        | 2.70       | 632.47      | 3.05       | 632.12      | 3.59       | 631.58      | - (b)      | _           |
| WT-1A            | 635.62        | 3.62       | 632.00      | 4.80       | 630.82      | 5.07       | 630.55      | 5.06       | 630.56      |
| WT-1B            | 634 60        | 3 67       | 630.93      | 3.20       | 631.40      | 3.65       | 630.95      | 3.52       | 631.08      |
| WT-2             | 632 35        | 3.21       | 629.14      | 8.08       | 624.27      | 2.96       | 629.39      | 3.86       | 628.49      |
| WT-3             | 631 35        | 2.27       | 629.08      | 3.00       | 628,35      | 3.40       | 627.95      | 3.22       | 628.13      |
| WT-4             | 630.18        | 0.95       | 629.23      | 1 66       | 628.52      | 2.05       | 628.13      | 1.99       | 628.19      |
| LAE-4            | 632 28        | 3 19       | 629.09      | 3 80       | 628.48      | 3.94       | 628 34      | 3.77       | 628 51      |
| LAW-5            | 632.44        | 9.12       | 623.32      | 9.20       | 623.24      | 9.55       | 622.89      | 9.63       | 622.81      |
| LAW-6            | 632 31        | 5 21       | 627.10      | 5.85       | 626.46      | 6.05       | 626.26      | 6.26       | 626.05      |

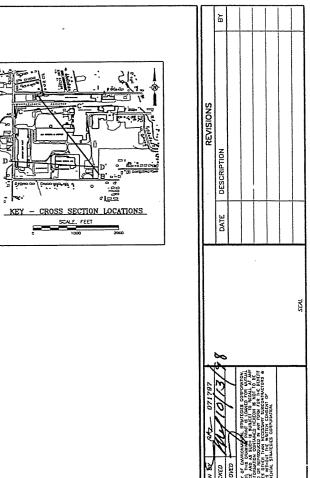
a/ ft-msl = feet above mean sea level, all elevations are in ft-msl ft = feet, measurements taken from surveyed top-of-casing b/ "-" indictes measurement not collected


altech/4838030/pir00065.xls


Table 3-3


In Situ Hydraulic Conductivity Test Results
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

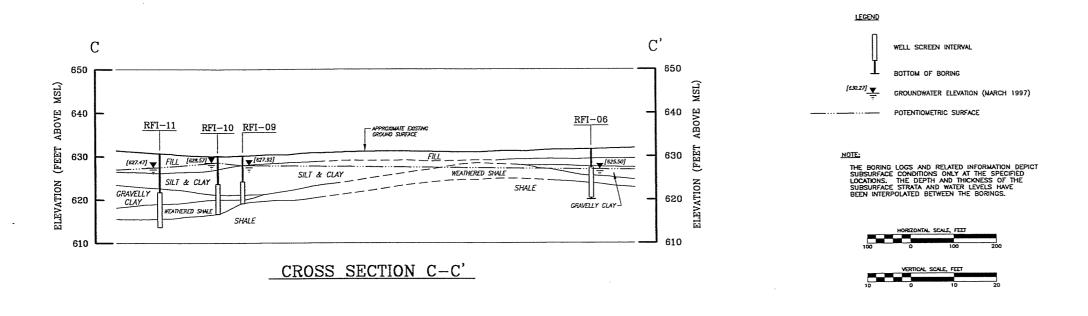
|          |          | Water<br>Column | Saturated<br>Thickness | Initial<br>Drawdown | Screen<br>Length | Casing<br>Radius | Effective<br>Radius | Transmissivity |             | Hydraulic Conductivity<br>(K) | Conductivity (K) |
|----------|----------|-----------------|------------------------|---------------------|------------------|------------------|---------------------|----------------|-------------|-------------------------------|------------------|
| Well No. | Test (a) | (ft) (b)        | (ft)                   | (ft)                | (ft)             | (ft)             | (tj)                | (ft²/min)      | Storativity | (ft/day)                      | (ft/year)        |
| RF1-03   | RH       | 6.31            | 4.0                    | 1.98                | 5                | 0.08             | 0.875               | 2.30E-02       | 1E-04       | 8.26                          | 3015.63          |
|          | Ξ        | 6.31            | 4.0                    | 1.60                | 5                | 0.08             | 0.875               | 1.57E-02       | 1E-04       | 5.65                          | 2061.67          |
| RF1-04   | RH       | 22.0            | 0.9                    | 1.48                | 10               | 0.08             | 0.875               | 4.66E-02       | 1E-04       | 11.19                         | 4083.91          |
|          | Ξ        | 22.0            | 0.9                    | 1.55                | 01               | 0.08             | 0.875               | 3.44E-02       | 1E-04       | 8.26                          | 3015.19          |
| RF1-05   | RH       | 11.17           | 2.5                    | 1.55                | ∞                | 0.08             | 0.875               | 4.48E-04       | 1E-04       | 0.26                          | 94.21            |
|          | E        | 11.17           | 2.5                    | 1.80                | 8                | 0.08             | 0.875               | 3.63E-03       | 1E-04       | 2.09                          | 762.96           |
| RF1-06   | RH       | 6.84            | 2.0                    | 1.36                | 7                | 0.08             | 0.875               | 9.99E-03       | 1E-04       | 7.19                          | 2625.11          |
|          | Ξ        | 6.84            | 2.0                    | 1.50                | 7                | 0.08             | 0.875               | 1.01E-04       | 1E-04       | 0.07                          | 26.44            |
| RFI-10   | R        | 12.24           | 1.5                    | 1.41                | &                | 0.08             | 0.875               | 5.53E-04       | 1E-04       | 0.53                          | 193.84           |
|          | Ξ:       | 12.24           | 1.5                    | 1.81                | ∞                | 0.08             | 0.875               | 9.06E-04       | 1E-04       | 0.87                          | 317.36           |
| RFI-14   | RH       | 11.13           | 2.0                    | 1.71                | 7                | 0.08             | 0.875               | 7.50E-05       | 1E-04       | 0.05                          | 19.71            |
|          | FII      | 11.13           | 2.0                    | 1.77                | 7                | 0.08             | 0.875               | 6.28E-03       | 1E-04       | 4.52                          | 1649.07          |
| RF1-17   | RIH      | 5.91            | 3.5                    | 1.30                | Š                | 0.08             | 0.875               | 1.17E-04       | 1E-04       | 0.05                          | 17.49            |
|          | FH       | 5.91            | 3.5                    | 1.48                | S                | 0.08             | 0.875               | 3.24E-04       | 1E-04       | 0.13                          | 48.58            |
|          |          |                 |                        |                     |                  |                  |                     | Average K      |             | 3.509035                      | 1280.798         |

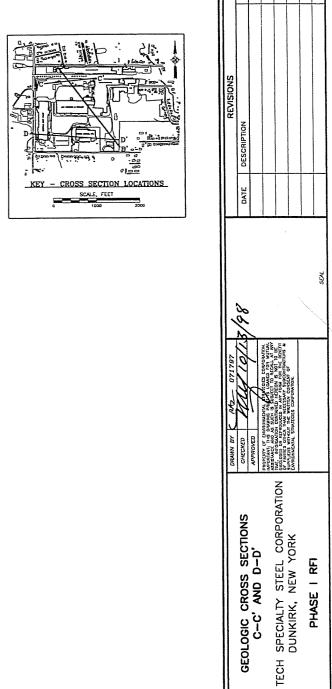

a/ RH = rising-head test; FH = falling-head test. b/ ft = feet; ft²/min = square-feet per minute; ft/min = feet per minute; ft/day = feet per day.








CROSS SECTION B-B



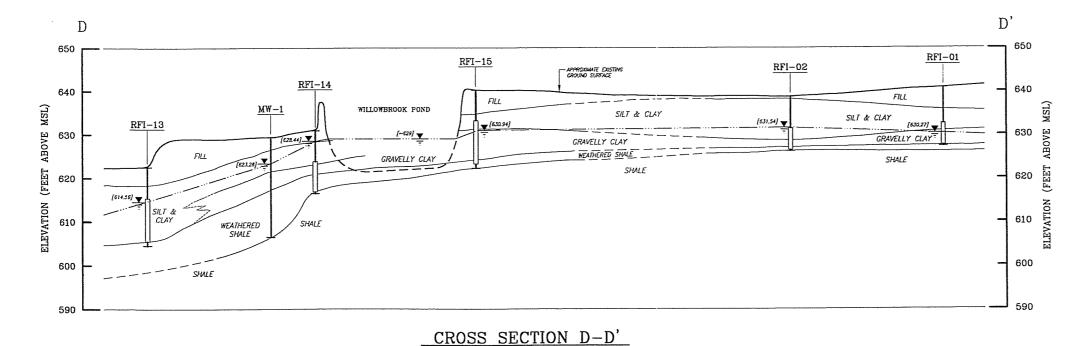


ENVIRONMENTAL
STRATECIES
CORPORATION
AL TECH SPECIALTY STEEL CORPORATION
Pittsburgh, Pa 15276
Subargh, Pa 15276

Figure 3-2

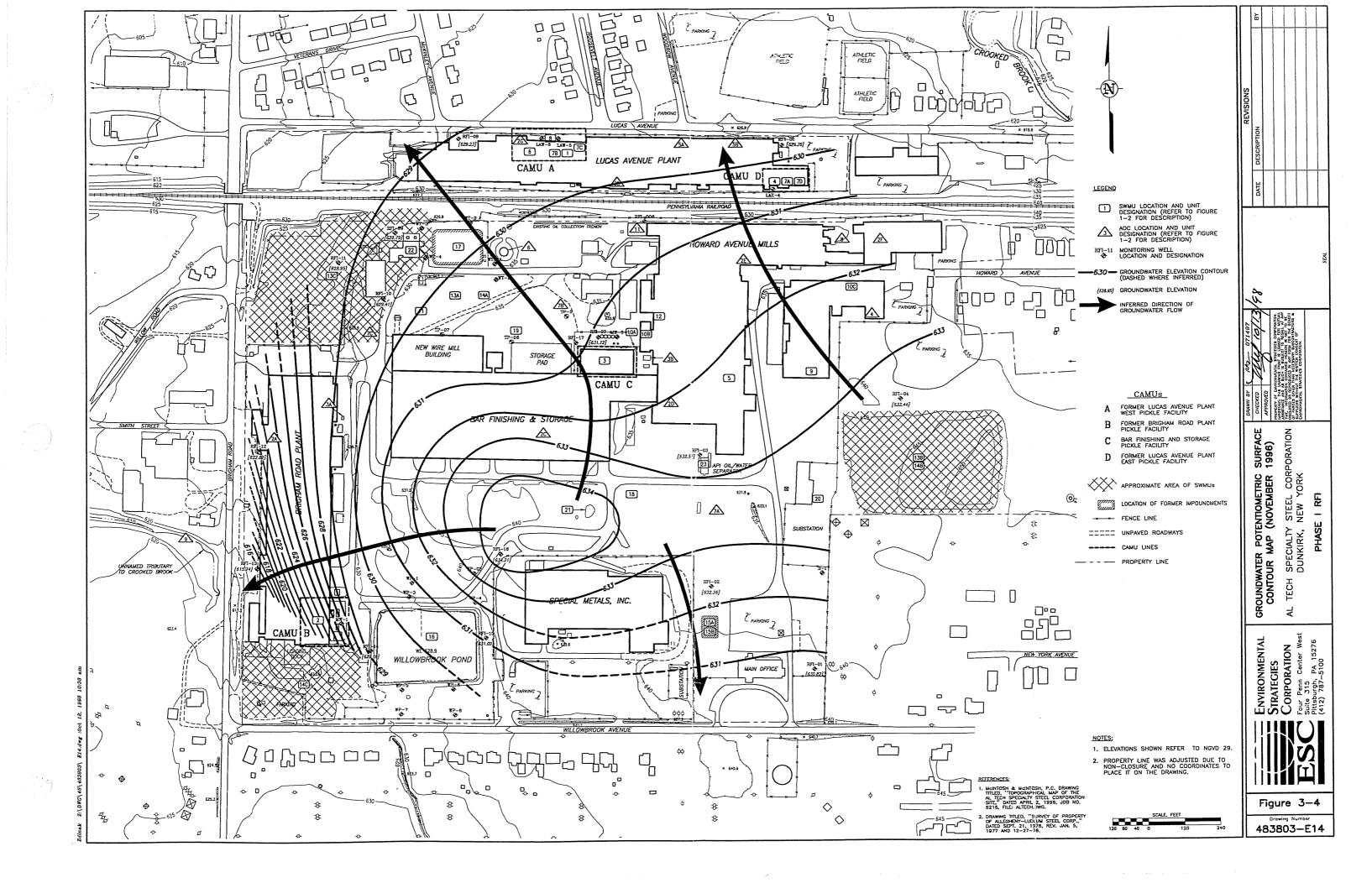
Drawing Number 483803—E17

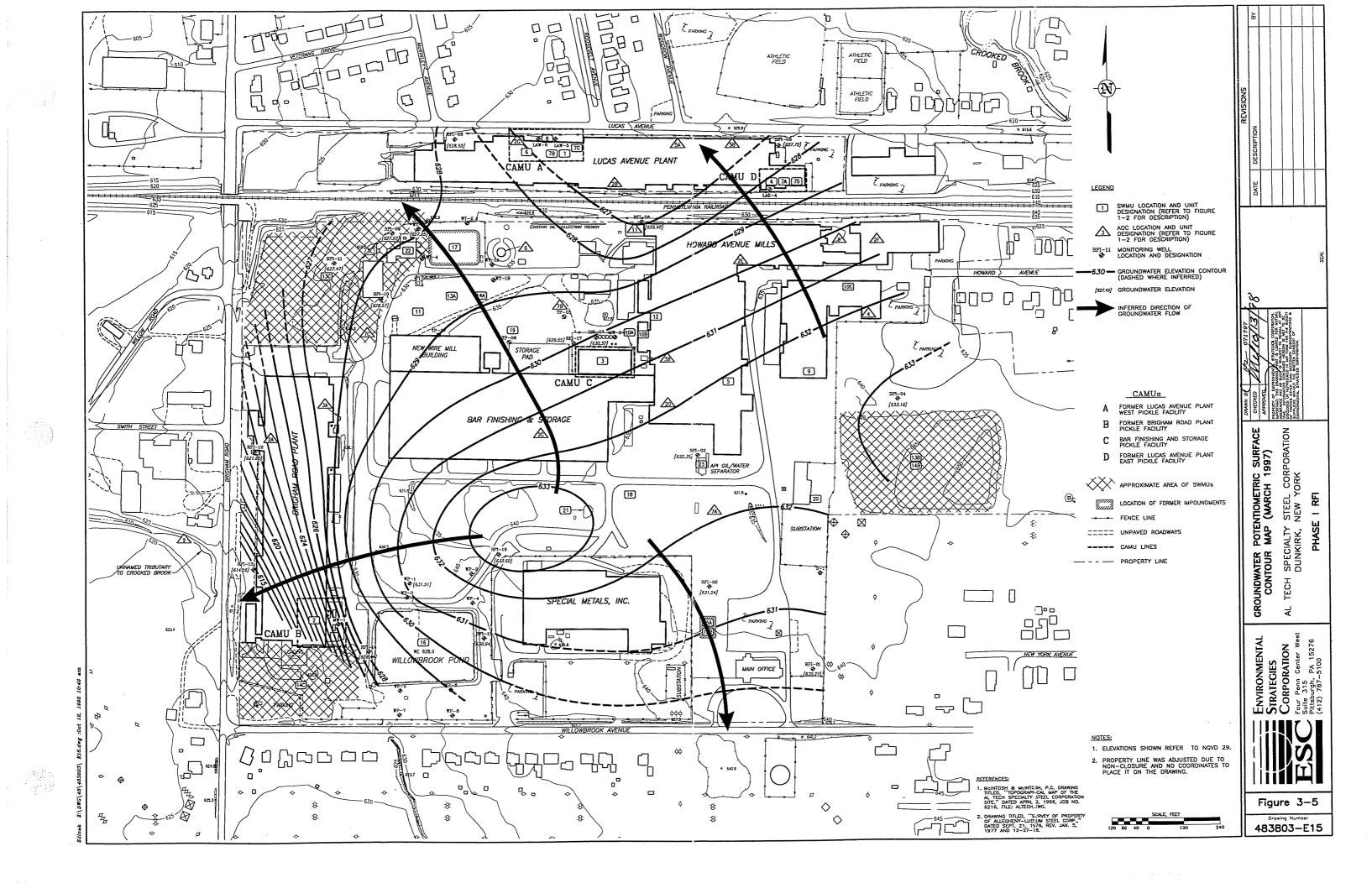


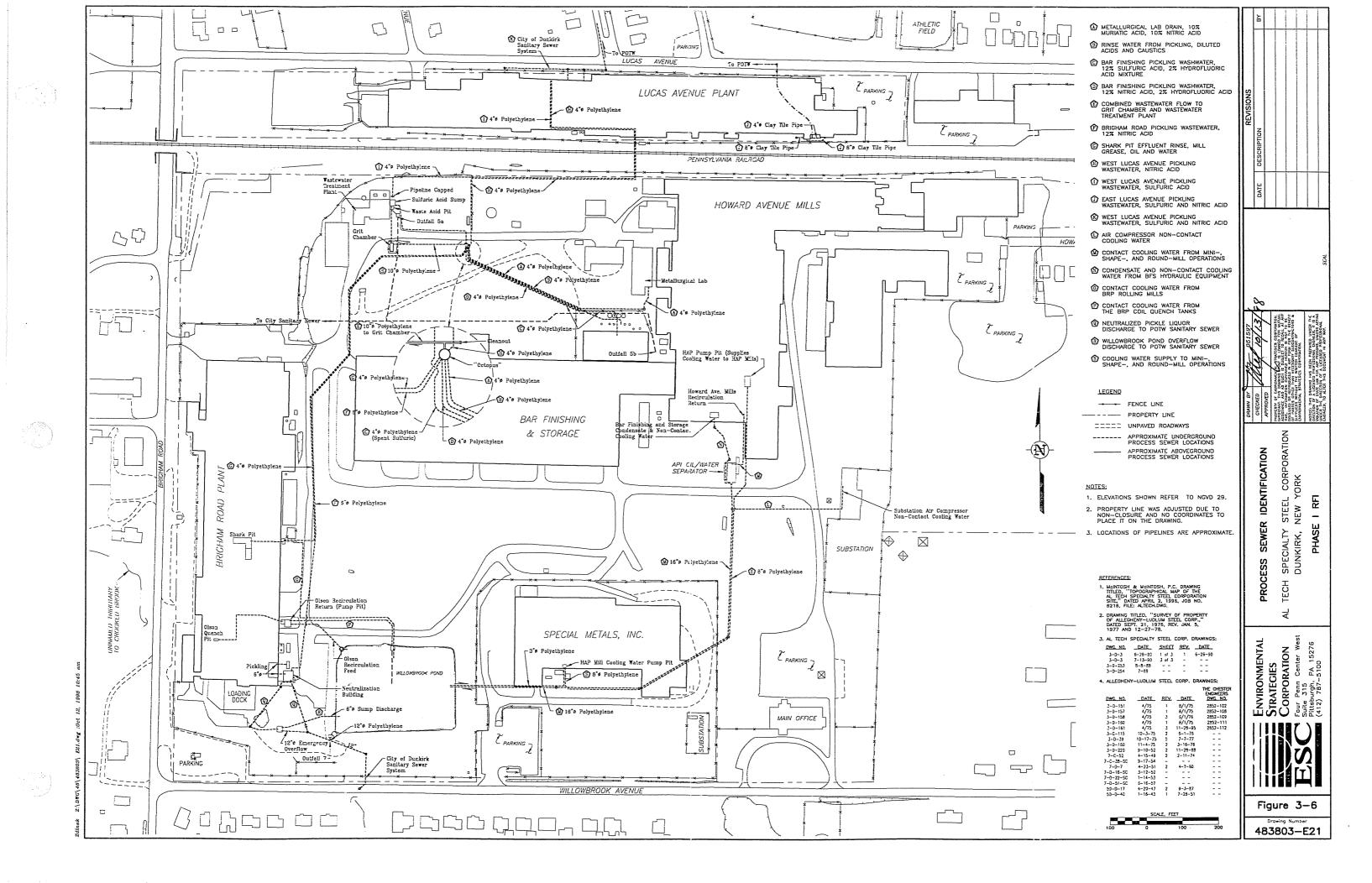




ENVIRONMENTAL
STRATEGIES
CORPORATION
Four Penn Center West


ESC


٩٢


Figure 3–3

Drawing Number 483803—E18

0.01 0001 01 4.01 -- b 844 TOBROOL ML PA







4.0

Date:

10/22/98

Page:

1 of 76

#### 4.0 **Chemical Analytical Data**

The results of laboratory analysis for site environmental media samples are discussed in the following sections, as follows:

- Section 4.1 Background Soils
- Section 4.2 Transformer Area Soils
- Section 4.3 Site Soils
- Section 4.4 Site Groundwater
- Section 4.5 Surface Water and Sediments

The analytical data, including data validation notes, are presented in Tables 4-1 through 4-14. Data validation reports for the project are presented in Appendix M.

For all analytical parameters, the text does not differentiate between concentrations reported at levels above the detection limits and those reported at levels below the detection limits (i.e., "J", "NJ", or "B" qualified data).

In most cases, the discussion of the TAL Inorganics (plus other metals) in soils is based on analytical data generated for samples which were sieved using a standard number 4 sieve. However, as discussed in Section 2.0, sample aliquots for analysis of mercury, cyanide (total and free), and hexavalent chromium were not sieved before analysis. Results of the analysis for the soil sample aliquots prepared using a standard number 400 sieve, for use in the Air Pathways Analysis, are presented in Section 6.0.

The TCL VOC and TCL SVOC tables have been abridged to reflect only those constituents which were detected in one or more of the samples, for each of the sample media. An unabridged set of data tables is presented in Appendix N.

The detection of common laboratory and field contaminants, although included in the data tables, are not discussed in the text as they are not believed to be indicative of site conditions. These contaminants include:

- TCL VOCs acetone and methylene chloride
- TCL SVOCs bis(2-ethylhexyl)phthalate, di-n-butyl phthalate, and di-n-octyl phthalate

4.0 0

Date:

10/22/98

Page:

2 of 76

Because the majority of TCL SVOCs detected in the site environmental media samples were polynuclear aromatic hydrocarbons (PAHs), the PAH constituent concentrations have been summed for presentation purposes in the text. The individual constituent concentrations are presented in the data tables. All other detected TCL SVOCs and reported concentrations are presented individually.

# 4.1 Background Soils

Surface soil samples were collected from seven background locations during implementation of the RFI. The sample locations were parallel to and approximately 260 feet south of Willowbrook Avenue (Figure 2-1). The depth from which the samples were collected was the ground surface to approximately 3 in-bgs.

Each of these soil samples was submitted for analysis of TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide), TCL SVOCs, and select miscellaneous parameters. The analytical results are presented in Table 4-1. This table also includes the calculated 95 percent upper confidence limit (95 UCL) for each of the metals and cyanide. These values represent the upper limit of concentrations anticipated to be reported for 95 percent of any background samples collected. These calculated values were used to aid in evaluating background conditions versus site conditions in the subsequent sections.

#### 4.1.1 TAL Inorganics

Two sets of samples were collected from each of the seven background locations:

- one set was not sieved and was to be used exclusively to evaluate background conditions versus site conditions
- one set was sieved with a standard 400 sieve for use in the Air Pathway Analysis.

Only the unsieved results are discussed in this section; all subsequent soil discussions are based on data generated for samples prepared using a standard number 4 sieve.

<sup>&</sup>lt;sup>1</sup> For presentation, the specific list of parameters is identified in the introductory sections for each area. Thereafter, the list is simply identified as TAL Inorganics.

Date: 10/22/98

Page:

3 of 76

4.0

0

The following metals were detected in each of the background samples:

aluminum

arsenic

barium

calcium

cadmium

cobalt

total chromium

copper

iron

potassium

magnesium

manganese

molybdenum

nickel

lead

antimony

vanadium

zinc

The following metals were detected in some of the samples as noted:

beryllium was detected in each of the background samples, excluding those for BS-02 and BS-05

silver was only detected in the sample collected from BS-01

Hexavalent chromium, mercury, sodium, selenium, thallium, and free cyanide were not detected in any of the background soil samples. The total cyanide data were rejected by the data validator. Consequently, the detection of any of these constituents in the site soil samples suggests an exceedance of background (i.e., there is no calculated 95 UCL).

In general, the data indicate similar concentrations of detected metals in the samples collected from the different background locations. The only notable difference in reported concentrations was for molybdenum. The molybdenum concentration for the soil sample collected from BS-05 was 30 milligrams per kilograms (mg/kg) (the concentration reported for the sieved sample was 3.4 mg/kg). For all other background samples the molybdenum concentrations ranged from 3 to 9.4 mg/kg.

No background soil samples were selected for TCLP extraction and analysis of the extract.

#### 4.1.2 TCL SVOCs

TCL SVOCs were detected in only one sample collected from a background location: BS-01. As shown in Table 4-1, the detected TCL SVOCs included only PAHs at a total concentration of 3,640 µg/kg.

4.0

Date:

10/22/98 4 of 76

Page:

SVOC TICs were detected in each of the background surface soil samples. The total concentrations, representing a sum of the concentrations for all TICs detected in a single sample (and as shown in Table 4-1) ranged from 1,549 to  $7,506 \mu g/kg$ .

# 4.1.3 <u>Miscellaneous Parameters</u>

Each background sample was submitted for analysis of TPH and pH. The data indicated:

- TPH was detected in each sample at concentrations of 12 to 21 mg/kg, excluding the sample collected from BS-05 in which TPH was not detected.
- the pH levels indicated slightly acidic conditions; the range was 4.74 to 5.95 standard units (s.u.).

# 4.2 Transformer Soil Sample Data

Sixteen surface soil samples (ground surface [0] to 3 in-bgs) were collected from Transformers T1, T2, and T3. The transformer locations are shown in Figures 2-1 and 2-2; specific transformer sample locations are presented in Figures A-1, A-2, and A-3 (Appendix A). Each of these samples was submitted for analysis of TCL PCBs and select miscellaneous parameters. Select samples from each area were also analyzed for TAL Inorganics (plus molybdenum). The analytical results are presented in Table 4-2.

As agreed with NYSDEC, AL Tech was to clean and collect confirmatory wipe samples at Transformers T4, T5, and T6. These activities and findings were presented in Section 2.1.1.2.

# 4.2.1 TAL Inorganics

Each of these constituents was detected in the eight transformer soil samples submitted for TAL Inorganics, except as follows:

- mercury, selenium, and thallium, which were not detected in any samples
- silver data were inconclusive: the results indicated an equal number of samples had either rejected silver results, silver was not detected, or silver was detected at similar concentrations
- total cyanide, which was detected at similar concentrations in the four samples collected from the T1 area and one of two samples collected from the T3 area (T3-03); data for the three remaining transformer samples were rejected by the data validator

10/22/98 Date:

5 of 76 Page:

Several metals were detected at similar concentrations in samples collected from different locations, including aluminum, cadmium, vanadium, and zinc. Cobalt and iron were detected at a wide range of concentrations, but no pattern in the distribution was observed. Notable differences were observed in the concentrations reported for various samples within one area, or between the three areas for these metals:

| • | arsen | 1C |
|---|-------|----|

barium

beryllium

total chromium

potassium

magnesium

- manganese
- molybdenum
- sodium
- nickel
- lead
- antimony

Two of the transformer area soil samples (from Locations T1-03 and T3-03) were selected for TCLP extraction and analysis of the extract based on higher total concentrations (Table 4-3). TC metals were typically not detected in the extract or the detected concentrations were well below the TCLP limits. Consequently, the presence of metals at elevated levels in these soils does not appear to indicate a significant potential to impact site groundwater quality.

# 4.2.2 TCL PCBs

TCL PCBs were not detected in samples collected from the Transformer T1 and T2 areas. PCB Aroclors were, however, were detected in three of the four samples collected from the T3 area:

|                 |                | Reported       |
|-----------------|----------------|----------------|
| Sample          | Detected       | Concentration  |
| <u>Location</u> | <u>Aroclor</u> | <u>(mg/kg)</u> |
| T3-01           | 1248           | 87             |
| T3-02           | 1242           | 3.9            |
|                 | 1260           | 6.4            |
| T3-03           | 1254           | 1.1            |
|                 |                |                |

It should be noted that the data validator rejected all of the results (which were all nondetects) for Aroclor 1232. Because this is a Aroclor which is rarely detected in environmental media samples and the results presented by the laboratory indicated the Aroclor was not detected

on: 0

Date: Page:

10/22/98 6 of 76

4.0

in the samples, the data rejection is not considered to be of importance to the project. Rejection of data for this Aroclor for other site samples is, therefore, not discussed further.

# 4.2.3 <u>Miscellaneous Parameters</u>

Select samples from each area were submitted for analysis of TPH, one sample from each area was analyzed for pH, and all transformer soil samples were submitted for analysis of TOC.

- TPH was detected in five of the eight samples collected from the T1 area at concentrations of 23 to 97 mg/kg. TPH was detected in two samples collected from the T2 area at concentrations of 640 mg/kg (T2-01) and 23 mg/kg (T2-03). TPH was detected in three of four samples collected from the T3 area at concentrations ranging from 160 to 940 mg/kg
- The pHs reported for samples collected from these three areas were generally neutral:
  - T1 8.47 s.u.
  - T2 6.45 s.u.
  - T3 7.69 s.u.
- TOC was detected in each of the 16 transformer soil samples at similar concentrations of 1.1 to 3.7 milligrams per liter (mg/l). However, the sample and duplicate collected from T2-01 had TOC concentrations of 16 and 14 mg/l

#### 4.3 Site-Wide Surface and Subsurface Soil Sample Data

To facilitate an understanding of conditions at each unit investigated during the RFI, soil data are presented on a unit-by-unit basis, in the following manner:

- SWMU-specific locations
- AOC-specific locations
- CAMU-specific locations
- general site locations

TAL Inorganic data (including results for molybdenum for all samples and results for hexavalent chromium and free cyanide for select samples) generated from a majority of these locations are presented in Table 4-4. TCL VOC and VOC TIC data are presented in Table 4-5, and TCL SVOC and SVOC TIC data are presented in Table 4-6. The TCL PCB data and data generated for miscellaneous parameters are presented in Table 4-7. Data for soil samples collected from indoors, in the immediate vicinity of the CAMUs (i.e., interior LEB-, BRB-, and LWB-series borings) are presented in Table 4-8.

Date: Page: 10/22/98 7 of 76

# 4.3.1 SWMU Locations

# 4.3.1.1 <u>SWMU 5 - Former Grinding Room Pickling Process</u>

Boring RB-01 was completed indoors at the location shown in Figure 2-1. Soil samples were collected from this location at 0 to 2, 5 to 7, and 7 to 9 ft-bgs. Each of the samples was submitted for analysis of TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide) and select miscellaneous parameters, except the 0 to 2 ft-bgs, which was analyzed for a limited number of TAL metals and total and free cyanide.

Each of the metals and cyanide were detected in all soil samples collected from this location, except:

- mercury, selenium, thallium, and free cyanide, which were not detected in any samples
- total cyanide, which was not detected in the samples collected from 0 to 2 or 5 to 7 ftbgs but was detected in the sample collected from 7 to 9 ft-bgs

Hexavalent chromium was detected in the sample collected from 5 to 7 ft-bgs at a concentration of 3.46 mg/kg.

The concentrations of metals detected in the soils samples collected from 5 to 7 and 7 to 9 ft-bgs were similar. The 0 to 2 ft-bgs sample was submitted for analysis of 12 constituents. The concentrations of detected constituents in this shallow sample were similar to the deeper samples, except:

- arsenic, cadmium, total chromium, and copper, for which higher concentrations were reported in the surface sample
- barium, for which a notably lower concentration was reported in the surface sample

Each of these soil samples was analyzed for TPH and pH; the 0 to 2 ft-bgs sample was also analyzed for total phenols.

• TPH was not detected in the samples collected from 0 to 2 and 5 to 7 ft-bgs, but was detected in the sample collected from 7 to 9 ft-bgs at 12 mg/kg.

Date:

10/22/98

4.0

Page:

8 of 76

- pHs ranged widely:
  - 4.48 s.u. in the 0 to 2 ft-bgs sample
  - 7.37 s.u. in the 5 to 7 ft-bgs sample
  - 10.93 s.u. in the 7 to 9 ft-bgs sample
- total phenols was not detected in any samples

# 4.3.1.2 SWMU 9 - Former Trichloroethane Container Storage Area

Boring RB-02 was completed indoors at the location shown in Figure 2-1. Soil samples were collected from this location at 0 to 2 and 16 to 18 ft-bgs. Both samples were submitted for analysis of TAL Inorganics (plus molybdenum; the shallow sample was also analyzed for free cyanide), TCL VOCs, TCL SVOCs, TCL PCBs, and select miscellaneous parameters.

Each of the TAL Inorganics was detected in both samples, except:

- mercury, selenium, thallium, and total cyanide, which were not detected in either sample
- free cyanide, which was not detected in the 0 to 2 ft-bgs

The detected metals concentrations were generally similar. The only constituent for which there was notable change in concentration between samples was calcium, which increased in concentration with sample depth.

Three TCL VOCs were detected in the samples collected from this location:

- 0 to 2 ft-bgs
  - trichloroethene at 0.5 μg/kg
  - toluene at 3 μg/kg
  - styrene at 0.9 μg/kg
- 16 to 18 ft-bgs
  - toluene at 0.5 µg/kg

VOC TICs were not detected in the soil sample collected from 0 to 2 ft-bgs. VOC TICs were detected in the sample collected from 16 to 18 ft-bgs at a total concentration of 29 µg/kg.

TCL SVOCs were not detected in the samples collected from RB-02. SVOC TICs were detected in both samples at total concentrations of 2,164 and 4,684  $\mu g/kg$ .

TCL PCBs were not detected in either of the samples collected from this location.

Section:

4.0

Revision:

10/22/98

Date: Page:

9 of 76

Each of these samples was analyzed for TPH and TOC; the 0 to 2 ft-bgs sample was also analyzed for pH and total phenols.

- TPH was not detected in the sample collected from 0 to 2, but was detected in the sample collected from 16 to 18 ft-bgs at 23 mg/kg.
- The pH for the 0 to 2 ft-bgs sample was 7.31 s.u.
- TOC was detected in both samples at concentrations of 2.7 and 2.3 mg/l.
- Total phenols was not detected in the 0 to 2 ft-bgs sample.

# 4.3.1.3 SWMU 11 - Shark Pit Residual Material Loading Area

Boring RFI-10 was completed proximate to this unit, as shown in Figure 2-1. Soil from this location at 0 to 3 in-bgs and 0 to 2, 2 to 4, and 8 to 10 ft-bgs. Each of the samples was submitted for analysis of TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide), TCL PCBs, and select miscellaneous parameters; select samples were also analyzed for TCL SVOCs.

Each of the TAL Inorganics was detected in all of the soil samples collected from this location, except:

- selenium, thallium, total cyanide, and free cyanide, which were not detected in any samples
- the silver data were inconclusive: two of the silver results were rejected, silver was not detected in the 0 to 3 in-bgs sample but was detected in the 8 to 10 ft-bgs sample
- mercury, which was not detected in the samples collected from 0 to 3 in-bgs or 8 to 10 ft-bgs, but was detected in samples collected from 0 to 2 and 2 to 4 ft-bgs
- antimony, which was not detected in the sample collected from 0 to 2 ft-bgs

Hexavalent chromium was detected only in the surficial soil sample (0 to 3 in-bgs) collected at this location; the reported concentration was 9.95 mg/kg.

The concentrations reported for the detected metals were generally similar. However, notable changes in constituent concentrations with sample depth were observed:

Section:

4.0

Revision:

10/22/98

Date: Page:

10 of 76

- decrease in concentration with increased sample depth
  - cobalt
  - total chromium
  - copper
  - molybdenum
  - nickel
  - vanadium
  - zinc
- increase in concentration with increased sample depth
  - calcium
  - potassium
  - magnesium

The highest concentrations for approximately one-half of the detected metals were reported for the 0 to 3 in-bgs sample.

Analysis for TCL SVOCs was performed on samples collected from depths of 2 to 4 and 8 to 10 ft-bgs. TCL SVOCs were not detected in these samples, but SVOC TICs were reported at total concentrations of 17,980 and 34,090  $\mu$ g/kg.

TCL PCBs were not detected in any of the samples collected from this location.

Each of these samples was submitted for analysis of total phenols and TOC; each of the samples, except the 8 to 10 ft-bgs sample, were also analyzed for TPH.

- TPH was not detected in any of the samples.
- Total phenols was not detected in any samples.
- TOC was detected in each of the samples at concentrations of 2.2 to 5.9 mg/l.

# 4.3.1.4 SWMUs 13 and 14 - Crucible Disposal Areas and Waste Disposal Facilities

Three crucible disposal areas and three waste disposal facilities were identified at the site.

A minimum of one soil boring or test pit was completed proximate to each of these areas:

- SWMU 13 Crucible Disposal Areas
  - SWMU 13A (near BFS) TP-08
  - SWMU 13B (near HAP parking lot) TP-04 and RFI-04
  - SWMU 13 C (near BRP) RFI-09 and RFI-11

4.0

Date:

10/22/98

Page:

11 of 76

• SWMU 14 - Waste Disposal Facilities

- SWMU 14A (near BFS) TP-07
- SWMU 14B (near HAP parking lot) TP-04 and RFI-04
- SWMU 14C (near BRP) TP-11

Analytical results for soil samples collected from each of these locations are presented below, except for RFI-09 which was completed more to evaluate potential impact from SWMUs 17 and SWMU 22 and is, therefore, addressed in Section 4.3.1.7. To facilitate an understanding of conditions at each location, regardless of the source of potential impact (i.e., TP-04 and RFI-04, which are applicable to two units), data for each boring and test pit are discussed individually. The miscellaneous parameter data however, have been addressed in a comprehensive manner.

# **TAL Inorganics**

Each of the samples collected from the locations identified above submitted for analysis of TAL Inorganics (plus molybdenum and free cyanide); analysis for hexavalent chromium was performed on all samples collected from the test pit locations.

<u>TP-08</u> - Each of these constituents detected in the three soil samples collected from this location, except:

- mercury, selenium, thallium, total cyanide, and free cyanide, which were not detected in any samples
- antimony, which was noted detected in the 0 to 2 ft-bgs sample

Hexavalent chromium was only detected in the 0 to 2 ft-bgs sample; the concentration was 5.92 mg/kg.

Similar concentrations were reported for several of the metals detected in soil samples collected from TP-08. However, an overwhelming number of the detected metals were detected at the highest concentrations in the sample collected from 0 to 2 ft-bgs. Notable changes in concentrations (i.e., decreased concentration with increased sample depth) were observed for several of these metals, including:

10/22/98 Date:

Page: 12 of 76

- barium
- cobalt
- total chromium
- copper
- molybdenum
- nickel
- vanadium

TP-04 - Each of these constituents was detected in both of the soil samples collected from this location, except mercury, selenium, thallium, total cyanide, and free cyanide (which were not detected in any samples). Hexavalent chromium was not detected in either sample. The concentrations reported for the detected metals in both samples were generally similar, although concentrations for most metals were slightly higher in the 0 to 2 ft-bgs sample. The only constituents for which there were notable changes in concentrations were calcium, total chromium, molybdenum, and nickel. Concentrations of these constituents decreased between the 0 to 2 and 11 to 12 ft-bgs samples.

TP-07 - Each of these constituents was detected in the four soil samples collected from this location, except:

- silver, mercury, thallium, total cyanide, and free cyanide, which were not detected in any samples
- antimony, which was not detected in the 0 to 2 ft-bgs sample
- selenium, which was only detected in the 3 to 4 ft-bgs sample

Hexavalent chromium was not detected in the soil samples collected from 0 to 3 in-bgs or 0 to 2 ft-bgs at this location, but was detected in samples collected from 3 to 4 and 8 to 9 ft-bgs at concentrations of 7.79 and 64.8 mg/kg.

The concentrations reported for detected metals in samples collected from this location were generally similar. The highest concentrations were equally divided amongst the samples collected from 0 to 2 ft-bgs, 3 to 4 ft-bgs, and 8 to 9 ft-bgs. However, some notable differences were observed. Specifically, concentrations decreased with increased sample depth for these parameters:

Date: 10/22/98 Page: 13 of 76

- cobalt
- total chromium
- copper
- molybdenum

The 3 to 4 ft-bgs sample collected from TP-07 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were typically not detected in the extract or were detected at concentrations well below the TC limits. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

<u>TP-11</u> - Each of these constituents was detected in the three soil samples collected from this location, except:

- mercury, selenium, thallium, total cyanide, and free cyanide, which were not detected in any samples
- manganese, which was not detected in the 0 to 2 ft-bgs sample but was detected in all other samples

Hexavalent chromium was not detected in the samples collected from this location.

The concentrations of 12 of the 21 metals detected in soil samples collected from TP-11 were either similar or did not consistently increase or decrease with depth. Concentrations for the remaining nine detected metals decreased notably with increased sample depth:

- barium
- beryllium
- calcium
- cobalt
- total chromium
- magnesium
- molybdenum
- nickel
- vanadium

The duplicate sample collected from 0 to 2 ft-bgs at TP-11 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were not detected in the leachate. Consequently, the presence of metals at

Date: 10/22/98

Page:

14 of 76

higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

<u>RFI-04</u> - Each of these constituents was detected in the four soil samples collected from this location, except:

- mercury, thallium, total cyanide, and free cyanide, which were not detected in any samples
- silver and selenium, which were only detected in the surface soil sample

Hexavalent chromium was not detected in the samples collected from RFI-04 at 2 to 4 and 20 to 22 ft-bgs, but was detected at concentrations of 12.5 and 3.29 mg/kg in the samples collected from 0 to 3 in-bgs and 0 to 2 ft-bgs.

The concentrations reported for metals detected in samples collected from RFI-04 were generally similar. The highest concentrations of detected metals were typically reported for the samples collected from 0 to 3 in-bgs and 0 to 2 ft-bgs. Notable differences were, however, observed. Specifically, concentrations of these metals decreased with increased sample depth:

- cobalt
- molybdenum
- nickel
- vanadium

An increase in concentration with sample depth was noted for calcium.

The 0 to 2 ft-bgs sample collected from RFI-04 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were not detected. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

<u>RFI-11</u> - Each of these constituents was detected in the eight soil samples collected from this location, except:

- selenium, thallium, total cyanide, and free cyanide, which were not detected
- mercury, which was only detected in the surficial soil sample
- manganese, which was detected in each of the samples except the surficial soil sample

Section: 4.0 Revision: 0

Date: Page: 10/22/98 15 of 76

• silver data were inconclusive: results for six samples were rejected by the data validator; silver was detected in the 0 to 2 ft-bgs sample, but was not detected at 0 to 3 in-bgs

Hexavalent chromium was not detected in soil samples collected from depths of greater than 4 ftbgs, but was detected in the shallower samples:

- 0 to 3 in-bgs at 3.73 mg/kg
- 0 to 2 ft-bgs at 3.65 mg/kg
- 2 to 4 ft-bgs at 2.64 mg/kg.

Few of the concentrations reported for detected metals were similar in soil samples collected from this location. Notable changes with sample depth were observed:

- decrease in concentration with increased sample depth
  - arsenic
  - barium
  - cobalt
  - total chromium
  - copper
  - iron
  - manganese
  - molybdenum
  - vanadium
- increase in concentration with increased sample depth
  - calcium
  - potassium
  - magnesium

Two samples collected from RFI-11 (0 to 3 in-bgs and 4 to 6 ft-bgs) were selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were not detected in the extract or were detected at concentrations well below the TC limits. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

#### TCL SVOCs

Analysis for TCL SVOCs was performed for each of the soil samples collected from the test pits and soil borings completed in these SWMUs, except the 0 to 3 in-bgs samples from RFI-

 Section:
 4.0

 Revision:
 0

 Date:
 10/22/98

 Page:
 16 of 76

04 and RFI-11. The TCL SVOCs detected were exclusively comprised of PAHs, except for carbazole which was detected in the samples collected from TP-04. PAHs were detected in approximately one-half of the soil samples, and SVOC TICs were detected in all of the samples.

|                 |                  | Concentrations (µg/kg) |                  |              |
|-----------------|------------------|------------------------|------------------|--------------|
| Sample          | Sample           |                        |                  | Total        |
| <u>Location</u> | (Interval)       | Total PAHs             | <u>Carbazole</u> | SVOC TICs    |
| TD 04           | 0 40 2 54 5 00   | 2.010                  | 260              | 65 500       |
| TP-04           | 0 to 2 ft-bgs    | 3,810                  | 360              | 65,590       |
|                 | 11 to 12 ft-bgs  | 280                    | 280              | 73,340       |
| TP-07           | 0 to 3 in-bgs    | 5,690                  | ND (b)           | 52,120       |
|                 | 0 to 2 ft-bgs    | 590                    | ND               | 17,930       |
|                 | 3 to 4 ft-bgs    | 580                    | ND               | 12,420       |
|                 | 8 to 9 ft-bgs    | ND                     | ND               | 28,540       |
| TP-08           | 0 to 2 ft-bgs    | ND                     | ND               | 19,380       |
|                 | 3 to 4 ft-bgs    | ND                     | ND               | 25,660       |
|                 | 7 to 8 ft-bgs    | ND                     | ND               | 27,150       |
|                 | , ,, ,, ,,       |                        |                  | _,,,,,       |
| TP-11           | 0 to 3 in-bgs    | ND                     | ND               | 96,670       |
|                 | 0 to 2 ft-bgs    | 3,300                  | ND               | 31,180       |
|                 | 0 to 2D ft-bgs ( | (b) ND                 | ND               | NA (c)       |
|                 | 10 to 11 ft-bgs  | ND                     | ND               | 14,660       |
|                 | 11 to 12 ft-bgs  | ND                     | ND               | 28,280       |
| RFI-04          | 0 to 2 ft-bgs    | ND                     | ND               | 23,440       |
| Id I O          | 2 to 4 ft-bgs    | ND                     | ND               | 9,030        |
|                 | 20 to 22 ft-bgs  | ND                     | ND               | 22,170       |
|                 | 20 to 22 ft 0g3  | NE                     | ND               | <i></i> ,170 |
| RFI-11          | 0 to 2 ft-bgs    | 1,110                  | ND               | 2,513        |
|                 | 0 to 2D ft-bgs ( | (b) ND                 | ND               | 3,422        |
|                 | 2 to 4 ft-bgs    | 260                    | ND               | 1,426        |
|                 | 4 to 6 ft-bgs    | ND                     | ND               | 1,234        |
|                 | 6 to 8 ft-bgs    | ND                     | ND               | 1,204        |
|                 | 8 to 10 ft-bgs   | ND                     | ND               | 1,436        |
|                 | 10 to 12 ft-bgs  | ND                     | ND               | 1,457        |
|                 | 12 to 14 ft-bgs  | ND                     | ND               | 1,421        |
|                 | . 3-             |                        | <del></del>      | ,            |

a/ ND = constituent not detected.

b/ D = duplicate sample.

c/ NA = analysis not performed.

Date:

10/22/98

4.0

Page:

17 of 76

## TCL PCBs

All soil samples collected from the test pits and soil borings completed in these SWMUs were submitted for analysis of TCL PCBs. PCBs were only detected in the sample collected at 8 to 10 ft-bgs from RFI-11. Aroclor 1260 was detected in this sample at a concentration of thirty-one mg/kg.

## Miscellaneous Parameters

Each soil sample collected from the test pit and soil boring completed in these SWMUs was submitted for analysis of one or more of the miscellaneous parameters, including TPH, pH, total phenols, and TOC.

- TPH analysis was performed for samples collected from TP-07, TP-11, and RFI-11; TPH was detected in the subsurface soil samples collected from TP-07 (29 and 180 mg/kg) and TP-11 (10 to 59 mg/kg) and in the 0 to 3 in-bgs sample from RFI-11 (19 mg/kg).
- The pHs ranged from 6.85 to 8.91 s.u.
- Total phenols analysis was performed for all samples collected from TP-11 and RFI-11. Total phenols was not detected in any of the samples collected from either location.
- TOC analysis was performed for all samples collected from these locations; TOC was detected in all of the samples at concentrations of 1.6 to 8.9 mg/l.

#### 4.3.1.5 SWMU 15 - Former Waste Acid Surface Impoundments

Boring RFI-02 was completed in an area proximate to this SWMU (Figure 2-1). Soil samples were collected from this location at 0 to 3 in-bgs and 0 to 2, 8 to 10, and 10 to 12 ft-bgs. Each of the samples was submitted for analysis of TAL Inorganics (plus molybdenum and free cyanide; the subsurface samples collected from 8 to 10 and 10 to 12 ft-bgs were also analyzed for hexavalent chromium) and select miscellaneous parameters.

Each of the TAL Inorganics was detected in all soil samples collected from this location, except mercury, selenium, thallium, total cyanide, and free cyanide which were not detected in any samples submitted for analysis. Hexavalent chromium was not detected in either of the subsurface soil samples submitted for analysis of this parameter.

evision:

Date: Page: 10/22/98 18 of 76

4.0

The concentrations reported for detected metals in these samples were generally similar. Notable changes in concentration with sample depth were observed for four metals, including:

- decrease in concentration with increased sample depth
  - total chromium
  - nickel
- increase in concentration with increased sample depth
  - calcium
  - zinc

Each of the soil samples was analyzed for TPH, pH, and total phenols; the 0 to 3 in-bgs and 0 to 2 ft-bgs samples were also analyzed for TOC.

- TPH was detected in each of the samples at concentrations of 15 to 94 mg/kg (and indicated increasing concentrations with increased sample depth).
- pHs ranged from 7.62 to 8.24 s.u.
- Total phenols was detected in the subsurface samples at concentrations of 0.36 and 0.12 mg/kg.
- TOC was detected in the surface soil samples at concentrations of 3.8 and 3.4 mg/l.

## 4.3.1.6 SWMU 16 - Willowbrook Pond

Two soil borings were completed along the perimeter of Willowbrook Pond to facilitate subsequent installation of groundwater monitoring wells. The locations of these borings/wells (RFI-14 and RFI-15) are shown in Figure 2-1. A total of six soil samples were collected from RFI-14 (3 samples) and RFI-15 (3 samples) at depths from the ground surface to 16 ft-bgs.

Each of the soil samples was submitted for analysis of TAL Inorganics (plus molybdenum). Analysis for hexavalent chromium was performed for the surficial samples (0 to 3 in-bgs) from both locations; analysis for free cyanide was only performed on subsurface soil samples collected from RFI-15.

Each of these constituents was detected in all of the samples submitted for analysis, except:

Date: 10/22/98

Page: 19 of 76

selenium, thallium, total cyanide, and free cyanide were not detected in any samples

silver was not detected in the 0 to 3 in-bgs or 15 to 16 ft-bgs sample from RFI-15, but was detected in all other samples

mercury was not detected in any of the samples, except for the 2 to 4 ft-bgs sample from RFI-14

Hexavalent chromium was not detected in either of the 0 to 3 in-bgs samples collected from these locations.

The metals concentrations reported for samples collected from Boring RFI-14 were generally consistent for all samples. Notable changes in concentration with sample depth included total chromium, molybdenum, and nickel, which decreased with increased sample depth. The 0 to 3 in-bgs sample typically contained the highest concentration of the detected metals.

The metals concentrations reported for samples collected from Boring RFI-15 were typically similar for all samples. Notable changes in concentration with sample depth were observed for cobalt, total chromium, molybdenum, and nickel, which decreased with increased sample depth; the calcium concentration increased with increased sample depth. Most metals were detected at their highest concentrations in the sample collected from 0 to 3 in-bgs.

The four subsurface samples collected from these locations was submitted for analysis of TCL SVOCs. TCL SVOCs were not detected in any of the samples. SVOC TICs were detected in each:

| Sample<br>Location | Sample<br><u>Interval</u> | Total SVOC TIC Concentration (μg/kg) |
|--------------------|---------------------------|--------------------------------------|
| RFI-14             | 2 to 4 ft-bgs             | 61,280                               |
|                    | 12 to 14 ft-bgs           | 82,880                               |
| RFI-15             | 6 to 8 ft-bgs             | 27,030                               |
|                    | 15 to 16 ft-bgs           | 11,390                               |

Each of the samples collected from these two locations was submitted for analysis of TCL PCBs. PCB Aroclors were not detected in any of the samples, except for the 0 to 3 in-bgs

4.0

Date:

10/22/98

Page:

20 of 76

sample collected from RFI-15. Aroclor 1248 was detected at a concentration of 2.6 mg/kg in this sample.

Each of the samples collected from RFI-14 and RFI-15 was submitted for analysis of total phenols and TOC; the 0 to 3 in-bgs samples collected from these locations were also analyzed for TPH.

- TPH was detected at both locations at concentrations of 55 and 61 mg/kg.
- Total phenols was detected in the 0 to 3 ft-bgs sample from RFI-14 at a concentration of 0.12 mg/kg.
- TOC was detected in each of the samples at concentrations of 2.4 to 4.6 mg/l.

# 4.3.1.7 <u>SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewater Treatment</u> Plant Areas

Boring RFI-09 was completed in an area proximate to both of these SWMUs (Figure 2-1). Soil samples were collected from this location at 0 to 3 in-bgs and continuously from 0 to 10 ft-bgs. Each of the samples was submitted for analysis of TAL Inorganics (plus molybdenum and free cyanide; the 0 to 3 in-bgs sample was also submitted for analysis of hexavalent chromium) and select miscellaneous parameters. Select samples were also submitted for analysis of TCL SVOCs and TCL PCBs.

Each of the TAL Inorganics was detected in all soil samples collected from this location, except:

- mercury, thallium, and free cyanide, which were not detected in any samples
- silver data were inconclusive: most of the results were rejected, but silver was detected in the 0 to 3 in-bgs sample
- selenium was not detected any of the samples, except that collected from 0 to 2 ft-bgs
- total cyanide data were also inconclusive: most of the results were rejected; however, this constituent was detected in the samples collected from 6 to 8 and 8 to 10 ft-bgs

Date: 10/22/98

Page: 21 of 76

Hexavalent chromium was not detected in the samples collected to depths of 4 ft-bgs, but was detected at concentrations ranging from 1.42 to 3.44 mg/kg in the samples collected from 4 to 10 ft-bgs.

The concentrations reported for approximately one-half of the detected metals were generally similar. Notable changes in concentrations with increased sample depth were observed for several metals, including:

- decrease in concentration with increased sample depth
  - cadmium
  - cobalt
  - total chromium
  - copper
  - iron
  - manganese
  - molybdenum
  - nickel
  - antimony
- increase in concentration with increased sample depth
  - calcium
  - magnesium

The 0 to 3 in-bgs sample collected from RFI-09 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were typically not detected in the extract or were detected at concentrations well below the TC limits. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

Analysis for TCL SVOCs was performed for three samples collected from this location. TCL SVOCs were not detected. SVOC TICs were detected in each of the samples at these total concentrations:

- 0 to 2 ft-bgs at 12,760 μg/kg
- 4 to 6 ft-bgs at 9,560 μg/kg
- 8 to 10 ft-bgs at 11,030 μg/kg

Analysis for TCL PCBs was performed for samples collected from 0 to 3 in-bgs, 0 to 2 ftbgs, 4 to 6 ft-bgs, and 8 to 10 ft-bgs. PCB Aroclors were not detected in these samples.

Revision: 0
Date: 10/22/98

Page:

22 of 76

4.0

Each of the samples collected from RFI-09 was submitted for analysis of TPH, pH, and total phenols. Analysis for TOC was also performed on each of the samples, except those collected from 2 to 4 and 6 to 8 ft-bgs.

- TPH was only detected in the surficial soil sample, 0 to 3 in-bgs, at 12 mg/kg.
- pHs ranged from 7.36 to 8.39 s.u.
- Total phenols was not detected in any samples.
- TOC was detected in each of the samples at concentrations of 1.8 to 2.6 mg/l.

## 4.3.1.8 SWMU 18 - Grinding Dust Transfer Pile

Test Pit TP-02 was excavated proximate to the former location of the Grinding Dust Transfer Pile (Figure 2-1). Soil samples were collected from this test pit at 0 to 3 in-bgs and 0 to 2, 3 to 4, and 9 to 10 ft-bgs and submitted for analysis of TAL Inorganics (plus molybdenum), TCL SVOCs, and select miscellaneous parameters.

Each of the TAL Inorganics was detected in all of the samples, except:

- selenium, thallium, and total cyanide, which were not detected in any samples
- silver was not detected in the 0 to 2 ft-bgs sample, but was detected in all other samples
- mercury was not detected in the shallow samples (0 to 4 ft-bgs), but was detected in the 9 to 10 ft-bgs sample

The concentrations reported for many of the detected constituents in these samples were similar. However, notable changes in concentrations were observed for cobalt, total chromium, copper, iron, manganese, molybdenum, nickel, and vanadium, for which concentrations decreased with increased sample depth.

Two soil samples collected from TP-02 were selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were not detected in the extract. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

Date: 10/22/98

23 of 76 Page:

Benzo(a)anthracene was the only TCL SVOC detected in TP-02. It was detected in the 9 to 10 ft-bgs sample from this location at a concentration of 280 µg/kg. SVOC TICs were detected in each of the samples collected from this location at these total concentrations:

- 0 to 3 in-bgs at  $132,560 \mu g/kg$
- 0 to 2 ft-bgs at 118,200 μg/kg
- 3 to 4 ft-bgs at 21,720 μg/kg
- 9 to 10 ft-bgs at 23,630 μg/kg

Each of the soil samples collected from TP-02 was submitted for analysis of pH. Analysis for total phenols was performed for samples collected from 0 to 3 in-bgs and 0 to 2 ftbgs; analysis for TPH was performed for the sample collected from 0 to 3 in-bgs.

- TPH was detected in the 0 to 3 in-bgs sample at a concentration of 21 mg/kg.
- pHs ranged from 8.14 to 8.52 s.u.
- Total phenols was not detected in any samples.

#### 4.3.1.9 SWMU 19 - Former Waste Pile

Test Pit TP-06 was excavated proximate to this SWMU (Figure 2-1). Soil samples were collected from this test pit at 0 to 2, 3 to 4, and 7 to 8 ft-bgs, and submitted for analysis of TAL Inorganics (plus molybdenum), TCL SVOCs, and total phenols.

Each of the TAL Inorganics was detected in all of the soil samples, except:

- mercury, selenium, and thallium, which were not detected in any samples
- antimony, which was not detected in the sample (or duplicate) collected from 0 to 2 ft-bgs but was detected in the samples collected from 3 to 4 and 7 to 8 ft-bgs
- total cyanide, which was not detected in the deeper samples but was detected in the sample (and duplicate) collected from 0 to 2 ft-bgs

The concentrations reported for approximately one-half of the detected constituents in these samples were similar. However, notable decreases in concentrations with increased sample depth occurred for several metals, including:

vision: 0

Date: Page: 10/22/98 24 of 76

4.0

- cobalt
- total chromium
- copper
- iron
- molybdenum
- nickel
- lead
- vanadium

Potassium concentrations increased with increased sample depth.

TCL SVOCs were detected in the soil sample and duplicate collected from TP-06 at 0 to 2 ft-bgs. The total PAH concentrations for this sample and duplicate were 10,020  $\mu$ g/kg and 7,940  $\mu$ g/kg. Dibenzofuran was also detected in this sample and duplicate at concentrations of 430 and 350  $\mu$ g/kg.

SVOC TICs were detected in each of the samples and duplicate at these total concentrations:

- 0 to 2 ft-bgs at 16,230 μg/kg
- 0 to 2 ft-bgs (duplicate) at  $34,580 \mu g/kg$
- 3 to 4 ft-bgs at 21,020 μg/kg
- 7 to 8 ft-bgs at 22,190 μg/kg

Total phenols were not detected in the three soil samples collected from TP-06. Analysis for other miscellaneous parameters was not required for this sample location.

## 4.3.1.10 SWMU 20 - Waste Asbestos Accumulation Area

Two surface soil samples were collected from the vicinity of SWMU 20: GS-01 and GS-02 (Figure 2-1). Both samples were submitted for analysis of asbestos, TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide) and select miscellaneous parameters. A second sample was collected from GS-01 in November 1996 and inadvertently submitted for analysis of TAL Inorganics (plus molybdenum and free cyanide) and TCL VOCs.

The asbestos results indicated that asbestos was not present in either sample.

Each of the TAL Inorganics was detected in both of the samples collected from this location, except as follows:

4.0

Date:

10/22/98

Page:

25 of 76

• mercury, selenium, thallium, and free cyanide, which were not detected

• silver results for GS-01 and GS-02 were rejected by the data validator; silver was not detected in the second sample collected from GS-01 (this result was not validated)

• total cyanide results for GS-01 were rejected by the data validator; total cyanide was not detected in the second sample collected from GS-01, although this result was not validated, total cyanide was detected in the GS-02 sample.

Hexavalent chromium was not detected in sample collected from GS-01 but was detected in the sample collected from GS-02 at a concentration of 3.58 mg/kg.

For most constituents, the highest reported concentration was detected in the sample collected from GS-02.

The following TCL VOCs were detected at concentrations near the detection limits in the sample collected from GS-01: carbon disulfide, cis-1,2-dichloroethene, trichloroethene, and toluene. Identification of VOC TICs was not performed for this sample.

Samples from both of these locations were submitted for analysis for TPH, pH, and total phenols.

- TPH was detected in the sample collected from GS-01 in October at 14 mg/kg and 14 mg/kg in the sample collected in November. TPH was not detected in the sample collected from GS-02.
- pHs for these samples ranged from 7.74 to 8.46 s.u.
- Total phenols was not detected in the sample collected from GS-01 in October but was detected in the sample collected in November at 0.12 mg/kg. Total phenols was not detected in the sample collected from GS-02.

# 4.3.1.11 SWMU 21 - Grinding Swarf Storage Area

Test Pit TP-03 was excavated proximate to this former SWMU (Figure 2-1).<sup>2</sup> Soil samples were collected from this test pit at 0 to 2, 5 to 6, and 11 to 12 ft-bgs and submitted for analysis of TAL Inorganics (plus molybdenum), TCL SVOCs, and select miscellaneous parameters.

<sup>&</sup>lt;sup>2</sup> The storage area for grinding swarf was relocated to an area under roof in BRP. Materials in the former storage area were transferred to this new location, as is all newly generated swarf.

Date:

10/22/98

26 of 76 Page:

Each of the TAL Inorganics was detected in all of the soil samples, except:

selenium, thallium, and total cyanide, which were not detected in any samples

cobalt, which was not detected in the 0 to 2 ft-bgs sample, but was detected in the two deeper samples

mercury, which was not detected in the two deeper soil samples, but was detected in the 0 to 2 ft-bgs sample

The concentrations reported for several of the detected constituents were similar for all samples. The concentrations reported for the remaining samples changed notably with sample depth:

- decrease in concentration with increased sample depth
  - total chromium
  - copper
  - molybdenum
  - nickel
  - vanadium
- increase in concentration with increased sample depth
  - calcium
  - magnesium

Evaluation of the detected concentrations indicated that each was detected in one or more of these samples at a concentration above background.

The 0 to 2 ft-bgs sample collected from TP-03 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were not detected in the leachate. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

TCL SVOCs were not detected in the soil samples collected from TP-03. SVOC TICs were detected in each of the samples at these total concentrations:

- 0 to 2 ft-bgs at 121,300 μg/kg
- 5 to 6 ft-bgs at 37,090 μg/kg
- 11 to 12 ft-bgs at 26,450 μg/kg

Section: 4.0

Revision:

Date: Page:

10/22/98 27 of 76

Each of the samples collected from TP-03 was submitted for analysis of pH. The reported pHs for these samples ranged from 7.93 to 8.23 s.u.

## 4.3.1.12 SWMU 23 - API Oil/Water Separator

Soil Boring RFI-03 was completed immediately adjacent to this unit (Figure 2-1). Soil samples were collected from this location at 0 to 3 in-bgs and 0 to 2 and 4 to 6 ft-bgs. Each of the samples was submitted for analysis of TAL Inorganics (plus molybdenum), TCL SVOCs, TCL PCBs, and select miscellaneous parameters.

Each of the TAL Inorganics was detected in all of the soil samples, except mercury, selenium, and thallium which were not detected in any samples. The total cyanide and silver results were rejected for all samples, except the 0 to 3 in-bgs sample. Both total cyanide and silver were detected in this sample.

The concentrations reported for most of the detected constituents were similar and the highest concentrations of detected metals were evenly distributed between the 0 to 3 in-bgs and 4 to 6 ft-bgs samples. Notable changes in concentrations with sample depth were observed: magnesium and manganese concentrations decreased with increased sample depth and total chromium concentrations increased with increased sample depth.

TCL SVOCs (PAHs) were detected in the 0 to 2 and 4 to 6 ft-bgs soil samples collected from RFI-03. SVOC TICs were detected in all three soil samples:

- 0 to 3 in-bgs
  - total SVOC TICs at 102,160 μg/kg
- 0 to 2 ft-bgs
  - total PAHs at 1.660 µg/kg
  - total SVOC TICs at 1,907 μg/kg
- 4 to 6 ft-bgs
  - total PAHs at 1,130 μg/kg
  - total SVOC TICs at 3,056 μg/kg

TCL PCBs were not detected in any of the three soil samples collected from this location.

Each of the samples collected from this location was submitted for analysis of TOC. The surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs) were also analyzed for pH and the 0 to 3 inbgs was analyzed for TPH.

Section: 4.0 Revision: 0

Date: Page: 10/22/98 28 of 76

ra

- TPH was detected in the 0 to 3 in-bgs sample at a concentration of 47 mg/kg.
- pHs ranged from 7.77 to 8.71 s.u.
- TOC was detected in all of the samples at concentrations ranging from 1.9 to 4.5 mg/l.

#### 4.3.2 AOC Locations

## 4.3.2.1 AOC 3 - Process Pits and Cooling Towers

Several of the process pits, some of which were not included in the inspections (Section 3.4), were evaluated indirectly via investigation of an associated unit. The analytical results for these investigations are presented elsewhere in Section 4.0 and should be used to evaluate conditions as also potentially affected by the pits. The pits and the associated units include:

| Pit No. | Pit Description                | Associated Unit |
|---------|--------------------------------|-----------------|
| 1       | BRP Pickle                     | SWMU 2/CAMU B   |
| 2       | BRP Spent Acid                 | SWMU 2/CAMU B   |
| 4       | LAP East Pickle Pits           | SWMU 4/CAMU D   |
| 5       | LAP West Pickle Pits           | SWMU 1/CAMU A   |
| 7       | Billet Pickle Pit              | SWMU 5          |
| 9       | Rust Furnace Cooling Tower Pit | AOC 3A          |
| 10      | Olson Quench Pit               | SWMU 2          |
| 12      | Lime Pits                      | SWMU 1/CAMU A   |
| 13      | Lime Pump Pits                 | SWMU 1/CAMU A   |
| 15      | HAP Cooling Tower Pit          | AOC 3B          |
| 18      | API/Oil Water Separator        | SWMU 23         |
| 24      | BFS Pickle Pits                | SWMU 3/CAMU C   |
| 26      | Clarifier                      | SWMU 22         |

Both of the cooling towers were identified as process pits (nos. 9 and 15) and as individual AOCs (AOC 3A and AOC 3B). Consequently, potential effects from the cooling towers were investigated directly (i.e., borings were completed proximate to both). Boring RB-07 was completed adjacent to SWMU 3A, Rust Furnace Cooling Tower, and Boring RB-06 was completed adjacent to SWMU 3B, HAP Cooling Tower.

Four samples were collected from Borings RB-07 and RB-06 at depths ranging from the ground surface to a maximum of 10 ft-bgs. Each sample was submitted for analysis of the TAL

Section: 4.0 Revision: 0

Date:

10/22/98

Page:

29 of 76

Inorganics (plus molybdenum), some of the samples were also submitted for analysis of TCL SVOCs, TCL PCBs, and TOC.

#### <u>RB-07</u>

Each of the TAL Inorganics was detected in the four soil samples collected from RB-07, except:

- mercury, selenium, thallium, and total cyanide, which were not detected in any samples
- silver, which was not only detected in the 0 to 2 ft-bgs (duplicate) and 6 to 8 ft-bgs sample

The metals concentrations reported for samples collected from Boring RB-07 were generally consistent for all samples. However, notable decreases in concentrations with increased sample depth were observed for approximately one-third of the constituents, including:

- cobalt
- total chromium
- copper
- iron
- manganese
- molybdenum
- vanadium
- zinc

Consistent with this observation, the highest reported concentrations of most constituents (11) were reported in the 0 to 3 in-bgs sample from this location.

TCL SVOCs were detected in two of three samples collected from Boring RB-07. SVOC TICs were detected in each of the samples:

- 0 to 2 ft-bgs
  - total PAHs at 21,690 μg/kg
  - 1,2,4-trichlorobenzene at 410 μg/kg
  - dibenzofuran at 260 μg/kg
  - carbazole at 520 µg/kg
  - total SVOC TICs at 7,630 μg/kg

Section:

4.0 Revision: 0

Date: Page:

10/22/98 30 of 76

• 6 to 8 ft-bgs

- total PAHs at 12,130 µg/kg
- 1,3-dichlorobenzene at 1,500 μg/kg
- 1,4-dichlorobenzene at 2,800 μg/kg
- 1,2,4-trichlorobenzene at 1,100 μg/kg
- dibenzofuran at 260 μg/kg
- carbazole at 270 µg/kg
- total SVOC TICs at 31,140 μg/kg
- 8 to 10 ft-bgs
  - total SVOC TICs at 17,690 μg/kg

PCB Aroclor 1242 was detected in two samples collected from RB-07:

- 0 to 2 ft-bgs at 21 mg/kg
- 6 to 8 ft-bgs at 3.9 mg/kg

TOC was detected in each of the samples collected from RB-07 at concentrations of 3.2 to 3.8 mg/l.

#### RB-06

Each of the TAL Inorganics was detected in the four soil samples from RB-06, except:

- mercury, selenium, and thallium, which were not detected in any samples (the total cyanide result for the 0 to 3 in-bgs sample was rejected)
- silver, which was only detected in the 4 to 6 ft-bgs

The metals concentrations reported for samples collected from Boring RB-06 were generally consistent. The only notable changes in concentrations with sample depth included total chromium, molybdenum, and nickel (for which concentrations decreased with increased sample depth) and calcium and magnesium (for which concentrations increased with increased depth). The sample which contained the highest concentrations of metals was the 0 to 3 in-bgs sample.

One TCL SVOC was detected in the three samples collected from Boring RB-06. Fluoranthene was detected in the 6 to 8 ft-bgs sample at a concentration of 310 micrograms per SVOC TICs were detected in each of these samples at these total kilograms (ug/kg). concentrations:

Section: 4.0 Revision: 0

Date: 10/22/98 Page: 31 of 76

- 0 to 2 ft-bgs at 15,260  $\mu$ g/kg
- 4 to 6 ft-bgs at 6,160 μg/kg
- 6 to 8 ft-bgs at  $6,800 \mu g/kg$

TCL PCB Aroclors were not detected in the soil samples collected from Boring RB-06.

TOC was detected in each of the samples collected from RB-06 at concentrations of 3 to 5.5 mg/l.

#### 4.3.2.2 AOC 6 - Former Aboveground Fuel Tank

Test Pit TP-09 was completed proximate to this AOC (Figure 2-1). Soil samples were collected from this location at 0 to 2, 2 to 3, and 7 to 8 ft-bgs. Each of the samples was submitted for analysis of TCL SVOCs and select miscellaneous parameters.

TCL SVOCs were only detected in the soil sample collected at this location from 0 to 2 ft-bgs. The total PAH concentration was 15,200  $\mu$ g/kg; dibenzofuran was also detected at a concentration of 420  $\mu$ g/kg.

SVOC TICs were detected in each of the samples at these total concentrations:

- 0 to 2 ft-bgs at 22,040 μg/kg
- 2 to 3 ft-bgs at 25,310 μg/kg
- 7 to 8 ft-bgs at 91,110 μg/kg

Each of the soil samples collected from this location was submitted for analysis of TPH and total phenols.

- TPH was detected in each of the samples at concentrations of 390, 20, and 25 mg/kg.
- Total phenols was not detected.

## 4.3.2.3 AOC 7 - Scrap Steel Storage Areas

Test pits were excavated during the RFI proximate to the three on-site scrap steel storage areas (Figure 2-1):

- Test Pit TP-01 at AOC 7A HAP
- Test Pit TP-05 at AOC 7B BFS (east)
- Test Pit TP-10 at AOC 7C BFS (west)

Date: 10/22/98

Page: 32 of 76

Soil samples collected from each of these locations were submitted for analysis of TAL Inorganics (plus molybdenum; analysis for free cyanide was also performed for samples collected from TP-05) and TCL SVOCs. Soil samples collected from TP-05 and TP-10 were also analyzed for select miscellaneous parameters.

Each of the TAL Inorganics was detected in the soil samples collected from these locations, except:

- selenium and thallium, which were not detected
- silver, which was not detected in the 0 to 3 in-bgs sample collected from TP-05 (the result for the 2 to 3 ft-bgs sample was rejected)
- mercury, which was not detected in either of the samples collected from TP-10, but was detected in approximately one-half of the samples collected from TP-01 and TP-05
- total cyanide, which was not detected in the samples collected from TP-01 or TP-10 nor in the two deeper samples collected from TP-05, but was detected in the two shallow samples collected from TP-05 (0 to 3 in-bgs and 0 to 2 ft-bgs)
- manganese, which was not detected in the 0 to 3 in-bgs sample collected from TP-05
- free cyanide was not detected in the samples collected from TP-05

The concentrations reported for constituents detected in the samples collected from TP-01 were similar for all samples, although slightly higher concentrations were typically reported for samples collected from 0 to 2 ft-bgs. Notable decreases in concentrations with increased sample depth were observed for calcium, total chromium, molybdenum, and nickel.

The concentrations reported for constituents detected in samples collected from TP-05 were similar for all samples, although slightly higher concentrations were typically reported for samples collected from 0 to 2 ft-bgs (and not 0 to 3 in-bgs). Notable decreases in concentrations with increased sample depth were observed for calcium and lead.

Two soil samples collected from TP-05 were selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were not detected in the extract. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

Section:

4.0 Revision:

Date:

10/22/98

Page:

33 of 76

Concentrations for approximately one-half of constituents detected in samples collected from TP-10 were similar for both samples (0 to 2 ft-bgs and 8 to 9 ft-bgs). Notable changes in concentrations of detected constituents with sample depth were observed for some metals:

- decrease in concentration with increased sample depth
  - cadmium
  - cobalt
  - total chromium
  - copper
  - iron
  - manganese
  - molybdenum
  - nickel
  - vanadium
- increase in concentration with increased sample depth
  - barium
  - calcium
  - potassium

The 8 to 9 ft-bgs sample collected from TP-10 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were not detected in the extract. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

TCL SVOCs were not detected in the samples collected from TP-01. SVOC TICs, however, were detected in each of the three samples at these total concentrations:

- 0 to 2 ft-bgs at 26,560 μg/kg
- 3 to 4 ft-bgs at 23,010 µg/kg
- 8 to 9 ft-bgs at 23,040 μg/kg

TCL SVOCs were detected in each of the samples collected from TP-05, except the deepest sample collected (from 8 to 9 ft-bgs). SVOC TICs were detected in each of the samples, except the 0 to 2 ft-bgs sample which was not evaluated for TICs:

Section:

4.0 Revision:

Date: Page: 10/22/98 34 of 76

• 0 to 3 in-bgs

- total PAHs at 12,170 µg/kg
- dimethyl phthalate at 2,600 µg/kg
- total SVOC TICs at 36,490 μg/kg
- 0 to 2 ft-bgs
  - total PAHs at 12,750 µg/kg
  - dibenzofuran at 600 µg/kg
- 2 to 3 ft-bgs
  - total PAHs at 2,870 μg/kg
  - total SVOC TICs at 20,840 μg/kg
- 8 to 9 ft-bgs
  - total SVOC TICs at 25,980 μg/kg

Fluoranthene, a PAH, was the only TCL SVOC detected in the 0 to 2 ft-bgs sample collected from TP-10. No TCL SVOCs were detected in the 8 to 9 ft-bgs sample collected from this location. SVOC TICs were detected in both samples, however, at total concentrations of 20,080 and  $25,730 \mu g/kg$ .

Soil samples collected from Test Pits TP-05 and TP-10 were each submitted for analysis of total phenols. Phenols were not detected in any of these samples.

#### 4.3.2.4 AOC 8 - Former Coal Storage Area

Boring RB-03 was completed in the vicinity of the former coal pile storage area, as shown in Figure 2-1. Two soil samples were collected from this location: 0 to 3 in-bgs and 0 to 2 ft-bgs. Both samples were submitted for analysis of TAL Inorganics (plus molybdenum); the 0 to 2 ft-bgs sample was also submitted for analysis of TCL SVOCs.

Each of the TAL Inorganics was detected in both samples, except:

- selenium and thallium, which were not detected in any samples
- silver and total cyanide, which were not detected in the 0 to 2 ft-bgs sample; the results for the sample collected from 0 to 3 in-bgs were rejected
- mercury, which was not detected in the 0 to 2 ft-bgs sample, but was detected in the 0 to 3 in-bgs sample

Date:

10/22/98

4.0

Page:

35 of 76

The concentrations reported for detected metals in both samples were generally similar. Notable changes in constituent concentrations with sample depth were observed for some metals:

- decrease in concentration with increased sample depth
  - barium
  - calcium
  - potassium
- increase in concentration with increased sample depth
  - total chromium
  - lead
  - vanadium

TCL SVOCs were detected in the sample collected from RB-03 at 0 to 2 ft-bgs. PAHs were detected at a total concentration of 14,480  $\mu$ g/kg and dibenzofuran was detected at a concentration of 1,000  $\mu$ g/kg. The total SVOC TIC concentration in this sample was 8,960  $\mu$ g/kg.

#### 4.3.2.5 AOC 11 - Former Coal Gasification Plant

Soil Boring RFI-06 was completed proximate to this unit (Figure 2-1). Soil samples were collected from this location at 0 to 3 in-bgs and 2 to 4 and 4 to 6 ft-bgs. Each of the samples was submitted for analysis of TAL Inorganics (plus molybdenum and free cyanide), TCL SVOCs, and select miscellaneous parameters.

Each of the TAL Inorganics was detected in all of the soil samples, except silver, mercury, selenium, and thallium, and free cyanide (which were not detected in any samples). Total cyanide was not detected in the 0 to 3 in-bgs samples, and the total cyanide data for the two subsurface samples were rejected by the data validator.

The concentrations reported for most of the detected constituents were similar for all samples. Notable changes in concentration of detected metals with sample depth were observed. Total chromium, molybdenum, and nickel concentrations decreased with increased sample depth. Barium, calcium, and potassium concentrations increased with increased sample depth.

TCL SVOCs (PAHs) were detected in each of the samples collected from this location, excluding the deepest sample which was collected from 4 to 6 ft-bgs. SVOC TICs were detected in all of the samples.

Section:

4.0 Revision: 0

Date:

10/22/98

Page:

36 of 76

- 0 to 3 in-bgs
  - total PAHs at 17,490 μg/kg
  - carbazole at 310 µg/kg
  - total SVOC TICs at 87,210 µg/kg
- 0 to 3 in-bgs (duplicate)
  - total PAHs at 20,050 µg/kg
  - carbazole at 370 µg/kg
  - total SVOC TICs at 90,840 μg/kg
- 2 to 4 ft-bgs
  - total PAHs at 2,600 μg/kg
  - total SVOC TICs at 4,599 µg/kg
- 4 to 6 ft-bgs
  - total SVOC TICs at 2,645 μg/kg

Each of the samples collected from this location was submitted for analysis of total phenols. Total phenols was not detected in any samples. The sample collected from 0 to 3 inbgs was also analyzed for TPH. TPH was detected in this sample at a concentration of 15 mg/kg.

## 4.3.3 CAMU Locations

#### 4.3.3.1 CAMU A - Former LAP West Pickling Facility

This CAMU includes the following units:

- SWMU 1 Former LAP West Pickle Facility, including
  - Pit 3, Drawing Oil Pit
  - Pit 5. LAP West Pickle Pits
  - Pit 12, Lime Pits
  - Pit 13, Lime Pump Pits
- SWMU 6 Former Barium Chloride Bath
  - SWMU 7B Continuous Lead Coating (Plating) Operation
  - SWMU 7C Batch Lead Coating
  - SWMU 8 Former LAP Neutralization Plant
  - AOC 2G Battery Storage Area

Both exterior and interior soil borings were completed in this area. Two soil borings (RB-04 and RB-05) were completed between the LAP building and Lucas Avenue and proximate to the processes waste handling areas (Figure 2-1). Four soil borings (LWB-01

Date:

10/22/98 37 of 76

4.0

Page:

through LWB-04) were completed within the building, proximate to the area of the former pickle tanks (Appendix B, Figure B-1).

## Exterior Borings

Four samples were collected from each of the RB-series borings at depths ranging from the ground surface to a maximum of 10 ft-bgs. Each of these samples was submitted for analysis of the TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide) and select miscellaneous parameters; the deepest sample collected from RB-04 (7 to 9 ft-bgs) was also submitted for analysis of TCL PCBs.

Each of the inorganics (metals and cyanide) was detected in all eight soil samples collected from this area, except as follows:

- selenium, thallium, and free cyanide, which were not detected in any samples
- silver, which was not detected in any of the samples collected from RB-04, but was detected in all of the samples collected from RB-05 (the silver results for both of the 0 to 3 in-bgs samples were rejected)
- mercury, which was not detected in any of the samples, except the 2 to 4 ft-bgs sample collected from RB-05
- total cyanide, which was not detected in any of the samples, except the 0 to 2 ft-bgs collected from RB-04 and the 0 to 3 in-bgs sample collected from RB-05 (the 0 to 3 in-bgs sample from RB-04 was rejected)

Hexavalent chromium was detected in the two shallow samples collected from RB-04 and in each of the samples collected from RB-05:

- **RB-04** 
  - 0 to 3 in-bgs at 16.1 mg/kg
  - 0 to 2 ft-bgs at 7.8 mg/kg
- RB-05
  - 0 to 3 in-bgs at 3.97 mg/kg
  - 0 to 2 ft-bgs at 28.2 mg/kg
  - 2 to 4 ft-bgs at 42.4 mg/kg
  - 8 to 10 ft-bgs at 26.5 mg/kg

The concentrations reported for samples collected from Boring RB-04 were generally consistent. Notable changes in concentrations with sample depth were observed. Total and

4.0 0

Date: Page:

10/22/98 38 of 76

hexavalent chromium and antimony concentrations decreased with increased sample depth.

Calcium and potassium concentrations increased with increased sample depth.

Two soil samples collected from RB-04 (0 to 2 and 7 to 9 ft-bgs) were selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were typically not detected in the extract or were detected at concentrations well below the TC limits. Lead, however, was detected at a concentration of 97 mg/l in the sample collected from 0 to 2 ft-bgs which exceeds the TC limit of 5 mg/l. Groundwater data for nearby wells LAW-05 and LAW-06 indicate lead was not present at detectable concentrations, nor was it detected at the detection limit. Consequently, despite the presence of lead in the soil extract at a concentration above the TC limit, groundwater does not appear to be affected.

The concentrations reported for samples collected from Boring RB-05 were generally consistent. Notable changes in concentrations with sample depth were observed. Barium, calcium, and nickel concentrations decreased with increased sample depth. Sodium concentrations increased with increased sample depth.

TCL PCBs were not detected in the subsurface soil sample collected from RB-04 (7 to 9 ft-bgs).

Each of the samples collected from RB-04, excluding the 0 to 3 in-bgs sample, and each of the samples collected from RB-05 was submitted for analysis of pH and TOC. The results for samples collected from RB-04 were generally consistent, with a pH range of 7.54 to 8.48 s.u. and a TOC range of 2.5 to 3.2 mg/l. pHs for samples collected from RB-5 ranged from 4.03 to 9.93 s.u.

TOC concentrations for the RB-05 samples ranged from 2.5 to 10 mg/l. pH and TOC concentrations for samples collected from RB-05 increased with depth.

#### Interior Borings

Four borings were completed within the former LAP West Pickle Facility: LWB-1 through LWB-4. Two soil samples were collected from each of these locations at depths from the ground surface (immediately underlying the concrete floor) to 8 ft-bgs. Each of these samples was submitted for analysis of the TC metals (arsenic, barium, cadmium, total chromium, copper, mercury, lead, and selenium), hexavalent chromium, total and free cyanide, and pH (Table 4-8).

Section: 4.0 Revision: 0

Date: 10/22/98 Page: 39 of 76

Each of the metals was detected in at least one of the samples collected from these borings, except:

- selenium and total and free cyanide, which were not detected in any of the samples
- mercury, which was only detected in the sample collected from LWB-04 at a depth of 0 to 2 ft-bgs
- silver, which was not detected in one-half of the samples collected

Similar concentrations of the detected constituents were reported for the two samples collected from LWB-01 (2 to 4 ft-bgs and 6 to 8 ft-bgs) and for the shallow samples collected from the remaining borings. For Borings LWB-02, LWB-03, and LWB-04, the highest concentrations reported in the deeper soil samples (i.e., 6 to 8 ft-bgs).

Hexavalent chromium was detected in each of the samples collected from LWB-01 and LWB-02. The hexavalent chromium concentrations for both locations increased with sample depth:

- concentrations in the LWB-01 samples increased with depth from 11.5 to 61.6 mg/kg
- concentrations in the LWB-02 samples increased from 11.4 mg/kg to 1,900 mg/kg

Hexavalent chromium was not detected in the shallow samples collected from LWB-03 and LWB-04 (0 to 2 ft-bgs), but was detected in the samples collected from 6 to 8 ft-bgs:

- LWB-03 at 3,510 mg/kg
- LWB-04 at 280 mg/kg

The 6 to 8 ft-bgs sample collected from LWB-03 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were not detected in the extract or were detected at concentrations well below the TC limits, except for total chromium. Total chromium was detected in the extract at a concentration of 17 mg/l which exceeds the TC limit of 5 mg/l. Total chromium was detected in groundwater samples collected from downgradient wells LAW-05 and LAW-06. This suggests the presence of total chromium at higher concentrations in the soil may be affecting groundwater quality.

4.0

Date:

10/22/98 40 of 76

Page:

pHs for samples collected from these borings were typically basic, but increased significantly between sample depths. The range of pHs was as follows:

- LWB-01 7.92 to 11.06 s.u.
- LWB-02 3.52 to 10.89 s.u.
- LWB-03 8.56 to 10.73 s.u.
- LWB-04 8.11 to 10.04 s.u.

## 4.3.3.2 CAMU B - Former BRP Pickling Facility

This CAMU represents SWMU 2, Former BRP Pickle Facility, which includes:

- Pit 1, BRP Pickle Pit
- Pit 2, BRP Spent Acid Pit
- Pit 10, Olson Quench Pit
- Pit 11, Olson Pump Pit

Both exterior and interior soil borings were completed to evaluate this area. Boring RFI-13, the only exterior boring, was completed west of the Former BRP Pickle Facility (Figure 2-1). Two soil borings (BRB-01 and BRB-03) were completed immediately west of the former inground tank area within the pickling facility (Appendix B, Figure B-2).

#### Exterior Boring

Soil samples were collected from RFI-13 at depths of 0 to 3 in-bgs an 4 to 6 and 16 to 18 ft-bgs. Samples collected from these locations were submitted for analysis of TAL Inorganics (plus molybdenum and free cyanide; analysis for hexavalent chromium was only performed for the subsurface soil samples) and select miscellaneous parameters.

Each of the inorganic constituents was detected in all soil samples collected from this area, except mercury, selenium, thallium, and total and free cyanide (which were not detected in any of the samples). Silver was detected in three of the samples; however, silver data from the 4 to 6 ft-bgs sample was rejected.

Hexavalent chromium was detected in both subsurface soil samples: 2.91 mg/kg in the 4 to 6 ft-bgs sample, and 6.31 mg/kg in the 16 to 18 ft-bgs sample.

The concentrations reported for samples collected from Boring RFI-13 were generally consistent for approximately one-half of the detected metals. Notable changes in concentrations with sample depth included:

10/22/98 Date:

Page: 41 of 76

- decrease in concentration with increased sample depth
  - beryllium
  - calcium
  - total chromium
  - magnesium
  - manganese
  - nickel
- increase in concentration with increased sample depth
  - arsenic
  - iron

Each of the samples collected from this location was submitted for analysis of TPH; the subsurface samples were also analyzed for pH and the surficial soil sample (0 to 3 in-bgs) was analyzed for total phenols.

- TPH was only detected in the surficial soil sample (0 to 3 in-bgs) at 80 mg/kg.
- pHs ranged from 8.11 to 8.39 s.u.
- Total phenols was not detected.

#### Interior Borings

Soil samples were collected at BRB-01 from 0 to 2 (ground surface being immediately underlying the concrete flooring), 2 to 4, and 15 to 17 ft-bgs. One soil sample was collected from BRB-03 at 1 to 3 ft-bgs. Each of these samples was submitted for analysis of the TC metals (arsenic, barium, cadmium, total chromium, copper, mercury, lead, and selenium), hexavalent chromium, total and free cyanide, and pH.

Each of the metals was detected in all of the samples collected from borings, except for mercury and selenium and total and free cyanide (which were not detected in any of the samples). Hexavalent chromium was only detected in the 2 to 4 ft-bgs sample from BRB-01 (64.1 mg/kg) and the 1 to 3 ft-bgs sample from BRB-03 (3.86 mg/kg). The concentrations reported for samples collected from BRB-01 were generally consistent for approximately onehalf of the detected metals. Notable changes in concentrations with sample depth were observed for two metals and total chromium. Cadmium, copper, and total chromium concentrations decreased with increased sample depth. There were no trends in sample concentrations between BRB-01 and BRB-03.

Date: 10/22/98 42 of 76

Page:

pHs for samples collected from these borings varied widely between sample depths and the two boring locations. pHs of 4.48 to 8.55 s.u. were reported for samples collected from BRB-01; a pH of 10.32 was reported for the single sample collected from BRB-03.

## 4.3.3.3 CAMU C - BFS Pickling Facility

This CAMU represents SWMU 3, BFS Pickling Facility, including Pit 25, BFS Pickle Pump Pits. Two soil borings were completed within the yard of the BFS Pickling Facility: RFI-07 and RFI-17 (Figure 2-1). A total of five soil samples were collected from these borings at depths ranging from ground surface to a maximum of 8 ft-bgs. Samples collected from these locations were submitted for analysis of TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide) and select miscellaneous parameters.

Each of these constituents was detected in all soil samples collected from this area, except:

- mercury, selenium, thallium, and free cyanide, which were not detected in any samples
- total cyanide, which was not detected in the 6 to 8 ft-bgs sample collected from RFI-07 nor in the 2 to 4 ft-bgs sample from RFI-17 but was detected in the 0 to 3 in-bgs and 2 to 4 ft-bgs sample collected from RFI-07 and the 6 to 8 ft-bgs sample collected from RFI-17
- silver, which was detected in each of the samples, except the 2 to 4 ft-bgs sample collected from RFI-17 (the silver data for the 0 to 3 in-bgs sample from RFI-07 was rejected)

Hexavalent chromium was detected in the 0 to 3 in-bgs sample collected from RFI-07 at a concentration of 12.7 mg/kg, but was not detected in the two subsurface samples collected from this location nor the two samples collected from RFI-17.

The concentrations reported for samples collected from Boring RFI-07 were generally consistent. Notable changes in concentrations with sample depth were observed. Total chromium, manganese, molybdenum, nickel, and vanadium concentrations decreased with increased sample depth.

The concentrations reported for the two samples collected from Boring RFI-17 were consistent. Notable changes in concentrations with sample depth were observed for three metals.

Section:

Revision: 0 Date: 10/22/98

Date: Page:

43 of 76

4.0

Zinc concentrations decreased with increased sample depth. Sodium and magnesium concentrations increased with increased sample depth.

The 0 to 3 in-bgs sample collected from RFI-07 was analyzed for pH and TPH; the remaining two samples collected from RFI-07 and all of the samples collected from RFI-17 were analyzed for pH.

- TPH was detected in the surficial soil sample collected from RFI-07 at a concentration of 92 mg/kg.
- pHs for samples collected from both borings ranged from 7.94 to 8.27 s.u.

## 4.3.3.4 CAMU D - Former LAP East Pickling Facility

This CAMU includes:

- SWMU 4, Former LAP East Pickle Facility, including Pit 4, LAP East Pickle Pits
- SWMU 7A, Continuous Lead Coating
- SWMU 7D, Copper Coating

One exterior and three interior borings were completed in this general area. Boring RFI-05 was completed immediately northeast of this portion of LAP to facilitate the installation of a downgradient monitoring well (Figure 2-1). Two borings were completed indoors at locations proximate to the former coating operations (LEB-01 and LEB-02) and one was completed proximate to the former 1,1,1-trichloroethane degreaser (LEB-03) (Appendix B, Figure B-3)).

## **Exterior Boring**

Soil samples were collected from RFI-05 at 0 to 3 in-bgs and 2 to 4 and 12 to 14 ft-bgs. Each of these samples was submitted for analysis of TAL Inorganics (plus molybdenum) and select miscellaneous parameters. Analysis for hexavalent chromium, free cyanide, and TCL VOCs was performed for the subsurface soil samples collected from this location.

Each of the inorganics (metals and cyanide) was detected in all soil samples collected from RFI-05, except:

- mercury, selenium, and thallium, which were not detected in any samples
- silver, which was not detected in the sample collected from 12 to 14 ft-bgs (nor the duplicate collected from 2 to 4 ft-bgs), but was detected in the 2 to 4 ft-bgs sample; the result for the 0 to 3 in-bgs sample was rejected

Date:

10/22/98

Page:

44 of 76

4.0

• total cyanide, which was not detected in the subsurface soil samples, but was detected in the 0 to 3 in-bgs sample

• free cyanide, which was not detected in the sample collected from 2 to 4 ft-bgs or duplicate, was detected in the sample collected from 12 to 14 ft-bgs

Hexavalent chromium was not detected in the soil samples collected from RFI-05.

The concentrations reported for samples collected from Boring RFI-05 were generally consistent. Notable decreases in concentrations with increased sample depth were observed for several metals, including:

- total chromium
- manganese
- molybdenum
- nickel
- lead

The sample which contained the highest concentrations of the majority of the detected metals was the 0 to 3 in-bgs sample. Each of the constituents detected in a sample collected from this location, was detected at concentrations above background in one or more samples, particularly for the 0 to 3 in-bgs sample.

TCL VOCs were detected in both of the subsurface samples from RFI-05 submitted for analysis:

- 2 to 4 ft-bgs
  - 2-butanone at 3 μg/kg
  - trichloroethene at 0.5 μg/kg
  - total xylenes at 0.3 μg/kg
- 12 to 14 ft-bgs
  - carbon disulfide at 9 µg/kg
  - 2-butanone at 8 µg/kg
  - trichloroethene at 1 µg/kg
  - chlorobenzene at 4 μg/kg
  - total xylenes at 1.1 µg/kg

VOC TICs were detected in the 2 to 4 ft-bgs sample at a total concentration of 10 μg/kg. No VOC TICs were detected in the sample collected from 12 to 14 ft-bgs.

Section: 4.0 Revision: 0

Date: Page: 10/22/98 45 of 76

Γ.

Each of the samples collected from RFI-05 was submitted for analysis of TPH, total phenols; each of the subsurface samples was analyzed for pH and TOC.

- TPH was not detected. The results for the 2 to 4 and 12 to 14 ft-bgs samples were rejected.
- pHs in the subsurface samples ranged from 6.93 to 7.83 s.u.
- Total phenols were not detected in any samples.
- TOC was detected in the subsurface samples at concentrations of 2.9 to 4.3 mg/l.

#### Interior Borings

Two soil samples each were collected from LEB-01 (2 to 4 and 8 to 10 ft-bgs) and from LEB-02 (6 to 8 and 8 to 10 ft-bgs); three samples were collected from LEB-03 (0 to 2, 7 to 9, and 11 to 13 ft-bgs). Each of these samples was submitted for analysis of the TC metals (arsenic, barium, cadmium, total chromium, copper, mercury, lead, and selenium), hexavalent chromium, total and free cyanide, TCL VOCs, and select miscellaneous parameters.

Each of the TC metals and cyanide was detected in at least one of the samples collected from these borings, except:

- hexavalent chromium and selenium, which were not detected in any samples
- mercury, which was not detected in the majority of the samples; mercury was detected in the 7 to 9 ft-bgs sample collected from LEB-03, but was not detected in the duplicate of this sample
- silver, which was detected in approximately one-half of the samples
- total and free cyanide, which were only detected in the two samples collected from LEB-02

Samples collected from LEB-01 and LEB-03 indicated slight decreases in constituent concentrations with increased sample depth. Concentrations of constituents detected in the LEB-02 samples were similar to one another. Between the three locations there was little variation in constituent concentrations, except for a total chromium concentration of 2,300 mg/kg in the 0 to

Section: 4.0 Revision: 0

Date: 10/22/98 Page: 46 of 76

2 ft-bgs sample collected from LEB-03; total chromium concentrations for other samples were ranged from 13 to 110 mg/kg.

TCL VOCs were detected in each of the samples collected from these borings, except for the 8 to 10 ft-bgs samples collected from LEB-01 and LEB-02. VOC TICs were detected in most samples. The TCL VOC and total VOC TIC concentrations were as follows:

- LEB-01
  - 2 to 4 ft-bgs
    - trichloroethene at 87  $\mu$ g/kg (570  $\mu$ g/kg for the duplicate)
    - total VOC TICs at 670 μg/kg
  - 8 to 10 ft-bgs
    - total VOC TICs at 260 µg/kg
- LEB-02
  - 6 to 8 ft-bgs
    - cis-1,2-dichloroethene at 39 μg/kg
    - trichloroethene at 110 μg/kg
    - total VOC TICs at 690 μg/kg
  - 8 to 10 ft-bgs
    - total VOC TICs at 130 μg/kg
- LEB-03
  - 0 to 2 ft-bgs
    - cis-1,2-dichloroethene at 28 μg/kg
    - trichloroethene at 97 μg/kg
    - total VOC TICs at 0 μg/kg
  - 7 to 9 ft-bgs
    - vinyl chloride at 24 μg/kg
    - cis-1,2-dichloroethene at 870 μg/kg
    - trichloroethene at 160 μg/kg
    - total VOC TICs at 16 μg/kg
  - 11 to 13 ft-bgs
    - vinyl chloride at 220 μg/kg
    - 1,1-dichloroethene at 41 μg/kg
    - trans-1,2-dichloroethene at 230 μg/kg
    - cis-1,2-dichloroethene at 1,500 μg/kg
    - trichloroethene at 17,000 μg/kg
    - total VOC TICs at 7,230 μg/kg

Each of the samples collected from these interior borings was analyzed for pH and TOC.

4.0

Date:

10/22/98 47 of 76

Page:

pHs were fairly consistent with a range of 6.92 to 8.85 s.u. for most samples. A pH of 9.78 s.u. was reported in the 0 to 2 ft-bgs sample from LEB-03.

TOC was detected in each sample with a range in concentrations of 2.4 to 7.7 mg/l.

## 4.3.4 General Site Locations

Ground surface and perimeter soil samples were collected from seven locations to provide supplemental areal coverage for the site. The ground surface locations (GS-03, GS-04, and GS-05) and perimeter locations (RFI-01, RFI-08, RFI-12, and RFI-16) are shown in Figure 2-1.

## 4.3.4.1 Ground Surface Locations

Each of the samples collected from these locations was analyzed for TAL Inorganic (plus molybdenum, hexavalent chromium, and free cyanide) and select miscellaneous parameters.

Each of the TAL Inorganics was detected in all three samples, except as follows:

- mercury, selenium, thallium, and free cyanide, which were not detected in any samples
- arsenic, which was not detected in the sample from GS-03
- silver and total cyanide, which were not detected in the samples from GS-04 and GS-05

Hexavalent chromium was detected in the samples collected from GS-03 and GS-04 at concentrations of 4.01 and 9.45 mg/kg.

The sample collected from GS-03 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were typically not detected in the extract or were detected at concentrations well below the TCLP limits. Consequently, the presence of metals at higher total concentrations does not appear to indicate a significant potential to impact site groundwater quality.

Each of these samples was analyzed for TPH, pH, and total phenols.

- TPH results for GS-03 were rejected by the data validator. Concentrations of 20 and 32 mg/kg were detected in the samples collected from GS-04 and GS-05
- pHs for these samples ranged from 7.77 to 8.58 s.u.

Section:

4.0 Revision:

Date: Page: 10/22/98 48 of 76

Total phenols was not detected in any of the samples.

4.3.4.2 Site and Perimeter Locations

Four soil borings were completed to facilitate the subsequent installation of a perimeter

groundwater monitoring network and are therefore not associated with specific units. The

locations of these borings/wells (RFI-01, RFI-08, RFI-12, and RFI-16) are shown in Figure 2-1.

TAL Inorganics

Soil samples collected from each of these four locations were submitted for analysis of

TAL Inorganics (plus molybdenum); select samples from some locations were also analyzed for

hexavalent chromium, free cyanide, or both.

RFI-01 - Soil samples were collected from RFI-01 at 0 to 3 in-bgs and 4 to 6 and 10 to 12 ft-

bgs. All of the samples were analyzed for TAL Inorganics (plus molybdenum and hexavalent

chromium); the subsurface samples were also analyzed for free cyanide. Each of these

constituents was detected in all of these samples collected from this location, except:

• selenium, thallium, total and free cyanide, which were not detected in any samples

• mercury which was not detected in the subsurface samples but was detected in the 0

to 3 in-bgs sample

Hexavalent chromium was not detected in the samples collected from 0 to 3 in-bgs nor 10 to 12

ft-bgs. However, hexavalent chromium was detected at a concentration of 21.4 mg/kg in a fill

sample collected from 4 to 6 ft-bgs.

The reported concentrations were similar for all samples, although the majority of

constituents were detected at the highest concentration in the sample collected from 4 to 6 ft-bgs.

Notable changes in concentrations with sample depth were observed, including:

• decrease in concentration with increased sample depth

- total chromium

- molybdenum

- nickel

- lead

Date: Page:

10/22/98 49 of 76

4.0

- increase in concentration with increased sample depth
  - calcium
  - potassium
  - magnesium
  - sodium
  - zinc

RFI-08 - Soil samples were collected from RFI-08 at 0 to 3 in-bgs and 5 to 7 ft-bgs. Each sample was analyzed for the TAL Inorganics (plus molybdenum and free cyanide); the 5 to 7 ftbgs sample was also submitted for analysis of hexavalent chromium. Each of these constituents was detected in all samples collected from this location, except as follows.

- mercury, thallium, and free cyanide, which were not detected
- silver, which was not detected in the 5 to 7 ft-bgs sample, but was detected in the sample and duplicate collected from 0 to 3 in-bgs
- arsenic, which was not detected in the 0 to 3 in-bgs sample or duplicate, but was detected in the 5 to 7 ft-bgs sample
- selenium, which was not detected in either of the samples, was detected in the 0 to 3 in-bgs duplicate
- total cyanide was not detected in the 5 to 7 ft-bgs sample or the duplicate 0 to 3 inbgs; however, the total cyanide data for the 0 to 3 in-bgs sample was rejected by the data validator

Hexavalent chromium was not detected in the sample collected from 5 to 7 ft-bgs.

Similar concentrations were reported in both samples for approximately one-half of the metals. The majority of detected constituents were detected at the highest concentration in the sample or duplicate collected from 0 to 3 in-bgs. Notable changes in constituent concentrations with sample depth were observed, including:

Date: 10/22/98

Page:

50 of 76

4.0

- decrease in concentration with increased sample depth
  - cadmium
  - cobalt
  - total chromium
  - copper
  - manganese
  - molybdenum
  - nickel
  - lead
  - antimony
- increase in concentration with increased sample depth
  - arsenic
  - potassium

The 0 to 3 in-bgs sample collected from RFI-08 was selected for TCLP extraction and analysis of the extract based on higher total concentrations of some metals (Table 4-3). TC metals were typically not detected in the extract, except lead. Lead was detected in the extract at a concentration of 9.6 mg/l; the TC limit is 5 mg/l. Lead was detected in groundwater samples collected from RFI-08, although the reported concentrations were below all potentially applicable limits (Section 6.0)

<u>RFI-12</u> - Soil samples were collected from RFI-12 at 0 to 3 in-bgs and 2 to 4 and 14 to 16 ft-bgs. Each sample was analyzed for the TAL Inorganics (plus molybdenum); analysis for hexavalent chromium and free cyanide was performed on the subsurface soil samples. Each of these constituents was detected in all samples collected from this location, except for silver, mercury, selenium, thallium, total and free cyanide (which were not detected in any samples). Hexavalent chromium was only detected in the 2 to 4 ft-bgs samples collected from this location; the reported concentration was 3.45 mg/kg.

Similar concentrations of these metals were reported for all collected samples from this location, except:

- manganese and nickel for which concentrations decreased with increased with sample depth
- iron and barium for which concentrations increased with increased sample depth.

Date: 10/22/98

Page: 51 of 76

RFI-16 - Soil samples were collected from RFI-16 at 0 to 3 in-bgs and 4 to 6 and 14 to 15 ftbgs. Each sample was analyzed for the TAL Inorganics (plus molybdenum). Each of these constituents was detected in all samples collected from this location, except:

- mercury, selenium, thallium, and total cyanide, which were not detected in any samples
- silver, manganese, and antimony, which were not detected in the 0 to 3 in-bgs sample, but were detected in the samples collected from 4 to 6 and 14 to 15 ft-bgs
- vanadium, which was detected in all of the samples except that collected from 14 to 15 ft-bgs

Less than one-half of the detected constituents were detected at similar concentrations in each of the samples. The highest concentrations of detected constituents were detected in the sample collected from 0 to 3 in-bgs. Consistent with these observations, notable decreases in concentration with increased sample depth occurred for the following constituents:

- aluminum
- barium
- beryllium
- calcium
- cobalt
- total chromium
- copper
- magnesium
- molybdenum
- nickel
- vanadium

A notable increase in concentration with increased sample depth was only observed for arsenic.

# TCL SVOCs

The only soil samples collected from these locations for analysis of TCL SVOCs were the surficial soil sample (and duplicate) from RFI-08 (0 to 3 in-bgs). The data indicated the presence of PAHs and SVOC TICs in both the sample and duplicate at these concentrations:

- 0 to 3 in-bgs (sample)
  - total PAHs at 37,500 µg/kg
  - total SVOC TICs at 3,545 μg/kg

Section: 4.0 Revision: 0

Date: 10 Page: 52

10/22/98 52 of 76

- 0 to 3 in-bgs (duplicate)
  - total PAHs at 87,500 μg/kg
  - total SVOC TICs at 3,627 μg/kg

TCL SVOCs, other than PAHs, were not detected in this sample or duplicate.

#### TCL PCBs

The surficial soil sample from RFI-08 was the only perimeter soil sample collected for analysis of TCL PCBs. The results indicated that PCB Aroclors were not detected in the sample (the silver data for the 0 to 3 in-bgs sample and the 0 to 3 in-bgs duplicate were rejected).

#### Miscellaneous Parameters

Each perimeter soil sample was analyzed for select miscellaneous parameters.

<u>RFI-01</u> - Each of the three soil samples collected from this location was analyzed for TPH and pH; the subsurface samples were also analyzed for total phenols.

- TPH was not detected in the sample collected from 4 to 6 and 10 to 12 ft-bgs, but was detected at concentration of 9.9 mg/kg in sample collected from 0 to 3 in-bgs.
- pHs ranged from 7.09 to 8.11 s.u.
- Total phenols was not detected in any samples.

<u>RFI-08</u> - Both samples collected from this location were submitted for analysis of TPH, pH, and total phenols; analysis for TOC was also performed for the sample collected from 0 to 3 inbgs.

- TPH was detected in the 0 to 3 in-bgs duplicate and the 5 to 7 ft-bgs sample at concentrations of 130 and 35 mg/kg, but was not detected in the sample collected from 0 to 3 in-bgs.
- pHs ranged from 8.03 to 8.73 s.u.
- Total phenols was not detected in any samples.
- TOC was detected in the sample and duplicate 0 to 3 in-bgs.

<u>RFI-12</u> - Each of the three soil samples collected from RFI-12 was submitted for analysis of TPH and total phenols; the subsurface samples were also analyzed for pH.

4.0

Date:

10/22/98

Page:

e: 53 of 76

• TPH was detected in each of the samples at concentrations of 10 to 97 mg/kg

• pHs ranged from 7.82 to 8.05 s.u.

• Total phenols was not detected in any samples.

<u>RFI-16</u> - The subsurface soil samples collected from this location were submitted for analysis of TPH, pH, and total phenols; the surficial soil sample was only analyzed for total phenols.

- TPH was detected in the 4 to 6 and 14 to 15 ft-bgs samples at concentrations of 31 and 110 mg/kg, but was not detected in the surficial soil sample.
- pHs ranged from 8.45 to 8.77 s.u.
- Total phenols was detected in the 14 to 15 ft-bgs sample at a concentration of 0.11 mg/kg.

#### 4.4 Site Groundwater

Groundwater samples were collected from each of the newly installed RFI-series wells and select existing site wells in November 1996 (Round 1) and March 1997 (Round 2). As stated previously, samples collected during Round 1 were submitted for analysis of TAL Inorganics (including hexavalent chromium, molybdenum, and free cyanide), <sup>3</sup> TCL VOCs, TCL SVOCs, TCL PCBs, and miscellaneous parameters (including pH, total alkalinity, total phenolics, chloride, fluoride, nitrate, sulfate, ammonia, and specific conductance and field testing for temperature and turbidity). The Round 2 analytical program was reduced based on the results of the Round 1 sampling event (Section 2). Generally, the Round 2 analytical program included TAL Inorganics and miscellaneous parameters for all samples and analysis for TCL VOCs and SVOCs for a limited number of samples.

The groundwater sample analytical results are discussed in the following sections. The various sections were developed based on the locations of the wells, as follows:

<sup>&</sup>lt;sup>3</sup> All groundwater samples were analyzed for TAL Inorganics, plus molybdenum, hexavalent chromium, and free cyanide. For simplification, this list of parameters is subsequently referred to as TAL Inorganics.

Revision: 0 Date: 10/22/98

Page:

54 of 76

4.0

• SWMU 16 - Willowbrook Pond

- SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewater Treatment Plant Areas
- CAMU A Former LAP West Pickling Facility
- CAMU B Former BRP Pickling Facility
- CAMU C BFS Pickling Facility
- CAMU D Former LAP East Pickling Facility
- general site and perimeter monitoring wells

Abridged, validated groundwater analytical data are presented in Tables 4-9 through 4-12. All of the TAL Inorganic and TCL PCB results are presented in Tables 4-9 and 4-12. The TCL VOC and TCL SVOC tables (Tables 4-10 and 4-11) include only those constituents which were detected in one or more groundwater samples collected during the Phase I RI. Unabridged data tables are presented in Appendix N.

The TAL Inorganic discussions focus on the presence of anticipated site-related metals, including total and hexavalent chromium, molybdenum, and nickel.

The groundwater potentiometric surface maps indicate that there are no true background monitoring locations at the site.

#### 4.4.1 SWMU 16 - Willowbrook Pond

Groundwater samples were collected from wells adjacent to Willowbrook Pond during both sampling events. Samples were collected from the two existing wells (WP-04 and WP-05) and two newly installed wells (RFI-14 and RFI-15) during Round 1. These samples were submitted for analysis of TAL Inorganics, TCL VOCs, TCL SVOCs, TCL PCBs, and miscellaneous parameters. Samples were also collected from WP-01, WP-02, RFI-14, and RFI-15 during Round 2 for analysis of TAL Inorganics and miscellaneous parameters and analysis of select samples for TCL VOCs, TCL SVOCs, and TCL PCBs. The Round 2 sampling program was expanded to include the collection of samples from WP-01, WP-02, and WP-03 due to the presence of TCL VOCs in the groundwater sample collected from WP-04, and an upgradient well, RFI-16, during Round 1.

Hexavalent chromium and total and free cyanide were only analyzed as total inorganics and are discussed concurrent with the dissolved inorganics results.

4.0

Date:

10/22/98 55 of 76

Page:

Groundwater samples collected during Round 1 were submitted for analysis of total metals; groundwater samples collected from RFI-14 and RFI-15 were also analyzed for dissolved metals. Only the results of analysis for the dissolved metals are discussed for these two wells, as these results are more representative of groundwater quality than those generated for the total aliquots having high turbidity.

Each of the TAL Inorganics was detected in one or more of the groundwater samples collected during Round 1, except:

- hexavalent chromium
- mercury
- thallium

These constituents were not detected in any Round 1 groundwater samples.

Total chromium was detected in groundwater samples collected from WP-04, RFI-14, and RFI-15 at concentrations of 0.028 mg/l, 0.022 mg/l, and 0.031 mg/l. Molybdenum was detected in groundwater samples collected from each of the wells:

- WP-04, at 0.48 mg/l
- WP-05, at 0.031 mg/l
- RFI-14, at 0.11 mg/l
- RFI-15, at 0.076 mg/l

Nickel was only detected in the groundwater samples collected from RFI-14 and RFI-15. The reported concentrations were 0.1 and 0.044 mg/l.

Groundwater samples collected during Round 2 were submitted for analysis of total metals; samples collected from RFI-14 and WP-05 were also analyzed for dissolved metals. Each of the TAL Inorganics was detected in the samples collected from these wells, except:

- silver
- total chromium
- hexavalent chromium
- cobalt
- mercury
- nickel
- antimony
- selenium
- vanadium

Section: 4.0 Revision: 0 Date: 10/22/98

Page: 56 of 76

These constituents were not detected in any Round 1 groundwater samples.

Molybdenum was detected in the samples collected from RFI-14 and WP-04 at concentrations of 0.056 and 0.04 mg/l.

In comparing the November data to the March data, the concentrations generally decreased in the wells for almost every constituent. This appears to be a result of lower turbidity in the samples during Round 2.

Groundwater samples were collected for TCL VOC analysis during both sampling events: Round 1 (RFI-14, RFI-15, and WP-04) and Round 2 (RFI-15, WP-01 through WP-04). TCL VOCs were only detected in samples collected from RFI-15 and WP-04 and no VOC TICs were detected in any of the samples. The detected constituents were comprised of chlorinated compounds:

|          | Sample  | Detected                                                          |                 |
|----------|---------|-------------------------------------------------------------------|-----------------|
| Location | Event   | Constituent                                                       | Results (μg/l)  |
| RFI-15   | Round 2 | trans-1,2-dichloroethene cis-1,2- dichloroethene trichloroethene  | 2<br>110<br>490 |
| WP-04    | Round 1 | trans-1,2- dichloroethene cis-1,2- dichloroethene trichloroethene | 2<br>130<br>190 |
|          | Round 2 | trans-1,2- dichloroethene cis-1,2- dichloroethene trichloroethene | 2<br>140<br>210 |

1,1-Dichloroethene, trans-1,2-dichloroethene, and cis-1,2-dichloroethene were detected at lower concentrations than trichloroethene and are, therefore, believed to be degradation products.

TCL SVOCs were not detected in the samples collected during Round 1 (RFI-14, RFI-15, WP-04, and WP-05) or in samples collected during Round 2 (WP-04). Total SVOC TICs were detected in all of the samples collected from these wells at concentrations of  $13 \mu g/l$  to  $644 \mu g/l$ .

TCL PCBs were not detected in the groundwater samples that were collected during Round 1 or in the sample collected from RFI-15 during Round 2.

The miscellaneous parameter data for Rounds 1 and 2 results indicated:

Section:

4.0

Revision: 0 Date: 10

10/22/98

Page:

57 of 76

- pHs ranged from 7.13 to 7.78 s.u.
- total alkalinity concentrations ranged from 128 to 422 mg/l
- total phenols was not detected in any samples
- chloride was detected in all samples at concentrations ranging from 21 to 110 mg/l
- fluoride was detected in all samples at concentrations ranging from 0.22 to 0.59 mg/l
- nitrate was detected in samples collected from RFI-14 and WP-05 at 0.11 mg/l
- sulfate was detected in all samples at concentrations ranging from 59 to 260 mg/l
- ammonia was detected in all samples at concentrations ranging from 0.39 to 2.2 mg/l, except those collected from WP-04 and RFI-14 in which ammonia was not detected during Round 2
- specific conductance ranged from 489 to 1,220 μmhos/cm

# 4.4.2 <u>SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewater Treatment Plant</u> <u>Areas</u>

Groundwater samples were collected from the following wells located proximate to these SWMUs during implementation of the Phase II RFI: WT-1A, WT-1B, WT-2, WT-3, WT-4, and RFI-09. The samples collected during Rounds 1 and 2 were submitted for analysis of TAL Inorganics, TCL VOCs, TCL SVOCs, and select miscellaneous parameters; samples collected during Round 1 were also analyzed for TCL PCBs.

All of the groundwater samples collected during Round 1 were analyzed for both total and dissolved TAL Inorganics. Each of these analyses was detected in one or more of the groundwater samples, except:

- arsenic
- hexavalent chromium
- mercury
- thallium
- free cyanide

These constituents were not detected in any Round 1 groundwater samples.

Date:

10/22/98 58 of 76

4.0

0

Page:

Total chromium, molybdenum, and nickel were detected in each of the groundwater samples collected from this SWMU during Round 1, except from RFI-09 (in which total chromium was not detected).

#### Reported Concentrations (mg/l)

|        | Total           |                   |               |
|--------|-----------------|-------------------|---------------|
| Well   | <u>Chromium</u> | <u>Molybdenum</u> | <u>Nickel</u> |
| RFI-09 | not detected    | 0.42              | 0.022         |
| WT-1A  | 0.026           | 0.32              | 0.066         |
| WT-1B  | 0.022           | 0.05              | 80.03         |
| WT-2   | 0.03            | 0.29              | 0.13          |
| WT-3   | 0.032           | 2.4               | 0.049         |
| WT-4   | 0.013           | 0.12              | 0.026         |

Groundwater samples collected during Round 2 were each analyzed for total metals; an aliquot was also collected from WT-1B for analysis of dissolved metals. Each of the TAL Inorganics analytes was detected in one or more of the groundwater samples, except:

- beryllium
- hexavalent chromium
- mercury
- vanadium
- total and free cyanide

These constituents were not detected in any Round 1 groundwater samples.

Molybdenum was the consistently detected in the groundwater samples collected from this SWMU during Round 2. Total chromium and nickel were detected with less frequency.

### Reported Concentrations (mg/l)

|             | Total           |                   |               |
|-------------|-----------------|-------------------|---------------|
| <u>Well</u> | <u>Chromium</u> | <u>Molybdenum</u> | <u>Nickel</u> |
| RFI-09      | not detected    | 0.41              | 0.031         |
| WT-1A       | 0.01            | 0.27              | 0.038         |
| WT-1B       | not detected    | 0.092             | not detected  |
| WT-2        | 0.027           | 0.22              | 0.068         |
| WT-3        | 0.013           | 1.7               | 0.05          |
| WT-4        | not detected    | 0.13              | not detected  |

Section: 4.0 Revision: 0 Date: 10/22/98

Page: 59 of 76

TCL VOCs and VOC TICs were detected in the groundwater samples collected from WT-2 during Rounds 1 and 2:

| Sample Round Round 1 | Detected Constituent vinyl chloride cis-1,2-dichloroethene trichloroethene | Concentration (µg/l) 18 51 8 |
|----------------------|----------------------------------------------------------------------------|------------------------------|
|                      | total VOC TICs                                                             | 100                          |
| Round 2              | vinyl chloride<br>trans-1,2-dichloroethene                                 | 21<br>3                      |
|                      | cis-1,2-dichloroethene                                                     | 64                           |
|                      | trichloroethene                                                            | 9                            |
|                      | total VOC TICs                                                             | 100                          |

cis-1,2-Dichloroethene was also detected in the samples collected from WT-3 and WT-4 during Round 2. The reported concentrations were 1 and 2  $\mu$ g/l.

The only TCL SVOC detected in groundwater samples collected from these wells during Rounds 1 and 2 was phenol. This constituent was detected in the samples collected from WT-2 at concentrations of 17 and 34  $\mu$ g/l. SVOC TICs were detected in most of the groundwater samples collected from these wells, although TICs were not detected in the Round 1 samples collected from WT-1A and RFI-09. Total SVOC TIC concentrations ranged from 11 to 560  $\mu$ g/l; the highest concentrations were reported for samples collected from WT-2.

TCL PCBs were not detected in any of the groundwater samples collected from this area. The miscellaneous parameter results indicated:

- pHs ranged from 6.82 to 12.41 s.u.
- total alkalinity concentrations ranged from 49.6 to 1,020 mg/l
- total phenols was only detected in samples collected from WT-2 at concentrations of 54 and 29  $\mu$ g/l
- chloride was detected in all samples at concentrations ranging from 10 to 280 mg/l

Date: Page:

10/22/98 60 of 76

4.0

• fluoride was detected in all samples at concentrations ranging from 0.2 to 1.8 mg/l

- nitrate was only detected in samples collected from WT-1A at concentrations of 0.38 and 0.2 mg/l and in one sample collected from WT-4 at a concentration of 0.14 mg/l
- sulfate was detected in all samples at concentrations ranging from 8.3 to 620 mg/l
- ammonia was detected in all samples at concentrations ranging from 0.28 to 3.6 mg/l, except those collected from RFI-09 and WT-1A in which ammonia was not detected
- specific conductance ranged from 803 to 4,560 μmhos/cm

The parameters indicating the greatest range of reported levels included pH, chloride, fluoride, and sulfate:

- pHs reported for samples collected from these wells were typically around 7 s.u.; higher pH levels of 12.41 and 12.32 s.u. were reported for the samples collected from WT-2
- chloride concentrations in most samples ranged from 12 to 62 mg/l; chloride concentration in samples collected from WT-1A and WT-1B ranged from 110 to 280 mg/l
- fluoride was detected in samples collected from each of the wells in this area, concentrations of greater than 1 mg/l were only detected in samples collected from WT-3.
- sulfate was detected at:
  - concentrations of less than 10 mg/l in samples collected from WT-2
  - concentrations of approximately 100 to 200 mg/l in samples collected from RFI-09, WT-1A and WT-1B
  - concentrations of 300 to 620 mg/l in the samples collected from WT-3 and WT-4

Analysis for TOC, COD, and TSS was performed on samples collected from these wells during Round 1.<sup>4</sup> The results of these analysis indicated:

- TOC was detected in all samples at concentrations of 2.3 to 15 mg/l
- COD was only detected in samples collected from WT-1A, WT-02, WT-03, and WT-04 at concentrations of 5.4 to 46 mg/l

<sup>&</sup>lt;sup>4</sup> The analysis for additional parameters was performed to generate a set of data that were consistent with the ongoing post-closure monitoring program for the Closed Surface Impoundment.

Section: 4.0 Revision: 0 Date: 10/22/98

Date: Page:

61 of 76

• TSS was detected in all samples at concentrations of 11 to 300 mg/l, except that collected from RFI-09

# 4.4.3 CAMU A - Former LAP West Pickling Facility

Groundwater samples were collected from LAW-05 and LAW-06, located at CAMU A, during Rounds 1 and 2. Samples collected during Round 1 were submitted for analysis of TAL Inorganics, TCL VOCs, TCL SVOCs, TCL PCBs, and select miscellaneous parameters. Analysis for the Round 2 samples was limited to TAL Inorganics and select miscellaneous parameters for samples from both wells. Samples collected from LAW-06 were also analyzed TCL SVOCs.

Groundwater samples collected from LAW-05 and LAW-06 during Round 1 were submitted for analysis for TAL Inorganics. Each of these analytes was detected in at least one of the samples except as follows:

- silver
- barium
- cadmium
- cobalt
- mercury

These constituents were not detected in any Round 1 groundwater samples.

Hexavalent chromium was detected in the samples collected from LAW-05 and LAW-06 at concentrations of 5.24 and 36.1 mg/l. Total chromium and molybdenum were detected in samples collected from both wells and nickel was only detected in the groundwater sample collected from LAW-05.

#### Reported Concentrations (mg/l)

|             | Total           |            |               |
|-------------|-----------------|------------|---------------|
| <u>Well</u> | <u>Chromium</u> | Molybdenum | <u>Nickel</u> |
| LAW-05      | 4.8             | 0.32       | 0.075         |
| LAW-06      | 41              | 5.7        | not detected  |

Each of the TAL Inorganics was detected in at least one of the groundwater samples collected from these wells during Round 2, except for beryllium, mercury, and lead. Hexavalent

4.0

Date:
Page:

10/22/98 62 of 76

chromium was detected in the sample collected from LAW-05 at 3.96 mg/l and in the sample collected from LAW-06 at 54.5 mg/l. Total chromium, molybdenum, and nickel were detected in samples from both wells.

#### Reported Concentrations (mg/l)

|        | Total           |                   |               |
|--------|-----------------|-------------------|---------------|
| Well   | <u>Chromium</u> | <u>Molybdenum</u> | <u>Nickel</u> |
| LAW-05 | 3.1             | 0.33              | 0.085         |
| LAW-06 | 43              | 6.2               | 0.055         |

The TAL Inorganics results for samples collected from both wells during both sampling rounds appear to be comparable.

Neither TCL VOCs, VOC TICs, TCL SVOCs nor TCL PCBs were detected in groundwater samples collected from these wells. SVOC TICs were detected in each of the samples analyzed. Total SVOC TICs were detected in the sample collected from LAW-05 during Round 1 at a total concentration of 473  $\mu$ g/l and in the samples collected from LAW-06 during Rounds 1 and 2 at total concentrations of 640 and 414  $\mu$ g/l.

The miscellaneous parameter results indicated:

- pH in the samples collected from LAW-05 ranged from 6.9 and 6.98 s.u.; total alkalinity ranged from 233 to 479 mg/l
- pH in the samples collected from LAW-06 ranged from 8.98 and 9.19 s.u.; total alkalinity ranged from 3,360 to 3,510 mg/l
- total phenols was not detected in any samples
- chloride was detected in all samples at concentrations ranging from 140 to 300 mg/l
- fluoride was detected in all samples at concentrations ranging from 0.18 to 6.3 mg/l
- nitrate was detected in all samples at concentrations ranging from 10 to 30 mg/l
- sulfate was detected in all samples at concentrations ranging from 880 to 2,900 mg/l
- ammonia was detected in all samples at concentrations ranging from 1.1 to 2.5 mg/l

Section: 4.0 Revision: 0

Date: 10/22/98 Page: 63 of 76

• specific conductance ranged from 2,820  $\mu$ mhos/cm (LAW-05) to 9,700  $\mu$ mhos/cm (LAW-06)

Except for chloride, these analytes were detected at higher concentrations in at least one of the samples collected from LAW-06. Fluoride concentrations were notably higher in the samples collected from LAW-06 (6.2 mg/l and 3.8 mg/l) compared to the samples collected from LAW-05 (1.8 mg/l and 1.9 mg/l). The pH and total alkalinity of the samples collected from LAW-06 were also notably higher than the samples collected from LAW-05.

#### 4.4.4 CAMU B - Former BRP Pickling Facility

Groundwater samples were collected for laboratory analysis from Wells MW-1 and RFI-13 at CAMU B during Rounds 1 and 2. Samples collected during Round 1 were submitted for analysis of TAL Inorganics, TCL VOCs, TCL SVOCs, TCL PCBs, and select miscellaneous parameters. Samples collected from both wells during Round 2 were analyzed for TAL Inorganics and miscellaneous parameters. The sample collected from MW-1 was also analyzed for TCL VOCs (and TCL SVOCs) due to its proximity to Willowbrook Pond and the detection of VOCs in groundwater samples collected from this area.

TAL Inorganics were each detected in one or both of the groundwater samples collected during Round 1, except:

- hexavalent chromium
- mercury
- antimony
- selenium
- thallium
- free cyanide

The constituents were not detected in any Round 1 groundwater samples.

Total chromium and nickel were only detected in the groundwater sample collected from RFI-13. The reported concentrations were 0.035 and 0.039 mg/l. Molybdenum was detected in samples from both MW-1 and RFI-13. The reported concentrations were 0.6 and 0.036 mg/l.

TAL Inorganics were each detected in one or both of the groundwater samples collected during Round 2, except as follows:

Section: 4.0 Revision: 0

Date: 10/22/98 Page: 64 of 76

- silver
- arsenic
- beryllium
- cobalt
- hexavalent chromium
- mercury
- selenium
- thallium
- vanadium
- total and free cyanide

These constituents were not detected in any Round 1 groundwater samples.

Total chromium was detected in groundwater samples collected from MW-1 and RFI-13 at concentrations of 0.022 and 0.0093 mg/l. Molybdenum and nickel were only detected in the sample collected from MW-1. The reported concentrations were 0.38 and 0.039 mg/l.

The results for samples collected from both wells varied during each sampling event and no general comparison can be made between the Round 1 and Round 2 data.

Neither TCL VOCs, VOC TICs, TCL SVOCs, nor TCL PCBs were detected in groundwater samples collected from these wells. SVOC TICs were detected in the samples collected from MW-1 during Rounds 1 and 2 at total concentrations of 530 and 15  $\mu$ g/l and in the sample collected from RFI-13 during Round 1 at a total concentration of 414  $\mu$ g/l.

The miscellaneous parameter results indicated:

- pH ranged from 7.17 to 7.94 s.u.
- total alkalinity concentrations ranged from 216 to 549 mg/l
- total phenols was not detected in any samples
- chloride was detected in all samples at concentrations ranging from 42 to 86 mg/l
- fluoride was detected in one of the samples collected from MW-1 (at 0.56 mg/l) and in both samples collected from RFI-13 (at 0.25 mg/l and 0.29 mg/l)
- nitrate was detected in all samples at concentrations ranging from 0.11 to 6.4 mg/l
- sulfate was detected in all samples at concentrations ranging from 150 to 350 mg/l

Section: 4.0 Revision: 0

Date: 10/22/98 Page: 65 of 76

 ammonia was detected in all samples at concentrations ranging from 0.22 to 0.63 mg/l

• specific conductance ranged from 1,000 to 1,340 μmhos/cm

The data for the samples collected from MW-1 and RFI-13 appear to be generally consistent with other samples collected at the site. However, nitrate was detected at higher concentrations than typically observed in the sample collected from RFI-13 during Round 2 (6.4 mg/l) and sulfate was detected at higher concentrations than typically observed in both samples collected from MW-1 (280 mg/l to 350 mg/l).

# 4.4.5 CAMU C - BFS Pickling Facility

Groundwater samples were collected from MW-3, RFI-07, and RFI-17 located at CAMU C, during Rounds 1 and 2. Samples collected during Round 1 were submitted for analysis of TAL Inorganics, TCL VOCs, TCL SVOCs, TCL PCBs, and select miscellaneous parameters. Samples collected during Round 2 were all analyzed for TAL Inorganics and miscellaneous parameters. The sample collected from RFI-07 was also analyzed for TCL SVOCs.

Groundwater samples collected during Round 1 were each analyzed for total metals; samples collected from MW-3 and RFI-17 were also analyzed for dissolved metals. Each of the TAL Inorganics was detected in at least one of the groundwater samples collected during Round 1, except as follows:

- silver
- arsenic
- mercury
- lead
- thallium
- free cyanide

These constituents were not detected in any Round 1 groundwater samples.

Hexavalent chromium was only detected in the groundwater sample collected from MW-3. The reported concentration was 7.54 mg/l. Total chromium was detected in the samples from MW-3 and RFI-07. Molybdenum was detected in samples from each of these wells. Nickel was only detected in the sample collected from RFI-07.

Date: Page: : 4.0 on: 0

10/22/98 66 of 76

# Reported Concentrations (mg/l)

|        | Total           |                   |               |
|--------|-----------------|-------------------|---------------|
| Well   | <u>Chromium</u> | <u>Molybdenum</u> | <u>Nickel</u> |
| MW-3   | 6.6             | 0.39              | not detected  |
| RFI-07 | 0.033           | 1.2               | 0.089         |
| RFI-17 | not detected    | 0.36              | not detected  |

Groundwater samples collected during Round 2 were each analyzed for total metals, the sample collected from RFI-07 was also analyzed for dissolved metals. Each of the TAL Inorganics was detected in at least one of the groundwater samples collected during Round 2, except as follows:

- arsenic
- beryllium
- mercury
- selenium
- thallium
- total and free cyanide

These constituents were not detected in any Round 1 groundwater samples.

Hexavalent chromium was only detected in the groundwater sample collected from MW-3. The reported concentration was 8.05 mg/l. Total chromium, molybdenum, and nickel were detected in each of the groundwater samples collected from these wells.

#### Reported Concentrations (mg/l)

|        | Total           |            |               |
|--------|-----------------|------------|---------------|
| Well   | <u>Chromium</u> | Molybdenum | <u>Nickel</u> |
| MW-3   | 6               | 0.3        | 0.039         |
| RFI-07 | 0.024           | 0.79       | 0.051         |
| RFI-17 | 0.089           | 0.27       | 0.04          |

Chloroform was the only TCL VOC detected in the groundwater samples collected from this CAMU. Chloroform was detected in the groundwater sample collected from MW-3 during Round 1 at a concentration of 6  $\mu$ g/l. VOC TICs were also only detected in a groundwater sample collected from this well. A total concentration of 15  $\mu$ g/l was reported.

4.0

Date:

10/22/98

Page:

67 of 76

No TCL SVOCs were detected in the groundwater samples collected from this CAMU. SVOC TICs were detected in the groundwater samples collected from Wells MW-3, RFI-07, and RFI-17 during Round 1 at total concentrations ranging from 326 to 554  $\mu$ g/l. SVOC TICs were also detected in the groundwater sample collected from RFI-07 during Round 3 at a total concentration of 81  $\mu$ g/l.

The miscellaneous parameter results indicated:

- pHs ranged from 7.03 to 7.27 s.u.
- total alkalinity ranged from 111 to 396 mg/l
- total phenols was not detected in any samples
- chloride was detected in all samples at concentrations ranging from 150 to 480 mg/l
- fluoride was detected in all samples at concentrations ranging from 0.49 to 0.76 mg/l
- nitrate was detected in all samples at concentrations ranging from 2 to 83 mg/l
- sulfate was detected in all samples at concentrations ranging from 330 to 1,500 mg/l
- ammonia was detected in samples collected from RFI-07 and RFI-17 at concentrations ranging from 0.21 to 2 mg/l
- specific conductance ranged from 2,060 to 4,130 μmhos/cm

The analytical results were generally consistent. Nitrate, which was typically not detected in site wells, was present in each of the CAMU C wells. Nitrate concentrations for samples collected from RFI-17 were notably lower than those for samples collected from MW-3 and RFI-07.

# 4.4.6 <u>CAMU D - Former LAP East Pickling Facility</u>

Groundwater samples collected from LAE-4 and RFI-5 at CAMU D during Round 1 were submitted for analysis of TAL Inorganics, TCL VOCs, TCL SVOCs, TCL PCBs, and select miscellaneous parameters. Samples collected during Round 2 were analyzed for TAL Inorganics, TCL VOCs, and miscellaneous parameters; the sample collected from LAE-4 during Round 2 was also analyzed for TCL SVOCs.

4.0

Date:

10/22/98

Page:

68 of 76

The groundwater samples collected from LAE-4 during Rounds 1 and 2 were analyzed for both total and dissolved metals; both samples collected from RFI-05 were only analyzed for total metals.

Each TAL Inorganics was detected in one or both samples collected during Round 1, except as follows:

- silver
- arsenic
- hexavalent chromium
- mercury
- antimony
- thallium

Total chromium and nickel were only detected in the groundwater sample collected from RFI-05 during Round 1 at concentrations of 0.04 and 0.017 mg/l. Molybdenum was detected in the samples collected from LAE-4 and RFI-05 during Round 1 at concentrations of 0.01 and 0.049 mg/l.

Each of the TAL Inorganics was detected in one or both samples collected during Round 2, except as follows:

- silver
- arsenic
- beryllium
- cadmium
- cobalt
- total chromium
- hexavalent chromium
- mercury
- molybdenum
- nickel
- antimony
- thallium
- vanadium
- total and free cyanide

These constituents were not detected in any Round 1 groundwater samples.

Section: 4.0 Revision: 0

Date: 10/22/98 Page: 69 of 76

TCL VOCs and VOC TICs were not detected in the groundwater samples collected from RFI-05. TCL VOCs were detected in the groundwater samples collected from LAE-4 during both rounds.

|        |                          | Reported      |
|--------|--------------------------|---------------|
| Sample | Detected                 | Concentration |
| Round  | Constituent              | <u>(μg/l)</u> |
| 1      | vinyl chloride           | 97            |
|        | 1,1-dichloroethene       | 13            |
|        | trans-1,2-dichloroethene | 27            |
|        | cis-1,2-dichloroethene   | 790           |
|        | trichloroethene          | 6,900         |
| 2      | vinyl chloride           | 100           |
|        | 1,1-dichloroethene       | 11            |
|        | trans-1,2-dichloroethene | 21            |
|        | cis-1,2-dichloroethene   | 860           |
|        | trichloroethene          | 7,300         |
|        | Total VOC TICs           | 1,020         |

Naphthalene was the only TCL SVOC detected in the groundwater samples collected from this area. This constituent was detected at a concentration of 14  $\mu$ g/l in the groundwater sample collected from LAE-4 during Round 2. SVOC TICs were detected in samples collected from LAE-4 and RFI-5 during Round 1 at total concentrations of 510 and 198  $\mu$ g/l. Total SVOC TICs were not detected in the groundwater sample collected from LAE-4 during Round 2.

TCL PCBs were not detected in groundwater samples collected from either of these wells.

The miscellaneous parameter results indicate:

- pHs ranged from 7.05 to 7.43 s.u.
- total alkalinity ranged from 160 to 444 mg/l
- total phenols were not detected in any samples
- chloride was detected in all samples at concentrations ranging from 12 to 19 mg/l
- fluoride was detected in all samples at concentrations ranging from 0.21 to 0.31 mg/l

Section: 4.0 Revision: 0

Date: Page:

10/22/98 70 of 76

• nitrate was detected in samples collected from RFI-05 at concentrations of 2.4 and 2.5 mg/l

• sulfate was detected in all samples at concentrations ranging from 110 to 150 mg/l

• ammonia was detected in samples collected from LAE-04 at concentrations of 0.78 and 0.79 mg/l

• specific conductance ranged from 621 to 892 μmhos/cm.

The results for these miscellaneous parameters indicate conditions at LAE-4 and RFI-05 are consistent with general site conditions. However, nitrate which was typically not detected in site wells, was present in the groundwater samples collected from these wells.

#### 4.4.7 Site Groundwater

Groundwater quality at the site and perimeter was evaluated via the collection and analysis of groundwater samples collected from the remaining site wells, including B-1, RFI-01, RFI-02, RFI-03, RFI-04, RFI-06, RFI-08, RFI-10, RFI-11, RFI-12, and RFI-16. Samples were collected from these locations during Round 1 for analysis of TAL Inorganics, TCL VOCs, TCL SVOCs, TCL PCBs, and select miscellaneous parameters. Groundwater samples collected during Round 2 were submitted for analysis of TAL Inorganics and miscellaneous parameters; a limited number of samples collected during Round 2 were also analyzed for TCL SVOCs.

#### 4.4.7.1 TAL Inorganics

A total of 22 groundwater samples were collected during both sampling rounds. The results for the detected analytes in the total or dissolved sample aliquots (as appropriate) are summarized below. Mercury was the only analyte which was not detected in any of the groundwater samples collected from these wells.

Analytes which were detected infrequently (in 5 or fewer of the groundwater samples) included cobalt, hexavalent chromium, selenium, thallium, total cyanide and free cyanide. The concentrations reported for samples in which selenium, thallium, and total cyanide were detected were fairly consistent; free cyanide was only detected in one sample (collected from RFI-12 during Round 1). Hexavalent chromium was detected in the samples collected during Round 2 from B-1 and RFI-03 at concentrations of 0.02 and 0.05 mg/l. Because hexavalent chromium

Date: 10/22/98

Page:

71 of 76

was not anticipated to be present at these locations, an additional set of samples was collected from these wells (also during Round 2). Hexavalent chromium was not detected, at a detection limit of 0.01 mg/l, in either of the second set of samples from these wells.

Several metals, some of which are not typically present in natural or background groundwater, were detected with moderate frequency in the site groundwater samples (6 to 15 detections in 22 samples). These metals included:

- silver
- arsenic
- beryllium
- cadmium
- total chromium
- copper
- molybdenum
- nickel
- lead
- antimony

Total chromium was detected in 9 of 22 groundwater samples at concentrations of 0.011 to 0.045 mg/l. The groundwater samples in which this metal was detected were collected from RFI-01, RFI-04, RFI-06, RFI-08, RFI-10, RFI-11, and RFI-12. The highest concentrations were reported for a total aliquot sample collected from RFI-12.

Molybdenum was detected in 15 of 22 groundwater samples at concentrations of 0.01 to 1.3 mg/l. This metal was detected in samples collected from each site well for one or both sampling rounds. The highest concentrations of molybdenum were reported in total sample aliquots collected from wells located in the center of the site: RFI-03 (1.3 and 1.2 mg/l) and RFI-16 (0.71 and 0.59 mg/l). Concentrations for samples collected from the remaining wells were less than 0.1 mg/l.

Nickel was detected in 7 of 22 samples at concentrations of 0.024 to 0.21 mg/l. groundwater samples in which this metal was detected were collected from RFI-04, RFI-06, RFI-08, RFI-10, RFI-11, and RFI-12. The highest concentrations of molybdenum were reported in total sample aliquots collected from RFI-12.

Section: 4.0 Revision: 0

Date: 10/22/98 Page: 72 of 76

Metals which were typically detected in each of the site groundwater samples (18 to 22 detections) include those which would be anticipated to be present in natural (background)

• aluminum

groundwater. These analytes included:

- barium
- calcium
- iron
- potassium
- magnesium
- manganese
- sodium
- zinc

The range of reported concentrations for each of these metals was fairly wide.

#### 4.4.7.2 TCL VOCs

The only TCL VOCs detected in the groundwater samples collected from the site and parameter wells during Rounds 1 and 2. cis-1,2-Dichloroethene and trichloroethene were detected at concentrations of 130  $\mu$ g/l and 480  $\mu$ g/l in the groundwater sample collected from RFI-16, located near the center of the site. VOC TICs were only detected in the groundwater sample collected from RFI-08 at a total concentration of 7  $\mu$ g/l.

#### 4.4.7.3 TCL SVOCs

Only one TCL SVOC was detected in groundwater samples collected from the site and perimeter wells during Rounds 1 and 2. 2,4-Dinitrophenol was detected at a concentration of 26  $\mu$ g/l in the groundwater sample collected from RFI-04 during Round 1. SVOC TICs were detected in all of the groundwater samples collected during Rounds 1 and 2, except for the sample collected from RFI-11 during Round 1. The total SVOC TIC concentrations in these groundwater samples ranged from 14 to 556  $\mu$ g/l.

#### 4.4.7.4 TCL PCBs

TCL PCBs were not detected in any of the groundwater samples collected from these site wells.

4.0

Date: Page: 10/22/98 73 of 76

# 4.4.7.5 <u>Miscellaneous Parameters</u>

Samples collected from the 11 wells during Round 1 and Round 2 were analyzed for select miscellaneous parameters. The results for both sampling events are summarized below.

- pHs ranged from 7.03 to 8.03 s.u.
- total alkalinity ranged from 76 to 444 mg/l
- total phenols was not detected in any of the samples
- chloride was detected in all samples at concentrations ranging from 3.3 to 290 mg/l
- fluoride was detected in all samples at concentrations ranging from 0.18 to 1.9 mg/l
- nitrate was detected in samples from 4 of the 11 site wells concentrations ranging from 0.11 to 4.9 mg/l
- sulfate was detected in all samples at concentrations ranging from 57 to 1,500 mg/l
- ammonia was detected in 16 of the 22 samples at concentrations ranging from 0.1 to 1.9 mg/l
- specific conductance of the samples ranged from 352 to 1,760 μmhos/cm.

These analytes were generally detected in the samples collected from these wells at consistent concentrations. However, several of the analytes were detected at or above the typical range of concentrations in samples collected from some wells:

- chloride and sulfate were detected at higher concentrations in samples collected from RFI-10
- fluoride was detected at higher concentrations in the samples collected from RFI-03
- nitrate was detected in samples collected from RFI-01, RFI-08, RFI-10, and RFI-12; this compound was typically not detected in site groundwater samples.

#### 4.5 Surface Water and Sediment

Surface water and sediment samples were collected from three locations in the unnamed tributary to Crooked Brook; the locations (S-01, S-02, and S-03) are shown in Figure 2-1. Each of the samples was submitted for analysis of various parameters in accordance with the Phase I RFI

Section: 4.0 Revision: 0

Date: Page: 10/22/98 74 of 76

Work Plan. The analytical results are discussed in Sections 4.5.1 and 4.5.2 and the data are summarized in Tables 4-13 and 4-14; unabridged data tables are presented in Appendix N.

1 - 12-

#### 4.5.1 Surface Water

Surface water samples collected from Locations S-01, S-02, and S-03 were submitted for analysis of TAL Inorganics (plus molybdenum, free cyanide, and hexavalent chromium), TCL SVOCs, TCL PCBs, and select miscellaneous parameters.

Each of the TAL Inorganics was detected in at least one of the surface water samples, except for the following analytes:

- silver
- arsenic
- cadmium
- cobalt
- hexavalent chromium
- nickel
- selenium
- thallium
- vanadium
- total cyanide

These constituents were not detected in any of the surface water samples.

Typically, the concentrations of constituents detected in the sample collected from the upstream location (S-01) were similar to those reported in the samples collected from the downstream locations (S-02 and S-03). Aluminum and copper were only detected in the sample collected from S-02 and lead was only detected in the sample collected from S-03.

Total chromium was detected in the sample collected from S-02 (0.0089 mg/l) and in the duplicate from S-03 (0.0089 mg/l). Molybdenum was detected in each of the surface water samples. The reported concentrations were 0.021 mg/l (S-01), 0.054 mg/l (S-02), and 0.039 mg/l (S-03).

TCL SVOCs, SVOC TICs, and TCL PCBs were not detected in any of the surface water samples.

The surface water samples were submitted for analysis of TPH, pH, total alkalinity, total phenols, chloride, fluoride, sulfate, and specific conductance. The results are summarized below.

Section: 4.0 Revision: 0 Date: 10/2

Date: 10/22/98 Page: 75 of 76

- TPH and total phenols were not detected in any samples.
- pHs ranged from 8.14 to 8.19.
- Total alkalinity concentrations ranged from 175 to 231 mg/l.
- Chloride was detected in all samples at concentrations ranging from 83 to 97 mg/l.
- Fluoride was detected in all samples at concentrations ranging from 0.23 to 0.34 mg/l.
- Sulfate was detected in all samples at concentration ranging from 49 to 110 mg/l.
- Specific conductance ranged from 636 μmhos/cm to 735 μmhos/cm.

# 4.5.2 Sediments

Sediment samples collected from Locations S-01, S-02, and S-03 were submitted for analysis of TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide), TCL SVOCs, TCL PCBs, and select miscellaneous parameters.

Each of the TAL Inorganics was detected in at least one of the sediment samples, except for the following:

- silver
- selenium
- thallium
- total cyanide
- free cyanide

The results for all three samples were generally similar. However, the concentrations for some of the detected metals were highest in the sample collected from Location S-02. And mercury was only detected in the sample collected from S-02.

Hexavalent chromium was only detected in the sediment sample collected from S-02 (3.64 mg/kg). Total Chromium, molybdenum, and nickel were detected in each of the sediment samples.

# Reported Concentrations (mg/kg)

| Total           |                       |                                                                               |
|-----------------|-----------------------|-------------------------------------------------------------------------------|
| <u>Chromium</u> | <u>Molybdenum</u>     | <u>Nickel</u>                                                                 |
| 25              | 7.4                   | 24                                                                            |
| 430             | 20                    | 240                                                                           |
| 47              | 18                    | 39                                                                            |
|                 | Chromium<br>25<br>430 | Chromium         Molybdenum           25         7.4           430         20 |

a/ The results for the duplicate collected from S-03 for analysis of these parameters were 560 mg/kg (total chromium), 51 mg/kg (molybdenum), and 420 mg/kg (nickel).

4.0

Date:

10/22/98

Page:

76 of 76

TCL SVOCs, comprised entirely of PAHs, were detected in the sediment samples collected from S-01 and S-03. Thirteen PAH constituents were detected in the sample collected from S-01. The total PAH concentration reported for this sample was 16,070  $\mu$ g/kg. Chrysene was the only TCL SVOC detected in the sample collected from S-03; the reported concentration was 2,500  $\mu$ g/kg. Benzo(b)fluranthene, benzo(k)fluoranthene, and benzo(a)pyrene were each detected in the duplicate sample collected from S-03 at concentrations of 1,500  $\mu$ g/kg.

The sediment samples were submitted for analysis of TCL PCBs, TPH, total phenols, chloride, fluoride, nitrate, sulfate, and TOC. The results are as follows.

- TCL PCBs, TPH, total phenols, and fluoride were not detected in any samples.
- Chloride was detected in all samples at concentrations ranging from 1.8 to 39 mg/l.
- Nitrate was detected in the sample from S-01 at a concentration of 0.13 mg/l.
- Sulfate was detected in samples collected from S-01 and S-02 at concentrations of 6.2 mg/l to 42 mg/l.
- TOC was detected in all samples at concentrations ranging from 2.9 to 3.4 mg/l.

Table 4-1

Background Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| 03<br>03-03<br>102<br>ches<br>7/96<br>#400 Sieve                                    | 0.8 U<br>10000<br>6 J<br>53<br>0.28 J<br>360<br>2.9 J<br>4.3 J<br>45<br>NA<br>760<br>1700<br>210<br>6.7 J<br>43<br>43<br>1,45<br>1,700<br>210<br>6.7 J<br>6.7 J<br>6.7 J<br>6.7 J<br>6.7 J<br>700<br>1,25 U<br>0.25 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS-03<br>SS-BS-03-03<br>96-5102<br>0-3 inches<br>10/25/96                           | 0.87 UJ<br>9500<br>6.1 J<br>45 J<br>0.14 J<br>420<br>2 J<br>4.6 J<br>41 J<br>13.4 $\leq$<br>13.00<br>0.08 U<br>710<br>1500<br>260<br>7.2 J<br>44 U<br>35 J<br>29<br>0.28 U<br>0.28 U<br>0.24 U<br>14 J<br>14 J<br>15 J<br>16 J<br>17 J<br>18 J<br>18 J<br>19 J<br>10 |
| 2<br>2-03<br>12<br>hes<br>96<br>#400 Sieve                                          | 0.75 U<br>10000<br>6.8<br>6.8<br>350<br>2.9<br>2.9<br>5.4<br>41<br>NA<br>1700<br>1700<br>1700<br>1700<br>120<br>7.5<br>43<br>33<br>9.27 U<br>0.27 U<br>0.27 U<br>0.24 U<br>1.5<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BS-02<br>SS-BS-02-03<br>96-5102<br>0-3 inches<br>10/25/96                           | 1 UJ<br>9400<br>7.8 J<br>41 J<br>0.008 UJ<br>520 J<br>1.1 J<br>3 J<br>42 J<br>3.05 U<br>18 J<br>13000<br>0.09 U<br>850<br>1500 J<br>160<br>160<br>160<br>160<br>160<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 01<br>01-03<br>ches<br>//96<br>#400 Sieve                                           | 0.73 U<br>11000<br>7.2<br>52<br>0.29<br>720<br>3<br>3.2.6<br>3.1<br>NA (c)<br>76<br>17000<br>NA 730<br>1500<br>130<br>130<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BS-01<br>SS-BS-01-03<br>96-5102<br>0-3 inches<br>10/25/96                           | 0.97 J(b) 7500 6.6 J 34 J 0.21 J 500 J 1.9 J 1.9 J 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Location: Sample L.D.: Laboratory Project No.: Sample Interval: Sample Date: | TAL Inorganics plus Molybdenum (mg/kg)(a) Silver Aluminum Arsenic Barium Beryllium Calcium Calchium Cadmium Cobalt Chromium (Hexavalent) Copper Iron Mercury Potassium Magnesium Manganese Molybdenum Sodium Nickel Lead Antimony Selenium 'Thallium Vanadium Vanadium Cyanide (Free) (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 4-1 (continued)

Background Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

|                                                                             | PS-(                                             | 7                     |                                                  | BS-05                        | in.                                |                                                       |
|-----------------------------------------------------------------------------|--------------------------------------------------|-----------------------|--------------------------------------------------|------------------------------|------------------------------------|-------------------------------------------------------|
| Sample 1.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SS-BS-04-03<br>96-5102<br>0-3 inches<br>10/25/96 | 02<br>02<br>hes<br>96 | SS-BS-05-03<br>96-5102<br>0-3 inches<br>10/25/96 | 05-03<br>102<br>ches<br>5/96 | SS-BS-05<br>96-5<br>0-3 ii<br>10/2 | SS-BS-05-03D (d)<br>96-5102<br>0-3 inches<br>10/25/96 |
|                                                                             | Unsieved                                         | #400 Sieve            | Unsieved                                         | #400 Sieve                   | Unsieved                           | #400 Sieve                                            |
| FAL Inorganics plus Molybdenum (mg/kg)(a)                                   |                                                  |                       |                                                  |                              |                                    |                                                       |
| Silver                                                                      | I UJ                                             | 1.8 J                 | 0.88 UJ                                          | O 69:0                       | ΝA                                 | 1.2                                                   |
| Aluminum                                                                    | 5900                                             | 8500                  | 7700                                             | 8600                         | ΑN                                 | 10000                                                 |
| Arsenic                                                                     | 6.7 J                                            | 5.9 J                 | 4.8 J                                            | 4.7 J                        | NA                                 | 5.5                                                   |
| Barium                                                                      | 49 J                                             | 49                    | 42 J                                             | 53                           | AN                                 | 58                                                    |
| Beryllium                                                                   | 0.09                                             | 0.33 J                | 0.06 UJ                                          | 0.14 J                       | Ν                                  | 0.28                                                  |
| Calcium                                                                     | 0001                                             | 026                   | 740                                              | 750                          | A<br>V                             | 870                                                   |
| Cadmium                                                                     | 1.9.1                                            | 3 J                   | 1.1 J                                            | 2.1 J                        | Ν                                  | 3                                                     |
| Cobalt                                                                      | 4.9 J                                            | 3.8 J                 | 13 J                                             | 1.7 J                        | Ϋ́                                 | 3.2                                                   |
| Chromium (Total)                                                            | 21 J                                             | 24                    | 30 J                                             | 18 J                         | ΝA                                 | 23                                                    |
| Chromium (Hexavalent)                                                       | 7.92                                             | NA                    | 15.                                              | Y<br>V                       | A<br>V                             | AN                                                    |
| Copper                                                                      | 21 J                                             | 36                    | 14 J                                             | 25                           | ΥN                                 | 32                                                    |
| Iron                                                                        | 11000                                            | 13000                 | 12000                                            | 14000                        | ΥN                                 | 15000                                                 |
| Mercury                                                                     | 0.08 U                                           | VΑ                    | 0.1 U                                            | AN<br>A                      | 0.1 U                              | Y<br>V<br>V                                           |
| Potassium                                                                   | 290                                              | 830                   | 019                                              | 019                          | Y<br>V                             | 780                                                   |
| Magnesium                                                                   | 1300                                             | 1800                  | 1200                                             | 1500                         | A<br>V                             | 1700                                                  |
| Manganese                                                                   | 091                                              | 091                   | 120                                              | 120                          | Ϋ́                                 | 130                                                   |
| Molybdenun                                                                  | 5.8 J                                            | 5.2 J                 | 30                                               | 3.4 J                        | ΑN                                 | 4.8                                                   |
| Sodium                                                                      | 51 U                                             | 47                    | 44 U                                             | 35 U                         | A<br>V                             | 51                                                    |
| Nickel                                                                      | 33 J                                             | 27                    | 24 J                                             | 81                           | AN                                 | 24                                                    |
| Lead                                                                        | 22                                               | 28                    | 15                                               | 91                           | NA                                 | 14                                                    |
| ntimony                                                                     | 0.84                                             | 0.68                  | 69.0                                             | 0.55                         | NA                                 | 9.0                                                   |
| Selenium                                                                    | 0.33 U                                           | 0.25 U                | 0.29 U                                           | 0.23 U                       | NA                                 | 0.27 U                                                |
| Thallium                                                                    | 0.28 U                                           | 0.21 U                | 0.25 U                                           | 0.19 U                       | NA                                 | 0.23 U                                                |
| Vanadium                                                                    | 6 J                                              | 14 J                  | 16 J                                             | 12 J                         | NA                                 | 91                                                    |
| Zinc                                                                        | 74 J                                             | 74                    | 49 J                                             | 26                           | NA                                 | 65                                                    |
| Cyanide (Total)                                                             | ~                                                | NA                    | ~                                                | AN                           | 0 I                                | NA                                                    |
| Cyanide (Free) (mg/l)                                                       | 0.005 U                                          | ΝΑ                    | 0.005 U                                          | NA                           | 0.005 U                            | AN                                                    |

Table 4-1 (continued)

Background Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| Sample Location:                                                            | 90-S8                                            | 9(                   | BS-07                                           | 4                       | Page 3 of 8                                |
|-----------------------------------------------------------------------------|--------------------------------------------------|----------------------|-------------------------------------------------|-------------------------|--------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SS-BS-06-03<br>96-5102<br>0-3 inches<br>10/25/96 | 06-03<br>(02<br>ches | SS-BS-07-0<br>96-5102<br>0-3 inches<br>10/25/96 | 7-03<br>)2<br>hes<br>96 | 95 UCL (e)<br>Background<br>Concentrations |
|                                                                             | Unsieved                                         | #400 Sieve           | Unsieved                                        | #400 Sieve              |                                            |
| TAL Inorganics plus Molybdenum (mg/kg)(a)                                   |                                                  |                      |                                                 |                         |                                            |
|                                                                             | U 68'0                                           | 0.69 U               | 1.1 UJ                                          | 0.8 U                   | 0.70                                       |
| Aluminum                                                                    | 0099                                             | 8700                 | 7800                                            | 10000                   | 8956.34                                    |
| Arsenic                                                                     | 5.9 J                                            | 5.3 J                | 7 J                                             | 6 9                     | 7.28                                       |
| Barium                                                                      | 26 J                                             | 35                   | 56 J                                            | 43                      | 52.37                                      |
| Beryllium                                                                   | 0.06 J                                           | 0.15 J               | 0.18 J                                          | 0.23 J                  | 0.21                                       |
| Calcium                                                                     | 550 J                                            | 370                  | 400                                             | 360                     | 784.07                                     |
| Cadmium                                                                     | l 6.1                                            | 2.1 J                | 2.8 J                                           | 2.4 J                   | 2.46                                       |
| Cobalt                                                                      | 1.5 J                                            | 2.1 J                | 4.9 J                                           | 2.4 J                   |                                            |
| Chromium (Total)                                                            | 54 J                                             | 36                   | 44 J                                            | 36                      | 52.70                                      |
| Chromium (Hexavalent)                                                       | 7.55                                             | NA                   | 13.5                                            | NA                      |                                            |
| Copper                                                                      | 15 J                                             | 54                   | 29 J                                            | 31                      | 23.08                                      |
| Iron                                                                        | 12000                                            | 14000                | 14000                                           | 15000                   | 13164.79                                   |
| Mercury                                                                     | 0. 1 U                                           | NA                   | 0.1 U                                           | NA                      | - (e)                                      |
| Potassium                                                                   | 200                                              | 009                  | 470                                             | 019                     | 736.20                                     |
| Magnesium                                                                   | I 100 J                                          | 1300                 | 1100                                            | 1400                    | 1418.27                                    |
| Manganese                                                                   | 81                                               | 62                   | 89                                              | 63                      | 217.83                                     |
| Molyhdenum                                                                  | 6.8 J                                            | 7.8 J                | 9.4 J                                           | 7.3 J                   | 22.16                                      |
| Sodium                                                                      | 45 UJ                                            | 35 U                 | 54 U                                            | 46                      | ı                                          |
| Nickel                                                                      | 41 J                                             | 31                   | 34 J                                            | 30                      | 39.08                                      |
| Lead                                                                        | 23                                               | 44                   | 33                                              | 34                      | 30.93                                      |
| Antimony                                                                    | 0.71                                             | 0.54                 | 0.85                                            | 0.63                    | 0.89                                       |
| Selenium                                                                    | 0.27 U                                           | 0.23 U               | 0.35 U                                          | 0.26 U                  | ì                                          |
| Thallium                                                                    | 0.23 U                                           | 0.19 U               | 0.23 UJ                                         | 0.22 UJ                 | ì                                          |
| Vanadium                                                                    | 10 J                                             | 14 J                 | 15 J                                            | l 7 J                   | 14.67                                      |
| Zinc                                                                        | 51 J                                             | 100                  | f 89                                            | 55                      | 68.55                                      |
| Cyanide (Total)                                                             | ~                                                | NA                   | ×                                               | NA                      | t                                          |
| Cyanide (Free) (mg/l)                                                       | 0.005 U                                          | <b>∀</b> Z           | 0.005 U                                         | ΝΑ                      | 1                                          |

| _       |
|---------|
| -       |
| ತ       |
| ä       |
| =       |
| Ξ       |
| Ξ       |
| 3       |
| ୍୰      |
|         |
| _       |
| _       |
| 7       |
| 4-1     |
|         |
| le 4-   |
| le 4-   |
| ole 4-  |
| le 4-   |
| able 4- |

Background Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| Á                           | Page 4 of 8 | 5-03 BS-04       | SS-BS-03-03 SS-BS-04-03 96-5102 96-5102 0-3 inches 0-3 inches 10/25/96 10/25/96                            | NA NA AN                  | 410 UJ 410 UJ 410 UJ 410 UJ 410 UJ 410 UJ                  |        |
|-----------------------------|-------------|------------------|------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------|--------|
| Duilbir, item 101h raciiily |             | BS-02 BS-03      | SS-BS-02-03<br>96-5102<br>9-5102<br>0-3 inches<br>10/25/96<br>10/25/96                                     | Y<br>Z                    | 410 UJ<br>410 UJ                                           | 20 014 |
|                             |             | BS-01            | SS-BS-01-03<br>96-5102<br>0-3 inches<br>10/25/96                                                           | N<br>A                    | 480 J<br>860 J                                             | 070    |
|                             |             | Sample Location: | Sample I.D.: SS-BS-01-03 Laboratory Project No.: 96-5102 Sample Interval: 0-3 inches Sample Date: 10/25/96 | olatile Organic Compounds | mi-Volatile Organic Compounds (μg/kg)(f)<br>hrene<br>thene |        |

| TCL Volatile Organic Compounds                 | NA    | Ϋ́     | NA     | Ϋ́      |
|------------------------------------------------|-------|--------|--------|---------|
| TCL Semi-Volatile Organic Compounds (µg/kg)(f) |       |        |        | ·       |
| Phenanthrene                                   | 480 J | 410 UJ | 410 UJ | 410 UJ  |
| Fluoranthene                                   | 860 J | 410 UJ | 410 UJ | 410 UJ  |
| Pyrene                                         | 620 J | 410 UJ | 410 UJ | 410 UJ  |
| Benzota hanthracene                            | 310 J | 410 UJ | 410 UJ | 410 UJ  |
| Chrysen                                        | 400 J | 410 UJ | 410 UJ | 410 UJ  |
| Renzo(h)(luoranthene                           | 330 J | 410 UJ | 410 UJ | 410 U.J |
| Benzo(k)fluoranthene                           | 320 J | 410 UJ | 410 UJ | 410 UJ  |
| Benzo(a)pyrene                                 | 320 J | 410 UJ | 410 UJ | 410 UJ  |

Tuble 4-1 (continued)

Background Soil Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 5 of 8

| Sample Location:                        | BS-01                          |        | BS-02               |        | 185-03              |        | t0-031              | <b>.</b> |
|-----------------------------------------|--------------------------------|--------|---------------------|--------|---------------------|--------|---------------------|----------|
| Sample LD.:                             | SS-BS-01-03                    |        | SS-BS-02-03         |        | SS-BS-03-03         |        | SS-BS-04-03         | 4-03     |
| Laboratory Project No.:                 | 96-5102                        |        | 96-5102             |        | 96-5102             |        | 96-5102             | 02       |
| Sample Interval:                        | 0-3 inches                     |        | 0-3 inches          |        | 0-3 inches          |        | 0-3 inches          | hes      |
| Sample Date:                            | 10/25/96                       |        | 10/25/96            |        | 10/25/96            |        | 10/25/96            | 96       |
| Semi-Volatile Organics                  |                                |        |                     |        |                     |        |                     |          |
| rentauvety identified Compounds (pg/kg) | (pg/kg)<br>Haknowa Hydracarbon | N O    | Unknown Hydrocarbon | S 98   | Unknown Hydrocarbon | 120 NJ | Unknown Hydrocarbon | 87 N     |
|                                         | Unknown Hydrocarbon            | 33 S   | Unknown Hydrocarbon | 24 NJ  | Unknown Hydrocarbon | Z<br>= | Unknown Hydrocarbon | 130 NJ   |
|                                         | Unknown Hydrocarbon            | N O    | Unknown Hydrocarbon | 2      | Unknown Hydrocarbon | IN 091 | Unknown Hydrocarbon | N 011    |
|                                         | Unknown Hydrocarbon            | S7 NJ  | Unknown Hydrocarbon | 62 NJ  | Unknown Hydrocarbon | 120 NJ | Unknown Hydrocarbon | 180 NJ   |
|                                         | Unknown Hydrocarbon            | N OII  | Unknown Hydrocarbon | 78 N   | Unknown Hydrocarbon | 78 NJ  | Unknown Hydrocarbon | N 09     |
|                                         | Unknown Hydrocarbon            | 450 NJ | Unknown Hydrocarbon | S4 NJ  | Unknown Hydrocarbon | 410 N  | Unknown Hydrocarbon | 120 NJ   |
|                                         | Unknown Hydrocarbon            | 290 NJ | Unknown Hydrocarbon | IO 001 | Unknown Hydrocarbon | N 091  | Unknown Hydrocarbon | 250 NJ   |
|                                         | Unknown Hydrocarbon            | 210 NJ | Unknown Hydrocarbon | Z 0:   | Unknown Hydrocarbon | 170 NJ | Unknown Hydrocarbon | 82 NJ    |
|                                         | Unknown Hydrocarbon            | 130 NJ | Unknown Hydrocarbon | Z<br>2 | Unknown Hydrocarbon | 87 NJ  | Unknown Hydrocarbon | 290 NJ   |
|                                         | Unknown Hydrocarbon            | 45 NJ  | Unknown Hydrocarbon | 70 NJ  | Unknown             | 150 NJ | Unknown Hydrocarbon | 1N 76    |
|                                         | Unknown                        | 63 NJ  | Unknown Hydrocarbon | 45 NJ  | Unknown             | 130 NJ | Unknown Hydrocarbon | 290 NJ   |
|                                         | Unknown                        | Z<br>S | Unknown Hydrocarbon | 62 NJ  | Unknown             | 130 NJ | Unknown             | N 01     |
|                                         | Unknown                        | 82 NJ  | Unknown Hydrocarbon | 29 NJ  | Unknown             | 95 NJ  | Unknown             | N 091    |
|                                         | Unknown                        | N 011  | Unknown             | 22 NJ  | Unknown             | N 001  | Unknown             | N 86     |
|                                         | Unknown                        | 47 NJ  | Unknown             | N 99   | Unknown             | 380 NJ | Unknown             | 130 NJ   |
|                                         | Unknown                        | 47 N   | Unknown             | 31 N   | Unknown             | 670 NJ | Unknown             | N 01     |
|                                         | Unknown                        | 650 NJ | Unknown             | 28 NJ  | Unknown             | 930 NJ | Unknown             | 480 NJ   |
|                                         | Unknown                        | 33 NJ  | Unknown             | 130 NJ | Unknown             | 240 NJ | Unknown             | 650 NJ   |
|                                         | Unknown                        | 460 NJ | Unknown             | Z<br>E | Unknown             | 290 NJ | Unknown             | 260 NJ   |
|                                         | Unknown                        | 130 NJ | Unknown             | 10 N   | Unknown             | I70 N  | Unknown             | 200 NJ   |
|                                         | Unknown                        | Z<br>Z | Unknown             | 30 N   | Unknown             | 280 NJ | Unknown             | 130 NJ   |
|                                         | Unknown                        | 170 NJ | Unknown             | 140 NJ | Unknown             | 95 NJ  | Unknown             | 98 NJ    |
|                                         | Unknown                        | 580 NJ | Unknown             | 43 N   | Unknown             | 120 NJ | Unknown             | 82 NJ    |
|                                         | Unknown                        | 17 NJ  | Unknown             | IN 16  | Unknown             | 210 NJ | Unknown             | N 69     |
|                                         | Unknown                        | IN 001 | Unknown             | 22 NJ  | Unknown             | IN 006 | Unknown             | 73 NJ    |
|                                         |                                |        |                     |        |                     |        |                     |          |
|                                         | Total SVOC TICs (g)            | 4159   | Total SVOC TICs     | 1549   | Total SVOC TICs     | 6276   | Total SVOC TICs     | 4346     |
|                                         |                                |        |                     |        |                     |        |                     |          |

# Table 4-1 (continued)

Background Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility Page 6 of 8

| BS-06 SS-BS-06-03 96-5102 0-3 inches 10/25/96 BS-07 8S-BS-07-03 96-5102 96-5102 10/25/96 10/25/96 | Y V                            | 390 UJ<br>390 UJ<br>390 UJ<br>450 UJ<br>390 UJ<br>450 UJ<br>390 UJ<br>450 UJ<br>390 UJ<br>450 UJ<br>390 UJ<br>450 UJ                                                  |
|---------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS-05<br>SS-BS-05-03<br>96-5102<br>0-3 inches<br>10/25/96                                         | Z<br>V                         | 390 UJ<br>390 UJ<br>390 UJ<br>390 UJ<br>390 UJ<br>390 UJ<br>390 UJ                                                                                                    |
| Sample Location: Sample I.D.: Laboratory Project No.: Sample Interval: Sample Date:               | TCL Volatile Organic Compounds | TCL. Semi-Volatile Organic Compounds (µg/kg)(f) Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene |

Table 4-1 (continued)

Page 7 of 8

Background Soil Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Sample Location: Sample LD: Laboratory Project No.: Sample Interval: Sample Date:

Semi-Volatile Organics Tentatively Identified Compounds (µg/kg)

|       | SS-BS-00-03 SS-BS-01-03 | 96-5102 | 0-3 inches | 10/25/96 |
|-------|-------------------------|---------|------------|----------|
| BS-05 | SS-BS-05-03             | 96-5102 | 0-3 inches | 10/25/96 |

| Unknown Hydrocarbon | 83<br>N | Unknown Hydrocarbon | LN 08.1 | Unknown Hydrocarbon | 120 NJ |
|---------------------|---------|---------------------|---------|---------------------|--------|
| Unknown Hydrocarbon | 72 O.   | Unknown Hydrocarbon | UN 86   | Unknown Hydrocarbon | 330 NJ |
| Unknown Hydrocarbon | 15 NJ   | Unknown Hydrocarbon | 150 NJ  | Unknown Hydrocarbon | 330 NJ |
| Unknown Hydrocarbon | 180 NJ  | Unknown Hydrocarbon | 120 NJ  | Unknown Hydrocarbon | 120 N  |
| Unknown Hydrocarbon | 72 NJ   | Unknown Hydrocarbon | 230 NJ  | Unknown Hydrocarbon | 100 N  |
| Unknown Hydrocarbon | 150 NJ  | Unknown Hydrocarbon | 93 N    | Unknown             | 220 NJ |
| Unknown             | LN 061  | Unknown Hydrocarbon | 230 NJ  | Unknown             | (N 061 |
| Unknown             | 260 NJ  | Unknown Hydrocarbon | 120 NJ  | Unknown             | 170 NJ |
| Unknown             | 170 N   | Unknown             | 88 NJ   | Unknown             | LN 071 |
| Unknown             | N 001   | Unknown             | N 001   | Unknown             | N 061  |
| Unknown             | 150 NJ  | Unknown             | 150 NJ  | Unknown             | N 071  |
| Unknown             | 120 NJ  | Unknown             | 95 N    | Unknown             | 620 NJ |
| Unknown             | N 66    | Unknown             | N 16    | Unknown             | 120 NJ |
| Unknown             | 300 NJ  | Unknown             | 7.3 NJ  | Unknown             | 120 NJ |
| Unknown             | 430 N   | Unknown             | 220 NJ  | Unknown             | FN 000 |
| Unknown             | 290 NJ  | Unknown             | 320 NJ  | Unknown             | N 0001 |
| Unknown             | 330 NJ  | Unknown             | 320 NJ  | Unknown             | 480 NJ |
| Unknown             | 150 NJ  | Unknown             | 390 NJ  | Unknown             | N 099  |
| Unknown             | 75 NJ   | Unknown             | 68 NJ   | Unknown             | 290 NJ |
| Unknown             | 72 09 I | Unknown             | 180 NJ  | Unknown             | N 091  |
| Unknown             | 140 N   | Unknown             | 650 NJ  | Unknown             | 210 NJ |
| Unknown             | 87 NJ   | Unknown             | I70 NJ  | Unknown             | N 96   |
| Unknown             | N 091   | Unknown             | 320 NJ  | Unknown             | 240 NJ |
| Unknown             | 76 NJ   | Unknown             | 59 NJ   | Unknown             | 630 NJ |
|                     |         | Unknown Aromatic    | 58 NJ   | Unknown             | 140 NJ |
|                     |         | Hydrocarbon         |         |                     |        |
| Total SVOC TICs     | 3957    | Total SVOC TICs     | 4550    | Total SVOC TICs     | 7506   |

Table 4-1 (continued)

Background Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| BS-07            | SS-BS-07-03  | 96-5102                    | 0-3 inches       | 10/25/96     |
|------------------|--------------|----------------------------|------------------|--------------|
| BS-06            | SS-BS-06-03  | 96-5102                    | 0-3 inches       | 10/25/96     |
| BS-05            | SS-BS-05-03  | 96-5102                    | 0-3 inches       | 10/25/96     |
| BS-04            | SS-BS-04-03  | 96-5102                    | 0-3 inches       | 10/25/96     |
| BS-03            | SS-BS-03-03  | 96-5102                    | 0-3 inches       | 10/25/96     |
| BS-02            | SS-BS-02-03  | 96-5102                    | 0-3 inches       | 10/25/96     |
| BS-01            | SS-BS-01-03  | 96-5102                    | 0-3 inches       | 10/25/96     |
| Sample Location: | Sample I.D.: | Laboratory Project No.: 96 | Sample Interval: | Sample Date: |

Page 8 of 8

| <b>V</b> 2   | ¥.   | Y.            | Y.   | ¥.           | <b>Y</b> Z             |
|--------------|------|---------------|------|--------------|------------------------|
|              |      |               |      |              |                        |
| 17 J         | 12 J | 21 J          | 12 J | 10 UJ        | 12 J                   |
| 5.15         | 4.84 | 4.80          | 5.95 | 5.56         | 4.98                   |
| 17 J<br>5.15 | ī .  | 7 J 12 J 4.84 |      | 12 J<br>4.84 | 12 J 21 J<br>4.84 4.80 |

15 4.74

Ϋ́

al TAL = Target Analyte List. This list also includes hexavalent chromium and free cyanide (TCL and TICs do not include chromium and cyanide). TCL = Target Compound List; mg/kg = milligrams per kilogram; TIC = Tentatively Identified Compounds; ug/kg = micrograms per kilogram;

mg/l = milligrams per liter; s.u. = standard units.

b/ Data Qualifiers:

U = constituent not detected at the noted detection limit.

J = constituent detected at an estimated concentration less than the method detected limit.

UJ = constituent not detected at the estimated detection limit noted.

NJ = presumptive evidence of detection at an estimated concentration.

R = data rejected.

c/ NA = not analyzed.

d/ D = duplicate sample.

Because mercury, sodium, selenium, thallium, and free cyanide were not detected in the background samples, calculation e/ 95 UCL = 95 percent upper confidence limit for unsieved data. See text for explanation and Appendix O for calculation. This constituent is not anticipated to be present in background soils. Therefore, detection of this constituent in site of their 95 UCL was not possible. Detection of any of these constituents in site soil samples has been considered to represent exceedance of background conditions. All total cyanide results were rejected by the data validator.

if Only those TCL SVOCs detected in one or more of the background soil samples have been retained in this table. soil samples has been considered to represent exceedance of background conditions. Unabridged analytical results are presented in Appendix N.

g/ Total SVOC TICs represent the sum of all detected TICs.

Table 4-2

Transformer Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

|                                       | Transformer:<br>Sample Location: | 10-1.1                 | 10            | T1<br>T1-03            | 7.11-05                | 11-07                  |  |
|---------------------------------------|----------------------------------|------------------------|---------------|------------------------|------------------------|------------------------|--|
|                                       | Sample I.D.:                     | SS-T1-01-03<br>96-5102 | .01-03<br>102 | SS-T1-03-03<br>96-5102 | SS-T1-05-03<br>96-5102 | SS-T1-07-03<br>96-5102 |  |
|                                       | Sample Interval:<br>Sample Date: | 0-3 inches<br>10/25/96 | iches<br>5/96 | 0-3 inches<br>10/25/96 | 0-3 inches<br>10/25/96 | 0-3 inches<br>10/25/96 |  |
|                                       |                                  | #4 Sieve               | #400 Sieve    | #4 Sieve               | #4 Sieve               | #4 Sieve               |  |
| TAL Inorganics plus Molybdenum (mg/kg | ybdenum (mg/kg)(a)               |                        |               |                        |                        |                        |  |
| Silver                                |                                  | R (b)                  | 1.3 J         | 2.4 J                  | ~                      | ~                      |  |
| Aluminum                              |                                  | 32000 J                | 0098          | 15000.1                | f 00061                | 28000 J                |  |
| Arsenic                               |                                  | 5.4 J                  | =             | 12 J                   | 7.6 J                  | 4 J                    |  |
| Barium                                |                                  | 580 J                  | 390           | 400 J                  | 250 J                  | 620 J                  |  |
| Beryllium                             |                                  | 10 J                   | 4.4           | 5.6.1                  | 5.2 J                  | 9.1.9                  |  |
| Calcium                               |                                  | 150000 J               | 54000         | 70000 J                | 74000 J                | 130000 J               |  |
| Cadmium                               |                                  | 12.1                   | 7             | 25 J                   | l. 9.8                 | l. 9.8                 |  |
| Cobalt                                |                                  | 27 J                   | / 051         | 70.1                   | 41 J                   | 34.1                   |  |
| Chromium (Total)                      |                                  | 310 J                  | , 2000        | 870 J                  | 400 J                  | 420 J                  |  |
| Chromium (Hexavalent)                 |                                  | NA (c)                 | Y<br>N        | Ϋ́                     | V                      | V<br>V<br>V            |  |
| Copper                                |                                  | 520 J                  | 1100          | 520                    | 260 J                  | 350 J                  |  |
| Iron                                  |                                  | 33000 J                | 45000         | 120000 J               | 22000 J                | 20000 J                |  |
| Mercury (d)                           |                                  | 0.1.0                  | Y<br>Z        | 0.I U                  | 0.10 U                 | 0.05 U                 |  |
| Potassium                             |                                  | 3300 J                 | 1400          | 1800 J                 | f 0091                 | 3800 J                 |  |
| Magnesium                             |                                  | 17000 J                | 4500          | 8200 J                 | 8900 J                 | 14000 J                |  |
| Manganese                             |                                  | 5500 J                 | 4800          | 4200 J                 | 2800 J                 | 5200 J                 |  |
| Molybdenum                            |                                  | 84 J                   | 400 J         | 260 J                  | 70 J                   | 92 J                   |  |
| Sodium                                |                                  | 1000 J                 | 370           | 570 J                  | 480 J                  | 1000 J                 |  |
| Nickel                                |                                  | 270 J                  | 1700          | 170 J                  | 450 J                  | 370 J                  |  |
| Lead                                  |                                  | 520 J                  | > 0001        | 1500 J                 | 181                    | 540 J                  |  |
| Antimony                              |                                  | 1.3 J                  | 1.7           | 5.6 J                  | 2 J                    | 1.8.1                  |  |
| Selenium                              |                                  | 0.25 U                 | 0.24 U        | 0.24 U                 | 0.27 U                 | 0.26 U                 |  |
| Thallium                              |                                  | 0.22 UJ                | 0.21 U        | 0.21 UJ                | 0.2 UJ                 | 0.23 UJ                |  |
| Vanadium                              |                                  | 42 J                   | 120           | 87 J                   | 30 J                   | 38 J                   |  |
| Zinc                                  |                                  | 1200 J                 | 2300          | 1500 J                 | 1000 J                 | 1200 J                 |  |
| Cyanide (Total)(d)                    |                                  | 5.8 J                  | V<br>V        | 3.8 J                  | 4.9 J                  | 4.5 J                  |  |
| Cyanide (Free) (mg/l)                 |                                  | ₹<br>Z                 | <b>∀</b> Z    | Ϋ́                     | ₹<br>Z                 | ΥN                     |  |

Table 4-2 (continued)

Transformer Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility 2 of 5

|                                           | Transformer:            |             |                  | T2          |             |             | Т3          |             |
|-------------------------------------------|-------------------------|-------------|------------------|-------------|-------------|-------------|-------------|-------------|
|                                           | Sample Location:        |             | 1.7-0.1          |             | T2-03       | L3-01       | 0.1         | T3-03       |
|                                           | Sample I.D.:            | SS-T2-01-03 | SS-T2-01-03D (c) | SS-T2-01-03 | SS-T2-03-03 | SS-T3-01-03 | SS-T3-01-03 | SS-T3-03-03 |
|                                           | Laboratory Project No.: | 96-5102     | 96-5102          | 96-5102     | 96-5102     | 96-5102     | 96-5102     | 96-5102     |
|                                           | Sample Interval:        | 0-3 inches  | 0-3 inches       | 0-3 inches  | 0-3 inches  | 0-3 inches  | 0-3 inches  | 0-3 inches  |
|                                           | Sample Date:            | 10/25/96    | 10/22/96         | 10/25/96    | 10/25/96    | 10/25/96    | 10/25/96    | 10/25/96    |
|                                           |                         | #4 Sieve    | #4 Sieve         | #400 Sieve  | #4 Sieve    | #4 Sieve    | #400 Sieve  | #4 Sieve    |
| TAL Inorganics plus Molybdenum (mg/kg)(a) | olybdenum (mø/kø)(a)    |             |                  |             |             |             |             |             |
| Silver                                    |                         | ~           | U 777 U          | 0.69 U      | 0.93 J      | ~           | 0.74 U      | 1.6.1       |
| Aluminum                                  |                         | f 0069      | 7100             | 7800        | 3500 J      | 7500 J      | 0096        | 6100 J      |
| Arsenic                                   |                         | 32 J        | 32/              | l6 J        | 1 96 J      | 8.6 J       | 13 J        | 3.2 J       |
| Barium                                    |                         | 240 J       | 340              | 120         | I 09 I      | 80 J        | 66          | 57 J        |
| Beryllium                                 |                         | 0.78 J      |                  | 0.49 J      | 2.5 J       | 1.5 J       | 1.3 J       | 1.7 J       |
| Calcium                                   |                         | 2000 J      | 2300             | 2000        | 3300 J      | 16000 J     | 00091       | 14000 J     |
| Cadmium                                   |                         | T 1         | 14               | 5.5         | 17.1        | 14 J        | 7.8         | 21 J        |
| Cobalt                                    |                         | 150 J       | 091              | 84          | 760 J       | 42 J        | 58          | I 09 I      |
| Chromium (Total)                          |                         | f 089       | 880              | 460         | 1300 J      | 3800 J      | 1900        | × 1 0018    |
| Chromium (Hexavalent)                     |                         | Ϋ́Z         | V.               | NA          | VV          | AN          | <b>∠</b> Z  | VZ<br>Z     |
| Copper                                    |                         | 370 J       | 460              | 210         | 320 J       | 290 J       | 290         | 420 J       |
| Iron                                      |                         | 45000 J     | 55000            | 22000       | 89000 J     | 75000 J     | 41000       | 110000 J    |
| Mercury (d)                               |                         | 0.08 U      | 0.09 U           | NA          | 0.08 U      | 0.07 U      | Ϋ́N         | 0.1 U       |
| Potassium                                 |                         | 630         | 290              | 009         | 300 J       | I 000 J     | 1400        | 460 J       |
| Magnesium                                 |                         | 2000 J      | 2000             | 2300        | 1001        | 5500 J      | 7200        | 4300.1      |
| Manganese                                 |                         | 500 J       | 550              | 340         | 170 J       | 1400 J      | 930         | 1700 J      |
| Molybdenum                                |                         | 240 J       | 360              | F 011       | 1500 J      | 540.1       | 210 J       | 790 J       |
| Sodium                                    |                         | 011         | 84               | 37          | 90 J        | 130 J       | 120         | 190 J       |
| Nickel                                    |                         | 430 J       | 410              | 360         | 1100 J      | 2600 J      | 1800        | 8800 J      |
| Lead                                      |                         | 330 J       | 300              | 130         | 130 J       | 80 J        | 110         | f 011       |
| Antimony                                  |                         | 4.5 J       | 4.7              | 0.99        | 7.9 J       | 15.1        | 2.6         | 27 J        |
| Selenium                                  |                         | 0.26 U      | 0.25 U           | 0.23 U      | 0.25 U      | 0.26 UJ     | 0.24 U      | 0.26 U      |
| Thallium                                  |                         | 0.23 UJ     | 0.21 U           | 0.19 U      | 0.22 U      | 0.22 UJ     | 0.21 U      | 0.22 UJ     |
| Vanadium                                  |                         | 130 J       | 140              | 55          | 430 J       | l. 62       | 62          | 140 J       |
| Zinc                                      |                         | 800 J       | 1000             | 530         | 400 J       | 450 J       | 590         | I 600 J     |
| Cyanide (Total)(d)                        |                         | ~           | 0 -              | NA          | ~           | ~           | Ϋ́Z         | 1.1 J       |
| Cyanide (Free) (mg/l)                     |                         | Š<br>Z      | ٧X               | ٧Z          | ٧Z          | ₹<br>Z      | Ϋ́Z         | <b>∨</b> Z  |

Table 4-2 (continued)

Transformer Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| Transformer:                                |             |             |             | TI          |             |             |
|---------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sample Location:                            | I0-I.I.     | T1-02       | T1-03       | T1-04       | T1-05       | , 90-LT     |
| Sample 1.D.:                                | SS-T1-01-03 | SS-T1-02-03 | SS-T1-03-03 | SS-T1-04-03 | SS-T1-05-03 | SS-T1-06-03 |
| Laboratory Project No.:                     | 96-5102     | 96-5102     | 96-5102     | 96-5102     | 96-5102     | 96-5102     |
| Sample Interval:                            | 0-3 inches  |
| Sample Date:                                | 10/25/96    | 10/25/96    | 10/25/96    | 10/25/96    | 10/25/96    | 10/25/96    |
| TCL Volatile Organic Compounds (µg/kg)      | NA          | V<br>Z      | ΥN          | Ϋ́N         | NA          | <<br>Z      |
| TCL Semi-Volatile Organic Compounds (µg/kg) | V V         | Ϋ́Z         | Ϋ́Ζ         | ₹<br>Z      | V<br>Z      | ₹<br>Z      |
| TCT. Polychlorinated Biphenyls (mg/kg)      |             |             |             |             |             |             |
| Aroclor 1016                                | I U         | I UJ        | I UJ        | I'N I       | 101         | LU I        |
| Aroclor 1221                                | I UJ        | I UJ        | I UJ        | rn -        | LU I        | m I         |
| Aroclor 1232                                | ~           | ~           | ~           | ~           | ~           | ~           |
| Aroclor 1242                                | n n         | I UJ        | n n         | IU I        | m -         | 55 -        |
| Aroclor 1248                                | I UJ        | I UJ        | I OJ        | IU I        | I UJ        | rn -        |
| Aroclor 1254                                | rn I        | LU I        | 1 0.1       | n n         | LU I        | mı          |
| Aroclor 1260                                | n n         | n -         | î î         | n n         | LU I        | rn I        |
| Miscellaneous Parameters                    |             |             |             |             |             |             |
| Total Petroleum Hydrocarbons (mg/kg)        | 97 J        | 25 J        | IO 001      | IO 001      | 34 J        | 23 J        |
| oll (s.u.)                                  | 8.47        | ΥN          | Ϋ́N         | NA          | VV          | Š           |
| Total Organic Carbon (mg/l)                 | I.8 J       | 2 J         | 3.1 J       | 1.3 J       | 2.1.1       | 2.6 J       |

Table 4-2 (continued)

Transformer Soil Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| Transformer:                                | T1 (continued)         | tinued)                |                        |                         | T2                     |                        |
|---------------------------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|
| Sample Location:                            | 70-11                  | T1-08                  | 12                     | 1.2-01                  | T2-02                  | T2-03                  |
| Sample I.D.:<br>Laboratory Project No.:     | SS-T1-07-03<br>96-5102 | SS-T1-08-03<br>96-5102 | SS-T2-01-03<br>96-5102 | SS-T2-01-03D<br>96-5102 | SS-T2-02-03<br>96-5102 | SS-T2-03-03<br>96-5102 |
| Sample Interval:<br>Sample Date:            | 0-3 inches<br>10/25/96 | 0-3 inches<br>10/25/96 | 0-3 inches<br>10/25/96 | 0-3 inches<br>10/25/96  | 0-3 inches 10/25/96    | 0-3 inches 10/25/96    |
| TCL Volatile Organic Compounds (µg/kg)      | N<br>A                 | NA                     | V<br>V                 | V<br>V                  | <b>₹</b>               | V<br>V<br>V            |
| TCL Semi-Volatile Organic Compounds (μg/kg) | Y<br>Z                 | VN                     | V                      | ۲<br>Z                  | N                      | ₹<br>Z                 |
| TCL Polychlorinated Biphenyls (mg/kg)       | :                      |                        | :                      | :                       | ;                      | ;                      |
| Aroclor 1016                                | <u> </u>               | 3                      | S :                    | 3 :                     | 5:                     | <u> </u>               |
| Aroclor 1221                                | f)                     | <u> </u>               | 7)<br>- :              | n .                     | <u></u>                |                        |
| Aroclor 1232                                | ≃ :                    | ≃ :                    | ≃ :                    | ≃ :                     | ≃ :                    | ~                      |
| Aroclor 1242                                | ro I                   | fo I                   | <u></u>                | f0 -                    | 5                      | 3                      |
| Aroclor 1248                                | n n                    | n n                    | <u>n</u>               | IO I                    | n -                    | <u> </u>               |
| Aroclor 1254                                | în I                   | in I                   | rn I                   | ro i                    | I UI                   | 101                    |
| Aroclor 1260                                | LU I                   | ro i                   | I UJ                   | I 0.1                   | <u>n</u>               | ro I                   |
| Miscellaneous Parameters                    |                        |                        |                        |                         |                        |                        |
| Total Petroleum Hydrocarbons (mg/kg)        | 75 J                   | TO 001                 | 640 J                  | 470 J                   | 110 (1)                | 23 J                   |
| p11 (s.u.)                                  | V<br>N                 | Y<br>Y                 | 6.45                   | 6.44                    | VΑ                     | VZ<br>VZ               |
| Total Organic Carbon (mg/l)                 | ſŢ.                    | 2.6 J                  | l 91                   | 14                      | 3.4 J                  | 2.2 J                  |

Table 4-2 (continued)

AL Tech Specialty Steel Corporation Transformer Soil Sample Data Phase I RFI **Dunkirk, New York Facility** 

|                | T3-04            | SS-T3-04-03  | 96-5102                 | 0-3 inches       | 96/07/01     | ۲Z                                     | ΥX                                          |                                       | LU I         | U I UI       |              | LU I         |              | I CI         |              |                          |                                      | ΥZ        |                             |
|----------------|------------------|--------------|-------------------------|------------------|--------------|----------------------------------------|---------------------------------------------|---------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------------|--------------------------------------|-----------|-----------------------------|
| T3             | T3-03            | SS-T3-03-03  | 96-5102                 | 0-3 inches       | 06/57/01     | NA                                     | Z<br>Z                                      |                                       | _            | I U          | ~            | I U          | _            | L I .I       | 7            |                          | 1011                                 | Ϋ́Z       | 2.5 J                       |
|                | T3-02            | SS-T3-02-03  | 96-5102                 | 0-3 inches       | 10/62/90     | Y<br>V                                 | VZ                                          |                                       | n I          | <u>n</u>     | ~            | 3.9 J        | I UJ         | n -          | 6.4 J        |                          | I 091                                | ΥN        | 2.6 J                       |
|                | 1.3-01           | SS-T3-01-03  | 96-5102                 | 0-3 inches       | 10/22/90     | ۲<br>۲                                 | Ϋ́Z                                         |                                       | 30 UJ        | 30 UJ        | ~            | 30 UJ        | 87 J         | 30 UJ        | 30 UJ        |                          | 310 J                                | 69.7      | 3.7 J                       |
| T2 (continued) | 1.2-04           | SS-T2-04-03  | 96-5102                 | 0-3 inches       | 06/87/01     | Y<br>Z                                 | ₹<br>Z                                      |                                       | LU I         | 5            | ~            | n n          | I UJ         | n n          | I UJ         |                          | 100 UJ                               | N<br>N    | l.9 J                       |
| Transformer:   | Sample Location: | Sample I.D.: | Laboratory Project No.: | Sample Interval: | Sample Date: | TCL Volatile Organic Compounds (µg/kg) | TCL Semi-Volatile Organic Compounds (µg/kg) | TCL Polychlorinated Biphenyls (mg/kg) | Aroclor 1016 | Aroclor 1221 | Aroclor 1232 | Aroclor 1242 | Aroclor 1248 | Aroclor 1254 | Aroclor 1260 | Miscellaneous Parameters | Total Petroleum Hydrocarbons (mg/kg) | pH (s.u.) | Total Organic Carbon (mg/l) |

mg/kg = milligrams per kilogram; ug/kg = micrograms per kilogram; mg/l = micrograms per liter; s.u. = standard units. a/ TAL = Target Analyte List, this list includes hexavalent chromium and free cyanide; TCL = Target Compound List; b/ Data Qualifiers:

U = constituent not detected at the noted detection limit.

J= constituent detected at an estimated concentration less than the method detected limit. UJ= constituent not detected at the estimated detection limit noted. R= data rejected.

c/ NA = not analyzed.

d/ Analysis for mercury and total eyanide was performed on unsieved sample aliquots, consistent with the work plan.

c/ D = duplicate sample.

4

| ı | 2 |  |
|---|---|--|
|   |   |  |
|   | Ť |  |
|   | ٠ |  |
|   | Ž |  |
|   | = |  |
|   | - |  |
|   |   |  |

TCLP Metals Data for Soils (a)

Phase 1 RF1

AL Tech Specialty Steel Corporation

Dunkirk, New York Facility

|                          | Sample Location:                                                           | T1-03                                   | T3-03                                               | GS-03                                                 | KB-04                                                 |                                                       | / TP-02                                               |                                                         |
|--------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| Lad                      | Sample LD.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Dates | ALT-SS-T1-03<br>97-1274<br>0 - 3 inches | ALT-SS-T3-03<br>97-1274<br>0 - 3 inches<br>10/25/96 | ALT-SS-GS03-03<br>97-1274<br>0 - 3 inches<br>10/25/96 | ALT-SB-RB04-0002<br>97-1274<br>0 - 2 feet<br>10/30/96 | ALT-SB-RB04-0709<br>97-1274<br>7 - 9 feet<br>10/30/96 | AUT-SS-TP02-03<br>97-1274<br>0 - 3 inches<br>10/22/96 | AL/F-SB-TP02-0910<br>97-1274<br>9 - 10 feet<br>10/22/96 |
|                          |                                                                            |                                         |                                                     |                                                       |                                                       |                                                       |                                                       |                                                         |
| Total Metals (mg/kg) (b) |                                                                            |                                         |                                                     |                                                       |                                                       | :                                                     | ,                                                     |                                                         |
| Silver                   |                                                                            | 2.4 J (c)                               | 6 9'1                                               | 0.85                                                  | 0.8 ()                                                | 0.78                                                  | 5,6                                                   | 2.1                                                     |
| Aluminum                 |                                                                            | 15000 J                                 | 6100 3                                              | 9200 J                                                | 3900                                                  | 7900                                                  | 0061                                                  | 0099                                                    |
| Arsenic                  |                                                                            | 12 J                                    | 3.2 J                                               | 0.17 U                                                | <u> </u>                                              | 7.6                                                   | <del>-</del>                                          | 9.2                                                     |
| Barium                   |                                                                            | 400 7                                   | 57.1                                                | 120 J                                                 | 140                                                   | 150                                                   | 76                                                    | 74                                                      |
| Beryllium                |                                                                            | 5.6 J                                   | 1.7 J                                               |                                                       | 0.42                                                  | 0.93                                                  | 3.2                                                   | <u>: -</u>                                              |
| Cadmium                  |                                                                            | 25 J                                    | 21 J                                                | 9.4                                                   | 5.4                                                   | 3.7                                                   | 27,                                                   | 4.4                                                     |
| ('obalt                  |                                                                            | J 07                                    | 1001                                                | 53 J                                                  | 28                                                    | <u>n</u>                                              | ×30/                                                  | 27                                                      |
| ( hromium                |                                                                            | 870 J                                   | 8100 1                                              | 3900 J                                                | 3400                                                  | 22                                                    | 23000 🐇                                               | 096                                                     |
| Copper                   |                                                                            | 520                                     | 450 ]                                               | 350 J                                                 | 011                                                   | 36                                                    | 2400                                                  | 81                                                      |
| 10.1                     |                                                                            | 120000 J                                | 110000 J                                            | 52000 J                                               | 34000                                                 | 20000                                                 | 180000                                                | 27000                                                   |
| Magnesium                |                                                                            | 8200 J                                  | 4300 J                                              | 9700 J                                                | 2300                                                  | 8800                                                  | 2800                                                  | 9300                                                    |
| Manganese                |                                                                            | 4200 J                                  | 1700 J                                              | f 0091                                                | 400                                                   | 340                                                   | 3400                                                  | 400                                                     |
| Mercury                  |                                                                            | 0.1 U                                   | U I U                                               | O 60'0                                                | 0.1 U                                                 | U 60.0                                                | 0.111.0                                               | 0.19                                                    |
| Molybdenim               |                                                                            | 360 J                                   | 790 J                                               | 430 J                                                 | 130                                                   | 81                                                    | 2900                                                  | 140                                                     |
| Zickel                   |                                                                            | 170 J                                   | 8800                                                | 2500 J                                                | 1800                                                  | 300                                                   | 17000                                                 | 500                                                     |
|                          |                                                                            | 1500 J                                  | L 011                                               | f 19                                                  | 2800                                                  | 63                                                    | 47                                                    |                                                         |
| Selenium                 |                                                                            | 0.24 U                                  | 0,26 U                                              | 0.25 U                                                | 0.26 U                                                | 0,25 U                                                | 0.25 U                                                | 0.25 U                                                  |
| Vanadium                 |                                                                            | E 78                                    | 140 )                                               | 80 J                                                  | 32                                                    | 17                                                    | 640                                                   |                                                         |
| Zinc                     |                                                                            | 1500 J                                  | 1600 J                                              | 170 J                                                 | 820                                                   | 110                                                   | 76                                                    | 63                                                      |
|                          |                                                                            |                                         |                                                     |                                                       |                                                       |                                                       |                                                       |                                                         |
| TCLP Metals (mg/l)       | TCLP Limit (mg/l) (d)                                                      |                                         |                                                     |                                                       |                                                       |                                                       |                                                       |                                                         |
| Silver                   | 5                                                                          | U I.0                                   | 0.1 U                                               | 0.1.0                                                 | U 1.0                                                 | 0.1.0                                                 | U I.0                                                 | U I.0                                                   |
| Aluminum                 | · (c)                                                                      | D 01                                    | 01                                                  | 10 U                                                  | O 01                                                  | . 0.01                                                | O 01                                                  | D 01                                                    |
| Arsenie                  | 5                                                                          | U 1.0                                   | U 1.0                                               | U I.0                                                 | 0.1 (                                                 | 0.1.0                                                 | 0.1 U                                                 | D 1.0                                                   |
| Barium                   | 100                                                                        | D 01                                    | O 01                                                | O 01                                                  | O 01                                                  | U 01                                                  | U 01                                                  | D 01                                                    |
| Beryllium                | •                                                                          | U 1.0                                   | 0.1 U                                               | O 1.0                                                 | 0.1.0                                                 | 0.1.0                                                 | O. I. U                                               | U 1.0                                                   |
| Cadmium                  | _                                                                          | 0.1.0                                   | 0.I.U                                               | 0.1 U                                                 | 0 I O                                                 | 0.1 U                                                 | O.1.0                                                 | U 1.0                                                   |
| Cobalt                   |                                                                            | n                                       | n                                                   | _                                                     | 2                                                     | 0 1                                                   | n                                                     | D =                                                     |
| Chromium                 | 5                                                                          | U 1.0                                   | O.1.0                                               | 0.1.0                                                 | 0.17                                                  | U 1.0                                                 | 0.1 U                                                 | D 1.0                                                   |
| Copper                   | ٠                                                                          | n <b>-</b>                              | n <b>1</b>                                          | ח                                                     | ח                                                     | <b>7</b>                                              | 1.2                                                   | חו                                                      |
| Iron                     | •                                                                          | n on                                    | O 01                                                | O 01                                                  | D 01                                                  | ) o                                                   | O 01                                                  | D 01                                                    |
| Magnesium                |                                                                            | 12                                      | 40                                                  | 17                                                    | 12                                                    | 140                                                   | 31                                                    | 110                                                     |
| Manganese                | •                                                                          | =                                       | 2.4                                                 | 7.2                                                   | 3.8                                                   | 7.4                                                   | 1.5                                                   | 7.6                                                     |
| Mercury                  | 0.2                                                                        | U 10.0                                  | 0.01                                                | U 10.0                                                | U 10.0                                                | U 10'0                                                | 0.01 U                                                | U 10.0                                                  |
| Molybdenum               |                                                                            | n I                                     | n                                                   | N I                                                   | o                                                     | <b>&gt;</b> -                                         | 0 1                                                   | N I                                                     |
| Nickel                   | •                                                                          | D 1.0                                   |                                                     | 0.28                                                  | 1.7                                                   | 0.21                                                  | 3.9                                                   | 0.68                                                    |
| Lead                     | 5                                                                          |                                         | 0.1 U                                               | 0.1 U                                                 | ~ 26                                                  | 0.45                                                  | 0.1.0                                                 | U 1.0                                                   |
| Selenium                 | -                                                                          | 0.1.0                                   | 0.1 U                                               | 0.1.0                                                 | 0.1 U                                                 | 0.1.0                                                 | U 1.0                                                 | 0.1 U                                                   |
| Vanadium                 | •                                                                          | חו                                      | n <b>1</b>                                          | חו                                                    | חו                                                    | <b>D</b> -                                            | 0.1                                                   | n -                                                     |
| Zinc                     |                                                                            | 5.6                                     | =                                                   | 9.1                                                   | 44                                                    | 1.3                                                   | n                                                     | חר                                                      |
|                          |                                                                            |                                         |                                                     |                                                       |                                                       |                                                       |                                                       |                                                         |

 $\leftarrow$ 

| ned)     |  |
|----------|--|
|          |  |
| <u>ت</u> |  |
| 声        |  |
| Ξ        |  |

TCLP Metals Data for Soils Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

|                      |                                             |                       | <u>`</u>              |                  |                                         |                  |                       | 2 of 4                |
|----------------------|---------------------------------------------|-----------------------|-----------------------|------------------|-----------------------------------------|------------------|-----------------------|-----------------------|
|                      | Sample Location:                            | TP-03                 | SD-01.                |                  | TP-07                                   | TP-10            | TP-11                 | RF1-04                |
|                      | Sample I.D.:                                | ALT-SB-TP03-0002      | ALT-SB-TP05-0002      | ALT-SB-TP05-0809 | ALT-SB-TP07-0304                        | ALT-SB-TP10-0809 | ALT-SB-TP11-0002D (f) | ALT-SB-RF104-0002     |
|                      | Laboratory Project No.:<br>Sample Interval: | 97-1274<br>0 - 2 feet | 97-1274<br>0 - 2 feet | 8 - 9 feet       | 3 - 4 feet                              | 8 - 9 feet       | 0 - 2 feet            | 97-1274<br>0 - 2 feet |
|                      | Sample Date:                                | 10/22/96              | 10/24/96              | 10/24/96         | 10/24/96                                | 10/23/96         | 10/23/96              | 10/29/96              |
|                      |                                             |                       |                       |                  |                                         |                  |                       |                       |
| Total Metals (mg/kg) |                                             |                       |                       | 000              | a                                       | ć                | 7 6                   | -                     |
| Silver               |                                             | 7000                  | t //.0                | 8200             | A 0079                                  | 7.7              | 0.6                   | 0800                  |
| Alummum              |                                             | , X                   | 711                   | . E.             | [ 6]                                    | 6                | 9.9                   |                       |
| Barium               |                                             | 65                    | 120 )                 | 120 J            | f 88                                    | 011              | 140                   | 87                    |
| Berylfium            |                                             | <u> </u>              | 2.7 J                 | _                | 0.61 J                                  | _                | 5.5                   | 1.2                   |
| Cadmium              |                                             | æ                     | 6.5 J                 | L T.7 J          | L #1                                    | 4.9              | 9.9                   | 6,4                   |
| Cobalt               |                                             | 0.52 U                | 40 J                  | 41 J             | 30 J                                    | 28               | 7.5                   | 63                    |
| Chromium             |                                             | 3100 /                | 3000 J ×/             | 2500 J           | 1700                                    | 0061             | 1900                  | 2500                  |
| Copper               |                                             | 200                   | 120 J                 | f 001            | 120 J                                   | 120              | 011                   | 77                    |
| Iron                 |                                             | 55000                 | 41000 J               | 51000 J          | 45000 J                                 | 32000            | 36000                 | 38000                 |
| Magnesium            |                                             | 4200                  | 2200 J                | 4000 J           | f 0081                                  | 0099             | 9300                  | 5000                  |
| Manganese            |                                             | 720                   | 1 086 J               | f 089            | 450 J                                   | 440              | 0.11 U                | 530                   |
| Mercury              |                                             | 0.1                   | 0,10                  | 0.11             | 0.08 U                                  | 0.1 U            | 0.08 U                | U 60:0                |
| Molybdenum           |                                             | 009                   | 290 J                 | f 081            | 360 J                                   | 130              | 1600                  | 320                   |
| Nickel               |                                             | 1800                  | 1400 1                | 1200 J           | 1400 J                                  | 2100             | 840                   | 1500                  |
| Lead                 |                                             | 51                    | 3300 J                | 32 J             | 310 J                                   | 39               | 50                    | 27                    |
| Selenium             |                                             | 0.25 U                | 0.24 U                | 0.26 U           | 0.36                                    | 0.25 U           | 0.25 U                | 0.25 U                |
| Vanadium             |                                             | 061                   | 70 }                  |                  | f 176                                   | 37               | 530                   | 001                   |
| Zinc                 |                                             | 84                    | 140 ]                 | f 68             | 6.7 J                                   | 56               | 77                    | 001                   |
| TCLP Metals (mg/l)   | TCLP Limit                                  |                       |                       |                  |                                         |                  |                       |                       |
| Silver               | \$                                          | 0.1 U                 | U 1.0                 | 0.1 U            | 0.1 U                                   | 0.1.0            | U 1.0                 | 0.1 U                 |
| Aluminum             | i                                           | U 01                  | O 01                  | O 01             | O 01                                    | D 01             | U 01                  | D 01                  |
| Arsenic              | 5                                           | D 1.0                 | 0.1 U                 | 0.1 U            | J 1.0                                   | 0.1.0            | O.1 U                 | O.I.O                 |
| Barium               | 100                                         | D 01                  | O 01                  | O 01             | O 01                                    | O 01             | Л <b>01</b>           | O 01                  |
| Beryllium            | •                                           | 0.1.0                 | 0.1.0                 | 0.1 U            | 0.1 U                                   | 0.1.0            | 0.1.0                 | 0.1 U                 |
| Cadmium              | -                                           | O I '0                | 0.1.0                 | 0.1 U            | 0.17                                    | O I '0           | O - 0                 | D 1.0                 |
| Cobalt               | *                                           | <b>3</b>              | )<br>                 | n :              | 0 :                                     | D :              | <b>=</b> :            | ח :                   |
| ('hromium            | 2                                           | 0.1.0                 | 0.10                  | 0 1.0            | ) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | 0.10             | 0.0                   | 0.1.0                 |
| Copper               |                                             | <b>-</b> :            | <b>-</b> :            | n :              | )<br>- :                                | O 3              | D :                   | <u> </u>              |
| Iron                 | •                                           | 0 01                  | 0.01                  | 0 2 :            | 2 :                                     | 0 01             | 00                    | 2                     |
| Magnesium            | •                                           | 32                    | <u>6</u> :            | <del>.</del> .   | O 9 .                                   | 79               | 7                     | m +                   |
| Manganese            | 1                                           | 5.1                   | 8                     | 3.8              | U 6.4                                   | 6.2              | 8. <del>4</del>       | 2                     |
| Mercury              | 0.2                                         | 0.01 U                | D 10'0                | U 10.0           | O 10'0                                  | U 10.0           | D 10:0                | 0.01 U                |
| Molybdenum           | •                                           | n -                   | 0 -                   | 0 -              | 01:                                     |                  | o <b>-</b>            | 0 -                   |
| Nickel               | •                                           | 0.59                  | 0.34                  | 0.27             | E:-                                     | 1.6              | 0.1.0                 | 0.22                  |
| Lead                 | 5                                           | U 1.0                 | D 1.0                 | 0.1.0            | 0.28                                    | O 1.0            | 0.10                  | 0 :                   |
| Selenium             | -                                           | 0.1.0                 | 0.1.0                 | 0 1.0            | ) : .                                   | O 1.0            |                       | 0.10                  |
| Vanadium             | 1                                           | <u> </u>              | 0 :                   | 0 - ;            | o ,                                     | <u> </u>         | <u> </u>              | )<br>-                |
| Zinc                 | •                                           | D                     | <del>4.</del>         | 3,1              | 7                                       | 0                | 0                     | 0 -                   |

| 3 of 4 LWB-03 ALT-SB-LWB03-0608 97-1274 6-8 feet 10/30/96                                                                                                                                 | 0.96<br>N > 6.96<br>N > 4.4<br>N > 4.8<br>N > 4.8<br>N > 5.10<br>N > 5.00<br>U U U U U U U U U U U U U U U U U U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1.0<br>0.1.1.1.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.1.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT-SB-RF111-0406 97-1274 4 - 6 feet 10/24/96                                                                                                                                             | 8.2.1<br>5.2.1<br>2.900.1 /<br>0.99.1<br>3.8.1<br>30.1<br>30.1<br>30.0<br>30.0<br>30.1<br>30.1<br>30.1<br>4.1<br>67.1<br>67.1<br>61.0<br>61.0<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ALT-SS-RF111-03 97-1274 0 - 3 inches 107.3/96                                                                                                                                             | 0.77 U 170 26/ 6200  1.2 1.2 1.3 1.3 1.0 1.0000 1.0000 1.0000 0.11 U 5.3 3.30 5.30 5.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.10<br>0.10<br>1.0<br>1.0<br>1.0<br>0.10<br>0.10<br>0.10<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 4-3 (continued)  TCLP Metals Data for Soils Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility RFI-09 ALT-SS-RF109-03 AUT-SS-RF109-03 O - 3 inches 10723/96 | 4.1<br>2400<br>15<br>54<br>3.3<br>26<br>3.4<br>10000<br>100000<br>100000<br>1300<br>3200<br>0.06 U<br>2400<br>2400<br>21000<br>59<br>90.25 U<br>150<br>16 U<br>16 U<br>16 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.13<br>0.13<br>0.13<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AL.  RFI-08  ALT-SS-RF108-03  97-1274  0-3 inches 10/24/96                                                                                                                                | 5.5 J<br>3800 J<br>0.16 UJ<br>240 J<br>1.2 J<br>25 J<br>130 J<br>2000 J<br>640 J<br>130 J<br>2100 J<br>2200 J<br>660 J<br>14000 J<br>660 J<br>14000 J<br>99 J<br>99 J<br>340 J<br>90 J | 0.1.0<br>0.1.0<br>0.1.0<br>0.1.0<br>0.77.0<br>0.1.0<br>0.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample Location: Sample L.D.: Sample I.D.: Sample Interval: Sample Date:                                                                                                                  | TCLP Limit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                           | Total Ments (mg/kg) Silver Aluminum Arsenic Barium Barjium Cadmium Cadmium Cadmium C'opner Iron Manganesium Manganesium Manganesium Manganesium Manganesium C'opner Iron Manganesium Zine Aluminum Arsenic Barium Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Derymmn<br>Cadmium<br>Cobatt<br>Chromium<br>Copper<br>Iron<br>Magnesium<br>Manganese<br>Merury<br>Metyberuum<br>Nickel<br>Lead<br>Selenium<br>Vanadium<br>Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

4 of 4

## Table 4-3 (continued)

AL Tech Specialty Steel Corporation Dunkirk, New York Facility TCLP Metals Data for Soils Phase | RF1

a/ TCLP = Toxicity Characteristic Leaching Procedure.

All total metals results represent sample aliquots sieved using a number 4 standard sieve, except for mercury (which is representative of unsieved aliquots).

b/ mg/kg = milligram per kilogram; mg/l = milligrams per liter.

c/ Data Qualifiers.

 $U\sim$  constituent not detected at the noted detection limit.  $J\sim$  constituent detected at an estimated concentration less than the method detected limit.

 $UJ \approx constituent not detected at the estimated detection limit noted.$  $<math display="inline">R \approx data$  rejected.

d/ TCLP limits as promulgated by 40 CFR 261.24 Table 1. Maximum Concentration of Contaminants for the Toxicity Characteristic. Limits are only established for those metals indicated. Analysis for other facility-related metals is consistent with the work plan. e/ "." indicates TCLP limit has not been established.
Ø D = duplicate sample.
g/ NA = not analyzed.

| -   |
|-----|
| - 1 |
| **  |
| ت   |
| Ξ   |
|     |
| Ξ.  |

9

| Sample Location:                          | GS-01 (b     | <u> </u>       | ><br>GS-02             | GS-03                  | CS-04        | CS-05        | RB-01         |
|-------------------------------------------|--------------|----------------|------------------------|------------------------|--------------|--------------|---------------|
| Sample LD:                                | SS-GS-01-03  | SS-GS-01-03    | SS-GS-02-03<br>96-5102 | SS-GS-03-03<br>96-5102 | SS-GS-04-03  | SS-GS-05-03  | SB-RB-01-0002 |
| Sample Interval:                          | 0 - 3 inches | 0 - 3 inches   | 0 - 3 inches           | 0 - 3 inches           | 0 - 3 inches | 0 - 3 inches | 0 - 2 feet    |
| Sample Date:                              | 10/25/96     | 11/1/96        | 10/25/96               | 10/25/96               | 10/23/96     | 10/23/96     | 10/31/96      |
| TAL Inorganics plus Molybdenum (mg/kg)(c) |              |                |                        |                        |              |              |               |
| Silver                                    | R (d)        | U 77.0         | <b>≃</b>               | 0.85 J                 | 0.75 U       | 0.78 U       |               |
| Aluminum                                  | 5900 J       | 5700           | 18000 J                | 9200 J                 | 0068         | 6500         | NA (c)        |
| Arsenic                                   |              | =              | 13 J                   | 0.17 U                 | 10           | 6.1          | 21            |
| Barium                                    | f 89         | 16             | 380 J                  | 120 J                  | 88           | 63           | 21            |
| Beryllium                                 | 0.65 J       | 16.0           | 5.1 J                  | 3 J                    | 0.59         | 0.48         | Š             |
| Calcium                                   | 6100 J       | 3900           | f 00089                | 49000 J                | 8800         | 13000        | Y<br>N        |
| Cadmium                                   | 5.9 J        | 7.9            | 8.5 J                  | 9.4 J                  | 3.8          | 6.1          | 45            |
| Cobalt                                    | 29 J         | 47             | 45 J                   | 53 J                   | 21           | 9.1          | VN<br>VN      |
| Chromium (Total)                          | 490 J        | 730            | 750 J                  | ≥ 3900 J               | 0011         | 300          | 230           |
| Chromium (Hexavalent)(f)                  | 2.11 U       | Υ <sub>N</sub> | 3.58 √                 | 4,01 ک                 | 9.45         | 2.04 U       | 2 U           |
| Copper                                    | I 80 J       | 061            | 250 J                  | 350 J                  | 20           | 28           | 110           |
| Iron                                      | 31000 J      | 40000          | 40000 J                | 52000 J                | 3200         | 16000        | Ϋ́N           |
| Mercury(I)                                | U 60.0       | 0.1 U          | 0.06 U                 | O 60'0                 | O 60'0       | U 60.0       | 0.1 U         |
| Potassium                                 | f 089        | 280            | 1100 J                 | 730                    | 0011         | 1000         | Ϋ́N           |
| Magnesium                                 | 2700 J       | 2300           | 13000 J                | 6 00 6 1               | 3400         | 4900         | VN            |
| Manganese                                 | 560 J        | 520            | 1700 J                 | I 009 I                | 420          | 290          | Ϋ́N           |
| Molybdenum                                | 140 J        | 170            | 240 J                  | 430 J                  | 42           | 25           | ¥N            |
| Sodium                                    | 86 J         | 84             | 470 J                  | 310                    | 78           | 74           | VΝ            |
| Nickel                                    | 530 J        | 480            | 1300 J                 | 2500 J                 | 750          | 200          | ΥN            |
| 1,end                                     | 130 J        | 15             | 1091                   | ( 19                   | 26           | 12           | 12            |
| Antimony                                  | 2.8 J        |                | 2.2 J                  | 9.1 J                  | 0.72         | 0.81         | ΥN            |
| Selenium                                  | 0.24 UJ      | 0.25 U         | 0.24 UJ                | 0.25 U                 | 0.24 U       | 0.25 U       | 0.24 U        |
| Thallium                                  | 0.21 UJ      | 0.21 U         | 0.2 UJ                 | 0.22 U                 | 0.21 U       | 0.22 U       | Ϋ́N           |
| Vanadium                                  | 51 J         | 83             | 81 J                   | f 08                   | 28           | 14           | Š             |
| Zinc                                      | 460 J        | 550            | 120 J                  | 170 J                  | 87           | 54           | V.            |
| Cyanide (Total) (I)                       | ~            | <u>n</u> –     | 2.9 J                  | 1.8 J                  | Ω -          | 0 1          | 0.1           |
| Cyanide (Free) (mg/l)(f)                  | 0.005 U      | 0.005 U        | 0.005 U                | 0.005 U                | 0.005 U      | 0.005 U      | 0.005 U       |
|                                           |              |                |                        |                        |              |              |               |

Table 4-4 (continued)

Surface and Subsurface Soil
TAL Inorganic Plus Molybdenum Data (a)
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:                       | RB-01 (cc                | (continued)              | RB-02                    |                          |                          | RB-03                    | RB-04                  |
|----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------|
| Sample LD:<br>Laboratory Project No.:  | SB-RB-01-0507<br>96-5200 | SB-RB-01-0709<br>96-5200 | SB-RB-02-0002<br>96-5200 | SB-RB-02-1618<br>96-5200 | SS-RB-03-03<br>96-5102   | SB-RB-03-0002<br>96-5210 | SS-RB-04-03<br>96-5102 |
| Sample Interval:<br>Sample Date:       | 5 - 7 feet<br>10/31/96   | 7 - 9 feet<br>10/31/96   | 0 - 2 feet<br>10/31/96   | 16 - 18 feet<br>10/31/96 | 0 - 3 inches<br>10/25/96 | 0 - 2 feet<br>11/01/96   | 0 - 3 inches 10/24/96  |
|                                        |                          |                          |                          |                          |                          |                          |                        |
| TAL Inorganics plus Molybdenum (mg/kg) | (g)                      |                          |                          | ,                        | i                        |                          |                        |
| Silver                                 | =                        | 9.1                      |                          |                          | ~                        | 0.81 U                   | <b>~</b>               |
| Aluminum                               | 7700                     | 0016                     | 0066                     | 0009                     | 4100 J                   | 3400                     | 4800 J                 |
| Arsenic                                | 7                        | =                        | 12                       | 8.5                      | 21 J                     | 16                       | 3.5 J                  |
| Barium                                 | 061                      | 011                      | 86                       | 95                       | 130 J                    | 59                       | 120 J                  |
| Beryllium                              | 1.2                      | 8.0                      | 89.0                     | 98.0                     | -                        | Ξ                        | 0.48 J                 |
| Calcium                                | 32000                    | 12000                    | 2300                     | 21000                    | 15000 J                  | 3500                     | 3400 J                 |
| Cadmium                                | 4.5                      | 5.4                      | vc                       | 3.5                      | 7.5 J                    | 4.9                      | 5 J                    |
| Cobalt                                 | 17                       | 23                       | 13                       | 8.7                      | 95 J                     | 35                       | 21 J                   |
| Chromium (Total)                       | 23                       | 61                       | 22                       | 12                       | 380 J                    | 1000                     | f 0091                 |
| Chromium (Hexavalent)                  | 3.46                     | 1.96 U                   | NA                       | NA                       | VV                       | NA                       | 16.1                   |
| Copper                                 | 40                       | 40                       | 34                       | 31                       | 93 J                     | 8                        | 86 J                   |
| lion                                   | 25000                    | 30000                    | 29000                    | 17000                    | 45000 J                  | 30000                    | 26000 J                |
| Mercury                                | 0.06 U                   | U 80.0                   | 0.08 U                   | 0.06 U                   | 0.13                     | 0.07 U                   | 0.08 U                 |
| Potassium                              | 1300                     | 1600                     | 1100                     | 1200                     | 1200                     | 260                      | 510                    |
| Magnesium                              | 7300                     | 7500                     | 3700                     | 0059                     | 1700 J                   | 1400                     | 2400 J                 |
| Manganese                              | 550                      | 540                      | 510                      | 240                      | 310 J                    | 250                      | 380 J                  |
| Molybdenum                             | 9.6                      | 13                       | 9.9                      | 8.8                      | 240 J                    | 130                      | 79 J                   |
| Sodium                                 | 150                      | 230                      | 130                      | 120                      | 370                      | 260                      | 001                    |
| Nickel                                 | 64                       | 46                       | 37                       | 28                       | 240 J                    | 240                      | 680 J                  |
| Pearl                                  | 12                       | 91                       | 14                       | 12                       | 41 J                     | 160                      | 460 J                  |
| Antimony                               | 0.92                     | 1.4                      | -:                       | 0.93                     | 2.4 J                    | 1.2                      | 5.5 J                  |
| Selenium                               | 0.22 U                   | 0.26 U                   | 0.24 U                   | 0.24 U                   | 0.25 U                   | 0.26 U                   | 0.23 U                 |
| Thallium                               | 0.19 U                   | 0.22 U                   | 0.21 U                   | 0.2 U                    | 0.22 U                   | 0.23 U                   | 0.19 U                 |
| Vanadium                               | 14                       | 15                       | 81                       | 01                       | 87 J                     | 150                      | 32 J                   |
| Zinc                                   | 110                      | 140                      | 18                       | 82                       | 190 J                    | 130                      | 220 J                  |
| Cyanide (Total) (mg/kg)                | n -                      | 21                       | n -                      | N I                      | ~                        | 1.0                      | ~                      |
| Cyanide (Free) (mg/l)                  | 0.005 U                  | 0.005 U                  | 0.005 U                  | ₹<br>Z                   | Ϋ́Z                      | ₹Z                       | 0.005 U                |

} > &s

2

| 3 of 20           | SB-RB-05-0204 SB-RB-05-0810 96-5167 96-5167 2 - 4 feet 8 - 10 feet 10/28/96 10/28/96 |                                        | 1.1 J  | _        |         | 190 J 92 J |           |          |         |        |                  | _                     | _      |         |         | 1700 J 1200 | _         | _         | _          |        |        |      |          |          | m        | 70 J     | 82 J 89 | 0 - 0 -                 | 0.005 11 |
|-------------------|--------------------------------------------------------------------------------------|----------------------------------------|--------|----------|---------|------------|-----------|----------|---------|--------|------------------|-----------------------|--------|---------|---------|-------------|-----------|-----------|------------|--------|--------|------|----------|----------|----------|----------|---------|-------------------------|----------|
| کو HB.04          | SB-RB-05-0002 SI<br>96-5167<br>0 - 2 feet<br>10/28/96                                |                                        | 0.9 J  | 14000 J  | 3.8 J   | 200 J      | 0.68 J    | f 0006   | 5.8 J   | 2.6 J  | 370 J            | 28.2 <                | f 09   | 37000 J | 0.09 UJ | 1200 J      | 2300 J    | 84 J      | 5.3 J      | 100 J  | 32 J   | 29 J | 2 J      | 0.23 UJ  | U 61.0   | 41 J     | 84 J    | 0.1                     | 0.005 11 |
|                   | SS-RB-05-03<br>96-5102<br>0 - 3 inches<br>10/24/96                                   |                                        | ~      | f 0006   | 3.6 J   | 490 J      | 6.2 1     | 140000 J | 4.5 J   | 12 J   | f 009            | 3.97 /                | 74 J   | 15000 J | 0.09 U  | 1300 J      | 3800 J    | 3700 J    | 39 J       | 420 J  | 250 J  | l 91 | 1.6 J    | 0.27 U   | 0.23 U   | 25 J     | 120 J   | 3.7 J                   | 0.005 11 |
|                   | SB-RB-04-0709<br>96-5198<br>7 - 9 feet<br>10/30/96                                   |                                        | 0.78 U | 7900     | 7.6     | 150        | 0.93      | 20000    | 3.7     | 13     | 22               | U 86.1                | 36     | 20000   | O 60'0  | 1400        | 8800      | 340       | 81         | 240    | 300    | 63   | 0.94     | 0.25 U   | 0.22 U   | 17       | 011     | n                       | 11 500 0 |
| DP 04 (continued) | SB-RB-04-0406<br>96-5198<br>4 - 6 feet<br>10/30/96                                   |                                        | 0.8 U  | 3800     | 3.6     | 32         | 0.52      | 14000    | 2.3     | 9      | 280              | 2.07 U                | 25     | 13000   | 0.05 U  | 550         | 3300      | 210       | 26         | 140    | 011    | 93   | 0.73     | 0.26 U   | 0.22 U   | =        | 89      | חח                      | 11 500 0 |
| &<br>~ >          | SB-RB-04-0002<br>96-5198<br>0 - 2 feet                                               |                                        |        | 3900     | 1.2     | 140        | 0.42      | 0209     | 5.4     | 28     | 3400             | 7.8 /                 | 011    | 34000   | 0.1 U   | 460         | 2300      | 400       | 130        | 011    | 1800   | 2800 | 9.3      | 0.26 U   | 0.22 U   | 32       | 820     | 8.                      | 11 300 0 |
|                   | Sample Location: Sample LD.: Laboratory Project No.: Sample Interval: Sample Pater   | TAL Inorganics plus Molybdenum (mg/kg) | Silver | Aluminum | Arsenic | Barium     | Beryllium | Calcium  | Cadmium | Cobalt | Chromium (Total) | Chromium (Hexavalent) | Copper | Iron    | Mercury | Potassium   | Magnesium | Manganese | Molybdenum | Sodium | Nickel | Lead | Antimony | Selenium | Thallium | Vanadium | Zinc    | Cvanide (Total) (m9/k9) |          |

| _          |   |
|------------|---|
|            |   |
|            |   |
|            | ļ |
|            |   |
|            | į |
| -          |   |
|            |   |
|            |   |
|            |   |
|            |   |
|            |   |
|            |   |
| -          |   |
|            |   |
|            |   |
| -          |   |
|            |   |
|            |   |
|            |   |
|            |   |
|            |   |
|            |   |
|            |   |
| _          |   |
| _          | _ |
| _          | _ |
| 7          | • |
| 7          | • |
| 7          | • |
| 7          | • |
| _          | • |
| 7          | • |
| 4-4        |   |
| 4-4        |   |
| 0.4-4 (    |   |
| 0.4-4 (    |   |
| 0.4-4 (    |   |
| 0.4-4 (    |   |
| 0.4-4 (    |   |
| 0.4-4 (    |   |
| able 4-4 ( |   |
| able 4-4 ( |   |
| able 4-4 ( |   |
| 0.4-4 (    |   |
| able 4-4 ( |   |

|                                                                | 7           | A                                   |                            | Ž | ,- |
|----------------------------------------------------------------|-------------|-------------------------------------|----------------------------|---|----|
| Surface and Subsurface Soil TAL Inorganic Plus Molybdenum Data | Phase I RF1 | AL Tech Specialty Steel Corporation | Dunkirk, New York Facility |   |    |

| Sample Location:                       |                          | RB-06                    | ٠                        |                          | oo ee ee ee ee ee ee ee  | RB-07                    |                               |
|----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------|
| Sample LD.:<br>Laboratory Project No.: | SS-RB-06-03<br>96-5102   | SB-RB-06-0002<br>96-5198 | SB-RB-06-0406<br>96-5198 | SB-RB-06-0608<br>96-5198 | SS-RB-07-03<br>96-5077   | SB-RB-07-0002<br>96-5198 | SB-RB-07-0002D (g)<br>96-5198 |
| Sample Interval:<br>Sample Date:       | 0 - 3 inches<br>10/25/96 | 0 - 2 feet<br>10/29/96   | 4 - 6 feet<br>10/29/96   | 6 - 8 feet<br>10/29/96   | 0 - 3 inches<br>10/23/96 | 0 - 2 feet<br>10/30/96   | 0 - 2 feet<br>10/30/96        |
| TAL Inorganies plus Molybdenum (mg/kg) | н)                       |                          |                          |                          |                          |                          |                               |
| Silver                                 | ~                        | 0.8 U                    | 0.91                     | O.8 U                    | U 87.0                   | 0.75 U                   | 0.97                          |
| Aluminum                               | f 0099                   | 11000                    | 1600                     | 7800                     | 068                      | 1600                     | 7500                          |
| Arsenic                                | 5.7 J                    | 6.7                      | 7.1                      | 5.4                      | 8.7                      | 7.5                      | 8.4                           |
| Barium                                 | 36 J                     | 120                      | 120                      | 091                      | 51                       | 86                       | 011                           |
| Beryllium                              | 0.48 J                   | 0.83                     | 1.5                      | 1.2                      | 1.2                      | =                        | 1.2                           |
| Calcium                                | 7100 J                   | 12000                    | 42000                    | 36000                    | 10000                    | 25000                    | 28000                         |
| Cadmium                                | 3.5 J                    | 3.9                      | 3.8                      | 3.3                      | =                        | 5.4                      | S                             |
| Cobalt                                 | 7.2 J                    | 7.2                      | 8.6                      | 9.6                      | 840′                     | 20                       | 23                            |
| Chromium (Total)                       | f 061                    | 29                       | 17                       | 17                       | 21000                    | 940                      | 780                           |
| Chromium (Hexavalent)                  | VV                       | NA<br>NA                 | VV                       | VV                       | V<br>V                   | V<br>V                   | ××                            |
| Copper                                 | 47 J                     | 34                       | 33                       | 31                       | 400                      | 110                      | 84                            |
| Iron                                   | 22000 J                  | 20000                    | 18000                    | 18000                    | 430000                   | 32000                    | 32000                         |
| Mercury                                | 0.07 U                   | 0.1 U                    | 0.1 U                    | 0.07 U                   | 0.08 U                   | 0.1 U                    | 0.05 U                        |
| Potassium                              | 099                      | 1000                     | 1100                     | 1600                     | 290                      | 1300                     | 1400                          |
| Magnesium                              | 4000 J                   | 3900                     | 15000                    | 9200                     | 2200                     | 1600                     | 8200                          |
| Manganese                              | 360 J                    | 350                      | 400                      | 380                      | 8800                     | 069                      | 570                           |
| Molybdenum                             | 27 J                     | 25                       | 7.2                      | 4.8                      | 160                      | 011                      | 001                           |
| Sodium                                 | 130                      | 180                      | 170                      | 230                      | 26                       | 170                      | 180                           |
| Nickel                                 | 130 J                    | 26                       | 33                       | 30                       | 0019                     | 750                      | 160                           |
| Lead                                   | 10 J                     | 27                       | 12                       | 6                        | 55                       | 31                       | 26                            |
| Antimony                               | 1.3 J                    | 0.87                     | 0.84                     | 0.73                     | 0.27                     | 68'0                     | 1.2                           |
| Selenium                               | 0.26 U                   | 0.26 U                   | 0.26 U                   | 0.26 U                   | 0.25 U                   | 0.24 U                   | 0.25 U                        |
| Thallium                               | 0.22 U                   | 0.22 U                   | 0.23 U                   | 0.22 U                   | 0.22 U                   | 0.21 U                   | 0.22 U                        |
| Vanadium                               | 14 J                     | 21                       | 18                       | 1.1                      | 780                      | 31                       | 32                            |
| Zinc                                   | 120 J                    | 26                       | 18                       | 7.1                      | 130                      | 88                       | 06                            |
| Cyanide (Total) (mg/kg)                | ~                        | n I                      | n                        | Π                        | D                        | U 1                      | 0.1                           |
| Cyanide (Free) (mg/l)                  | ×<br>Z                   | VN                       | <b>∀</b> Z               | V<br>V                   | V<br>V                   | Y<br>V<br>V              | ≺<br>Z                        |

Table 4-4 (continued)

| Laboratory Project No.: 96-5198   Sample Interval: 6-8 feet                                                                                                                                                                                                       | 96-5198 8 - 10 feet 10/30/96 10/30/96 0.83 U 7500 9.1 97 0.84 21000 4 9.8 14 NA 39 21000 0.06 U        | 96-5053<br>0 - 2 feet<br>10/22/96<br>1.7<br>8000<br>9.5<br>97<br>1.3<br>21000<br>4.7<br>34<br>4.7<br>8000<br>9.5<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97 | 96-5053<br>3 - 4 feet<br>10/22/96<br>11000<br>11 93<br>0.82<br>2100<br>5.3<br>15<br>23<br>NA | 96-5053<br>8 - 9 feet<br>10/22/96<br>1.1<br>7900<br>11<br>32<br>0.57<br>2900<br>3.2<br>11<br>89<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96-5053<br>0 - 3 inches<br>10/22/96<br>5.6<br>1900<br>4.1<br>26<br>3.2<br>11000<br>27<br>830<br>NA | 96-5053<br>0 - 2 feet<br>10/22/96<br>10/27/96<br>120<br>15<br>40<br>0.52<br>1800<br>2.5<br>13<br>120<br>NA<br>A60 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 3 3                                                                                                                                                                                                                                                               | 0.83 U<br>7500<br>9.1<br>97<br>0.84<br>21000<br>4<br>9.8<br>14<br>NA<br>39<br>21000<br>0.06 U          | 10/22/96<br>1.7<br>8000<br>9.5<br>97<br>1.3<br>21000<br>4.7<br>34<br>4.7<br>4.7<br>61<br>61                                                                                  | 2.2<br>11000<br>11<br>93<br>0.82<br>2100<br>5.3<br>15<br>23<br>NA                            | 10/22/96 1.1 7900 11 32 0.57 2900 3.2 11 89 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$.6<br>1900<br>4.1<br>26<br>3.2<br>11000<br>27<br>830<br>NA                                       | 10/22/96<br>10.77 U 720<br>15 40<br>0.52 1800<br>2.5 13<br>120 NA A60                                             |
| 3                                                                                                                                                                                                                                                                 | 0.83 U<br>7500<br>9.1<br>97<br>0.84<br>21000<br>4<br>9.8<br>14<br>NA<br>39<br>21000<br>0.06 U          | 1.7<br>8000<br>9.5<br>97<br>1.3<br>21000<br>4.7<br>4.7<br>84<br>450<br>NA                                                                                                    | 2.2<br>11000<br>11<br>93<br>0.82<br>2100<br>5.3<br>15<br>15<br>23<br>NA                      | 1.1<br>7900<br>11<br>32<br>0.57<br>2900<br>3.2<br>11<br>89<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.6<br>1900<br>4.1<br>26<br>3.2<br>11000<br>27<br>830<br>NA                                        | 0.77 U<br>720<br>15<br>40<br>0.52<br>1800<br>2.5<br>13<br>120<br>NA                                               |
| 2 3                                                                                                                                                                                                                                                               | 0.83 U<br>7500<br>9.1<br>9.1<br>0.84<br>0.84<br>21000<br>4<br>9.8<br>14<br>NA<br>39<br>21000<br>0.06 U | 1.7<br>8000<br>9.5<br>9.7<br>1.3<br>21000<br>4.7<br>34<br>4.7<br>4.7<br>840<br>NA                                                                                            | 2.2<br>11000<br>11<br>93<br>0.82<br>2100<br>5.3<br>15<br>13<br>NA<br>NA                      | 1.1<br>7900<br>11<br>32<br>0.57<br>2900<br>3.2<br>11<br>89<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.6<br>1900<br>4.1<br>26<br>3.2<br>11000<br>27<br>830<br>NA                                        | 0.77 U<br>720<br>15<br>40<br>0.52<br>1800<br>2.5<br>13<br>120<br>NA<br>A60                                        |
| 8100<br>7.4<br>160<br>1.3<br>33000<br>4.5<br>11<br>55<br>NA<br>40<br>22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>2000<br>8900<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>3 | 7500<br>9.1<br>97<br>0.84<br>21000<br>4<br>9.8<br>14<br>NA<br>39<br>21000<br>0.06 U                    | 8000<br>9.5<br>9.7<br>1.3<br>21000<br>4.7<br>34<br>4.7<br>4.7<br>NA<br>NA                                                                                                    | 11000<br>11<br>93<br>0.82<br>2100<br>5.3<br>15<br>15<br>NA<br>NA                             | 7900<br>11<br>32<br>0.57<br>2900<br>3.2<br>11<br>89<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1900<br>4.1<br>26<br>3.2<br>11000<br>27<br>830<br>NA                                               | 720<br>15<br>40<br>0.52<br>1800<br>2.5<br>13<br>120<br>NA                                                         |
| 7.4<br>160<br>1.3<br>33000<br>4.5<br>11<br>55<br>NA<br>40<br>22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>220<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                                                                   | 9.1<br>0.84<br>0.84<br>21000<br>4<br>9.8<br>14<br>14<br>NA<br>39<br>21000<br>0.06 U                    | 9.5<br>97<br>1.3<br>21000<br>4.7<br>4.7<br>4.7<br>4.7<br>4.0<br>NA                                                                                                           | 0.82<br>0.82<br>2100<br>5.3<br>1.5<br>1.5<br>NA                                              | 11<br>0.57<br>0.57<br>2900<br>3.2<br>11<br>89<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1<br>26<br>3.2<br>11000<br>27<br>830<br>23000<br>NA                                              | 15<br>40<br>0.52<br>1800<br>2.5<br>13<br>120<br>NA<br>A60                                                         |
| 160<br>1.3<br>33000<br>4.5<br>11<br>55<br>NA<br>40<br>22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>27<br>220<br>120<br>120<br>120<br>120<br>120                                                                                                          | 97<br>0.84<br>21000<br>4<br>9.8<br>14<br>NA<br>39<br>21000<br>0.06 U                                   | 97<br>1.3<br>21000<br>4.7<br>4.7<br>34<br>450<br>NA<br>61                                                                                                                    | 93<br>0.82<br>2100<br>5.3<br>15<br>15<br>NA<br>NA                                            | 32<br>0.57<br>2900<br>3.2<br>11<br>89<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26<br>3.2<br>11000<br>27<br>830<br>23000<br>NA                                                     | 40<br>0.52<br>1800<br>2.5<br>13<br>120<br>NA<br>A60                                                               |
| 1.3<br>33000<br>4.5<br>11<br>55<br>NA<br>40<br>22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>220<br>120<br>120<br>120<br>120                                                                                                                              | 0.84<br>21000<br>4<br>9.8<br>14<br>NA<br>39<br>21000<br>0.06 U                                         | 1.3<br>21000<br>4.7<br>4.7<br>34<br>450<br>NA<br>61                                                                                                                          | 0.82<br>2100<br>5.3<br>15<br>13<br>23<br>NA<br>29                                            | 0.57<br>2900<br>3.2<br>11<br>89<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2<br>11000<br>27 <<br>830 <<br>23000                                                             | 0.52<br>1800<br>2.5<br>13<br>120<br>NA<br>A60                                                                     |
| 33000<br>4.5<br>11<br>55<br>NA<br>800<br>22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>220<br>120<br>18<br>0.08                                                                                                                                           | 21000<br>4<br>9.8<br>14<br>14<br>NA<br>39<br>21000<br>0.06 U                                           | 21000<br>4.7<br>34<br>450<br>NA<br>61                                                                                                                                        | 2100<br>5.3<br>1.5<br>2.3<br>NA<br>2.9                                                       | 2900<br>3.2<br>1.1<br>89<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11000<br>27 <<br>830 <<br>23000                                                                    | 1800<br>2.5<br>13<br>120<br>NA<br>A60                                                                             |
| 4.5<br>11<br>55<br>NA<br>40<br>22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>27<br>20<br>120<br>18<br>0.28                                                                                                                                                | 9.8<br>9.8<br>14<br>NA<br>39<br>21000<br>0.06 U                                                        | 4.7<br>34<br>450<br>NA<br>61                                                                                                                                                 | 5.3<br>15<br>23<br>NA<br>29                                                                  | 3.2<br>11<br>89<br>NA<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27<br>830<br>23000<br>NA                                                                           | 2.5<br>13<br>120<br>NA<br>460                                                                                     |
| 11<br>55<br>NA<br>40<br>22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>220<br>120<br>18<br>0.98                                                                                                                                                            | 9.8<br>14<br>NA<br>39<br>21000<br>0.06 U                                                               | 34<br>450<br>NA<br>61                                                                                                                                                        | 23 23 8 29 29 29 29 29 29 29 29 29 29 29 29 29                                               | - 68 N<br>N 8 8 - 2<br>N 8 8 - 2 | 830 ~<br>23000~<br>NA                                                                              | 13<br>NA<br>460                                                                                                   |
| 55<br>NA<br>40<br>22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>220<br>120<br>18<br>0.98                                                                                                                                                                  | 14<br>NA<br>39<br>21000<br>0.06 U                                                                      | 450<br>NA<br>61                                                                                                                                                              | 23<br>29                                                                                     | 89<br>NA<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23000~<br>NA                                                                                       | 120<br>NA<br>460                                                                                                  |
| NA 22000 22000 0.09 U 1500 8900 370 27 220 120 120 120 0.98 0.98 0.28 U                                                                                                                                                                                           | NA<br>39<br>21000<br>0.06 U                                                                            | NA<br>10<br>00055                                                                                                                                                            | NA<br>29                                                                                     | NA<br>Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ϋ́Z                                                                                                | NA<br>460                                                                                                         |
| 22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>27<br>220<br>120<br>18<br>0.98                                                                                                                                                                              | 39<br>21000<br>0.06 U                                                                                  | 61                                                                                                                                                                           | 29                                                                                           | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    | 460                                                                                                               |
| 22000<br>0.09 U<br>1500<br>8900<br>370<br>27<br>27<br>220<br>120<br>18<br>0.98<br>0.28 U                                                                                                                                                                          | 21000<br>0.06 U                                                                                        | 00000                                                                                                                                                                        |                                                                                              | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2400                                                                                               | 221                                                                                                               |
| 0.09 U<br>1500<br>8900<br>370<br>27<br>220<br>120<br>18<br>0.98<br>0.28 U                                                                                                                                                                                         | 0.06 U                                                                                                 | 7,000                                                                                                                                                                        | 31000                                                                                        | 19000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180000                                                                                             | 13000                                                                                                             |
| 1500<br>8900<br>370<br>27<br>220<br>120<br>18<br>0.98<br>0.28                                                                                                                                                                                                     |                                                                                                        | 0.11 U                                                                                                                                                                       | 0.16                                                                                         | 0.11 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11 U                                                                                             | 0.1 U                                                                                                             |
| 8900<br>370<br>27<br>220<br>120<br>18<br>0.98<br>0.28                                                                                                                                                                                                             | 1400                                                                                                   | 780                                                                                                                                                                          | 830                                                                                          | 066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                | 061                                                                                                               |
| 370<br>27<br>220<br>120<br>18<br>0.98<br>0.28                                                                                                                                                                                                                     | 7000                                                                                                   | 7200                                                                                                                                                                         | 3400                                                                                         | 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2800                                                                                               | 310                                                                                                               |
| 27<br>220<br>120<br>18<br>0.98<br>0.28                                                                                                                                                                                                                            | 270                                                                                                    | 440                                                                                                                                                                          | 400                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3400                                                                                               | 68                                                                                                                |
| 220<br>120<br>18<br>0.98<br>0.28                                                                                                                                                                                                                                  | 9.4                                                                                                    | 120                                                                                                                                                                          | 8.6                                                                                          | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2900                                                                                               | 460                                                                                                               |
| 120<br>18<br>0.98<br>0.28                                                                                                                                                                                                                                         | 0.21                                                                                                   | 120                                                                                                                                                                          | 100                                                                                          | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66                                                                                                 | 82                                                                                                                |
| 18<br>0.98<br>0.25 U                                                                                                                                                                                                                                              | 35                                                                                                     | 330                                                                                                                                                                          | 35                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>人</b> 000/1                                                                                     | 1100                                                                                                              |
| 0.98<br>0.25 U                                                                                                                                                                                                                                                    | 13                                                                                                     | 37                                                                                                                                                                           | 13                                                                                           | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47                                                                                                 | 63                                                                                                                |
| 0.25 U                                                                                                                                                                                                                                                            |                                                                                                        | 1.2                                                                                                                                                                          | 1.3                                                                                          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                                 | 0.7                                                                                                               |
| 11 66 0                                                                                                                                                                                                                                                           | 0.27 U                                                                                                 | 0.26 U                                                                                                                                                                       | 0.24 U                                                                                       | 0.25 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25 U                                                                                             | 0.25 U                                                                                                            |
| 0.77.0                                                                                                                                                                                                                                                            | 0.23 U                                                                                                 | 0.22 U                                                                                                                                                                       | 0.2 U                                                                                        | 0.21 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.21 U                                                                                             | 0.21 U                                                                                                            |
| 22                                                                                                                                                                                                                                                                | 12                                                                                                     | 19                                                                                                                                                                           | 21                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 640√                                                                                               | 19                                                                                                                |
| 77                                                                                                                                                                                                                                                                | 72                                                                                                     | 98                                                                                                                                                                           | 9/                                                                                           | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46                                                                                                 | 38                                                                                                                |
| 0.1                                                                                                                                                                                                                                                               | N I                                                                                                    | 1 N                                                                                                                                                                          | N I                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 -                                                                                                | <u> </u>                                                                                                          |
| ٧Z                                                                                                                                                                                                                                                                | ΥN                                                                                                     | Ϋ́                                                                                                                                                                           | Ϋ́Z                                                                                          | V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Υ <sub>N</sub>                                                                                     | Υ <sub>Z</sub>                                                                                                    |

Table 4-4 (continued)

Surface and Subsurface Soil
TAL Inorganic Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:                       | ) TP-02 (c               | (continued)              | >                        | TP-03                    |                          |                          | TP-04                    |
|----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Sample I.D.:                           | SB-TP-02-0304<br>96-5053 | SB-TP-02-0910<br>96-5053 | SB-TP-03-0002<br>96-5053 | SB-TP-03-0506<br>96-5053 | SB-TP-03-1112<br>96-5053 | SB-TP-04-0002<br>96-5077 | SB-TP-04-1112<br>96-5077 |
| Sample Interval:                       | 3 - 4 feet               | 9 - 10 feet              | 0 - 2 feet               | 5 - 6 feet               | 11 - 12                  | 0 - 2 feet               | 11 - 12 feet             |
| Sample Date:                           | 10/22/96                 | 10/22/96                 | 10/22/96                 | 10/22/96                 | 10/22/96                 | 10/22/96                 | 10/22/96                 |
| TAL Inorganics plus Molybdenum (mg/kg) | (g)                      |                          |                          |                          |                          |                          |                          |
| Silver                                 | 1.7                      | 2.1                      | 2.1                      | 1.2                      |                          | 1.1                      | 1.3                      |
| Aluminum                               | 0016                     | 0099                     | 7900                     | 10000                    | 8400                     | 8800                     | 12000                    |
| Arsenic                                | =                        | 9.2                      | 8.7                      | 6'6                      | 6.7                      | =                        | 1.2                      |
| Barium                                 | 100                      | 74                       | 59                       | 26                       | 68                       | 06                       | 110                      |
| Beryllium                              | 0.78                     | 1.2                      | 1.4                      | 0.97                     | =                        | Ξ                        | 0.71                     |
| Calcium                                | 7400                     | 27000                    | 8900                     | 11000                    | 23000                    | 14000                    | 2700                     |
| Cadmium                                | 4.4                      | 4.4                      | ×8                       | 4.9                      |                          | 5.1                      | 4.6                      |
| Cobalt                                 | 6                        | 27                       | 0.52 U                   | 23                       |                          | 35                       | 14                       |
| Chromium (Total)                       | 20                       | 096                      | 3100 √                   | 350                      |                          | 890                      | 20                       |
| Chromium (Hexayalent)                  | Ϋ́N                      | VN                       | VΝ                       | Ϋ́N                      |                          | 1.88 U                   | U 96:1                   |
| Copper                                 | 34                       | 81                       | 200                      | 46                       |                          | 06                       | 42                       |
| Iron                                   | 27000                    | 27000                    | 55000                    | 32000                    |                          | 33000                    | 31000                    |
| Mercury                                | 0.11 U                   | 0.19                     | 0.1                      | 0.08 U                   |                          | 0.09 U                   | O 60'0                   |
| Potassium                              | 750                      | 870                      | 810                      | 750                      |                          | 940                      | 1100                     |
| Magnesium                              | 5300                     | 9300                     | 4200                     | 0019                     |                          | 6300                     | 4600                     |
| Manganese                              | 280                      | 400                      | 720                      | 470                      |                          | 009                      | 520                      |
| Molybdenum                             | 15                       | 140                      | 009                      | 57                       |                          | 140                      | 5.8                      |
| Sodium                                 | 96                       | 130                      | 160                      | 140                      |                          | 190                      | 120                      |
| Nickel                                 | 32                       | 200                      | V 0081                   | 220                      |                          | 099                      | 37                       |
| pearl                                  | 81                       | 14                       | 51                       | 1.1                      |                          | 29                       | 14                       |
| Antimony                               | 0.92                     | 1.2                      | 1.5                      | 1.3                      |                          | 0.93                     | 1.3                      |
| Selenium                               | 0.24 U                   | 0.25 U                   | 0.25 U                   | 0.26 U                   |                          | 0.27 U                   | 0.25 U                   |
| Thallium                               | 0.21 U                   | 0.22 U                   | 0.21 U                   | 0.23 U                   |                          | 0.23 U                   | 0.22 U                   |
| Vanadium                               | 16                       | 41                       | 190                      | 33                       |                          | 95                       | 24                       |
| Zinc                                   | 72                       | 63                       | 84                       | 72                       |                          | 87                       | 80                       |
| Cyanide (Total) (mg/kg)                | 1 N                      | 1.0                      | 0 1                      | 0.1                      | n –                      | n -                      | 0.1                      |
| Cyanide (Free) (mg/l)                  | ۷<br>۷                   | Ϋ́Z                      | V V                      | V<br>V                   | Ϋ́Z                      | 0.005 U                  | 0.005 U                  |
|                                        |                          |                          |                          |                          |                          |                          |                          |

Table 4-4 (continued)

|                                                  |                        | 10500                    | 11.                      |                          |                          |                           | 7 of 20                  |
|--------------------------------------------------|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|
| Sample Location:                                 |                        | / TP-05                  |                          |                          |                          | 7 90-dL                   |                          |
| Sample I.D.:                                     | SS-TP-05-03<br>96.5077 | SB-TP-05-0002<br>96-5092 | SB-TP-05-0203<br>96-5092 | SB-TP-05-0809<br>96-5092 | SB-TP-06-0002<br>96-5092 | SB-TP-06-0002D<br>96-5092 | SB-TP-06-0304<br>96-5092 |
| Sample Interval:                                 | 0 - 3 inches           | 0 - 2 feet               | 2 - 3 feet               | 8 - 9 feet               | 0 - 2 feet               | 0 - 2 feet                | 3 - 4 feet               |
| Sample Date:                                     | 10/23/96               | 10/24/96                 | 10/24/96                 | 10/24/96                 | 10/24/96                 | 10/24/96                  | 10/24/96                 |
| TAL Inorganics plus Molybdenum (mg/kg)           | £.                     |                          |                          |                          |                          |                           |                          |
| Silver                                           | U 8.0                  | 0.77 J                   | ~                        | f 68.0                   | 1.7 J                    |                           | ~                        |
| Aluminum                                         | 4500                   | 12000 J                  | 8200 J                   | 8200 J                   | 5900 J                   |                           | f 0088                   |
| Arsenic                                          | ∞                      | 7.1 J                    | 8.9 J                    | 13 J                     | =                        |                           | =                        |
| Barium                                           | 120                    | 120 J                    | 1 96 J                   | 120 J                    | f 16                     |                           | 120 J                    |
| Beryllium                                        | 2.3                    | 2.7 J                    | 0.76 J                   | _                        | 2.9 J                    |                           | 0.85 J                   |
| Calcium                                          | 37000                  | 49000 J                  | 2600 J                   | 6 0016                   | f 00061                  |                           | I 00091                  |
| Cadmium                                          | 6.4                    | 6.5 J                    | 5.1 J                    | 7.7 3                    | 12 J                     |                           | 4.5 J                    |
| Cobalt                                           | 82                     | 40 J                     | 27 J                     | 41 J                     | 340 J                    |                           | 12 J                     |
| Chromium (Total)                                 | 540                    | 3000 1€                  | 7 0051                   | 2500 J                   | 3200 J~                  |                           | l 61                     |
| Chromium (Hexavalent)                            | V.V.                   | ٧X                       | NA                       | V.                       | VV                       |                           | Ϋ́N                      |
| Copper                                           | 130                    | 120 J                    | 70 J                     | I 00 J                   | 310 J                    |                           | 43 J                     |
| Iron                                             | 20000                  | 41000 J                  | 32000 J                  | 51000 J                  | f 00009                  |                           | 26000 J                  |
| Mercury                                          | 0.12                   | 0.10                     | 0.07 U                   | 0.11                     | O 60'0                   |                           | 0.08 U                   |
| Potassium                                        | 870                    | I 000 J                  | f 088                    | 1100 J                   | 570 J                    |                           | 1100 J                   |
| Magnesium                                        | 7100                   | 2200 J                   | 3300 J                   | 4000 J                   | 3800 J                   |                           | 4900 J                   |
| Manganese                                        | 0.12 U                 | f 086                    | 530 J                    | f 089                    | 670 J                    |                           | 360 J                    |
| Molybdenum                                       | 350                    | 290 J                    | 1 86                     | 180 J                    | 3200 J                   |                           | 15.1                     |
| Sodium                                           | 570                    | 1300 J                   | 330 J                    | 260 J                    | 140 J                    |                           | 94 J                     |
| Nickel                                           | 1600                   | 1400 J 🧳                 | 830 J                    | 1200 J                   | I 006 I                  |                           | 44 J                     |
| Lead                                             | 27                     | 3300 J <                 | l 61                     | 32 J                     | 6 I 6                    |                           | 15 J                     |
| Antimony                                         | 0.81                   | 0.44                     | 1.1                      | 1.2                      | 0.14 U                   |                           | 1.0                      |
| Selenium                                         | 0.26 U                 | 0.24 U                   | 0.24 UJ                  | 0.26 U                   | 0.22 U                   |                           | 0.24 U                   |
| Thallium                                         | 0.22 U                 | 0.22 U                   | 0.21 UJ                  | 0.23 U                   | 0.19 U                   |                           | 0.21 U                   |
| Vanadium                                         | 130                    | 70 J                     | 32 J                     | - 18<br>- 18             | 520 J                    |                           |                          |
| Zinc                                             | 9/                     | 140 J                    | 110 J                    | f 68                     | 170 J                    |                           | 140 J                    |
| Cyanide (Total) (mg/kg)<br>Cyanide (Free) (mg/l) | 1.1<br>0.005 U         | 4.4<br>0.005 U           | 0.005 U                  | 1 U<br>0.005 U           | - <u>&lt;</u>            | N -2<br>N -2              | ⊃ - V<br>- V             |
| , ,                                              |                        |                          |                          |                          |                          |                           |                          |

Table 4-4 (continued)

Surface and Subsurface Soil
TAL Inorganic Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Samule Location.                       | TP-06 (continued)        |                          | TP-07                    | 71                                                                                                               | $\rightarrow$            | <b>1</b>                 | TP-08                    |
|----------------------------------------|--------------------------|--------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|
| Sample LD::<br>Sample LD::             | SB-TP-06-0708<br>96-5092 | SS-TP-07-03<br>96-5077   | SB-TP-07-0002<br>96-5092 | SB-TP-07-0304<br>96-5092                                                                                         | SB-TP-07-0809<br>96-5092 | SB-TP-08-0002<br>96-5077 | SB-TP-08-0304<br>96-5077 |
| Sample Interval:<br>Sample Date:       | 7 - 8 feet<br>10/24/96   | 0 - 3 inches<br>10/23/96 | 0 - 2 feet<br>10/24/96   | 3 - 4 feet<br>10/24/96                                                                                           | 8 - 9 feet<br>10/24/96   | 0 - 2 feet<br>10/23/96   | 3 - 4 feet<br>10/23/96   |
| TAL Inorganics plus Molyhdenum (mg/kg) |                          |                          |                          | Male and de France and an analysis of the Annal Anna |                          |                          |                          |
| Silver                                 | ~                        | 0.8 U                    | ~                        | ×                                                                                                                | ~                        | 3.4                      | 2.4                      |
| Aluminum                               | 8000 J                   | 7900                     | 8100 J                   | 6700 J                                                                                                           | 7500                     | 0009                     | 7700                     |
| Arsenic                                | L 11                     | =                        | 9.7 J                    | l 61                                                                                                             | f 9                      | 20                       | 5                        |
| Barium                                 | 110.1                    | 170                      | 800 J                    | 88 J                                                                                                             | f 061                    | 029                      | 091                      |
| Bervillum                              | 0.72 J                   | 06.0                     | 1.4 J                    | 0.61                                                                                                             | 0.99 J                   | 1.7                      | 1.1                      |
| Calcium                                | f 00001                  | 10000                    | 15000 J                  | 2200 J                                                                                                           | 25000 J                  | 0100                     | 25000                    |
| Cadmium                                | 4.6 J                    | 4.8                      | 6.1 J                    | 14 J                                                                                                             | 3.5 J                    | 9.3%                     | 3.7                      |
| Cobalt                                 | l 8 J                    | 80                       | 57 J                     | 39 J                                                                                                             | f 6                      | , 081                    | 8.7                      |
| Chromium (Total)                       | 270 J                    | 2100                     | 1 000 I                  | 1700                                                                                                             | 38 J                     | 3100                     | 17                       |
| (Tromium (Texavalent)                  | <<br>Z                   | 2.41 U                   | 2.19 U                   | 7.79                                                                                                             | 64.8                     | 5.92                     | 2.34 U                   |
| Conner                                 | f 09                     | 120                      | 150 J                    | 120 J                                                                                                            | 32 J                     | 150                      | 36                       |
| Iron                                   | 27000 J                  | 42000                    | 37000 J                  | 45000 J                                                                                                          | 18000                    | 55000                    | 18000                    |
| Mercury                                | 0.08 U                   | 0.11 U                   | 0.I U                    | 0.08 U                                                                                                           | 0.1 U                    | 0.08 U                   | 0.1 U                    |
| Potassium                              | 1200 J                   | 880                      | 6 016                    | f 019                                                                                                            | 1200                     | 800                      | 870                      |
| Magnesium                              | 5400 J                   | 4800                     | 4600 J                   | 1800 J                                                                                                           | 7100 J                   | 3100                     | 0009                     |
| Manganese                              | 350 J                    | 630                      | 700 J                    | 450 J                                                                                                            | 360 J                    | 019                      | 310                      |
| Molyhdenun                             | f 69                     | 370                      | 380 J                    | 360 J                                                                                                            | 7.1 J                    | 1300                     | 53                       |
| Sodium                                 | 110 J                    | 84                       | 720 J                    | f 091                                                                                                            | 150                      | 150                      | 130                      |
| Nickel                                 | 290 J                    | 1200                     | 1300 J                   | 1400 J                                                                                                           | 46 J                     | 1600                     | 29                       |
| Lead                                   | 22 J                     | 32                       | 29 J                     | 310 J                                                                                                            | 12 J                     | 40                       | 9.4                      |
| Antimony                               | 0.77                     | 0.81                     | 0.14 U                   | 9.0                                                                                                              | 0.81                     | 0.15 U                   | 0.76                     |
| Selenium                               | 0.25 U                   | 0.26 U                   | 0.24 U                   | 0.36                                                                                                             | 0.27 U                   | 0.26 U                   | 0.22 U                   |
| Thallium                               | 0.22 U                   | 0.22 U                   | 0.2 U                    | 0.2 U                                                                                                            | 0.23 U                   | 0.22 U                   | 0.19 U                   |
| Vanadium                               | 23 J                     | 120                      | 150 J                    | 94 J                                                                                                             | 15 J                     | 280,                     | 61                       |
| Zinc                                   | 84 J                     | 70                       | 76 J                     | 97 J                                                                                                             | f 69                     | 110                      | 28                       |
| Cyanide (Total) (mg/kg)                | n                        | 1 n                      | n n                      | 1 0                                                                                                              | <u> </u>                 | N 1                      | n <b>-</b>               |
| Cyanide (Free) (mg/l)                  | Ϋ́                       | 0.005 U                  | 0.005 U                  | 0.005 U                                                                                                          | 0.005 U                  | 0.005 U                  | 0.005 U                  |

| _          |
|------------|
| _          |
| ಕ          |
| š          |
| =          |
| =          |
| contin     |
| _          |
| 5          |
| ب          |
|            |
|            |
| _          |
| _          |
| 7          |
| _          |
| 4-4        |
| 4-4        |
| ble 4-4 (  |
| able 4-4 ( |
| ble 4-4 (  |

| Laboratory Project No.: 96-5077 96-5077 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SS-TP-11-03 SI                      | SB-TP-11-0002                     | SB-TP-11-0002D                     | SB-TP-11-1011                       | SB-TP-11-1112                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|-------------------------------------|
| 2.1 5.9 2.1 5.00 6000 6000 110 9 110 9 110 9 110 9 110 9 110 9 110 9 110 9 110 9 110 9 110 9 110 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 110 9 9 9 110 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96-5053<br>0 - 3 inches<br>10/22/96 | 96-5077<br>0 - 2 feet<br>10/23/96 | 96-50767<br>0 - 2 feet<br>10/23/96 | 96-5077<br>10 - 11 feet<br>10/23/96 | 96-5077<br>11 - 12 feet<br>10/23/96 |
| 2.1 5.9 5500 3100 16 11 71 39 0.68 2.1 12000 3500 3.6 2.35 9.3 8000 2.035 U NA 39 220000 0.08 U 0.08 U 850 370 4900 2100 320 2900 40 87 84 96 20000 0.22 U 0.22 U 1.10 1.10 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                   |                                    |                                     |                                     |
| 5500 3100 16 11 71 39 0.68 2.1 12000 3.6 2.35 17 380 39 2.35 U NA 39 2.20000 0.08 U 850 2.0000 0.08 U 850 370 4900 2,08 U 87 84 96 2,000 2,000 76 1 1 0.23 U 0.22 U 0.22 U 110 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2                                 | 3.7                               | 3.6                                | 4.4                                 | 2.3                                 |
| 16 11<br>71 39<br>0.68 2.1<br>12000 3500<br>3.6 27<br>17 36000<br>2.35 U NA<br>39 1500<br>20000 0.08 U 0.08 U<br>850 370<br>4900 2100<br>4900 2100<br>22 76<br>1 1 10<br>1 0.22 U 0.22 U<br>1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10000                               | 8300                              | 0096                               | 6400                                | 8100                                |
| 71 39 0.68 2.1 12000 3.6 2.1 17 3800 39 2.35 U NA 39 2.35 U NA 39 2.4000 0.08 U 0.08 U 850 4900 22000 40 87 87 84 96 22 0 76 1 1 0.23 U 0.22 U 0.22 U 110 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68.0                                | 8.1                               | 9.9                                | 3.7                                 |                                     |
| 9.68 2.1<br>12000 3500<br>3.6 27.<br>17 3800<br>2.35 U NA<br>39 1500<br>20000 0.08 U 850<br>4900 2100<br>40 87 84<br>87 84<br>96 2000<br>2000<br>2100<br>22 76<br>1.1<br>0.23 U 0.22 U 0.22 U 0.22 U 1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140                                 | 130                               | 140                                | 57                                  | 38                                  |
| 12000 3.6 3.6 27 17 380 27 380 39 2.35 U NA 39 20000 0.08 U 850 400 850 40 40 87 84 96 2000 76 1 1 0.23 U 0.22 U 10 110 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5                                 | 4.2                               | 5.5                                | 0.37                                | 0.75                                |
| 3.6 27/ 17 380/ 93 36000 93 36000 2.35 U NA 39 1500 20000 20000 0.08 U 850 370 4900 2000 40 87 84 96 20000/ 22 76 1 1 1 0.23 U 0.22 U 1.1 0.22 U 0.22 U 110 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190000                              | 00089                             | 00019                              | 0011                                | 9700                                |
| 17 380<br>93 36000<br>2035 U NA<br>39 1500<br>20000 220000<br>0.08 U 850<br>4900 2100<br>40 1700<br>87 84<br>96 20000<br>22 76<br>1 1<br>0.23 U 0.25 U<br>0.22 U 0.22 U<br>1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5                                 | 7.3                               | 9.9                                | 2.7                                 | 4.6                                 |
| 2.35 U NA 39 1500 20000 20000 0.08 U 0.08 U 850 4900 21000 320 2900 40 1700 87 84 96 20000 22 U 0.22 U 0.22 U 110 15 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.2                                 | 370~                              | 75/                                | 8.9                                 | =                                   |
| 2.35 U NA 39 1500 20000 20000 0.08 U 0.08 U 850 370 4900 2900 40 1700 87 84 96 20000 22 U 0.22 U 0.22 U 0.22 U 110 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 610                                 | 35000 €                           | 0061                               | 20                                  | 40                                  |
| 39 1500 20000 20000 0.08 U 0.08 U 850 370 4900 2100 320 2900 40 1700 87 84 96 20000 22 76 1 1 1.1 0.23 U 0.22 U 0.22 U 0.22 U 1 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 1.1 11 | U 66'1                              | 2.11 U                            | 2.14 U                             | U 76.1                              | 0.16.1                              |
| 20000 0.08 U 850 850 4900 370 4900 320 2100 40 87 87 84 96 22 76 1 0.23 U 0.22 U 0.22 U 110 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35                                  | 66                                | 110                                | 14                                  | 37                                  |
| 9.08 U 8.08 U 850 850 870 870 870 9700 2100 2100 22000 87 84 87 84 84 96 20000~22 U 0.22 U 0.22 U 0.22 U 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20000                               | 31000                             | 36000                              | 11000                               | 27000                               |
| 850 370 4900 2100 320 2900 40 1700 87 84 96 2000 22 76 1 1 1.1 0.23 U 0.25 U 0.22 U 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09 U                              | 0.08 U                            | 0.08 U                             | U 60.0                              | 0.1 U                               |
| 4900 2100 320 2900 40 1700 87 84 96 20000 22 76 1 1.1 0.23 U 0.25 U 0.22 U 110 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100                                | 1000                              | 1000                               | 480                                 | 1100                                |
| 320 2900<br>40 1700<br>87 84<br>96 20000 7<br>22 76<br>1 1.1<br>0.23 U 0.26 U<br>0.22 U 0.22 U<br>15 410 7<br>1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17000                               | 11000                             | 9300                               | 1600                                | 5200                                |
| 40 1700<br>87 84<br>96 20000<br>22 76<br>1 1.1<br>0.23 U 0.26 U<br>0.22 U 0.22 U<br>15 410<br>110 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7200                                | 0.12 U                            | 0.11 U                             | 260                                 | 350                                 |
| 87 84<br>96 20000~<br>22 76<br>1 1.1<br>0.23 U 0.26 U<br>0.22 U 0.22 U<br>15 410 7<br>10 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                  | 350                               | 1600                               |                                     | 17                                  |
| 96 20000~ 22 76 1 0.23 U 0.26 U 0.22 U 0.22 U 15 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 590                                 | 530                               | 520                                | 100                                 | 130                                 |
| 22 76<br>1 1 1.1<br>0.23 U 0.26 U<br>0.22 U 0.22 U<br>15 410 7<br>110 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340                                 | 70001                             | 840 ~                              | 20                                  | 20                                  |
| 1 1.1<br>0.23 U 0.26 U<br>0.22 U 0.22 U<br>15 410 7<br>110 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.2                                 | 51                                | 20                                 | 9.1                                 | 12                                  |
| 0.23 U 0.26 U<br>0.22 U 0.22 U<br>15 410 7<br>110 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.38                                | 0.82                              | 0.62                               | 0.73                                | 1.3                                 |
| 0.22 U 0.22 U<br>15 410 7<br>110 78<br>1 U 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.27 U                              | 0.27 U                            | 0.25 U                             | 0.25 U                              | 0.24 U                              |
| 15 410 7<br>110 78<br>1 U 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.23 U                              | 0.23 U                            | 0.21 U                             | 0.21 U                              | 0.22 U                              |
| 110 78<br>1 U 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74                                  | 400                               | 530 🖍                              | 13                                  | 15                                  |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120                                 | 87                                | 77                                 | 39                                  | 100.                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 1                                 | <u> </u>                          | ••••                               | n 1                                 | 1.0                                 |
| 0.005 U NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.005 U                             | 0.005 U                           | 0.005 U                            | 0.005 U                             | 0.005 U                             |

Table 4-4 (continued)

Surface and Subsurface Soil
TAL Inorganic Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|                                        |                          | ,                      | Dunkirk, New York Facility | . Facility               |                        |                            |                          |
|----------------------------------------|--------------------------|------------------------|----------------------------|--------------------------|------------------------|----------------------------|--------------------------|
|                                        |                          | <sup>ラ</sup> む         |                            |                          |                        |                            | 10 of 20                 |
| Samule Location:                       |                          | < /                    |                            |                          | 38                     | RFI-02                     |                          |
| Sample LD.:                            | SS-RFI-001-03            | SB-RFI-001-0406        | SB-RF1-001-1012            | SS-RFI-002-03            | SB-RFI-002-0002        | SB-RF1-002-0810<br>96-5053 | SB-RF1-002-1012          |
| Sample Interval: Sample Date:          | 0 - 3 inches<br>10/22/96 | 4 - 6 feet<br>10/21/96 | 10 - 12 feet<br>10/21/96   | 0 - 3 inches<br>10/22/96 | 0 - 2 feet<br>10/22/96 | 8 - 10 feet<br>10/22/96    | 10 - 12 feet<br>10/22/96 |
| TAL Inorganics plus Molybdenum (mg/kg) |                          |                        |                            |                          |                        |                            |                          |
| Silver                                 | 1.4                      | 1.2                    | 4.1                        | 1.8                      | 1.3                    | <b>1</b> .4                | 1.3                      |
| Aluminum                               | 7300                     | 8600                   | 5300                       | 8800                     | 0110                   | 8000                       | 5400                     |
| Arsenic                                | 5                        | 01                     | 6.5                        | _                        | 12                     | 01                         | 6                        |
| Bariun                                 | 53                       | 011                    | 77                         | 74                       | 100                    | 92                         | 2.5                      |
| Beryllium                              | 0.54                     | 99.0                   | 8.1                        | 0.71                     | 16.0                   | 1.3                        | 0.92                     |
| Calcium                                | 2300                     | 2200                   | 00019                      | 3400                     | 12000                  |                            | 23000                    |
| Cadmium                                | 3.1                      | 4                      | 3.1                        | 3.9                      | 4.2                    |                            | J01                      |
| Cobalt                                 | 8.6                      |                        | 7.2                        | 28                       | 17                     |                            | 13                       |
| Chromium (Total)                       | 93                       | 91                     | 16                         | 120                      | 150                    |                            | 14                       |
| Chromium (Hexavalent)                  | 3.12 U                   | 21.4                   | 2.03 U                     | V<br>V<br>V              | Ϋ́N                    | 1.85 U                     | 2.11 U                   |
| Copper                                 | 23                       | 34                     | 24                         | 29                       | 36                     |                            | 41                       |
| Iron                                   | 14000                    | 22000                  | 13000                      | 22000                    | 26000                  |                            | 34000                    |
| Mercury                                | 0.33                     | 0.1 U                  | 0.1 U                      | 0.09 U                   | 0.1 U                  |                            | J 1.0                    |
| Potassium                              | 470                      | 210                    | 1200                       | 1000                     | 056                    |                            | 0001                     |
| Magnesium                              | 1400                     | 3100                   | 00091                      | 3400                     | 0400                   |                            | 0400                     |
| Manganese                              | 240                      | 290                    | 280                        | 210                      | 270                    | 300                        | 260                      |
| Molybdenum                             | 51                       | S                      | 3.3                        | 25                       | 36                     |                            | 12                       |
| Sodium                                 | 77                       | 74                     | 170                        | 56                       | 88                     |                            | 110                      |
| Nickel                                 | 70                       | 30                     | 22                         | 081                      | 120                    |                            | 43                       |
| Lead                                   | 20                       | 13                     | 8.8                        | 23                       | 23                     | 13                         | 12                       |
| Antimony                               | 0.93                     | 1.2                    | 0.92                       | 1.5                      | 1.4                    |                            | =                        |
| Selenium                               | 0.23 U                   | 0.27 U                 | 0.25 U                     | 0.28 U                   | 0.28 U                 |                            | 0.26 L                   |
| Thallium                               | 0.2 U                    | 0.23 U                 | 0.22 U                     | 0.24 U                   | 0.23 U                 | 0.24 U                     | 0.22 U                   |
| Vanadium                               | 20                       | 15                     | 15                         | 17                       | 20                     |                            | 6.9                      |
| Zinc                                   | 64                       | 99                     | 180                        | 93                       | 75                     |                            | 089                      |
| Cyanide (Total)                        | N I                      | n –                    | <u> </u>                   | 0 -                      | <b>n</b>               | n<br>-                     |                          |
| Cyanide (Free) (mg/l)                  | Y<br>Z                   | 0.005 U                | 0.005 U                    | 0.005 U                  | 0.005 U                | 0.005 U                    | 0.005 U                  |

Table 4-4 (continued)

|                                                                                    |                                                      |                                                                |                                                      | 2 ×2                                                 |                                                             |                                                                 | 11 of 20                                             |
|------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|
| Sample Location: Sample LD.: Laboratory Project No.: Sample Interval: Sample Date: | SS-RFI-003-03<br>96-5053<br>0 - 3 inches<br>10/22/96 | RFI-03<br>SB-RFI-003-0002<br>96-5102<br>0 - 2 feet<br>10/25/96 | SB-RFI-003-0406<br>96-5102<br>4 - 6 feet<br>10/25/96 | SS-RFI-004-03<br>96-5102<br>0 - 3 inches<br>10/25/96 | RI<br>SB-RITI-004-0002<br>96-5198<br>0 - 2 feet<br>10/29/96 | RFI-04<br>SB-RFI-004-0002D<br>96-5198<br>0 - 2 feet<br>10/29/96 | SB-RFI-004-0204<br>96-5198<br>2 - 4 feet<br>10/29/96 |
| TAL Inorganics plus Molybdenum (mg/kg                                              |                                                      |                                                                |                                                      |                                                      |                                                             |                                                                 |                                                      |
| Silver                                                                             | 2                                                    | ~                                                              | ~                                                    | ×                                                    | 1.1                                                         | 1.3                                                             | 0.8 U                                                |
| Aluminum                                                                           | 14000                                                | 8300 J                                                         | 8500 J                                               | f 0019                                               | 0086                                                        | 0066                                                            | 11000                                                |
| Arsenic                                                                            | 2.3                                                  | 7 J                                                            | 9.3 J                                                | 15.1                                                 | =                                                           | 13                                                              | 14                                                   |
| Barium                                                                             | 220                                                  | 92 J                                                           | 150 J                                                | 110 J                                                | 87                                                          | 13                                                              | 94                                                   |
| Beryllium                                                                          | 4.6                                                  | 0.98 J                                                         | 1.2 J                                                | _                                                    | 1.2                                                         | 0.95                                                            | 0.72                                                 |
| Calcium                                                                            | 81000                                                | 18000 J                                                        | 15000 J                                              | 3900 J                                               | 7700                                                        | 8600                                                            | 2500                                                 |
| Cadmium                                                                            | 3.9                                                  | 5.6 J                                                          | 7.4 J                                                | 6.1 J                                                | 6.4                                                         | 5.8                                                             | 5.3                                                  |
| Cobalt                                                                             | 21                                                   | 23 J                                                           | f 19                                                 | 49 J                                                 | 63/                                                         | 43                                                              | 1.6                                                  |
| Chromium (Total)                                                                   | 230                                                  | 440 J                                                          | 1000 J                                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | 2500                                                        | 1500                                                            | 22                                                   |
| Chromium (Hexavalent)                                                              | Y<br>V                                               | VA                                                             | NA<br>AN                                             | 12.5~                                                | 3.29′                                                       | ٧Z                                                              | 2.23 U                                               |
| Copper                                                                             | 210                                                  | 65 J                                                           | f 001                                                | 74 J                                                 | 77                                                          | 19                                                              | 41                                                   |
| Iron                                                                               | 15000                                                | 25000 J                                                        | 32000 J                                              | 34000 J                                              | 38000                                                       | 32000                                                           | 32000                                                |
| Mercury                                                                            | 0.1 U                                                | 0.08 U                                                         | 0.11 U                                               | 0.08 U                                               | 0.09 U                                                      | VN<br>N                                                         | 0.09 U                                               |
| Potassium                                                                          | 1200                                                 | 1200                                                           | 1000                                                 | 860                                                  | 1100                                                        | 1100                                                            | 1100                                                 |
| Magnesium                                                                          | 10000                                                | 5100 J                                                         | 5400 J                                               | 1900 J                                               | 2000                                                        | 4700                                                            | 3500                                                 |
| Manganese                                                                          | 2800                                                 | 390 J                                                          | 430 J                                                | 470 J                                                | 530                                                         | 460                                                             | 400                                                  |
| Molybdenum                                                                         | 120                                                  | 89 1                                                           | 320 J                                                | 290 J                                                | 320                                                         | 130                                                             | 6.4                                                  |
| Sodium                                                                             | 640                                                  | 180                                                            | 130                                                  | 200                                                  | 011                                                         | 001                                                             | 94                                                   |
| Nickel                                                                             | 069                                                  | 310 J                                                          | 420 J                                                | 1100 J                                               | 1500                                                        | 830                                                             | 37                                                   |
| France                                                                             | 7.3                                                  | 33 J                                                           | 33 J                                                 | 31 J                                                 | 27                                                          | 25                                                              | 14                                                   |
| Antimony                                                                           | 0.59                                                 | 1.8 J                                                          | 3.6 J                                                | 5.7 J                                                | 1.4                                                         | 5.1                                                             | 1.3                                                  |
| Selenium                                                                           | 0.27 U                                               | 0.25 U                                                         | 0.25 U                                               | 0.64 J                                               | 0.25 U                                                      | 0.26 U                                                          | 0.26 U                                               |
| Thallium                                                                           | 0.23 U                                               | 0.21 U                                                         | 0.22 U                                               | 0.23 UJ                                              | 0.21 U                                                      | 0.23 U                                                          | 0.22 U                                               |
| Vanadium                                                                           | 35                                                   | 42 J                                                           | I 001                                                | 110 J                                                | 001                                                         | 50                                                              | 20                                                   |
| Zinc                                                                               | 30                                                   | 95 J                                                           | 120 J                                                | 177 J                                                | 100                                                         | 93                                                              | 100                                                  |
| Cyanide (Total)                                                                    | 1.2                                                  | ~                                                              | ~                                                    | ∩<br>-                                               | N I                                                         | YZ<br>Z                                                         | n –                                                  |
| Cyanide (Free) (mg/l)                                                              | V<br>N                                               | Ϋ́Z                                                            | Ϋ́Z                                                  | 0.005 U                                              | 0.005 U                                                     | ٧X                                                              | 0.005 U                                              |

Table 4-4 (continued)

| Complete Location                                   | RFL-04 (continued)          | ntinned)                   |                          | 3                          | RFI-05                      |                            | RFI-06                   |
|-----------------------------------------------------|-----------------------------|----------------------------|--------------------------|----------------------------|-----------------------------|----------------------------|--------------------------|
| Sample LD:<br>Sample LD:<br>I aboratory Project No: | SB-RF1-004-0204D<br>96-5198 | SB-RFI-004-2022<br>96-5198 | SS-RF1-005-03<br>96-5102 | SB-RFI-005-0204<br>96-5167 | SB-RFI-005-0204D<br>96-5167 | SB-RFI-005-1214<br>96-5167 | SS-RFI-006-03<br>96-5077 |
| Sample Interval:<br>Sample Date:                    | 2 - 4 feet<br>10/29/96      | 20 - 22 feet<br>10/29/96   | 0 - 3 inches<br>10/25/96 | 2 - 4 feet<br>10/28/96     | 2 - 4 feet<br>10/28/96      | 12 - 14 feet<br>10/28/96   | 0 - 3 inches<br>10/23/96 |
| TAL Inorganics plus Molyhdenum (mg/kg               |                             |                            |                          |                            |                             |                            |                          |
| Silver                                              | 0.81 U                      | 0.81 U                     | ×                        | 06'0                       | U 18.0                      | 0.72 UJ                    | 0.78 U                   |
| Aluminum                                            | 6300                        | 9200                       | 9400 J                   | 13000                      | 12000                       | 6300 J                     | 2900                     |
| Arsenie                                             | 6                           | 15                         | 7.4 J                    | 7.7 J                      | 9.2                         | 1 6.7                      | \$                       |
|                                                     | 52                          | 82                         | 100 J                    | 81 J                       | 77                          | f 89                       | 34                       |
| Beryllinn                                           | 0.42                        | 0.82                       | 1.8 J                    | 0.72                       | 0.65                        |                            | 0.27                     |
| ('alcium                                            | 1400                        | 14000                      | 31000 J                  | 3200 J                     | 1700                        | 29000 J                    | 6300                     |
| Cadmium                                             | 3.1                         | 4.7                        | 5.1 J                    | 5 )                        | 4.5                         | 3.3 J                      | <del>8</del> . –         |
| Cobalt                                              | 6.5                         | 13                         | 20 J                     | I 0 J                      | 12                          | 7 J                        | 26                       |
| (Thromium (Total)                                   | 1.6                         | 32                         | 760 J                    | 17                         | 17                          | 14 J                       | 780                      |
| (Thromium (Hexavalent)                              | V.                          | 2 U                        | ٧X                       | 2.39 U                     | 2.32 U                      | 2.2 U                      | <<br>Z                   |
| (connect                                            | 28                          | 39                         | 56 J                     | 40 J                       | 47                          | 30 J                       | 64                       |
| Iron                                                | 18000                       | 29000                      | 22000 J                  | 23000 J                    | 23000                       | 20000 J                    | 17000                    |
| Mercury                                             | 0.1 U                       | U 80.0                     | 0.06 U                   | 0.1 U                      | 0.087 U                     | U 60.0                     | U 80.0                   |
| Potassium                                           | 995                         | 1700                       | 810 J                    | 1300                       | 0011                        | f 096                      | 370                      |
| Magnesium                                           | 1900                        | 6500                       | f 0009                   | 3900                       | 3400                        | 6 0086                     | 2000                     |
| Manganese                                           | 280                         | 290                        | I 000 I                  | 330 J                      | 260                         | 340 J                      | 240                      |
| Molybdenum                                          | 3.9                         | 8.2                        | 100 J                    | 4.1                        | 4.4                         | l 4                        | -8                       |
| Sodium                                              | 99                          | 140                        | 210 J                    | 011                        | 011                         | 110 1                      | 50                       |
| Nickel                                              | 61                          | 38                         | 340 J                    | 32                         | 28                          | 24 J                       | 450                      |
| pearl                                               | 10                          | 14                         | 110 J                    | ,12 J                      | 13                          | 9.7 J                      | 34                       |
| Antimony                                            | 86.0                        | 1.2                        | 2.5 J                    |                            | _                           | 0.91                       | _                        |
| Selenium                                            | 0.26 U                      | 0.26 U                     | 0.23 UJ                  | 0.26 U                     | 0.26 U                      | 0.23 U                     | 0.25 U                   |
| Thallium                                            | 0.23 U                      | 0.23 U                     | 0.2 UJ                   | 0.23 U                     | 0.23 U                      | 0.19 U                     | 0.21 U                   |
| Vanadium                                            | 12                          |                            | 42 J                     | 15                         | 61                          | 9.8 J                      | 32                       |
| Zinc                                                | 69                          | 29                         | 88 J                     | 77                         | 7.1                         | 57 J                       | 80                       |
| Cyanide (Total)                                     | n 1                         | n 1                        | l 9.1                    | n -                        | D -                         | n <b>-</b>                 | O -                      |
| Cyanide (Free) (mg/l)                               | 0.005 U                     | 0.005 U                    | <b>₹</b>                 | 0.005 U                    | 0.005 U                     | 0.056                      | 0.005 U                  |

Table.4-4 (continued)

| Sample Location:                                           |                                           | RFI-06 (continued)                       |                                          |                                          | RF1-07                                   |                                          | RFT-08                                   |
|------------------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval | SS-RFI-006-03D<br>96-5077<br>0 - 3 inches | SB-RF1-006-0204<br>96-5102<br>2 - 4 feet | SB-RF1-006-0406<br>96-5102<br>4 - 6 feet | SS-RFI-007-03<br>96-5102<br>0 - 3 inches | SB-RFI-007-0204<br>96-5167<br>2 - 4 feet | SB-RF1-007-0608<br>96-5167<br>6 - 8 feet | SS-RFI-008-03<br>96-5102<br>0 - 3 inches |
| Sample Date:                                               | 10/23/96                                  | 10/25/96                                 | 10/25/96                                 | 10/25/97                                 | 10/28/96                                 | 10/28/96                                 | 10/24/96                                 |
| TAL Inorganies plus Molybdenum (mg/kg                      |                                           |                                          |                                          |                                          |                                          |                                          |                                          |
| Silver                                                     | 0.81 U                                    | ~                                        | <b>×</b>                                 | ~                                        | 1.2 J                                    | 0.96 J                                   | 5.5 J                                    |
| Aluminum                                                   | 2400                                      | 5800 J                                   | 9300 J                                   | 14000 J                                  | f 0086                                   | 7400 J                                   | 3800 J                                   |
| Arsenic                                                    | 5.7                                       | 8.4 J                                    | 13.1                                     | 3.4 J                                    | 7.4 J                                    | f 6.6                                    | 0.16 UJ                                  |
| Barium                                                     | 30                                        | 78 J                                     | 110 J                                    | 170 J                                    | 180 J                                    | 140 J                                    | 240 J                                    |
| Beryllium                                                  | 0.35                                      | 0.81                                     | 0.92 J                                   | 3.5 J                                    | 0.83 J                                   | 0.76                                     | 1.2 J                                    |
| Calcium                                                    | 7200                                      | 13000 J                                  | 23000 J                                  | 58000 J                                  | f 0069                                   | 13000 J                                  | 8500 J                                   |
| Cadmium                                                    | 2.2                                       | 4.4 J                                    | 4.2 J                                    | 4.5 J                                    | 4.4 J                                    | 5.1 J                                    | 25 J                                     |
| Cobalt                                                     | 34                                        | 34 J                                     | 14                                       | 23 J                                     | 22 J                                     | l 0 l                                    | 130 J                                    |
| Chromium (Total)                                           | 820                                       | ( 009                                    | 15 J                                     | 1200 J                                   | 400 J                                    | l 91                                     | 20000 J /                                |
| Chromium (Hexavalent)                                      | NA                                        | YN<br>Y                                  | V                                        | 12.7                                     | 2.36 U                                   | 2.33 U                                   | <z< th=""></z<>                          |
| Copper                                                     | 96                                        | f 001                                    | 44 J                                     | 90 J                                     | 35 J                                     | 48 J                                     | 640 J                                    |
| Iron                                                       | 18000                                     | 24000 J                                  | 26000 J                                  | 25000 J                                  | 21000 J                                  | 28000 J                                  | 13000 J                                  |
| Mercury                                                    | U 60.0                                    | 0.1.0                                    | 0.1 U                                    | 0.09 U                                   | 0.11 U                                   | 0.08 U                                   | 0.06 U                                   |
| Potassium                                                  | 320                                       | 840                                      | 1400                                     | 1300                                     | 740 J                                    | 1200 J                                   | 420 J                                    |
| Magnesium                                                  | 2000                                      | 3700 J                                   | f 0099                                   | 6 0026                                   | 4100 J                                   | 2600 J                                   | 2100 J                                   |
| Manganese                                                  | 280                                       | 580 J                                    | 540 J                                    | 2000 J                                   | 390 J                                    | 280 J                                    | 2200 J                                   |
| Molybdenum                                                 | 140                                       | 130 J                                    | 9.1                                      | 160 J                                    | 65 J                                     | 27 J                                     | f 099                                    |
| Sodium                                                     | 51                                        | 120                                      | 26                                       | 430 J                                    | 480 J                                    | 220 J                                    | l 091                                    |
| Nickel                                                     | 540                                       | 490 J                                    | 45 J                                     | 820 J                                    | 240 J                                    | 38 J                                     | 14000 J                                  |
| Pad                                                        | 44                                        | f 09                                     | l 61                                     | 18 J                                     | 13 J                                     | l 91                                     | 24000 Jr                                 |
| Antimony                                                   | 0.4                                       | 2.7 J                                    | f 86.0                                   | 3.5 J                                    |                                          | U.I.                                     | /r 65 J                                  |
| Selenium                                                   | 0.27 U                                    | 0.25 U                                   | 0.25 U                                   | 0.22 U                                   | 0.26 UJ                                  | 0.26 UJ                                  | 0.24 UJ                                  |
| Thallium                                                   | 0.23 U                                    | 0.22 U                                   | 0.22 U                                   | 0.19 U                                   | 0.23 UJ                                  | 0.23 UJ                                  | 0.2 UJ                                   |
| Vanadium                                                   | 14                                        | 56 J                                     | 13 J                                     | 46 J                                     | 33 J                                     | f 9.6                                    | f 66                                     |
| Zinc                                                       | 18                                        | 350 J                                    | 140 J                                    | f 68                                     | 65 J                                     | 91 J                                     | 340 J ~                                  |
| Cyanide (Total)                                            | n I                                       | ~                                        | ~                                        | 1.4 J                                    | 1.2                                      | 0.1                                      | ~                                        |
| Cyanide (Free) (mg/l)                                      | 0.005 U                                   | 0.005 U                                  | 0.005 U                                  | 0.005 U                                  | 0.005 U                                  | 0.005 U                                  | 0.005 U                                  |

Table 4-4 (continued)

| Sample LD.:<br>Laboratory Project No.:<br>Sample Interval: | SS-RFI-008-03D SB-RF<br>96-5102 96<br>0 - 3 inches | SB-RF1-008-0507<br>96-5198<br>5 - 7 feet | SS-RF1-009-03<br>96-5077<br>0 - 3 inches | SB-RF1-009-0002<br>96-5102<br>0 - 2 fect | SB-RF1-009-0002D<br>96-5102<br>0 - 2 feet | SB-RFI-009-0204<br>96-5102<br>2 - 4 feet | SB-RF1-009-0406<br>96-5102<br>4 - 5 feet |
|------------------------------------------------------------|----------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| Sample Interval:<br>Sample Date:                           | 0 - 5 Inches<br>10/24/96                           | 3 - 7 feet<br>10/29/96                   | 10/23/96                                 | 10/24/96                                 | 10/24/96                                  | 2 - 4 leet<br>10/24/96                   | 4 - 5 leet<br>10/24/96                   |
| FAL Inorganies plus Molybdenum (mg/kg                      |                                                    |                                          |                                          |                                          |                                           |                                          |                                          |
|                                                            | 3.6                                                | 0.78 U                                   | 4.1                                      | ~                                        | 0.78 U                                    | ~                                        | ~                                        |
|                                                            | 3900                                               | 0086                                     | 2400                                     | 5800 J                                   | 7100                                      | 10000 J                                  | 10001                                    |
|                                                            | 0.18 t)                                            | _                                        | 15                                       | L.I.J                                    | 3.1                                       | 7.4 J                                    | 7.6 J                                    |
|                                                            | 320                                                | 120                                      | 54                                       | 85 J                                     | 93                                        | 53 J                                     | 170 J                                    |
|                                                            | 4.1                                                | 0.79                                     | 3.3                                      | 1.7 J                                    | 1.7                                       | 0.42 J                                   | 0.6 J                                    |
|                                                            | 01100                                              | 10000                                    | 29000                                    | 38000 J                                  | 36000                                     | 2300 J                                   | 2200 J                                   |
|                                                            | 25/                                                | 4.5                                      | 26                                       | 8.4 J                                    | 7.5                                       | 3.1 J                                    | 3.9 J                                    |
|                                                            | >091                                               | 17                                       | 34                                       | 70 J                                     | 75                                        | 3.9 J                                    | 5.3 J                                    |
|                                                            | 25000                                              | 30                                       | √0000I                                   | 2600 J                                   | 4900                                      | 16 J                                     | l 91                                     |
| Thromium (Hexavalent)                                      | Y<br>Z                                             | U 86.1                                   | NA                                       | 2.46 U                                   | U 60:0                                    | 2.33 U                                   | 3.34                                     |
|                                                            | 630                                                | 47                                       | 620                                      | 130 J                                    | 120                                       | 18 J                                     | 39 J                                     |
|                                                            | 160000                                             | 27000                                    | 100000                                   | 46000 J                                  | 48000                                     | 18000 J                                  | 22000 J                                  |
|                                                            | 0.07 U                                             | 0.09 U                                   | 0.06 U                                   | 0.08 U                                   | ٧Z                                        | 0.09 U                                   | O 60'0                                   |
|                                                            | 430                                                | 1800                                     | 061                                      | f 069                                    | 740                                       | 580                                      | 1200                                     |
|                                                            | 2400                                               | 0019                                     | 1300                                     | 2500 J                                   | 2900                                      | 1700 J                                   | 2800 J                                   |
|                                                            | 2000                                               | 410                                      | 3200                                     | 190 J                                    | 800                                       | 110 J                                    | f 061                                    |
|                                                            | 790                                                | 12                                       | 2400                                     | 390 J                                    | 400                                       | 54 J                                     | 46 J                                     |
|                                                            | 190                                                | 061                                      | 77                                       | 100 J                                    | 85                                        | 77                                       | 83                                       |
|                                                            | ≻0009I                                             | 45                                       | 21000                                    | 3800 J                                   | 2900                                      | 15.1                                     | 29 J                                     |
|                                                            | /00/1                                              | 310                                      | 65                                       | 33 J                                     | 41                                        | 15 J                                     | 10 J                                     |
|                                                            | ∑0 <i>L</i>                                        |                                          | 1.2                                      | 16 J                                     | 14                                        | 0.83                                     | 0.93                                     |
|                                                            | 0.93                                               | 0.25 U                                   | 0.25 U                                   | 0.47 J                                   | 0.25 U                                    | 0.26 U                                   | 0.27 U                                   |
|                                                            | 0.27 U                                             | 0,22 U                                   | 0.21 U                                   | 0.21 UJ                                  | 0.22 U                                    | 0.23 U                                   | 0.23 U                                   |
|                                                            | 140                                                | 25                                       | 340                                      | 100 J                                    | 110                                       | 15 J                                     | 17.1                                     |
|                                                            | 390                                                | 091                                      | 150                                      | I 001                                    | 76                                        | 64 J                                     | f 69                                     |
|                                                            | 0.1                                                | N I                                      | 1 N                                      | ~                                        | ~                                         | ~                                        | ~                                        |
|                                                            | 0.005 U                                            | 0.005 U                                  | 0.005 U                                  | 0.005 U                                  | 0.005 U                                   | 0.005 U                                  | 0.005 U                                  |

Table 4-4 (continued)

Surface and Subsurface Soil
TAL Inorganic Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:                        | RFI-09 (c                             | RFI-09 (continued)         | >                        | RFI-010                    | 010                        |                            | RFI-II                   |
|-----------------------------------------|---------------------------------------|----------------------------|--------------------------|----------------------------|----------------------------|----------------------------|--------------------------|
| Sample I.D.:<br>Laboratory Project No.: | SB-RF1-009-0608<br>96-5102            | SB-RFI-009-0810<br>96-5102 | SS-RFI-010-03<br>96-5077 | SB-RFI-010-0002<br>96-5092 | SB-RF1-010-0204<br>96-5092 | SB-RF1-010-0810<br>96-5092 | SS-RFI-011-03<br>96-5077 |
| Sample Interval:<br>Sample Date:        | 6 - 8 feet<br>10/24/96                | 8 - 10 feet<br>10/24/96    | 0 - 3 inches<br>10/23/96 | 0 - 2 feet<br>10/23/96     | 2 - 4 feet<br>10/24/96     | 8 - 10 feet<br>10/23/96    | 0 - 3 inches<br>10/23/96 |
| TAL Inorganics plus Molybdenum (mg/kg   |                                       |                            |                          |                            |                            |                            |                          |
| Silver                                  | ~                                     | ~                          | 0.74 U                   | ~                          | ~                          | 0.97 J                     | 0.77 U                   |
| Aluminum                                | 5800 J                                | 4700 J                     | 4600                     | 5100                       | 7600                       | 7100                       | 1.00                     |
| Arsenic                                 | 6.1.3                                 | 10 J                       | 5.5                      | 8.1 J                      | 6.7 J                      | 9.5 J                      | 26                       |
| Barium                                  | 73 J                                  | 120 J                      | 63                       | f 99                       | 82 J                       | 210 J                      | 6200                     |
| Beryllium                               | U.I.                                  | 1.5 J                      | 0.73                     | 0.81 J                     | <u>-</u>                   | 1.2 J                      | 1.2                      |
| Calcium                                 | 32000 J                               | 45000 J                    | 8900                     | 6700 J                     | 31000 J                    | 31000 J                    | 20000                    |
| Cadmium                                 | 3 J                                   | 3 J                        | 6.2                      | 5.3 J                      | 3.7 J                      | 3.8 J                      | 13                       |
| Cobalt                                  | 1.7 J                                 | 8.5 J                      | 63                       | 26 J                       | 8.6 J                      | 6.8 J                      | 120                      |
| Chromium (Total)                        | 14 J                                  | 55 J                       | 0099                     | 1700 J                     | 15.1                       | 110 J                      | 5500                     |
| Chromium (Hexavalent)                   | 3.44                                  | 1.42                       | 6.65                     | 2.21 U                     | 2.23 U                     | U 6:1                      | 3.73                     |
| Copper                                  | 30 J                                  | 27 J                       | 200                      | 170 J                      | 40 J                       | 42 J                       | 180                      |
| Iron                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | f 00091                    | 48000                    | 31000                      | 00061                      | 20000                      | 110000                   |
| Mercury                                 | U 80.0                                | 0.06 U                     | 0.1 U                    | 0.13                       | 0.16                       | 0.1.0                      | 53                       |
| Potassium                               | 940                                   | 930                        | 410                      | 510                        | 0011                       | 1500                       | 200                      |
| Magnesium                               | 8500 J                                | 16000 J                    | 3700                     | 2900 J                     | 7600 J                     | 15000 J                    | 1900                     |
| Manganese                               | 420 J                                 | 430 J                      | 098                      | 640 J                      | 360 J                      | 310 J                      | 0.11 U                   |
| Molybdenum                              | 14 J                                  | 13.1                       | 440                      | 410 J                      | 7.6 J                      | 9.9 J                      | 330                      |
| Sodium                                  | 011                                   | 130                        | 130                      | 180                        | 260                        | 150                        | 130                      |
| Nickel                                  | 30 J                                  | 47 J                       | 3200                     | 950 J                      | 29 J                       | 78 J                       | 5700                     |
| Lead                                    | 12 J                                  | 7.8 J                      | 15                       | 36 J                       | 8.3 J                      |                            | 100                      |
| Antimony                                | f 69.0                                | 0.68 J                     | 0.38                     | 0.15 U                     | 96.0                       |                            | 3                        |
| Selenium                                | 0.26 U                                | 0.24 U                     | 0.24 U                   | 0.25 U                     | 0.23 U                     | 0.25 UJ                    | 0.25 U                   |
| Thallium                                | 0.22 U                                | 0.21 U                     | 0.22 U                   | 0.21 U                     | U 61.0                     | 0.21 UJ                    | 0.21 U                   |
| Vanadium                                | <u> </u>                              | 15 J                       | 92                       | 94 J                       | 17.1                       | 8.4 J                      | 120                      |
| Zinc                                    | f 06                                  | 54 J                       | 200                      | 86 J                       | 64 J                       | 53 J                       | 110                      |
| Cyanide (Total)                         | I.5 J                                 | _                          | 1 U                      | 1 0                        | Ω I                        | 1.0                        | n                        |
| Cyanide (Free) (mg/l)                   | 0.005 U                               | 0.005 U                    | 0.005 U                  | 0.005 U                    | 0.005 U                    | 0.005 U                    | 0.005 U                  |

Table 4-4 (continued)

| 10 SB-RFI-011-1012<br>96-5102<br>10 - 12 feet<br>10/24/96                           | R 8200 J<br>1 10 J<br>1 120 J<br>1 120 J<br>1 120 J<br>1 18000 J<br>1 16 J<br>1 16 J<br>1 16 J<br>1 16 J<br>1 10 J<br>1 2.18 U<br>1 40 J<br>2 4000 J<br>1 0.08 U<br>1 1300 J<br>6 800 J<br>9 5 J<br>8 9 J<br>1 13 J<br>1 0.09 J<br>1 0.25 U<br>0 0.21 U<br>1 13 J<br>1 13 J<br>1 13 J<br>1 14 J<br>1 16 J<br>1 17 J<br>1 18 J<br>1                                                                              |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB-RFI-011-0810<br>96-5102<br>8 - 10 feet<br>10/24/96                               | 8200 J<br>8.8 J<br>160 J<br>0.08 J<br>20000 J<br>44 J<br>15 J<br>15 J<br>16 J<br>207 U<br>0.06 U<br>1400<br>7800 J<br>450 J<br>7.8 J<br>11 J<br>11 J<br>11 J<br>11 J<br>11 J<br>11 J<br>11 J<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SB-RFI-011-0608<br>96-5102<br>6 - 8 feet<br>10/24/96                                | R<br>8700 J<br>9.8 J<br>200 J<br>0.96 J<br>21000 J<br>4.2 J<br>10 J<br>4.2 J<br>10 J<br>4.1 J<br>2.16 U<br>40 J<br>2.4000 J<br>0.1 U<br>1.300<br>6500 J<br>8 J<br>1.2 U<br>8 J<br>1.3 U<br>1.3 U<br>1.3 U<br>1.3 U<br>1.4 U<br>1.5 U<br>1.6 U<br>1.7 U<br>1.8 U<br>1.9 |
| SB-RFI-011-0406<br>96-5102<br>4-6 feet<br>10/24/96                                  | R<br>9700 J<br>5.2 J<br>2900 J<br>0.99 J<br>20000 J<br>3.8 J<br>8.3 J<br>20 J<br>2.27 U<br>30 J<br>990<br>5900 J<br>390 J<br>390 J<br>390 J<br>390 J<br>390 J<br>390 J<br>390 J<br>30 J<br>120<br>900<br>5900 J<br>30 J<br>120<br>900<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SB-RF1-011-0204<br>96-5102<br>2 - 4 feet<br>10/24/96                                | R 8900 J 10 J 3000 J 0.88 J 13000 J 7.3 J 14 J 440 J 2.64 S 3 J 4000 J 0.08 U 1100 S 300 J 22 J 12 J 12 J 12 J 12 J 12 J 12 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SB-RF1-011-0002D<br>96-5102<br>0 - 2 feet<br>10/24/96                               | 1.1 7800 290 3100 0.94 5300 11 42 1740 2.09 U 110 69000 0.1 U 890 3600 120 92 2200 19 8.2 0.23 U 0.19 U 81 81 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SB-RFI-011-0002<br>96-5102<br>0 - 2 feet<br>10/24/96                                | 1.5 J<br>8000 J<br>230 J<br>230 J<br>3200 J<br>1.1 J<br>6500 J<br>144 J<br>79 J<br>89000 J<br>8000 J<br>8000 J<br>1900                                                                        |
| Sample Location: Sample I.D.: Laboratory Project No.: Sample Interval: Sample Date: | TAL Inorganies plus Molybdenum (mg/kg Silver Aluminum Arsenie Barium Beryllium Cadenium Cadmium (Total) Chromium Manganese Manganese Manganese Manganese Manganese Manganese Manganese Manganese Capium Niekel Lead Antimony Sedrium Thallium Yanandium (Total) Cyamide (Total) Cyamide (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 4-4 (continued)

| Sample Location:                                                           | RFI-11 (continued)                                     |                                                      |                                                       | RFI-12                                               |                                                       |                                                        | RFI-13                                               |
|----------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| Sample LD.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SB-RFI-011-1214<br>96-5102<br>12 - 14 feet<br>10/24/96 | SS-RFT-012-03<br>96-5053<br>0 - 3 inches<br>10/22/96 | SS-RFI-012-03D<br>96-5053<br>0 - 3 inches<br>10/22/96 | SB-RF1-012-0204<br>96-5077<br>2 - 4 feet<br>10/23/96 | SB-RFI-012-0204D<br>96-5077<br>2 - 4 feet<br>10/23/96 | SB-RFI-012-1416<br>96-5077<br>14 - 16 feet<br>10/23/96 | SS-RF1-013-03<br>96-5053<br>0 - 3 inches<br>10/22/96 |
| TAL Inorganies plus Molybdenum (mg/kg                                      |                                                        |                                                      |                                                       |                                                      |                                                       |                                                        | 4                                                    |
| Silver                                                                     | ~                                                      | 0.73 U                                               | O.86 U                                                | 0.78 U                                               | 0.8 U                                                 | . 0.7 U                                                | 0.97                                                 |
| Aluminum                                                                   | 7800 J                                                 | 4700                                                 | 2200                                                  | 9300                                                 | 0096                                                  | 0200                                                   | 11000                                                |
| Arsenie                                                                    | 8.3 J                                                  | 2.1                                                  | 4.4                                                   | 8.3                                                  | 6.8                                                   | 9.9                                                    | 0.75                                                 |
| Barium                                                                     | 1 06 l                                                 | 39                                                   | 68                                                    | 140                                                  | 150                                                   | 130                                                    | 0 -                                                  |
| Beryllium                                                                  | 1.3 J                                                  |                                                      | 2.3                                                   | 0.63                                                 | 0.67                                                  | 0.93                                                   | 5.5                                                  |
| Calcium                                                                    | 33000 J                                                | 27000                                                | 00099                                                 | 0089                                                 | 0116                                                  | 23000                                                  | 00086                                                |
| Cadmium                                                                    | 3.7 3                                                  | 6.1                                                  | =                                                     | 3.5                                                  | 3.5                                                   | 3.6                                                    | 2.7                                                  |
| Cobalt                                                                     | l 6.8                                                  | 6.7                                                  | 8.1                                                   | 9.2                                                  | 01                                                    | 12                                                     | ₹<br>\$                                              |
| Chromium (Total)                                                           | 14 J                                                   | 061                                                  | 15                                                    | 15                                                   | 15                                                    | 17                                                     | 120                                                  |
| Chromium (Hexavalent)                                                      | 2.17 U                                                 | VV                                                   | VN                                                    | 3.45                                                 | 2.16 U                                                | 2.09 U                                                 | Ź                                                    |
| Copper                                                                     | 50 J                                                   | 22                                                   | 15                                                    | 28                                                   | 62                                                    | 09                                                     | 29                                                   |
| Iron                                                                       | 20000 J                                                | 10000                                                | 3900                                                  | 22000                                                | 22000                                                 | 23000                                                  | 7800                                                 |
| Mercury                                                                    | U 80.0                                                 | 0.1 U                                                | U 80.0                                                | 0.08 U                                               | 0.1.0                                                 | 0.08 U                                                 | U 80.0                                               |
| Potassium                                                                  | 1700                                                   | 520                                                  | 520                                                   | 870                                                  | 860                                                   | 1300                                                   | 1100                                                 |
| Magnesium                                                                  | f 0006                                                 | 14000                                                | 4800                                                  | 4200                                                 | 4900                                                  | 7000                                                   | 18000                                                |
| Manganese                                                                  | 310 J                                                  | 370                                                  | 1500                                                  | 430                                                  | 440                                                   | 240                                                    | 2000                                                 |
| Molybdenum                                                                 | 6.3 J                                                  | 25                                                   | 7.1                                                   | 4.1                                                  | 3.9                                                   | 8.5                                                    | 13                                                   |
| Sodium                                                                     | 170                                                    | 120                                                  | 210                                                   | 89                                                   | 74                                                    | 130                                                    | 540                                                  |
| Nickel                                                                     | 31 J                                                   | 110                                                  | 40                                                    | 32                                                   | 33                                                    | 29                                                     | 011                                                  |
| Lead                                                                       | 13 J                                                   | 61                                                   | 36                                                    | 13                                                   | 14                                                    | 10                                                     | 6.5                                                  |
| Antimony                                                                   | l 6.0                                                  | 0.62                                                 | 1.3                                                   | =                                                    | -                                                     | 0.51                                                   | 0.37                                                 |
| Selenium                                                                   | 0.28 U                                                 | 0.24 U                                               | 0.28 U                                                | 0.25 U                                               | 0.26 U                                                | 0.22 U                                                 | 0.27 U                                               |
| Thallium                                                                   | 0.23 U                                                 | 0.2 U                                                | 0.24 U                                                | 0.22 U                                               | 0.22 U                                                | 0.19 U                                                 | 0.23 U                                               |
| Vanadium                                                                   | 15.1                                                   | 15                                                   | 5.9                                                   | 17                                                   | 1.1                                                   | 17                                                     | 12                                                   |
| Zinc                                                                       | l 67                                                   | 09                                                   | 34                                                    | 74                                                   | 79                                                    | 56                                                     | 7.5                                                  |
| Cyanide (Total)                                                            | <b>~</b>                                               | n I                                                  | N I                                                   | n ı                                                  | N I                                                   | N I                                                    | N I                                                  |
| Cyanide (Free) (mg/l)                                                      | 0.005 U                                                | VV                                                   | V.                                                    | 0.005 U                                              | 0.005 U                                               | 0.005 U                                                | 0.005 U                                              |

Table 4-4 (continued)

| Sample Location:                        | RFI-13 (continued)         | ontinued)                  |                          | RFI-14                     |                            |                          | RFI-15                     |
|-----------------------------------------|----------------------------|----------------------------|--------------------------|----------------------------|----------------------------|--------------------------|----------------------------|
| Sample I.D.:<br>Laboratory Project No.: | SB-RFI-013-0406<br>96-5092 | SB-RFI-013-1618<br>96-5092 | SS-RFI-014-03<br>96-5053 | SB-RFI-014-0204<br>96-5077 | SB-RFI-014-1214<br>96-5077 | SS-RFI-015-03<br>96-5053 | SB-RFI-015-0608<br>96-5077 |
| Sample Interval:<br>Sample Date:        | 4 - 6 feet<br>10/24/96     | 16 - 18 feet<br>10/24/96   | 0 - 3 inches<br>10/22/96 | 2 - 4 feet<br>10/22/96     | 12 - 14 feet<br>10/22/96   | 0 - 3 inches<br>10/22/96 | 6 - 8 feet<br>10/23/96     |
| TAL Inorganies plus Molybdenum (mg/kg   |                            |                            |                          |                            |                            |                          |                            |
| Silver                                  | . ≃                        | 1.1 J                      | 0.77                     |                            | 0.78                       | 0.75 U                   | 0.99                       |
| Aluminum                                | 1700 J                     | 7400                       | 8200                     | 8000                       | 6400                       | 8500                     | 0026                       |
| Arsenic                                 | <u>-</u>                   | 11.3                       | 3.6                      | =                          | _                          | 01                       | 15                         |
| Barium                                  | f \$9                      | f 86                       | 62                       | 82                         | 53                         | 83                       | 011                        |
| Beryllium                               | 0.85 J                     | 0.78                       | 2.1                      | 69:0                       | =                          | 0.73                     | 9.0                        |
| Calcium                                 | 18000 J                    | 15000 J                    | 31000                    | 0006                       | 30000                      | 2800                     | 1700                       |
| Cadmium                                 | 3.9 J                      | 4.3 J                      | 3.9                      | 3.9                        | 3.3                        | 5.3                      | 4.6                        |
| Cobalt                                  | <u> </u>                   | <u> </u>                   | 57                       | 13                         | 91                         | 34                       | 25                         |
| Chromium (Total)                        | 17 J                       | 17.1                       | 1100                     | 150                        | 57                         | 450                      | 81                         |
| Chromium (Hexavalent)                   | 2.91                       | 6.31                       | 2.2 U                    | YN<br>V                    | ۲Z                         | 2.12 U                   | <<br>Z                     |
| Copper                                  | 35 J                       | 42 J                       | 73                       | 38                         | 50                         | 54                       | 46                         |
| Iron                                    | 23000 J                    | 26000                      | 26000                    | 23000                      | 19000                      | 30000                    | 28000                      |
| Mercury                                 | 0.1 U                      | 0.09 U                     | 0.1 U                    | 0.083                      | U 60.0                     | U 80.0                   | U 60.0                     |
| Potassium                               | 1200 J                     | 1300                       | 170                      | 1000                       | 1100                       | 1000                     | 1400                       |
| Magnesium                               | 6700 J                     | 5800 J                     | 7800                     | 4800                       | 7700                       | 3200                     | 4000                       |
| Manganese                               | 410 J                      | 250 J                      | 069                      | 370                        | 320                        | 360                      | 650                        |
| Molybdenum                              | 1.7.J                      | 8.1 J                      | 170                      | 61                         | 61                         | 130                      | 7.8                        |
| Sodium                                  | 170 J                      | 011                        | 300                      | 72                         | 110                        | 110                      | 09                         |
| Nickel                                  | 37 J                       | 34 J                       | 098                      | 180                        | 51                         | 350                      | 51                         |
| Lead                                    | [ 0 ]                      | =                          | 23                       | 15                         | 13                         | 29                       | 18                         |
| Antimony                                | 0.83 J                     | <u>-</u>                   | 0.85                     | 1.3                        | 86.0                       | 1.2                      | 1.6                        |
| Selenium                                | 0.25 UJ                    | 0.23 UJ                    | 0.25 U                   | 0.25 U                     | 0.25 U                     | 0.25 U                   | 0.23 U                     |
| Thallium                                | 0.21 UJ                    | 0.19 UJ                    | 0.21 U                   | 0.22 U                     | 0.22 U                     | 0.21 U                   | U 61.0                     |
| Vanadium                                | 13.1                       | 8.3 J                      | 09                       | 81                         | 15                         | 64                       | 14                         |
| Zinc                                    | 81 J                       | 71. J                      | 130                      | 7.1                        | 69                         | 120                      | 64                         |
| Cyanide (Total)                         | n I                        | n I                        | 0.1                      | N I                        | 0.1                        | 0.1                      | 0.1                        |
| Cyanide (Free) (mg/l)                   | 0.005 U                    | 0.005 U                    | ₹<br>Z                   | <b>∀</b> Z                 | <b>₹</b> Z                 | Υ<br>Z                   | 0.005 U                    |

Table 4-4 (continued)

| SB-RF1-017-0608<br>96-5167<br>6 - 8 feet<br>10/28/96                               | 1 00 0                                | 7200 J   | f 8.6  | 140 J  | 0.93 J    | 20000 J | 3.9 J   | l 91   | l 4 J            | 2.2 ()                | 36 J   | 19000 J | U 80.0  | 1200 J    | f 0009    | 400 J     | 18 J       | 150 J  | 36 J   | 12 J | <u>-</u> | 0.23 UJ  | 0.22 UJ | 13 J     | 68 J  | 1.5             | 0.005 U               |
|------------------------------------------------------------------------------------|---------------------------------------|----------|--------|--------|-----------|---------|---------|--------|------------------|-----------------------|--------|---------|---------|-----------|-----------|-----------|------------|--------|--------|------|----------|----------|---------|----------|-------|-----------------|-----------------------|
| RFI-17<br>SB-RFI-017-0204<br>96-5167<br>2 - 4 feet<br>10/28/96                     | 111 62 0                              | 7700 J   | 8.2 J  | 110 J  | 0.79      | 16000 J | 3.8 J   | 9.5 J  | 13 J             | 2.27 U                | 33 J   | 18000 J | 0.05 U  | 160 J     | 3600 J    | 420 J     | 26 J       | f 88   | 34 J   | 14 J | _        | 0.26 UJ  | 0.23 UJ | =        | 120 J | 0 I             | 0.005 U               |
| SB-RF1-016-1415<br>96-5053<br>14 - 15 feet<br>10/22/96                             | 4                                     | 6200     | 8.6    | 27     | 0.47      | 1700    | 5.5     | 8.6    | =                | NA                    | 24     | 37000   | U 60.0  | 1100      | 3400      | 120       | 13         | 120    | 34     | 12   | 1.4      | 0.25 U   | 0.21 U  | 2.5 U    | 34    | n -             | ٧Z                    |
| SB-RF1-016-0406<br>96-5053<br>4 - 6 feet<br>10/22/96                               | - 2                                   | 5300     | 9.9    | 52     | =         | 29000   | 2.8     | 8.3    | 13               | Ϋ́N                   | 24     | 14000   | U 80.0  | 880       | 7800      | 290       | 9.9        | 140    | 25     | 9.5  |          | 0.25 U   | 0.21 U  | 12       | 49    | n -             | NA                    |
| SS-RF1-016-03<br>96-5077<br>0 - 3 inches<br>10/23/96                               | 11 89 0                               | 12000    | 3      | 130    | 5.5 /     | 94000   | 5.9     | 20     | 4800             | NA                    | 310    | 41000   | 0.07 U  | 1000      | 23000     | 0.1 U     | 260        | 490    | 2200   | 91   | 0.13 U   | 0.22 U   | 0.19 U  | 64       | 31    | n I             | VA<br>V               |
| SB-RFI-15 (continued)<br>96-5077<br>15 - 16 feet<br>10/23/96                       |                                       | 7800     | 8.7    | 66     | 0.8       | 17000   | 3.6     | 7.3    | 12               | VΝ                    | 34     | 24000   | 0.1.0   | 1400      | 0089      | 230       | 8.9        | 120    | 29     | =    | -        | 0.23 U   | 0.19 U  | 7.1      | 46    | 0.1             | 0.005 U               |
| Sample Location: Sample LD.: Laboratory Project No.: Sample Interval: Sample Date: | TAL Inorganics plus Molybdenum (mg/kg | Aluminum | Arenic | Barian | Beryllinn | Calciun | Cadmium | Cobalt | Chromium (Total) | Chromium (Hexavalent) | Conner | lron    | Mercury | Polassium | Magnesium | Manganese | Molybdenum | Sodium | Nickel | Cead | Antimony | Selenium |         | Vanadium | Zinc  | Cyamide (Total) | Cyanide (Free) (mg/l) |

Page 20 of 20

a/ Two sample aliquots were inadvertently collected from Location GS-01 for analysis of some parameters.

b/ TAL = Target Analyte List.

This list also includes hexavalent chromium and free cyanide.

All results presented below represent data generated for sample aliquots sieved using a number 4 standard sieve, except for hexavalent chromium, mercury, total cyanide, and free cyanide (which are representative of unsieved aliquots).

c/ mg/kg = milligrams per kilogram; mg/l = milligrams per liter.

d/ Data Qualifiers:

U = constituent not detected at the noted detection limit.
J = constituent detected at an estimated concentration less than the method detected limit.
UJ = constituent detected at the estimated detection limit noted.
R = data rejected.
R = data rejected.
e/ NA = not amalyzed.
f/ Analysis for hexavalent chromium, mercury, total cyanide, and free cyanide was performed on unsieved sample aliquots, consistent with the Work Plan.
g/ D = duplicate sample.

Table 4-5

Surface and Subsurface Soil TCL VOC and VOC TIC Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| Sample Location:                             | GS-01                   | GS-03                    |                          | RB-02                    | RB-04                    |
|----------------------------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Sample L.D.:<br>Laboratory Project No.:      | SS-GS-01-03<br>96-5209  | SS-GS-03-03<br>96-5210   | SB-RB-02-0002<br>96-5200 | SB-RB-02-1618<br>96-5200 | SB-RB-04-0002<br>96-5198 |
| Sample Interval:<br>Sample Date:             | 0 - 3 menes<br>11/01/96 | 0 - 5 inches<br>11/01/96 | 0 - 2 teet<br>10/31/96   | 10 - 18 reet<br>10/31/96 | 0 - 2 teet<br>10/30/96   |
| TCL Volatile Organic Compounds (µg/kg)(a, b) |                         |                          |                          |                          |                          |
| Methylene chloride                           | 6 J (c)                 | 12 U                     | f 6                      | 4 J                      | 98 B                     |
| Acetone                                      | 12 U                    | 12 U                     | _                        | חוו                      | 70 B                     |
| Carbon disulfide                             | 0.7 J                   | 12 U                     | O II                     | N II                     | n ==                     |
| cis-1,2-Dichloroethene                       | 6 9                     | 12 U                     | חוו                      | חח                       | ) I                      |
| 2-Butanone                                   | 12 U                    | 12 U                     | U II                     | חות                      | O II                     |
| Trichloroethene                              | 14                      | 12 U                     | 0.5 J                    | חוו                      | 0 ==                     |
| Benzene                                      | 12 U                    | 12 U                     | חוו                      | U II                     | 0 II                     |
| 2-Hexanone                                   | 12 U                    | 12 U                     | 0 11                     | N II                     | O ==                     |
| Tetrachloroethene                            | 12 U                    | 14                       | O ==                     | n II                     | n <b>::</b>              |
| Toluene                                      | 0.5 J                   | 12 U                     | 3.5                      | 0.5 J                    | f 9                      |
| Chlorobenzene                                | 12 U                    | 12 U                     | 0 =                      | D 11                     | O                        |
| Ethylbenzene                                 | 12 U                    | 12 U                     | 0 II                     | Ω II                     | n =                      |
| Styrene                                      | 12 U                    | 12 U                     | I 6.0                    | 0 =                      | 2 J                      |
| Xylene (Total)                               | 12 U                    | 12 U                     | n                        | O II                     | N II                     |

| ŧ       |   |
|---------|---|
| -       |   |
| :       |   |
|         |   |
| ď       | 7 |
|         | ŧ |
| ٦       | ľ |
| Plo 4   |   |
| Toble 4 |   |

Page 2 of 6

| 002                                                                                 | 40 J<br>7 J<br>50 J<br>9 J                                                   | 901                |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|
| RB-04<br>SB-RB-04-0002<br>96-5198<br>0 - 2 feet<br>10/30/96                         | Unknown Hydrocarbon<br>Unknown<br>Unknown<br>Unknown                         | Total VOC TICs     |
| 18                                                                                  | 7 J<br>6 J<br>10 J                                                           | 29                 |
| RB-02<br>SB-RB-02-1618<br>96-5200<br>16 - 18 feet<br>10/31/96                       | Unknown Hydrocarbon<br>Unknown<br>Unknown<br>Unknown Aromatic<br>Hydrocarbon | Total VOC TICs     |
|                                                                                     |                                                                              | 0                  |
| SB-RB-02-0002<br>96-5200<br>0 - 2 feet<br>10/31/96                                  |                                                                              | Total VOC TICs     |
|                                                                                     |                                                                              | 0                  |
| GS-03<br>SS-GS-03-03<br>96-5077<br>0 - 3 inches<br>10/23/96                         |                                                                              | Total VOC TICs (d) |
| GS-01<br>SS-GS-01-03<br>96-5209<br>0 - 3 inches<br>11/1/96                          | ₹Z                                                                           | -                  |
| Sample Location: Sample I.D.: Laboratory Project No.: Sample Interval: Sample Date: | Volatile Organics<br>Tentatively Identified Compounds (µg/kg)                |                    |

Table 4-5 (continued)

Surface and Subsurface Soil TCL VOC and VOC TIC Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 3 of 6

| Sample Location:                                                   | RB-04 (continued)                                  | ntinued)                                           |                                                    | RB-05                                              |                                                     |
|--------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| Sample L.D.: Laboratory Project No.: Sample Interval: Sample Date: | SB-RB-04-0406<br>96-5198<br>4 - 6 feet<br>10/30/96 | SB-RB-04-0709<br>96-5198<br>7 - 9 feet<br>10/30/96 | SB-RB-05-0002<br>96-5167<br>0 - 2 feet<br>10/28/96 | SB-RB-05-0204<br>96-5167<br>2 - 4 feet<br>10/28/96 | SB-RB-05-0810<br>96-5167<br>8 - 10 feet<br>10/28/96 |
| TCL Volatile Organic Compounds (µg/kg)                             |                                                    |                                                    |                                                    |                                                    |                                                     |
| Methylene chloride                                                 | 51 B                                               | 70 B                                               | 12 U                                               | 12 U                                               | 14 U                                                |
| Acetone                                                            | 150 B                                              | 53 B                                               | 64                                                 | 65                                                 | 0.01                                                |
| Carbon disulfide                                                   | 0 ==                                               | ח =                                                | 0.6 J                                              | 12 U                                               | 1 2                                                 |
| cis-1,2-Dichloroethene                                             | n =                                                | O =                                                | 12 U                                               | 12 U                                               | ) ()<br>()                                          |
| 2-Butanone                                                         | D ==                                               | ח                                                  | f 9                                                | f 4                                                | 0.01                                                |
| Trichloroethene                                                    | חוו                                                | N II                                               | 12 U                                               |                                                    | 000                                                 |
| Benzene                                                            | n ::                                               | n ::                                               | 2 J                                                | 2 J                                                | 001                                                 |
| 2-Hexanone                                                         | n =                                                | N 11                                               | -                                                  | 12 U                                               | 0.01                                                |
| Tetrachloroethene                                                  | N II                                               | n ::                                               | 12 U                                               | 4 J                                                | D 01                                                |
| Toluene                                                            | 4 J                                                | 8                                                  | 12 U                                               | 12 U                                               | n 01                                                |
| Chlorobenzene                                                      | חוו                                                | n =                                                | 0.2 J                                              | 12 U                                               | 101                                                 |
| Ethylbenzene                                                       | n                                                  | L 5.0                                              | 12 U                                               | 0.4 J                                              | חפ                                                  |
| Styrene                                                            | 3 J                                                | 3.5                                                | 12 U                                               | 0.4 J                                              | 0.01                                                |
| Xylene (Total)                                                     | חו                                                 | 1.6 J                                              | 0.5 J                                              | 0.3 J                                              | U 01                                                |

| _          |
|------------|
| ned)       |
| (continued |
| _          |
| 4-5        |
|            |
| Fable      |

Surface and Subsurface Soil TCL VOC and VOC TIC Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 4 of 6

0 SB-RB-05-0810 96-5167 8 - 10 feet 10/28/96 Total VOC TICs 0 RB-05 SB-RB-05-0204 96-5167 2 - 4 feet 10/28/96 0 Total VOC TICs SB-RB-05-0002 96-5167 0 - 2 feet 10/28/96 Total VOC TICs 30 J 40 J 8 J 78 SB-RB-04-0709 96-5198 7 - 9 feet 10/30/96 Unknown Hydrocarbon Total VOC TICs RB-04 (continued) 20 J Unknown 70 J 40 J Unknown ( P 6 9 172 SB-RB-04-0406 96-5198 4 - 6 feet 10/30/96 Unknown Hydrocarbon Unknown Hydrocarbon Unknown Hydrocarbon Unknown Unknown Aromatic Total VOC TICs Hydrocarban Unknown Volatile Organics Tentatively Identified Compounds (µg/kg)

Surface and Subsurface Soil TCL VOC and VOC TIC Data Phase I RFI AL Tech Specialty Steel Corporation-Dunkirk, New York Facility

Page 5 of 6

| Sample Location:        |                 | RFI-05          |
|-------------------------|-----------------|-----------------|
| Sample I.D.:            | SB-RFI-005-0204 | SB-RFI-005-1214 |
| Laboratory Project No.: | 96-5167         | 96-5167         |
| Sample Interval:        | 2 - 4 feet      | 12 - 14 feet    |
| Sample Date:            | 10/28/96        | 10/28/96        |

| YCL Volatile Organic Compounds (μg/kg) Methylene chloride |           |            |
|-----------------------------------------------------------|-----------|------------|
| Acetone                                                   | Ω <b></b> | 0 ==       |
| Carbon disulfide                                          | n         | 73 B       |
| cis-1,2-Dichloroethene                                    | U II      | f 6        |
| 2-Butanone                                                | חו        | <b>=</b>   |
| Trichloroethene                                           | 3.5       | f &        |
| Вепдене                                                   | 0.5 J     | _          |
| 2-Hexanone                                                | חוו       | <b>n</b> = |
| Tetrachloroethene                                         | n =       | <u> </u>   |
| Toluene                                                   | ח=        | U II       |
| Chlorobenzene                                             | <u> </u>  | )<br>=     |
| thylhenzene                                               | D =       | 4 )        |
| Styrene                                                   | חוו       | ) <u> </u> |
| Xylene (Total)                                            | חח        | )<br>=     |
|                                                           | 0.3 J     | 1.1.1      |

Surface and Subsurface Soil TCL VOC and VOC TIC Data Phase I RFI

AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 6 of 6

| RFI-05 | SB-RFI-005-1214 | 96-5167 | 12 - 14 feet | 10/28/96 |  |
|--------|-----------------|---------|--------------|----------|--|
|        | SB-RFI-005-0204 | 96-5167 | 2 - 4 feet   | 10/28/96 |  |

10 J

Unkown Hydrocarbon

Volatile Organics Tentatively Identified Compounds (µg/kg)

Total VOC TICs 0 Total VOC TICs

0

TCL = Target Compound List; VOC = Volatile Organic Compound; TIC = Tentatively Identified Compound.
 Only those TCL VOCs detected in one or more of the soil samples have been retained in this table. Unabridged analytical results are presented in Appendix N. μg/kg = micrograms per kilogram.
 c' Data Qualifiers:

U = constituent not detected at the noted detection limit.
J = constituent detected at an estimated concentration less than the method detected limit.
B = constituent also detected in an associated blank.
d/ Total VOC TICs represent the sum of all detected TICs.

Table 4-6

Surface and Subsurface Soil
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:                                   | RB-02                    | .02                      | RB-03                    |                          | RB-06                    |                          |
|----------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Sample I.D.:<br>Laboratory Project No.:            | SB-RB-02-0002<br>96-5200 | SB-RB-02-1618<br>96-5200 | SB-RB-03-0002<br>96-5210 | SB-RB-06-0002<br>96-5198 | SB-RB-06-0406<br>96-5198 | SB-RB-06-0608<br>96-5198 |
| Sample Interval:<br>Sample Date:                   | 0 - 2 feet<br>10/31/96   | 16 - 18 feet<br>10/31/96 | 0 - 2 feet<br>11/01/96   | 0 - 2 feet<br>10/29/96   | 4 - 6 feet<br>10/29/96   | 6 - 8 feet<br>10/29/96   |
| TCL Semi-Volatile Organic Compounds (µg/kg) (a, b) | (µg/kg) (a, b)           |                          |                          |                          |                          |                          |
| 1,3-Dichlorobenzene                                | 360 U (c)                | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| I,4-Dichlorobenzene                                | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| 1,2,4-Trichlorobenzene                             | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Naphthalene                                        | 360 U                    | 350 U                    | 1800                     | 350 U                    | 340 U                    | 340 U                    |
| 2-Methylnaphthalene                                | 360 U                    | 350 U                    | 3200                     | 350 U                    | 340 U                    | 340 U                    |
| Dimethyl phthalate                                 | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Acenaphthylene                                     | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Acenaphthene                                       | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Dibenzofuran                                       | 360 U                    | 350 U                    | 1000                     | 350 U                    | 340 U                    | 340 U                    |
| Fluorene                                           | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Phenanthrene                                       | 360 U                    | 350 U                    | 2600                     | 350 U                    | 340 U                    | O 098                    |
| Anthracene                                         | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Carbazole                                          | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Di-n-butyl phthalate                               | 360 U                    | 350 U                    | 360 U                    | 330 J                    | 340 U                    | 340 U                    |
| Fluoranthene                                       | 360 U                    | 350 U                    | 1300                     | 350 U                    | 340 U                    | 310 J                    |
| Pyrene                                             | 360 U                    | 350 U                    | 1100                     | 350 U                    | 340 U                    | 340 U                    |
| Butyl benzyl phthalate                             | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Benzo(a)anthracene                                 | 360 U                    | 350 U                    | 260                      | 350 U                    | 340 U                    | 340 U                    |
| Bis(2-ethylhexyl)phthalate                         | 360 U                    | 210                      | 440                      | 350 U                    | 340 U                    | 340 U                    |
| Chrysene                                           | 360 U                    | 350 U                    | 1100                     | 350 U                    | 340 U                    | 280 J                    |
| Di-n-octyl phthalate                               | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Benzo(b)fluoranthene                               | 360 U                    | 350 U                    | 930                      | 350 U                    | 340 U                    | 340 U                    |
| Benzo(k)fluoranthene                               | 360 U                    | 350 U                    | 530                      | 350 U                    | 340 U                    | 340 U                    |
| Benzo(a)pyrene                                     | 360 U                    | 350 U                    | 540                      | 350 U                    | 340 U                    | 340 U                    |
| Indeno(1,2,3-cd)pyrene                             | 360 U                    | 350 U                    | 410                      | 350 U                    | 340 U                    | 340 U                    |
| Dibenzo(a,h)anthracene                             | 360 U                    | 350 U                    | 360 U                    | 350 U                    | 340 U                    | 340 U                    |
| Benzo(ghi)perylene                                 | 360 U                    | 350 U                    | 410                      | 350 U                    | 340 U                    | 340 U                    |
|                                                    |                          |                          |                          |                          |                          |                          |

ر درگ

Table 4-6 (continued)
Surface and Subsurface Sul
TCL SVOC and SVOC TIC Data
Planet IRRI
AL Tech Specialty Steet Corporation
Danklerk, New York Facility

| SB-RB-02-0002             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Cil-Cil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |       | SB-RB-02-1618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | SB-RB-03-0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7      | SB-RB-06-0002          |                                                                                                                  | SB-RB-06-0406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB-RB-06-0608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B875-07                   |       | 107C-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 1176-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 8616-96                |                                                                                                                  | 8616-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8615-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 - 2 feet<br>10/31/96    |       | 16 - 18 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0 - 2 leet<br>11/01/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 0 - 2 feet<br>10/29/96 |                                                                                                                  | 4 - 6 feet<br>10/29/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 - 8 feet<br>10/29/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Unknown Hydrocarbon 30    | 13    | thknown Hydracaban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 J   | Unknown Bydracarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150.3  | Опкими Пуфисатия       | 710.1                                                                                                            | Unknown Dydracarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unknewn Aschoration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Daknown By drocurban 46.  | _     | Jakinwa Hydrocarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120 J   | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 340 1  | Unknown Hydrocutum     | 380-1                                                                                                            | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown Hydrocurpon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lini j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Juknown Hydrociation 70   | 11 11 | Inknown Hydrocurbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82 J    | Unknown Bydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 360-3  | Unknown Hydrocarbon    | 350.1                                                                                                            | Onknown Hydrogarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 299.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown Hydrogarium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dukmown Dydracarban Batt  | _     | laknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KK J    | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.70   | Unknown Hydracarban    | MO J                                                                                                             | Unknown Hydrucarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown Dydracarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| luknown Bydrocmbon 120    | _     | hiknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.1    | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120 1  | thiknown Hydrocarbon   | 190 3                                                                                                            | Unknown Hydrocurbun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unknown Hydrocurbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dukmawa Bydracarban 120 J |       | faknown Hydrocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.     | Unknava Hydracarton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 580 J  | Unknown                | 100                                                                                                              | Unknown Hydrocurban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.00.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Diknovn Bydogadom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Disknown By drucathon 150 | _     | Juknown Hydrocurlion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ж2 Л    | Unknown flydrocurion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 570.1  | Unknown                | ( GOO                                                                                                            | thisneys Hydroseban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown Dydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pukanwa Bydrocarban       | _     | nknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111     | Unknown Hydrocarhon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 810 3  | Unknown                | 3300 3                                                                                                           | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown Dydracarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Unknown Hydrocarbon 120   | _     | nknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140 ]   | Unknown Hydracarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 510.1  | Unknown                | 1500 1                                                                                                           | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Onknown Hydrocuban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Unknown Hydrocarbon 100   | _     | пкимун Иу фессифия                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130.1   | Unknown Bydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240 3  | Unknown                | 1709 J                                                                                                           | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Disknown Hydrocurpus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Unknown Hydrocarbon 75    | _     | nknown Bydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300 3   | Unknown Hydrocarhon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280 3  | Unknown                | 2000 3                                                                                                           | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nic J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | thishown Ilvdrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Unknown Dydrocarbon 92    |       | nknown ffydroenban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 230 J   | Hikmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - OF-  | Unknown                | 6.00.0                                                                                                           | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unknown Bedreemplan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Инкини 22                 | _     | nknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200 J   | Unknosn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 260 3  | Urknown                | 300                                                                                                              | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unknown Hydraushan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Unknown                   | _     | nknown Bydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150 J   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150 J  | Unknown                | 5 KO 1                                                                                                           | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 450.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown Ilydrovarium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Unknown 20                | _     | nknowa Hydrocarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 J   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.0   | Unknown                | 150-1                                                                                                            | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (H) J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Вакизм и                  | _     | якими Иудосанов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210.3   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 130.3  | Unknown                | 170 J                                                                                                            | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| hikman 180                | _     | aknown Hydracarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210.3   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1400 1 |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Пикими 100                | _     | nknown Hydrocurtom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 J   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 240 1  |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Jukawa 15                 | _     | nktown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (1)   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 J  |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Phyliawn 280              | _     | пкломп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ( 080 J | Unknows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 210 J  |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| իրերությ 40               | _     | пкиоми                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200.1   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 130.1  |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| hispania 24               | _     | вкломи                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 450 J   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 910    |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Inknown 40                | _     | нквимп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110 1   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.1  |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| inkmann 27                | _     | иквимп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.1    | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220 J  |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | =     | нквачи в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , z     | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =      |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tetal SVOC TICs (d) 2164  |       | ntal SVOC TICs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1684    | Total SVOC TICs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11068  | Total SVOC TICs        | (200)                                                                                                            | Total SVOC TICs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total SVOC TIC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CXCIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |       | 139 J (190 J (19 |         | 19   10   Otherwest Relativestimes   12   10   Otherwest Relativestimes   12   10   Otherwest Relativestimes   13   Otherwest Relativestimes   12   Otherwest Relativestimes   13   Otherwest Relativestimes   13   Otherwest Relativestimes   14   Otherwest Relativestimes   15   Otherwest   15   Otherwest | 150    | 150                    | 19   Unknown (b) Robuschien   19   Unknown (b) Unknown (b) (b)   Unknown (b) | 191   Uthanwar Hydrocarbon   192   Uthanwar Hydrocarbon   193   Uthanwar Hydrocarbon   193   Uthanwar Hydrocarbon   194   Uthanwar Hydrocarbon   195   Uthanwar   195   U | 151   Unknown   Parkershoun   191   Unknown   Parkershoun   192   Unknown   Parkershoun   192   Unknown   Parkershoun   193   Unknown   Parkershoun   193   Unknown   Parkershoun   194   Unknown   Parkershoun   195   Unknown   195   Unknown | 191   Uthawan Hydrocarbon   191   Uthawan Hydrocarbon   192   Uthawan Hydrocarbon   192   Uthawan Hydrocarbon   193   Uthawan Hydrocarbon | 151   Hollmann Refroembra   191   Hollmann   1810   Hollmann   1 |

Table 4-6 (continued)

Surface and Subsurface Soil TCL SVOC and SVOC TIC Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 3 of 27

| Sample Location:                            |                          | RB-07                    |                          |                         | TP-01                   |                         |
|---------------------------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|
| Sample I.D.:<br>Laboratory Project No.:     | SB-RB-07-0002<br>96-5198 | SB-RB-07-0608<br>96-5198 | SB-RB-07-0810<br>96-5198 | SB-TP01-0002<br>96-5053 | SB-TP01-0304<br>96-5053 | SB-TP01-0809<br>96-5053 |
| Sample Interval:<br>Sample Date:            | 0 - 2 feet<br>10/30/96   | 6 - 8 feet<br>10/30/96   | 8 - 10 feet<br>10/30/96  | 0 - 2 feet<br>10/22/96  | 3 - 4 feet<br>10/22/96  | 8 - 9 feet<br>10/22/96  |
| TCL Semi-Volatile Organic Compounds (μg/kg) | (µg/kg)                  |                          |                          |                         |                         |                         |
| 1,3-Dichlorobenzene                         | 360 U                    | 1500                     | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| 1,4-Dichlorobenzene                         | 360 U                    | 2800                     | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| 1,2,4-Trichlorobenzene                      | 410                      | 1100                     | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Naphthalene                                 | 360 U                    | 360 U                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| 2-Methylnaphthalene                         | 360 U                    | 360 U                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Dimethyl phthalate                          | 360 U                    | 360 U                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Acenaphthylene                              | 360 U                    | 360 U                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Acenaphthene                                | 290 J                    | 360 U                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Dibenzofuran                                | 260 J                    | 260 J                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Fluorene                                    | 370                      | 330 J                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| 4-Nitroaniline                              | O 068                    | 000 n                    | 870 U                    | 830 U                   | O 088                   | 840 U                   |
| Phenanthrene                                | 3200                     | 1600                     | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Anthracene                                  | 930                      | 440                      | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Carbazole                                   | 520                      | 270 J                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Di-n-butyl phthalate                        | 360 U                    | 280 J                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Fluoranthene                                | 3400                     | 2300                     | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Pyrene                                      | 3200                     | 2100                     | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Butyl benzyl phthalate                      | 360 U                    | 360 U                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Benzo(a)anthracene                          | 1700                     | 066                      | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Bis(2-ethylhexyl)phthalate                  | 360 U                    | 330 J                    | 290 J                    | 330 U                   | 350 U                   | 340 U                   |
| Chrysene                                    | 1900                     | 1100                     | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Di-n-octyl phthalate                        | 360 U                    | 360 U                    | 350 U                    | 340                     | 350 U                   | 340 U                   |
| Benzo(b)fluoranthene                        | 1700                     | 870                      | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Benzo(k)fluoranthene                        | 1100                     | 710                      | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Benzo(a)pyrene                              | 1400                     | 200                      | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Indeno(1,2,3-cd)pyrene                      | 940                      | 480                      | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Dibenzo(a,h)anthracene                      | 460                      | 360 U                    | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
| Benzo(ghi)perylene                          | 1100                     | 510                      | 350 U                    | 330 U                   | 350 U                   | 340 U                   |
|                                             | ,                        |                          |                          |                         |                         |                         |

Table 4-6 (continued)

Surface and Subsurface Suil TCL SVOC and SVOC TIC Data Plans I BRF AL Tech Specialiy Steet Corporation Dumkirk, New York Facility

| Page 4 of 27 | SB-TP01-0809           |
|--------------|------------------------|
|              | TP-01<br>SB-TP01-0304  |
|              | SB-TP01-0002           |
|              | SB-RB-07-0810          |
|              | RB-07<br>SB-RB-07-0608 |
|              | SB-RB-07-0002          |
|              | Location:              |

Semi-Volatile Organics Tentatively Identified Compounds (µg/kg)

| Sample Location:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | KB-07                   |           |                        |         |                      |           | TP-01                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-----------|------------------------|---------|----------------------|-----------|----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Sample LD.:             | SB-RB-07-8002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | SB-KB-07-0608           | ×         | SB-RB-07-0810          |         | SB-TP01-0002         |           | SB-TP01-0304         |         | SB-TP01-0809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| Laboratory Project No.: | 96-519B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 8615-96                 |           | 96-519R                |         | 96-5053              |           | 96-5053              |         | 96-5053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| Sample Interval:        | 9 - 2 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 6 - 8 feet              |           | 96/18/111<br>10/38/111 |         | 0 - 2 feet           |           | 3 - 4 feet           |         | 8 - 9 feet<br>10/22/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| Sample Date             | ar he had                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                         |           |                        |         |                      |           |                      |         | The same and the s |           |
| 2                       | Unknown 18 drog action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 580.3   | Паквачи Ихфасафов       | 1.001.1   | Unknown Hydrocarbon    | 1100 1  | Unknown flydracarban | 1.021     | Unknown flydracustom | 1 081   | Paknovn Bydraciation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 750.1     |
| J Compounds (ng/kg)     | Unknown (Kylmenton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 070   | Puknown Hydracarban     | 1-4(H) \$ | Unknown Bydrocarbun    | 1400    | Unknown Hydrocarban  | t 003     | Unknown Hydrocurbon  | 280.1   | Buknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 100 1   |
|                         | Unknown Dydrocurbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 07.9  | Unknown Hydrication     | 1, 4107.1 | Unknown Hydrocurbon    | 1408    | Unknown Bydrocarban  | 610.1     | Unknown Hydrocarbon  | 5.00    | Unknown Hydrocarbun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XIC 1     |
|                         | Physian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 MM I  | Unknown Hydrocarban     | 2200 1    | Unknown Hydrocarbon    | 1300 J  | Unknown Hydrocurbon  | 400 1     | Ohkhow a Hydrocarbon | 4.30    | Unknown Hydrocarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 to 4    |
|                         | Unkniwn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1460 3  | Unkamu                  | t 000 J   | Unknown Bydravarban    | 1700 }  | thknown Bydracarbon  | 570.3     | Unknown flydrocurbon | 5.00 3  | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 01-6    |
|                         | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5593 3  | Unknown                 | 1 00%     | Unknown Bydrocarbon    | 1:100 3 | Unknown Hydrocarbon  | 1.10      | Unknown Hydrocarbon  | 850.1   | Unknown Dydrocurbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X491 1    |
|                         | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 570.3   | Unknown                 | 1200 1    | Unknown Hydrocurbon    | 1500 J  | Unknown Hydrocarban  | N N J     | Unknown Hydrocurton  | 940 1   | Unknown Hydrocadion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZXINI B   |
|                         | Pakaowa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,200.1 | Unknown                 | 2,400_3   | Unknown ffy drocarbon  | 1 OK. N | Unknown Hydrocarbon  | 950.3     | Unknown Hydrocarbon  | K30-3   | Unknown Hydracarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . Hitt. 1 |
|                         | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.50 3  | Unknown                 | 2400 1    | Oukawa Bydacadon       | 1200 J  | Unknown Hydrocarban  | 1000      | Unknown Hydrocarbon  | 2400 J  | Unknown Hydrocathon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ican i    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Unknown                 | L No.     | Unknown Hydrocarbon    | TOWN ]  | Unknown Hydrocarban  | 1,000     | Onknown Hydrocurbon  | 1500 J  | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 that    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Unknown                 | 3400-3    | Unknown Hydrocurbon    | ¥30-J   | Unknown Hydrocarbum  | 2100 3    | Unknown Hydrocarbon  | FIND 3  | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 710.1     |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Unknown                 | 1100 1    | Unknown (Nylneurhon    | 770 J   | Unknown Hydrocurbun  | 1700 J    | Unknown Hydrocarbon  | 720 J   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,000.3   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Unknown                 | 1500 1    | Unkawan                | 8.90 J  | Unknown Hydrocarbons | 1,300     | Unknown Hydrocarbon  | 1.071   | Dikmwii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.050     |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Unkman                  | 1100 1    | Unknown                | lean J  | thkmwn Hydrocurbun   | 6.50-3    | Unknown Hydrocarbon  | 220 1   | třaknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1400 1    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Bakuma                  | 110011    | Unknown                | 710.5   | Unknown Hydrocarbon  | 180       | Unknown              | 420 1   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N70 3     |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Unknown                 | 1500.1    |                        |         | Unknown Hydrocarbon  | 360.3     | Unknown              | 6.700.3 | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1200.3    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Unknown                 | 1100 1    |                        |         | Daknown Bydrocarbus  | 150.1     | Unknown              | 150 J   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Unknown                 | 9.40 J    |                        |         | Unknown Hydrocarbon  | 1300 J    | Unknown              | F 065   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown Hydrocarbon  | f out     | Unknown              | 150.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown              | 400       | Phkiawa              | 2300 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknows              | 5900 3    | thknown              | 390-1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown              | 6.50      | Unknown              | 180     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown              | 1700 J    | Unknown              | N70 J   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown              | 170 1     | Цикломп              | 5nu 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown              | 707       | Пикноми              | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Puknown              | 150 J     | Unknown Amundic      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Duknesen             | 250 #     | Hydrocarban          | 1.00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown              | 1 0/11    |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown Aronatic     |           |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Hydrocarbon          | 2.40-3    |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Unknown Suffamilied  |           |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | Compound             | 1.06.1    |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         | ,                    |           |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         |                      |           |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |           |                        |         |                      |           |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                         | 10 to | i i     | Charles Cours to Action | 21160     | The SVOC THE           | 170,110 | Total SVOC TICe      | 27.56.03  | "OLL DOAS Ford.      | 33010   | Parent Caylor Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.07.0   |
|                         | Total SVOC 11Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44      | TOTAL SYOT TICS         | =         | Total SVOC 110.3       | 200     | 10100 34 34 44 3     | 211.71lb3 | 1000 3404 1043       | 7 M1111 | TOTAL TIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otos 7    |



Table 4-6 (continued)

Page 5 of 27

| Sample Location:                            |                          | TP-02                    |                          |                          | IT                       | TP-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:     | SS-TP-02-03<br>96-5053   | SB-TP-02-0002<br>96-5053 | SB-TP-02-0304<br>96-5053 | SB-TP-02-0910<br>96-5053 | SB-TP-03-0002<br>96-5053 | SB-TP-03-0506<br>96-5053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sample Interval:<br>Sample Date:            | 0 - 3 inches<br>10/22/96 | 0 - 2 feet<br>10/22/96   | 3 - 4 feet<br>10/22/96   | 9 - 10 feet<br>10/22/96  | 0 - 2 feet<br>10/22/96   | 5 - 6 feet<br>10/22/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TCL Semi-Volatile Organic Compounds (µg/kg) | ng/kg)                   |                          |                          |                          |                          | Table 1 and |
| 1,3-Dichlorobenzene                         | 0 0061                   | U 0071                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1,4-Dichlorobenzene                         | U 0061                   | 1700 U                   | 340 U                    | 330 U                    | 1800 U                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1,2,4-Trichlorobenzene                      | U 0061                   | 1700 U                   | 340 U                    | 330 U                    | ∩ 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Naphthalene                                 | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2-Methylnaphthalene                         | U 0061                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dimethyl phthalate                          | U 0001                   | U 0071                   | 340 U                    | 330 U                    | 1800 U                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Acenaphthylene                              | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Acenaphthene                                | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dibenzofuran                                | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | 1800 U                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fluorene                                    | U 0061                   | U 0071                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4-Nitroaniline                              | 4800 U                   | 4200 U                   | 840 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Phenanthrene                                | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Anthracene                                  | U 0061                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Carbazole                                   | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Di-n-butyl phthalate                        | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fluoranthene                                | 1900 U                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pyrene                                      | U 0061                   | 1700 U                   | 340 U                    | 330 U                    | U800 U                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Butyl benzyl phthalate                      | 1900 U                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(a)anthracene                          | 1900 U                   | 1700 U                   | 340 U                    | 280 J                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bis(2-ethylhexyl)phthalate                  | U 0061                   | U 0071                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chrysene                                    | 1900 U                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Di-n-octyl phthalate                        | D 0061                   | 1700 U                   | 340 U                    | 330 U                    | O 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(b)fluoranthene                        | O 0061                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(k)fluoranthene                        | U 0061                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(a)pyrene                              | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Indeno(1,2,3-cd)pyrene                      | U 0061                   | 1700 U                   | 340 U                    | 330 U                    | U 0081                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dibenzo(a,h)anthracene                      | O 0061                   | 1700 U                   | 340 U                    | 330 U                    | 1800 U                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(ghi)perylene                          | U 0001                   | 1700 U                   | 340 U                    | 330 U                    | U800 U                   | 360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                          |                          |                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

37090

Total SVOC TICs

121300

23630 Total SVOC TICs

Total SVOC TICs

21720

Total SVOC TICs

118200

132560 Total SVOC TICs

Total SVOC TICs

Table 4-6 (continued)
Surface and Subsurface Suil
TCLSVOC and SVOC TIC Data
Plans I BER
Al. Tech Spreidly Steel Corporation
Dunkirk, New York Facility

Page 6 of 27

| St. F. F. F. St. St. P. St. St. P. St. St. P. St. St. P. St. St. St. P. St. St. St. St. P. St. St. St. St. St. St. St. St. St. St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                               |           |                       |         |                     |         |                        |         |                        |         | 14-43                  |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|-----------|-----------------------|---------|---------------------|---------|------------------------|---------|------------------------|---------|------------------------|---------|
| Librarian   Frincist   Librarian   Libra   | Samule 1.B.:                      |                               |           | SB-TP-02-000          | 7       | 1050-20-TP-02-0304  |         | SB-17P-62-0910         |         | SB-TP-03-0002          | ~       | SB-TP-03-050           |         |
| Sample latter at the sample                         | Laboratory Project No.:           |                               |           | 1505-96               |         | 96-5053             |         | 96-5053                |         | 6-5853                 |         | 96-5853                |         |
| Majorat   Polycardon   1477   Halaman   Polycardon   1777   Hala   | Sample Interval:                  |                               |           | 0 - 2 feet            |         | 3 - 4 feet          |         | 9 - 10 feet<br>1072796 |         | 0 - 2 feet<br>10/27/96 |         | 5 - 6 feet<br>10/22/96 |         |
| Takanan Halawan Hala   | Sample Date:                      | 06/77/01                      |           |                       |         |                     | -       |                        |         |                        |         |                        |         |
| Highware H   | adile Oceanies                    | this myn Hydrocarban          | 1400      | Unknown Ify drecarbon | 1100 1  | Unknown Hydrocarbun | 160 J   | Unknown Hydrocarban    | f total | Unknown Bydrocurbon    | 3600 3  | Unknown Bydracarban    | 780 1   |
| Highware Hydrocarden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de Edwalfard Consumer traffer)    | the mass of Pedromethron      | 1400 3    | Unknown Hydrocarbun   | 1.0880  | Unknown Hydrocurbun | 280 3   | Unknown Hydrocarbun    | 100     | Unknown Hydrocurbon    | 2100 1  | Unknown Hydrocarbon    | (180.3  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is technical configuration (FPAP) | theknown their                | 2100 1    | Unknown IIs droughou  | 28180.3 | Daknown Bydrocarbun | 1 03    | Unknown Hydrocarbon    | 1 061   | Unknown Hydrocurhou    | 2640 J  | Unknown Hydrucarbon    | 1 (31)6 |
| 4400         Hollanous Highencednen         4201         Hollanous Highenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | the may the man               | 1.100 1   | Unknown Dydracarbon   | THE 1   | Unknown Hydrocarbun | 670 J   | Onknown Hydrocorbon    | 1 031   | Unknown Hydrocurbon    | 4300 3  | Unknown Hydrocurbon    | 1 07.0  |
| 23.9.1         Hallowood Hydrocardon         450.1         Hallowood Hydrocardon         580.1         Hallowood Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | This way of the foundation    | 4300 1    | Buknawa Ilyaharataan  | 4200 )  | Unknown Hydrocarbon | 1 077   | Unknown Hydrocarbon    | NO J    | Unknown Hydrocarbon    | 4500 1  | Onknown Hydrocarbon    | 1000    |
| Highware Hydrocarden   1200   High   |                                   | Decoura decident              | 52(0) 1   | Daknown Dydrogarbon   | 4500 3  | Unknown Hydrocarbon | SNO J   | Unknown Hydrocarbon    | 6.99    | Unknown Hydrocurbun    | 5100 J  | Unknown Hydrocarbon    | 930 1   |
| 1989   1945ana   |                                   | Deknown Hedrocurbun           | -trans    | Bakanwa Dydracarbon   | 12181   | Unknown Hydrocurium | 800 J   | Unknown Hydrocarbon    | 450 1   | Unknown Hydrocarbon    | 4680 3  | Unknown Hydrocurbon    | 2rd0 1  |
| Hakawan Hishawan Hishawan Hishawan Hakawan Hakawan Hakawan Hishawan Hisha   |                                   | Dakanyan Ilyahocadaan         | 1 SORRE 3 | Unknown Hydrocorpon   | LAUN.   | Unknown Hydrocarban | SNO J   | Unknown Hydrocurbon    | 620 3   | Unknown Hydrocurlum    | 14000   | Unknown Hydrocarbon    | 1,000   |
| 1200   Hakawat Hydrocarbon   7201   Hakawat Hydrocarbon   7001   Hakawat   |                                   | Dictions Il described         | REPORT J  | Unknown Hydrocurbon   | OADED J | Unknown Hydrocurbon | t orr   | Unknown Hydrocution    | 790 3   | Unknown Hydrocurton    | HHHHH J | Unknown Hydrocarbon    | 1:400 1 |
| 1500   16kawan 15klacarlon   1901   16kawan 15klacarlon   1501   16kawan   |                                   | Dalaman Balenarina            | 8660      | Unknown Dydrogarbon   | 7200 J  | Unknown Bydmenbon   | 1900 J  | Unknown Hydrocarbon    | 870 J   | Unknown Hydrocarban    | 7380 3  | Опключи Пуйгосайон     | 930 3   |
| 1500   145 kawa 154   |                                   | this news a feed and and      | 1800      | Onknown Dydrayarhon   | 4908    | Unknown Hydrocurbon | 1300.3  | Unknown Hydracarbon    | 790 J   | Unknown Hydrocorbon    | \$ 0015 | Unknown                | 6700 J  |
| 1540   14kawa   1901   14kawa   1540   144awa   1540   144a    |                                   | 1 m. mar a 1 ly denoute at    | 1390 J    | Unknown IIv druembon  | 2,488 3 | Unknown Hydrocarbon | 6 00%   | Unknown Hydracarbon    | 2300.1  | Unknown Dydracaban     | 1,080   | Unknown                | 730 J   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | the mount by drawnfans        | 2 400 3   | Unknown               | 1,100.1 | Unknown Hydrocarban | 510.3   | Unknown Hydracurbon    | 1000    | Unknown                | 2000 3  | Unknown                | 15000 1 |
| 1901   104kawa   1201   104kawa   15400   104k   |                                   | the trust of Its draw arbitra | 1200 1    | Unkanne               | HARRY I | Unknown Hydracarbon | 150.3   | Unknown Hydracarbon    | 1200 J  | Unknawn                | LOOKS J | Unknown                | 580     |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | Detunyo                       | 2380.3    | Unkniwn               | 12081   | Unknown Hydrocarbon | 190 1   | Unknown Hydrocarbon    | K20 J   | Unknown                | 1600    | Unknown                | 1200 1  |
| Vog 1         Uckhawa         200 J         Urkawa         200 J         Urkawa           1 Sin J         Uckhawa         670 J         Ukhawa         670 J         Ukhawa         140 J         141 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | Unknown                       | S CHAIL J | Unknown               | NOON 3  | Unknown             | 280.3   | Unknown Hydrocurbon    | 15/0 1  | Unknown                | X400 J  | Unknown                | 830 J   |
| 980 J. Urkana 5700 J. Hakana 6701 Hakana Hala Inkana 670 J. Hakana Hala Inkana 60 J. Hakana 1900 J. Hakana Inkana 1900 J. Hakana Inkana 1900 J. Hakana Inkana 1900 J. Hakana Inkana Inkan |                                   | Unknown                       | TORRO J   | Usknown               | 2000 3  | Unknown             | 580 J   | Unknown Hydracarbon    | 2.90 3  | Unknown                | 920H J  |                        |         |
| 1982   1944anvii   1950   1944anvii   1960   1945anvii   1960   1945anvii   1960   1945anvii   1960   1946anvii   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1   |                                   | Unknown                       | VISCO J   | Unknown               | 5700.1  | Unknown             | 6.7kb J | Unknown flydracation   | 140 )   |                        |         |                        |         |
| 1940 J   Dickman   1940 D   Dickman   |                                   | Children                      | L CRRF    | Unknown               | Year J  | Unknown             | 6.10 J  | Unknown                | Hett J  |                        |         |                        |         |
| 100   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | Obkugasi                      | 1,880 J   |                       |         | thknown             | 2100 3  | Unknown                | 450.3   |                        |         |                        |         |
| 110.1   10akawa   170.1   10akawa   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1   140.1      |                                   | Daknown                       | L 068     |                       |         | Unknown             | 360.3   | Unknown                | 6.500 3 |                        |         |                        |         |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | Dakneya                       | 3160 J    |                       |         | t luknow a          | 170 J   | Unknown                | 580-3   |                        |         |                        |         |
| Her J   Unkanvar   440 J   Unkanvar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | Unknown                       | 1-1000    |                       |         | Unknown             | 700 J   | Unknown                | 1700 J  |                        |         |                        |         |
| T70 J Unkanya T770 J Unkanya Unkanya Unkanya Unkanya I Unkanya Unkanya I Unkanya I Unkanya I Unkanya Unkanya Unkanya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | Unknown                       | 100       |                       |         | Unknown             | 460 J   | Unknown                | 330.3   |                        |         |                        |         |
| 770 J Uskawa Ulakawa Ulakawa Ulakawa Ulakawa .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | Unknown Aromanic              |           |                       |         | Unknown             | 200 J   | Unknown                | 340 3   |                        |         |                        |         |
| Hakawa I Iakawa I Iakawa I Inkawa I Ink |                                   | Hydracarban                   | 770 J     |                       |         |                     |         | Unknown                | 170.1   |                        |         |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                               |           |                       |         |                     |         | Unknown                | 1100 1  |                        |         |                        |         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                               |           |                       |         |                     |         | Unknown                | 170.3   |                        |         |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                               |           |                       |         |                     |         | Unknown                | 1 051   |                        |         |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                               |           |                       |         |                     |         |                        |         |                        |         |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                               |           |                       |         |                     |         |                        |         |                        |         |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                               |           |                       |         |                     |         |                        |         |                        |         |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                               |           |                       |         |                     |         |                        |         |                        |         |                        |         |

Table 4-6 (continued)

Page 7 of 27

| Sample Location:                            | TP-03 (continued)        | TP                       | TP-04                    |                          | TP-05                    |                          |
|---------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Sample I.D.:<br>Laboratory Project No.:     | SB-TP-03-1112<br>96-5053 | SB-TP-04-0002<br>96-5077 | SB-TP-04-1112<br>96-5077 | SS-TP-05-03<br>96-5077   | SB-TP-05-0002<br>96-5092 | SB-TP-05-0203<br>96-5092 |
| Sample Interval:<br>Sample Date:            | 11 - 12                  | 0 - 2 feet<br>10/22/96   | 11 - 12 feet<br>10/22/96 | 0 - 3 inches<br>10/23/96 | 0 - 2 feet<br>10/24/96   | 2 - 3 feet<br>10/24/96   |
| T. Cami. Volatile Organic Community (197(9) | (119/kg)                 |                          |                          |                          |                          |                          |
| 1 3-Dichlorohenzene                         | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 370 U                    | 360 U                    |
| 1 4-Dichlorobenzene                         | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 370 U                    | 360 U                    |
| 1.2.4-Trichtorobenzene                      | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 370 U                    | 360 U                    |
| Nanhthalene                                 | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 1700                     | 360 U                    |
| 2-Methylnaphthalene                         | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 2400                     | 260 J                    |
| Dimethyl phthalate                          | 360 U                    | 360 U                    | 370 U                    | 2600                     | 370 U                    | 300 11                   |
| Acenaphthylene                              | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 370 U                    | 360 U                    |
| Acenaphthene                                | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 290 J                    | 360 U                    |
| Dibenzofuran                                | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 009                      | 360 U                    |
| Fluorene                                    | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 370 U                    | 360 U                    |
| Phenanthrene                                | 360 U                    | 360 U                    | 370 U                    | 1700                     | 1800                     | 430                      |
| Anthracene                                  | 360 U                    | 360 U                    | 370 U                    | 440                      | 260 J                    | 360 U                    |
| Carbazole                                   | 360 U                    | 360                      | 280 J                    | 360 U                    | 370 U                    | 360 U                    |
| Di-n-butyl phthalate                        | 360 U                    | 590                      | 470                      | 360 U                    | 370 U                    | 360 U                    |
| Fluoranthene                                | 360 U                    | 490                      | 370 U                    | 2500                     | 1100                     | 460                      |
| Pyrene                                      | 360 U                    | 400                      | 370 U                    | 1800                     | 0091                     | 510 J                    |
| Butyl benzyl phthalate                      | 360 U                    | 360 U                    | 300 J                    | 360 U                    | 370 U                    | 360 U                    |
| Benzo(a)anthracene                          | 360 U                    | 390                      | 370 U                    | 066                      | 190                      | 250 J                    |
| Bis(2-cthylhexyl)phthalate                  | 360 U                    | 0091                     | 1500                     | 089                      | 370 U                    | 360 U                    |
| Chrysene                                    | 360 U                    | 430                      | 280 J                    | 1100                     | 1000                     | 340 J                    |
| Di-n-octyl phthalate                        | 360 U                    | 360 U                    | 370 U                    | 360 U                    | 370 U                    | 360 U                    |
| Benzo(b)fluoranthene                        | 360 U                    | 410                      | 370 U                    | 840                      | 700                      | 320 J                    |
| Benzo(k)fluoranthene                        | 360 U                    | 390                      | 370 U                    | 700                      | 200                      | 360 U                    |
| Benzo(a)nyrene                              | 360 U                    | 340 J                    | 370 U                    | 098                      | 019                      | 300 J                    |
| Indeno(1.2.3-cd)pyrene                      | 360 U                    | 330 J                    | 370 U                    | 470                      | 370 U                    | 360 U                    |
| Dibenzo(a,h)anthracene                      | 360 U                    | 300 J                    | 370 U                    | 270 J                    | 370 U                    | 360 U                    |
| Benzo(ghi)perylene                          | 360 U                    | 330 J                    | 370 U                    | 200                      | 370 U                    | 360 U                    |

Table 4-6 (continued)

Page 8 of 27

| Sample Location:                          | TP-03 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | red)     |                          | †0-d1    | 1                      |          | tu au u.i. 33                                   |         | China ya ah, ah       | 1000 30 00, 00       | 111      |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|----------|------------------------|----------|-------------------------------------------------|---------|-----------------------|----------------------|----------|
| Sample 1.D.:                              | SB-TP-03-1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7        | SB-11-04-000Z            | 7        | 11-40-11-98            | 7        | 511-511-31-50<br>511-511-31-50<br>511-511-31-51 |         | Zanasch II - ac       | Cond on              |          |
| Laboratory Project No.:                   | 96-5853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 96-5077                  |          | 76-567<br>11 - 12 feet |          | 0 - 3 inches                                    |         | 90-2002<br>0 - 2 feet | 2 - 3 feet           |          |
| Sample Decrais<br>Sample Dates            | 10/22/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 10/22/01                 |          | 10/22/96               |          | 10/23/96                                        |         | 10/24/96              | 10/24/96             |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                          |          |                        |          |                                                 |         |                       |                      |          |
| Semi-Valuable Organics                    | Unknown dydrogadon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XIII     | Unknown Hydracarbon      | 270 3    | Unknown Bydrocurbon    | 230 J    | Disknown Hydrocarbon                            | V80 J   | 0 VN                  | Unknown Hydrocarbon  | 12 or    |
| Tentatively blendified Community (neyler) | Unknown liverounteen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.00.3   | Unknown Hydrocarlons     | 270 J    | Unknown Hydrocarbon    | 310.3    | Unknown Hydrocarbon                             | 460 1   |                       | Մոետուս քիչփուպետ    | EN OFF   |
|                                           | this new n 18 distriction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N80 -    | Unknown Hydrocarbus      | 210.3    | Unknown Dydracurbon    | 540.3    | Onknown Hydrocarban                             | 1 101-1 |                       | Unknown Hydrocarbon  | Z (10):- |
|                                           | Greenway dy drawadsm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K70 J    | Unknown Hydroembon       | L HHY    | Unknown Hydrocurbon    | l ogr    | Dakmoon Hydracurbon                             | 1211 ]  |                       | Unknown Hydrocubun   | Z        |
|                                           | Ostrown Deducation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L CHAIL  | Unknown Bydrocarbon      | 240.3    | Unknown Bydrocarbon    | I NIKE J | Unknown Hydrocarbon                             | 260 J   |                       | Unknown Bydrocubon   | Kun N    |
|                                           | Hokmown Bydracarhum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HMH      | thisnessa Isdrocarbun    | 6,000    | Unknown Hydrocarbon    | 2000 3   | Unknown Hydrocmbon                              | 240 3   |                       | Unknown Hydrocurbon  | Zinin NJ |
|                                           | Hakman Refraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200 J   | Unknown Ilydrocarbun     | Нини 3   | Unknown Hydrocarbon    | 12000 J  | Unknown Hydrocarbon                             | 840 J   |                       | Unknown Uydrucarbon  | N DOZ    |
|                                           | this new n Hadamadhan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2500 J   | Unknown Pydenciaban      | I SHKHI  | Unknown Hydrocarban    | 12000 J  | Unknown Hydracarbon                             | 2200 #  |                       | Unknown Hydrocurbon  | 1700 NJ  |
|                                           | University 11s description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.906    | Buknawa INdracadasa      | 9500 3   | Unkness Hydrocurbun    | HOOR) J  | Unknown Hydrocurbon                             | 2500 3  |                       | Unknown Hydrocarbon  | 10:00 N  |
|                                           | the man deducation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1180 3 | thickness a 15 described | 820 3    | Unknown Hydrocarbon    | 9300.3   | Unknown Hydrocarbon                             | 1500 3  |                       | Unknown Hydrocurbon  | N set-1  |
|                                           | International designations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,040    | Buknawa Ilydencarian     | 5300.3   | (likkwa llydocathos    | \$500.3  | Unknown Hydrocarbon                             | 1-800   |                       | Unknown Hydrocurbon  | Tub NJ   |
|                                           | fluk man n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.700.1  | this cown its described  | 120 1    | Unknown Ilydoxanhun    | Jun J    | Unknown Hydrocarban                             | 2000 3  |                       | Unknown Hydrocurbun  | UN cott  |
|                                           | # Control of the cont | 730.1    | Daknown Dydroculum       | 1200 3   | Unknown Hydrocarbon    | 2200 J   | thknown Hydrocarbon                             | 1400 3  |                       | Unknown Hydrocurbon  | N SOL    |
|                                           | The party in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 9051   | Unknown Hydrocifibon     | 71111    | Unknown                | 210.3    | Unknown Hydrocarban                             | 1100 3  |                       | Unknown Hydrocarbon  | ISIN NI  |
|                                           | finiman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 050    | theknown the describing  | 280 3    | Unknown                | 280      | Dukanwa                                         | 2,00    |                       | Unknown Ilydrocarban | Test N   |
|                                           | fortuna o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 9071   | Thisming                 | 200 3    | Unknown                | 540.1    | Unknam                                          | 270 J   |                       | Unkniwn              | 420 NJ   |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Hickory                  | 140 5    | thikiawa               | 1600 1   | Unknown                                         | 5000 3  |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unknown                  | 8.40 9   | Tukuwn                 | 150 J    | Unknown                                         | 250 J   |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Duknown                  | 220 5    | Unknown                | 1600 3   | Unknown                                         | 10.1    |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Chileman                 | 1500.1   | Unknown                | 1,000 J  | Oukness                                         | 2000 J  |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unknown                  | 420 3    | Tuknown                | Mon J    | <b>И</b> п.                                     | 1 CHINA |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unknown                  | 230 3    | Unknown                | 6.100.3  | Пикломи                                         | 5300.3  |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unknown                  | 1 006    | Unknown Phthalate      | 210.1    | Unknown                                         | 540.3   |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Hickory                  | 7,10.3   |                        |          | Unknown                                         | 420 3   |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unknown                  | 1800     |                        |          | Dakmown                                         | 19000   |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unkning                  | 1000     |                        |          | Unknown Aroundic                                |         |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unknown                  | 17XtH1 # |                        |          | Bydrocarben                                     | 290 J   |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unknown Philadate        | 1500 3   |                        |          | Unknown Aromatic                                |         |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Beryt Butyl Philadate    | 2601.3   |                        |          | Hydrocarbon                                     | 1 OZA   |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                          |          |                        |          | Methyl Nanhthalene                              | 1.00 J  |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                          |          |                        |          | Dinetivi Nuphdadene                             | 320 J   |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                          |          |                        |          |                                                 |         |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                          |          |                        |          |                                                 |         |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                          |          |                        |          |                                                 |         |                       |                      |          |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                          |          |                        |          |                                                 |         |                       |                      |          |
|                                           | Total evol. TIC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.150   | Total SVOC TIC.          | (16.551) | Total SVOC TICs        | 73340    | Total SVOC TICs                                 | 36490   |                       | Total SVOC TICs      | 20840    |
|                                           | Total STOK TIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 20.0                     |          |                        |          |                                                 |         |                       |                      |          |

Table 4-6 (continued)

Page 9 of 27

| Sample Location:                                            | TP-05 (continued)                      |                                        | 90-dL                                       | 90                                     |                                        | TP-07                                  |
|-------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval: | SB-TP-05-0809<br>96-5092<br>8 - 9 feet | SB-TP-06-0002<br>96-5092<br>0 - 2 feet | SB-TP-06-0002D (c)<br>96-5092<br>0 - 2 feet | SB-TP-06-0304<br>96-5092<br>3 - 4 feet | SB-TP-06-0708<br>96-5092<br>7 - 8 feet | SS-TP-07-03<br>96-5077<br>0 - 3 inches |
| Sample Date:                                                | 10/24/96                               | 10/24/96                               | 10/24/96                                    | 10/24/96                               | 10/24/96                               | 10/23/96                               |
| TCL Semi-Volatile Organic Compounds (µg/kg)                 | ; (µg/kg)                              |                                        |                                             |                                        |                                        |                                        |
| 1,3-Dichlorobenzene                                         | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| 1,4-Dichlorobenzene                                         | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| 1.2.4-Trichlorobenzene                                      | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Naphthalene                                                 | 350 U                                  | 088                                    | 700                                         | 360 U                                  | 350 U                                  | 360 U                                  |
| 2-Methylnaphthalene                                         | 350 U                                  | 1500                                   | 1200                                        | 360 U                                  | 350 U                                  | 360 U                                  |
| Dimethyl phthalate                                          | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Acenaphthylene                                              | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Acenaphthene                                                | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Dibenzofuran                                                | 350 U                                  | 430                                    | 350 J                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Fluorene                                                    | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Phenanthrene                                                | 350 U                                  | 1500                                   | 1300                                        | 360 U                                  | 350 U                                  | 029                                    |
| Anthracene                                                  | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Carbazole                                                   | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Di-n-butyl phthalate                                        | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Fluoranthene                                                | 350 U                                  | 1200                                   | 1000                                        | 360 U                                  | 350 U                                  | 1200                                   |
| Pyrene                                                      | 350 U                                  | 1300 J                                 | 1100 J                                      | 360 U                                  | 350 U                                  | 840                                    |
| Butyl benzyl phthalate                                      | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Benzo(a)anthracene                                          | 350 U                                  | 650                                    | 560                                         | 360 U                                  | 350 U                                  | 480                                    |
| Bis(2-ethylhexyl)phthalate                                  | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 390                                    |
| Chrysene                                                    | 350 U                                  | 068                                    | 750                                         | 360 U                                  | 350 U                                  | 550                                    |
| Di-n-octyl phthalate                                        | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Benzo(b)fluoranthene                                        | 350 U                                  | 620                                    | 470                                         | 360 U                                  | 350 U                                  | 460                                    |
| Benzo(k)fluoranthene                                        | 350 U                                  | 430                                    | 410                                         | 360 U                                  | 350 U                                  | 440                                    |
| Benzo(a)pyrene                                              | 350 U                                  | 540                                    | 450                                         | 360 U                                  | 350 U                                  | 450                                    |
| Indeno(1,2,3-cd)pyrene                                      | 350 U                                  | 250 J                                  | 360 U                                       | 360 U                                  | 350 U                                  | 300 J                                  |
| Dibenzo(a,h)anthracene                                      | 350 U                                  | 360 U                                  | 360 U                                       | 360 U                                  | 350 U                                  | 360 U                                  |
| Benzo(ghi)perylene                                          | 350 U                                  | 260 J                                  | 360 U                                       | 360 U                                  | 350 U                                  | 300 J                                  |

Table 4-6 (continued)

| Samuel aluman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Dantinuc) St. J. J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (par   |   |                       |        |                        |       | 1P-06 |                       |                 |     |                         |         | L0-4.I.                 |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|-----------------------|--------|------------------------|-------|-------|-----------------------|-----------------|-----|-------------------------|---------|-------------------------|--------|
| Sample LD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61     |   | SB-TP-06-0002         | 40.2   | SB-TP-06-0002D         | 42    |       | t00-90-LL-88          |                 |     | SB-TP-06-0708           |         | SS-TP-07-03             |        |
| Laboratory Project No.:<br>Sample Intervals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   | 96-5892<br>0 - 2 feet |        | 96-5092<br>0 - 2 feet  |       |       | 96-3092<br>3 - 4 feet |                 |     | 7 - 8 feet              |         | 96-5077<br>0 - 3 inches |        |
| Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | - | 18/24/76              |        | 10/44/90               |       | 1     | 077-7/01              |                 | 1   | 0.747.01                |         | 36/57/01                |        |
| semi-Valutile Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the the second the sec | 1 XCN  | ž | Unknown Profesciolens | ŝ      | N Unknown Hydrocarbon  | 740   | ž     | Інквоми Пускоствов    | 100             | Š   | Oskaswa Dydocabon       | 170 N   | Unkasova (Polynearben   | 130    |
| Transfer of the tile of the transfer of the transfer of the tile o | thkmovn Bydongalban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,000  |   | Unknown Hydrocarbon   |        |                        | 700   | Ē     | Inknova Hydraciation  | 1000            | E N | Unknown Hydrocarbon 2   | Zion Ni | thknown Hydrocarton     | -027   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Below arban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 3000 |   | Unknown Hydrocarbon   |        | _                      | ODO   | Ξ     | inknown Hydrocurbon   | 1806            | E N | Dakmwe Hydrocarlem      | N SOL   | Unknown Hydrocurbon     | 1070   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Evelucation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E.     | ž | Unknown I Kdox arban  |        | N) Unknown Bydrocarban | 100   | Ē     | Unknown Hydrocarton   |                 |     |                         | 2400 NJ | Unknown Ily denomber    | 540.1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Bydowarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5001 |   | Phytheren             |        | 11 Unknown Podrocarban | 34:   | -     | Duknown Bydrucurbon   | 907             | _   | Hukmysa Hydrocarban 2   | 2100 NI | Unknown Hydrocarbun     | 484    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Dybugathan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1500   |   | Unknusn               |        | 11 Unknown Hydrocurbun | 1300  | _     | Duknown Hydrocarbon   |                 | ž   | Unknown Hydrocarbon 10  | IOD N   | Unknown Hydrocarbon     | 5301   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cokmyn Dydrambon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100    |   | Unknown               |        | D Unknown Wdownthan    | 910   |       | Инкломи Иудиления     |                 |     | Unknown Hydrocarbon 1.  | 1300 NI | Unknown Hydrocarbon     | 340    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Ilvehocorbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,200  |   | Unknam                | N ISSU | N) Unknown Hydrocurbon | Sou   |       | Unknown Hydrocarbon   |                 |     | Unknown Hydrocarbon 16  | 1000 N  | Unknown Hydracarbon     | 199    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown draftogutum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1300   |   | Unknivi               |        | NJ Unknown Hydrocurbon | 550   |       | Unknown Hydrocarbon   | CKOC            |     |                         | ž<br>E  | Unknown Hydrocustons    | 1.600  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thkneyn Polocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1300   |   | Unknown               |        | NJ Unknown Hydracarban | 949   |       | Dakaowa Hydrocarban   |                 |     | Unknown Hydrocurbun 1   | N E     | Unknown Hydrocarbon     | 970    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Bydowarhon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 980    |   | Unknown               | 2001   | O Onknown Hydrocurbon  | 500   | ž     | Unknown Hydrocarbon   | 100             | _   |                         | E N     | Unknown Hydrocarbon     | 6,500  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 086    |   | Unknown               |        | II Unknown Bydracurban | 100   |       | Dikinown Hydrocurbon  |                 | _   | lluknown Hydrocarbon 1. | 1700 N1 | Unknown Hydrocarbon     | 2200   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Dydrogarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N.N    |   | Unknewn               |        | H Unknown Bydrocarbon  | 900   | _     | Daknown Hydrocurbon   | 850             | Ē   | Unknown Hydrocarbon     | N ING   | Duknown flydorcatum     | 6,700  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Onknown Dydrocurbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =      |   |                       |        | Unknown Hydrocurbon    | 989   | _     | Սոհատո Մյ մուշախա     | al <sub>6</sub> | _   | Inknown Bydrocarbon     | IN OSK  | Unknown Hydrocurbon     | 7988 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unkness a By dragarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1800   |   |                       |        | Unknown Dydrocutum     | (600) | _     | Juknown Hydrocurbon   |                 |     | Unknown Hydrocurbon     | 1200 N3 | Unknown Hydracurban     | 0000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hoknown Hydrocurhon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000   |   |                       |        | Unknown Bydrocurbon    | 5980  | _     | Bakaowa Hydrocarbon   |                 |     | Unknown Hydrocurbon     | N (19)  | Unknown Hydrocurbon     | 4500 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown II drawarhon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Refit  |   |                       |        | Unknown Bydrocarbon    | \$640 | -     | Unknown Hydrocarbon   | 901             | Ē   | Unknown                 | N OK    | Unknown Hydrocurbun     | 000    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown IIvdrocurbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100    |   |                       |        | Unknown Hydrocarbon    | 2400  | ž     |                       |                 |     |                         |         | Unknown Hydrocurbon     | No. J  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown Podrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 780    |   |                       |        | Unknown                | 420   | Z     |                       |                 |     |                         |         | Unknown Hydracarban     | 1040   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        | Unknown                | 1100  | 2     |                       |                 |     |                         |         | Unknown Hydrocarbon     | 100    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        | Unkniwn                | 740   | ž     |                       |                 |     |                         |         | Unknown                 | 66.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        | Unknown                | 21.8  | Z     |                       |                 |     |                         |         | Unknown                 | 2.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        | Unknown                | 1400  | Z     |                       |                 |     |                         |         | Unknown                 | X20    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        | Unknown                | 917   | Z     |                       |                 |     |                         |         | Unknown                 | 1001   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        | Nanhdadene             | 2000  | ž     |                       |                 |     |                         |         | Uskanan                 | 200    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        |                        |       |       |                       |                 |     |                         |         | Baknown                 | 1500   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        |                        |       |       |                       |                 |     |                         |         | Опключи                 | 960    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        |                        |       |       |                       |                 |     |                         |         | Ouknown Philadate       | 3.40   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        |                        |       |       |                       |                 |     |                         |         |                         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        |                        |       |       |                       |                 |     |                         |         |                         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total SVOC TICs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25980  |   | Total SVOC TICs       | 16230  | Total SVOC TICs        | 34580 |       | Total SVOC TICs       | 21020           | Ħ   | Total SVOC TICs 221     | 22190   | Total SVOC TICs         | 52120  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |                       |        |                        |       |       |                       |                 |     |                         |         |                         |        |

Table 4-6 (continued)

Page 11 of 27

|                   | SB-TP-08-0708 | 22-96                   | 7 - 8 feet       | 10/23/96     |
|-------------------|---------------|-------------------------|------------------|--------------|
| TP-08             | SB-TP-08-0304 | 24-202                  | 3 - 4 feet       | 10/23/96     |
|                   | SB-TP-08-0002 | 2202-96                 | 0 - 2 feet       | 10/23/96     |
|                   | SB-TP-07-0809 | 36-206                  | 8 - 9 feet       | 10/24/96     |
| TP-07 (continued) | SB-TP-07-0304 | 96-5092                 | 3 - 4 feet       | 10/24/96     |
|                   | SB-TP-07-0002 | 2605-96                 | 0 - 2 feet       | 10/24/96     |
| Sample Location:  | Sample I.D.:  | Laboratory Project No.: | Sample Interval: | Sample Date: |

| Sample Location:                            |                          | TP-07 (continued)        |                          |                          | TP-08                    |                          |
|---------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Sample I.D.:<br>Laboratory Project No.:     | SB-TP-07-0002<br>96-5092 | SB-TP-07-0304<br>96-5092 | SB-TP-07-0809<br>96-5092 | SB-TP-08-0002<br>96-5077 | SB-TP-08-0304<br>96-5077 | SB-TP-08-0708<br>96-5077 |
| Sample Interval:<br>Sample Date:            | 0 - 2 feet<br>10/24/96   | 3 - 4 feet<br>10/24/96   | 8 - 9 feet<br>10/24/96   | 0 - 2 feet<br>10/23/96   | 3 - 4 feet<br>10/23/96   | 7 - 8 feet<br>10/23/96   |
| TCL Semi-Volatile Organic Compounds (μg/kg) | (µg/kg)                  |                          |                          |                          |                          |                          |
| 1,3-Dichlorobenzene                         | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| 1,4-Dichlorobenzene                         | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| 1,2,4-Trichlorobenzene                      | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Naphthalene                                 | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| 2-Methylnaphthalene                         | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Dimethyl phthalate                          | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | O 098                    |
| Acenaphthylene                              | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Acenaphthene                                | 360 U                    | 380 U                    | O 098                    | 350 U                    | 360 U                    | 360 U                    |
| Dibenzofuran                                | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Fluorene                                    | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Phenanthrene                                | 360 U                    | 380 U                    | 098                      | 350 U                    | 360 U                    | 360 U                    |
| Anthracene                                  | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Carbazole                                   | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Di-n-butyl phthalate                        | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Fluoranthene                                | 290 J                    | 280 J                    | 360 U                    | 350 U                    | 360 U                    | 09E                      |
| Pyrene                                      | 300 J                    | 300 J                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Butyl benzyl phthalate                      | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Benzo(a)anthracene                          | 340 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Bis(2-ethylhexyl)phthalate                  | 360 U                    | 590                      | 360 U                    | 350 U                    | 360 U                    | 250 J                    |
| Chrysene                                    | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Di-n-octyl phthalate                        | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Benzo(b)fluoranthene                        | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Benzo(k)fluoranthene                        | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | O 098                    |
| Benzo(a)pyrene                              | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Indeno(1,2,3-cd)pyrene                      | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Dibenzo(a,h)anthracene                      | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |
| Benzo(ghi)perylene                          | 360 U                    | 380 U                    | 360 U                    | 350 U                    | 360 U                    | 360 U                    |

27150

Total SVOC TICs

25660

Total SVOC TICs

19380

28540 Total SVOC TICs

12420 Total SVOC TICs

17930 Total SVOC TICs

Total SVOC TICs

Table 4-6 (continued)
Surface and Subsurface Suil
TCLSVOC and SYOC TIC Data
Plans IRFF
AL Tech Specialis Steet Corporation
Dankirk, New York Facility

| Sample Location:                          |                       |          | TP-87 (continued)    |          |                      |         |                        |         |                     | TP-08   |                      |                                         |
|-------------------------------------------|-----------------------|----------|----------------------|----------|----------------------|---------|------------------------|---------|---------------------|---------|----------------------|-----------------------------------------|
| Samule I.D.:                              | SB-17P-07-0002        |          | \$B-TP-07-0304       |          | 080-10-d1BS          | ,       | SB-TP-08-0002          | 3012    | 0C0-80-1L-0S        | =       | SB-TP-08-0708        | *                                       |
| Laboratory Project No.                    | 26-5092               |          | 96-5092              |          | 260-5092             |         | 76-5077                |         | 76-5977             |         | 24-5077              |                                         |
| Sample Interval:                          | 0 - 2 feet            |          | 3 - 4 feet           |          | 8 - 9 feet           |         | 0 - 2 feet             |         | 3 - 4 feet          |         | 7 - 8 feet           |                                         |
| Sample Dates                              | 10/25/96              |          | 10/24/96             |          | 10/24/96             |         | 10/23/96               |         | 10/23/96            |         | 10/23/96             |                                         |
| Semi-Volatile Ocumies                     | Unknissii Asdrugathui | 28       | Unknown ilvaincation | Z        | Unknown Ilydracarban | N Dig   | lakanwu Ily drocarbun  | 2181 3  | Daknown Dydocarbon  | 130.1   | Unknown Hydrocarbon  | Ī                                       |
| Tentatively Identified Community (nether) | Unknown Ilydrocation  | 1801 N   |                      | N PH     | Unknown Hydrocarbon  | 1200 N  | I thknown Hydrocarbon  | 120.1   | Ohkawa Webacaboa    | 130.1   | Unknown Hydrocarbon  | 1111                                    |
|                                           | Unknew a Dydrocurburt | 12081 NI |                      | N 079    | Unknown Hydrocarbon  | TOROT N | Unknown Hydrocurpon    | 700 1   | Unknown Hydracarban | 200.1   | Unknown dydnorathan  | - FEET                                  |
|                                           | Unknown Dyfracution   | N ON S   |                      | 590 NI   | Unknown flydrocarbon | 1800 N  | I Unknown Hydrocarbon  | 1001    | Unknown Hydracarban | 6.70    | Unknown Hydrocorbon  | 0.77                                    |
|                                           | Physican Parimenthon  | 100 N    |                      | FN OXT   | Unknown Hydrocarban  |         | I Unknown Hydrocarban  | 1 1115  | Dakawa Hydancaban   | 450.1   | Инкломи Пуфикалия    | 35                                      |
|                                           | Dikiman Dahamban      |          |                      | N OG     | Unknown Bydrocarbon  | LYBO NE | Unknown Hydrocarbon    | 8:40 J  | Unknown Hydrocabon  | 1 095   | Unknown Hydrogarban  | 8,40                                    |
|                                           | Unknown Ilydrogation  | N ast    | Unknown Hydrocurbon  | N Ow     | Unknown Hydrocurbon  |         | Hakawa Bydocaban       | 1,070   | Osknown Hydrocarban | N.311 - | Unknown ilvehocation | 11/1/1                                  |
|                                           | theknown Dehecution   |          |                      | Suo NE   | Unknown Hydracarbon  |         | I thknown fiydrocarbon | X-10 1  | Unknown Hydrocurion | 1,180   | Unknown Hydrocurbon  | - 115                                   |
|                                           | Unknown Ilydraciation |          |                      | 670 NJ   | Unknown Hydrocurbus  |         | Unknown Hydrocarbun    | 2500 1  | Unknown Hydrocarbon | XXO 1   | Unknown Dydrogarton  | 2500                                    |
|                                           | Unknown Dydrocarban   | 750 NI   |                      | N OUT    | Unknown Hydrocarbon  |         | Unknown Bydrocurbon    | 1.99.04 | Osknown Hydracation | 2260 3  | Unknown Hydrocarbon  | 1-100                                   |
|                                           | Unknown the drawation | IN IN    |                      | LEO NJ   | Unknown Hydrocarbon  |         | Unknown Hydrocurbun    | 1480    | Unknown Hydrocurbun | 1800 1  | thisneyn Hydrocation | 1.4884                                  |
|                                           | Unknown Hydracarban   | N ON     |                      | E N 1999 | Unknown Hydrocurbon  |         | Unknown Hydrocurbon    | 11100 1 | fakawa Hydracaton   | 1200 J  | Daknown Hydrocarbon  | 7/10-1                                  |
|                                           | Unknown Pydrocarban   | 2500 NI  |                      | E CE     | Unknown Hydrocarbon  |         | _                      | 1611    | Dikinaan Digiocupon | XXC     | Onknown Oydracabon   | ======================================= |
|                                           | Unknown Ilydracation  | 1300 NE  |                      | WIE NI   | thknown lydrocathan  |         | Unknown Hydrocuban     | 200     | Diknown Hydrocution | 170 1   | Unknown Hydrocation  | 0.10                                    |
|                                           | Unknown               | 150 N    |                      | N III    | Unknown Hydrocarbon  |         | -                      | 170.1   | Unknown Hydrocurion | 150 1   | Onknown Hydrocarbon  | 1631                                    |
|                                           |                       |          | Unknown              | 1500 NJ  | Unknown Bydrocarbon  | 3080 N3 | Unknawn                | 200.3   | Ohknown Hydrocarbon | 1.051   | Unknown Hydrocarbon  | 150.1                                   |
|                                           |                       |          |                      |          | Unknown Hydrocarbon  | 17en N  | Unknown                | 710.1   | Unkmwn              | 480 3   | Unknown              | -180                                    |
|                                           |                       |          |                      |          | Osknown Hydroembon   |         | _                      | 1Kin J  | Unknown             | 7200 3  | Unknown              | 182                                     |
|                                           |                       |          |                      |          | 13пкиом п            | 1400 N  | _                      | 400 1   | Unknewn             | 760 3   | Unknown              | 72080                                   |
|                                           |                       |          |                      |          |                      |         | Unknown                | 1.050   | Unknown             | 23681 3 | Unknown              | LULL                                    |
|                                           |                       |          |                      |          |                      |         | Unknown                | 180     | Unknown             | 350.1   | Unknown              | 100                                     |
|                                           |                       |          |                      |          |                      |         | Unknown                | 240 )   | thknown             | 200 3   | Unknown              | 150 J                                   |
|                                           |                       |          |                      |          |                      |         | Unknown                | 1 970   | Unknown             | 270 J   | Unknown              | 2                                       |
|                                           |                       |          |                      |          |                      |         | Ohknown                | 6.20 J  | Unknown             | 150-1   | Unknown              | 101                                     |
|                                           |                       |          |                      |          |                      |         | Unknown                | 170 J   | Unknown             | 6.20 J  | Unknown              | 170                                     |
|                                           |                       |          |                      |          |                      |         | Unknown                | 910 3   | Unknown             | 410 )   | Unknown              | NSD J                                   |
|                                           |                       |          |                      |          |                      |         | Unknown                | 510.3   | Unknown             | 788 3   | Unknewn              | - OK                                    |
|                                           |                       |          |                      |          |                      |         | Unknown                | Red J   | Unknown             | 150.1   | Unknown              | 181                                     |
|                                           |                       |          |                      |          |                      |         |                        |         |                     |         | Unknown              | 550.1                                   |
|                                           |                       |          |                      |          |                      |         |                        |         |                     |         |                      |                                         |

Table 4-6 (continued)

Page 13 of 27

|                  | 3             |                      | •                |              |
|------------------|---------------|----------------------|------------------|--------------|
| TP-II            | 0-11-dJ-SS    | 96-5053              | 0 - 3 inches     | 10/22/96     |
| 9                | SB-TP-10-0809 | 2205-96              | 8 - 9 feet       | 10/23/96     |
| TP-10            | SB-TP-10-0002 | 24-2077              | 0 - 2 feet       | 10/23/96     |
|                  | SB-TP-09-0708 | 2011                 | 7 - 8 feet       | 10/23/96     |
| TP-09            | SB-TP-09-0203 | 22-96                | 2 - 3 feet       | 10/23/96     |
|                  | SB-TP-09-0002 | 6-5077               | 0 - 2 feet       | 10/23/96     |
| Sample Location: | Sample I.D.:  | oratory Project No.: | Sample Interval: | Sample Date: |

| Sample Location:                            |               | TP-09         |               | TP-10         | 9             | TP-11        |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|--------------|
| Sample I.D.:                                | SB-TP-09-0002 | SB-TP-09-0203 | SB-TP-09-0708 | SB-TP-10-0002 | SB-TP-10-0809 | SS-TP-11-03  |
| Laboratory Project No.:                     | 6-5077        | 2205-96       | 20-2011       | 6-5077        | 2205-96       | 96-5053      |
| Sample Interval:                            | 0 - 2 feet    | 2 - 3 feet    | 7 - 8 feet    | 0 - 2 feet    | 8 - 9 feet    | 0 - 3 inches |
| Sample Date:                                | 10/23/96      | 10/23/96      | 10/23/96      | 10/23/96      | 10/23/96      | 10/22/96     |
| TCL Semi-Volatile Organic Compounds (ug/kg) | s (ug/kg)     |               |               |               |               |              |
| 1,3-Dichlorobenzene                         | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| 1,4-Dichlorobenzene                         | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| 1,2,4-Trichlorobenzene                      | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Naphthalene                                 | 1000          | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| 2-Methylnaphthalene                         | 1500          | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Dimethyl phthalate                          | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Acenaphthylene                              | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Acenaphthene                                | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Dibenzofuran                                | 420           | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Fluorene                                    | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Phenanthrene                                | 2200          | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Anthracene                                  | 340 J         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Carbazole                                   | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Di-n-butyl phthalate                        | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Phoranthene                                 | 2300          | 460 U         | 380 U         | 250 J         | 350 U         | 1500 U       |
| Pyrene                                      | 2000          | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Butyl benzyl phthalate                      | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Benzo(a)anthracene                          | 096           | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Bis(2-ethylhexyl)phthalate                  | 380 U         | 460 U         | 530           | 350 U         | 350 U         | 1500 U       |
| Chrysene                                    | 0011          | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Di-n-octyl phthalate                        | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Benzo(b)fluoranthene                        | 920           | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Benzo(k)fluoranthene                        | 920           | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Benzo(a)pyrene                              | 068           | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Indeno(1,2,3-cd)pyrene                      | 540           | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Dibenzo(a,h)anthracene                      | 380 U         | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |
| Benzo(ghi)perylene                          | 530           | 460 U         | 380 U         | 350 U         | 350 U         | 1500 U       |

Talite 4-6 (continued)
Surface and Subsurface Suil
TCL.SVOC and SVOC TIC Data
Planse IRRF
Al. Tech Speciality Steed Corporation
Danikirk, New York Facility

Page 14 of 27

|                                 | SB-TP-09-0203 |         | K070-60-d.IBS        | *        | 000-01-dJ-98         | 1       | 50NO-01-4.1-9S        | 60      | (0-11-d1-SS              | ſ         |
|---------------------------------|---------------|---------|----------------------|----------|----------------------|---------|-----------------------|---------|--------------------------|-----------|
| 7115-96                         |               |         | 96-5077              |          | 76-5077              |         | 96-5077               |         | 96-5053                  |           |
| 10/23/96                        |               |         | 10/23/96             |          | 10/23/96             |         | 10/23/96              |         | 0 - 3 Inches<br>10/22/96 |           |
|                                 |               |         |                      |          |                      |         |                       |         |                          |           |
| _                               | _             | =       | пквоми Вуфисивов     | 1 001    | Инклами Иу фисафон   | 150.1   | Onknown Dydrocarbon   | 100     | Unknown Hydrocarbon      | 1 11111   |
| 1000                            | _             | _       | luknown Hydracarbon  | 590.3    | Unknown Ifydracarbon | 1001    | Unknown Hydrocarton   | 6.50 1  | Unknown Hydrocarthen     | 2500.3    |
| Unknown Hydrocarbon 700 J       | _             | -       | hknown Hydrocarbon   | 710.1    | Unknown Bydracarbon  | 170 J   | Picknown Hydrocurbon  | 140 3   | thisness flydrication    | 1700 4    |
| Unknown Hydracarbon 450 J       | _             | =       | Jaknown Hydrocution  | 1200 1   | Unknown Hydrocurbon  | 100 3   | Unknown Hydrocarlean  | 650     | Unknown Dydrocmbon       | 2700 3    |
| _                               | _             | ž       | tiskinwa Bydracarhon | 1,000.1  | Ouknown Bydracarbon  | 150.3   | Unknown Hydrocarbon   | 770 1   | Unknown Hydrocarbon      | 1400 3    |
| Diskingon Bydrocubon 840 J U    | _             | Ξ       | Juknown Dydrucarbon  | U70      | Опкроми Пуднествов   | 230.3   | Onknown Hydrocarbon   | E 989   | Unknown Hydrocarbon      | 10001     |
| Huknown Hydrocurion 966 1 186   | _             | =       | taknown Podrocarbon  | 980 1    | Unknown Bydraenbon   | 110     | Unknown Hydraenthon   | 180     | Unknown Hydracarbon      | TRBI 1    |
| Unknown Hydracinfon 900 J Un    | _             | Ξ       | taknown              | 4000     | Unknown Hydrocarbon  | \$-10 P | Unknown Hydrocarbon   | E ORDS  | Unknown Hydrocushon      | 1,1600    |
| _                               | _             | Ξ       | takaowa              | 1-100    | Daknown Bydracarbon  | 1 001   | Unknown Hydrocation   | 170-1   | Unknown Dydrocarbon      | 6.700.1   |
| Unknown Hydrocurbon 2000 J Un   | _             | Ξ       | Inknown              | 1 300 J  | Unknown Hydracarbon  | 1,005   | Unknown Dydrocaston   | 6.30.1  | Unknown Hydracarbon      | SCHOOL 1  |
| Unknown Hydrocarbon 1500 J Dai  | _             | Ξ       | hikuowa              | 6.500 J  | Unknown Hydracubon   | 1 001   | Paknowa Bydroyathen   | 550-1   | Unknown Hydracarban      | 1500.1    |
| Unknown Dydrocasten 1999 J (In) | _             | Ξ       | Hikuwa               | totata 1 | Onknown Hydracarbon  | ton 3   | Unknown Hydrocarbon   | 5.101-1 | Unknown Bydrocarban      | 1700 3    |
| Unknown Hydrocarbon 540 J Un    |               | Ē       | <b>Ін</b> Кломи      | 100001   | Unknown Hydrocurbon  | 700.1   | Unknown Bydrocarban   | 450.4   | Unknown                  | 1 NOV     |
| _                               | _             | Ξ       | hiknowa              | 450 3    | Onknown Dydocarbon   | 400.1   | Unknown Bydrocarbon   | 1001    | Unknewn                  | 2,9000.3  |
| _                               | _             | Ξ       | Juknown              | 4,000.4  | thknown Bydocaron    | 620-1   | Unknown 16y drocarbon | 2011    | Unkniwn                  | 1100 J    |
| _                               | _             | Ē       | Inknown              | 640 3    | Unknown              | 140     | Unknown Hydrocalum    | 1 01-1  | Unknown                  | 7700 1    |
| Unknown 150 J th                | _             | Ξ       | Інкиоми              | Logo 1   | Unknown              | 1001    | Unknown Hydrocarbon   | 580.1   | Unknown                  | 1600 1    |
| 1 (1000)                        | _             | Ξ       | Juknown              | 710 J    | Unknown              | 1700 J  | Unknown Hydrocarton   | 7:40 J  | thkum n                  | 1 State J |
| 1 (189)                         | _             | Ē       | hikmown              | 2100.3   | Unknown              | 1400 1  | Unknown Hydracarbon   | 1700 \$ | Unknown                  | 710 1     |
| _                               | _             | Ξ       | hkaman               | 9100 3   | Unkanwa              | 4300 )  | Unknown Hydrocarbon   | 1506    | Unknown                  | K30 3     |
| 1 100 1                         | _             | 1       | fakumu               | 1200 J   | Unknown              | 4,300 3 | Unknown Hydrocarbon   | 1600 3  | Unknown                  | 1200 1    |
| _                               | _             | H.      | Inkuwa               | 1800     | Unknown              | 150     | Unknown Hydrocurion   | HONN J  | Ивкночи                  | 1200 J    |
| _                               | _             | 111     | наличи               | N too J  |                      |         | Unknown Hydrocarbon   | 260.1   | Unknown Aromatic         |           |
| _                               | _             | thukm   | 3M.11                | 3800     |                      |         | Unknown Hydrocurbon   | 140 J   | Hydrocurbon              | 6.10 J    |
| Unkassa 240 J Unknowe           | _             | Unkn    | HWC                  | \$10 J   |                      |         | Unknown               | 470.1   |                          |           |
| Unknown 570 J Unknown           | _             | Hickory | th We                | 1700 J   |                      |         | Dakanya               | 440 J   |                          |           |
| Unknown 1200 J Unknown          | _             | Unkn    | BW11                 | 1700 J   |                      |         | Unknam                | 2400 3  |                          |           |
| Unknown 100 July 1 thick        | _             | 1       | hikumn               | 4700 J   |                      |         | Unknown               | 2000 3  |                          |           |
| _                               | _             | ŝ       | hkuman               | 540 J    |                      |         | Unknown               | 4900 3  |                          |           |
|                                 |               | -       | Bikisiwii            | 510.3    |                      |         | Unknown               | 470 J   |                          |           |

Total SVOC TICs 25730 Total SVOC TICs 96670

Total SVOC TICs 22040 Total SVOC TICs 25310 Total SVOC TICs 91110 Total SVOC TICs 20080

Table 4-6 (continued)

Page 15 of 27

| Sample Location:                            |                          | TP-11 (continued)         | tinued)                  |                          |
|---------------------------------------------|--------------------------|---------------------------|--------------------------|--------------------------|
| Sample I.D.:<br>Laboratory Project No.:     | SB-TP-11-0002<br>96-5077 | SB-TP-11-0002D<br>96-5077 | SB-TP-11-1011<br>96-5077 | SB-TP-11-1112<br>96-5077 |
| Sample Interval:                            | 0 - 2 feet               | 0 - 2 feet                | 10 - 11 feet             | 11 - 12 feet             |
| Sample Date:                                | 10/23/90                 | 10/22/90                  | 10/23/90                 | 10/22/90                 |
| TCL Semi-Volatile Organic Compounds (µg/kg) | ng/kg)                   |                           |                          |                          |
| 1,3-Dichlorobenzene                         | U 0071                   | 1700 U                    | 380 U                    | 350 U                    |
| 1,4-Dichlorobenzene                         | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| 1,2,4-Trichlorobenzene                      | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Naphthalene                                 | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| 2-Methylnaphthalene                         | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Dimethyl phthalate                          | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Acenaphthylene                              | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Acenaphthene                                | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Dibenzofuran                                | 1700 U                   | U 00/1                    | 380 U                    | 350 U                    |
| Fluorene                                    | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Phenanthrene                                | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Anthracene                                  | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Carbazole                                   | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Di-n-butyl phthalate                        | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Fluoranthene                                | 1800 D                   | 1700 U                    | 380 U                    | 350 U                    |
| Pyrene                                      | 1500 J                   | 1700 U                    | 380 U                    | 350 U                    |
| Butyl benzyl phthalate                      | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Benzo(a)anthracene                          | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Bis(2-ethylhexyl)phthalate                  | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Chrysene                                    | 1700 U                   | 1 100 U                   | 380 U                    | 350 U                    |
| Di-n-octyl phthalate                        | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Benzo(b)fluoranthene                        | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Benzo(k)fluoranthene                        | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Benzo(a)pyrene                              | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Indeno(1,2,3-cd)pyrene                      | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Dibenzo(a,h)anthracene                      | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |
| Benzo(ghi)perylene                          | 1700 U                   | 1700 U                    | 380 U                    | 350 U                    |

Talite 4-6 (continued)
Surface and Subarface Sul
TCL, SVQC and SVQC TIC Data
Phase IIIA
Al. Tech Steeling Steel Corporation
Dankirk, New York Facility

Page 16 of 27

| Seni-Vulnité Organice         Tobatoma Récardon         110 1         NAA         Uthanou Récardon         199 1         Hakamu Récardon         0.20 1           Tentarité of Identified Compounté typifée;         Uthanou Récardon         220 1         Hakamu Récardon         220 1         Hakamu Récardon         150 1         Hakamu Récardon         < |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table 4-6 (continued)

Page 17 of 27

| Sample Locati Sample I. Sample I. Laboratory Project N Sample Inters Sample Inters Sample Disample Dis | <br>SS-RF1-003-03 96-5053 0 - 3 inches 10/22/96 1600 U 1600 U 1600 U 1600 U 1600 U | RF1-03 SB-RF1-003-0002 96-5102 0 - 2 feet 10/25/96 680 UJ 680 UJ 680 UJ 680 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB-RF1-003-0406 96-5102 4 - 6 feet 10/25/96 700 UJ 700 UJ 700 UJ 700 UJ 700 UJ 700 UJ | SB-RF1-004-0002<br>96-5198<br>0 - 5 feet<br>10/29/96<br>370 U<br>370 U<br>370 U<br>370 U<br>370 U | RF1-04  SB-RF1-004-0204  96-5198 2 - 4 feet  10/29/96  530 U 530 U 530 U 530 U 530 U 530 U                                 | SB-RF1-004-2022<br>96-5198<br>20 - 22 feet<br>10/29/96<br>350 U<br>350 U<br>350 U<br>350 U<br>350 U<br>350 U      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Dimethyl phthalate Acenaphthylene Acenaphthylene Acenaphthene Diberzofuran Fluorene Phenanthrene Anthracene Carbazole Di-n-butyl phthalate Fluoranthene Butyl benzyl phthalate Brist2-ethylhexyl)phthalate Brist2-ethylhexyl)phthalate Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 00991<br>n 00991<br>n 00991<br>n 00991<br>n 00991<br>n 00991<br>n 00991          | 680 UJ<br>680 UJ<br>68 |                                                                                       |                                                                                                   | 530 U<br>530 U | 350 U<br>350 U |
| Dibenzo(a,h)anthracene<br>Benzo(ghi)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O 0091                                                                             | (U 080<br>U 080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 700 UJ                                                                                | 370 U<br>370 U                                                                                    | 530 U<br>530 U                                                                                                             | 350 U<br>350 U                                                                                                    |

Table 4-6 (continued)

| Sample Location:                                                            |                                                      |         |                                                      | KF:1-0.3       |                                                      |         |                                                      |                  | F0-1-18                                              |                |                                                        |       |
|-----------------------------------------------------------------------------|------------------------------------------------------|---------|------------------------------------------------------|----------------|------------------------------------------------------|---------|------------------------------------------------------|------------------|------------------------------------------------------|----------------|--------------------------------------------------------|-------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SS-RFI-003-03<br>96-5053<br>0 - 3 inches<br>10/22/96 | 99 x    | SB-RF1-003-0002<br>96-5102<br>0 - 2 feet<br>10755/96 | 02             | SB-RF1-003-0406<br>96-5102<br>4 - 6 feet<br>10/25/96 | 9       | SB-RF1-004-0002<br>96-5198<br>0 - 2 feet<br>10/29/96 | 2002             | SB-RF1-004-0204<br>96-5198<br>2 - 4 feet<br>10/29/96 | 204            | SB-RF1-004-2022<br>96-5198<br>20 - 22 feet<br>10/29/96 | 022   |
| Semi-Volatile Organics<br>Tentatively Identified Compounds (µg/kg)          | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 760 J   | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 8 8 8<br>8 8 8 | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 2 Z Z Z | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 760 J            | Unknown Bydrocarbon<br>Unknown Pydrocarbon           | 320 J<br>280 J | Unknown Ilydrocarbon<br>Unknown Ilydrocarbon           | 3, 27 |
|                                                                             | Unknown flydrocarbon<br>Unknown flydrocarbon         | 2800 ]  | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 22:            | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 223     | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 906              | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 280 ]          | Unknown II, drocarbon<br>Unknown II, drocarbon         | £ 2   |
|                                                                             | Unknown Hydrocarbon<br>The nown Hydrocarbon          | 2700 J  | Unknown IIv droearbon                                | 2 2            | Unknown Płydrocarbon<br>Unknown Plydrocarbon         | Z Z     | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 7 07.8<br>8.80 7 | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 220 7          | Unknown Hydrocarbon<br>Unknown IIy drocarbon           | 22010 |
|                                                                             | Unknown Hydrocarbon                                  | 4400    | Unknown Hydrocarbon                                  | 28 N           | Unknown Hydrocarbon                                  | N 05.   | Unknown Hydrocarbon                                  | 1200 J           | Unknown Hydrocarbon                                  | 230.1          | Unknown Hydrocarbon                                    | 2500  |
|                                                                             | Unknown Hydrocarbon                                  | 13000   | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 2 2            | Unknown Hydrocarbon<br>Unknown Ilydrocarbon          | 2 2     | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 320 J            | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 2.00           | Unknown Prefocution                                    | 208   |
|                                                                             | Unknown Hydrocarbon                                  | X600 J  | Unknown Hydrocarbon                                  | 2 2            | Unknown Hydrocarbon                                  | 2       | Unknown Hydrocarbon                                  | 000              | Unknown Hydrocarbon                                  | 510.3          | Unknown Hydrocarbon                                    | 1500  |
|                                                                             | Unknown Hydrocarbon                                  | 6500 J  | Unknown Hydrocarbon                                  | Z :            | Unknown Hydrocarbon                                  | Z :     | Unknown Hydrocarbon                                  | 500              | Unknown Hydrocarbon                                  | 630 J          | Unknown Hydrocarbon                                    | 1300  |
|                                                                             | Unknown Hydrocarbon                                  | 1700 J  | Unknown Hydrocarbon                                  | Z 2            | Unknown Hydrocarbon                                  | 2 2     | Unknown Hydrocarbon                                  | 620              | Unknown Hydrocarbon                                  | 040            | Unknown Hydrocarbon                                    | 9     |
|                                                                             | Unknown                                              | 0081    | Unknown                                              | Z Z            | Unknown Hydrocarbon<br>Unknown Hydrocarbon           | 2 2     | Unknown Hydrocarbon                                  | 000              | Unknown riverocaroon<br>Unknown                      | 2500 1         | Unknown Hydrocarbon                                    | 9     |
|                                                                             | Unknown                                              | 21000 J | Unknown                                              | Z<br>2         | Unknown Hydrocarbon                                  | 200     | Unknown Hydrocarbon                                  | 530 J            | Unknown                                              | 1200 1         | Unknown Hydrocarbon                                    | 3     |
|                                                                             | Unknown                                              | 3600 J  | Unknown                                              | 220 NJ         | Unknown Hydrocarbon                                  | N 99    | Unknown                                              | 1500 J           | Unknown Phthalate                                    | 220 3          | Unknown Hydrocarbon                                    | 808   |
|                                                                             | Unknown                                              | 6.00.3  | Unknown                                              | 220 NJ         | Unknown                                              | 230 NJ  | Unknown                                              | 280              |                                                      |                | Unknown                                                | 1100  |
|                                                                             | Unknown                                              | 0200 J  | Unknown                                              | Z :            | Unknown                                              | 2 :     | Unknown                                              | 000              |                                                      |                |                                                        |       |
|                                                                             | Unknown                                              | 2000 J  | Unknown                                              | 2 2            | Unknown                                              | 2 2     | Unknown                                              | 70057            |                                                      |                |                                                        |       |
|                                                                             | flut man n                                           | 750 1   | Unknown Aromatic                                     |                | Unknown                                              | 2       |                                                      |                  |                                                      |                |                                                        |       |
|                                                                             | Unknown                                              | 7100 1  | Hydrocarbon                                          | 70 N           | Unknown                                              | S0 N    |                                                      |                  |                                                      |                |                                                        |       |
|                                                                             | Unknown                                              | 7 0071  | Unknown Aromatic                                     |                | Unknown                                              | Z 9:    |                                                      |                  |                                                      |                |                                                        |       |
|                                                                             |                                                      |         | Hydrocarbon                                          | Z<br>2         | Unknown Aromatic                                     | 72 N    |                                                      |                  |                                                      |                |                                                        |       |
|                                                                             |                                                      |         |                                                      |                | Hydrocarbon                                          |         |                                                      |                  |                                                      |                |                                                        |       |
|                                                                             |                                                      |         |                                                      |                | Unknown Aromatic                                     | Z       |                                                      |                  |                                                      |                |                                                        |       |
|                                                                             |                                                      |         |                                                      |                | Hydrocarbon                                          |         |                                                      |                  |                                                      |                |                                                        |       |
|                                                                             |                                                      |         |                                                      |                |                                                      |         |                                                      |                  |                                                      |                |                                                        |       |
|                                                                             | Total SVOC TICs                                      | 102160  | Total SVOC TICs                                      | 1907           | Total SVOC TICs                                      | 3056    | Total SVOC TICs                                      | 23440            | Total SVOC TICs                                      | 9030           | Total SVOC TICs                                        | 22170 |
|                                                                             |                                                      |         |                                                      |                |                                                      |         |                                                      |                  |                                                      |                |                                                        |       |

Table 4-6 (continued)

Surface and Subsurface Soil
TCL SVOC and SVOC TIC Data
Phase I RFI

AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 19 of 27

| Sample Location:                            |               | RFI-06         |                 |                 | RFI-08        | 80-            |
|---------------------------------------------|---------------|----------------|-----------------|-----------------|---------------|----------------|
| Sample I.D.:                                | SS-RFI-006-03 | SS-RFI-006-03D | SB-RFI-006-0204 | SB-RFI-006-0406 | SS-RFI-008-03 | SS-RFI-008-03D |
| Laboratory Project No.:                     | 2011          | 6-5077         | 96-5102         | 96-5102         | 96-5102       | 96-5102        |
| Sample Interval:                            | 0 - 3 inches  | 0 - 3 inches   | 2 - 4 feet      | 4 - 6 feet      | 0 - 3 inches  | 0 - 3 inches   |
| Sample Date:                                | 10/23/96      | 10/28/96       | 10/25/96        | 10/25/96        | 10/24/96      | 10/24/96       |
| TCL Semi-Volatile Organic Compounds (µg/kg) |               |                |                 |                 |               |                |
| 1,3-Dichlorobenzene                         | 360 U         | 360 U          | IV00 UJ         | 350 UJ          | 1700 UJ       | I700 UJ        |
| 1,4-Dichlorobenzene                         | 360 U         | 360 U          | I700 UJ         | 350 UJ          | I700 UJ       | I700 UJ        |
| 1,2,4-Trichlorobenzene                      | 360 U         | 360 U          | U 00/1          | 350 UJ          | 1700 UJ       |                |
| Naphthalene                                 | 360 U         | 360 U          | U 0071          | 350 UJ          | 1700 UJ       |                |
| 2-Methylnaphthalene                         | 360 U         | 360 U          |                 | 350 UJ          | 1700 UJ       | 1700 UJ        |
| Dimethyl phthalate                          | 360 U         | 360 U          |                 | 350 UJ          | 1700 UJ       | 1700 UJ        |
| Acenaphthylene                              | 290 J         | 290 J          | 1700 UJ         | 350 UJ          | 1700 UJ       | 2000 J         |
| Acenaphthene                                | 360 U         | 360 U          | 1700 UJ         | 350 UJ          | 1700 UJ       | 1700 UJ        |
| Dibenzofuran                                | O 098         | 360 U          | _               | 350 UJ          | 1700 UJ       | 1700 UJ        |
| Fluorene                                    | 360 U         | 360 U          | 1700 UJ         | 350 UJ          | 1700 UJ       | 1700 UJ        |
| Phenanthrene                                | 2200          | 3000           |                 | 350 UJ          | 3800 J        | 8300 J         |
| Anthracene                                  | 470           | 280            | 1700 UJ         | 350 UJ          | 1700 UJ       | 1800 J         |
| Carbazole                                   | 310 J         | 370            |                 |                 | 1700 UJ       | 1700 UJ        |
| Di-n-butyl phthalate                        | 360 U         | 360 U          | 1700 UJ         |                 | 1700 UJ       | 1700 UJ        |
| Fluoranthene                                | 3300          | 4300           | •               | 350 UJ          | 7200 J        | 15000 J        |
| Pyrene                                      | 2400          | 2900           | _               | 350 UJ          | 5800 J        | 12000 J        |
| Butyl benzyl phthalate                      | 360 U         | 440            |                 |                 | 1700 UJ       | 1700 UJ        |
| Benzo(a)anthracene                          | 1200          | 1300           | _               | 350 UJ          | 2700 J        | 5900 J         |
| Bis(2-ethylhexyl)phthalate                  | 100           | 540            |                 | 350 UJ          | 1700 UJ       | 1700 UJ        |
| Chrysene                                    | 1500          | 1700           |                 | 350 UJ          | 3500 J        | 8100 J         |
| Di-n-octyl phthalate                        | 360 U         | 360 U          |                 | 350 UJ          | 1700 UJ       | 1700 UJ        |
| Benzo(b)fluoranthene                        | 1400          | 1400           |                 | 350 UJ          | 3200 J        | 7500 J         |
| Benzo(k)Huoranthene                         | 1200          | 1300           |                 | 350 UJ          | 3200 J        | 6800 J         |
| Benzo(a)pyrene                              | 1300          | 1300           |                 |                 | 3100 J        | 7000 J         |
| Indeno(1,2,3-cd)pyrene                      | 840           | 770            |                 |                 | 2400 J        | 5600 J         |
| Dibenzo(a,h)anthracene                      | 420           | 380            |                 |                 | 1700 UJ       | I 009I         |
| Benzo(ghi)perylene                          | 970           | 830            | 1700 UJ         | 350 UJ          | 2600 J        | 5900 J         |

Table 4-6 (continued)

| Page 20 of 27 |                  | SS-RF1-008-03D  | 96-5102                 | 0 - 3 inches     | 10/24/96     |
|---------------|------------------|-----------------|-------------------------|------------------|--------------|
|               | RF1-08           | SS-RF1-008-03   | 96-5102                 | 0 - 3 inches     | 10/24/96     |
|               |                  | SB-RF1-006-0406 | 96-5102                 | 4 - 6 feet       | 10/25/96     |
|               | RF1-06           | SB-RF1-006-0204 | 96-5102                 | 2 - 4 feet       | 10/25/96     |
|               | 2                | SS-RFI-006-03D  | 96-5077                 | 0 - 3 inches     | 10/23/96     |
|               |                  | SS-RF1-006-03   | 7205-96                 | 0 - J inches     | 10/23/96     |
|               | Sample Lucation: | Sample I.D.:    | Laboratory Project No.: | Sample Interval: | Sample Date: |

Semi-Volutile Organics Tentatively Identified Compounds (µg/kg)

| Ubknown I Kdocarbon Ubknown I Kdocarbon Ubknown I Kdocarbon 130 NJ Ubknown I Kdocarbon 100 NJ Ubknown I Kdocarbon 110 NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 210 J Uhknows<br>220 J Uhknows<br>100 J Uhknows<br>130 J Uhknows<br>131 J Uhknows<br>141 J Uhknows<br>151 J Uhknows<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Uhkuwa I Kdicarbon Uhkuwa Uhkuwa Uhkuwa Uhkuwa Uhkuwa Uhkuwa Uhkuwa Uhkuwa Uhkuwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unknown Hydrocarbon Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Uhknown i Iydrocarbon Uhknown Iydrocarbon Uhknown i Iydrocarbon Uhknown Iydrocarbon Uhknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 460 J<br>670 J<br>240 J<br>240 J<br>270 J<br>1200 J<br>1300 J<br>1400 J<br>1400 J<br>1400 J<br>1400 J<br>1400 J<br>1500 J<br>1500 J<br>1500 J<br>1500 J<br>1700 J<br>220 J |
| Uthkuwan Hydrocarbon Uthkuwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 410 J 770 J 780 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unkanova Hydrocarbon Unkanova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table 4-6 (continued)

Page 21 of 27

| Sample Location:                                            |                                          | RF1-09                                   |                                           | RFI-010                                  | 010                                       | RFI-11                                   |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval: | SB-RFI-009-0002<br>96-5102<br>0 - 2 feet | SB-RF1-009-0406<br>96-5102<br>4 - 6 feet | SB-RF1-009-0810<br>96-5102<br>8 - 10 feet | SB-RFT-010-0204<br>96-5092<br>2 - 4 feet | SB-RFI-010-0810<br>96-5092<br>8 - 10 feet | SB-RFI-011-0002<br>96-5102<br>0 - 2 feet |
| Sample Date:                                                | 10/24/96                                 | 10/24/96                                 | 10/24/96                                  | 10/24/96                                 | 10/23/96                                  | 10/24/96                                 |
| TCL Semi-Volatile Organic Compounds (µg/kg)                 |                                          |                                          |                                           |                                          |                                           |                                          |
| 1,3-Dichlorobenzene                                         | 360 UJ                                   | 340 UJ                                   | 310 UJ                                    | 370 U                                    | 340 U                                     | 640 UJ                                   |
| 1,4-Dichlorobenzene                                         | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| 1,2,4-Trichlorobenzene                                      | 360 UJ                                   | 340 UJ                                   | 310 UJ                                    | 370 U                                    | 340 U                                     | 640 U.I                                  |
| Naphthalene                                                 | 360 UJ                                   | 340 UJ                                   | 310 UJ                                    | 370 U                                    | 340 U                                     | 640 UJ                                   |
| 2-Methylnaphthalene                                         | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     |                                          |
| Dimethyl phthalate                                          | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Acenaphthylene                                              | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Acenaphthene                                                | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Dibenzofuran                                                |                                          |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Fluorene                                                    |                                          |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Phenanthrene                                                | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 650 J                                    |
| Anthracene                                                  |                                          |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Carbazole                                                   |                                          | -                                        |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Di-n-butyl phthatate                                        | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     |                                          |
| Pluoranthene                                                | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 460 J                                    |
| Pyrene                                                      |                                          | 340 UJ                                   |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Butyl benzyl phthalate                                      |                                          |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Benzo(a)anthracene                                          |                                          | 340 UJ                                   |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Bis(2-ethylhexyl)phthalate                                  |                                          |                                          |                                           | 380                                      | 920                                       | 640 UJ                                   |
| Chrysene                                                    |                                          |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Di-n-octyl phthalate                                        | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Benzo(b)Huoranthene                                         | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Benzo(k)Huoranthene                                         | 360 UJ                                   | 340 UJ                                   |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Benzo(a)pyrene                                              | 360 UJ                                   |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Indeno(1,2,3-cd)pyrene                                      | 360 UJ                                   | 340 UJ                                   |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Dibenzo(a,h)anthracene                                      |                                          |                                          |                                           | 370 U                                    | 340 U                                     | 640 UJ                                   |
| Benzo(ghi)perylene                                          | 360 UJ                                   | 340 UJ                                   | 310 UJ                                    | 370 U                                    | 340 U                                     | 640 UJ                                   |

Table 4-6 (continued)

Page 22 of 27

| 10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2496   10,2   | Sample Location:<br>Sample LD; | SB-RFI-009-0002       |                                         | SB-RF1-009-0406       | 90      | SB-RFI-009-0810        | 01       | SB-RFI-010-020        |          | KF1-10<br>SB-RF1-010-0810 | 810     | KF1-11                | CHI    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|-----------------------------------------|-----------------------|---------|------------------------|----------|-----------------------|----------|---------------------------|---------|-----------------------|--------|
| 102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496   102,2496    | ary Project No.:               | 96-5102<br>0 - 2 feet |                                         | 96-5102<br>4 - 6 feet |         | 96-5102<br>8 - 10 feel | ļ.       | 96-5092<br>2 - 4 fret | i        | 96-5102                   |         | 96-5102               | 7      |
| Ushawari Buldendina         420 NJ         Unkawari Buldendina         320 NJ         Unkawari Buldendina         340 NJ         Unkawari B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Date:                   | 10/24/96              | *************************************** | 10/24/96              |         | 10/24/96               |          | 10/24/96              |          | 10/23/96                  |         | 10/24/96              |        |
| Ukkawan Ukhacarban (20 M Ukhawan Ukhacarban 220 M Ukhawan Ukhacarban 230 M Ukhawan Ukhacarban 240 M Ukhawan Ukhacarban 24 |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| Unknown Hydrocarbon 190 N Unknown Hydrocarbon 170 N Unknown Hydrocarbo | (pg/kg)                        | Unknown Hydrocarbon   | 620 NJ                                  | Unknown IIy drocarbon | 220 NJ  | Unknown Hydrocarbon    | Z OX     | Unknown Hydrocarbun   | 100 NJ   | Unknown Hydrocarbon       | KN OGK  | Unknown Hydrocarbon   |        |
| Unitariant Referenciation   170 M   Unitariant Referenciation      |                                | Unknown Hydrocarbon   | Z est                                   | Unknown Hydrocarbon   | Z 25    | Unknown Hydrocarbon    | 120 N    | Unknown Hydrocarbon   | 1200 NJ  | Unknown Hydrocarbon       |         | Unknown IIv drocarbon | Z<br>÷ |
| December   Figure 1   Chickword   Hydrocarbon   150 N   Unknown   Hydrocarbon   150 N   Unkn   |                                | Unknown Hydrocarbon   | 200 N                                   | Unknown Hydrocarbon   | 2 2     | Unknown Hydrocarbon    | 2        | Unknown Hydrocarbon   | 2 =      | Unknown Hydrocarbon       |         | Unknown Hydrocarbon   | ZX N   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | Unknown Hydrocarbon   | Z<br>E                                  | Unknown Hydrocarbon   | Z 25.   | Unknown Hydrocarbon    | <u>2</u> | Unknown Hydrocarbon   | X50 NJ   | Unknown Hydrocarbon       |         | Unknown Hydrocarbon   | 27 NJ  |
| but         450 M         Unknown Hydrocarbon         450 M         Unknown Hydrocarbon         450 M         Unknown Hydrocarbon         1500 M         Unknown Hydrocarbon         1600 M         Unknown Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | Unknown Hydrocarbon   |                                         | Unknown Hydrocarbon   | 20 N    | Unknown Hydrocarbon    | 3        | Unknown Hydrocarbon   | N ego    | Unknown Hydrocarbon       |         | Unknown Hydrocarbon   | R      |
| Unknown Hydrocarbon   470 N    |                                | Unknown Dydrocarbon   |                                         | Unknown Hydrocarbon   | Z 957   | Unknown Hydrocarbon    | 13<br>N  | Unknown               | 3108 N   | Unknown Hydrocarbon       |         | Unknown Hydrocarbon   | 30 N   |
| Districture   Color    |                                | Unknown Hydrocarbon   |                                         | Unknown Hydrocarbon   | 390 NJ  | Unknown Hydrocarbon    | 350 N    | Unknown               | 2200 NJ  | Unknown Hydrocarbon       | Z 009   | Unknown Hydrogarbon   | 20 NJ  |
| December   140 N   Unknown Hydrocarbon   140 N   Unknown Hydroca   |                                | Unknown Hydrocarbon   |                                         | Unknown Hydrocarbon   | N 01-9  | Unknown Hydrocarbon    | -470 NJ  | Unknown               | 2000 NJ  | Unknown Hydrocarbon       |         | Unknown Hydrocarbon   | Z      |
| December   190 N   Unknown Hydrocarbon   190 N   Unknown Hydroca   |                                | Unknown Hydrocarbon   | Z OXT                                   | Unknown Hydrocarbon   | N 077   | Unknown Hydrocarbon    | Z = 7    | Unknown               | \$900 NJ | Unknown Hydrocarbon       | IS 0001 | Unknown Hydrogarbon   | Z      |
| 180 NJ Uhknovn   140 NJ Uhknovn   150    |                                | Unknown Hydrocarbon   | 270 NJ                                  | Unknown Hydrocarbon   | 370 NJ  | Unknown Hydrocarbon    | S00 N    | Unknown               | S40 N    | Unknown Hydrocarbon       |         | Unknown Hydrocarbon   | 120 N  |
| 390 N   Unknown   290 N   Unknown   140 N   Unknown   1500 N   Unknown   Unknown   1500 N   Unknown   Unknown   1500 N   Unknown   Unkn   |                                | Unknown               |                                         | Unknown               | Z<br>et | Unknown Hydrocarbon    | 210 NJ   | Unknown               | (N 099   | Unknown Hydrocarbon       |         | Unknown Hydrocubon    | Z      |
| 190 N   Unknown   140 N   Unknown   150 N   Unknown   170 N   Unknown   Unknown   170 N   Unknown      |                                | Unknown               |                                         | Unknown               | 200 NJ  | Unknown Hydrocarbon    | N 009    |                       |          | Unknown Hydrocarbon       |         | Unknown Ily drocarbon | 2 2    |
| 180 N   Unknown   2500 N   Unknown   140 N   Unknown   140 N   Unknown   140 N   Unknown   140 N   Unknown   1400 N   Unknown   Unknown   1400 N   Unknown   |                                | Unknown               |                                         | Unknown               | N OF    | Unknown Hydrocarbon    | Z 087    |                       |          | Unknown                   | 3200 NJ | Unknown Hydrocarbon   | 2 2    |
| 2500 N   Unknown Hydrocarbon   500 N   Unknown Hydrocarbon   170 N   Unknown Hydrocarbon   Unknown Hydrocarbon   Unknown   U   |                                | Unknown               | Z 081                                   | Unknown               | 2500 NJ | Unknown Hydrocarbon    | Sto N    |                       |          | Unknown                   | 2700 NJ | Unknown Pedrocarbon   | 70 N   |
| 230 N   Unknown   1400 N   Unknown   170 N   Unknown      |                                | Unknown               | 2500 NJ                                 | Unknown               | 120 N   | Unknown Hydrocarbon    | 500 NJ   |                       |          | Unknown                   | Z 0098  | Unknown Hydrocarbon   | 2 2    |
| 190 N   Unknown   170 N   Unknown   Unknown   Unknown   Unknown   Unknown   Unknown   Unknown   170 N   Unknown    |                                | Uhknown               | 230 NJ                                  | Unknown               | 100 N   | Unknown Hydrocarbon    | 340 N    |                       |          | Unknown                   | 1200 NJ | Unknown Ilydrogarban  | 2      |
| 190 N   Unknown   170 N   Unknown   170 N   Unknown   190 N   Unknown   Unknown   Unknown   190 N   Unknown      |                                | Unknown               | N 067                                   | Unknown               | 290 NJ  | Unknown Hydrocarbon    | 170 NJ   |                       |          |                           | ~       | Unknown Hydrogathon   | Z      |
| 170 N   Unknown   Unknown   170 N   Unknown   Un   |                                | Unknown               | 2100 NJ                                 | Unknown               | 170 NJ  | Unknown                | 280 NJ   |                       |          |                           |         | Unknown Hydrocarbon   | N 7.   |
| 270 N   Unknown   170 N   Unknown   170 N   Unknown   Unknown   Unknown   Unknown   Unknown   Unknown   Unknown   Unknown   140 N   Unknown   Un   |                                | Unknown               | 170 NJ                                  |                       |         | Unknown                | 2200 NJ  |                       |          |                           |         | Unknown               | N 997  |
| 190 NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Unknown               | 270 NJ                                  |                       |         | Unknown                | 470 NJ   |                       |          |                           |         | Haknown               | Z O    |
| 150 NJ   Unknown   210 NJ   Unknown   Unknown   140 NJ   Unknown   |                                | Unknown               | N 001                                   |                       |         | Unknown                | 2100 NJ  |                       |          |                           |         | Introve               | 3      |
| 150 NJ   Unknown   Unkno   |                                | Unknown Aromatic      |                                         |                       |         | Unknown                | 210 N    |                       |          |                           |         | Linkmonn              | : Z    |
| [16] NJ   [18]   |                                | Hydrocarbon           | 150 NJ                                  |                       |         | Unknown                | 2 2:     |                       |          |                           |         | Unknown               | : Z    |
| 12760 Total SVOCTICs 11930 Tatal SVOCTICs 17980 Tatal SVOCTICs 34000 Tatal SVOCTICs 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | Unknown Phthalate     | N 93                                    |                       |         |                        |          |                       |          |                           |         | Unknown               | 120 NJ |
| 12760 Total SVOCTICs 9569 Tatal SVOCTICs 11930 Total SVOCTICs 17080 Trans Trans CVOCTICs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       | :      |
| 12760 Total SVOCTICs 9569 Total SVOCTICs 11939 Total SVOCTICs 12080 Total SVOCTICs 12080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOCTICs 9569 Total SVOCTICs 11930 Total SVOCTICs 12080 Total SVOCTICs 12080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOCTICs 9569 Total SVOCTICs 11939 Total SVOCTICs 17404 SVOCTICs 14000 Total SVOCTICs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOCTICs 9569 Total SVOCTICs 11930 Total SVOCTICs 17040 SVOCTICs 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOCTICs 9569 Total SVOCTICs 11939 Total SVOCTICs 17404 SVOCTICs 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOCTICs 9569 Total SVOCTICs 11030 Total SVOCTICs 12000 Total SVOCTICs 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOCTICs 9569 Total SVOCTICs 11930 Total SVOCTICs 12080 Tanal SVOCTICs 12080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOC TICs 9569 Total SVOC TICs 11930 Total SVOC TICs 12000 Total SVOC TICs 12000 Total SVOC TICs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOCTICs 9560 Total SVOCTICs 11030 Total SVOCTICs 12000 Total SVOCTICs 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
| 12760 Total SVOCTICS 9560 Total SVOCTICs 11030 Total SVOCTICs 12080 Total SVOCTICs 12080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                       | .5760                                   | Total SVOC TICs       | 9560    |                        | 11030    |                       | 17080    |                           | 1.1000  | Total SVOC 2005       | 5135   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                       |                                         |                       |         |                        |          |                       |          |                           |         |                       |        |

Table 4-6 (continued)

Surface and Subsurface Soil TCL SVOC and SVOC TIC Data Phase I RFI

Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 23 of 27

| Sample Location:                            |                            |                            | RFI-11 (continued)         |                            |                            |                            |
|---------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Sample I.D.:<br>Laboratory Project No.:     | SB-R                       | SB-RFI-011-0204<br>96-5102 | SB-RFI-011-0406<br>96-5102 | SB-RF1-011-0608<br>96-5102 | SB-RFI-011-0810<br>96-5102 | SB-RF1-011-1012<br>96-5102 |
| Sample Interval:<br>Sample Date:            | : 0 - 2 feet<br>: 10/24/96 | 2 - 4 feet<br>10/24/96     | 4 - 6 feet<br>10/24/96     | 6 - 8 feet<br>10/24/96     | 8 - 10 feet<br>10/24/96    | 10 - 12 feet<br>10/24/96   |
| TCL Semi-Volatile Organic Compounds (µg/kg) |                            |                            |                            |                            |                            |                            |
| 1,3-Dichlorobenzene                         | fn 099                     | 330 UJ                     | 340 UJ                     | 330 UJ                     | 340 UJ                     | 340 UJ                     |
| 1,4-Dichlorobenzene                         | 099 C1                     | 330 UJ                     | 340 UJ                     | 330 UJ                     | 340 UJ                     | 340 UJ                     |
| 1,2,4-Trichlorobenzene                      | fn 099                     | 330 UJ                     | 340 UJ                     | 330 UJ                     | 340 UJ                     |                            |
| Naphthalene                                 | fO 099                     | 330 UJ                     |                            | 330 UJ                     |                            |                            |
| 2-Methylnaphthalene                         | M 999                      |                            |                            | 330 UJ                     | 340 UJ                     |                            |
| Dimethyl phthalate                          | 099 C1                     |                            |                            | 330 UJ                     | 340 UJ                     |                            |
| Acenaphthylene                              | fn 099                     |                            |                            | 330 UJ                     | 340 UJ                     |                            |
| Acenaphthene                                | M 999                      | 330 UJ                     |                            | 330 UJ                     | 340 UJ                     | 340 UJ                     |
| Dibenzofuran                                |                            |                            |                            | 330 UJ                     | 340 UJ                     |                            |
| Fluorene                                    |                            |                            |                            | 330 UJ                     | 340 UJ                     | 340 UJ                     |
| Phenanthrene                                |                            |                            | _                          |                            | 340 UJ                     | 340 UJ                     |
| Anthracene                                  |                            |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Carbazole                                   | fn 099                     |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Di-n-butyl phthalate                        |                            | 330 UJ                     |                            |                            | 340 UJ                     | 340 UJ                     |
| Fluoranthene                                |                            |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Pyrene                                      |                            |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Butyl benzyl phthalate                      | IU 099                     |                            |                            | 330 UJ                     | 340 UJ                     | 340 UJ                     |
| Benzo(a)anthracene                          | fn 099                     |                            | _                          |                            |                            | 340 UJ                     |
| Bis(2-ethylhexy1)phthalate                  |                            |                            |                            |                            | 340 U.I                    | 340 UJ                     |
| Chrysene                                    |                            |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Di-n-octyl phthalate                        |                            |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Benzo(b)fluoranthene                        |                            |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Benzo(k)fluoranthene                        |                            |                            | 340 UJ                     | 330 UJ                     | 340 UJ                     | 340 UJ                     |
| Benzo(a)pyrene                              |                            |                            |                            | 330 UJ                     | 340 UJ                     | 340 UJ                     |
| Indeno(1,2,3-cd)pyrene                      | fn 099                     |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Dibenzo(a,h)anthracene                      | 099 (1)                    |                            |                            |                            | 340 UJ                     | 340 UJ                     |
| Benzo(ghi)perylene                          | fO 099                     | 330 UJ                     | 340 UJ                     | 330 UJ                     | 340 UJ                     | 340 UJ                     |

Table 4-6 (continued)

Surface and Subsurface Soil TCL SVOC and SVOC TIC Data Plase I RFI Al. Tech Specially Steel Corporation Dankirk, New York Facility

|                 | SB-RFI-011-0810  | 96-5102                 | 8 - 10 feet      | 10/24/96     |
|-----------------|------------------|-------------------------|------------------|--------------|
| (pa             | SB-RF1-011-0608  | 96-5102                 | 6 - B feet       | 10/24/96     |
| RFI-11 (continu | SB-RF1-011-0406  | 96-5102                 | 4 - 6 feet       | 10/24/96     |
|                 | SB-RFI-011-0204  | 96-5102                 | 2 - 4 feet       | 10/24/96     |
|                 | SB-RFI-011-0002D | 96-5102                 | 0 - 2 feet       | 10/24/96     |
|                 | Sample 1.D.:     | Laboratory Project No.: | Sample Inverval: | Sample Date: |

Semi-Volatile Organics Tentatively Identified Compounds (µg/kg)

Page 24 of 27

| SB-RFI-011-0002D<br>96-5102         | a      | SB-RFI-011-0204<br>96-5102 | -           | SB-RFI-011-0406<br>96-5102 |          | SB-RF1-011-0608<br>96-5102 | 908      | SB-RFT-011-0810<br>96-5102 | 2       | SB-RFI-011-1012<br>96-5102 | 112    |
|-------------------------------------|--------|----------------------------|-------------|----------------------------|----------|----------------------------|----------|----------------------------|---------|----------------------------|--------|
| 0 - 2 feet<br>10/24/96              |        | 2 - 4 feet<br>10/24/96     |             | 4 - 6 feet<br>10/24/96     |          | 6 - 8 feet<br>10/24/96     |          | 8 - 10 feet<br>10/24/96    |         | 10 - 12 feet<br>10/24/96   |        |
|                                     |        |                            |             |                            |          |                            |          |                            |         |                            |        |
| Unknown Hydrocarbon                 |        | Unknown Hydrocarbon        | 13 N        | Unknown Hydrocarbon        | 25 NJ    | Unknown Hydrocarbon        | Z<br>e   | Unknown Hydrocarbon        | 33 N    | Unknown Hydrocarbon        | Z      |
| Unknown 11s drocarbon               | Z      | Unknown Hydrocarbon        | 15<br>N     | Unknown Hydrocarbon        | 28       | Unknown Hydrocarbon        | 20 NJ    | Unknown Hydrocarbon        |         | Unknown Hydrocarbon        | 2      |
| Unknown Hydrocarbon                 | 150 NJ | Unknown Hydrocarbon        | Z<br>±      | Unknown Hydrocarbon        | 2<br>5   | Unknown Hydrocarbon        | <u> </u> | Unknown Pydrocarbon        |         | Unknown 14 drogation       | Z      |
| Unknown Hydrocarbon                 | 58 N   | Unknown Hydrocarbon        | Z<br>Z      | Unknown Hydrocarbon        | Z<br>S   | Unknown Hydrocarbon        | 23 NJ    | Unknown Hydrocarbon        | N S     | Unknown Hydrogarbon        | Z      |
| Unknown Hydrocarbon                 | 160 N  | Unknown Hydrocarbon        | Z X         | Unknown Hydrocarbon        | Z<br>C   | Unknown Hydrocarbon        | 21 NJ    | Unknown Hydrocarbon        | 35 N    | Unknown Hydrocarbon        | 14 N   |
| Unknown Hydrocarbon                 | 150 NJ | Unknown Hydrocarbon        | S N         | Unknown Hydrocarbon        | 7X<br>Z  | Unknown Hydrocarbon        | 2 N      | Unknown Hydrocarbon        | 33 NJ   | Unknown Hydrocarbon        | Z      |
| Unknown Hydrocarbon                 | 210 NJ | Unknown Hydrocarbon        | 26 NJ       | Unknown Hydrocarbon        | 7x N     | Unknown Hydrocarbon        | Z<br>7   | Unknown Hydrocarbon        | Z S     | Unknown Hydrocarbon        | 2      |
| Unknown Hydrocarbon                 | N 061  | Unknown Hydrocarbon        | 72 NJ       | Unknown Hydrocarban        | Z<br>S   | Unknown Hydrocarbon        | Z of     | Unknown Hydrocarbon        | 2<br>7  | Unknown Hydrocarbon        | Z<br>T |
| Unknown Hydrocarbon                 | Z 99   | Unknown Hydrocarbon        | 7.4 N       | Unknown Hydrocarbon        | (2) N    | Unknown Hydrocarbon        | Z<br>S   | Unknown Hydrocarbon        | S7 NJ   | Unknown Hydrocarbon        | ίν ς.  |
| Unknown Hydrocarbon                 | N 95   | Unknown Hydrocarbon        | 17 NJ       | Unknown Hydrocarbon        | Z<br>Ç   | Unknown Hydrocarbon        | 62 N     | Unknown Hydrocarbon        | Σ×Σ     | Unknown Hydrocarbon        | N 59   |
| Unknown Hydrocarbon                 | 2      | Unknown Hydrocarbon        | Z<br>Z      | Unknown Hydrocarbon        | 72<br>42 | Unknown Hydrocarbon        | 2<br>5   | Unknown Hydrocarbon        | 120 NJ  | Unknown Hydrocarbon        | Z 2    |
| Unknown Hydrocarbon                 | Z<br>S | Unknown Hydrocarbon        | 20 N        | Unknown Hydrocarbon        | 25 NJ    | Unknown Flydrocarbon       | Z<br>Ž   | Unknown Hydrocarbon        | Z ox    | Unknown Hydrocarbon        | N or   |
| Unknown Hydrocarbon                 | Z      | Unknown Hydrocarbon        | Z<br>3      | Unknown                    | Z 22     | Unknown Hydrocarbon        | 72 NJ    | Unknown Hydrocarbon        | Z<br>=  | Unknown Hydrocarbon        | Z XX   |
| Unknown Hydrocarbon                 | 170 N. | Unknown Hydrocarbon        | Z<br>2      | Unknown                    | 2 N      | Unknown Hydrocarbon        | 7. N     | Unknown Hydrocarbon        | ž<br>X  | Unknown Hydrocarbon        | N SX   |
| Unknown Hydrocarbon                 | S00 N  | Unknown                    | 2<br>2<br>2 | Unknown                    | 25. NJ   | Unknown Hydrocarbon        | Z<br>3   | Unknown Hydrocarbon        | 57<br>N | Unknown Hydrocarbon        | S N    |
| Unknown Hydrocarbon                 | Z××    | Unknown                    | Z<br>÷      | Unknown                    | 2        | Unknown Hydrocarbon        | 37 N     | Unknown Hydrocarbon        | 38<br>N | Unknown Hydrocarbon        | 76. NJ |
| Unknown Hydrocarhon                 | JN OKC | Unknown                    | Z<br>Z      | Unknown                    | N 071    | Unknown                    | 2x NJ    | Unknown Hydrocarbon        | 20 NJ   | Unknown Hydrocarbon        | S      |
| Unknown Hydrocarbon                 | ž<br>Ž | Unknown                    | 250 NJ      | Unknown                    | Q yo     | Unknown                    | 65 NJ    | Unknown                    | Z<br>S  | Unknown Hydrocarbon        | Z 5    |
| <b>Опкноми Иу</b> фгосаг <b>ю</b> я | Z<br>÷ | Unknown                    | 200 NJ      | Unknown                    | 120 N    | Unknown                    | 130 N    | Unknown                    | Z 93    | Unknown                    | Z<br>Z |
| Unknown Hydrocarbon                 | 30 N   | Unknown                    | Ž<br>¥      | Unknown                    | 27 NJ    | Unknown                    | Z<br>S   | Unknown                    | 33 KJ   | Unknown                    | S S    |
| Unknown Hydrocarbon                 | 200 NJ | Unknown                    | 23 N        | Unknown                    | 25 NJ    | Unknown                    | 65 NJ    | Unknown                    | 130 NJ  | Unknown                    | 30 N   |
| Unknown Aromatic                    |        | Unknown                    | 20 S        | Unknown                    | Z        | Unknown                    | S N      | Unknown                    | 65 NJ   | Unknown                    | 3      |
| Hydrocarbon                         | Z<br>Z | Unknown                    | 2           |                            |          | Unknown                    | 30 N     | Unknown                    | 30 N    | Unknown                    | 120 NJ |
| Unknown Hydrocarbon                 | 52 NJ  | Unknown Aromatic           |             |                            |          | Unknown                    | 35 NJ    | Unknown                    | 27 NJ   | Unknown                    | Z S    |
| Unknown Hydrocarbon                 | 25 Z   | Hydrocarbon                | 25 J        |                            |          | Unknown                    | 30 N     | Unknown                    | Z       | Unknown                    | Ž<br>X |
| Unknown Hydrocarbon                 | N 55   |                            |             |                            |          |                            |          |                            |         |                            |        |
|                                     |        |                            |             |                            |          |                            |          |                            |         |                            |        |
|                                     |        |                            |             |                            |          |                            |          |                            |         |                            |        |
|                                     |        |                            |             |                            |          |                            |          |                            |         |                            |        |
|                                     |        |                            |             |                            |          |                            |          |                            |         |                            |        |
|                                     |        |                            |             |                            |          |                            |          |                            |         |                            |        |
|                                     |        |                            |             |                            |          |                            |          |                            |         |                            |        |
| Total SVOC TICs                     | 3422   | Total SVOC TICs            | 1426        | Total SVOC TICs            | 1234     | Total SVOC TICs            | 1204     | Total SVOC TICs            | 1436    | Total SVOC TICs            | 1457   |

Table 4-6 (continued)

Page 25 of 27

|                                                                     | Sample Location: RF1                                                 | RFI-11 (continued)                                     | RFI-14                                               | 4                                                      | R                                                    | RFI-15                                                 |
|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
|                                                                     | Sample I.D.: - Laboratory Project No.: Sample Interval: Sample Date: | SB-RF1-011-1214<br>96-5102<br>12 - 14 feet<br>10/24/96 | SB-RFI-014-0204<br>96-5077<br>2 - 4 feet<br>10/22/96 | SB-RFI-014-1214<br>96-5077<br>12 - 14 feet<br>10/22/96 | SB-RIT-015-0608<br>96-5077<br>6 - 8 feet<br>10/23/96 | SB-RFI-015-1516<br>96-5077<br>15 - 16 feet<br>10/23/96 |
| 0 - EV-1-74 : 0 - EV-1                                              |                                                                      |                                                        |                                                      |                                                        |                                                      |                                                        |
| 1X.1. Semi-voiatne Arganic Compounds (µg/kg)<br>1,3-Dichlorobenzene | ic Compounds (मृष्ट्र/षष्ट्र)                                        | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| 1,4-Dichlorobenzene                                                 |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| 1,2,4-Trichlorobenzene                                              |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Naphthalene                                                         |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| 2-Methylnaphthalene                                                 |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Dimethyl phthalate                                                  |                                                                      | 340 UJ                                                 | 370 U                                                | 390 N                                                  | 350 U                                                | 350 U                                                  |
| Acenaphthylene                                                      |                                                                      | 340 UJ                                                 | 370 U                                                | 390 N                                                  | 350 U                                                | 350 U                                                  |
| Acenaphthene                                                        |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Dibenzofuran                                                        |                                                                      | 340 UJ                                                 | 370 U                                                | O 098                                                  | 350 U                                                | 350 U                                                  |
| Fluorene                                                            |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Phenanthrene                                                        |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Anthracene                                                          |                                                                      | 340 UJ                                                 | 370 U                                                | 300 U                                                  | 350 U                                                | 350 U                                                  |
| Carbazole                                                           |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Di-n-butyl phthalate                                                |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Fluoranthene                                                        |                                                                      | 340 UJ                                                 | 370 U                                                | 300 U                                                  | 350 U                                                | 350 U                                                  |
| Pyrene                                                              |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Butyl benzyl phthalate                                              |                                                                      |                                                        | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Benzo(a)anthracene                                                  |                                                                      |                                                        | 370 U                                                | O 098                                                  | 350 U                                                | 350 U                                                  |
| Bis(2-ethylhexy1)phthalate                                          |                                                                      |                                                        | 810                                                  | 820                                                    | 280 J                                                | 350 U                                                  |
| Chrysene                                                            |                                                                      |                                                        | 370 U                                                | 190 O                                                  | 350 U                                                | 350 U                                                  |
| Di-n-octyl phthalate                                                |                                                                      | 340 UJ                                                 | 370 U                                                | 300 U                                                  | 350 U                                                | 350 U                                                  |
| Benzo(b)fluoranthene                                                |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Benzo(k)fluoranthene                                                |                                                                      |                                                        | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Benzo(a)pyrene                                                      |                                                                      | 340 UJ                                                 | 370 U                                                | 390 U                                                  | 350 U                                                | 350 U                                                  |
| Indeno(1,2,3-cd)pyrene                                              |                                                                      |                                                        | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |
| Dibenzo(a,h)anthracene                                              |                                                                      |                                                        | 370 U                                                | O 098                                                  | 350 U                                                | 350 U                                                  |
| Benzo(ghi)perylene                                                  |                                                                      | 340 UJ                                                 | 370 U                                                | 360 U                                                  | 350 U                                                | 350 U                                                  |

Table 4-6 (continued)

Surface and Subsurface Soil

| TCL SVOC and SVOC TIC Data | Phase I RF1 | AL Tech Specialty Steel Corporation | Dunkirk, New York Facility |  |
|----------------------------|-------------|-------------------------------------|----------------------------|--|
|                            |             |                                     |                            |  |

Page 26 of 27

| Sample Lecation:                                                         | KFT-11 (continued)                  | (pa)           | ACA 110 134 03                         | 101     | 161 110 130 03                           | 115    | TO STO STORES                          | W. 1-15 |                                            |        |
|--------------------------------------------------------------------------|-------------------------------------|----------------|----------------------------------------|---------|------------------------------------------|--------|----------------------------------------|---------|--------------------------------------------|--------|
| Sampe LD:<br>Laboratory Project No.:<br>Sample Inverval:<br>Sample Plate | 96-5102<br>12 - 14 feet<br>10/24/96 | <u> </u>       | 30-1017-014-0<br>96-5077<br>2 - 4 feet | T07     | 30-861-014-12<br>96-5077<br>12 - 14 feet | · _    | 35-141-013-06<br>96-5077<br>6 - 8 feet | 80      | 5B-KF1-015-1516<br>96-5077<br>15 - 16 feet | 9      |
|                                                                          |                                     |                |                                        |         |                                          |        |                                        |         | N IO IV                                    |        |
| Semt-Volatile Organics<br>Tentatively Identified Compounds (µg/kg)       | Unknown Hydrocarbon                 |                | Unknown Hydrocarbon                    | 250 J   | Unknown Hydrocarbon                      | 1001   | Unknown Hydrocarbon                    | 250 J   | Unknown Hydrocarbon                        | 170 J  |
|                                                                          | Unknown Hydrocarbon                 | 55 NJ          | Unknown Hydrocarbon                    | 740 1   | Unknown Hydrocarbon                      | 1000   | Unknown Hydrocarbon                    | 290.3   | Unknown Hydrocarbon                        | 170 J  |
|                                                                          | Unknown Hydrocarbon                 | Z              | Unknown Hydrocarbon                    | 200 J   | Unknown Hydrocarbon                      | 1 0061 | Unknown Hydrocarbon                    | 380 )   | Unknown Hydrocarbon                        | 150.1  |
|                                                                          | Unknown Hydrocarbon                 | Z :            | Unknown Hydrocarbon                    | 310 J   | Unknown Hydrocarbon                      | 2400 } | Unknown Hydrocarbon                    | 310 J   | Unknown Hydrocarbon                        | 150.1  |
|                                                                          | Unknown Hydrocarbon                 | <b>R</b><br>9. | Unknown Hydrocarbon                    | 370 J   | Unknown Hydrocarbon                      | 840 ]  | Unknown Hydrocarbon                    | 260.3   | Unknown Hydrocarbon                        | 160 J  |
|                                                                          | Unknown Hydrocarbon                 | Ñ<br>Ş         | Unknown Hydrocarbon                    | 330.1   | Unknown Hydrocarbon                      | 2300 J | Unknown Hydrocarbon                    | 260 J   | Unknown Hydrocarbon                        | 150.3  |
|                                                                          | Unknown Hydrocarbon                 | Z<br>∓         | Unknown Hydrocarbon                    | 380 J   | Unknown Hydrocarbon                      | 1700   | Unknown Hydrocarbon                    | 270 J   | Unknown IIv drogathon                      | 230 J  |
|                                                                          | Unknown Hydrocarbon                 | IN as          | Unknown Hydrocarbon                    | 1200 J  | Unknown Hydrocarbon                      | 2500 J | Unknown Hydrocarbon                    | 280     | Unknown Hydrocarbon                        | 350 J  |
|                                                                          | Unknown Hydrocarbon                 | Z<br>Z         | Unknown Hydrocarbon                    | 1000    | Unknown Hydrocarbon                      | 2000 3 | Unknown Hydrocarbon                    | 180     | Unknown Hydrocarbon                        | f 01:1 |
|                                                                          | Unknown Hydrocarbon                 | Z<br>Z         | Unknown Hydrocarbon                    | X-100 J | Unknown Hydrocarbon                      | 2200 J | Unknown Hydrocarbon                    | 180     | Unknown Hydrocarbon                        | 030    |
|                                                                          | Unknown Hydrocarbon                 | Z 7:           | Unknown Hydrocarbon                    | 8700 J  | Unknown Hydrocarbon                      | f 099  | Unknown Hydrocarbon                    | 280 J   | Unknown Hydrocarbon                        | 8.40   |
|                                                                          | Unknown Hydrocarbon                 | 75 NJ          | <b>Unknown Hydrocarbon</b>             | 8500 J  | Unknown Hydrocarbon                      | 1500 J | Unknown Hydrocarbon                    | 300 J   | Unknown III drocarbon                      | 850 J  |
|                                                                          | Unknown Hydrocarbon                 | ×7 N           | Unknown Hydrocarbon                    | 7100 J  | Unknown Hydrocarbon                      | 2200 3 | Unknown Hydrocarbon                    | 6.70 J  | Unknown Hydrocarbon                        | 220 J  |
|                                                                          |                                     | Z S            | Unknown Hydrocarbon                    | 630 J   | Unknown Hydrocarbon                      | 100001 | Unknown Hydrocarbon                    | 040     | Unknown Hydrocarbon                        | 510.1  |
|                                                                          | Unknown Hydrocarbon                 | Z Z            | Unknown Hydrocarbon                    | 4700 1  | Unknown Hydrocarbon                      | 9700 J | Unknown Hydrocarbon                    | 3200 J  | Unknown Hydrocarbon                        | 260 J  |
|                                                                          |                                     | Z<br>S         | Unknown Hydrocarbon                    | 2000 1  | Unknown Hydrocarbon                      | 9600   | Unknown Hydrocarbon                    | 2600 J  | Unknown Hydrocarbon                        | 180    |
|                                                                          |                                     | <br>Z          | Unknown Hydrocarbon                    | 1400    | Unknown Hydrocarbon                      | 7100 3 | Unknown Hydrocarbon                    | 3100 J  | Unknown Hydrocarbon                        | 150    |
|                                                                          | Unknown Hydrocarbon                 | 35 NJ          | Unknown Hydrocarbon                    | 360 J   | Unknown Hydrocarbon                      | 3800 3 | Unknown Hydrocarbon                    | 1 0001  | Unknown                                    | 270 J  |
|                                                                          | Unknown                             | Z X            | Unknown Hydrocarbon                    | 280 J   | Unknown Hydrocarbon                      | 880 3  | Unknown Hydrocarbon                    | 1200 J  | Unknown                                    | 220 3  |
|                                                                          | Unknown                             | 12e N          | Unknown Hydrocarbon                    | 550 J   | Unknown Hydrocarbon                      | 610 3  | Unknown Hydrocarbon                    | 580 J   | Unknown                                    | 1000   |
|                                                                          | Unknown                             | Z<br>3         | Unknown Hydrocarbon                    | 001     | Unknown Hydrocarbon                      | 1700 J | Unknown Hydrocarbon                    | 420 3   | Unknown                                    | 7 01%  |
|                                                                          | Unknown                             | Z              | Unknown Hydrocarbon                    | ×       | Unknown Hydrocarbon                      | 740 )  | Unknown Hydrocarbon                    | 310 J   | Unknown                                    | 2400   |
|                                                                          | Unknown                             | 28 NJ          | Unknown                                | 240 ]   | Unknown Hydrocarbon                      | 550 J  | Unknown                                | 260 J   | Unknown                                    | 750 J  |
|                                                                          | Unknown                             | Z              | Unknown                                | 850 J   | Unknown                                  | F 009  | Unknown                                | 360 J   |                                            |        |
|                                                                          | Unknown                             | N X            | Unknown                                | 300     | Unknown                                  | 2300 J | Unknown                                | 220 J   |                                            |        |
|                                                                          |                                     |                | Unknown                                | 1200 J  | Unknown                                  | 1000   | Unknown                                | 1500 J  |                                            |        |
|                                                                          |                                     |                | Unknown                                | 100     | Unknown                                  | 7000 J | Unknown                                | 1300 J  |                                            |        |
|                                                                          |                                     |                | Unknown                                | 3300 ]  | Unknown                                  | 3500 J | Unknown                                | 3600 J  |                                            |        |
|                                                                          |                                     |                | Unknown                                | 4500 J  |                                          |        | Unknown                                | 1300    |                                            |        |
|                                                                          |                                     |                | Unknown Aromatic                       |         |                                          |        | Unknown                                | 330 J   |                                            |        |
|                                                                          |                                     |                | Hydrocarbon                            | 240 )   |                                          |        |                                        |         |                                            |        |
|                                                                          |                                     |                |                                        |         |                                          |        |                                        |         |                                            |        |
|                                                                          |                                     |                |                                        |         |                                          |        |                                        |         |                                            |        |
|                                                                          | Total SVOC TICs                     | 1421           | Total SVOC TICs                        | 61280   | Total SVOC TICs                          | 82880  | Total SVOC TICs                        | 27030   | Total SVOC TICs                            | 11390  |

AL Tech Specialty Steel Corporation Surface and Subsurface Soil TCL SVOC and SVOC TIC Data **Dunkirk**, New York Facility Phase I RFI

Page 27 of 27

aV TCL = Target Compound List; SVOC = Semi-Volatile Organic Compound; TIC = Tentatively Identified Compound. Only those TCL SVOCs detected in one or more of the soil samples have been retained in this table. Unabridged analytical results are presented in Appendix N.
 b/ μg/kg = micrograms per kilogram.
 c/ Data Qualifiers:
 U = constituent not present at the detection limit noted.
 J = constituent present at the estimated concentration below the method detection limit.
 UJ = constituent present at the estimated limit noted.
 NJ = presumptive evidence of the constituent at an estimated concentration.
 D = concentration represents that generated for a diluted aliquot.
 d/ Total SVOC TICs represent the sum of all detected TICs.
 c/ D = duplicate sample.
 l/ NA = not analyzed.

Table 4-7

|                             | Sample Location:                                                        | GS-01 (a                                            | (a)                                                | GS-02                                              | GS-03                                              | GS-04                                              | GS-05                                              | RB-01                                              |
|-----------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
|                             | Sample LD.: Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SS-GS-01-03<br>96-5102<br>0 - 3 inches<br>10/25//96 | SS-GS-01-03<br>96-5209<br>0 - 3 inches<br>11/01/96 | SS-GS-02-03<br>96-5102<br>0 - 3 inches<br>10/25/96 | SS-GS-03-03<br>96-5077<br>0 - 3 inches<br>10/23/96 | SS-GS-04-03<br>96-5077<br>0 - 3 inches<br>10/23/96 | SS-GS-05-03<br>96-5077<br>0 - 3 inches<br>10/23/96 | SB-RB-01-0002<br>96-5200<br>0 - 2 feet<br>10/31/96 |
| TCL Polychlor               | FCL Polychlorinated Biphenyls (mg/kg) (b, c)                            | (2)                                                 |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |
| Aroclor 1016                |                                                                         |                                                     | NA                                                 | AN                                                 | ΥZ                                                 | A<br>V                                             | Y<br>V                                             | ۷Z                                                 |
| Aroctor 1221                |                                                                         | NA                                                  | AN                                                 | AN                                                 | NA                                                 | Ϋ́                                                 | AN                                                 | ΥN                                                 |
| Aroclor 1232                |                                                                         | AN                                                  | ΥN                                                 | ΑN                                                 | ΥN                                                 | N<br>A                                             | NA                                                 | NA                                                 |
| Aroclor 1242                |                                                                         | NA                                                  | NA<br>AN                                           | NA                                                 | VA                                                 | NA                                                 | NA                                                 | NA                                                 |
| Aroclor 1248                |                                                                         | ΥZ                                                  | NA                                                 | NA                                                 | ΥN                                                 | NA                                                 | NA                                                 | NA                                                 |
| Aroclor 1254                |                                                                         | ΥN                                                  | NA                                                 | NA                                                 | NA                                                 | N<br>A                                             | NA                                                 | AN                                                 |
| Aroclor 1260                |                                                                         | ΝΑ                                                  | NA                                                 | ΝΑ                                                 | ΥN                                                 | Ϋ́                                                 | NA                                                 | ۷<br>۷                                             |
| Miscellaneous Parameters    | Parameters                                                              |                                                     |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |
| Total Petroleum             | Total Petroleum Hydrocarbons (mg/kg)                                    | 7                                                   | 140 J                                              | U 011                                              | ~                                                  | 20                                                 | 32                                                 | O 01                                               |
| pH (s.u.)                   | )<br>)<br>,                                                             | 7.78                                                | 7.74                                               | 8.46                                               | 8.58                                               | 7.84                                               | 7.77                                               | 4.48                                               |
| Total Phenols (mg/kg)       | ng/kg)                                                                  | 1 U (e)                                             | 0.12 J                                             | N I                                                | n I                                                | N I                                                | 1 N                                                | N 1                                                |
| Total Organic Carbon (mg/l) | arbon (mg/l)                                                            | NA                                                  | V<br>Z                                             | Ϋ́                                                 | Ν                                                  | Ϋ́                                                 | ΥZ                                                 | Ϋ́Z                                                |

Table 4-7 (continued)

| Sample Location:                                                            | RB-01 (conti                                       | ntinued)                                           | RI                                                 | RB-02                                                |                                                    | RB-04                                              |                                                   |
|-----------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SB-RB-01-0507<br>96-5200<br>5 - 7 feet<br>10/31/96 | SB-RB-01-0709<br>96-5200<br>7 - 9 feet<br>10/31/96 | SB-RB-02-0002<br>96-5200<br>0 - 2 feet<br>10/31/96 | SB-RB-02-1618<br>96-5200<br>16 - 18 feet<br>10/31/96 | SB-RB-04-0002<br>96-5198<br>0 - 2 feet<br>10/30/96 | SB-RB-04-0406<br>96-5198<br>4 - 6 feet<br>10/30/96 | SB-RB-04-0709<br>96-5198<br>7 -9 feet<br>10/30/96 |
| TCL Polychlorinated Biphenyls (mg/kg)                                       |                                                    |                                                    |                                                    |                                                      |                                                    |                                                    |                                                   |
| Aroclor 1016                                                                | Š                                                  | N<br>N                                             | 0 I                                                | 0.1                                                  | VN                                                 | V<br>N                                             | 0.1                                               |
| Aroclor 1221                                                                | Ϋ́N                                                | NA                                                 | n I                                                | Ω <b> I</b>                                          | NA                                                 | VZ<br>Z                                            | n                                                 |
| Aroclor 1232                                                                | Ϋ́N                                                | Ϋ́N                                                | ΩΙ                                                 | 0.1                                                  | NA                                                 | VN                                                 | 0 1                                               |
| Aroclor 1242                                                                | VΝ                                                 | ΥN                                                 | N I                                                | N I                                                  | NA<br>VA                                           | ΥN                                                 | 7                                                 |
| Aroclor 1248                                                                | VΝ                                                 | ΥN                                                 | n                                                  | 1 U                                                  | NA                                                 | ∠<br>N                                             | 0                                                 |
| Aroclor 1254                                                                | ΥN                                                 | NA                                                 | Ω <b>.</b>                                         | 0 I                                                  | VN                                                 | ₹Z                                                 | 0 1                                               |
| Aroclor 1260                                                                | ΥN                                                 | V<br>V<br>V                                        | 0.1                                                | 0 1                                                  | V<br>V                                             | VV                                                 | n I                                               |
| Miscellaneous Parameters                                                    |                                                    |                                                    |                                                    |                                                      |                                                    |                                                    |                                                   |
| Total Petroleum Hydrocarbons (mg/kg)                                        | O 01                                               | 12.1                                               | 10 U                                               | 23                                                   | VZ<br>V                                            | ΥN                                                 | VN<br>V                                           |
| pH (s.u.)                                                                   | 7.37                                               | 10.93                                              | 7.31                                               | ΥN                                                   | 8.48                                               | 7.54                                               | 8.29                                              |
| Total Phenols (mg/kg)                                                       | VN<br>V                                            | Ϋ́N                                                | n                                                  | ΥN                                                   | NA<br>NA                                           | ΥN                                                 | 0 -                                               |
| Total Organic Carbon (mg/l)                                                 | √<br>N                                             | Ϋ́                                                 | 2.7                                                | 2.3                                                  | 2.9                                                | 2.5                                                | 3.2                                               |

| _           |
|-------------|
|             |
|             |
| _           |
| •           |
| =           |
| _           |
| =           |
|             |
| ****        |
| _           |
| =           |
| _           |
|             |
| -           |
|             |
|             |
|             |
|             |
|             |
| ت           |
| -7 (c       |
| ت           |
| -7 (c       |
| 3) /-t :    |
| -7 (c       |
| 3) /-t :    |
| le 4-7 (c   |
| ble 4-7 (c  |
| uble 4-7 (c |
| ble 4-7 (c  |
| able 4-7 (c |
| uble 4-7 (c |
| able 4-7 (c |

3 of 18 pc

| on: RB-05 RB-07  | SB-RB-05-0002         SB-RB-06-0004         SB-RB-06-0608         SB-RB-06-0608         SB-RB-06-0608         SB-RB-06-0608         SB-RB-06-0608         SB-RB-06-0608         SB-IB           96-5167         96-5167         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198         96-5198< | 10/28/70 10/28/70 10/28/70 10/28/70 10/28/70 |                                       |                                                                                                                                                                    | NA 10 10 10 30 | NA 10 10 10 30 | NA 10 10 10 21                                                                                                | NA 10 10 10 30 | NA 10 10 10 30 | NA IU IU IU IU 3U |                          | KZ KZ KZ KZ KZ                       | 4.03 4.04 9.93 NA NA NA NA | QZ         QZ         QZ         QZ         QZ |     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------------|--------------------------|--------------------------------------|----------------------------|------------------------------------------------|-----|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06/87/01                                     |                                       | <z< td=""><td><b>₹</b>Z</td><td>۲Z</td><td><z< td=""><td>۲Z</td><td>&lt;<br/>Z</td><td>ΝΑ</td><td></td><td>٧Z</td><td>4.03</td><td>₹Z</td><td></td></z<></td></z<> | <b>₹</b> Z     | ۲Z             | <z< td=""><td>۲Z</td><td>&lt;<br/>Z</td><td>ΝΑ</td><td></td><td>٧Z</td><td>4.03</td><td>₹Z</td><td></td></z<> | ۲Z             | <<br>Z         | ΝΑ                |                          | ٧Z                                   | 4.03                       | ₹Z                                             |     |
| Sample Location: | Sample L.D.:<br>Laboratory Project No.:<br>Sample Interval:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Date:                                 | TCL Polychlorinated Biphenyls (mg/kg) | Aroclor 1016                                                                                                                                                       | Aroclor 1221   | Aroclor 1232   | Aroclor 1242                                                                                                  | Aroclor 1248   | Aroclor 1254   | Aroclor 1260      | Miscellaneous Parameters | Total Petroleum Hydrocarbons (mg/kg) | pH (s.u.)                  | Total Phenols (mg/kg)                          | Ď o |

Table 4-7 (continued)

| Sample Location:                                                            | RB-07 (cont                                        | ontinued)                                           |                                                    | T.P-02                                             | -02                                                |                                                     | TP-03                                              |
|-----------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SB-RB-07-0608<br>96-5198<br>6 - 8 feet<br>10/30/96 | SB-RB-07-0810<br>96-5198<br>8 - 10 feet<br>10/30/96 | SS-TP-02-03<br>96-5053<br>0 - 3 inches<br>10/22/96 | SB-TP-02-0002<br>96-5053<br>0 - 2 feet<br>10/22/96 | SB-TP-02-0304<br>96-5053<br>3 - 4 feet<br>10/22/96 | SB-TP-02-0910<br>96-5053<br>9 - 10 feet<br>10/22/96 | SB-TP-03-0002<br>96-5053<br>0 - 2 feet<br>10/22/96 |
| TCL Polychlorinated Biphenyls (mg/kg)                                       |                                                    | =                                                   | ≺<br>Z                                             | ₹<br>Z                                             | Ś                                                  | Š                                                   | Ź                                                  |
| Araclar 1971                                                                | ) <u> </u>                                         | <u> </u>                                            | Y X                                                | Y Z                                                | V.                                                 | ₹<br>Z                                              | V<br>N                                             |
| Aroclor 1232                                                                | 9 -                                                | <u> </u>                                            | Ϋ́                                                 | ₹Z                                                 | VN<br>VN                                           | ≺Z                                                  | ∠<br>Z                                             |
| Aroclor 1242                                                                | 3.9                                                | n                                                   | Y<br>Z                                             | ٧X                                                 | VZ<br>VZ                                           | Ϋ́Z                                                 | <<br>Z                                             |
| Aroclor 1248                                                                | D                                                  | n <b>-</b>                                          | Ϋ́                                                 | ΥN                                                 | VN                                                 | Ϋ́N                                                 | ∠<br>Z                                             |
| Araclar 1254                                                                | <u> </u>                                           | N I                                                 | Ϋ́Z                                                | ΥN                                                 | NA                                                 | ۷<br>۷                                              | <z< td=""></z<>                                    |
| Aroclor 1260                                                                | n I                                                | D I                                                 | ۲<br>۷                                             | <b>∀</b> Z                                         | ₹<br>Z                                             | ₹<br>Z                                              | <<br>Z                                             |
| Miscellancous Parameters                                                    | Z                                                  | Z                                                   | 110                                                | Ź                                                  | ž                                                  | Š                                                   | ź                                                  |
| rotai retrofemii riyaroearoons (mg/kg)<br>nH (s.n.)                         | Ź                                                  | Z Z                                                 | 8.52                                               | 8.14                                               | 8.23                                               | 8.18                                                | 8.06                                               |
| Total Phenols (mg/kg)                                                       | VZ<br>Z                                            | YZ.                                                 | ) I                                                | 0.1                                                | ∠N                                                 | VΑ                                                  | ∠<br>Z                                             |
| Total Organic Carbon (mg/l)                                                 | 3.8                                                | 3.2                                                 | ٧Z                                                 | ٧X                                                 | ۲Z                                                 | ۲<br>۷                                              | ٧Z                                                 |

Table 4-7 (continued)

| Sample Location:                                                            | n: TP-03 (conti                                                                                          | ontinued)                                       | E                                                  | TP-04                                                |                                                    | TP-05                                              |                                                    |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Sample L.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SB-TP-03-0506 S 96-5053 E 5 - 6 feet 10/22/96                                                            | SB-TP-03-1112<br>96-5053<br>11 - 12<br>10/22/96 | SB-TP-04-0002<br>96-5077<br>0 - 2 feet<br>10/22/96 | SB-TP-04-1112<br>96-5077<br>11 - 12 feet<br>10/22/96 | SS-TP-05-03<br>96-5077<br>0 - 3 inches<br>10/23/96 | SB-TP-05-0002<br>96-5092<br>0 - 2 feet<br>10/24/96 | SB-TP-05-0203<br>96-5092<br>2 - 3 feet<br>10/24/96 |
| TCI, Polychlorinated Biphenyls (mg/kg)                                      |                                                                                                          |                                                 |                                                    |                                                      |                                                    |                                                    |                                                    |
| Aroclor 1016                                                                | YZ.                                                                                                      | NA                                              | 0.1                                                | n                                                    | VN                                                 | VN<br>N                                            | Š                                                  |
| Aroclor 1221                                                                | ₹Z                                                                                                       | V<br>N                                          | 0.1                                                | <u> </u>                                             | VV                                                 | V<br>N                                             | V<br>Z                                             |
| Aroclor 1232                                                                | Ϋ́Z                                                                                                      | Ϋ́N                                             | 0.1                                                | n -                                                  | ΥZ                                                 | VN                                                 | ≺Z                                                 |
| Aroclor 1242                                                                | ₹Z                                                                                                       | VV                                              | 0.1                                                | 0.1                                                  | Ϋ́N                                                | VN                                                 | ∠<br>Z                                             |
| Aroclor 1248                                                                | ₹Z                                                                                                       | VN                                              | 1.0                                                | 0.1                                                  | ΥN                                                 | VN                                                 | <b>∨</b> N                                         |
| Aroclor 1254                                                                | ₹Z                                                                                                       | VN                                              | 0.1                                                | Ω                                                    | VZ                                                 | VN<br>N                                            | <<br>Z                                             |
| Aroclor 1260                                                                | V ∨                                                                                                      | <b>₹</b>                                        | <b>n</b> -                                         | 0.1                                                  | ۲Z                                                 | <b>₹</b>                                           | ٧Z                                                 |
| Miscellancons Parameters                                                    |                                                                                                          |                                                 |                                                    |                                                      |                                                    |                                                    |                                                    |
| Total Petroleum Hydrocarbons (mg/kg)                                        | <z< td=""><td>AN</td><td>ΥN</td><td>&lt;<br/>Z</td><td><b>∠</b>Z</td><td>Ϋ́Z</td><td><b>∠</b>N</td></z<> | AN                                              | ΥN                                                 | <<br>Z                                               | <b>∠</b> Z                                         | Ϋ́Z                                                | <b>∠</b> N                                         |
| pH (s.u.)                                                                   | 7.93                                                                                                     | 8.23                                            | 8.46                                               | 8.16                                                 | N<br>V                                             | VN                                                 | VN<br>VN                                           |
| Total Phenols (mg/kg)                                                       | ₹Z                                                                                                       | NA                                              | Ϋ́N                                                | V<br>V<br>V                                          | N I                                                | Ω <b>-</b>                                         | 0 1                                                |
| Total Organic Carbon (mg/1)                                                 | <b>∀</b> Z                                                                                               | VZ<br>VZ                                        | 2.6                                                | 2.9                                                  | ٧Z                                                 | <<br>Z                                             | <b>₹</b>                                           |

Table 4-7 (continued)

| Sample Location:                                          | TP-05 (continued)                      |                                        | TP-06                                       |                                        |                                        | =                                  | TP-07                                  |
|-----------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|
| Sample LD:<br>Laboratory Project No.:<br>Sample Interval: | SB-TP-05-0809<br>96-5092<br>8 - 9 feet | SB-TP-06-0002<br>96-5092<br>0 - 2 feet | SB-TP-06-0002D (1)<br>96-5092<br>0 - 2 feet | SB-TP-06-0304<br>96-5092<br>3 - 4 feet | SB-TP-06-0708<br>96-5092<br>7 - 8 feet | SS-TP-07-03<br>96-5092<br>0 - 0.25 | SB-TP-07-0002<br>96-5092<br>0 - 2 feet |
| Sample Date:                                              | 10/24/96                               | 10/24/96                               | 10/24/96                                    | 10/24/96                               | 10/24/96                               | 10/23/96                           | 10/24/96                               |
| TCL Polychlorinated Biphenyls (mg/kg)                     |                                        |                                        |                                             |                                        |                                        |                                    |                                        |
| Aroclor 1016                                              | VN                                     | NA                                     | ₹Z                                          | Ϋ́                                     | V<br>Z                                 | = -                                | =                                      |
| Aroclor 1221                                              | V<br>N                                 | Ϋ́Z                                    | K Z                                         | NA                                     | VN<br>N                                | <u> </u>                           | 2                                      |
| Aroclor 1232                                              | V<br>N                                 | V.                                     | ٧Z                                          | Y<br>X                                 | V<br>N                                 | D I                                | 1                                      |
| Aroclor 1242                                              | VN<br>N                                | Ϋ́Z                                    | ٧Z                                          | V<br>V<br>V                            | <<br>N                                 | 0                                  | n                                      |
| Aroclor 1248                                              | N                                      | V.                                     | ۲Z                                          | ۷<br>۷                                 | V<br>N                                 | <u> </u>                           | =                                      |
| Aroclor 1254                                              | Y <sub>N</sub>                         | ΥN                                     | ٧Z                                          | V<br>V<br>V                            | VN<br>N                                | =                                  | n -                                    |
| Aroclor 1260                                              | X<br>X                                 | NA                                     | NA                                          | V<br>V                                 | Ϋ́                                     | n 1                                | 0.1                                    |
| Miscellaneous Parameters                                  |                                        |                                        |                                             |                                        |                                        |                                    |                                        |
| Total Petroleum Hydrocarbons (mg/kg)                      | <b>∨</b> Z                             | Ϋ́N                                    | <b>∀</b> N                                  | <b>∀</b> N                             | Ϋ́                                     | V<br>Z                             | <<br>Z                                 |
| pH (s.u.)                                                 | VN                                     | Y<br>N                                 | Ϋ́N                                         | ٧X                                     | V<br>V                                 | 7.85                               | 7.92                                   |
| Total Phenols (mg/kg)                                     | n                                      | 1 N                                    | <b>D I</b>                                  | n -                                    | 0.1                                    | <b>∠</b> N                         | <b>∠</b> Z                             |
| Total Organic Carbon (mg/l)                               | <b>∠</b> N                             | Υ <sub>N</sub>                         | NA                                          | Υ <sub>Z</sub>                         | ₹<br>Z                                 | 3.1                                | 2.5                                    |

| nued     |
|----------|
| conti    |
| H        |
| H        |
| -7 (cont |
| Ξ        |

| Sample Location:                                                            | TP-07 (conti                                       | continued)                                         |                                                    | TP-08                                              |                                                    | <b>—</b>                                           | TP-09                                              |
|-----------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Sample L.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SB-TP-07-0304<br>96-5092<br>3 - 4 feet<br>10/24/96 | SB-TP-07-0809<br>96-5092<br>8 - 9 feet<br>10/24/96 | SB-TP-08-0002<br>96-5077<br>0 - 2 feet<br>10/23/96 | SB-TP-08-0304<br>96-5077<br>3 - 4 feet<br>10/23/96 | SB-TP-08-0708<br>96-5077<br>7 - 8 feet<br>10/23/96 | SB-TP-09-0002<br>96-5077<br>0 - 2 feet<br>10/23/96 | SB-TP-09-0203<br>96-5077<br>2 - 3 feet<br>10/23/96 |
| TCL Polychlorinated Biphenyls (mg/kg)                                       |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |
| Aroclor 1016                                                                | 2                                                  | n <b>-</b>                                         | 0.1                                                | <u> </u>                                           | n n                                                | AN<br>AN                                           | ∠Z                                                 |
| Aroclor 1221                                                                | n                                                  | 0.1                                                | Ω <b>-</b>                                         | n I                                                | n I                                                | VN<br>N                                            | VZ<br>Z                                            |
| Aroclor 1232                                                                | 7                                                  | 0.1                                                | 0 -                                                | n                                                  | <u> </u>                                           | <b>∠</b> N                                         | ×z                                                 |
| Aroclor 1242                                                                | ) I                                                | 0 1                                                | 0.1                                                | n <b>1</b>                                         | )                                                  | Ϋ́N                                                | VZ<br>Z                                            |
| Aroclor 1248                                                                | n I                                                | n <b>-</b>                                         | O -                                                | 01                                                 | 0 1                                                | Ϋ́N                                                | VZ<br>Z                                            |
| Aroclor 1254                                                                | <b>D</b>                                           | 0.1                                                | 0.1                                                | Ω                                                  | 0.1                                                | ٧X                                                 | VV                                                 |
| Aroclor 1260                                                                | n I                                                | n 1                                                | 0.1                                                | n <b>-</b>                                         | <b>1</b>                                           | Z<br>Z                                             | Ϋ́                                                 |
| Miscellaneous Parameters                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |
| Total Petroleum Hydrocarbons (mg/kg)                                        | 29                                                 | 180                                                | VN                                                 | NA                                                 | ΥN                                                 | 390                                                | 20                                                 |
| pH (s.u.)                                                                   | 7.92                                               | 8.19                                               | 7.91                                               | 8.06                                               | 8.22                                               | ₹Z                                                 | ≺Z                                                 |
| Total Phenols (mg/kg)                                                       | V<br>N                                             | ΥN                                                 | Y'N                                                | VΝ                                                 | NA                                                 | n <b>1</b>                                         | 0 1                                                |
| Total Organic Carbon (mg/l)                                                 | 8.9                                                | 2.7                                                | 2.6                                                | 3.2                                                | 8.2                                                | V V                                                | <b>₹</b> Z                                         |

. Table 4-7 (continued)

Page 8 of 18

| Sample Location:                                                            | TP-09 (continued)                                  | TP-10                                              | 01                                                 |                                                    |                                                    | TP-111                                              |                                                      |                                                      |
|-----------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Sample L.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SB-TP-09-0708<br>96-5077<br>7 - 8 feet<br>10/23/96 | SB-TP-10-0002<br>96-5077<br>0 - 2 feet<br>10/23/96 | SB-TP-10-0809<br>96-5077<br>8 - 9 feet<br>10/23/96 | SS-TP-11-03<br>96-5053<br>0 - 3 inches<br>10/22/96 | SB-TP-11-0002<br>96-5077<br>0 - 2 feet<br>10/23/96 | SB-TP-11-0002D<br>96-5077<br>0 - 2 feet<br>10/23/96 | SB-TP-11-1011<br>96-5077<br>10 - 11 feet<br>10/23/96 | SB-TP-11-1112<br>96-5077<br>11 - 12 feet<br>10/33/96 |
| TCT. Polychlorinated Biphenyls (m9/kg)                                      |                                                    |                                                    |                                                    |                                                    |                                                    |                                                     |                                                      |                                                      |
| Aroclor 1016                                                                | VN<br>à                                            | ۷<br>Z                                             | VZ<br>V                                            | <u> </u>                                           | N 1                                                | 1 0                                                 | 0.1                                                  | =                                                    |
| Aroclor 1221                                                                | V<br>V                                             | Ϋ́N                                                | ΥN                                                 | N I                                                | 0 1                                                |                                                     |                                                      | =                                                    |
| Aroclor 1232                                                                | √N<br>N                                            | Ϋ́N                                                | ΥN                                                 | N I                                                | <u> </u>                                           |                                                     | =                                                    | =                                                    |
| Aroclor 1242                                                                | VZ                                                 | ΥN                                                 | ΥN                                                 | N I                                                | <u> </u>                                           | D -                                                 | ; <u> </u>                                           | 2 =                                                  |
| Aroclor 1248                                                                | V.V.                                               | Ϋ́N                                                | ΥN                                                 | n I                                                | n <b>I</b>                                         | n 1                                                 |                                                      | =======================================              |
| Aroclor 1254                                                                | NA                                                 | ΥN                                                 | Ϋ́N                                                | Π                                                  | O I                                                | 0 I                                                 |                                                      | =                                                    |
| Aroclor 1260                                                                | ×Z                                                 | ΥN                                                 | VV                                                 | N 1                                                | n I                                                | n 1                                                 | 0.1                                                  | î D                                                  |
| Miscellaneous Parameters                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                     |                                                      |                                                      |
| Total Petroleum Hydrocarbons (mg/kg)                                        | 25                                                 | N<br>A                                             | VV                                                 | Ϋ́N                                                | 35 J                                               | 32 J                                                | 01                                                   | 59                                                   |
| pH (s.u.)                                                                   | Y<br>N                                             | Ϋ́N                                                | ΥN                                                 | 8.56                                               | 8.91                                               | 8.84                                                | 7.68                                                 | 7.84                                                 |
| Total Phenols (mg/kg)                                                       | 1 N                                                | N I                                                | n                                                  | NA                                                 | n I                                                | n <b>-</b>                                          | n                                                    | <u> </u>                                             |
| Total Organic Carbon (mg/l)                                                 | ΥN                                                 | ٧X                                                 | ΥN                                                 | 3.2                                                | 3.1                                                | 2.8                                                 | 5.3                                                  | 3.4                                                  |

Table 4-7 (continued)

| Sample Location: | Sample L.D.: SS-RFI-001-03<br>Laboratory Project No.: 96-5053<br>Sample Interval: 0 - 3 inches<br>Sample Date: 10/22/96 | T.C.Polychlorinated Biphenyls (mg/kg) | Aroclor 1016 NA | Aroclor 1221 NA | Aroclor 1232 NA |                                                                                                            | Aroclor 1248 NA | Arocko 1254 NA | Aroctor 12c0 NA | Miscellaneous Parameters | Fotal Petroleum Hydrocarbons (mg/kg) 9.9 | pH(su) 7.09 | Fotal Phenods (mg/kg.) | Foral Organic Carbon (mg/l) |
|------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|--------------------------|------------------------------------------|-------------|------------------------|-----------------------------|
| RF1-01           | SB-RF1-001-0406<br>96-5053<br>4 - 6 feet<br>10/21/96                                                                    |                                       | ٧Z              | YZ              | ٧Z              | Y.V.                                                                                                       | Y.V.            | V.Z            | NA              |                          | U 01                                     | 7 68        | N 1                    | <z< td=""></z<>             |
|                  | SB-RF1-001-1012<br>96-5053<br>10 - 12 feet<br>10/21/96                                                                  |                                       | ٧Z              | VZ.             | ٧Z              | Ϋ́Z                                                                                                        | < Z             | くス             | YZ.             |                          | D 01                                     | 8 11        | D -                    | ΥZ                          |
|                  | SS-RF1-002-03<br>96-5053<br>0 - 3 inches<br>10/22/96                                                                    |                                       | ۲Z              | Ϋ́N             | ٧Z              | ××                                                                                                         | VΝ              | NA             | KZ.             |                          | 115                                      | 7 62        | n 1                    | 38                          |
| K                | SB-RF1-002-0002<br>96-5053<br>0 - 2 feet<br>10/22/96                                                                    |                                       | ζZ              | ٧Z              | ۲Z              | ₹Z                                                                                                         | ΥZ              | ٧Z             | KZ              |                          | 22                                       | 8.24        | <u> </u>               | 46                          |
| KF1-02           | SB-RF1-002-0810<br>96-5053<br>8 - 10 feet<br>10/22/96                                                                   |                                       | ۲Z              | ۲Z              | ۲Z              | <z< td=""><td>۲Z</td><td>۲Z</td><td>VΝ</td><td></td><td>52</td><td>8.03</td><td>0.36 B</td><td>Š</td></z<> | ۲Z              | ۲Z             | VΝ              |                          | 52                                       | 8.03        | 0.36 B                 | Š                           |
|                  | SB-RF1-002-1012<br>96-5053<br>10 - 12 feet<br>10/22/96                                                                  |                                       | ∠<br>Z          | ΑN              | Y.Z             | VN                                                                                                         | N               | YZ.            | Ϋ́Z             |                          | tro                                      | 7 99        | 0.12                   | YZ.                         |

Table 4-7 (continued)

| 8S-RF1-05<br>96-5102<br>0 - 3 inches                                         | 10/25/96     |                                       | ۲Z          | ۲Z           | ٧Z           | < Z          | < Z          | √Z<br>V      | V.N.         |                          | U0 UI                                | ΚZ     | D 1                   | ٧X                          |
|------------------------------------------------------------------------------|--------------|---------------------------------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------------|--------------------------------------|--------|-----------------------|-----------------------------|
| SB-RFI-004-2022<br>96-5198<br>20 - 22 feet                                   | 10/29/96     |                                       | n –         | <u> </u>     | ם -          | D =          | 3 -          | -<br>-       | n -          |                          | ۲Z                                   | 7.90   | ۲Z                    | 27                          |
| RFI-04<br>SB-RFI-004-0204<br>96-5198<br>2 - 4 feet                           | 10/29/96     | :                                     | <u> </u>    | ח            | n            | 3 -          | <u> </u>     | <b>D</b> -   | n -          |                          | ベス                                   | 6.85   | Ϋ́Z                   | 2.5                         |
| SB-RF1-004-0002<br>96-5198<br>0-2 feet                                       | 10/29/96     | ;                                     | 0 -         | <u> </u>     | <u> </u>     | D =          | <u> </u>     | <u> </u>     | n            |                          | ΚZ                                   | 7 65   | ΚZ                    | 2.5                         |
| SB-RF1-003-0406<br>96-5102<br>4 - 6 feet                                     | 10/25/96     | :                                     | n           | n -          | ×            | <b>13 1</b>  | I U          | 70 -         | 10.1         |                          | Ϋ́Z                                  | ΥZ     | ζZ.                   | l E                         |
| SB-RF1-03<br>SB-RF1-003-0002<br>96-5102<br>0 - 2 feet                        | 10/25/96     | :                                     | <b>3</b> -  | 1 13         | ×            | ED I         | 3 -          | 11 (1)       | <u> </u>     |                          | ٧Z                                   | 77 7   | ₹Z                    | l 0 l                       |
| SS-RF1-003-03<br>96-5053<br>0 - 3 inches                                     | 10/22/96     | ;                                     | a<br>-      | =<br>-       | <b>3</b> -   | 7            | <b>-</b>     | 1            | 3_           |                          | 17 J                                 | 8 7 1  | ΚZ                    | 4.5                         |
| Sample Location:<br>Sample LD:<br>Laboratory Project No.<br>Sample Interval: | Sample Date: | TCL Polychlorinated Biphenyls (mg/kg) | Arocky 1016 | Aroclor 1221 | Aroclor 1232 | Araclar 1242 | Aroclar 1248 | Aroctor 1254 | Aroclor 1260 | Miscellancous Parameters | Total Petroleum Hydrocarbons (mg/kg) | pH(su) | Total Phenols (mg/kg) | Total Organic Carbon (mg/l) |

Table 4-7 (continued)

| Sample Location:                        |                                                      | RFI-05 (continued)          |                            |                          | 90-1-1XI                  |                             |                            |
|-----------------------------------------|------------------------------------------------------|-----------------------------|----------------------------|--------------------------|---------------------------|-----------------------------|----------------------------|
| Sample I.D.:<br>Laboratory Project No.: | Sample I.D.: SB-RFI-005-0204<br>Project No.: 96-5167 | SB-RF1-005-0204D<br>96-5167 | SB-RF1-005-1214<br>96-5167 | SS-RFI-006-03<br>96-5077 | SS-RFI-006-03D<br>96-5077 | SB-RFI-006-0204<br>96-5102  | SB-RFI-006-0406<br>96-5102 |
| Sample Interval:                        | 2 - 4 feet                                           | 2 - 4 feet                  | 12 - 14 feet               | 0 - 3 inches             | 0 - 3 inches              | 2 - 4 feet                  | 4 - 6 feet                 |
| Sample Date:                            | 10/28/96                                             | 10/28/96                    | 10/28/96                   | 10/23/96                 | 10/23/96                  | 10/25/96                    | 10/25/96                   |
| :                                       |                                                      |                             |                            |                          |                           |                             |                            |
| ICL Polychlorinated Biphenyls (mg/kg)   |                                                      |                             |                            |                          |                           |                             |                            |
|                                         | ΥN<br>N                                              | ۲Z                          | ٧Z                         | ۲Z                       | ٧Z                        | VZ                          | Ϋ́N                        |
|                                         | YZ                                                   | VZ                          | ٧Z                         | VN                       | ۲Z                        | ₹Z                          | YZ                         |
|                                         | NA                                                   | ٧Z                          | ۲ <u>۷</u>                 | <<br>Z                   | Ϋ́Z                       | ٧Z                          | Ϋ́N                        |
|                                         | YN                                                   | V.V.                        | ۲Z                         | VZ<br>VZ                 | ۲Z                        | ζZ                          | Ϋ́N                        |
|                                         | VΝ                                                   | ٧X                          | VZ.                        | NA                       | Ϋ́Z                       | Ϋ́Z                         | Ϋ́N                        |
|                                         | ΥN                                                   | ۲Z                          | ٧Z                         | VN                       | ٧Z                        | √Z                          | Ϋ́N                        |
|                                         | NA                                                   | VV                          | ΝΑ                         | V.                       | ٧X                        | V.V.                        | VN                         |
|                                         |                                                      |                             |                            |                          |                           |                             |                            |
| Total Petroleum Hydrocarbons (mg/kg)    | <b>~</b>                                             | ٧Z                          | ~                          | 15.1                     | ۲Z                        | ٧Z                          | ΥN                         |
|                                         | 7 18                                                 | 6.93                        | 7.83                       | NA                       | ΥZ                        | ٧z                          | ΥN                         |
|                                         | n I                                                  | 2                           | <u> </u>                   | חו                       | 0 -                       | 51                          | 0 -                        |
|                                         | 8 4                                                  | 4.3                         | 9.5                        | ۲Z                       | ۲Z                        | <z< td=""><td>Ϋ́Z</td></z<> | Ϋ́Z                        |

Table 4-7 (continued)

| Sample Location:                |               | RF:1-07         |                 |         | RFI-08         |                 | RFI-09       |
|---------------------------------|---------------|-----------------|-----------------|---------|----------------|-----------------|--------------|
| Sample 1.D.: SS-RFI-007-03      | SS-RF1-007-03 | SB-RFI-007-0204 | SB-RFI-007-0608 | I       | SS-RFI-008-03D | SB-RFI-008-0507 | 0-600-LHW-SS |
| Laboratory Project No.: 96-5102 | 96-5102       | 96-5167         | 296-5167        | 96-5102 | 96-5102        | 96-5198         | 96-5077      |
| Sample Interval: 0 - 3 inches   | 0 - 3 inches  | 2 - 4 feet      | 6 - 8 feet      |         | 0 - 3 inches   | 5 - 7 feet      | 0 - 3 inches |
| Sample Date: 10/25/97           | 10/25/97      | 10/28/96        | 10/28/96        |         | 10/24/96       | 10/29/96        | 10/23/96     |

|                             | Sample LD:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | 55-KF1-007-03<br>96-5102<br>0 - 3 inches<br>10/25/97 | 30-801-007-0204<br>96-5167<br>2 - 4 feet<br>10/28/96 | 515-RF1-U07-0008<br>96-5167<br>6 - 8 feet<br>10/28/96 | 55-KF1-008-05<br>96-5102<br>0 - 3 inches<br>10/24/96 | 55-KF1-008-05D<br>96-5102<br>0 - 3 inches<br>10/24/96 | 518-4CF1-008-0507<br>96-5198<br>5 - 7 feet<br>10/29/96 | SS-RF1-009-03<br>96-5077<br>0 - 3 inches<br>10/23/96 |
|-----------------------------|---------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| TCL Polychlorin             | I'CL Polychlorinated Biphenyls (mg/kg)                                    |                                                      |                                                      |                                                       |                                                      |                                                       |                                                        |                                                      |
| Aroclor 1016                |                                                                           | Ϋ́N                                                  | VN                                                   | ΨZ                                                    | fn 1                                                 | rn -                                                  | VV                                                     | N I                                                  |
| Aroelor 1221                |                                                                           | Ϋ́N                                                  | KZ.                                                  | Ϋ́Z                                                   | 3-                                                   | no i                                                  | ΚZ                                                     | 0 -                                                  |
| Aroclor 1232                |                                                                           | ΥN                                                   | ΥZ                                                   | YZ                                                    | ~                                                    | ~                                                     | Ϋ́Z                                                    | 5-                                                   |
| Aroclor 1242                |                                                                           | Ϋ́N                                                  | ζ <u>ν</u>                                           | ٧X                                                    | 3 -                                                  | 50 -                                                  | Ϋ́Z                                                    | 0                                                    |
| Aroclor 12:18               |                                                                           | Ϋ́N                                                  | ΥN                                                   | ٧Z                                                    | 3 -                                                  | 33 -                                                  | Ϋ́Z                                                    | 0 1                                                  |
| Aruclor 1254                |                                                                           | KZ.                                                  | ۲Z                                                   | ٧Z                                                    | 35 -                                                 | 3 -                                                   | ΥN                                                     | n -                                                  |
| Aroclor 1260                |                                                                           | Ϋ́                                                   | NA                                                   | VN                                                    | EO I                                                 | 1.03                                                  | VN                                                     |                                                      |
| Miscellaneous Parameters    | trameters                                                                 |                                                      |                                                      |                                                       |                                                      |                                                       |                                                        |                                                      |
| Total Petroleum Li          | Fotal Petroleum Hydrocarbons (mg/kg)                                      | 42.1                                                 | ΥZ                                                   | ₹Z                                                    | LU 001                                               | 130 J                                                 | 35                                                     | 2                                                    |
| pH(su)                      |                                                                           | 8.22                                                 | 8.11                                                 | 8 13                                                  | 8 0.3                                                | 8.04                                                  | 8 7.3                                                  | 8 17                                                 |
| Total Phenols (mg/kg)       | (Ag)                                                                      | ΥN                                                   | VZ.                                                  | VZ.                                                   | n I                                                  | D =                                                   | D -                                                    | 0 -                                                  |
| Total Organic Carbon (mg/l) | bon (mg/l)                                                                | ΥZ                                                   | ΥN                                                   | VV                                                    | 201                                                  | 2.1                                                   | NA                                                     | 2 5                                                  |
|                             |                                                                           |                                                      |                                                      |                                                       |                                                      |                                                       |                                                        |                                                      |

Table 4-7 (continued)

Surface and Subsurface Soil Data TCL PCB and Miscellaneous Parameter Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| RF1-10             | <br> -                                               | 0 - 3 inches                     |                                       |              |              |              | n - m -      |              |                                                                                          |              |                          |                                      |        |                       | 19 J 2.5                    |
|--------------------|------------------------------------------------------|----------------------------------|---------------------------------------|--------------|--------------|--------------|--------------|--------------|------------------------------------------------------------------------------------------|--------------|--------------------------|--------------------------------------|--------|-----------------------|-----------------------------|
|                    | SB-RFI-009-0810<br>96-5102                           | 8 - 10 feet<br>10/24/96          |                                       |              |              |              |              |              |                                                                                          |              |                          |                                      |        |                       |                             |
|                    | SB-RFI-009-0608<br>96-5102                           | 6 - 8 feet<br>10/24/96           |                                       | NA<br>NA     | VN           | V            | Y.           | VN.          | VΝ                                                                                       | ٧X           |                          | 40 (                                 | 8.39   | _                     | VN                          |
| ontinued)          | SB-RF1-009-0406<br>96-5102                           | 4 - 6 feet<br>10/24/96           |                                       | I UI         | 3 -          | ~            | n -          | n -          | 70 -                                                                                     | n -          |                          | <10 UJ                               | 7.36   | 0 -                   | 2.2 J                       |
| RFI-09 (continued) | SB-RF1-009-0204<br>96-5102                           | 2 - 4 feet<br>10/24/96           |                                       | VN           | ۲Z           | VN<br>N      | VΝ           | Ϋ́N          | ۷Z                                                                                       | NA           |                          | u) ci                                | 7.36   | <u> </u>              | VN                          |
|                    | SB-RF1-009-0002D<br>96-5102                          | 0 - 2 feet<br>10/24/96           |                                       | ΥN           | ۲Z           | ΥZ           | Υ <u>Z</u>   | ۲Z           | <z< td=""><td>VN</td><td></td><td>ΥN</td><td>7.92</td><td>חח</td><td><b>C</b>1</td></z<> | VN           |                          | ΥN                                   | 7.92   | חח                    | <b>C</b> 1                  |
|                    | Sample I.D.: SB-RFI-009-0002<br>Project No.: 96-5102 | 0 - 2 feet<br>10/24/96           |                                       | m -          | 3 -          | ×            | rn -         | m I          | 3 -                                                                                      | 3 -          |                          | 20 UJ                                | 7.97   | ח ר                   | I 8 J                       |
| Sample Location:   | Sample I.D.:<br>Laboratory Project No.:              | Sample Interval:<br>Sample Date: | TCL Polychlorinated Biphenyls (mg/kg) | Aroclor 1016 | Aroclor 1221 | Araelar 1232 | Aroelor 1242 | Aroclor 1248 | Aroelor 1254                                                                             | Araclar 1260 | Miscellaneons Parameters | Total Petroleum Hydrocarbons (mg/kg) | pH(su) | Total Phenots (mg/kg) | Total Organic Carbon (mg/l) |

Table 4-7 (continued)

Surface and Subsurface Soil Data TC1, PCB and Miscellaneous Parameter Phase I RFI AL Tech Specially Steel Corporation Dunkirk, New York Facility

| Sample 1D: SB-RF1-010-0204   SB-RF1-010-0304   SB-RF1-011-03   SB-RF1-011-030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample                            | Sample Location:            |                            | RFI-10 (continued)         |                            |                          |                            | RFI-11                 |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|----------------------------|------------------------|-----------------------------------|
| Simple Interval:         0 - 2 feet         2 - 4 feet         8 - 10 feet         0 - 3 inches         0 - 2 sect           Simple Date:         1023/96         1073/96         1073/96         1073/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96         100.23/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sa<br>Laboratory Pr               | mple L.D.: -<br>roject No.: | SB-RFI-010-0002<br>96-5092 | SB-RFI-010-0204<br>96-5092 | SB-RF1-010-0810<br>96-5092 | SS-RFI-011-03<br>96-5077 | SB-RF1-011-0002<br>96-5102 | SB-RF1-011-0002D       | SB-RFI-011-0204                   |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Samph<br>San                      | e Interval:<br>uple Date:   | 0 - 2 feet<br>10/23/96     | 2 - 4 feet<br>10/24/96     | 8 - 10 feet<br>10/23/96    | 0 - 3 inches<br>10/23/96 | 0 - 2 feet<br>10/24/96     | 0 - 2 feet<br>10/24/96 | 70-3102<br>2 - 4 feet<br>10/24/96 |
| 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | l                           |                            |                            |                            |                          |                            |                        | 0.1.40                            |
| 1 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TCT, Polychlorinated Biphenyls (1 | mg/kg)                      |                            |                            |                            |                          |                            |                        |                                   |
| 1 (U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aroclor 1016                      |                             | m I                        | m -                        | nn I                       | 0.1                      |                            |                        |                                   |
| I (1) | Aroclor 1221                      |                             | 3                          | 5 -                        | (1)                        | 7                        | =                          |                        |                                   |
| 1 (U) | Aroelor 1232                      |                             | <b>×</b>                   | ×                          | ~                          |                          | 2                          | 3 a                    | 3 a                               |
| I UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aroclar 1242                      |                             | E(1)                       | fn I                       | <u> </u>                   |                          |                            | -                      | ¥ = -                             |
| 1 (U) | Aroclor 1248                      |                             | m -                        | <u>n</u>                   | m -                        | -<br>-                   |                            | 8 =                    |                                   |
| 1 (U) | Aroclor 1254                      |                             | n -                        | n                          | n -                        | <u> </u>                 | in I                       |                        | 3 =                               |
| 10 UJ 10 UJ NA 19 NA NA NA 800 1 U 1 U 1 U 1 U 1 O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Araclar 1260                      |                             | n i                        | B -                        | IU -                       | 0.1                      | TO -                       | 3 -                    | 33                                |
| 10 UJ NA 19 NA NA NA 800 1 U IU 1 U 1 U 1 O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Miscellaneous Parameters          |                             |                            |                            |                            |                          |                            |                        |                                   |
| NA NA 800<br>1 U 1 U 1 U 1 U 59 J 26 J 22 J 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Petroleum Hydrocarbons (mg/ | (kg)                        | IO OI                      | ID 01                      | VN                         | 61                       | 34 111                     |                        | 11 01                             |
| 1 U 1 U 1 U 1 U 1 U 25 J 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pH (s a )                         |                             | Ϋ́Z                        | Š                          | Ϋ́Z                        | 800                      | 8 2                        | )<br>= =<br>=          | 5 - 5                             |
| 501 261 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Phenols (mg/kg)             |                             | 3 -                        | D =                        | חו                         | <u> </u>                 |                            | =                      | 57.0                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Organic Carbon (mg/l)       |                             | 165                        | 2.6 J                      | 2.2 J                      | 2.9                      | 18.1                       | - 6                    |                                   |

Tuble 4-7 (continued)

Surface and Subsurface Soil Data TCL PCB and Miscellaneous Parameter Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| RF1-12             | SS-RFI-012-03 SS-RFI-012-03D |                         |                  | 10/22/96 10/22/96 |
|--------------------|------------------------------|-------------------------|------------------|-------------------|
|                    | SS-RFI                       | 3-96                    | 0-3              | 10/2              |
|                    | SB-RFI-011-1214              | 96-5102                 | 12 - 14 feet     | 10/24/96          |
|                    | SB-RFI-011-1012              | 96-5102                 | 10 - 12 feet     | 10/24/96          |
| RFI-11 (continued) | SB-RF1-011-0810              | 96-5102                 | 8 - 10 feet      | 10/24/96          |
|                    | SB-RFI-011-0608              | 96-5102                 | 6 - 8 feet       | 10/24/96          |
|                    | Sample I.D.: SB-RF1-011-0406 | 96-5102                 | 4 - 6 feet       | 10/24/96          |
| Sample Location:   | Sample LD.:                  | Laboratory Project No.: | Sample Interval: | Sample Date:      |

| Sample I.D.: Laboratory Project No.: Sample Interval: Sample Date- | Sample I.D.: SB-RFI-011-0406 Project No.: 96-5102 ple Interval: 4 - 6 feet Sample Date: 10/24/96 | SB-RF1-011-0608<br>96-5102<br>6 - 8 feet<br>10/24/96 | SB-RF1-011-0810<br>96-5102<br>8 - 10 feet<br>10/24/96 | SB-RFI-011-1012<br>96-5102<br>10 - 12 feet<br>10/24/96 | SB-RFI-011-1214<br>96-5102<br>12 - 14 feet<br>10/24/96 | SS-RF1-012-03<br>96-5053<br>0 - 3 inches<br>10/22/96 | SS-RFI-012-03D<br>96-5053<br>0 - 3 inches<br>10/22/96 |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| TCL Polychlorinated Biphenyls (mg/kg)                              |                                                                                                  |                                                      |                                                       |                                                        |                                                        |                                                      |                                                       |
| Aroclor 1016                                                       | EO -                                                                                             | m -                                                  | n - n                                                 | 101                                                    | 3 -                                                    | VΝ                                                   | Ϋ́Z                                                   |
| Aroeloi 1221                                                       | 5 -                                                                                              | m I                                                  | n -                                                   | <u>n</u> - C                                           | 55 -                                                   | VΝ                                                   | ΥZ                                                    |
| Arocku 1232                                                        | ~                                                                                                | ~                                                    | ×                                                     | ~                                                      | <b>×</b>                                               | ۲Z                                                   | Ϋ́Z                                                   |
| Araclor 1242                                                       | 3_                                                                                               | E C C C C C C C C C C C C C C C C C C C              | 73 -                                                  | 3 -                                                    | n -                                                    | ΥN                                                   | ζZ                                                    |
| Aroclor 1248                                                       | 3_                                                                                               | n n                                                  | 3 -                                                   | 3 -                                                    | 50 -                                                   | VN                                                   | Ϋ́Z                                                   |
| Aroclar 1254                                                       | 3 -                                                                                              | 33 -                                                 | 3-                                                    | m -                                                    | 3 -                                                    | VN                                                   | Ϋ́Z                                                   |
| Aroclor 1260                                                       | 5 -                                                                                              | (C) -                                                | 31.5                                                  | <b>m</b> -                                             | m -                                                    | N.                                                   | VZ                                                    |
| Miscellaneous Parameters                                           |                                                                                                  |                                                      |                                                       |                                                        |                                                        |                                                      |                                                       |
| Total Petroleum Hydrocarbons (mg/kg)                               | ~                                                                                                | f0 ±1                                                | 29 UJ                                                 | 130 UJ                                                 | 180 UJ                                                 | l 70                                                 | 0                                                     |
| pd1(s.u.)                                                          | 7 80                                                                                             | 8.35                                                 | 8.3                                                   | 8.21                                                   | 7.95                                                   | ΚZ                                                   | Ϋ́Z                                                   |
| Total Phenols (mg/kg)                                              | חו                                                                                               | Ω -                                                  | 01                                                    | N 1                                                    | n n                                                    | 1)                                                   | ח                                                     |
| Total Organic Curbon (mg/l)                                        | 3.3                                                                                              | 2 J                                                  | 101                                                   | I, S, J                                                | 16 J                                                   | ΥN                                                   | VN                                                    |
|                                                                    |                                                                                                  |                                                      |                                                       |                                                        |                                                        |                                                      |                                                       |

Table 4-7 (continued)

Surface and Subsurface Soil Data TCL PCB and Miscellaneous Parameter Phase I RF1

| Sample Location:                        |                                                                                  | RFI-12 (continued)          |                            |                          | RFI-13                                   |                            | RFI-14                   |
|-----------------------------------------|----------------------------------------------------------------------------------|-----------------------------|----------------------------|--------------------------|------------------------------------------|----------------------------|--------------------------|
| Sample I.D.:<br>Laboratory Project No.: | Sample I.D.: SB-RFI-012-0204<br>r Project No.: 96-5077                           | SB-RFI-012-0204D<br>96-5077 | SB-RFI-012-1416<br>96-5077 | SS-RF1-013-03<br>96-5053 | SB-RF1-013-0406<br>96-5092               | SB-RFI-013-1618<br>96-5092 | SS-RF1-014-03<br>96-5053 |
| Sample Interval:<br>Sample Date:        | 2 - 4 feet<br>10/23/96                                                           | 2 - 4 feet<br>10/23/96      | 14 - 16 feet<br>10/23/96   | 0 - 3 inches<br>10/22/96 | 4 - 6 feet<br>10/24/96                   | 16 - 18 feet<br>10/24/96   | 0 - 3 inches<br>10/22/96 |
| TCL Polychlorinated Biphenyls (mg/kg)   |                                                                                  |                             |                            |                          |                                          |                            |                          |
| Aroclor 1016                            | Ϋ́                                                                               | ΥZ                          | ۲Z                         | ۲Z                       | <z< td=""><td>۲Z</td><td>_</td></z<>     | ۲Z                         | _                        |
| Araelar 1221                            | VN                                                                               | ΥZ                          | ベス                         | ΥZ                       | ΥZ                                       | < Z                        | 1                        |
| Aroelor 1232                            | VN                                                                               | V.V.                        | ٧Z                         | Ϋ́Ζ                      | <z< td=""><td>₹<br/>Z</td><td></td></z<> | ₹<br>Z                     |                          |
| Aroelor 1242                            | <z< td=""><td>VZ</td><td>AN</td><td>۲Z</td><td>۲Z</td><td>ζ.</td><td>_</td></z<> | VZ                          | AN                         | ۲Z                       | ۲Z                                       | ζ.                         | _                        |
| Aroclor 1248                            | YZ<br>Z                                                                          | ۲Z                          | ٧Z                         | Ϋ́                       | <b>₹</b> Z                               | ζZ.                        | 1                        |
| Aroclor 1254                            | VN                                                                               | KZ.                         | ΥZ                         | ΥZ                       | ٧X                                       | Ϋ́Z                        |                          |
| Aroclor 1260                            | V.V.                                                                             | V.V.                        | V.V.                       | Υ <u>N</u>               | ٧X                                       | N.N.                       | 1 1                      |
| Miscellaneous Parameters                |                                                                                  |                             |                            |                          |                                          |                            |                          |
| Total Petroleum Hydrocarbons (mg/kg)    | 27                                                                               | 1.3                         | 77                         | 80 J                     | U) 01>                                   | 28 UJ                      | 55 J                     |
| pH (su.)                                | 7.84                                                                             | 7.82                        | 8.05                       | ΚZ                       | 8.39                                     | 8 11                       | Ϋ́N                      |
| Total Phenols (mg/kg)                   |                                                                                  | <b>n</b>                    | חו                         | n =                      | ٧Z                                       | ۲Z                         | 0 12 B                   |
| Total Organic Carbon (mg/l)             | KZ                                                                               | ٧Z                          | ۲Z                         | ۲Z                       | ΥZ                                       | Ϋ́Z                        | 4.6                      |

Table 4-7 (continued)

1

Surface and Subsurface Soil Data TCL PCB and Miscellaneous Parameter Phase I RFI AL Tech Specially Steel Corporation Dunkirk, New York Facility

| THE PART OF THE PA |                                                                                      | RFI-14 (continued)                                     |                                                      | RF1-15                                   |                                            | ~                                        | RF1-16                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|
| Sample LD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample 1.D.: SB-RFI-014-0204 Project No.: 96-5077 2 - 4 feet ismule Date: 10/22/96   | SB-RF1-014-1214<br>96-5077<br>12 - 14 feet<br>10/22/96 | SS-RFI-015-03<br>96-5053<br>0 - 3 inches<br>10/22/96 | SB-RFI-015-0608<br>96-5077<br>6 - 8 feet | SB-RF1-015-1516<br>96-5077<br>15 - 16 feet | SS-RFI-016-03<br>96-5077<br>0 - 3 inches | SB-RFT-016-0406<br>96-5053<br>4 - 6 feet |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                        |                                                      |                                          |                                            |                                          | 0.77701                                  |
| FCL, Polychlorinated Biphenyls (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |                                                        |                                                      |                                          |                                            |                                          |                                          |
| Ancha 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                                    | <u> </u>                                               | <u> </u>                                             | 0 -                                      | 0 1                                        | ۲<br>Z                                   | ₹Z                                       |
| relar 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 -                                                                                  | =                                                      | חר                                                   | חו                                       | 0.1                                        | <z< td=""><td>₹Z</td></z<>               | ₹Z                                       |
| кени 1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                             | D =                                                    | 3 -                                                  | 1) [                                     | 0                                          | <<br>Z                                   | Ś                                        |
| edor 1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D _                                                                                  | 2                                                      | D -                                                  | חר                                       | n I                                        | ٧Z                                       | <<br>Z                                   |
| relor 1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 -                                                                                  | D -                                                    | 2.6                                                  | <b>3</b> -                               | 0 -                                        | ₹Z                                       | < Z                                      |
| Arrelar 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n                                                                                    | n I                                                    | =                                                    | 0.1                                      | חו                                         | < Z                                      | <<br>Z                                   |
| Aroclor 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n I                                                                                  | 0 1                                                    | n -                                                  | D 1                                      | D 7                                        | Ϋ́Z                                      | V.                                       |
| Miscellaneous Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |                                                        |                                                      |                                          |                                            |                                          |                                          |
| Fotal Petroleum Hydrocarbons (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <z< td=""><td>٧Z</td><td>[9]</td><td>Y.V</td><td>٧Z</td><td>VN</td><td>~</td></z<>   | ٧Z                                                     | [9]                                                  | Y.V                                      | ٧Z                                         | VN                                       | ~                                        |
| (8.8.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <z< td=""><td>٧Z</td><td>٧Z</td><td>٧z</td><td>ΥN</td><td>Ϋ́Z</td><td>8,45</td></z<> | ٧Z                                                     | ٧Z                                                   | ٧z                                       | ΥN                                         | Ϋ́Z                                      | 8,45                                     |
| Total Phenols (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1                                                                                  | <u> </u>                                               | D 1                                                  | 0                                        | 0 -                                        | 0 1                                      | n I                                      |
| Total Organic Carbon (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                  | 2.4                                                    | 3.9                                                  | 2.4                                      | 2.4                                        | ζŻ.                                      | Z                                        |

Table 4-7 (continued)

Surface and Subsurface Soil Data TCL PCB and Miscellaneous Parameter Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

|                    | SB-RF1-017-0608 | 96-5167                 | 6 - 8 feet       | 10/28/96     |                                       | <z< th=""><th>٧Z</th><th>۲Z</th><th>۲Z</th><th>٧Z</th><th>٧X</th><th>VV</th></z<> | ٧Z          | ۲Z          | ۲Z                                               | ٧Z           | ٧X            | VV           |
|--------------------|-----------------|-------------------------|------------------|--------------|---------------------------------------|-----------------------------------------------------------------------------------|-------------|-------------|--------------------------------------------------|--------------|---------------|--------------|
| RFI-17             | SB-RFI-017-0204 | 96-5167                 | 2 - 4 feet       | 10/28/96     |                                       | ٧Z                                                                                | √Z          | ٧Z          | <z< td=""><td>ζZ</td><td>٧z</td><td>N.</td></z<> | ζZ           | ٧z            | N.           |
| RFI-16 (continued) | SB-RFI-016-1415 | 96-5053                 | 14 - 15 feet     | 10/22/96     |                                       | ٧Z                                                                                | ۲Z          | ۲Z          | ۲×                                               | ٧×           | ٧X            | VN           |
| Sample Location:   | Sample I.D.:    | Laboratory Project No.: | Sample Interval: | Sample Date: | TCL Polychlorinated Biphenyls (mg/kg) | Arecha 1016                                                                       | Aracha 1221 | Агосия 1232 | Araclar 1242                                     | Arnelur 1248 | Arneliar 1254 | Aroclor 1260 |

at Two samples were madventently collected from this location for analysis of some samples. 

If TC1 = Target Compound List: PCB = polychlorinated hiphenyl.

of nigkg = militeranis per kilogram; mg/l militeranis per liter; s.u = standard units.

of NA = not analyzed.

of Data Qualitiers.

U = constituent not detected at the noted detection limit.

J = constituent detected at an estimated concentration less than the method detected limit.

UB = constituent and detected at the estimated detection limit noted.

B = constituents also detected at an associated blank.

R = data rejected.

U = duplicate sample.

X X X X

 $\overset{N}{\sim}\overset{N}{\sim}\overset{N}{\sim}\overset{N}{\sim}\overset{N}{\sim}$ 

110 8.77 0.11 B NA

Miscellancous Parameters
Total Petroleum Hydrocarbons (mg/kg)
pH (s.u., h)
Total Phends (mg/kg)
Total Organic Carbon (mg/l)

Table 4-8

Subsurface Soil Sample Data (CAMUs A, B, and D)
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| CAMU                         | ••           |                |                | CAMUA          |                |                |                |
|------------------------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Sample Location:             | : TWB-01     | B-01           | LW             | LWB-02         | LWB-03         | 8-03           | LWB-04         |
| Sample 1.D.                  | SB-LWB-01-02 | SB-LWB-01-0608 | SB-LWB-02-0002 | SB-LWB-02-0608 | SB-LWB-03-0002 | SB-LWB-03-0608 | SB-LWB-04-0002 |
| Laboratory Project No.:      |              | 86-2198        | 96-5198        | 96-5198        | 96-5198        | 8612-96        | 96-5198        |
| Sample Interval:             |              | 6 - 8 feet     | 0 - 2 feet     | 6 - 8 feet     | 0 - 2 feet     | 9 - 8 feet     | 0 - 2 feet     |
| Sample Date                  |              | 10/30/96       | 10/30/96       | 10/30/96       | 10/30/96       | 10/30/96       | 10/30/96       |
| Metals (mg/kg) (a)           |              |                |                |                |                |                |                |
| Silver                       | 0.81 U(b)    | 0.83 U         | 5.1            | O 99'0         | O.81 U         | 96.0           |                |
| Arsenic                      | 3.6          | 6.6            | *****          | 4.7            | 4.6            | 5.3            | 7.6            |
| Barium                       | 011          | 180            | 94             | 290            | 83             | 081            | 130            |
| Cadmin                       | <u> </u>     | 3.4            | 4.9            | 3.4            | 3.9            | 4.4            | 9.2            |
| (Tromium (Total)             | 170          | 180            | 77             | 300            | 22             | 510            | 24             |
| Chromium (Hexavalent) (c)    | 11.5         | .91.0          | 11.4           | 1900           | 2.49 U         | 3510           | 2.31 U         |
| Conner                       | 24           | 34             | 22             | 011            | 13             | 48             | 45             |
| Mercury (c)                  | U 60'0       | U 60.0         | O 80'0         | U 80.0         | 0.10 U         | 0.1 U          | 0.12           |
| l cite                       | 8.3          | 4              | 13             | 6              | 32             | 82             | 61             |
| Selenium                     | 0.26 U       | 0.27 U         | 0.26 U         | 0.21 U         | 0.26 U         | 0.23 U         | 0.26 U         |
| Cyanide (c)                  | :            | =              | -              | =              | -              | -              | -              |
| Total (mg/kg)<br>Free (mg/l) | U 500.0      | U 200.0        | 0.005 U        | 0.005 U        | 0.005 U        | 0.0005         | 0.005          |
|                              |              |                |                |                |                |                |                |

Table 4-8 (continued)

Subsurface Soil Sample Data (CAMUS A, B, and D)
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|                                             | CAMU:                                                                     | CAMU A (continued)                                  |                                                     | CAN                                                 | CAMU B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | Đ                                                   | Page 2 of 10                                              |
|---------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|
|                                             | Sample Location:                                                          | LWB-04 (continued)                                  |                                                     | BRB-01                                              | and the state of t | BRB-03                                              | 1                                                   | LEB-01                                                    |
|                                             | Sample LD:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SB-LWB-04-0608<br>96-5198<br>6 - 8 feet<br>10/30/96 | SB-BRB-01-0002<br>96-5200<br>0 - 2 feet<br>10/31/96 | SB-BRB-01-0204<br>96-5200<br>2 - 4 feet<br>10/30/96 | SB-BRB-01-1517<br>96-5200<br>15 - 17 feet<br>10/30/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SB-BRB-03-0103<br>96-5200<br>1 - 3 feet<br>10/31/96 | SB-LEB-01-0204<br>96-5198<br>2 - 4 feet<br>10/29/96 | SB-1.EB-01-0204D (d)<br>96-5200<br>2 - 4 feet<br>10/29/96 |
| Metals (mg/kg) (a)                          |                                                                           |                                                     |                                                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                     |                                                           |
| Silver                                      |                                                                           | 0.92                                                |                                                     | 0.97                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.                                                  | 0.78 U                                              | 0.75 [1]                                                  |
| Arsenic                                     |                                                                           | 9.6                                                 | 21                                                  | 9                                                   | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9                                                 | =                                                   | 9.5                                                       |
| Barium                                      |                                                                           | 260                                                 | 21                                                  | 75                                                  | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                                                  | 16                                                  | 06                                                        |
| Cadmium                                     |                                                                           | 4.3                                                 | 45                                                  | 3.7                                                 | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.8                                                 | 4.9                                                 | 77                                                        |
| Chromium (Total)                            |                                                                           | 450                                                 | 230                                                 | 46                                                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 011                                                 | 45                                                  | 26                                                        |
| Chromium (Hexavalent) (c)                   | (0)                                                                       | 280                                                 | 2 U                                                 | 64.1                                                | 2.11 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.86                                                | 2.3 U                                               | (a) VX                                                    |
| Copper                                      |                                                                           | 44                                                  | 011                                                 | 42                                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                  | 65                                                  | 44                                                        |
| Mercury (c)                                 |                                                                           | 0.10 U                                              | U 01.0                                              | O 060'0                                             | O 00'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1.0                                               | 0.12                                                | U 60.0                                                    |
| Lead                                        |                                                                           | 15                                                  | 12                                                  | 120                                                 | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36                                                  | 7                                                   | 13                                                        |
| Selenium                                    |                                                                           | 0.27 U                                              | 0.24 U                                              | 0.25 U                                              | 0.27 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23 U                                              | 0.25 U                                              | 0.24 U                                                    |
| Cyanide (c)<br>Total (mg/kg)<br>Free (mg/l) |                                                                           | U U 0.005 U                                         | U I<br>U 0.005                                      | 1 U<br>0.005 U                                      | U 1<br>U 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U 1 U 0.005 U                                       | 1 U<br>0.005 U                                      | U 1<br>U 0.005                                            |

Table 4-8 (continued)

Subsurface Soil Sample Data (CAMUs A, B, and D)
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 3 of 10

|                           | CAMU:                            |                    |                    | Ö              | CAMU D (continued) |                |                        | rage 3 of 10             |
|---------------------------|----------------------------------|--------------------|--------------------|----------------|--------------------|----------------|------------------------|--------------------------|
|                           | Sample Location:                 | LEB-01 (continued) | 3.1                | LEB-02         |                    | 3.1            | LEB-03                 |                          |
|                           | Sample 1.D.:                     | SB-LEB-01-0810     | SB-LEB-02-0608     | SB-LEB-02-0810 | SB-LEB-03-0002     | SB-LEB-03-0709 | SB-LEB-03-0709D        | SB-LEB-03-1113           |
| _                         | aboratory Project No.:           | 96-5198            | 96-5198<br>96-5198 | 96-2198        | 96-5210            | 96-5210        | 96-5210                | 96-5210                  |
|                           | Sample Interval:<br>Sample Date: | 10/29/96           | 10/29/96           | 10/29/96       | 11/01/96           | 11/01/96       | 7 - 9 leet<br>11/01/96 | 11 - 13 feet<br>11/01/96 |
| Metals (mg/kg) (a)        |                                  |                    |                    |                |                    |                |                        |                          |
| Silver                    |                                  | 0.8                | 0.8 U              | 0.78 U         | 2.3                | 1.6            | 5.                     | _                        |
| Arsenic                   |                                  | 1.6                | 01                 | 9.6            | 61                 | =              | 8.9                    | 27                       |
| Barium                    |                                  | 82                 | 72                 | 83             | 001                | 170            | 091                    | 061                      |
| Cadmium                   |                                  | 3.7                | 3.7                | 3.9            | 9.3                | 17             | 7.8                    | 91                       |
| Chromium (Total)          |                                  | 7                  | 13                 | 91             | 2300               | 29             | 34                     | 20                       |
| Chromium (Hexavalent) (c) | (5)                              | 2.23 U             | 2.38 U             | 2.25 U         | 1.95 U             | 2.38 U         | Š                      | 2.06 U                   |
| Copper                    |                                  | 31                 | 70                 | 40             | 94                 | 52             | 52                     | 37                       |
| Mercury (c)               |                                  | O 00'0             | O 60'0             | O 80'0         | 0.07 U             | 0.21           | 0.1 U                  | 0 T.0                    |
| Lead                      |                                  |                    | 12                 | =              | 230                | 28             | 13                     | 42                       |
| Selenium                  |                                  | 0.25 U             | 0.26 U             | 0.25 U         | 0.25 U             | 0.26 U         | 0.26 U                 | 0.25 U                   |
| Cyanide (c)               |                                  |                    |                    |                |                    |                |                        |                          |
| Total (mg/kg)             |                                  | 1.0                | 4.2                | 7.1            | n -                | n              | <u> </u>               | <u> </u>                 |
| Free (mg/l)               |                                  | 0.005 U            | 0.005              | 0.007          | 0.005 U            | 0.005 U        | 0.005 U                | 0.005 U                  |

Table 4-8 (continued)

# Subsurface Soil Sample Data (CAMUS A, B, and D) Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 4 of 10

| CAMU:                                                              |                                                     |                                                      | CAMUD                                                | Q ii                                                |                                                      | 01 10 t 28n 1                                      |
|--------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| Sample Location:                                                   |                                                     | LEB-01                                               |                                                      | LEB                                                 | -02                                                  | LEB-03                                             |
| Sample I.D.: Laboratory Project No.: Sample Interval: Sample Date: | SB-LEB-01-0204<br>96-5198<br>2 - 4 feet<br>10/29/96 | SB-LEB-01-0204D<br>96-5200<br>2 - 4 feet<br>10/29/96 | SB-LEB-01-0810<br>96-5198<br>8 - 10 feet<br>10/29/96 | SB-LEB-02-0608<br>96-5198<br>6 - 8 feet<br>10/29/96 | SB-LEB-02-0810<br>96-5198<br>8 - 10 feet<br>10/29/96 | SB-LEB-03-0002<br>96-5210<br>0 - 2 feet<br>11/1/96 |
| l'CL Volatile Organic Compounds (µg/kg) (f)                        |                                                     |                                                      |                                                      |                                                     |                                                      |                                                    |
| Vinyl chloride                                                     | 12 U                                                | 12 U                                                 | 0 =                                                  | 12 U                                                | Ω =                                                  | O I                                                |
| ylene chloride                                                     | 14 B                                                | 12 U                                                 | B                                                    | 13 B                                                | 34 B                                                 | )<br>=                                             |
| nne<br>M                                                           | 12 B                                                | 12 U                                                 | 15 B                                                 | 16 B                                                | 37 B                                                 | ⊃<br>=                                             |
| on disulfide                                                       | 12 U                                                | 12 U                                                 | N II                                                 | 12 U                                                | D =                                                  | D =                                                |
| ichloroethene                                                      | 12 U                                                | 12 U                                                 | 0 =                                                  | 12 U                                                | D II                                                 | 0 =                                                |
| 1,2-Dichloroethene                                                 | 12 U                                                | 12 U                                                 | O ::                                                 | 12 U                                                | <b>D =</b>                                           | 0 =                                                |
| cis-1,2-Dichloroethene                                             | 12 U                                                | 12 U                                                 | N II                                                 | 36                                                  | O ==                                                 | 28                                                 |
| loroethene                                                         | 87                                                  | 570                                                  | O                                                    | 011                                                 | n II                                                 | 76                                                 |
|                                                                    |                                                     |                                                      |                                                      |                                                     |                                                      |                                                    |

٥

Total VOC TICs

130

Total VOC TICs

Total VOC TICs 690

260

Total VOC TICs (g) 670 Total VOC TICs 0 Total VOC TICs

Table 4-8 (continued)

Subsurface Soil Sample Data (CAMUs A, B, and D)
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|       | LEB-03           | SB-LEB-03-0002  | 96-5210                 | 0 - 2 feet       | 11/1/96      |
|-------|------------------|-----------------|-------------------------|------------------|--------------|
|       |                  | SB-LEB-02-0810  | 96-5198                 | 8 - 10 feet      | 10/29/96     |
|       | LEB-02           | SB-LEB-02-0608  | 96-5198                 | 6 - 8 feet       | 10/29/96     |
| CAMUD |                  | SB-LEB-01-0810  | 96-5198                 | 8 - 10 feet      | 10/29/96     |
|       | LEB-01           | SB-LEB-01-0204D | 96-5200                 | 2 - 4 feet       | 10/29/96     |
|       |                  | SB-LEB-01-0204  | 8612-96                 | 2 - 4 feet       | 10/29/96     |
| CAMU: | Sample Location: | Sample 1.D.:    | Laboratory Project No.: | Sample Interval: | Sample Date: |

Page 5 of 10

|       | LEB-03           | SB-L.EB-03-0002 | 96-5210                 | 0 - 2 feet       | 11/1/96      |  |                   |                                          |                     |              |         |                  |             |                  |             |                  |               |
|-------|------------------|-----------------|-------------------------|------------------|--------------|--|-------------------|------------------------------------------|---------------------|--------------|---------|------------------|-------------|------------------|-------------|------------------|---------------|
|       |                  | SB-LEB-02-0810  | 96-5198                 | 8 - 10 feet      | 10/29/96     |  |                   |                                          |                     | Unknown 90 J |         |                  |             |                  |             |                  |               |
|       | LEB-02           |                 |                         |                  |              |  |                   |                                          |                     |              |         | 200 J            | 50 J        |                  | 100 J       |                  | 200 J         |
|       |                  | SB-LEB-02-0608  | 8615-96                 | 6 - 8 feet       | 10/29/96     |  |                   |                                          |                     |              |         |                  | Unknown     | Unknown Aromatic |             | Unknown Aromatic | Hydrocarbon 2 |
| CAMUD |                  | 01              |                         |                  |              |  |                   |                                          | 50 J                | 30 J         | 7 00 J  |                  | 20 J        |                  | 20 J        |                  | 40 J          |
|       |                  | SB-LEB-01-0810  | 96-5198                 | 8 - 10 feet      | 10/29/96     |  |                   |                                          | Unknown             | Unknown      | Unknown | Unknown Aromatic | Hydrocarbon | Unknown Aromatic | Hydrocarbon | Unknown Aromatic | Hydrocarbon   |
|       | LEB-01           | SB-LEB-01-0204D | 96-5200                 | 2 - 4 feet       | 10/29/96     |  |                   |                                          |                     |              |         |                  |             |                  |             |                  |               |
|       |                  | 7               |                         |                  |              |  |                   |                                          | , ix                | 100          | f 0%    | £ 11/4           | 70.3        | 1001             | 60 J        |                  | 80 J          |
|       |                  | SB-LEB-01-0204  | 8615-96                 | 2 - 4 feet       | 10/29/96     |  |                   | (H                                       | Inknown Hydrocarbon | Juknown      | Jaknowa | Ликпомп          | Unknown     | Ликпомп          | Juknown     | Juknown Aromatic | Hydrocarbon   |
| CANUE | Sample Location: | Sample I.D.:    | Laboratory Project No.: | Sample Interval: | Sample Date: |  | Volatile Organics | Tentatively Identified Compounds (µg/kg) |                     |              |         | _                | _           | _                |             |                  |               |

### Table 4-8 (continued)

Subsurface Soil Sample Data (CAMUS A, B, and D)
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 6 of 10

|       | ١               | : SB-LEB-03-0709 SB-LEB-03-1113 | : 96-5210 96-5210       | : 7 - 9 feet 11 - 13 feet | 96/1/11      |
|-------|-----------------|---------------------------------|-------------------------|---------------------------|--------------|
| CAMU: | Sample Location | Sample I.D.:                    | Laboratory Project No.: | Sample Interval:          | Sample Date. |

| I. Volatile Organic Compounds (ug/kg) (f) |        |          |             |
|-------------------------------------------|--------|----------|-------------|
| nyl chloride                              | 24     | 220 E    |             |
| thylene chloride                          | 30 B   | Ω        |             |
| ctone                                     | 720 BD | 130      |             |
| bon disulfide                             | 12 U   | 27       |             |
| -Dichloroethene                           | 12 U   | 4        | ).<br>Sa    |
| ns-1,2-Dichloroethene                     | 12 U   | 230 E    | <u>&gt;</u> |
| 1,2-Dichloroethene                        | 870 D  | 1500 D   |             |
| chloroethene                              | 091    | ∑ O 0001 | ````        |
|                                           |        | 3        | 7           |

| /kg) (f)                                   |          |               |
|--------------------------------------------|----------|---------------|
| ınds (µg/                                  |          |               |
| Compou                                     |          |               |
| <b>Jrganic</b>                             |          | ride          |
| CL. Volatile Organic Compounds (µg/kg) (f) | chloride | ylene chlorid |
| TCL                                        | Vinyl el | Methy         |

| Metnylene enforide | Acetone | Carbon disulfide | I, I-Dichloroethene | trans-1,2-Dichloroethene | cis-1,2-Dichloroethene | Trichloroethene |  |
|--------------------|---------|------------------|---------------------|--------------------------|------------------------|-----------------|--|
| ž                  | 2       | ొ                | =                   | E                        | cis                    | Ξ               |  |
|                    |         |                  |                     |                          |                        |                 |  |

| 220 E | n = | 130    | 27 | 230 E )' 👾 | )<br>L | ت<br>مراجع<br>شرکع | 7 |
|-------|-----|--------|----|------------|--------|--------------------|---|
| 24    |     | 720 BD |    |            | 870 D  | 091                |   |

### Table 4-8 (continued)

# Subsurface Soil Sample Data (CAMUs A, B, and D) Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 7 of 10

CAMU D (continued)
LEB-03 (continued)
SB-LEB-03-1113
96-2110
11-13 feet
11/1/96 SB-LEB-03-0709 96-5210 7 - 9 feet 11/1/96 CAMU:
Sample Location:
Sample LD:
Laboratory Project No.:
Sample Interval:
Sample Date:

Volatile Organics Tentatively Identified Compounds (µg/

| 60000               | 1000                | 30 J    | 30 J    | 20 J    | - 09    | 30 J    | 30 J    | 30 J    |
|---------------------|---------------------|---------|---------|---------|---------|---------|---------|---------|
| Unknown Hydrocarbon | Unknown Hydrocarbon | Unknown |
| -<br>∞              | 8                   |         |         |         |         |         |         |         |
| Unknown             | Unknown             |         |         |         |         |         |         |         |

Total VOC TICs 91

Total VOC TICs

7230

Table 4-8 (continued)

Subsurface Soil Sample Data (CAMUS A, B, and D)
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Page 8 of 10 | LWB-04<br>SB-1,WB-04-0002<br>96-5198<br>0 - 2 feet<br>10/30/96                      |                                                                      |
|--------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|              | B-03<br>SB-TWB-03-0608<br>96-5198<br>6 - 8 feet<br>10/30/96                         | 10.73<br>NA                                                          |
|              | SB-LWB-03-0002<br>96-5198<br>0 - 2 feet<br>10/30/96                                 | 8.56<br>NA                                                           |
| CAMUA        | 5.02<br>SB-LWB-02-0608<br>96-5198<br>6 - 8 feet<br>10/30/96                         | 10.89<br>NA                                                          |
|              | SB-LWB-02-0002<br>96-5198<br>0 - 2 feet<br>10/30/96                                 | 3.52<br>NA                                                           |
|              | 3-01<br>SB-LWB-01-0608<br>96-5198<br>6 - 8 feet<br>10/30/96                         | 11.06<br>NA                                                          |
|              | SB-LWB-01-0204<br>06-5198<br>2 - 4 feet<br>10/30/96                                 | 7.92<br>NA                                                           |
| CAMU         | Sample Location: Sample I.D.: Laboratory Project No.: Sample Interval: Sample Date: | Miscellancous Parameters<br>pH (s.u.)<br>Total Organic Carbon (mg/l) |

Table 4-8 (continued)

Subsurface Soil Sample Data (CAMUS A, B, and D)
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Page 9 of 10<br>CAMU D | LEB-01           | SB-LEB-01-0204 SB-LEB-01-0204D 96-5198  |                   |              | 7.4 8.15                              | 3.2                         |
|------------------------|------------------|-----------------------------------------|-------------------|--------------|---------------------------------------|-----------------------------|
|                        | BRB-03           | SB-BRB-03-0103 SB-T<br>96-5200          |                   | <br>         | 10.32                                 | ۲Z                          |
| CAMUB                  |                  | SB-BRB-01-1517 96-5200                  | 15 - 17 feet      | 10/30/96     | 8.28                                  | ٧×                          |
| CAN                    | BRB-01           | SB-BRB-01-0204<br>96-5200               | 2 - 4 feet        | 10/30/36     | 8.55                                  | NA                          |
|                        | :                | SB-BRB-01-0002<br>96-5200               | 0 - 2 feet        | 10/31/90     | 4,48                                  | 10 U                        |
|                        |                  | SB-LWB-04-0608<br>96-5198               |                   |              | 10.04                                 | ΥN                          |
| CAMU:                  | Sample Location: | Sample I.D.:<br>Laboratory Project No.: | Sample Interval : | Sample Date: | Miscellaneous Parameters<br>pH (s.u.) | Total Organic Carbon (mg/l) |

## Table 4-8 (continued)

#### Subsurface Soil Sample Data (CAMUs A, B, and D) AL Tech Specialty Steel Corporation Dunkirk, New York Facility Phase I RFI

Page 10 of 10

|                    |                    | SB-LEB-03-1113<br>96-5210<br>11 - 13 feet<br>11/1/96                               | 8.19                                                                |
|--------------------|--------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                    | -03                | LEB-03-0709D<br>96-5210<br>7 - 9 feet<br>11/1/96                                   | 6.92                                                                |
|                    | LEB-03             | SB-LEB-03-0709<br>96-5210<br>7 - 9 feet<br>11/1/96                                 | 7.01                                                                |
| CAMO D (continued) |                    | SB-LEB-03-0002<br>96-5210<br>0 - 2 feet<br>11/1/96                                 | 9.78                                                                |
| _                  | ntinued)           | SB-LEB-02-0810<br>96-5198<br>8 - 10 feet<br>10/29/96                               | 8.85<br>2.9                                                         |
|                    | LEB-02 (continued) | SB-LEB-02-0608<br>96-5198<br>6 - 8 feet<br>10/29/96                                | 8.84                                                                |
|                    | LEB-01 (continued) | SB-LEB-01-0810<br>96-5198<br>8 - 10 feet<br>10/29/96                               | 8.35<br>2.4<br>I)                                                   |
|                    | CAMU:              | Sample Location: Sample I.D.: aboratory Project No.: Sample Interval: Sample Date: | Miscellancous Parameter<br>pH (s.u.)<br>Total Organic Carbon (mg/l) |

a/ mg/kg = milligrams per kilogram; ug/kg = micrograms per kilogram; mg/l = milligrams per liter; s.u. = standard units.

b/ Data Qualifiers:

U = constituent not detected at the noted detection limit.

B = constituent also detected in an associated blank

J = constituent detected at an estimated concentration less than the method detected limit.

D = concentration represents that generated for a diluted aliquot.

E = estimated concentration, result outside calibration range of instrument. c/ Analysis for hexavalent chromium, mercury, and cyanide was performed on unsieved sample aliquots consistent with the Work Plan.

d/ D = duplicate sample.

e/ NA = not analyzed.

If TCL = Target Compound List, VOC = Volatile Organic Compound; TIC = Tentatively Identified Compound.

Only those TCL VOCs detected in one or more of the soil samples have been retained in this table.

Unabridged analytical results are presented in Appendix N.

g/ Total VOC TICs represent the sum of all detected TICs.

Table 4-9

Groundwater Sample
TAL Inorganics Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:                            |              | 19-01          |             |             |                     | LAE-04     | 74           |           |
|---------------------------------------------|--------------|----------------|-------------|-------------|---------------------|------------|--------------|-----------|
| Sample LD.:                                 | GW-B-1-1196  | 1196           | GW-B-I-0397 | 1-0397      | GW-LAE-4-1196       | -4-1196    | GW-LAE-4-039 | 1-0397    |
| Laboratory Project No.: Sample Date:        | 96-5507      | 71             | 97-1208     | 208<br>1/97 | 96-5567<br>11/20/96 | .67<br>/96 | 97-1228      | * 22      |
| . !                                         | Total        | Dissolved      | Total       | Dissolved   | Total               | Dissolved  | Total        | Dissolved |
| TAL Inorganics Plus Molybdenum (mg/l) (a,b) |              |                |             |             |                     |            |              |           |
| Silver                                      | 0.0083 U (c) | (p) VN         | 0.007 U     | Ϋ́N         | 0.0083 UJ           | 0.0083 U   | 0.007 UJ     | U 700.0   |
| Aluminum                                    | 0.058 U      | Υ <sub>N</sub> | 0.006 J     | ۷N          | ∞                   | 0.39 J     | 3.5          | 0.096 U   |
| Arsenie                                     | 0.0018 U     | Υ <sub>N</sub> | 0.0025 U    | ۷N          | 0.0023              | 0.0018 U   | 0.0025 U     | 0.0025 U  |
| Barium                                      | 0.24         | N<br>N         | 0.072 J     | ۷N          | 0.087               | 0.035      | 0.091 J      | 0.045 J   |
| Beryllium                                   | 0.0006 U     | Ϋ́N            | 0.0018 U    | Ϋ́N         | 0.0006 U            | 0.0006 U   | 0.0018 U     | 0.0018 U  |
| Calcium                                     | 87           | Š              | 06          | ۷N          | 06                  | 78 J       | 0+1          | 011       |
| Cadmium                                     | 0.0022 U     | ΥN             | 0.005 U     | Ϋ́          | 0.0022 U            | 0.0022 U   | 0.005 U      | 0.005 U   |
| Cobalt                                      | 0.0056 U     | Ϋ́             | 0.017 U     | VV          | 0.0056 U            | 0.0056 U   | 0,017 U      | 0.017 U   |
| Chromium (Total)                            | 0.0078 U     | ۷N             | 0.0084 U    | VV          | 0.0078 U            | 0.0078 U   | 0.0089 J     | 0.0084 U  |
| Chromium (Hexavalent)                       | U 10'0       | ٧X             | 0.02 (e)    | NA          | 0.01 U              | Ϋ́         | 0.01 U       | ΥN        |
| Copper                                      | 0.0047 U     | ΥN             | 0.015       | NA          | 0.0047 U            | 0.0047 U   | 0.052        | 0.014 J   |
| Iron                                        | 0.26 J       | Š              | 0.28 J      | NA          | 7.1                 | 0.65 J     | 5.5          | 0.56      |
| Mercury                                     | 0.0002 U     | Ϋ́             | 0.0002 U    | Ϋ́N         | 0.0002 U            | 0.0002 U   | 0.0002 U     | 0.0002 U  |
| Potassium                                   | 2.3          | Y<br>X         | 2.4 J       | ΥN          | 3.1                 | 0.67       | 1.8 J        | 1.2 J     |
| Magnesium                                   | 9            | ΥN             | 41          | VV          | 28                  | 24 J       | 32           | 28        |
| Manganese                                   | 0.031 J      | V<br>V         | 0.035       | VN<br>N     | 0.34                | 0.11 J     | 1.2          | 0.97      |
| Molyhdenum                                  | 0.01         | <b>∠</b> Z     | 0.043 U     | ΥN          | 0.01                | 0.01 J     | 0.043 U      | 0.043 U   |
| Sodium                                      | 24           | Y<br>Z         | 61          | Ϋ́N         | 47                  | 41.J       | 45           | 4         |
| Nickel                                      | 0.01 U       | Ϋ́             | 0.028 U     | ۷<br>N      | 0.01 U              | U 10'0     | 0.041        | 0.028 U   |
| Lead                                        | 0.0029       | ۷<br>۷         | 0.0048 J    | ۷N          | 0.0072              | 0.0017 U   | 0.013 J      | 0.0026 U  |
| Апціняну                                    | 0.0018       | ٧×             | 0.0027 J    | ΥN          | 0.0016 U            | 0.0016 U   | 0.0026 U     | 0.0026 U  |
| Selenium                                    | 0,0027 U     | Y<br>Z         | 0.0039 U    | ۷×          | 0.0027 U            | 0.0027 U   | 0.0039 U     | 0.0039 U  |
| Thallium                                    | 0.0023 U     | Š              | 0.005 J     | ۷N          | 0.0023 U            | 0.0023 U   | 0.0027 U     | 0.0027 U  |
| Vanadium                                    | 0.0054 U     | Ϋ́             | 0.026 U     | ۷X          | 0.0054 U            | 0.0054 U   | 0.026 U      | 0.026 U   |
| Zinc                                        | 0,019        | Š              | 0.011 J     | ۷V          | 0.027               | 0.0052     | 0.058        | 0.028     |
| Cyanide (Total)                             | 0.005 UJ     | ۷<br>۷         | 0.005 U     | ۷Z          | 0.007               | Ϋ́         | 0.005 U      | ۷<br>Z    |
| Cyanide (Free)                              | 0.005 UJ     | ٧X             | 0.005 U     | ٧X          | 0.057 J             | ٧Z         | 0.005 U      | <<br>Z    |

Table 4-9 (continued)

Groundwater Sample
TAL Inorganies Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 2 of 17

|                                                         | C11/ I A 11/ E 110               | 2 1104    | (11 A 13)                            | E 0307                | 5011 5 W A 1 W                   | 4 1106                                  |                                      | 0307      |
|---------------------------------------------------------|----------------------------------|-----------|--------------------------------------|-----------------------|----------------------------------|-----------------------------------------|--------------------------------------|-----------|
| Sample L.D.:<br>Laboratory Project No.:<br>Sample Date: | GW-LAW-5-<br>96-5586<br>11/21/96 | 36        | GW-LAW-5-039/<br>97-1228<br>03/26/97 | -5-0.597<br>28<br>(97 | GW-LAW-0-<br>96-5586<br>11/21/96 | -0-1196<br>86<br>96                     | GW-LAW-6-0397<br>97-1228<br>03/26/97 | 8<br>7    |
|                                                         | Total                            | Dissolved | Total                                | Dissolved             | Total                            | Dissolved                               | Total                                | Dissolved |
| FAL Inorganies Plus Molybdenum (mg/l)                   |                                  |           |                                      |                       |                                  |                                         |                                      |           |
| i                                                       | 0.0083 U                         | ΥN        | 0.007 UJ                             | ΥN                    | 0.0083 U                         | 0.0083 U                                | 0.018 J                              | Ϋ́Z       |
|                                                         | 0.058 U                          | VN<br>N   | 0.096 U                              | VΝ                    | 0.058 U                          | 0.3                                     | 0.3                                  | Ϋ́N       |
|                                                         | 0.0018 U                         | Ϋ́N       | 0.0025 U                             | NA                    | 0.13                             | 0.13                                    | 0.22 /                               | Ϋ́N       |
|                                                         | 0.014 U                          | ΥN        | 0.017 J                              | ۷N                    | 0.014 U                          | 0.014 U                                 | 0.013 U                              | Y<br>Z    |
|                                                         | 0.0021                           | ٧X        | 0.0018 U                             | ٧N                    | 0.0006 U                         | 0.0006 U                                | 0.0018 U                             | ∠<br>Z    |
|                                                         | 280                              | NA        | 230                                  | ۷N                    | 12                               | 4                                       | 9.5                                  | Ϋ́Z       |
|                                                         | 0.0022 U                         | VN        | 0.005 U                              | ۷N                    | 0.0022 U                         | 0.0022 U                                | 0.0065                               | ∠<br>Z    |
|                                                         | 0.0056 U                         | VZ.       | 0.017 U                              | ۷N                    | 0.0056 U                         | 0.0056 U                                | 0.025 J                              | Ϋ́Z       |
|                                                         | 8.7                              | VZ.       | 3.17                                 | ΥN                    | 43                               | V 14                                    | 43 /                                 | ΥN        |
|                                                         | 5.24                             | NA        | 3.96                                 | AN                    | 36.1                             | NA                                      | 54.5                                 | Ϋ́Z       |
|                                                         | 0.0047 U                         | VZ<br>VZ  | 0.028                                | AN                    | 0.072                            | 0.031                                   | 0.065                                | Ϋ́Z       |
|                                                         | 0.18 J                           | NA        | 0.17                                 | ΝΑ                    | 0.15 J                           | 1.5 J                                   | 0.094 J                              | Ϋ́Ζ       |
|                                                         | 0.0002 U                         | ΥN        | 0.0002 U                             | ΝΑ                    | 0.0002 U                         | 0.0002 U                                | 0.0002 U                             | ۲<br>۷    |
|                                                         | 4.5                              | NA<br>NA  | 4.4 J                                | ۷N                    | =                                | 01                                      | 10                                   | Ϋ́N       |
|                                                         | 16                               | ΥN        | 75                                   | VΑ                    | 11                               | 7.5                                     | 92                                   | Ϋ́Z       |
|                                                         | 0.13 J                           | ΥN        | 0.11                                 | NA                    | 0.0013 J                         | 0.014 J                                 | 0.0029 U                             | ۲Z        |
|                                                         | 0.32                             | ΥN        | 0.33                                 | ۷N                    | 9                                | 5.7                                     | 6.2                                  | Ϋ́Z       |
|                                                         | 01+                              | ۷<br>N    | 290                                  | ۷×                    | 2400                             | 2400                                    | 2700                                 | ₹Z        |
|                                                         | 0.075                            | NA        | 0.085                                | ۷N                    | 0.04 U                           | 0.01 U                                  | 0.055                                | ۷<br>Z    |
|                                                         | 0.0026                           | ΥN        | 0.0026 U                             | ۷N                    | 0.0017 U                         | 0.0017 U                                | 0.0026 U                             | Ϋ́Z       |
|                                                         | 0.0093                           | ۷<br>N    | 0.011 J                              | Ϋ́                    | / 980:0                          | 0.086                                   | 0.15                                 | Ϋ́Z       |
|                                                         | 0.0027 U                         | ΝA        | 0.0039 U                             | ۷X                    | 0.027                            | 0.024                                   | 0.018                                | Y<br>Z    |
|                                                         | 0.0039                           | VZ<br>VZ  | 0.0027 U                             | NA                    | 0.007                            | 0.0052                                  | J 6700.0                             | Š         |
|                                                         | 0.0054 U                         | VΖ        | 0.026 U                              | ΥN                    | 0.2                              | 0.14                                    | 0.29                                 | ۷<br>۷    |
|                                                         | 0.0041                           | Z.        | 0.0067 J                             | ΥN                    | 0.019                            | 0.014                                   | 0.0065 J                             | Ϋ́Z       |
|                                                         | 0.014 J                          | NA<br>AN  | 0.005 U                              | Ϋ́N                   | 0.14 J                           | ×                                       | 0.011                                | ΥN        |
|                                                         | 0.005 UI                         | <<br>Z    | 0.005                                | ۲Z                    | 1 91 0                           | <z< td=""><td>1100</td><td>VZ</td></z<> | 1100                                 | VZ        |

Table 4-9 (continued)

Groundwater Sample TAL Inorganics Plus Molybdenum Data Phase I RFI AL Teeh Specialty Steel Corporation Dunkirk, New York Facility

Page 3 of 17

|                  | -3-0397      | 208                                     | Dissolved |                                       | ××        | Z        | Ž        | Z       | Z Z       | Z Z      | Ž               | ×                 | ××               | Ż                     | Ž        | Ž       | Ž        | Z         | Ž           | Ϋ́        | ×          | Ž      | Ź       | . X      | Ž        | Z        | . <<br>Z | Ž        | Z       | Z               | Z<br>Z         |
|------------------|--------------|-----------------------------------------|-----------|---------------------------------------|-----------|----------|----------|---------|-----------|----------|-----------------|-------------------|------------------|-----------------------|----------|---------|----------|-----------|-------------|-----------|------------|--------|---------|----------|----------|----------|----------|----------|---------|-----------------|----------------|
| 03               | GW-MW-3-0397 | 97-1208                                 | Total     |                                       | 0.02      | 0.62 J   | 0.0025 U | 0.029 J | 0.0018 U  | 220      | <b>✓ 1600.0</b> | 0.018 J           | √f 9             | 8,05                  | 0.046    | l 6.1   | 0.0002 U | 3.7 J     | [9          | 0.21      | 0.3        | 420    | 0.039 J | 0.0026 U | 0.012 J  | 0.0039   | 0 0007   | 0.028 J  | 0.021   | 0.005           | 0.005 U        |
| MW-03            | 3-1196       | 7.7                                     | Dissolved |                                       | 0.0083 U  | 0.058 U  | 0.0018 U | 0.025   | 0.004     | I 061    | 0.0022 U        | 0.0056 U          | ·9'9             | ٧X                    | 0.0058   | 0.015 J | 0.0002 U | 3,4       | 55. J       | 0.078 J   | 0.39 J     | 480 J  | 0.01 U  | 0.0017 U | 0.0063   | 0.008    | 0.0023 U | 0.0054 U | 0.0084  | ×               | V<br>V         |
|                  | GW-MW-3-1196 | 96-5567<br>11/20/96                     | Total     |                                       | 0.0083 UJ | 3.4      | 0.0018 U | 0.044   | 0.005     | 061      | 0.004           | <i>&gt;</i> 900'0 | 1/               | 7.54                  | 0.025    | 5.3     | 0.0002 U | 4.6       | 54          | 0.25      | 0.41 J     | 460    | 0.027   | 0.0017 U | 0.0072   | 0.0042   | 0.0023 U | 0.014    | 0.015   | 0.008 J         | 0.005 UJ       |
|                  | 1-0397       | )8<br>77                                | Dissolved |                                       | Š         | ۷×       | Ϋ́       | NA      | ΑN        | ۷X       | ΥN              | ΥN                | <b>∀</b> Z       | NA                    | Ϋ́N      | VA      | V.       | ×N        | V<br>V<br>V | NA        | NA         | N<br>N | VN      | V        | NA<br>A  | ΥN       | V        | NA<br>V  | ٧X      | ΥN              | ΚZ             |
|                  | GW-MW-1-0397 | 97-1208<br>03/25/97                     | Total     |                                       | U 700.0   | 0.5 J    | 0.0025 U | 0.06 J  | 0.0018 U  | 29       | 0.005 U         | 0.017 U           | 0.022 J          | 0.01 U                | 0.018    | 0.99 J  | 0.0002 U | 20        | 54          | 0.18      | 0.38       | 120    | 0.039 J | 0.0085 J | 0.0026 U | 0.0039 U | 0.0027 U | 0.026 U  | 0.015 J | 0.005 U         | 0.005 U        |
| MW-01            | 1-1196       | 86<br>96                                | Dissolved |                                       | NA        | ۷X       | ۷X       | ۷<br>N  | ΥN        | NA<br>NA | V<br>N          | ۷×                | V.               | ۷۷                    | VV       | ۷V      | VN<br>N  | ۷×        | Ϋ́N         | Ϋ́        | Ϋ́         | Š      | Š       | ΥN       | Ϋ́       | Ϋ́       | ٧×       | Ϋ́       | ΥN      | ×Z              | √Z             |
|                  | GW-MW-1-1196 | 96-5586<br>11/20/96                     | Total     |                                       | 0.0083 U  | 0.28     | 0.0018 U | 0.044   | 0.0006 U  | 77       | 0.0022 U        | 0.0056 U          | 0.0078 U         | O 10'0                | 0.0047 U | 1.5.1   | 0.0002 U | 3.9       | 35          | 0.26 J    | 9.0        | 180    | O 10'0  | 0.0021   | 0.0016 U | 0.0027 U | 0.0023 U | 0.0054 U | 0.024   | 0.000           | 0.005 UJ       |
| Sample Location: | Sample I.D.: | Laboratory Project No.:<br>Sample Date: | . !       | TAL Inorganics Plus Molybdenum (mg/l) | Silver    | Aluminum | Arsenic  | Barium  | Beryllium | Calcium  | Cadmium         | Cobult            | Chromium (Total) | Chromium (Hexavalent) | Copper   | Iron    | Mercury  | Potassium | Magnesium   | Manganese | Molyhdenum | Sodium | Nickel  | Lead     | Antimony | Selenium | Thallium | Vanadium | Zinc    | Cyanide (Total) | Cyanide (Free) |

Table 4-9 (continued)

TAL Inorganics Plus Molybdenum Data Groundwater Sample Phase I RFI

AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Dissolved GW-RFI-002-0397 03/24/97 Total RFI-02 Dissolved GW-RFI-002-1196 96-5507 11/18/96 Total Dissolved GW-RFI-001-0397 97-1208 03/24/97 Total RFI-01 Dissolved GW-RFI-001-1196 11/18/96 Total Sample Location: Sample LD: Laboratory Project No.: Sample Date:

FAL Inorganies Plus Molybdenum (mg/l)

0.0083 U 0.98 0.0023 0.1 0.012

(Inomium (Hexavalent) Chromium (Total) Arsenic Barnum Beryllium Calcium Cadmium Aluminum Coball

Mercury Potassium Magnesium Manganese Molybdenum Sodium Nickel Lead Copper from

0.001 0.0013 U 0.0013 U 0.0013 U 160 J 0.0054 U 0.007 J 0.007 J 0.025 J 0.025 J 0.026 U 0.0026 U 0.0026 U 0.0026 U 0.0026 U 0.0026 U

0.0007 U
0.0031
0.00031
0.00018 U
160
0.0005 U
0.0005 U
0.0005 U
0.0001 U
3.4 J
0.0002 U
2.8 J
71
0.0003 U
0.0003 U
0.0003 U
0.0003 U
0.0003 U

0.0083 U 0.0083 U 0.0025 0.0025 0.0025 0.0026 U 0.0006 U 0.0078 U 0.0078 U 0.0078 U 0.0002 U 0.0002 U 0.0002 U 0.0025 U 0.0002 U 0.0025 U 0.0023 U

0.0007 U
0.0096 U
0.0031 J
0.0056 J
0.0018 U
87 J
0.0017 U
0.0017 U
0.0018 U
1.3 J
28 J
0.0002 U
1.3 J
0.0003 U
0.0018 U

0.11 J 0.023 J 28 0.019 U

100 0.005 U 0.017 U 0.011 J 0.031 7.3 J 0.0002 U 1.8 J 1.8 J 3.2 0.043 U

90 0.0048 J 0.0056 U 0.016 J 0.011 U 1.3 J 0.0002 U 2.2 29

0.12 J 0.0018 U

0.0078 J 0.0026 U 0.0039 U 0.0027 U 0.026 U 0.016 J 0.005 U

0.029 0.005 UJ 0.005 UJ

19 0.028 U 0.029 J 0.0026 U 0.0027 U 0.0027 U 0.037 0.003 U

0.0052 0.0029 0.0027 U 0.0054 0.0054 U 0.005 UJ 0.005 UJ

Zinc Cyanide (Total) Cyanide (Free)

Selenium Thallium Vanadium

Antimony

Page 4 of 17

Table 4-9 (continued)

Groundwater Sample TAL Inorganics Plus Molybdenum Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 5 of 17

| TATAL Integrates Plus Malybelenum (rage)         Laboration Project No.         99-1208 (1199-6)         11/189/6         Total (1199-6)         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6         11/189/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Location:<br>Sample I.D.: | GW-RFI-003-1   | RFI-03<br>003-1196                                                                                     | -MS             | 003-0397    | GW-RFI-004-1196 | RF1-04                                            | -04<br>GW-RFI-004-0397 | 04-0397   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|--------------------------------------------------------------------------------------------------------|-----------------|-------------|-----------------|---------------------------------------------------|------------------------|-----------|
| Total         Dissolved         Dissolved         Total         Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ct No.:                          | 35-96<br>81/11 | 507                                                                                                    | 97-1            | 208<br>4/97 | 96-55           | .28<br>/96                                        | 97-12                  | 08<br>797 |
| 0.0063 U         NA         0.0016         NA         0.0019 U           0.944         NA         0.0993 U         NA         0.038         NA         0.019 J           0.044         NA         0.0993 U         NA         0.0018 U         NA         0.019 J           0.0044         NA         0.0018 U         NA         0.0018 U         NA         0.0018 U           0.0054         NA         0.0018 U         NA         0.0018 U         NA         0.0018 U           0.0055 U         NA         0.0018 U         NA         0.0018 U         NA         0.0018 U           0.0078 U         NA         0.0018 U         NA         0.0018 U         NA         0.0018 U           0.0078 U         NA         0.0018 U         NA         0.0018 U         NA         0.0017 U           0.0078 U         NA         0.002 U         NA         0.0017 U         NA         0.0011 U           0.0074 U         NA         0.002 U         NA         0.002 U         NA         0.0011 U           0.0047 U         NA         0.002 U         NA         0.002 U         NA         0.001 U           0.041 U         NA         0.002 U         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                              | Total          | Dissolved                                                                                              | Total           | Dissolved   | Total           | Dissolved                                         | Total                  | Dissolved |
| 0.0048 JU         NA         0.0016         NA         0.0016           0.0043 JU         NA         0.0049 JU         NA         0.0048 JU         NA         0.0049 JU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1/2                             |                |                                                                                                        |                 |             |                 |                                                   |                        |           |
| NA   0,009 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 0.0083 U       | ۷×                                                                                                     | 0.007 U         | ΥN          | 0.016           | VZ<br>Z                                           | 0.007 U                | 0.007     |
| NA         0.0025 U         NA         0.0018 U         NA         0.0025 U           NA         0.007 J         NA         0.025         NA         0.0025 U           NA         0.0018 U         NA         0.0035 U         NA         0.0018 U           NA         0.005 U         NA         0.0018 U         NA         0.0018 U           NA         0.005 U         NA         0.002 U         NA         0.0014 U           NA         0.0021 U         NA         0.0014 U         0.0014 U         0.0014 U           NA         0.0021 U         NA         0.0014 U         0.0014 U         0.0014 U           NA         0.0021 U         NA         0.0027 U         NA         0.0014 U           NA         0.0021 U         NA         0.0027 U         NA         0.0014 U           NA         0.0021 U         NA         0.0020 U         NA         0.0014 U           NA         0.0022 U         NA         0.0020 U         NA         0.0020 U           NA         0.0023 U         NA         0.0020 U         NA         0.0020 U           NA         0.0024 U         NA         0.0020 U         NA         0.0020 U <td></td> <td>0.94</td> <td><z< td=""><td>0.099 J</td><td>۷<br/>Z</td><td>0.28</td><td>۷<br/>Z</td><td>0.19</td><td>0.36</td></z<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 0.94           | <z< td=""><td>0.099 J</td><td>۷<br/>Z</td><td>0.28</td><td>۷<br/>Z</td><td>0.19</td><td>0.36</td></z<> | 0.099 J         | ۷<br>Z      | 0.28            | ۷<br>Z                                            | 0.19                   | 0.36      |
| NA         0.07 J         NA         0.035         NA         0.13 J           NA         0.0018 U         NA         0.0035         NA         0.0118 U           NA         0.0017 U         NA         0.005 U         NA         0.005 U           NA         0.0017 U         NA         0.0017 U         NA         0.005 U           NA         0.0021 U         NA         0.0017 U         0.0014 U         0.0014 U           NA         0.0021 U         NA         0.0014 U         0.0014 U         0.0014 U           NA         0.0021 U         NA         0.0014 U         0.0014 U         0.0014 U           NA         0.0021 U         NA         0.0027 U         NA         0.0014 U           NA         0.0021 U         NA         0.0020 U         NA         0.0020 U           NA         0.0020 U         NA         0.0020 U         NA         0.0020 U           NA         0.0023 U         NA         0.0020 U         NA         0.0020 U           NA         0.0024 U         NA         0.0020 U         NA         0.0020 U           NA         0.0025 U         NA         0.0020 U         NA         0.0020 U <td></td> <td>0.0019</td> <td>۷N</td> <td>0.0025 U</td> <td>۷N</td> <td>0.0018 U</td> <td>VZ<br/>Z</td> <td>0.0025 U</td> <td>0.0025 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | 0.0019         | ۷N                                                                                                     | 0.0025 U        | ۷N          | 0.0018 U        | VZ<br>Z                                           | 0.0025 U               | 0.0025 U  |
| NA         0,0018 U         NA         0,0035         NA         0,0018 U           NA         0,005 U         NA         0,0033         NA         0,007 U           NA         0,007 U         NA         0,0018         NA         0,007 U           NA         0,001 U         NA         0,001 U         NA         0,001 U           NA         0,002 I         NA         0,001 U         NA         0,001 U           NA         0,002 I         NA         0,001 U         NA         0,001 U           NA         0,002 I         NA         0,001 U         NA         0,001 U           NA         0,002 I         NA         0,002 U         NA         0,001 U           NA         0,002 I         NA         0,002 U         NA         0,001 U           NA         0,002 I         NA         0,002 U         NA         0,002 U           NA         0,025 I         NA         0,002 U         NA         0,002 U           NA         0,002 U         NA         0,002 U         NA         0,002 U           NA         0,002 U         NA         0,002 U         NA         0,002 U           NA         0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | 0.064          | ۷N                                                                                                     | 0.07 J          | NA          | 0.25            | ٧Z                                                | 0.13 J                 | 0.14 J    |
| NA   150   NA   100   NA   100   NA   1005 U   NA   10005 U   NA   |                                  | 0.0006 U       | ۷N                                                                                                     | 0.0018 U        | V.          | 0.0038          | <z< td=""><td>0.0018 U</td><td>0.0018 U</td></z<> | 0.0018 U               | 0.0018 U  |
| NA         0.005 U         NA         0.0093 U         NA         0.005 U           NA         0.017 U         NA         0.001 U         NA         0.001 U           NA         0.021 U         NA         0.001 U         NA         0.0014 U           NA         0.021 U         NA         0.002 U         NA         0.014 U           NA         0.021 U         NA         0.024 U         NA         0.014 U           NA         0.021 U         NA         0.021 U         NA         0.014 U           NA         0.022 U         NA         0.014 U         0.014 U         0.014 U           NA         0.022 U         NA         0.002 U         NA         0.014 U           NA         0.022 U         NA         0.002 U         NA         0.022 U           NA         0.028 U         NA         0.023 U         NA         0.023 U           NA         0.0024 U         NA         0.0024 U         NA         0.0026 U           NA         0.0025 U         NA         0.0027 U         NA         0.0026 U           NA         0.0026 U         NA         0.0027 U         NA         0.0027 U           NA <td></td> <td>150</td> <td>۷N</td> <td>150</td> <td>V.</td> <td>001</td> <td>VN<br/>N</td> <td>94</td> <td>99 J</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | 150            | ۷N                                                                                                     | 150             | V.          | 001             | VN<br>N                                           | 94                     | 99 J      |
| NA 0.017 U NA 0.018 NA 0.017 U NA 0.017 U NA 0.0084 U NA 0.002 NA 0.0084 U NA 0.002 NA 0.0084 U NA 0.001 U NA 0.0002 U NA 0.002 U NA 0.00 |                                  | 0.0022 U       | VΑ                                                                                                     | 0.005 U         | NA<br>NA    | 0.0093 U        | ۲<br>۲                                            | 0.005 U                | 0.005 U   |
| NA 0.0084 U NA 0.002 NA 0.001 U NA 0.0002 U NA 0.0002 U NA 0.0002 U NA 0.0002 U NA 0.002 |                                  | 0.0056 U       | ۷N                                                                                                     | 0.017 U         | Ϋ́N         | 0.018           | VV                                                | 0.017 U                | U.017 U   |
| NA 0.05 (e) NA 0.01 U NA 0.01 U NA 0.01 U NA 0.01 U NA 0.021 U NA 0.002 U NA 0.021 U NA 0.022 U NA 0.022 U NA 0.022 U NA 0.023 NA 0.022 U NA 0.002 U NA |                                  | 0.0078 U       | ٧X                                                                                                     | 0.0084 U        | ΥN          | 0.02            | ٧X                                                | 0.0084 U               | 0.01      |
| NA         0.021         NA         0.027         NA         0.014           NA         2.7 J         NA         0.68         NA         0.014           NA         0.0002 U         NA         0.0002 U         0.31 J           NA         42         NA         0.0002 U         0.21 J           NA         42         NA         0.002 U         0.029           NA         0.95         NA         0.029         NA         0.029           NA         0.028         NA         0.023         NA         0.028 U         NA         0.028 U           NA         0.0028 U         NA         0.0017         NA         0.0026 U         0.0026 U           NA         0.0028 U         NA         0.0021 U         NA         0.0026 U         0.0026 U           NA         0.0039 U         NA         0.0027 U         NA         0.0026 U         0.0027 U           NA         0.0027 U         NA         0.0027 U         NA         0.0027 U         0.0027 U           NA         0.0026 U         NA         0.0027 U         NA         0.0027 U         0.0027 U           NA         0.0026 U         NA         0.0027 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 0.01 U         | VV                                                                                                     | (0.05 (e)       | Y.V         | 0.01 U          | VΝ                                                | U 10'0                 | ۷<br>N    |
| NA 0.0002 U NA 0.002 U |                                  | 0.0047 U       | ۷N                                                                                                     | 0.021           | VA          | 0.027           | Y<br>Z                                            | 0.014                  | 0.02 J    |
| U         NA         0.0002 U         NA         0.0002 U         NA         2.1 J           NA         3 J         NA         2.5         NA         2.1 J           NA         42         NA         0.056         NA         48           J         NA         0.95         NA         0.023         NA         0.043           NA         1.2         NA         0.023         NA         0.043         U           NA         0.028 U         NA         0.023         NA         0.043         U           U         NA         0.0035 U         NA         0.0017         NA         0.0036 U           U         NA         0.0035 U         NA         0.0027 U         NA         0.0036 U           U         NA         0.0035 U         NA         0.0027 U         NA         0.0036 U           U         NA         0.0027 U         NA         0.0027 U         NA         0.0026 U           U         NA         0.0027 U         NA         0.0026 U         NA         0.0026 U           U         NA         0.005 U         NA         0.005 U         NA         0.005 U           U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                | Ϋ́                                                                                                     | 2.7 J           | VV          | 0.68            | √Z                                                | 0.31 J                 | -2        |
| NA   3 J   NA   2.5 NA   48   48   48   48   48   48   48   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | 0.0002 U       | Ϋ́N                                                                                                    | 0.0002 U        | VV          | 0.0002 U        | Ϋ́                                                | 0.0002 U               | 0.0002 U  |
| NA   0.055   NA   0.055   NA   0.0239     NA   0.055   NA   0.0239     NA   0.023   NA   0.0239     NA   0.023   U   NA   0.0035   U   NA   0.0025   U     NA   0.0025   U   NA   0.0027   U   NA   0.0025   U     NA   0.0027   U   NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U     NA   0.0027   U   NA   0.0027   U   U     NA   0.0027   U   U   U   U   U   U   U   U   U                                                                                                                                                                                                                                       |                                  | 3.3            | VΝ                                                                                                     | 3.3             | VV          | 2.5             | VZ                                                | 2.1 J                  | 2.1.3     |
| J         NA         0.955         NA         0.056         NA         0.029           NA         1.2         NA         0.023         NA         0.043 U           NA         81         NA         0.033         NA         0.043 U           U         NA         0.0028 U         NA         0.0028 U         NA         0.0028 U           U         NA         0.0026 U         NA         0.0026 U         NA         0.0026 U           U         NA         0.0027 U         NA         0.0029 U         NA         0.0029 U           U         NA         0.0027 U         NA         0.0020 U         NA         0.0020 U           U         NA         0.0025 U         NA         0.0020 U         NA         0.0020 U           U         NA         0.005 U         NA         0.005 U         NA         0.005 U           U         NA         0.005 U         NA         0.005 U         NA         0.005 U           U         NA         0.005 U         NA         0.005 U         NA         0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 45             | Ϋ́N                                                                                                    | 42              | VΑ          | 20              | ΥN                                                | 48                     | F 05      |
| NA 1.2 NA 0.023 NA 0.043 U NA 0.028 U NA 0.0035 J NA 0.0035 J NA 0.0035 J NA 0.0035 U NA 0.0035 U NA 0.0037 U NA 0.0005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | 0.94 J         | VΝ                                                                                                     | 0.95            | ΥN          | 0.056           | VΖ                                                | 0.029                  | 0.039 J   |
| NA   0.028 U NA   0.038 U NA   0.038 U NA   0.0028 U NA   0.0028 U NA   0.0028 U NA   0.0028 U NA   0.0026 U NA   0.0027 U NA   0.0026 U NA   0.005 U NA      |                                  | 1.3            | VΝ                                                                                                     | 1.2             | VΑ          | 0.023           | VZ                                                | 0.043 U                | 0.043 U   |
| U NA 0.028 U NA 0.03 NA 0.03 NA 0.028 U NA 0.0028 U NA 0.0025 U NA 0.0027 U NA 0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 9.5            | VΝ                                                                                                     | <del>-</del> 28 | VA          | 17              | VZ                                                | 1.5                    | 15.1      |
| NA         0.0035 J         NA         0.0017         NA         0.0026 U           U         NA         0.0025 U         NA         0.0026 U         0.0026 U           U         NA         0.0027 U         NA         0.0023 U         NA         0.0026 U           U         NA         0.026 U         NA         0.029 U         NA         0.0027 U           U         NA         0.026 U         NA         0.017 J         NA         0.017 J           UJ         NA         0.005 U         NA         0.005 U         NA         0.005 U           UJ         NA         0.005 U         NA         0.005 U         NA         0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | 0.01 U         | Ϋ́                                                                                                     | 0.028 U         | ۷N          | 0.03            | ΥN                                                | 0.028 U                | 0.028 U   |
| U         NA         0,0026 U         NA         0,0016 U         NA         0,0026 U           U         NA         0,0037 U         NA         0,0037 U         NA         0,0039 U           U         NA         0,0024 U         NA         0,0024 U         NA         0,0024 U           U         NA         0,025         NA         0,017 J         NA         0,017 J           UJ         NA         0,005 U         NA         0,005 U         NA         0,005 U           UJ         NA         0,005 U         NA         0,005 U         NA         0,005 U           UJ         NA         0,005 U         NA         0,005 U         NA         0,005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | 0.0075         | VΝ                                                                                                     | 0.0035 J        | NA          | 0.0017          | Ϋ́                                                | 0.0026 U               | 0.0026 U  |
| NA 0.0039 U NA 0.0027 U NA 0.0039 U NA 0.0039 U NA 0.0039 U NA 0.0027 U NA 0.017 U NA 0.017 U NA 0.017 U NA 0.017 U NA 0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 0.0016 U       | ٧×                                                                                                     | 0.0026 U        | VV          | 0.0016 U        | ۷Z                                                | 0.0026 U               | 0.0026 U  |
| NA 0.0027 U NA 0.0023 U NA 0.0027 U NA 0.0027 U NA 0.0027 U NA 0.0027 U NA 0.017 U NA 0.017 J NA 0.005 UJ NA 0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 0.0027 U       | ΥN                                                                                                     | 0.0039 U        | Y<br>Z      | 0.0027 U        | Ϋ́Z                                               | 0.0039 U               | 0.0039 U  |
| NA 0.026 U NA 0.029 NA 0.026 U NA 0.026 U NA 0.017 1 NA 0.017 1 NA 0.017 1 NA 0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | 0.0023 U       | √N<br>N                                                                                                | 0.0027 U        | ΥN          | 0.0023 U        | ۷Z                                                | 0.0027 U               | 0.0027 U  |
| NA 0.025 NA 0.017 NA 0.017 J<br>UJ NA 0.005 U NA 0.005 UJ NA 0.005 U<br>UJ NA 0.005 U NA 0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 0,0054 U       | VΝ                                                                                                     | 0.026 U         | Y<br>V      | 0.029           | VΑ                                                | 0.026 U                | 0.026 U   |
| NA 0.005 U NA 0.005 UJ NA 0.005 U<br>NA 0.005 U NA 0.005 UJ NA 0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | 0.036          | ۷N                                                                                                     | 0.025           | V.          | 0.017           | ۷Z                                                | 0.017 J                | 0.0093.1  |
| NA 0.005 U NA 0.005 U NA 0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 0.005 UJ       | VA                                                                                                     | 0.005 U         | VZ<br>V     | 0.005 UJ        | VΝ                                                | 0.005 U                | ΥN<br>N   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 0.005 UJ       | ۷Z                                                                                                     | 0.005 U         | Ϋ́N         | 0.005 UJ        | ٧×                                                | 0.005 U                | Ϋ́N       |

Table 4-9 (continued)

Groundwater Sample TAL Inorganies Plus Molybdenum Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 6 of 17

| Sample Location:                        |                | RF1-05         |                     |           |                    | RF1-06      |                     |                 |
|-----------------------------------------|----------------|----------------|---------------------|-----------|--------------------|-------------|---------------------|-----------------|
| Sample I.D.:                            | GW-RFI-005-119 | 1196           | GW-RFI-005-0397     | 5-0397    | GW-RFI-006-1190    | 06-1196     | GW-RFI-006-0397     | 06-0397         |
| Laboratory Project No.:<br>Sample Date: | 96-5567        |                | 97-1228<br>03/27/97 | .8<br>7.0 | 795-96<br>26/61/11 | 67<br>96    | 97-1228<br>03/26/97 | 28              |
|                                         | Total          | Dissolved      | Total               | Dissolved | Total              | Dissolved   | Total               | Dissolved       |
| TAL Inorganies Plus Molybdenum (mg/l)   |                |                |                     |           |                    |             |                     |                 |
| Silver                                  | 0.0083 UJ      | ΥN             | U 2000              | V<br>V    | 0.0083 UJ          | VN          | 0.007 UJ            | S               |
| Aluminum                                | 0.44           | ΥN             | 0.13 J              | ٧X        | 1.5                | ۷X          | 0.19 J              | ٧×              |
| Arsenie                                 | 0.0018 U       | Ϋ́             | 0.0025 U            | Ϋ́        | 0.0038             | Ϋ́          | 0.0031 J            | ∠Z              |
| Barium                                  | 0.058          | AN             | 0.036 J             | Ϋ́Z       | 0.075              | VΝ          | 0.03 J              | V.              |
| Beryllium                               | 0.0022         | Ϋ́N            | 0.0018 U            | Ϋ́Z       | 0.0022             | ۷<br>۷      | 0.0018 U            | Š               |
| Calcium                                 | 06             | NA             | 87                  | ΥZ        | 96                 | VZ          | 901                 | <z< td=""></z<> |
| Cadmium                                 | 0.0033         | Š              | 0.005 U             | ۷<br>۷    | 0.0025             | VZ          | 0.005 U             | ۷<br>Z          |
| Cobali                                  | 0.013 <        | Ϋ́             | 0.017 U             | Ϋ́Z       | 0.0056 U           | VΝ          | 0.017 U             | ۷<br>۷          |
| Chromium (Total)                        | 0.04           | Ϋ́             | 0.0084 U            | ΥN        | 0.03               | ∠<br>Z      | 0.0084 U            | <z< td=""></z<> |
| Chronium (Hexavalent)                   | U 10.0         | ٧V             | 0.01 U              | VΝ        | 0.01 U             | <<br>Z      | 0.01 U              | Υ <sub>N</sub>  |
| Copper                                  | 0.01           | ΥN             | 0.012 U             | V<br>V    | 0.013              | ۷×          | 0.012 U             | <<br>Z          |
| Iron                                    | 0.74           | ٧٧             | 0.21                | NA        | 2.4                | ۷Z          | 0.7                 | VN<br>N         |
| Mercury                                 | 0.0002 U       | V.             | 0.0002 U            | VV        | 0.0002 U           | ۷N          | 0.0002 U            | VZ<br>Z         |
| Potassium                               | ;i             | ΥN             | 0.82 J              | VΝ        | 12                 | VN          | 8.9                 | ∠<br>Z          |
| Magnesium                               | 21             | NA             | 20                  | VΝ        | 33                 | V<br>V<br>V | 34                  | ۷<br>۷          |
| Manganese                               | 0.04           | Ϋ́N            | 0.0082 J            | NA        | 0.15               | V.          | 0.17                | ۷×              |
| Molyhdenum                              | 0.049 J        | Υ <sub>N</sub> | 0.043 U             | VΖ        | 0.029 J            | ۷<br>۷      | 0.043 U             | VΝ              |
| Sodium                                  | 27             | Ϋ́Z            | 23                  | VA        | 06                 | ۷N          | 82                  | VN<br>N         |
| Nickel                                  | 0.017          | Ϋ́             | 0.028 U             | ۷N        | 0.024              | Y<br>X      | 0.028 U             | <z< td=""></z<> |
| Lead                                    | 0.0017         | ΥN             | 0.0036 J            | ۷Z        | 0.0021             | ΥN          | 0.0026 U            | VV              |
| Antimony                                | 0.0016 U       | ΥN             | 0.0026 U            | NA        | 0.0016 U           | Y<br>Z      | 0.0026 U            | ۷<br>۷          |
| Selemium                                | 0.0094         | ۷<br>۷         | 0.0085              | ۷<br>۷    | 0.0044             | ۷Z          | 0.0039 U            | VN<br>N         |
| Thalkum                                 | 0.0023 U       | NA             | 0.0027 U            | ٧N        | 0.0023 U           | ۷×          | 0.007               | VZ<br>VZ        |
| Vanadium                                | 0.0068         | ΥN             | 0.026 U             | VV        | 0.0054 U           | ۷Z          | 0.026 U             | ××              |
| Zinc                                    | 0.059          | ΥN             | 0.017 J             | ۷N        | 0.023              | VΑ          | 0.0051 U            | VZ<br>VZ        |
| Cyanide (Total)                         | 0.005 UJ       | ΥN             | 0.005 U             | V.        | 0.005 UJ           | ۷×          | 0.005 U             | ۷<br>۷          |
| Cyanide (Free)                          | 0.005 UJ       | Ν              | 0.005 U             | ΝΑ        | 0.005 UJ           | ٧Z          | 0.005 U             | ν<br>Ν          |
|                                         |                |                |                     |           |                    |             |                     |                 |

Table 4-9 (continued)

Groundwater Sample TAL Inorganics Plus Molybdenum Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 7 of 17

| Sample Location:                      |                 | RFI-07                                                                                                |                     |           |                     | RF1-08    |                 |           |
|---------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------|---------------------|-----------|---------------------|-----------|-----------------|-----------|
| Sample 1.D.:                          | GW-RFI-007-1196 | 07-1196                                                                                               | GW-RFI-007-0397     | 007-0397  | GW-RFI-008-1196     | 98-1196   | GW-RFI-008-0397 | 18-0397   |
| Laboratory Project No.: Samule Date:  | 96-5567         | 67                                                                                                    | 97-1208<br>03/26/97 | 908       | 96-5567<br>11/20/96 | 5.7       | 97-1228         | :8<br>77  |
|                                       | Total           | Dissolved                                                                                             | Total               | Dissolved | Total               | Dissolved | Total           | Dissolved |
| TAL Inorganics Plus Molybdenum (mg/l) |                 |                                                                                                       |                     |           |                     |           |                 |           |
| Silver                                | 0.0083 U        | ۲<br>۲                                                                                                | 0.013               | 0.016     | 0.023 J             | V<br>N    | 0.007 UJ        | Š         |
| Aluminum                              | 0.37            | ٧Z                                                                                                    | 0.5 J               | 0.14 J    | 0.18                | ×z        | 0.096 U         | Š         |
| Arsenic                               | 0,0018 U        | ₹<br>Z                                                                                                | 0.0025 U            | 0.0025 U  | 0.0018 U            | VZ<br>Z   | 0.0025 U        | Š         |
|                                       | 0.046           | NA                                                                                                    | 0.13 J              | 0.15 J    | 0.11                | Ϋ́Z       | 0.042 J         | Š         |
| Bervlium                              | 0.01            | ۷Z                                                                                                    | 0.0018 U            | 0.0018 U  | 0.0032              | Ϋ́Z       | 0.0018 U        | Ϋ́N       |
| Calcium                               | 420             | NA                                                                                                    | 200                 | 240 J     | 66                  | ΥN        | 96              | ۷<br>۷    |
| Cachnian                              | 0.0025          | <z< td=""><td>0.0084</td><td>0.0087</td><td>0.0092</td><td>۷<br/>۷</td><td>0.009</td><td>Ϋ́</td></z<> | 0.0084              | 0.0087    | 0.0092              | ۷<br>۷    | 0.009           | Ϋ́        |
| Cobalt                                | 0.017           | VV                                                                                                    | 0.027 J             | 0.017 U   | 0.02                | VΝ        | 0.017 U         | ×         |
| Chromium (Total)                      | 0.033           | VZ<br>VZ                                                                                              | J 690'0             | 0.024     | 0.034               | VV        | 0.0084 U        | Š         |
| (Thromainm (Hexavalent)               | 0.01 U          | Ϋ́Z                                                                                                   | 0.01 U              | VΝ        | O 10'0              | ×         | U 10.0          | Ϋ́N       |
| Conner                                | 0.037           | ΥN                                                                                                    | 0.037               | 0.041 J   | 0.028               | ΥN        | 0.012 J         | Ϋ́N       |
| noul                                  | 0.7             | VV                                                                                                    | 0.77 J              | 0.062 J   | 0.28                | ΥN        | 0.2             | NA        |
| Mercury                               | 0.0002 U        | Ϋ́                                                                                                    | 0.0002 U            | 0.0002 U  | 0.0002 U            | ۷Z        | 0.0002 U        | Ϋ́N       |
| Potassium                             | 28              | VZ.                                                                                                   | 17                  | 17        | 7.6                 | VΝ        | 4.1 J           | Ϋ́        |
| Marinesinth                           | 130             | VV                                                                                                    | 99                  | 70 J      | 26                  | VZ        | 2.5             | Ϋ́        |
| Manganese                             | 2.3             | ٧Z                                                                                                    | 0.81                | _         | 0.1                 | V<br>Z    | 0.066           | Ϋ́Z       |
| Molyhdenim                            | 1.2 J           | ٧Z                                                                                                    | 0.71                | 0.79      | 0.093 J             | VN        | 0.043 U         | <<br>N    |
| Sodium                                | 310             | Y.                                                                                                    | 140                 | 170 J     | ( <del>)</del>      | ۷X        | 45              | ٧×        |
| Nickel                                | 0.089           | <<br>Z                                                                                                | 0.072               | 0.051     | 0.036               | ۲<br>۲    | 0.028 U         | Ş         |
| l card                                | 0.0017 U        | <<br>Z                                                                                                | 0.0031 J            | 0.0026 U  | 0.0031              | ۷N        | 0.02 J          | ××        |
| Antimony                              | 0.0016 U        | VN                                                                                                    | 0.0026 U            | 0.0042 J  | 0.0016 U            | VV        | 0.0026 U        | Ϋ́        |
| Selenium                              | 0.0032          | VN                                                                                                    | 0.0039 U            | 0.0039 U  | 0.0049              | NA        | 0.0039 U        | Ϋ́        |
| Thailliam                             | 0.0023 U        | ₹Z                                                                                                    | 0.0027 U            | 0.0027 U  | 0.0023 U            | ۲×        | 0.0027 U        | ∠N<br>N   |
| Vanadium                              | 0.011           | VZ<br>Z                                                                                               | 0.026 U             | 0.026 U   | 0.028               | V         | 0.026 U         | ΑN        |
| Zinc                                  | 0.025           | NA                                                                                                    | 0.024               | 0.025     | 0.026               | ν<br>Ν    | 0.02            | ۷×        |
| Cyanide (Total)                       | 0.005 UJ        | V<br>N                                                                                                | 0.005 U             | NA        | 0.005 J             | NA        | 0.005 U         | VV        |
| Cyanide (Free)                        | 0.005 UJ        | ٧N                                                                                                    | 0.005 U             | ₹<br>Z    | 0.005 UJ            | ₹<br>Z    | 0.005 U         | <<br>Z    |

Table 4-9 (continued)

Groundwater Sample
TAL Inorganies Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 8 of 17

| RFI-10           | -0397 GW-RFI-010-1196 GW-RFI-010- | 97-1208 96-5567 97-1208<br>03/26/97 11/19/96 03/25/97 | Dissolved Total Dissolved Total |                                       | NA 0.025 J NA 0.007 U | NA 0.25 NA 0.25 J | NA 0.0025 U | NA 0.12 NA 0.076 J | 0.0018 U NA 0.0005 NA 0.0018 U NA | NA 150 NA 170 | NA 0.012 NA 0.005 U | NA 0.026 NA 0.017 U | NA 0.0084 U      | O 1000 VN O 1000 VN    | NA 0.036 NA 0.027 | NA 0.92 NA 0.51 J | NA 0.0002 U NA 0.0002 U | NA 19 NA 17 | NA 53 NA 64 | NA 0.17 NA 0.085 | NA 0.061 J NA 0.043 U | NA 110 NA 100 | NA 0.041 NA 0.028 U | NA 0.0017 U NA 0.0041 J | NA 0.0026 NA 0.0026 U | NA 0.0039 U | NA 0.0023 U NA 0.0027 U | NA 0.036 U | NA 0.044 NA 0.022 | NA 0.005 U NA 0.005 U | NA 0.005 111  |
|------------------|-----------------------------------|-------------------------------------------------------|---------------------------------|---------------------------------------|-----------------------|-------------------|-------------|--------------------|-----------------------------------|---------------|---------------------|---------------------|------------------|------------------------|-------------------|-------------------|-------------------------|-------------|-------------|------------------|-----------------------|---------------|---------------------|-------------------------|-----------------------|-------------|-------------------------|------------|-------------------|-----------------------|---------------|
|                  | GW-RFI-009-1196                   | 96-5528                                               | Total Dissolved                 |                                       | 0.041 0.0083 U        |                   |             |                    | 0.006 0.0034                      |               |                     | 0.036 0.0066        |                  |                        |                   |                   |                         |             | 36 38       |                  | 0.48 0.42             |               | 0.067 0.022         | n                       | 0.0016 U 0.0016 U     |             |                         |            |                   | 7                     |               |
| Sample Location: | Sample I.D.:                      | Laboratory Project No.:<br>Sample Peter               |                                 | TAL Increanies Plus Molybdenum (mg/l) | Silver                | Ahmanin           | Arsenic     | Ranium             | Rerollin                          | Calcium       | Cadmin              | Cobalt              | Chromium (Total) | (Transing (Pexavalent) | Copper            | lion              | Mercury                 | Potassium   | Magnesium   | Manganese        | Mokhdenan             | Notinn        | Nickel              | Lead                    | Antimony              | Selemina    |                         | Vanadium   | Zinc              | ('vanide (Total)      | Januar Chana) |

Table 4-9 (continued)

Groundwater Sample
TAL Inorganics Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 9 of 17

| Sample Location:                                    | : RF1-10 (continued)                                                                                                                       | 961-110-138-MD | RFI-11    | 11 GW-RFI-011-0397 | 111-0397  | GW-RFI-012-1196 | RF1-12                                                  | 2 CW-RFI-012-0397 | 12-0397         |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|--------------------|-----------|-----------------|---------------------------------------------------------|-------------------|-----------------|
| Sampe La.<br>Laboratory Project No.:<br>Sampe Date: | <b>,</b>                                                                                                                                   |                | 28        | 97-1208            | 97        | 96-5586         | 16                                                      | 97-1228           | 28              |
|                                                     |                                                                                                                                            | Total          | Dissolved | Total              | Dissolved | Total           | Dissolved                                               | Total             | Dissolved       |
| TAL Inorganics Plus Molybdenum (mg/l)               |                                                                                                                                            |                |           |                    |           |                 |                                                         |                   |                 |
| Silver                                              | <z< td=""><td>0.026</td><td>0.023 J</td><td>0.007 U</td><td>Y<br/>Z</td><td>0.0083 U</td><td>۷N</td><td>0.007 UJ</td><td>۷<br/>۷</td></z<> | 0.026          | 0.023 J   | 0.007 U            | Y<br>Z    | 0.0083 U        | ۷N                                                      | 0.007 UJ          | ۷<br>۷          |
| Aluminum                                            | <z< td=""><td>0.45</td><td>0.21</td><td>0.27 J</td><td>۷<br/>Z</td><td>0.058 U</td><td>۷X</td><td>0.34</td><td>××</td></z<>                | 0.45           | 0.21      | 0.27 J             | ۷<br>Z    | 0.058 U         | ۷X                                                      | 0.34              | ××              |
| Arsenie                                             | <z< td=""><td>0.0018 U</td><td>0.0018 U</td><td>0.0025 U</td><td>۷Z</td><td>0.0018 U</td><td>ΥN</td><td>0.0025 U</td><td>Ϋ́Z</td></z<>     | 0.0018 U       | 0.0018 U  | 0.0025 U           | ۷Z        | 0.0018 U        | ΥN                                                      | 0.0025 U          | Ϋ́Z             |
| Bariun                                              | Z                                                                                                                                          | 0.43           | 0.32      | 0.28               | VV        | 0.057           | VZ<br>VZ                                                | 0.037 J           | ۷<br>۷          |
| Bervliun                                            | ₹Z                                                                                                                                         | 720.0          | 0.005     | 0.0018 U           | ΥN        | 0.0006 U        | ۷<br>۷                                                  | 0.0018 U          | <z< td=""></z<> |
| Calcium                                             | ΥZ.                                                                                                                                        | 730            | 130       | 011                | V         | 83              | ۷<br>Z                                                  | 62                | ۷×              |
| (admini                                             | ₹Z                                                                                                                                         | 0.016          | 0.011 U   | 0.005 U            | ΥN        | 0.0022 U        | ۷X                                                      | 0.005 U           | ۷×              |
| Cobalt                                              | Š                                                                                                                                          | )V0            | 0.029     | 0.033 J            | Ϋ́        | 0.0056 U        | V.                                                      | 0.017 U           | ۷×              |
| Chromium (Total)                                    | ₹Z                                                                                                                                         | 0.042          | 0.028 J   | 0.016 J            | Ϋ́Z       | 0.0078 U        | VV                                                      | 0.045             | ۷<br>۷          |
| ( Tronnin (Hexavilent)                              | U 10.0                                                                                                                                     | 0.01 U         | ۷V        | 0.01 U             | ۷<br>۷    | 0.01 U          | VZ                                                      | 0.01 U            | ۷×              |
| ( onner                                             | ₹Z                                                                                                                                         | 0.089          | 0.04      | 0.021              | Ϋ́        | 0.0047 U        | V.V.                                                    | 0.012 J           | ٧X              |
| Iron                                                | Š                                                                                                                                          | 0.85           | 0.11      | 1.2                | ٧X        | 0.27 J          | ΝΑ                                                      | 0.86              | <z< td=""></z<> |
| Mercury                                             | Ϋ́Z                                                                                                                                        | 0.0002 U       | 0.0002 U  | 0.0002 U           | ٧X        | 0.0002 U        | VV                                                      | 0.0002 U          | ۷<br>Z          |
| Polassium                                           | ₹Z                                                                                                                                         | 91             | 9.6       | 3.8 J              | Ϋ́        | 15              | ۷×                                                      | 5.5               | <z< td=""></z<> |
| Magnesium                                           | ₹Z                                                                                                                                         | 48             | 34        | 30                 | Ν         | 38              | ۷N                                                      | 2.5               | ۲<br>۲          |
| Manese                                              | Ϋ́Z                                                                                                                                        | 5.4            | 0.81      | 0.05               | ٧X        | 0.18 J          | ۷N                                                      | 0.13              | ۷×              |
| Molybdennin                                         | Ϋ́Z                                                                                                                                        | 0.046          | 0.059     | 0.043 U            | ۲<br>Z    | 0.095           | ۷<br>N                                                  | 0.067             | <z< td=""></z<> |
| Setion                                              | Š                                                                                                                                          | 52             | 56        | 47                 | Ν         | 29              | ۷X                                                      | 16                | ۷<br>۷          |
| Nickel                                              | ₹Z                                                                                                                                         | 0.21           | 0.051     | 0.087              | ۷<br>Z    | 0.01 U          | VV                                                      | 0.00              | ۷V              |
| Lend                                                | ٧X                                                                                                                                         | 0.0027 U       | 0.0058 U  | 0.011              | Ν         | 0.0017 U        | ۷N                                                      | 0.0026 U          | VV              |
| Antimony                                            | ٧Z                                                                                                                                         | 0.0016         | 0.0016 U  | 0.0026 U           | ٧Z        | 0.0023          | ۷N                                                      | 0.0026 U          | ۷V              |
| Selenium                                            | <<br>Z                                                                                                                                     | 0.0027 U       | 0.0027 U  | 0.0039 U           | V.        | 0.0027 U        | ۷N                                                      | 0.0042 J          | ۷×              |
|                                                     | Ϋ́Z                                                                                                                                        | 0.0023 U       | 0.0023 U  | 0.0027 U           | ΥN        | 0.0023 U        | Ϋ́                                                      | 0.0027 U          | ۷۷              |
| Vanadium                                            | Š                                                                                                                                          | 0.056          | 0.036     | 0.026 U            | ×N        | 0.0054 U        | <z< td=""><td>0.026 U</td><td><z< td=""></z<></td></z<> | 0.026 U           | <z< td=""></z<> |
| Zine                                                | ۲Z                                                                                                                                         | 0.042          | 0.091     | 0.017 J            | ΝA        | 0.32            | Ϋ́Z                                                     | 0.031             | ۷×              |
| Cvanide (Total)                                     | <z< td=""><td>0.009 J</td><td>Ϋ́</td><td>0.005 U</td><td>Ϋ́Z</td><td>0.005 UJ</td><td>۷<br/>Z</td><td>0.005 U</td><td>۲<br/>۲</td></z<>    | 0.009 J        | Ϋ́        | 0.005 U            | Ϋ́Z       | 0.005 UJ        | ۷<br>Z                                                  | 0.005 U           | ۲<br>۲          |
| Cyanide (Free)                                      | V<br>Z                                                                                                                                     | 0.005 UJ       | V Z       | 0.005 U            | ΥZ        | 0.006 J         | <<br>Z                                                  | 0.005 U           | <<br>Z          |
|                                                     |                                                                                                                                            |                |           |                    |           |                 |                                                         |                   |                 |

Table 4-9 (continued)

Groundwater Sample
TAL Inorganies Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 10 of 17

| RFI-13           | GW-RFI-013-1196D GW-RFI-013-0397 GW- | 97-5567 96-1228 96-5567 11/20/96 03/26/97 11/20/96 | Dissolved Total Dissolved Total Dissolved Total Dissolved |                                      | 0.022 NA 0.007 UJ NA 0.037 J | 1.6 NA 0.19 J NA 76 | 0,0019 NA 0,0025 U NA 0,062 | 0.1 NA 0.07 J NA 0.95 | 0.0032 NA 0.0018 U NA 0.012 | 98 NA 120 NA 230 | NA 0.012 NA 0.005 U NA 0.042 0.0062 | 0.025 NA 0.017 U NA 0.22 | 0.031 NA 0.0093 J NA 0.43 | 0.01 U NA 0.01 U NA 0.01 U | 0.028 NA 0.021 J NA 0.22 | 2 NA 0.55 NA 170 | 0.0002 U NA 0.0002 U NA 0.0002 U | 6.9 NA 4.9 J NA 32 | 43 NA 44 NA 75 | 0.21 NA 0.11 NA 3.4 | 0.049 NA 0.043 U NA 0.19 J | 96 NA 100 NA 31 | 0.044 NA 0.028 U NA 0.39 | 0.0023 NA 0.0039 J NA 0.042 | 0.0029 NA 0.005 J NA 0.0085 | 0.0027 U NA 0.0039 U NA 0.0064 | 0.0023 U NA 0.0027 U NA 0.0023 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.031 NA 0.026 U NA 0.16 | 0.03 NA 0.014 J NA 0.47 | 1 7000 AM 11 800 O | U.20.0 AN U.20.0 |
|------------------|--------------------------------------|----------------------------------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------|---------------------|-----------------------------|-----------------------|-----------------------------|------------------|-------------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|------------------|----------------------------------|--------------------|----------------|---------------------|----------------------------|-----------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|--------------------|------------------|
|                  | GW-RFI-013-1196                      | 96-5567                                            | П                                                         |                                      | 0.025 J                      | Σ.Τ                 |                             |                       |                             |                  |                                     |                          |                           | n                          |                          |                  | n                                |                    |                | 0.2                 | ſ                          |                 |                          | n                           |                             |                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                         | •                  |                  |
| Sample Location: | Sample I.D.:                         | Laboratory Project No.:<br>Sample Date:            |                                                           | TAL Ingremics Plus Molybdenum (mg/l) | Silver                       | Vicinium            | Arsenic                     | Barian                | Beryllium                   | Calcium          | Cadmium                             | Cobalt                   | (Thromium (Total)         | (Thromann (Hexavalent)     | Comer                    | Iron             | Mercury                          | Potassium          | Magnesium      | Manganese           | Molyhdenun                 | Sodium          | Nickel                   | pear                        | Antimony                    | Selenium                       | The state of the s | Vanadium                 | Zinc                    | Complete (Total)   |                  |

Table 4-9 (continued)

Groundwater Sample TAL Inorganics Plus Molybdenum Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility Page 11 of 17

| Sample Location:                      | RFI-14 (continued)  | ntinued)  |                 |           | RFI-15              | 1-15      |                 |                 |
|---------------------------------------|---------------------|-----------|-----------------|-----------|---------------------|-----------|-----------------|-----------------|
| Sample I.D.:                          | GW-RFI-014-039      | 14-0397   | GW-RFI-015-1196 | 15-1196   | GW-RFI-0            | 15-1196D  | GW-REI-015-0397 | 15-0397         |
| Laboratory Project No.: Sample Date:  | 97-1208<br>03/25/97 | 08<br>97  | 96-5567         | 67<br>96  | 97-5567<br>11/20/96 | 296/      | 96-1208         | 908<br>197      |
|                                       | Total               | Dissolved | Total           | Dissolved | Total               | Dissolved | Total           | Dissolved       |
| TAL Inorganics Plus Molybdenum (mg/l) |                     |           |                 |           |                     |           |                 |                 |
| Silver                                | U 7000              | 0.007 U   | 0.024 J         | 0.023     | 0.029               | 0.018     | U 700.0         | Ϋ́              |
| Aluminum                              | 0.83 J              | 0.096 U   | 43              | 0.28 J    | 4                   | 0.15      | 0.23 J          | Ϋ́Z             |
| Arsenie                               | 0.0025 U            | 0.0025 U  | 0.032           | 0.0018    | 0.03                | 0.0022    | 0.0025 U        | VZ              |
| Barium                                | 0.084 J             | 0.067 J   | 0.63            | 090'0     | 19.0                | 0.035     | 0.044 J         | Ϋ́Ζ             |
| Beryllium                             | 0.0018 U            | 0.0018 U  | 0.0089          | 0.0043    | 0.0088              | 0.0022    | 0.0018 U        | Ϋ́N             |
| Calcium                               | 001                 | 87 J      | 210 J           | 130 J     | 200                 | 57        | 130             | V.              |
| Cadminn                               | 0.005 U             | 0.005 U   | 0.027           | 0.011     | 0.028               | 0.0092    | 0.005 U         | ۷×              |
| Cobalt                                | 0.017 U             | 0.017 U   | 0.095           | 0.025     | 0.095               | 0.02      | 0.017 U         | <<br>Z          |
| Chromium (Total)                      | 0.026 J             | 0.0084 U  | 0.17            | 0.031     | 0.17                | 0.021     | 0.0084 U        | SZ.             |
| Chromium (Hexavalent)                 | 0.01 U              | ΥN        | 0.01            | VV        | 0.01 U              | ۷×        | U 10:0          | √N<br>N         |
| Соррег                                | 0.021               | 0.017 J   | 0.15            | 0.033     | 0.14                | 0.026     | 0.018           | Υ <sub>N</sub>  |
| Iron                                  | 3.6 J               | 0.069 J   | 88              | 0.26 J    | 84                  | 0.2       | 0.6 J           | Ϋ́N             |
| Mereury                               | 0.0002 U            | 0.0002 U  | 0.0002 U        | 0.0002 U  | 0.0002 U            | 0.0002 U  | 0.0002 U        | ΥN              |
| Potassium                             | 7.7                 | 8.1       | 13              | 5.5       | 23                  | 2.7       | 3.7 J           | Ϋ́Ν             |
| Magnesium                             | 36                  | 35 J      | 80              | 50 J      | 74                  | 22        | 46              | √Z              |
| Manganese                             | 1+10                | 0.13 J    | 1.2             | 0.13 J    | 1.3                 | 0.066     | 0.18            | ۷<br>۷          |
| Molybdenum                            | 0.044               | 0.056     | 0.092 J         | 0.076 J   | 0.097               | 0.042     | 0.043 U         | VΝ              |
| Sodium                                | 26                  | 27 J      | 25              | 24 J      | 23                  | _         | 61              | <z< td=""></z<> |
| Nickel                                | 0.05                | 0.028 U   | 0.18            | 0.044     | 0.19                | 0.028     | 0.028 U         | ۷<br>Z          |
| Lead                                  | 0.0048 J            | 0.0039    | 0.032           | 0.0017 U  | 0.032               | 0.0017 U  | 0.0029 J        | ۲Z              |
| Ащінону                               | 0.0026 U            | 0.0026 U  | 0.0044          | 0.0017 U  | 0.0019              | 0.0017 U  | 0.0026 U        | <<br>Z          |
| Sclenium                              | 0.0039 U            | 0.0039 U  | 0,0027 U        | 0.0059    | 0.0038              | 0.0038    | 0.0039 U        | VZ              |
| Thallium                              | 0.0027 U            | 0.0053 J  | 0.0023 U        | 0.0023 U  | 0.0023 U            | 0.003     | 0.0027 U        | ۷<br>۷          |
| Vanadium                              | 0.026 U             | 0.026 U   | 0.1             | 0.03      | 0.11                | 0.023     | 0.026 U         | ۷<br>Z          |
| Zinc                                  | 0.022               | 0.04      | 0.24            | 0.01      | 0.22                | 0.014     | 0.013 J         | Ϋ́              |
| Cyanide (Total)                       | 0.005 U             | Y<br>N    | 0.005 UJ        | ۷×        | 0.005 J             | ۷N        | 0.005 U         | VA              |
| Cyanide (Free)                        | 0.005 U             | ۷N        | 0.005 UJ        | ۷N        | 0.005 UJ            | ٧X        | 0.005 U         | ΝΑ              |

Table 4-9 (continued)

Groundwater Sample
TAL Inorganics Plus Molybdenum Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 12 of 17

| Sample Location: | Sample I.D.: | Laboratory Project No.: |
|------------------|--------------|-------------------------|

|                  | 017-0397                                | 76/          | Dissolved |                                       | V<br>Z   | ××       | ×z       | ź       | ∨Z        | VN<br>N | < <sub>N</sub> | <z< th=""><th>Ž</th><th>\<br/>Z</th><th>&lt;<br/>Z</th><th>\Z</th><th>S Z</th><th>&lt;<br/>Z</th><th>Z.</th><th><z< th=""><th>Ϋ́Ζ</th><th><z< th=""><th><z< th=""><th><z< th=""><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt; Z</th><th><z< th=""><th>\section \section \se</th><th>VN</th></z<></th></z<></th></z<></th></z<></th></z<></th></z<> | Ž                | \<br>Z                | <<br>Z   | \Z    | S Z      | <<br>Z    | Z.        | <z< th=""><th>Ϋ́Ζ</th><th><z< th=""><th><z< th=""><th><z< th=""><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt; Z</th><th><z< th=""><th>\section \section \se</th><th>VN</th></z<></th></z<></th></z<></th></z<></th></z<> | Ϋ́Ζ        | <z< th=""><th><z< th=""><th><z< th=""><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt; Z</th><th><z< th=""><th>\section \section \se</th><th>VN</th></z<></th></z<></th></z<></th></z<> | <z< th=""><th><z< th=""><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt; Z</th><th><z< th=""><th>\section \section \se</th><th>VN</th></z<></th></z<></th></z<> | <z< th=""><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt;<br/>Z</th><th>&lt; Z</th><th><z< th=""><th>\section \section \se</th><th>VN</th></z<></th></z<> | <<br>Z   | <<br>Z   | <<br>Z   | < Z      | <z< th=""><th>\section \section \se</th><th>VN</th></z<> | \section \se | VN             |
|------------------|-----------------------------------------|--------------|-----------|---------------------------------------|----------|----------|----------|---------|-----------|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|----------|-------|----------|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                  | GW-RFI-017-0397<br>97-1208              | 03/26/97     | Total     |                                       | 0.011    | 0.37 J   | 0.0025 U | 0.059 J | 0.0018 U  | 270     | 0.0066         | 0.017 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.089            | 0.01 U                | 0.042    | 1.1   | 0.0002 U | 12        | 16        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.27       | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0028 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0026 U | 0.0039 U | 0.0027 U | 0.026 U  | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005 U        |
| RFI-17           | 7-1196                                  | 91           | Dissolved |                                       | U 10.0   | 0.1 U    | 0.001 U  | 0.074   | 0.003     | 150     | 0.005 U        | 0.01 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 U           | V<br>Z                | 0.016    | 0.066 | 0.0002 U | 2.4       | 47        | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.36       | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.006 U  | 0.001 U  | 0.004 U  | 0.05 U   | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٧Z             |
| 100              | GW-RFI-017-1196<br>96-5567              | 11/20/96     | Total     |                                       | 0.01 U   | 0.38     | U 100.0  | 0.081   | 0.003     | 130     | 0.005 U        | 0.01 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 U           | 0.01 U                | 0.028    |       | 0.0002 U | 20        | 2         | 0,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.41       | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.006 U  | 0.001 U  | 0.004 U  | 0.05 U   | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.029 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005 UJ       |
|                  | 16-0397                                 | - 1          | Dissolved |                                       | ۷Z       | VV       | VV       | ΥN      | Ϋ́        | VV      | Ϋ́             | ΥN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VZ.              | ۷N                    | NA       | VV    | Ϋ́       | ΥN        | VA        | VΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>V     | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VV       | VV       | NA       | VZ       | VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΥN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V<br>V<br>V    |
|                  | GW-RFI-016-0397<br>97-1208              |              | Total     |                                       | U 700.0  | 0.36 J   | 0.0025 U | 0.06 J  | 0.0018 U  | 130     | 0.005 U        | U 710.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0084 U         | U 10.0                | 0.017    | 1.8.1 | 0.0002 U | 2.5 J     | <b>=</b>  | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.59       | 9/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.028 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0031 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0026 U | 0.0039 U | 0.0027 U | 0.026 U  | 0.019 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005 U        |
| RF1-16           | 16-1196                                 |              | Dissolved |                                       | VV       | V        | ΥN       | VN      | V<br>V    | NA      | V              | ۷×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۷<br>۷           | VZ<br>Z               | VV       | ΝA    | ۷N       | NA        | ۷۷        | VN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA         | ٧×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VΝ       | VV       | VV       | VV       | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VV             |
|                  | GW-RFI-016-11<br>96-5567                | 96/81/11     | Total     |                                       | 0.0083 U | 0.058 U  | 0.0018 U | 0.034   | 0.0006 U  | 9       | 0.0022 U       | 0.0056 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0078 U         | 0.01 U                | 0.0047 U | _     | 0.0002 U | 2.4       | 36        | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.71       | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0016 U | 0.0027 U | 0.0023 U | 0.0054 U | 0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005 UJ       |
| Sample Location: | Sample I.D.:<br>Laboratory Project No.: | Sample Date: | ,         | TAL Inorganies Plus Molybdenum (mg/l) | Silver   | Aluminum | Arsenic  | Barium  | Beryllium | Calcium | Cadmium        | Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chromium (Total) | Chromium (Hexavalent) | Copper   | From  | Mercury  | Potassium | Magnesium | Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Molybdenum | Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Антину   | Selenium | Thalliam | Vanadium | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cyanide (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cyanide (Free) |

Table 4-9 (continued)

Groundwater Sample TAL Inorganies Plus Molybdenum Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility Page 13 of 17

| Sample Location:                        |                     | WP-04          |              |                                                                                |                     | WP-05          |                     |           |
|-----------------------------------------|---------------------|----------------|--------------|--------------------------------------------------------------------------------|---------------------|----------------|---------------------|-----------|
| Sample I.D.:                            | GW-WP-4-1196        | -4-1196        | GW-WP-4-0397 | 4-0397                                                                         | GW-WP-5-1190        | -5-1196        | GW-WP-5-0397        | 5-0397    |
| Laboratory Project No.:<br>Sample Date: | 96-5586<br>11/21/96 | 586<br>796     | 97-1208      | 108<br>797                                                                     | 96-5586<br>11/21/96 | 586            | 97-1208<br>03/25/97 | 08<br>97  |
|                                         | Total               | Dissolved      | Total        | Dissolved                                                                      | Total               | Dissolved      | Total               | Dissolved |
| TAL Inorganies Plus Molybdenum (mg/l)   |                     |                |              |                                                                                |                     |                |                     |           |
| Silver                                  | 0.0083 U            | V<br>V         | 0.007 U      | Ϋ́                                                                             | 0.0083 U            | V<br>V         | 0.007 U             | U 700.0   |
| Aluminum                                | 0.14                | VN<br>VN       | 0.096 U      | ۷×                                                                             | 0.42                | ΥN             | 0.32 J              | 0.096 U   |
| Arsenic                                 | 0.0018 U            | Ϋ́Z            | 0.0025 U     | Ϋ́N                                                                            | 0.0022              | V              | 0.0025 U            | 0.0031 J  |
| Barium                                  | 0.03                | ΥN             | 0.02 J       | ΥN                                                                             | 0.063               | V<br>N         | 0.062 J             | 0.053 J   |
| Beryllium                               | 0.003               | VN             | 0.0018 U     | Ϋ́N                                                                            | 0.0014              | ×              | 0.0018 U            | 0.0018 U  |
| Calcium                                 | 0+1                 | Υ <sub>Z</sub> | 130          | ٧×                                                                             | 16                  | VN             | ₹                   | 66)       |
| Cadmium                                 | 0.0064 J            | NA             | 0.005 U      | ΥN                                                                             | 0.0034 J            | V              | 0.005 U             | 0.007     |
| Cobalt                                  | ×10.0               | ΥN             | 0.017 U      | Ϋ́                                                                             | 710.0               | NA             | 0.017 U             | 0.017 U   |
| Chromium (Total)                        | 0.028 J             | ΥN             | 0.0084 U     | ۷×                                                                             | 0.0078 U            | Υ <sub>Z</sub> | 0.0084 U            | 0.0084 U  |
| Chromium (Hexavalent)                   | 0.01 U              | V              | 0.01 U       | ΥN                                                                             | 0.01 U              | ۷<br>۷         | 0.01 U              | Ϋ́Z       |
| Copper                                  | 0.024 U             | ΥN             | 0.015        | NA                                                                             | 0.012 U             | V<br>V         | 0.012 U             | 0.018 J   |
| Iron                                    | 0.44 J              | Š              | 0.27 J       | Ϋ́N                                                                            | 3.1 J               | Š              | 2.1 J               | 1.3       |
| Mercury                                 | 0.0002 U            | VN             | 0.0002 U     | ΝΑ                                                                             | 0.0002 U            | VN             | 0.0002 U            | 0.0002 U  |
| Potassium                               | 3.1                 | <b>∀</b> Z     | 2.4 J        | Ϋ́N                                                                            | 8.1                 | ×Z             | f 9'l               | L 4.1     |
| Magnesium                               | 77                  | ×              | 42           | ΥN                                                                             | 24                  | VN<br>N        | 21                  | 25 J      |
| Manganese                               | 0.071 J             | NA             | 0.068        | ΝΑ                                                                             | 0.32 J              | VV             | 0.45                | 0.35 J    |
| Molyhdennin                             | 0.48                | <<br>Z         | 6.0          | Ϋ́N                                                                            | 0.031 J             | VN<br>N        | 0.043 U             | 0.043 U   |
| Sodium                                  | 76                  | ۷Z             | 3            | ۷N                                                                             | 20                  | Y<br>Z         | 28                  | 26 J      |
| Niekel                                  | 0.019 U             | Y<br>V         | 0.028 U      | <z< td=""><td>O.01 U</td><td>۷<br/>۷</td><td>0.028 U</td><td>0.028 U</td></z<> | O.01 U              | ۷<br>۷         | 0.028 U             | 0.028 U   |
| France                                  | 0.0036              | ۲<br>۲         | 0.0026 U     | <<br>Z                                                                         | 0.0023              | <<br>Z         | 0.0046 J            | 0.0048    |
| Antimony                                | 0.002               | ΥN             | 0.0026 U     | ΥN                                                                             | 0.0019              | ×Z             | 0.0042 J            | 0.0026 U  |
| Selenium                                | 0.0027 U            | Ϋ́N            | 0.0039 U     | Ϋ́                                                                             | 0.0027 U            | <<br>Z         | 0.0039 U            | 0.0039 U  |
| Thallium                                | 0.0023 U            | V<br>V         | 0.0027 U     | ΥN                                                                             | 0.0023 U            | Y<br>Z         | 0.0027 U            | 0.0027 U  |
| Vanadium                                | 0.013 U             | VΝ             | 0.026 U      | Ϋ́                                                                             | 0,0054 U            | V<br>N         | 0.026 U             | 0.026 U   |
| Zinc                                    | 0.044               | ΥN             | 0.028        | ۷N                                                                             | 0.0088              | Υ <sub>N</sub> | 0.011 J             | 0.03      |
| Cyanide (Total)                         | 0.014 J             | Ϋ́Z            | 0.005 U      | VΝ                                                                             | 0.005 J             | NA             | 0.005 U             | <<br>Z    |
| Cyanide (Free)                          | 0.013 J             | Ϋ́Z            | 0.005 U      | Ϋ́N                                                                            | 0.005 UJ            | V<br>V         | 0.005 U             | V<br>V    |
|                                         |                     |                |              |                                                                                |                     |                |                     |           |

Table 4-9 (continued)

Groundwater Sample TAL Inorganics Plus Molybdenum Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility Page 14 of 17

| Sample Location:                        |                     | WT-01A     | ۷۱                  |                |                     | W.T01B         | 118           |                |
|-----------------------------------------|---------------------|------------|---------------------|----------------|---------------------|----------------|---------------|----------------|
| Sample I.D.:                            | GW-WT-1A-HS         | 14-1196    | GW-WT-1A-0397       | 1A-0397        | GW-WT-118-1196      | 1B-1196        | GW-WT-1B-0397 | IB-0397        |
| Laboratory Project No.:<br>Sample Date: | 96-5528<br>11/19/96 | 528<br>/96 | 97-1208<br>03/26/97 | 208<br>797     | 96-5528<br>11/19/96 | 528            | 97-1208       | 808            |
|                                         | Total               | Dissolved  | Total               | Dissolved      | Total               | Dissolved      | Total         | Dissolved      |
| TAL Inorganies Plus Molybdenum (mg/l)   |                     |            |                     |                |                     |                |               |                |
| Silver                                  | 0.000               | 0.022 J    | 0.01                | Ϋ́Z            | 0.0083 U            | 0.011 J        | U 700.0       | U 700.0        |
| Актінит                                 | 0.41                | 0.19       | 0.18 J              | VN             | 0.35                | 0.19           | 0.35 J        | 0.096 U        |
| Arsenic                                 | 0.0067              | 0.0018 U   | 0.0025 U            | NA             | 0.0018 U            | 0.0018 U       | 0.0025 U      | 0.0025 U       |
| Barium                                  | 0.12                | 0.11       | 0.073 J             | Y<br>V         | 0.082               | 0.083          | 0.062 J       | 0.046 J        |
| Berylliam                               | 0.004               | 0.0048     | 0.0018 U            | N              | 0.0033              | 0.0044         | 0.0018 U      | 0.0018 U       |
| Calcium                                 | 130                 | 130        | 011                 | NA             | 150                 | 150            | 150           | 170 J          |
| Cadmium                                 | 0.0079 U            | ⊅ 110.0    | 0.0054              | V.             | 0.0022 U            | 0.0062 U       | 0.005 U       | 0.005 U        |
| Cobalt                                  | 0.035               | 0.032      | 0.017 U             | ΥN             | 0.015               | 0.021          | 0.017 U       | U 7100         |
| Chromium (Total)                        | 0.023               | 0.026 J    | 0.01                | Ϋ́             | 0.0078 U            | 0.022 J        | 0.016         | 0.0084 U       |
| Chromium (Hexavalent)                   | 0.01 U              | VV         | 0.01 U              | Ϋ́             | U 10:0              | \<br>N         | 0.01 U        | N<br>N         |
| Copper                                  | 0.03                | 0.037      | 0.021               | ΥN             | 0.013               | 0.034          | 0.026         | 0.026 J        |
| Iron                                    | 2.8                 | 0.08       | 0.93 J              | VN             | 0.72                | 0.6            | 0.87 J        | 0.16           |
| Mereury                                 | 0.0002 U            | 0.0002 U   | 0.0002 U            | NA             | 0.0002 U            | 0.0002 U       | 0.0002 U      | 0.0002 U       |
| Potassium                               | 9.1                 | æ:<br>-    | 1.3 J               | NA             | 2.7                 | к              | 2.4 J         | 2.6 J          |
| Magnesium                               | 43                  | 42         | 3.5                 | Ϋ́Z            | 45                  | 42             | 41            | 47 J           |
| Manganese                               | 2.2                 | 2.2        | æ:                  | V.             | 0.37                | 0.38           | 0.26          | 0.32 J         |
| Molybdenum                              | 0.34                | 0.32       | 0.27                | V<br>V         | 0.039               | 0.058          | 0.1           | 0.092          |
| Sodium                                  | 100                 | 011        | 83                  | Ϋ́Z            | 78                  | 67             | 09            | f +9           |
| Niekel                                  | 0.058               | 0.066      | 0.038 J             | Υ <sub>N</sub> | 0.01                | 0.03           | 0.028 J       | 0.028 U        |
| Lead                                    | 0.0023 U            | 0.0035 U   | 0.0039 J            | ΥN             | 0.0023 U            | 0.0035 U       | 0.0033 J      | 0.0027 J       |
| Antimony                                | 0.0016 U            | 0.0016 U   | 0.0044 J            | NA             | 0.0016 U            | 0.0016 U       | 0.0026 U      | 0.0026 U       |
| Selemium                                | 0.0027 U            | 0.0027 U   | 0.0039 U            | V<br>V         | 0.0027 U            | 0.0027 U       | 0.0039 U      | 0.0039 U       |
| Thatlian                                | 0.0023 U            | 0.0023 U   | 0.0027 U            | N              | 0.0023 U            | 0.0023 U       | 0.0027 U      | 0.0027 U       |
| Vanadium                                | 0.024               | 0.036      | 0.026 U             | VN             | 0.0054 U            | 0.024          | 0.026 U       | 0.026 U        |
| Zinc                                    | 90:0                | 0.11       | 0.031               | VN             | 0.046               | 0.064          | 0.012 J       | 0.012 J        |
| Cyanide (Total)                         | 0.005 UJ            | ΝΑ         | 0.005 U             | N<br>N         | 0.005 UJ            | Υ <sub>N</sub> | 0.005 U       | ₹Z             |
| Cyanide (Free)                          | 0.005 UJ            | ٧X         | 0.005 U             | Ϋ́             | 0.005 UJ            | ۷Z             | 0.005 U       | Υ <sub>Z</sub> |

Table 4-9 (continued)

Groundwater Sample TAL Inorganics Plus Molybdenum Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility Page 15 of 17

Eug S

| Sample Location:                        | W.F-01B (continued)                                                                                                                   |              | WT-02     | S.I                 |                                                                |               | WT-03     |               |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------------------|----------------------------------------------------------------|---------------|-----------|---------------|
| Sample I.D.:                            | GW-WT-1B-0397D                                                                                                                        | GW-WT-2-1196 | 9611-6    | GW-WT-2-0397        | 0397                                                           | GW-WT-03-1196 | 13-1196   | GW-WT-03-0397 |
| Laboratory Project No.:<br>Sample Date: | 03/26/97                                                                                                                              | 96-5653      | 53        | 97-1228<br>03/27/97 |                                                                | 96-5528       | 28<br>96  | 97-1208       |
|                                         | Total                                                                                                                                 | Total        | Dissolved | Total               | Dissolved                                                      | Total         | Dissolved | Total         |
| TAL Inorganics Plus Molybdenum (mg/l)   |                                                                                                                                       |              |           |                     |                                                                |               |           |               |
| Silver                                  | YZ.                                                                                                                                   | 0.032 J      | 0.026     | 0.007 UJ            | ۷×                                                             | 0.018         | 0.023 J   | 0.012         |
| Автінт                                  | <¤Z                                                                                                                                   | 0.82         | 0.8 J     | 0.48 J              | ٧×                                                             | 0.52          | 0.21      | 0.42 J        |
| Arsenic                                 | <z< td=""><td>0.0018 U</td><td>0.0018 U</td><td>0.0025 U</td><td>۷N</td><td>0.0018 U</td><td>0.0018 U</td><td>0.0025 U</td></z<>      | 0.0018 U     | 0.0018 U  | 0.0025 U            | ۷N                                                             | 0.0018 U      | 0.0018 U  | 0.0025 U      |
|                                         | <z< td=""><td>0.17</td><td>0.18</td><td>0.2</td><td>٧×</td><td>0.024</td><td>0.028</td><td>0.021 J</td></z<>                          | 0.17         | 0.18      | 0.2                 | ٧×                                                             | 0.024         | 0.028     | 0.021 J       |
| Berellium                               | ₹Z                                                                                                                                    | 0.007        | 7.00.0    | 0.0018 U            | <z< td=""><td>0.0047</td><td>0.0054</td><td>0.001s U</td></z<> | 0.0047        | 0.0054    | 0.001s U      |
| Calcium                                 | ٧Z                                                                                                                                    | 220 J        | 230 J     | 300                 | ۷X                                                             | 0+1           | 150       | 170           |
| Cadmiun                                 | ₹Z                                                                                                                                    | 0.014        | 0.012     | 0.005 U             | ٧×                                                             | 0.011 U       | 0.012 JV  | 0.0059        |
| Cobalt                                  | ₹Z                                                                                                                                    | 0.028        | 0.025     | 0.017 U             | VΝ                                                             | 0.034         | 0.035     | 0.019 J       |
| Chromium (Total)                        | ٧Z                                                                                                                                    | 0.036        | 0.03      | 0.027               | Ϋ́Z                                                            | 0.025         | 0.032 J   | 0.013 J       |
| Chromium (Flexavalent)                  | U 10.0                                                                                                                                | U 10'0       | ΥN        | 0.01 U              | V<br>V                                                         | 0.01 U        | Y<br>N    | U 10:0        |
| Comer                                   | VZ.                                                                                                                                   | 0.052        | 0.05      | 0.034               | V<br>Z                                                         | 0.034         | 0.043     | 0.031         |
| ICI                                     | <z< td=""><td>0.081</td><td>0.19 J</td><td>0.25</td><td>۷<br/>۷</td><td>2.4</td><td></td><td>1.7.1</td></z<>                          | 0.081        | 0.19 J    | 0.25                | ۷<br>۷                                                         | 2.4           |           | 1.7.1         |
| Mercury                                 | <z< td=""><td>0.0002 U</td><td>0.0002 U</td><td>0.0002 U</td><td>۷<br/>۷</td><td>0,0002 U</td><td>0.0002 U</td><td>0.0002 U</td></z<> | 0.0002 U     | 0.0002 U  | 0.0002 U            | ۷<br>۷                                                         | 0,0002 U      | 0.0002 U  | 0.0002 U      |
| Potassium                               | ζZ                                                                                                                                    | 15           | 15        | 15                  | V.                                                             | 8'8           | 9.1       | 7.7           |
| Magnesium                               | <b>V</b> Z                                                                                                                            | 0.32         | 0.32 J    | 0.29 U              | VZ                                                             | 45            | 46        | 55            |
| Mangarese                               | ₹Z                                                                                                                                    | 0.015        | 0.02 J    | 0.005 J             | Ϋ́                                                             | 0.53          | 0.55      | . 0.69        |
| Molybdenum                              | ζZ                                                                                                                                    | 0.28 J       | 0.29 J    | 0.22                | ۷<br>۷                                                         | 2.1           | 2.4       | 1.7           |
| Sodium                                  | <z< td=""><td>29</td><td>30.1</td><td>36</td><td><z< td=""><td>0.70</td><td>130</td><td>120</td></z<></td></z<>                       | 29           | 30.1      | 36                  | <z< td=""><td>0.70</td><td>130</td><td>120</td></z<>           | 0.70          | 130       | 120           |
| Nickel                                  | <z< td=""><td>0.12</td><td>0.13</td><td>0.068</td><td>Ϋ́</td><td>0.047</td><td>0.049</td><td>0.05</td></z<>                           | 0.12         | 0.13      | 0.068               | Ϋ́                                                             | 0.047         | 0.049     | 0.05          |
| Lead                                    | <z< td=""><td>0.094</td><td>0.094/</td><td>0.0037</td><td>V<br/>V</td><td>0.0028 U</td><td>0.0039 U</td><td>0.0026 U</td></z<>        | 0.094        | 0.094/    | 0.0037              | V<br>V                                                         | 0.0028 U      | 0.0039 U  | 0.0026 U      |
| Allimony                                | <z< td=""><td>0.0017 U</td><td>0.0022</td><td>0.0026 U</td><td>ΥN</td><td>0.0016 U</td><td>0.0016 U</td><td>0.0026 U</td></z<>        | 0.0017 U     | 0.0022    | 0.0026 U            | ΥN                                                             | 0.0016 U      | 0.0016 U  | 0.0026 U      |
| Selenium                                | ₹<br>Z                                                                                                                                | 0.0066 J     | 0.0039 J  | 0.0039 U            | ۷X                                                             | 0.0032 U      | 0.0029 U  | 0.0039 U      |
|                                         | < Z                                                                                                                                   | 0.0023 U     | 0.0023 U  | 0.0027 U            | ٧Z                                                             | 0.0023 U      | 0.0023 U  | 0.0027 U      |
| Vanadium                                | <b>₹</b> Z                                                                                                                            | 0.038        | 0.035     | 0.026 U             | ۷N                                                             | 0.032         | 0.037     | 0.026 U       |
| Zinc                                    | <z< td=""><td>0.018</td><td>0.014</td><td>0.013 J</td><td>&lt;<br/>Z</td><td>0.15</td><td>0.18</td><td>0.017 J</td></z<>              | 0.018        | 0.014     | 0.013 J             | <<br>Z                                                         | 0.15          | 0.18      | 0.017 J       |
| Cyanide (Total)                         | ٧Z                                                                                                                                    | 0.005 U      | ΥZ        | 0.005 U             | Υ <sub>N</sub>                                                 | 0.005 UJ      | ΥN        | 0.005 U       |
| Cyanide (Free)                          | ₹Z                                                                                                                                    | 0.005 U      | NA        | 0.005 U             | ۲X                                                             | 0.005 UJ      | V<br>V    | 0.005 U       |

Table 4-9 (continued)

Groundwater Sample TAL Inorganies Plus Molybdenum Data Phase I RFI AL Teeh Specialty Steel Corporation Dunkirk, New York Facility Page 16 of 17

|                                    |                                          | Dissolved |                                       | Š        | Z       | Z Z      | Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                            | √Z.                                                                                                                                                                                                                                                                                                                                                                                                                                    | ź       | Š             | ×       | Z Z                                                                                                                                                                                                                                                                                                                                                                 | : ×                   | ź          | ×                                                                                                                                                                                                                                                                                                           | . X        | ×Z                                                                                                                                                                                                                                                                | Z Z                                                                                                                                                                                                                                       | Z         | < Z       | ΥN     | Š       | VZ.                                                                                                                                                          | Z                                                                                                                                    | Z                                                                                                            | Z          | Ž          | . Z                                        | Z Z             | < < <          |
|------------------------------------|------------------------------------------|-----------|---------------------------------------|----------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------|------------|--------------------------------------------|-----------------|----------------|
| GW-WT-04-0397                      | 96-1208<br>03/26/97                      |           |                                       | 0.007 U  | 0.096 U | 0.0025 U | 0.046 J                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0018 U                                                                                                                                                                                                                                                                                                                                                                                                                               | 130     | 0.005 U       | 0.017 U | 0.0084 11                                                                                                                                                                                                                                                                                                                                                           | D 10'0                | 0.02       | 0.59 J                                                                                                                                                                                                                                                                                                      | 0.0002 U   | 6.4                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                         | 0.52      | 0.13      | 180    | 0.028 U | 0.0026 J                                                                                                                                                     | 0.0026 U                                                                                                                             | 0.0039 U                                                                                                     | 0.0027 U   | 0.026 U    | 7,000                                      | 0.005 11        | 0.005 U        |
| 4<br>-1196D                        | æ <b>9</b>                               | Dissolved |                                       | 0.0083 U | 0.11    | 0.0018 U | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70      | 0.0053        | 0.021   | 0.016                                                                                                                                                                                                                                                                                                                                                               | ٧×                    | 0.019      | 0.78                                                                                                                                                                                                                                                                                                        | 0,0002 U   | 6.5                                                                                                                                                                                                                                                               | 31                                                                                                                                                                                                                                        | 0.55      | 0.13      | 170    | 0.023   | 0.0026                                                                                                                                                       | 0.0016 U                                                                                                                             | 0.0027 U                                                                                                     | 0.0023 U   | 0.017      | 0.10                                       | Z               | V Z            |
| WT-04<br>GW-WT-04-1196D            | 97-5528                                  | Total     |                                       | 0.025    | 0.19    | 0.0018 U | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100     | 0.012         | 0.032   | 0.03                                                                                                                                                                                                                                                                                                                                                                | U 10.0                | 0.04       | 0.7                                                                                                                                                                                                                                                                                                         | 0.0002 U   | 8.9                                                                                                                                                                                                                                                               | 31                                                                                                                                                                                                                                        | 0.58      | 0.13      | 170    | 0.046   | 0.0033                                                                                                                                                       | 0.0016 U                                                                                                                             | 0.0029                                                                                                       | 0.0023 U   | 0.036      | 0.12                                       | 0.005 UJ        | 0.005 UJ       |
| 4-1196                             | 90                                       | Dissolved |                                       | 0.01     | 960'0   | 0.0018 U | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100     | 0.0065 U      | 0.024   | 0.013 J                                                                                                                                                                                                                                                                                                                                                             | N                     | 0.029      | 0.7                                                                                                                                                                                                                                                                                                         | 0.0002 U   | 6.9                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                        | 0.58      | 0.12      | 170    | 0.026   | 0.004 U                                                                                                                                                      | 0.002                                                                                                                                | 0.0027 U                                                                                                     | 0.0023 U   | 0.021      | 0.13                                       | Ϋ́              | Ϋ́Z            |
| GW-WT-04-1196                      | 70-5528<br>11/19/96                      | Total     |                                       | 0.0083 U | 0.11    | 0.0018 U | 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66      | 0.0048 U      | 0.021   | 0.017                                                                                                                                                                                                                                                                                                                                                               | 0.01 U                | 0.017      | 0.8                                                                                                                                                                                                                                                                                                         | 0.0002 U   | 9.9                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                        | 0.57      | 0.14      | 170    | 0.02    | 0.0017 U                                                                                                                                                     | 0.0023                                                                                                                               | 0.0027 U                                                                                                     | 0.0023 U   | 0.016      | 0.11                                       | 0.005 UJ        | 0.005 UJ       |
| WT-03 (continued)<br>GW-WT-03-0397 | 97-1208                                  | Dissolved |                                       | V<br>N   | ۲Z      | ۲Z       | <z< td=""><td><z< td=""><td>٧Z</td><td><b>&lt;</b>Z</td><td>٧Z</td><td><z< td=""><td>۲Z</td><td>&lt;<u>Z</u></td><td><z< td=""><td><b>₹</b>Z</td><td><z< td=""><td><z< td=""><td>٧×</td><td>۲Z</td><td>Ϋ́Z</td><td>&lt;<br/>Z</td><td><z< td=""><td><z< td=""><td><z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<> | <z< td=""><td>٧Z</td><td><b>&lt;</b>Z</td><td>٧Z</td><td><z< td=""><td>۲Z</td><td>&lt;<u>Z</u></td><td><z< td=""><td><b>₹</b>Z</td><td><z< td=""><td><z< td=""><td>٧×</td><td>۲Z</td><td>Ϋ́Z</td><td>&lt;<br/>Z</td><td><z< td=""><td><z< td=""><td><z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<> | ٧Z      | <b>&lt;</b> Z | ٧Z      | <z< td=""><td>۲Z</td><td>&lt;<u>Z</u></td><td><z< td=""><td><b>₹</b>Z</td><td><z< td=""><td><z< td=""><td>٧×</td><td>۲Z</td><td>Ϋ́Z</td><td>&lt;<br/>Z</td><td><z< td=""><td><z< td=""><td><z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<> | ۲Z                    | < <u>Z</u> | <z< td=""><td><b>₹</b>Z</td><td><z< td=""><td><z< td=""><td>٧×</td><td>۲Z</td><td>Ϋ́Z</td><td>&lt;<br/>Z</td><td><z< td=""><td><z< td=""><td><z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<></td></z<></td></z<></td></z<></td></z<></td></z<> | <b>₹</b> Z | <z< td=""><td><z< td=""><td>٧×</td><td>۲Z</td><td>Ϋ́Z</td><td>&lt;<br/>Z</td><td><z< td=""><td><z< td=""><td><z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<></td></z<></td></z<></td></z<></td></z<> | <z< td=""><td>٧×</td><td>۲Z</td><td>Ϋ́Z</td><td>&lt;<br/>Z</td><td><z< td=""><td><z< td=""><td><z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<></td></z<></td></z<></td></z<> | ٧×        | ۲Z        | Ϋ́Z    | <<br>Z  | <z< td=""><td><z< td=""><td><z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<></td></z<></td></z<> | <z< td=""><td><z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<></td></z<> | <z< td=""><td>&lt;<u>z</u></td><td>&lt;<u>Z</u></td><td><z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<></td></z<> | < <u>z</u> | < <u>Z</u> | <z< td=""><td>&lt; Z</td><td>Ϋ́Z</td></z<> | < Z             | Ϋ́Z            |
| Sample Location:<br>Sample LD:     | Lanoratory Project (vo.:<br>Sample Date: |           | TAL Inorganies Plus Molybdenum (mg/l) | Silver   | Актипи  | Arsenic  | Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                              | Calcium | Cadmum        | Cobalt  | Chromium (Total)                                                                                                                                                                                                                                                                                                                                                    | Chromium (Hexavalent) | Copper     | Iron                                                                                                                                                                                                                                                                                                        | Mercury    | Potassium                                                                                                                                                                                                                                                         | Magnesium                                                                                                                                                                                                                                 | Manganese | Molybdemm | Sodium | Nickel  | Lead                                                                                                                                                         | Амінкиу                                                                                                                              | Selenium                                                                                                     | Thallium   | Vanadium   | Zinc                                       | Cyanide (Total) | Cyanide (Free) |

Groundwater Sample TAL Inorganics Plus Molybdenum Data AL Tech Specialty Steel Corporation Dunkirk, New York Facility Phase I RFI

Page 17 of 17

a/ TAL, = Target Analyte List.
 This list also includes hexavalent chromium and free cyanide.
 b/ mg/l = milligrams per liter.

c/ Data Qualifiers:

U = constituent not detected at the noted detection limit. J = constituent detected at an estimated concentration less than the method detected limit.

UJ = constituent not detected at the estimated detection limit noted.

R = data rejected.
W NA = not analyzed.

e/ A second sample was subsequently collected from this well during Round 2 and analyzed for Hexivalent Chromium. Hexavalent Chromium was not detected in this second sample.

If D = duplicate sample.

Table 4-10 (continued)

Groundwater Sample
TCL VOC and VOC TIC Data
Planes IRF
AL Tech Specialty Steel Corporation
Dunkirk, New York Faelity

Page 2 of 18

|                  | 3W-LAW-6-0397<br>97-1228<br>03/26/97                                | ₹<br>Z                                                       |                       |
|------------------|---------------------------------------------------------------------|--------------------------------------------------------------|-----------------------|
| 1.AW-06          | GW-LAW-6-1196 GW-LAW-6-0397<br>96-5886 97-1228<br>11/21/96 03/26/97 |                                                              | Total VOCTICs 0       |
|                  | W-LAW-5-0397<br>97-1228<br>03/26/97                                 | e z                                                          |                       |
| LAW-05           | GW-LAW-5-1196<br>96-5586<br>11/21/96                                |                                                              | Total VOC TICs 0      |
|                  | GW-LAE-4-0397<br>97-1228<br>03/27/97                                | Uhknawa (1000 NJ<br>Uhknawa 20 NJ                            | Total VOC TICK 1020   |
| LAE-04           | GW-LAE-4-1196<br>96-5567<br>11/20/96                                | Unknown R                                                    | Total VOCTICs ()      |
|                  | GW-B-1-0397<br>97-1208<br>03/24/97                                  | <<br>Z                                                       |                       |
|                  | GW-B-1-1196<br>96-5507<br>11/18/96                                  | אנו                                                          | Total VOC TICs (c) () |
| Sample Location: | Sample LD.:<br>Laboratory Project No.:<br>Sample Date:              | Volatile Organics<br>Tentatively Identified Compounds (pg/f) |                       |

| ; | -  |
|---|----|
| , | _  |
|   | ÷  |
| • |    |
|   | ÷  |
| ľ | 2  |
|   | 13 |
| į | Ξ  |

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|                                             |                        |                        |                          | \                        |                          |                                                      |                          |                          |
|---------------------------------------------|------------------------|------------------------|--------------------------|--------------------------|--------------------------|------------------------------------------------------|--------------------------|--------------------------|
| Sample Location:                            | 10-8                   |                        | LAF                      | 5-04                     | ΓV                       | LAW-05                                               | LAW-06                   | 90-/                     |
| Sample I.D.:<br>Laboratory Project No.:     | GW-B-1-1196<br>96-5507 | GW-B-1-0397<br>97-1208 | GW-LAE-4-1196<br>96-5567 | GW-LAE-4-0397<br>97-1228 | GW-LAW-5-1196<br>96-5586 | >                                                    | GW-LAW-6-1196<br>96-5586 | GW-LAW-6-0397<br>97-1228 |
| Sample Date:                                | 11/18/96               | 03/24/97               | 11/20/96                 | 03/27/97                 | 11/21/96                 | 03/26/97                                             | 11/21/96                 | 03/26/97                 |
| TCL Volatile Organic Compounds (µg/l) (a,b) | (q:                    |                        |                          |                          |                          |                                                      |                          |                          |
| Vinyl chloride                              | 10 U (c)               | (p) VN                 | f <i>L</i> 6             | 001                      | 10 OI                    | ۲Z                                                   | D 01                     | <z< td=""></z<>          |
| Acetone                                     | U 01                   | ×                      | 10 O                     | ח 0.1                    | D 01                     | <z< td=""><td>10 U</td><td>&lt;<br/>Z</td></z<>      | 10 U                     | <<br>Z                   |
| Carbon disulfide                            | O 01                   | V.                     | 10 U                     | U 01                     | U 01                     | ۲Z                                                   | D 01                     | <<br>Z                   |
| 1.1-Dichloroethene                          | 10 U                   | VN<br>V                | 13.1                     | =                        | O 01                     | <z< td=""><td>U 01</td><td><z< td=""></z<></td></z<> | U 01                     | <z< td=""></z<>          |
| trans-1,2-Dichloroethene                    | 10 U                   | V.                     | 27 J                     | 21                       | 10 U                     | Ϋ́Z                                                  | D 01                     | <z< td=""></z<>          |
| cis-1,2-Dichloroethene                      | 10 U                   | VN<br>N                | 1 06L                    | O 098                    | D 01                     | ٧Z                                                   | D 01                     | <z< td=""></z<>          |
| Chlorotorm                                  | 10 UJ                  | V.                     | O 01                     | 10 U                     | D 01                     | ٧Z                                                   | D 01                     | <z< td=""></z<>          |
| cis-1,3-Dichloropropene                     | U 01                   | V.                     | D 01                     | D 01                     | D 01                     | <<br>Z                                               | D 01                     | <z< td=""></z<>          |
| Trichloroethene                             | 10 U                   | ۷۷                     | f 0069                   | 7300 D                   | O 01                     | ۷N                                                   | 0.01                     | <z< td=""></z<>          |

Table 4-10 (continued)

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 3 of 18

| Sample Location:                                        | I0-WM                                                             | -01                                                                                                  | MW-03                               | 7-03                                | RI                                     | FI-01                                                | RFI-02                                 | -02                                    |
|---------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------|
| Sample 1.D.:<br>Laboratory Project No.:<br>Sample Date: | GW-MW-1-1196 GW-MW-1-0397<br>96-5586 97-1208<br>11/20/96 03/25/97 | GW-MW-1-0397<br>97-1208<br>03/25/97                                                                  | GW-MW-3-1196<br>96-5567<br>11/20/96 | GW-MW-3-0397<br>97-1208<br>03/26/97 | GW-RF1-001-1196<br>96-5507<br>11/18/96 | GW-RFI-001-0397<br>97-1208<br>03/24/97               | GW-RF1-002-1196<br>96-5077<br>11/18/96 | GW-RF1-002-0397<br>97-1208<br>03/24/97 |
|                                                         |                                                                   |                                                                                                      |                                     |                                     |                                        |                                                      |                                        |                                        |
| TCL Volatile Organic Compounds (µg/l)                   |                                                                   |                                                                                                      |                                     |                                     |                                        |                                                      |                                        |                                        |
| Vinyl chloride                                          | 10 n                                                              | <z< td=""><td>O 01</td><td>۲Z</td><td>O 01</td><td>٧Z</td><td>O 01</td><td><z< td=""></z<></td></z<> | O 01                                | ۲Z                                  | O 01                                   | ٧Z                                                   | O 01                                   | <z< td=""></z<>                        |
| Λυστοιιο                                                | U 01                                                              | ₹Z                                                                                                   | O 01                                | ۲×                                  | O 01                                   | <z< td=""><td>D 01</td><td><z< td=""></z<></td></z<> | D 01                                   | <z< td=""></z<>                        |
| Carbon disulfide                                        | 10 OI                                                             | ΥN                                                                                                   | O 01                                | V.                                  | 10 01                                  | \Z                                                   | L &                                    | <<br>Z                                 |
| 1,1-Dichloroethene                                      | 10 O                                                              | NA                                                                                                   | O 01                                | V.                                  | 10 n                                   | <z< td=""><td>D 01</td><td><z< td=""></z<></td></z<> | D 01                                   | <z< td=""></z<>                        |
| trans-1,2-Dichloroethene                                | 10 OI                                                             | N                                                                                                    | D 01                                | VV                                  | U 01                                   | ٧Z                                                   | D 01                                   | <<br>Z                                 |
| cis-1,2-Dichloroethene                                  | U 01                                                              | VN                                                                                                   | D 01                                | VN<br>V                             | n 01                                   | ٧Z                                                   | U 01                                   | <<br>Z                                 |
| Chloroform                                              | O 01                                                              | VN<br>V                                                                                              | f 9                                 | <<br>N                              | O 01                                   | ٧Z                                                   | 10 U                                   | ₹Z                                     |
| cis-1,3-Dichloropropene                                 | O 01                                                              | VN                                                                                                   | TO 01                               | Y<br>N                              | O 01                                   | <z< td=""><td>D 01</td><td>&lt;<br/>Z</td></z<>      | D 01                                   | <<br>Z                                 |
| Trichloroethene                                         | 0 OI                                                              | VV                                                                                                   | IO 01                               | VZ                                  | O 01                                   | VV                                                   | O 01                                   | Y<br>Z                                 |

Groundwater Stample
TCI, VOC and VOC TIC Data
Phase IRPI
Al. Teeth speciality Steel Corporation
Dunkirk, New York Facility

Page 4 of 18

| RF1-02           | GW-RF1-402-1196 GW-RF1-002-0,97<br>96-5077 97-1208<br>11/18/96 0.3/2-4/97 | ź                                                           | O SHELLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| =                | GW-RF1-001-0397<br>97-1208<br>03/24/97                                    | ٧                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RFT-01           | GW-RF1-001-1196<br>96-5507<br>11/18/96                                    |                                                             | C CLERK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>(3)</b>       | GW-MW-3-0397<br>97-1208<br>03/25/97                                       | <b>&lt; &lt;</b> ∠ ×                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-01            | GW-MW-3-1196<br>96-5567<br>11/20/96                                       | Unknown 7 NJ<br>Unknown K NJ                                | Ford Victimity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IW-01            | GW-MW-1-0397<br>97-1208<br>0A2507                                         | ₹Z                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | GW-MW-1-1196 GW-MW-1-0397 97-1208 97-1208 11/20/96 61/2597                | (hg/l)                                                      | Complete Com |
| Sample Location: | Sample LD:<br>Laboratory Project No.:<br>Sample Date:                     | Volathe Organics<br>Tentatively Identified Compounds (1147) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 4-10 (continued)

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

Page 5 of 18

| Sample Location:                                      | RF1-03                                                                  | -03                                                                                                                 | RF1-04                                 | 1-04                                                                           | 2                                      | RF1-05                                 | RF1-06                                 | 90-1                                   |
|-------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Sample LD:<br>Laboratory Project No.:<br>Sample Date: | GW-RFI-003-1196 GW-RFI-003-0397<br>96-5507 97-1028<br>11/18/96 03/24/97 | GW-RF1-003-0397<br>97-1028<br>03/24/97                                                                              | GW-RFT-004-1196<br>96-5528<br>11/19/96 | GW-RF1-004-0397<br>97-1208<br>03/25/97                                         | GW-RFI-005-1196<br>96-5567<br>11/20/96 | GW-RFI-005-0397<br>97-1228<br>03/27/97 | GW-RF1-006-1196<br>96-5567<br>11/19/96 | GW-RF1-006-0397<br>97-1228<br>03/26/97 |
| TCL Volatile Organic Compounds (µg/l)                 |                                                                         |                                                                                                                     |                                        |                                                                                |                                        |                                        |                                        |                                        |
| Vinylchloride                                         | O 01                                                                    | ۲<br>۲                                                                                                              | O 01                                   | <z< td=""><td>D 01</td><td>D 01</td><td>O 01</td><td><z< td=""></z<></td></z<> | D 01                                   | D 01                                   | O 01                                   | <z< td=""></z<>                        |
| Arelong                                               | D 01                                                                    | <z< td=""><td>O 01</td><td><z< td=""><td>10 U</td><td>U 01</td><td>D 01</td><td><z< td=""></z<></td></z<></td></z<> | O 01                                   | <z< td=""><td>10 U</td><td>U 01</td><td>D 01</td><td><z< td=""></z<></td></z<> | 10 U                                   | U 01                                   | D 01                                   | <z< td=""></z<>                        |
| Carbon disulfide                                      | 10 01                                                                   | ×Z                                                                                                                  | D 01                                   | NA                                                                             | U 01                                   | 10 U                                   | 10 U                                   | <<br>Z                                 |
| 1.1-Dichleraethene                                    | D 01                                                                    | ٧×                                                                                                                  | 10 U                                   | VV                                                                             | D 01                                   | D 01                                   | U 01                                   | <<br>Z                                 |
| trans-1.2-Dichleroethene                              | O 01                                                                    | Ϋ́N                                                                                                                 | O 01                                   | VZ<br>VZ                                                                       | D 01                                   | 10 U                                   | O 01                                   | < Z                                    |
| cis-1 2-Dichloroothem                                 | 0.01                                                                    | ≺<br>Z                                                                                                              | 10 U                                   | ٧Z                                                                             | U 01                                   | D 01                                   | U 01                                   | ∠Z                                     |
| (Thoraform                                            | D 01                                                                    | Ϋ́Ζ                                                                                                                 | O 01                                   | ΥN                                                                             | U 01                                   | O 01                                   | U 01                                   | <<br>Z                                 |
| cis-1.3-Dichloropropene                               | D 01                                                                    | ٧X                                                                                                                  | O 01                                   | NA                                                                             | O 01                                   | U 01                                   | 0.01                                   | <<br>Z                                 |
| Trichloroethene                                       | U 01                                                                    | Ϋ́N                                                                                                                 | N 01                                   | Ϋ́N                                                                            | O 01                                   | D 01                                   | O 01                                   | Υ <sub>Z</sub>                         |

| = |
|---|
| 3 |
| Ξ |
| Ξ |
| 2 |
| Ξ |
| = |
| ÷ |
| ¥ |
| Ē |
| - |
|   |

Groundwater Sample
TCI, VOC and VOC TIC Data
Planet RFI
Al. Teeth Speciality Steet Corporation
Danklerk, New York Facility

| 51 E 5 14 E | 5                | GW-RFI-006-0397 | 97-1228                 | 0.3/26/97    |
|-------------|------------------|-----------------|-------------------------|--------------|
|             | WF1-18           | GW-RFI-006-1196 | 96-5567                 | 11/19/96     |
|             | RF1-05           | GW-RFI-005-0397 | 47-122H                 | 70/72/20     |
|             |                  | GW-RFI-005-1196 | 96-5567                 | 11/2/1/96    |
|             |                  | GW-RFI-004-0397 | 97-120N                 | 03/25/97     |
|             |                  | GW-RF1-004-1196 | 96-5528                 | 11/19/96     |
|             |                  | GW-RF1-003-0397 | 97-1208                 | 03/24/97     |
|             | KF1-03           | GW-RF1-103-1196 | 90-5077                 | 11/18/96     |
|             | Sample Lacation: | Sumple 1.D.:    | Luboratory Project No.: | Sample Date: |

Voladie Organics Tentafively (dendffed Compounds (µg/t)

Ϋ́

Total VOCTICs 0

Total VOCTICs 0

Ϋ́

Total VOCTICs 0

Total VOC 11Cs 0

Total VOCTICs 0

ν. V.

Table 4-10 (continued)

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

Page 7 of 18

| Sample Location:                                       | RF1-07                                                                  | -07                                                                                                     | RF1-08                                 | 80-1                                                                           | ~                                      | RFI-09                                 | _                                      | RF1-10                                 |
|--------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Sample LD.:<br>Laboratory Project No.:<br>Sample Date: | GW-RF1-007-1196 GW-RF1-007-0397<br>96-5567 97-1208<br>11/20/96 03/26/97 | GW-RFI-007-0397<br>97-1208<br>03/26/97                                                                  | GW-RFI-008-1196<br>96-5567<br>11/20/96 | GW-RFF-008-0397<br>97-1228<br>03/27/97                                         | GW-RFI-009-1196<br>96-5528<br>11/19/96 | GW-RFI-009-0397<br>97-1208<br>03/26/97 | GW-RF1-010-1196<br>96-5567<br>11/19/96 | GW-RF1-010-0397<br>97-1208<br>03/25/97 |
| TCL Volatile Organic Compounds (µg/l)                  |                                                                         |                                                                                                         |                                        |                                                                                |                                        |                                        |                                        |                                        |
| Vinyl chloride                                         | 10 OI                                                                   | ₹Z                                                                                                      | D 01                                   | ₹Z                                                                             | O 0I                                   | O 01                                   | O 01                                   | <z< td=""></z<>                        |
| Acetone                                                | O 01                                                                    | ΥZ                                                                                                      | D 01                                   | ₹<br>Z                                                                         | D 01                                   | D 01                                   | D 01                                   | < Z                                    |
| Carbon disuffice                                       | U 01                                                                    | <z< td=""><td>O 01</td><td>٧Z</td><td>ח 10 ת</td><td>10 U</td><td>D 01</td><td>&lt; Z</td></z<>         | O 01                                   | ٧Z                                                                             | ח 10 ת                                 | 10 U                                   | D 01                                   | < Z                                    |
| 1.1-Dichloroethene                                     | U 01                                                                    | Ϋ́Z                                                                                                     | D 01                                   | <z< td=""><td>D 01</td><td>O 01</td><td>D 01</td><td><z< td=""></z<></td></z<> | D 01                                   | O 01                                   | D 01                                   | <z< td=""></z<>                        |
| trans-1.2-Dichloroethene                               | O 01                                                                    | Ϋ́Z                                                                                                     | D 01                                   | ۲×                                                                             | D 01                                   | D 01                                   | O 01                                   | <z< td=""></z<>                        |
| cis-1,2-Dichloroethene                                 | 10 O                                                                    | ζZ                                                                                                      | ∩ 0.1                                  | ٧Z                                                                             | D 01                                   | D 01                                   | n 01                                   | <z< td=""></z<>                        |
| Chloroform                                             | O 01                                                                    | <z< td=""><td>O 01</td><td><z< td=""><td>ח 10 ת</td><td>D 01</td><td>U 01</td><td>Š</td></z<></td></z<> | O 01                                   | <z< td=""><td>ח 10 ת</td><td>D 01</td><td>U 01</td><td>Š</td></z<>             | ח 10 ת                                 | D 01                                   | U 01                                   | Š                                      |
| cis-1.3-Dichloromonene                                 | O 01                                                                    | ₹Z                                                                                                      | IO 01                                  | ۷Z                                                                             | D 01                                   | O 01                                   | U 01                                   | <z< td=""></z<>                        |
| Trichloroethene                                        | O 01                                                                    | <b>₹</b>                                                                                                | IO 01                                  | VΝ                                                                             | O 01                                   | D 01                                   | D 01                                   | <<br>Z                                 |

Groundwater Stample
TCI, VOC and VOCT ITC Data
Plnase I RFI
Al. Teeth Speciality Steel Corporation
Bunklek, New York Facility

Page 8 of 18

GW-RFI-010-0397 99-5567 11/19/96 03/2597 Š Total VOCTICs 0 G.W-RET-1009-1196 G.W-RET-1009-13397 97-1208 11/19996 03/26/97 Total VOC'TICs 0 Total VOC TICs () GW-RF1-008-0397 97-1228 03/27/97 ž G;W-RFI-mB-1196 C;W-RFI-mB-1196 L 7 N 7 Total VOCTICS Unknown GW-RFI-007-0397 97-1208 03/26/97 ž GW-RF1-007-1196 96-5567 11/20/96 = Total VOC'TICS Volutile Organics Tentalively Identified Compounds (µg/l) Sample Location: Sample LD: Laboratory Project No.: Sample Date:

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|                                                        |                                                                  |                                                                                    |                                        |                                        |                                        |                                            |                                        | Page 9 of 18 |
|--------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------|--------------|
| Sample Location:                                       | RFI-11                                                           |                                                                                    | RF                                     | RF1-12                                 |                                        | RFI-13                                     |                                        |              |
| Sample LD.:<br>Laboratory Project No.:<br>Sample Date: | GW-RFI-011-1196 GW-RFI-01<br>96-5528 97-1208<br>11/18/96 03/25/9 | GW-RFI-011-0397<br>97-1208<br>03/25/97                                             | GW-RFF-012-1196<br>96-5586<br>11/21/96 | GW-RFI-012-0397<br>97-1228<br>03/28/97 | GW-RF1-013-1196<br>96-5567<br>11/20/96 | GW-RFI-013-1196D(f)<br>96-5567<br>11/20/96 | GW-RF1-013-0397<br>97-1228<br>03/26/97 |              |
| TCT Volatile Organic Community (ng/l)                  |                                                                  |                                                                                    |                                        |                                        |                                        |                                            |                                        |              |
| Vinel chloride                                         | U 01                                                             | ××                                                                                 | N 01                                   | VΝ                                     | U 01                                   | ٧Z                                         | <z< td=""><td></td></z<>               |              |
| Amina                                                  | 0.01                                                             | ζZ                                                                                 | U 61                                   | ۲×                                     | O 01                                   | ٧Z                                         | <<br>Z                                 |              |
| Carlon dientlida                                       |                                                                  | Č Z                                                                                | O 01                                   | ₹Z                                     | U 01                                   | <<br>Z                                     | <<br>Z                                 |              |
| - La North was from                                    | 7 0                                                              | ×Z                                                                                 | U 01                                   | VV                                     | O 01                                   | <z< td=""><td>SZ</td><td></td></z<>        | SZ                                     |              |
| rene 1 2 Dichlopedhene                                 | 0.01                                                             | <z< td=""><td>U 01</td><td>N</td><td>O 01</td><td>۷Z</td><td>ŚŻ</td><td></td></z<> | U 01                                   | N                                      | O 01                                   | ۷Z                                         | ŚŻ                                     |              |
| rice 1 2. Dieblywardham                                | 3 01                                                             | ζ.                                                                                 | O 01                                   | Š                                      | O 01                                   | ٧Z                                         | <z< td=""><td></td></z<>               |              |
| Chloratorn                                             | ) O                                                              | VZ                                                                                 | O 01                                   | Ϋ́                                     | O 01                                   | ٧×                                         | <z< td=""><td></td></z<>               |              |
| sic. 1 3. Diehlermenten                                | 0.09                                                             | ζ<br>Z                                                                             | U 01                                   | ۲                                      | O 01                                   | ٧Z                                         | <z< td=""><td></td></z<>               |              |
| Trichloroethene                                        | 0.01                                                             | Z Y                                                                                | U 01                                   | Ϋ́Z                                    | O 01                                   | ۲Z                                         | Ϋ́N                                    |              |

Groundwater Sample
TCI, VOC and VOCTITC Data
Plaase 1 REI
Al. Teeth Speciality Steet Corporation
Dankirk, New York Facility

GW-RF1-013-0397 97-1228 03/26/97 RF1-13 GW-RF1-013-1196D 96-5667 11/20/96 GW-RFI-013-1196 96-5667 11/20/96 GW-RFI-012-1196 GW-RFI-012-0397 97-1228 97-1228 11/21/96 3/28/97 | Sample Location: | RFL11 | GW-RFL011-1196 | Sample LD: | GW-RFL011-1397 | Sample Date: | 11/18/96 | 11/18/97 | 11/18/96 | 11/18/97 | 11/18/96 | 11/18/97 | 11/18/96 | 11/18/97 | 11/18/96 | 11/18/96 | 11/18/97 | 11/18/96 | 11/18/97 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96 | 11/18/96

Page 10 of 18

Š

Total VOC TICs 0

٧X

ž

Volatile Organics Tentatively Identified Compounds (µg/l)

0 Total VOCTICs

0

Total VOCTER'S

ž

Table 4-10 (continued)

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

Page 11 of 13

| < < < < < < < ; |
|-----------------|
| <<<<<<;         |
| < < < < ;       |
| < < < ;         |
| <b>₹₹</b> ;     |
| V.              |
|                 |
| VN.             |

CW-RF1-016-0397 96-5507 11/18/96 03/25/97 GW-RF1-015-0397 97-1208 03/25/97 KF1-15 GW-RF1-015-1196D 96-5667 11/20/96 GW-RFI-015-1196 96-5667 11/20/96 GW-RF1-014-0397 97-1208 03/25/97 | Sample Lucation: GW-RF1-014-1196 | Sample LD: 90-5607 | Sample Pater No. 30-5607 | Sample Pater | 11/20/96 | Sample Pate

Total VOCTICs 0

Total VOCTICs 0

=

Total VOCTICS

Total VOCTICs 0

Total VOCTICs ()

Š

Page 12 of 18

Groundwater Sample
TCI. VOC and VOC 'TIC Data
Planet RFI
Al. Teeth Speciality Steet Corporation
Dunkirk, New York Facility

ž

Volutite Organies Tentatively Identified Compounds (µg/l)

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 13 of 18

| Sample Location:                                       | RFI-17                                 | -17                                                                              | WP-01                               | WP-02                               | WP-03                               | WP-04                               | -04                                 |
|--------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Sample LD.:<br>Laboratory Project No.:<br>Sample Date: | GW-RFI-017-1196<br>96-5567<br>11/20/96 | GW-RFI-017-0397<br>97-1208<br>03/26/97                                           | GW-WP-1-0397<br>97-1208<br>03/25/97 | GW-WP-2-0397<br>97-1208<br>03/25/97 | GW-WP-3-0397<br>97-1208<br>03/25/97 | GW-WP-4-1196<br>96-5586<br>11/21/96 | GW-WP-4-0397<br>97-1208<br>03/25/97 |
| TCL Volatile Organic Compounds (µg/l)                  |                                        |                                                                                  |                                     |                                     |                                     |                                     |                                     |
| Vinyl chloride                                         | U 01                                   | ۲Z                                                                               | O 01                                | U 01                                | U 01                                | 10 U                                | 0.01                                |
| Λεείσην                                                | U 01                                   | <z< td=""><td>U 01</td><td>U 01</td><td>O 01</td><td>O 01</td><td>0.01</td></z<> | U 01                                | U 01                                | O 01                                | O 01                                | 0.01                                |
| Carbon disulfide                                       | D 01                                   | Y.                                                                               | O 01                                | O 01                                | O 01                                | D 01                                | 0.01                                |
| 1,1-Dichloroethene                                     | 10 U                                   | ٧Z                                                                               | O 01                                | O 01                                | U 01                                | D 01                                | D 01                                |
| trans-1,2-Dichloroethene                               | D 01                                   | ٧Z                                                                               | O 01                                | O 01                                | U 01                                | 2 J                                 | 1 2                                 |
| crs-1,2-Dichloroethene                                 | O 01                                   | Ϋ́Ζ                                                                              | O 01                                | 10 OI                               | U 01                                | 130                                 | 140                                 |
| Chloroform                                             | 10 U                                   | ٧Z                                                                               | O 01                                | D 01                                | U 01                                | 10 U                                | 0.01                                |
| cis-1.3-Dichloropropene                                | J 0                                    | ٧Z                                                                               | O 01                                | D 01                                | O 01                                | 10 U                                | O 01                                |
| Trichloroethene                                        | D 0                                    | ۷Z                                                                               | 10 U                                | D 01                                | O 01                                | 061                                 | 210 D                               |

Groundwater Stample
TCL, VOC and VOC TIC Data
Phase I RFI
AL, Teeth Speciality Steet Corporation
Dankfrk, New York Facility

GW-WP-4-0397 97-1208 03/25/97 GW-WP-4-1196 96-5886 11/21/96 WP-03 GW-WP-3-0397 97-1208 03/25/97 WP-02 GW-WP-2-0397 97-1208 03/25/97 WP-01 (:W-WP-1-0397 97-1208 03/25/97 GW-RF1-017-0397 97-1208 03/26/97 | Sample Location: GW-RF1-017-1196 | RF1-17 | Sample LD: 96-5667 | Jahoratory Project No.: 96-5667 | 11/2096 | Sample Date: 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11/2096 | 11

Volatile Organics Tentatively Identified Compounds (µg/l)

ž

Total VOC TICs (1)

Total VOCTICs 0

Ϋ́

š

Total VOCTICs (I fotal VOC'HCs 0

Page 14 of 18

Table 4-10 (continued)

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 15 of 18

| Sample Location:                                      | WP-05                               | -05                                 | .I.W                                          | 01A                                  |                                      | WT-01B                               |                                       |
|-------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|
| Sample LD:<br>Laboratory Project No.:<br>Sample Date: | GW-WP-5-1196<br>96-5586<br>11/21/96 | GW-WP-5-0397<br>97-1208<br>03/25/97 | GW-WT-1A-1196 GW-V<br>96-5528 9<br>11/19/96 0 | GW-WT-1A-0397<br>97-1208<br>03/26/97 | GW-WT-1B-1196<br>96-5528<br>11/19/96 | GW-WT-1B-0397<br>97-1208<br>03/26/97 | GW-WT-1B-0397D<br>97-1208<br>03/26/97 |
| PCL Volatile Organic Compounds (µg/l)                 |                                     |                                     |                                               |                                      |                                      |                                      |                                       |
| yl chloride                                           | O 01                                | O 01                                | O 01                                          | O 01                                 | 10 U                                 | U 01                                 | D 01                                  |
| Acetone                                               | 10 U                                | U 01                                | U 01                                          | O 01                                 | 10 U                                 | U 01                                 | D 01                                  |
| Carbon disulfide                                      | 10 OI                               | D 01                                | 10 U                                          | O 01                                 | 0 OI                                 | D 01                                 | U 01                                  |
| 1,1-Dichloroethene                                    | O 01                                | O 01                                | D 01                                          | O 01                                 | U 01                                 | U 01                                 | D 01                                  |
| trans-1,2-Dichloroethene                              | U 01                                | O 01                                | D 01                                          | U 01                                 | וס ת                                 | U 01                                 | D 01                                  |
| ris-1,2-Dichloroethene                                | U 01                                | O 01                                | 10 O                                          | 0 01                                 | 10 U                                 | 10 U                                 | O 01                                  |
| Thereform                                             | 10 OI                               | D 01                                | D 01                                          | 10 n                                 | U 01                                 | D 01                                 | 0.01                                  |
| is-1,3-Dichtoropropene                                | 10 OI                               | U 01                                | 10 O                                          | O 01                                 | U 0 U                                | 10 U                                 | U 01                                  |
| Unchloroethene                                        | 10 O                                | U 01                                | O 01                                          | U 01                                 | U 01                                 | O 01                                 | U 01                                  |

Groundwater Sample
TCI, VOC and VOC TIC Data
Plase I RFI
AI. Tech Speciality Steel Corporation
Dumkirk, New York Facility

GW-WT-1B-0397D 97-1208 03/26/97 WT-01B GW-WT-1B-0397 97-1208 03/26/97 GW-WT-1B-1196 96-5528 17/19/96 WT-01A GW-WT-1A-0397 97-1208 03/26/97 GW-WT-1A-1196 96-5528 11/19/96 GW-WP-5-0397 97-1208 03/25/97 WP-05 GW-WP-5-1196 96-5586 11/21/96 Sample Location: Sample LD: Laboratory Project No.: Sample Date:

ž

Fedal VOCTES 0

Total VOCTRCs 0

Page 16 of 18

Volatite Organics Tentatively Identified Compounds (pg/l)

Total VOCTICs () Fotal VOCTICs 0 Fatal VOCTICS 0

Total VOCTICs 0

Groundwater Sample
TCL VOC and VOC TIC Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

Page 17 of 18

| 1-04             | GW-WT-04-0397<br>97-1208<br>03/26/97                                |                                       | O 01           | U 01     | D 01             | U 01               | U 01                     | 2 J                    | O 01       | O 01                    | IO 01           |
|------------------|---------------------------------------------------------------------|---------------------------------------|----------------|----------|------------------|--------------------|--------------------------|------------------------|------------|-------------------------|-----------------|
| ,M               | GW-WT-04-1196<br>96-5528<br>11/19/96                                |                                       | 10 U           | O 01     | U 01             | U 01               | U 01                     | U 01                   | U 01       | 10 U                    | 10 U            |
| 03               | GW-WT-03-1196 GW-WT-03-0397<br>96-5528 97-1208<br>11/19/96 03/26/97 |                                       | 10 U           | U 01     | O 01             | O 01               | O 01                     | _                      | O 01       | O 01                    | O 01            |
| WT.              | GW-WT-03-1196<br>96-5528<br>11/19/96                                |                                       | 10 O           | D 01     | O 01             | O 01               | 10 N                     | O 01                   | 10 U       | O 01                    | 10 D            |
| 02               | GW-WT-02-0397<br>97-1228<br>03/27/97                                |                                       | 21             | N 99     | D 01             | 10 N               | £ £                      | 64                     | D 01       | D 01                    | 6 9             |
| -TW              | GW-WT-2-1196<br>96-5653<br>11/25/96                                 |                                       | - ×            | 250 J    | D 01             | O 01               | D 01                     | 51 J                   | 10 U       | 10 U                    | ſ &             |
| Sample Location: | Sample I.D.:<br>Laboratory Project No.:<br>Sample Date:             | TCL Volatile Organic Compounds (µg/l) | Vinyl chloride | Acetonic | Carbon disulfide | 1,1-Dichloroethene | trans-1,2-Dichloroethene | cis-1.2-Dichloroethene | Chloroform | cis-1,3-Dichloropropene | Trichloraethene |

Groundwater Sample
TCL, VOC and VOC TIC Data
Plass I RFI
AL, Tech Specially Steel Corporation
Dankfrk, New York Facility

Page 18 of 18

GW-WT-04-0397 97-1208 03/26/97 WT-04 GW-WT-04-1196D 96-5528 11/19/96 GW-WT-04-1196 96-5528 11/19/96 G W-WT-03-0397 97-1208 03/26/97 WT-03 GW-WT-03-1196 96-5228 11/19/96 GW-WT-02-0397 97-1228 03/27/97 WT-02 GW-WT-2-1196 96-5653 11/25/96 Sample Location: Sample LD: Laboratory Project No.: Sample Date:

Volatike Organics Tentatively Identified Compaunds (1971) Unknown

130 N 100 NJ Unknawn

Total VOCTICS Total VOUTICS 1000 3 Total VOC 11Cs

Futul VOC TICS

Total VOCTICs 0

=

Total VOCTICs

Total VOCTICs 0

at YCL = Target Compound Last; VOC = volatile organic compound; TIC = tentatively identified compound.

Only those YCL ACK's detected in one or mare of the groundwater samples have been retained in this table. Unabridged analytical results are presented in Appendix N, by uppl = interagrams per liter.

I but a compound in detected a fine moted detection limit.

I constitution and detected at the commentation less than the method detected limit.

If a constitution and detected at the estimated concentration less than the method detected limit.

If a constitution and effected at the estimated detection limit nated.

If a constitution and effected an estimated concentration.

If a constitution as detected an an estimated concentration.

If a constitution as a constitution as estimated concentration.

If a constitution and detected an an estimated concentration.

If a constitution and detected an an estimated concentration.

If a constitution and detected an an estimated concentration.

If a constitution are detected an an estimated concentration.

If a constitution and detected an an estimated concentration.

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:                                       | 10-81                              |                                    | LAE                                  | -04                                                                 | I.A.V                                | N-05                                                               | LAW-06                               |
|--------------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|--------------------------------------|
| Sample LD.:<br>Laboratory Project No.:<br>Sample Date: | GW-B-1-1196<br>96-5507<br>11/18/96 | GW-B-1-0397<br>97-1208<br>03/24/97 | GW-LAE-4-1196<br>96-5567<br>11/20/96 | 5W-LAE-4-1196 GW-LAE-4-0397<br>96-5567 97-1228<br>11/20/96 03/27/97 | GW-LAW-5-1196<br>96-5586<br>11/21/96 | W-LAW-5-1196 GW-LAW-5-0397<br>96-5586 97-1228<br>11/21/96 03/26/97 | GW-LAW-6-1196<br>96-5586<br>11/21/96 |
| 'CL Semi-Volatile Organic Compounds (µg/l)             |                                    |                                    |                                      |                                                                     |                                      |                                                                    |                                      |
| henol                                                  | II U (c)                           | ( <del>p</del> ) VN                | ם ==                                 | o =                                                                 | 3 =                                  | ٧Z                                                                 | =<br>=<br>=                          |
| Auphthalenc                                            | חם                                 | V                                  | ם =                                  | 14                                                                  | 5 =                                  | Ϋ́N                                                                | D ::                                 |
| n-butyl phthalate                                      | חו                                 | <<br>Z                             | חוו                                  | 0 =                                                                 | <u> </u>                             | ٧Z                                                                 | O :::                                |
| Bis(2-ethylliexyl)phthalate                            | N II                               | < Z                                | n ::                                 | ח                                                                   | E CI                                 | ₹<br>Z                                                             |                                      |

Groundwater Sample
TCI, SVOC and SVOCTIC Data
Planet IRFI
Al. Teeth Speciality Steet Corporation
Dunklek, New York Facility

Paper 2 of 20

| (IVALE-1170<br>90-5507<br>11/1896<br>11/1896<br>11/1896<br>11/1896 action IIII<br>11/1896 action IIII<br>11/1896 action IIII<br>11/1896 action IIIII<br>11/1896 action IIIIII<br>11/1896 action IIIIIIIII<br>11/1896 action IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2222222                               | CW-41-1-0397<br>97-1208<br>03/24/97<br>NA | GW-LAE-4-1196<br>96-5567<br>11/28/96 |             | C:VV-1.AE-4-0.397   | 6W-LAW-5-1196       | <b>2</b> 2 | C:W-LAW-5-0397       | 2011 2 W. L. W. C. 1106 | 3,6     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------|-------------|---------------------|---------------------|------------|----------------------|-------------------------|---------|
| Project No.: 90-5507  Sumple Date: III18906  Unkawan Hydro-calman Unkawan Un | 2222222                               |                                           | 96-5567<br>11/28/96                  |             |                     |                     |            |                      | T.O. 11 V/T. 11 11      |         |
| He Organics Unknown Hydroc achon Unknown Hydroc adron Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222222                                | ž                                         |                                      |             | 97-1228<br>03/27/97 | 96-5586<br>11/21/96 |            | 97-1228<br>0.V/26/97 | 96-5586                 |         |
| ile Organity  Unkawan Hydrocarban  Unkawan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | ź                                         |                                      |             |                     |                     |            |                      |                         |         |
| Unkanwa Hydro, afom Unkanwa Hydro, afom Unkanwa Hydro, adom Unkanwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | ζ                                         |                                      |             |                     |                     |            |                      |                         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                     |                                           | that many that the state of the      | IN S        |                     | Hademan Hademanham  | 120        | ž                    | Determine the least of  | -       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z Z Z Z Z Z<br>2 11 2 12 13 13        |                                           | Unknown Hydrocaman                   |             |                     | Oliview Hydrochian  | 2 :        | SN.                  | Obkhown Hydrocathum     | 2 .     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 2 2 2<br>2 2 2 2 2                |                                           | Unknown Hydrocathon                  | Ž           |                     | Unknown Hydrocation | Ž          |                      | Unknown Hydrocarbon     | Z<br>Z  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z Z Z Z<br>2                          |                                           | Unknown Hydrocarbon                  | 2           |                     | Unknown Hydrocarbon | Z<br>E     |                      | Unknown Hydrocarbon     | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 Z<br>2 Z Z                        |                                           | Опключи Нуйтесатия                   | N S         |                     | Unknown Hydrocarbon | Z          |                      | Unknown Hydrocurban     | Ñ S     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ñ Z                                   |                                           | Unknown Hydrocarbon                  | N S         |                     | Unknown Hydrocarbon | Z<br>Z     |                      | Unknown Hydrocarbon     | Z<br>C  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N Z                                   |                                           | Unknown Hydrocarbon                  | É N         |                     | Unknown Hydrocarbon | Z<br>e     |                      | Unknown Hydrocarbon     | S N     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           | Unknown Hydrocarbon                  | 24 NJ       |                     | Unknown Hydrocarben | 20 NJ      |                      | Unknown Hydrocarbon     | 22 N    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IS NJ                                 |                                           | Unknown Hydrocarbon                  | N I         |                     | Unknown Hydrocarbon | 20 NJ      |                      | Unknown Hydrocarton     | 17 N    |
| Hydrocarban<br>Hydrocarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 NJ                                 |                                           | Unknown Hydrocarban                  | Ñ.          |                     | Unknown Hydrocarben | Z Z        |                      | Unknown Hydrocarbon     | EN CI   |
| Hydrocarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                              |                                           | Unknown Hydrocarban                  | S N         |                     | Unknown Hydrocarbon | Z<br>S     |                      | Unknown                 | 12<br>N |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S NJ                                  |                                           | Unknown                              | N<br>E      |                     | Unknown Hydrocurbon | N S        |                      | Unknown                 | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNJ                                   |                                           | Unknown                              | 17 NJ       |                     | Unknown Hydrocarbon | 2 5        |                      | Unknown                 | Z<br>E  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E NJ                                  |                                           | Unkiniwa                             | S NJ        |                     | Unknown Hydrocarbon | Z          |                      | Unknown                 | E N     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74 NJ                                 |                                           | Unknown                              | 17 NJ       |                     | Unknown             | 2          |                      | Unknown                 | 7       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ñ I                                   |                                           | Unknown                              | N a         |                     | Unknown             | 25 NJ      |                      | Unknown                 | 120 NJ  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 NJ                                 |                                           | Unknown                              | 2           |                     | Unknows             | 12 N       |                      | Unknown                 | ž       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z I                                   |                                           | Unknown                              | Z           |                     | Unknown             | Ž<br>×     |                      | Unknown                 | N S     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΣΝ                                    |                                           | Unknown                              | SN          |                     | Unknowa             | N N        |                      | Unknown                 | 2       |
| Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZX XZ                                 |                                           | Unknown                              | Z Z         |                     | Unknown             | -7 N       |                      | Unknown                 | 2       |
| Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N N                                   |                                           | Unknown                              | Z S         |                     | Unknown             | ON NO      |                      | Unknown                 | 2<br>N  |
| Опкножи                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N L                                   |                                           | Unknown                              | 16 N        |                     | Unknown             | 13 N       |                      | Олкизми                 | ž       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           | Unknown                              | 95 NJ       |                     | Unknown             | Z =        |                      | Unknown                 | 7. NJ   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           | Unknown                              | N           |                     | Unknown             | ZO OZ      |                      | Unknown                 | Σ×      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           | Unknown                              | 1 N L       |                     | Unknown             | N o        |                      | Unknown                 | Z       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           | Unknown                              | Ž ×         |                     | Unknown             | 2 5        |                      | Unknown                 | 75 NJ   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           |                                      |             |                     |                     |            |                      |                         |         |
| Total SVOC TICs(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1X1                                   |                                           | Total SVOC TICs                      | Sto Total S | Total SVOC TICs 0   | Total SVOC TICs     | 473        |                      | Total SVOC TICs         | 3       |

Table 4-11 (continued)

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase 1 RF1
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:<br>Sample L.D.:<br>Laboratory Project No.:<br>Sample Date: | LAW-06 (continued)<br>GW-LAW-6-0397<br>97-1228<br>03/26/97 | M<br>CW-MW-1-1196<br>96-5586<br>11/20/96 | MW-01<br>MW-1-1196 GW-MW-1-0397<br>96-5586 97-1208<br>11/20/96 03/25/97 | GW-MW-3-1196<br>96-5567<br>11/20/96 | MW-03<br>GW-MW-3-1196 GW-MW-3-0397<br>96-5567 97-1208<br>11/20/96 03/26/97 | RFI-01<br>GW-RFI-001-1196 GW-RFI-001-039<br>96-5507 97-1208<br>11/18/96 03/24/97 | RFI-01<br>06 GW-RFI-001-0397<br>97-1208<br>03/24/97 |
|-----------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|
| TCL, Semi-Volatile Organic Compounds (µg/l)                                 |                                                            |                                          |                                                                         |                                     |                                                                            |                                                                                  |                                                     |
| Phenol                                                                      | =<br>=                                                     | 5 =                                      | D 01                                                                    | ==                                  | <<br>Z                                                                     | <u> </u>                                                                         | D 01                                                |
| Naphthalene                                                                 | ∩ =                                                        | 0 11                                     | O 01                                                                    | n =                                 | ٧Z                                                                         | חוו                                                                              | 0.01                                                |
| Di-n-butyl phthalate                                                        | חוו                                                        | חוו                                      | D 01                                                                    | )<br>=                              | Ϋ́N                                                                        | חוו                                                                              | D 01                                                |
| Bis(2-ethylbexyl)phthalate                                                  | 7                                                          | n =                                      | O 01                                                                    | ) =                                 | < <u>z</u>                                                                 | 27                                                                               | O 01                                                |

Table 4-11 (continued)

Groundwater Sample
TCL. SVOC and SVOC TIC Data
Phase I RFI
AL Tech Specially Steel Corporation
Dankirk, New York Facility

Page 4 of 20

| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CMAINAGAD   CMAI   | The Lawrence of the law in the la | Commence of the control of the contr |     |                           | 141 141 |                         | -    |                                    |        |                         |                            |        |                           | - |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------|---------|-------------------------|------|------------------------------------|--------|-------------------------|----------------------------|--------|---------------------------|---|
| Unknown   20 N   Unknown Phincarlun   25 N   Unknown   25 N   Unkno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2009   11,2   | Sample LD::<br>baratory Project No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW-LAW-6-0397<br>97-1228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 085-96                    |         | GW-MW-1-0397<br>97-1208 |      | GW-MW-3-1196<br>96-5567            |        | GW-MW-3-0397<br>97-1208 | GW-RF1-001-1196<br>96-5507 |        | GW-RF1-001-035<br>97-1208 | 7 |
| Unknown         10 N         Unknown Hydrocarbon         20 N         Unknown Hydrocarbon         7 N         Unknown         2 N         N         Unknown         1 N         N         Unknown         1 N         N         Unknown         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dufe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13/26/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   | 08/07/11                  |         | 13/53/9/                |      | 32/137/11                          |        | 12/67/60                | 117.07.70                  |        | (2)57(3)                  |   |
| Unknown   29 M   Unknown Helicacinen   24 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown   1 N   Unknown Hydrocarbon   2 N   Unknown   2    | á                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      |                                    |        |                         |                            |        |                           |   |
| 13 N   Unknown Hydrocarbon   26 M   Unknown Hydrocarbon   27 M   Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 M   Unknown Hydrocarbon   2 M   Unknown Hydrocarbon   1 M   Unknown Hydrocarbon   2 M   Unknown Hydrocarbon   1 M   Unknown Hydrocarbon     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      |                                    |        |                         |                            |        |                           |   |
| 10 M   Unknown Hybricarbon   15 M   Unknown Hybricarbon   15 M   Unknown Hybricarbon   16 M   Unknown Hybricarbon   16 M   Unknown Hybricarbon   16 M   Unknown Hybricarbon   16 M   Unknown Hybricarbon   17 M   Unknown Hybricarbon   18 M   Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 N   Unknown Phylocarbon   18 N   Unknown   | Unka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z   | Unknown Hydrocarbon       | So N    | Unknown                 | S NJ | <b>Олкно</b> мп <b>Ну</b> дпелавын | ο N    | N.A                     | Овквача Нуфостичн          | Z Z    | Unknown                   | ž |
| 4 N. Unknown Hydrocarbon         1 N. M. Unknown         1 N. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2   | <b>Опкинун Нудгоситон</b> | 7.1 N   | Unknown                 | 2    | Unknown Hydrocarban                | N N    |                         | Unknown Hydrocarron        | Ñ<br>E | Unknown                   | ž |
| 1. N. Unknown Hydrocarbon         45 NJ         Unknown Hydrocarbon         18 NJ         Unknown Hydrocarbon         18 NJ         Unknown Hydrocarbon         18 NJ         Unknown Hydrocarbon         19 NJ         Unknown Hydrocarbon         Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 N   Unknown Hydrocarbon   1 N   Unknown Hydrocarbon   1 N   Unknown Hydrocarbon   1 N     1 N   Unknown Hydrocarbon   2 N   Unknown Hydrocarbon   1 N   Unknown      | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ž   | Unknown Hydrocarbon       | Ñ       |                         |      | Unknown Hydrocathon                | Ñ.     |                         | Unknown Hydrocarbon        | Ñ      |                           |   |
| 12 NJ Ushkuwe Hydrocarbon         12 NJ Ushkuwe Hydrocarbon         13 NJ Ushkuwe Hydrocarbon         13 NJ Ushkuwe Hydrocarbon         14 NJ Ushkuwe Hydrocarbon         15 NJ Ushkuwe Hydrocarbon         15 NJ Ushkuwe Hydrocarbon         17 NJ Ushkuwe Hydrocarbon         17 NJ Ushkuwe Hydrocarbon         17 NJ Ushkuwe Hydrocarbon         17 NJ Ushkuwe         Ushkuwen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. M. Unknown Pythocachen         3. M. Unknown Pythocachen         13. M. Unknown Pythocachen         13. M. Unknown Pythocachen         17. M. Unknown         17. M. Unknow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Uukn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z   | Unknown Hydrocurbon       | 12 N    |                         |      | Unknown Hydrocarhan                | N E    |                         | Unknown Hydrocarbon        | ž      |                           |   |
| 8 NJ         Unknown Hydrocarbon         13 NJ         Unknown Hydrocarbon         13 NJ         Unknown Hydrocarbon         13 NJ         Unknown Hydrocarbon         15 NJ         Unknown Hydrocarbon         17 NJ         Unknown Hydrocarbon         17 NJ         Unknown Hydrocarbon         17 NJ         Unknown Hydrocarbon         17 NJ         Unknown         Unknown         17 NJ         NJ         NJ         NJ </td <td>  18 No.   Unknown Hydrocarbon   17 No.   Unknown Hydrocarbon   18 No.   Unknown   18 No</td> <td>Unkn</td> <td></td> <td>Ñ</td> <td>Unknown Hydrocarbon</td> <td>Ñ</td> <td></td> <td></td> <td>Unknown Hydrocarben</td> <td>20 NJ</td> <td></td> <td>Unknown Hydrocarbon</td> <td>17 NJ</td> <td></td> <td></td> | 18 No.   Unknown Hydrocarbon   17 No.   Unknown Hydrocarbon   18 No.   Unknown   18 No   | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ñ   | Unknown Hydrocarbon       | Ñ       |                         |      | Unknown Hydrocarben                | 20 NJ  |                         | Unknown Hydrocarbon        | 17 NJ  |                           |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z   | Unknown Hydrogarbon       | 27 NJ   |                         |      | Олквоми Нуфиссития                 | N 5    |                         | Unknown Hydrocarbon        | 17 N   |                           |   |
| 18 N   Uthknown   18 N   Uthknown   19 N   Uthknown   10 N   Uthknown   Ut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 N   Unknown   18 N   Unknown   19 N   Unknown   17 N     18 N   Unknown   17 N   Unknown   17 N     18 N   Unknown   18 N   Unknown   17 N     18 N   Unknown   18 N   Unknown   18 N     17 N   Unknown   18 N   Unknown   18 N     18 N   Unknown   18 N   Unknown   18 N     18 N   Unknown   18 N   Unknown   19 N     18 N   Unknown   19 N   Unknown   10 N     18 N   Unknown   10 N   Unknown   10 N     | Club.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ž   | Unknown Hydrocarban       | N N     |                         |      | Unknown Hydrocarbon                | N SI   |                         | Unknown Hydrocarbon        | ž      |                           |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 NJ         Unknown         41 NJ         Unknown         17 NJ           5 NJ         Unknown         9 NJ         Unknown         17 NJ           4 1 NJ         Unknown         9 NJ         Unknown         8 NJ           4 1 NJ         Unknown         12 NJ         Unknown         62 NJ           4 1 NJ         Unknown         12 NJ         Unknown         62 NJ           2 N NJ         Unknown         10 NJ         Unknown         40 NJ           4 NJ         Unknown         10 NJ         Unknown         9 NJ           5 NJ         Unknown         5 NJ         Unknown         9 NJ           6 NJ         Unknown         10 NJ         Unknown         9 NJ           1 Uknown         10 NJ         Unknown         10 NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ñ   | Unknown                   | Ñ       |                         |      | Unknown Hydrocathon                | ž      |                         | Unknown Hydrocarbon        | 12 N   |                           |   |
| 5 KI         Uthknown         95 KI         Uthknown         0 KI         Uthknown           4 KI         Uthknown         17 KI         Uthknown         17 KI         Uthknown         Uthknown           4 KI         Uthknown         25 KI         Uthknown         7 KI         Uthknown         Uthknown           4 KI         Uthknown         26 KI         Uthknown         6 KI         Uthknown         Uthknown           4 KI         M         Uthknown         10 KI         M         Uthknown         6 KI           5 KI         M         Uthknown         6 KI         M         Uthknown         6 KI           6 KI         M         Uthknown         6 KI         M         M         M           6 KI         M         Uthknown         6 KI         M         M         M           6 KI         M         Uthknown         6 KI         M         M         M           6 KI         M         Uthknown         9 KI         M         M         M           6 KI         M         Uthknown         9 KI         M         M         M           6 KI         M         M         M         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Value   Valu   | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ñ   | Unknown                   | Ñ.      |                         |      | Unknown Hydrocarban                | Ñ.     |                         | Unknown                    | 17 NJ  |                           |   |
| 13 NJ Uskinven   12 NJ Uskinven   13 NJ Uskinven   13 NJ Uskinven   14 NJ Uskinven   15 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 N   Unknown   12 N   Unknown   13 N   Unknown   14 N   Unknown   15 N   Unknown   16 N   Unknown   16 N   Unknown   16 N   Unknown   17 N   Unknown   18 N   Unknown     | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N S | Unknown                   | N SA    |                         |      | Unknown                            | Ñ      |                         | Unkmiwn                    | XX N3  |                           |   |
| 17 NI Uhfanwa         17 NI Uhfanwa         Uhfanwa         17 NI Uhfanwa           1 A M Uhfanwa         25 NJ Uhfanwa         Uhfanwa         17 NJ Uhfanwa           2 M J Uhfanwa         26 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa           2 M J Uhfanwa         20 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa           2 Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa           0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa           0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa           0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa           0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa         0 NJ Uhfanwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 NI   Uhfanwii   91 NJ   Uhfanwii   62 NJ     18 NJ   Uhfanwii   62 NJ   Uhfanwii   62 NJ     18 NJ   Uhfanwii   20 NJ   Uhfanwii   60 NJ     18 NJ   Uhfanwii   10 NJ   Uhfanwii   10 NJ     19 NJ   Uhfanwii   10 NJ   Uhfanwii   10 NJ     10 NJ   Uhfanwii   10 NJ   Uhfanwii   10 NJ     10 NJ   Uhfanwii    | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ñ   | Unknown                   | N C     |                         |      | Unknown                            | N 6    |                         | Unknown                    | ž      |                           |   |
| 1   N   Unkanwar 25 N   Unkanwar 7 N   Unkanwar 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44 N Uhfaman 25 N Uhfaman 7 N Uhfaman 40 N Uhfaman 40 N Uhfaman 20 N Uhfaman 40 N Uhfaman 40 N Uhfaman 40 N Uhfaman 14 N Uhfaman 16 N Uhfaman 5 N Uhfaman 5 N Uhfaman 6 N Uhfaman 6 N Uhfaman 6 N Uhfaman 6 N Uhfaman 19 N Uhfaman 10 N Uhfaman | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ñ   | Unknown                   | Ñ.      |                         |      | Unknown                            | 12 N   |                         | Unknown                    | S      |                           |   |
| 28 NJ Unkinwi 26 NJ Unkinwi Uhkinwi Uhkinwi 14 NJ Unkinwi Uhkinwi Uhkinwi 19 NJ Uhkinwi Uhkinw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 NJ Unknown 26 NJ Unknown 6 NJ 4 NJ 4 NJ 4 11 NJ 4 11 NJ 5 NJ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ž   | Unknown                   | 25 NJ   |                         |      | Unknown                            | Z Z    |                         | Unknown                    | Z      |                           |   |
| 4 NJ Urkawen 29 NJ Urkawen C NJ Urkawen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 N J Uskinwa 18 N J Uskinwa 18 N J Uskinwa 19 N J Uskinwa 10 N J  | Unka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S   | Unknown                   | ž<br>Š  |                         |      | Unknown                            | ć N    |                         |                            |        |                           |   |
| 11 NJ Uhkuwan 2.9 NJ Uhkuwan 6 NJ Uhkuwan Uhkuwan Uhkuwan Uhkuwan Uhkuwan Uhkuwan Uhkuwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 NJ  29 NJ  10 NJ  11 Trad SVOCTITA  11 Trad SVOCTITA  11 Trad SVOCTITA  12 Trad SVOCTITA  13 Trad SVOCTITA  14 NJ  15 Trad SVOCTITA  16 Trad SVOCTITA  17 Trad SVOCTITA  18 Trad SVOCTITA  18 Trad SVOCTITA  19 Trad SVOCTITA  10  | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ž   |                           |         |                         |      | Unknown                            | Z      |                         |                            |        |                           |   |
| 29 NJ Udainwa 6 NJ Udainwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9 NJ Uskinova 10 NJ Uskinova 5 NJ Uskinova 5 NJ Uskinova 5 NJ Uskinova 6 NJ Uskinova 8 NJ Uskinova 8 NJ Uskinova 10 NJ Uskin | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2   |                           |         |                         |      | Unknown                            | ž Z    |                         |                            |        |                           |   |
| c NJ Uhánnya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ñ   |                           |         |                         |      | <b>U</b> пкнимп                    | IO N   |                         |                            |        |                           |   |
| ,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ñ,  |                           |         |                         |      | Unknown                            | 2      |                         |                            |        |                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unkinown   6 N   19 N   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      | Unknown                            | S N    |                         |                            |        |                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ushkuwa 8 NJ Ushkuwa 10 NJ Ushkuwa 60 NJ Ushkuwa 60 NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      | Unknown                            | Ñ      |                         |                            |        |                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Uskinova 19 NJ Uskinova 10 NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      | Unknown                            | Z<br>Z |                         |                            |        |                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unkinova 10 NJ Unkinova 10 NJ Unkinova 60 NJ Unkinova 60 NJ Unkinova 60 NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      | Unknown                            | 39 NJ  |                         |                            |        |                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unknown (O N)  Unknown (O N)  Unknown (O N)  Unknown (A) N  Unknow |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      | Unknown                            | N OI   |                         |                            |        |                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unknown 60 NJ  VII. Trada went "Tit. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      | Unknown                            | EN OI  |                         |                            |        |                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE TOTAL OF THE STORY THE TABLES OF THE TOTAL OF THE STORY THE TABLES OF THE TABLES O |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |         |                         |      | Unknown                            | N 09   |                         |                            |        |                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Tutal SVORT TRUE          |         | Total SVOC TICs         | 15   | Total SVOC TICs                    | 126    |                         | Total SVOC TICs            | 310    | Total SVOC TICs           | 3 |

Table 4-11 (continued)

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

| RF1-02 | Sample I.D.: GW-RFI-002-1196 GW-RFI-002-0397 GW-RFI-003-1397 GW-RFI-003-0397 Laboratory Project No.: 96-5507 97-1208 96-5507 97-1208 96-5507 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 97-1208 9 | FCT. Seni-Volatile Organic Compounds (4以り) | IO R | 10 n                                          | NA 10 U |      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|-----------------------------------------------|---------|------|
|        | GW-RFI-004-119<br>96-5528<br>11/19/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | 11 n |                                               | 110     |      |
|        | , ,<br>, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | ٧Z   | <z< td=""><td>&lt;<br/>Z</td><td>VZ</td></z<> | <<br>Z  | VZ   |
| RFI-   | GW-RFI-005-1196<br>96-5567<br>11/20/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | U II | Π                                             | N 11    | n II |

Groundwater Sample
TCL, SVOC, and SVOC TIC Data
Place I REI
AL, Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 6 of 20

RFI-05 CW-RFI-005-1196 96-5567 11/20/96 Unknown Hydrocarbon
Unknown
Unknown GW-RFI-004-0.97 97-1208 0.v25/97 ž RF1-04 2 2 2 2 × 1 41 GW-RFI-004-1196 96-5528 11/19/96 Unkmann Unkmann Unkmann Puhalate Total SVOC TICs Z Z Z × 7 Z 5. GW-RFT-003-0397 97-1208 03/24/97 Total SVOC TICs Unknown Unknown Unknown RF1-0.3 7.5 GW-RFI-803-1196 96-5507 11/18/96 Unknown Hydrocarbon
Unknown Hydrocarbon
Unknown Hydrocarbon
Unknown Hydrocarbon
Unknown Hydrocarbon
Unknown Hydrocarbon
Unknown
Unknown Total SVOC TICs GW-RFI-002-0397 97-1208 03/24/97 ž GW-RF1-002-1196 96-5507 11/18/96 Unknown Hydrocarbou Unknown Hydrocarbou Unknown Hydrocarbou Unknown Hydrocarbou Unknown Hydrocarbou Unknown Hydrocarbou Unknown Total SYOU'THES Sample Location: Sample LD: Laboratory Project No.: Sample Date: Seni-Yolulle Organics TRCs (µg/b)

1.0X

Total SVOC TICs

¥0,

Table 4-11 (continued)

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:                                        | RFI-05 (continued)                     | RF                                     | RF1-06                                       | KFI-0                                  | 7                                                                       | RE                                     | RFI-08                                          |
|---------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Date: | GW-RFI-005-0397<br>97-1228<br>03/27/97 | GW-RFF-006-1196<br>96-5567<br>11/19/96 | -1196 GW-RF1-006-0397<br>97-1228<br>03/26/97 | GW-RFI-007-1196<br>96-5567<br>11/20/96 | :W-RF1-007-1196 GW-RF1-007-1196<br>96-5567 96-1208<br>11/20/96 03/27/97 | GW-RFI-008-1196<br>96-5567<br>11/20/96 | ;W-RF1-008-0397<br>96-5567<br>11/20/96 (3/27/97 |
| CL Semi-Volatile Organic Compounds (µg/l)               |                                        |                                        |                                              |                                        |                                                                         |                                        |                                                 |
|                                                         | ٧x                                     | 9.                                     | n =                                          | O ::                                   | O =                                                                     | U 01                                   | U 01                                            |
| taphthalene                                             | ۷Z                                     | חב                                     | n =                                          | 0 =                                    | n ::                                                                    | 10 OI                                  | U 01                                            |
| hthalate                                                | Ϋ́Z                                    | חו                                     | n =                                          | 0 =                                    | 0 =                                                                     | U 01                                   | D 01                                            |
| ist2-ethylhexyllohthalate                               | ₹Z                                     | n ==                                   | 22                                           | 0 =                                    | 0 ==                                                                    | D 01                                   | <u>~</u>                                        |

Groundwater Simple
TCL, SVOC and SVOC TIC Data
Planse IRT
Al. Tech Specially Steel Corporation
Danktrk, New York Facility

Page 8 of 20

| RF1-05 (continued)<br>CW-RF1-005-0397 | GW-RFI-006-1196 | KF1-06<br>GW-RF1-006-0,997 | GW-RFI-007-1196      | KF1-07<br>GW-RFI-007-0397 | 1397   | GW-RF1-008-1196           |          | GW-RFI-00K-0397     |
|---------------------------------------|-----------------|----------------------------|----------------------|---------------------------|--------|---------------------------|----------|---------------------|
| 11/19/V6                              |                 | 97-1228<br>03/26/97        | 96-5567<br>11/20/96  | 97-1208<br>03/26/97       |        | 96-5567<br>11/20/96       |          | 97-1228<br>83/27/97 |
|                                       |                 |                            |                      |                           |        |                           |          |                     |
| NA Unkawan Hydrocathan 8 NJ           | _               |                            | Овынови Нуфъембов    | N NJ Unknown              | Z      | Unknown Hydrocarbon       | Ñ        |                     |
| Unknown Hydrogarban 10 M              | _               |                            | Unknown ffydrocarbon | _                         | S      | Unknown Hydrocarbon       | 17 NJ    |                     |
| Unknown Hydrocarbon 18 NJ             | _               |                            | Unknown Hydrocarbon  | o NJ Unknown              | S      | Unknown Hydrocarbon       | Z<br>E   |                     |
|                                       | _               |                            | Unknown Hydrocarbon  | _                         | Z<br>Z | Unknown Hydrocarbon       | 2        |                     |
| Unknown Hydrocarbon 13 NJ             | _               |                            | Unknown Hydrocarbon  | 12 NJ Unknown             | Ñ t    | <b>Опкложн Нудгосайов</b> | N<br>E   |                     |
| Unknown Hydrocarbon 11 NJ             | _               |                            | Unknown Hydrocarbon  | x NJ Unknown              | ž      | Unknown Hydrocarbon       | Ñ<br>E   |                     |
| Unkniwn 4 NJ                          | _               |                            | Unknown Hydrocarbon  | u N                       |        | Unknown Hydrocarbus       | E SI     |                     |
|                                       | _               |                            | Unknown Hydrocarbon  | 17 NJ                     |        | Unknown Hydrocarbon       | N S      |                     |
|                                       | _               |                            | Unknown Hydrocarbon  | 17 NJ                     |        | Unknown Hydrocutum        | Z<br>Z   |                     |
|                                       | _               |                            | Unknown Hydrocarbon  | 12 NJ                     |        | Unknown Hydrocarbon       | ž        |                     |
| Unknown 45 NJ                         | _               |                            | Unknown Hydrocurbon  | ÍN Y                      |        | Unknown Hydrocubon        | <u> </u> |                     |
| Unkinown                              | _               |                            | Unknows              | N s                       |        | Unknown Hydrocarbon       | Z        |                     |
| Unknown 9 N3                          | _               |                            | Unknown              | 20 NJ                     |        | Unknown Hydrocarbon       | Z        |                     |
| Unknown 5 N3                          | _               |                            | Unknown              | N 61                      |        | Unknown Hydrocashan       | Ž        |                     |
|                                       |                 |                            | Unknown              | E N                       |        | Опкномп                   | Z<br>E   |                     |
|                                       |                 |                            | Unkniwa              | Ž×                        |        | Unknown                   | N        |                     |
|                                       |                 |                            | Unknown              | Z 2                       |        | Unknown                   | Ž<br>E   |                     |
|                                       |                 |                            | Unknown              | Z S                       |        | Unknown                   | ž        |                     |
|                                       |                 |                            | Unknown              | 10 NJ                     |        | Unknown                   | Z×       |                     |
|                                       |                 |                            | Unknown              | Z SI                      |        | Unknown                   | Ñ.       |                     |
|                                       |                 |                            | Unknown              | Z :2                      |        | Unknown                   | Z S      |                     |
|                                       |                 |                            | Unknown              | Z ez                      |        | Unknewn                   | N 25     |                     |
|                                       |                 |                            | Unknown              | (N)                       |        | Unknown                   | Ñ<br>=   |                     |
|                                       |                 |                            | Unknown              | 242 NJ                    |        |                           |          |                     |
|                                       |                 |                            | Unknown              | 6 NJ                      |        |                           |          |                     |
| ì                                     | 100             |                            | STELL MONS POPUL     | SOLL DOWN GOOD 1888       | ×      | Total SVOSTIBE.           |          | ed contract.        |
| Total SVOC TICs 195 Total SV          | Total SV        | Total SVOC TICs 0          | Total SVOC TICS      |                           | Ē      | total avor 11Cs           | tsv Ted  | Tutal SVOC TICS     |

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| RFI-11           | GW-RFI-011-0397<br>97-1208<br>03/25/97                                |                                            | < Z    | < <u>z</u>                            | < <u>Z</u>           | < Z                        |
|------------------|-----------------------------------------------------------------------|--------------------------------------------|--------|---------------------------------------|----------------------|----------------------------|
|                  | GW-RFI-011-1196<br>96-5528<br>11/18/96                                |                                            | 10 U   | U 01                                  | O 01                 | U 01                       |
|                  | 77 GW-RFI-010-0397D(g)<br>97-1208<br>03/25/97                         |                                            | ۲Z     | <z< th=""><th>٧Z</th><th>ΥN</th></z<> | ٧Z                   | ΥN                         |
| RF1-10           | ×                                                                     |                                            | ۲×     | ٧Z                                    | ۲Z                   | ۷N                         |
|                  | GW-RFI-010-1196<br>96-5567<br>11/19/96                                |                                            | 10 R   | O 01                                  | O 01                 | O 01                       |
| 6(               | GW-RF1-009-0397<br>97-1208<br>03/26/97                                |                                            | O 0I   | O 01                                  | O 01                 | O 0                        |
| RF1-             | GW-RF1-009-0196 GW-RF1-009-03<br>96-5528 97-1208<br>11/19/96 03/26/97 |                                            | 13 U   | 13 U                                  | 13 O                 | 95                         |
| Sample Location: | Sample LD.:<br>Laboratory Project No.:<br>Sample Date:                | TCL Semi-Volatile Organic Compounds (µg/l) | Phenol | Naphthatene                           | Di-n-butyl phthalate | Bis(2-ethylhexyl)phthalate |

Page 9 of 20

|  | Table 4-11 (continued) | Groundwater Sample<br>TCL, SVOC and SVOC PC Data | Phase I RF1 | A1. Tech Specialty Steel Corporation<br>Dunkirk, New York Facility |  |
|--|------------------------|--------------------------------------------------|-------------|--------------------------------------------------------------------|--|
|--|------------------------|--------------------------------------------------|-------------|--------------------------------------------------------------------|--|

Page 10 of 20

| Underword   Underword Phylicocarbon   Underword   Underword Phylicocarbon   Underword    | Sample Locations                          |                                       | 70-1-15                                     |   | 2.11; (att) att 110;           | Entrate 13th W. 1            | C.W. BEL aga mach      | 7.10 100 mg         |                                         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------------|---|--------------------------------|------------------------------|------------------------|---------------------|-----------------------------------------|---|
| Ultidaws         6 NJ         Ultidaws         1 MA         NA         NA           Ultidaws         (a) Manager Hydrocardina         (b) Manager         (c) Manager         (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ample L.D.:<br>Project No.:<br>mple Date: | GW-RT-009-1196<br>96-5528<br>11/19/96 | 6.37-461-1003-0.337<br>97-1208<br>0.3/26/97 |   | 96-5567<br>96-5567<br>11/19/96 | 97-100<br>97-100<br>8A/25/97 | 0.37-2797<br>0.3725/97 | 96-5528<br>11/18/96 | 0 W-RF1-011-0,597<br>97-1208<br>0A25/97 | ı |
| Unknown   0 M   Unknown   Hydrocarbon   4 M   M   M   M   M   M   M   M   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                       |                                             |   |                                |                              |                        |                     |                                         |   |
| 6 NJ Uhdanwa Hydrocarban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rgantes                                   |                                       |                                             |   |                                |                              |                        |                     |                                         |   |
| 6 M Unknown Hydrocarbon 8 M I Unknown Hydrocarbon 12 M I Unknown Hydrocarbon 12 M I Unknown Hydrocarbon 11 M I Unknown 12 M I Unknown 12 M I Unknown 12 M I Unknown 12 M I Unknown 13 M I Unknown 15 M I Unknown 15 M I Unknown 15 M I Unknown 15 M I Unknown 16 M I Unknown 17 M I Unknown 18 M I Unknown 18 M I Unknown 16 M I Unknown 1 |                                           |                                       | Unknuwn                                     | S | Unknown Hydrocarbon            |                              | KN                     |                     | < z                                     |   |
| Unkawwe Hydrocarbon Unkawwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                       | Unknown                                     | Ñ |                                | íΖ×                          |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | 12 £                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | 12 NJ                        |                        |                     |                                         |   |
| Bytevarbon<br>Bytevarbon<br>Bytevarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                       |                                             |   |                                | - Z -                        |                        |                     |                                         |   |
| Hydrocarbon<br>Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                                       |                                             |   |                                | íΣα                          |                        |                     |                                         |   |
| Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                       |                                             |   |                                | īZ =                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | <u> </u>                     |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | Z c                          |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | S N.                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | 12 NJ                        |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | 15 NJ                        |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | Š                            |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | IN CI                        |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | ĮŽ s                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   | Unknown                        | S NJ                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   | Unknown                        | N s                          |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | Z.                           |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | × NJ                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | 4c NJ                        |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | × NJ                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | ίχ τ                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | 24 NJ                        |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                                             |   |                                | 6 NJ                         |                        |                     |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | į                                         |                                       | Transfer of the                             | 2 | Total SOUR THE                 |                              |                        | Transferont Tites   |                                         |   |
| STHE TOTAL POPUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                         |                                       |                                             | - |                                |                              |                        |                     |                                         |   |

Table 4-11 (continued)

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Samule Location: | ļ ļ                                                              | rCL. Semi-Volatile Organic Compounds (µg/l)(b)<br>Phenol<br>Naphthalcne<br>Di-r-butyl phthalate<br>Bis(2-ethylhexyl)phthalate |
|------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| RFI              | GW-RFI-012-1196<br>96-5586<br>11/21/96                           | 3333<br>====                                                                                                                  |
| -12              | GW-RFI-012-0397<br>97-1228<br>03/27/97                           | 5555<br>5555                                                                                                                  |
|                  | 7 GW-RF1-013-1196 G<br>96-5567<br>11/20/96                       | n n n n n n n n n n n n n n n n n n n                                                                                         |
| RFI-13           | -1196 GW-RF1-013-1196D GW<br>96-5567<br>11/20/96                 | ž ž ž ž                                                                                                                       |
|                  | GW-RFI-013-0397<br>97-1228<br>03/26/97                           | <u> </u>                                                                                                                      |
| RF               | GW-RFI-014-1196<br>96-5567<br>11/20/96                           | 0000                                                                                                                          |
| 1-14             | GW-RFI-014-196 GW-RFI-014-0397 96-5567 97-1208 11/20/96 03/25/97 | <u> </u>                                                                                                                      |

Table 4-11 (continued)

Groundwater Sample
TCL, SVOC and SVOC TIC Data
Finast IRF
Al. Text Specialty Steel Carporation
Dunkirk, New York Facility

Page 12 of 20

| Sannie Location:      |                            | RFI-12 |                            |                            |        | RF1-13                      |                            |                            | RF1-14   |                            |    |
|-----------------------|----------------------------|--------|----------------------------|----------------------------|--------|-----------------------------|----------------------------|----------------------------|----------|----------------------------|----|
| Sample LD.:           | GW-RFI-012-1196<br>96-5586 |        | GW-RFI-012-0397<br>97-1228 | GW-RFI-013-1196<br>96-5567 |        | GW-RFI-013-1196D<br>96-5567 | GW-RFI-013-0397<br>97-1228 | GW-RFF-014-1196<br>96-5567 |          | GW-RFI-014-0397<br>97-1208 | 74 |
| Sample Date:          | 11/21/96                   |        | 13/28/97                   | 11/20/96                   |        | 11/20/96                    | 0,3/26/97                  | 11/20/96                   |          | 0.3/25/97                  |    |
|                       |                            |        |                            |                            |        |                             |                            |                            |          |                            |    |
| New Volatile Organics |                            |        |                            |                            |        |                             |                            |                            |          |                            |    |
| and                   | Unknown Hydrocarbon        | N O    |                            | Овквама Иудосливая         | S NJ   | KN                          | ۲Z                         | Unknown Hydrocathon        | 22 NJ    | KN                         |    |
|                       | Unknown Hydrogubau         | ZX     |                            | Unknown Hydrocarbon        | Ñ OI   |                             |                            | Unknown Hydrocarbon        | ž        |                            |    |
|                       | Unknown Hydrocarbon        | (N /2) |                            | Unknown Hydrocarbon        | ž      |                             |                            | Unknown Hydrocation        | N S      |                            |    |
|                       | Unknown flydrocarbon       | Ž      |                            | Unknown Hydrocarbon        | N OZ   |                             |                            | Unknown Hydrocarban        | ž        |                            |    |
|                       | Unknown Hydrocarbon        | IS NJ  |                            | Unknown Hydrocarban        | 15 NJ  |                             |                            | Unknown Hydrocathon        | Ž<br>E   |                            |    |
|                       | Опкложи Иуфъулиюн          | N e.   |                            | Unknown Hydrocarbon        | Ž      |                             |                            | Unknown Hydrocarbon        | Ž        |                            |    |
|                       | Unknown Hydrocurbon        | 10 N   |                            | Unknown Hydrocarben        | E N    |                             |                            | Unknown Hydrocarbon        | Z<br>    |                            |    |
|                       | Unkagowa Hydrocarbon       | Z S    |                            | Unknown Hydracarbon        | Ž v    |                             |                            | Unknown Hydrocarbon        | Ž<br>Ž   |                            |    |
|                       | Unknown                    | S S    |                            | Unknown Hydrocarbon        | EN ST  |                             |                            | Unknown Hydrocarbon        | Ž        |                            |    |
|                       | Unkumu                     | 100 N  |                            | Unknown                    | S S    |                             |                            | Unknown Hydrocation        | N<br>E   |                            |    |
|                       | Unkniwn                    | 2      |                            | Unknown                    | 7 NJ   |                             |                            | Unknown Hydrocarbon        | 7 N      |                            |    |
|                       | Unknown                    | ž      |                            | Unknown                    | ž<br>e |                             |                            | Unknown                    | Ñ        |                            |    |
|                       | Usknown                    | 20 NJ  |                            | Unknown                    | ž×     |                             |                            | Unknown                    | 29 NJ    |                            |    |
|                       | Unknown                    | 25 NJ  |                            | Unknown                    | Z      |                             |                            | Unknown                    | 74 NJ    |                            |    |
|                       | Unkniwn                    | N €    |                            | Unknown                    | í v    |                             |                            | Unknown                    | 22 NJ    |                            |    |
|                       |                            |        |                            | Unknown                    | 20 NJ  |                             |                            | Unkniwn                    | Ñ.       |                            |    |
|                       |                            |        |                            | Unkniwn                    | Ñ.     |                             |                            | Unknown                    | IS N     |                            |    |
|                       |                            |        |                            | Unknown                    | ž      |                             |                            | Unknown                    | 13 N     |                            |    |
|                       |                            |        |                            | Unkmwn                     | 12 NJ  |                             |                            | Unkmwn                     | 12 N     |                            |    |
|                       |                            |        |                            | Unknown                    | E N    |                             |                            | Unknown                    | 26 NJ    |                            |    |
|                       |                            |        |                            | Unknown                    | 2 2    |                             |                            | Unknown                    | S0 NJ    |                            |    |
|                       |                            |        |                            | Unknown                    | N E    |                             |                            | Unknown                    | S S      |                            |    |
|                       |                            |        |                            | Unknown                    | 4x NJ  |                             |                            | Unknown                    | ž        |                            |    |
|                       |                            |        |                            | Unknown                    | N 6    |                             |                            | Unknown                    | ž.       |                            |    |
|                       |                            |        |                            | Unknown                    | í N    |                             |                            |                            |          |                            |    |
|                       |                            |        |                            |                            |        |                             |                            |                            |          |                            |    |
|                       | Total SVOC TICs            | 986    | Total SVOC TICs 0          | Total SVOC TICS            | + +    |                             |                            | Total SVOC TICs            | 451 Tet. | Total SVOC TICs            | c  |

 $\frac{2}{5}$   $\frac{2}{5}$   $\frac{2}{5}$   $\frac{2}{5}$ 

\_\_\_\_\_ ====

 $\stackrel{<}{\underset{\sim}{\sim}}\stackrel{<}{\underset{\sim}{\sim}}\stackrel{<}{\underset{\sim}{\sim}}\stackrel{<}{\underset{\sim}{\sim}}$ 

 $\underset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}}}{\overset{\mathsf{Z}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}}{\overset{\mathsf{Z}}}}}{\overset{\mathsf{Z}}}}$ 

\$ < < < <</pre>2 < < <</pre>2 < < </pre>2 < </

Table 4-11 (continued)

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Control of and S        |                 | RFI-15           |                 | RF           | RFI-16                          | N. C.           | KF1-17                           |
|-------------------------|-----------------|------------------|-----------------|--------------|---------------------------------|-----------------|----------------------------------|
| Sample LD:              | GW-RF1-015-1196 | GW-RF1-015-1196D | GW-RF1-015-0397 | ı <b>-</b> 1 | 3W-RFI-016-1196 GW-RFI-016-0397 | GW-RFI-017-1196 | .W-RF1-017-1196 (5W-RF1-017-0397 |
| Laboratory Project No.: | 96-5567         | 96-5567          | 97-1208         |              | 96-5507 97-1208                 | 96-5567         | 96-5567 97-1208                  |
| Sample Date:            | 11/20/96        | 11/20/96         | 03/25/97        |              | 11/18/96 03/25/97               | 11/20/96        | 11/20/96 03/26/97                |

| TCL, Semi-Volatile Organic Compounds (μg/l)(b)<br>Phenol | U 01 |
|----------------------------------------------------------|------|
| Naphthalene                                              | 10 U |
| Di-n-butyl phthalate                                     | 7 J  |
| Riet 2ethyllwyyd balathalate                             | O 01 |

| The state of the s |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1 C.L. Senni- volume Of game Compounds (pg/1/6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O 01 |
| Nanhthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O 01 |
| Dim-hutyl phthabate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 3  |
| Ris(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U 01 |

Groundwater Sample
TCL. SVOC and SVOC TIC Data
Phase I RFI
Al. Tech Speciality Steel Corporation
Dunklek, New York Facility

Page 14 of 20

| •                                         |                           |       | 55.171.1         |                     |                            | RFI-16 |                            |                      | RFI-17                                  |                            |
|-------------------------------------------|---------------------------|-------|------------------|---------------------|----------------------------|--------|----------------------------|----------------------|-----------------------------------------|----------------------------|
| Sample LD::<br>Sample LD::                | CW-401-015-1196           |       | GW-RFI-015-1196D | GW-RFI-015-0397     | CAY-RF1-016-1196           | ų.     | GW-RFI-016-0397<br>97-1208 | CW-RF1-017-1196      | y                                       | GW-RFI-017-0397<br>97-1208 |
| f. churatory Project No.:<br>Sample Date: | 96-5567<br>11/28/96       |       | 96-5567          | 97-1208<br>03/25/97 | 96/91/11                   |        | 0.3725/97                  | 11/20/96             |                                         | 0.3/26/97                  |
|                                           |                           |       |                  |                     |                            |        |                            |                      |                                         |                            |
| Score Volatile Organies                   |                           |       |                  |                     |                            |        |                            |                      |                                         |                            |
| TIC : pp/b                                | :                         |       | ž                | d<br>Z              | (Jaknown flydragather)     | Ž      | V.V.                       | Unknown Hydrocarban  | Z                                       | VV                         |
|                                           | Unknown Hydrogumun        | 2 2   | V.               |                     | Unknown Hydracathan        | ž      |                            | Unknown Hydrocarbon  | N X                                     |                            |
|                                           | Unknown Hydrocathon       | 2 2   |                  |                     | Unknown Hydrogathon        | Ž.     |                            | Unknown Hydrocarbon  | 2                                       |                            |
|                                           | Chrimown Igure, aroun     | 2 2   |                  |                     | <b>Оприями Нудгосагран</b> | E N    |                            | Unknown Hydrociation | <del>2</del>                            |                            |
|                                           | Unklighted Hydrog affails | 2 2   |                  |                     | Unknown Hydrocarbon        | Z<br>Z |                            | Unknown Hydrocarbon  | <del>2</del>                            |                            |
|                                           | CHAINING HAMING           | 2 2   |                  |                     | Unknown Hydrocarbon        | E S    |                            | Unknown Hydrocarbon  | Ñ.                                      |                            |
|                                           | Chemical results and      | 2 2   |                  |                     | Unknown Hydrocarbon        | 2 =    |                            | Unknown Hydrocarbon  | Z                                       |                            |
|                                           | CHARLEST ENGINEERING      | 2 2   |                  |                     | Unknown Hydrocarbon        | N C    |                            | Unknown Hydrocarbon  | N ?!                                    |                            |
|                                           | Christian Hydrocalian     | 2 2   |                  |                     | Unknown                    | 17 N   |                            | Unknown Hydrogathon  | N 2                                     |                            |
|                                           | Cakhowa Hydracidinan      | 2 2   |                  |                     | Unknown                    | N 3    |                            | Unknown Hydrocarbon  | Z S                                     |                            |
|                                           | Unknown Hydroc.ulton      |       |                  |                     | Unkniwa                    | Z ?    |                            | Unknown Hydrocarbon  | Ñ S                                     |                            |
|                                           | CHEROWII HYURA AITROIT    | 2 2   |                  |                     | Cukinwa                    | IN CT  |                            | Unknown              | 24 N                                    |                            |
|                                           | Ullkinkin                 | 20.00 |                  |                     | Unkniwn                    | Z      |                            | Unknown              | 21<br>N3                                |                            |
|                                           | Ullkinini                 | 11 11 |                  |                     | Unknown                    | N      |                            | Unknown              | 23 NJ                                   |                            |
|                                           | Chriman                   |       |                  |                     | Unknown                    | Z      |                            | Unknows              | 54 N3                                   |                            |
|                                           | URKRIMI                   | N a   |                  |                     | Unkniwn                    | Z      |                            | Unknown              | 17 NJ                                   |                            |
|                                           | URKBWE                    | 2 2   |                  |                     |                            |        |                            | Unknown              | 25 NJ                                   |                            |
|                                           | Unkliment                 | N     |                  |                     |                            |        |                            | <b>Unknown</b>       | 2                                       |                            |
|                                           | 1 Such as seen            | Ž     |                  |                     |                            |        |                            | Unknown              | 20 NJ                                   |                            |
|                                           | Datamen                   | Z     |                  |                     |                            |        |                            | Unknows              | Z                                       |                            |
|                                           | Ontonian                  | Z     |                  |                     |                            |        |                            | Unknown              | 2                                       |                            |
|                                           | The francisco             | ž     |                  |                     |                            |        |                            | Unknown              | 2                                       |                            |
|                                           | Chaman                    | Z     |                  |                     |                            |        |                            | Unknown              | 2                                       |                            |
|                                           | I in the second           | Z     |                  |                     |                            |        |                            | Unkmown              | Z<br>E                                  |                            |
|                                           | Unknewn                   | Z.    |                  |                     |                            |        |                            |                      |                                         |                            |
|                                           |                           |       |                  |                     |                            |        |                            |                      |                                         |                            |
|                                           | Total SVOC TICs           | 187   |                  |                     | Total SVOC TICs            | 171    |                            | Total SVOC TICS      | ======================================= |                            |
|                                           |                           |       |                  |                     |                            |        |                            |                      |                                         |                            |

Table 4-11 (continued)

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| 5<br>GW-WP-5-0397<br>97-1208<br>03/25/97                                   | źźźź                                                                                                               |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| WP-05<br>GW-WP-5-1196<br>96-5586<br>97-1208<br>11/21/96<br>03/25/97        | 3335<br>====                                                                                                       |
| 04<br>GW-WP-4-0397<br>97-1208<br>03/25/97                                  | 0000                                                                                                               |
| WP-04<br>GW-WP-4-1196 GW-WP-4-0397<br>96-5586 97-1208<br>11/21/96 03/25/97 | 33××                                                                                                               |
| WP-03<br>GW-WP-3-0397<br>97-1208<br>03/25/97                               | ž ž ž ž                                                                                                            |
| WP-02<br>GW-WP-2-0397<br>97-1208<br>03/25/97                               | <b>\$ \$ \$ \$ \$ \$</b>                                                                                           |
| WP-01<br>(;W-WP-1-0397<br>97-1208<br>03/25/97                              | ZZZZZ                                                                                                              |
| Sample Location:<br>Sample LD.:<br>Laboratory Project No.:<br>Sample Date: | TCL. Semi-Volatile Organic Compounds (µg/l)(b) Phenol Naphthalene Di-n-butyl philialate Bis(2-ethylbexyl)phthalate |

Groundwater Sample
T.Cl. SVOC and SVOC TIC Data
Pluse IRFI
Al. Tech Specialty Steet Corporation
Dunklek, New York Facility

Page 16 of 20

| -                      |               |                         | -            |  |  |                                |                           |            |                     |                         |             |                       |                     |                     |                      |                      |                        |                     |                     |                     |                      |                     |                     |         |         |         |         |         |         |         |         |         |        |        |          |         |                  |
|------------------------|---------------|-------------------------|--------------|--|--|--------------------------------|---------------------------|------------|---------------------|-------------------------|-------------|-----------------------|---------------------|---------------------|----------------------|----------------------|------------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|----------|---------|------------------|
| F110 17 2 42/41 174.17 | CW-WP-5-0397  | 97-1208                 | 0.3/25/97    |  |  |                                |                           |            | ζZ.                 |                         |             |                       |                     |                     |                      |                      |                        |                     |                     |                     |                      |                     |                     |         |         |         |         |         |         |         |         |         |        |        |          |         |                  |
|                        |               |                         |              |  |  |                                |                           |            | Z                   | S N                     | 10 10       | N C                   | Z                   | 2                   | N 72                 | 1 N L 1              | 2                      | Z                   | 2<br>N              | Ñ.                  | XX Z                 | 42 NJ               | N ON                | 2x N3   | N X     |         |         |         |         |         |         |         |        |        |          |         |                  |
| ****** 5 40105 10000   | CW-WP-5-1196  | 96-5586                 | 11/21/96     |  |  |                                |                           |            | Unknown Hydrocarban | Unknown Hydra, arbon    | 10 de 15 de | Cuknown riydro, arbut | Unknown Hydrocarbon | Unknown Hydrocarbon | Unknown Hydrocarbon  | the former the house | Christian Hydrocal not | Unknown Hydrocarbon | Unknown             | Unknown             | Unknown              | Unknown             | Unknown             | Unknown | Unknown |         |         |         |         |         |         |         |        |        |          |         |                  |
| -                      |               |                         |              |  |  |                                |                           |            | Ž                   | Z                       |             |                       |                     |                     |                      |                      |                        |                     |                     |                     |                      |                     |                     |         |         |         |         |         |         |         |         |         |        |        |          |         | 2                |
|                        | GW-WF-4-0397  | 97-1208                 | 03/25/97     |  |  |                                |                           |            | Unknown Hydrocarbon | Unknown Hydrocarban     |             |                       |                     |                     |                      |                      |                        |                     |                     |                     |                      |                     |                     |         |         |         |         |         |         |         |         |         |        |        |          |         | Transference and |
|                        |               |                         |              |  |  |                                |                           |            | 2                   | Z                       |             | 2                     | ž                   | 2                   | Z                    |                      | 2                      | Z                   | Ñ                   | 37 N                | S                    | 38 NJ               | N PC                | 20 N    | Z .     | N of    | 2       | S       | ES N    | 2       | X       | 7 N     | N OS   | IN IC  | 2 5      | 2       |                  |
|                        | 6:W-WP-4-1196 | 96-5586                 | 11/21/96     |  |  |                                |                           |            | Unknown Hydrocubon  | Hotherstelly Hydrogen H |             | Unknown Hydrocarbon   | Unknown Hydrocarbon | Unknown Hydrocarban | Unknown Hydrolystren |                      | Unknown Hydrocarban    | Unknown Hydrocarbon | Unknown Hydrocarbon | Unknown Hydrocarbon | Unknown Plydrocarbon | Unknown Hydroxarbon | Unknesse Hedra ahun | Hakawa  | Unknown | Unknown | Unknown | Cukinwa | Unkhiwa | Unknown | Unknown | Unknown | Hakmwa | Melwan | Ulkhowii | Unknown |                  |
|                        | CW-WP-3-0397  | 97-1208                 | 03/25/97     |  |  |                                |                           |            | ٧×                  |                         |             |                       |                     |                     |                      |                      |                        |                     |                     |                     |                      |                     |                     |         |         |         |         |         |         |         |         |         |        |        |          |         |                  |
| 7/1-144                | GW-WP-2-0397  | 97-1288                 | 63/25/97     |  |  |                                |                           |            | Y.X.                |                         |             |                       |                     |                     |                      |                      |                        |                     |                     |                     |                      |                     |                     |         |         |         |         |         |         |         |         |         |        |        |          |         |                  |
| 10-344                 | GW-WP-1-0397  | 97-12118                | 0.725/97     |  |  |                                |                           |            | Ϋ́Z                 |                         |             |                       |                     |                     |                      |                      |                        |                     |                     |                     |                      |                     |                     |         |         |         |         |         |         |         |         |         |        |        |          |         |                  |
| Sample Location:       | Sumple LD.:   | i charatory Profect No. | Sample Date: |  |  | Committee Charles Charmenfloor | with the same of the same | 110(100/1) |                     |                         |             |                       |                     |                     |                      |                      |                        |                     |                     |                     |                      |                     |                     |         |         |         |         |         |         |         |         |         |        |        |          |         |                  |

Table 4-11 (continued)

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

| WT-02  | GW-WT-2-1196 GW-WT-02-0397<br>96-5653 97-1228<br>11/25/96 03/27/97 | 17 J<br>10 R<br>10 R<br>11 U<br>10 R                                                                                          |
|--------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|        | /-WT-1B-0397D<br>97-1208<br>03/26/97                               | DDDD<br>2020                                                                                                                  |
| WT-01B | GW-WT-1B-0397 GW<br>97-1208<br>03/26/97                            | 11 U<br>11 U<br>11 U<br>7.5 J                                                                                                 |
|        | GW-WT-1B-1196<br>96-5528<br>11/19/96                               | n 01<br>n 01<br>n 01                                                                                                          |
|        | GW-WT-1A-0397<br>97-1208<br>03/26/97                               | n n n n                                                                                                                       |
| WT-01A | GW-WT-1A-1196<br>96-5528<br>11/19/96                               | 0000                                                                                                                          |
|        | Sample I.D.:<br>Laboratory Project No.:<br>Sample Date:            | TCL. Semi-Volatile Organic Compounds (µg/l)(b)<br>Phenol<br>Naphthalene<br>Di-n-buryl phthalate<br>Bis(2-ethylhexyl)phthalate |

Groundwater Sample
TCL.SVOC and SVOC TIC Data
Place I RFI
Al. Tech Specialty Steet Corporation
Dunkirk, New York Facility

Page 18 of 20

|                  | 705                                   |              |                                      | ž<br>S              | Ž ş                 | Σ×                 | Z                   | Z X                 | Z                   | 2                   | Z<br>=              | Z Z     |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | 200               |
|------------------|---------------------------------------|--------------|--------------------------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------------|---------|---------|---------|---------|---------|---------|-------------------|
| WT-02            | GW-WT-02-0397<br>97-1228              | 0.8/27/97    |                                      | Unknown             | Unknown             | Unknown            | Unknown             | Unknown             | Unknown             | Unknown             | Unknown             | Unknown |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | Total SVOC TICS   |
| I.M              |                                       |              |                                      | S N                 | Z<br>Z              | N<br>C             | 15 NJ               | 2<br>=              | <u>N</u>            | 2 2                 | Ē                   | 2       | ž       | Š       | ž       | 17<br>N | 25 NJ   | ž       | Z<br>¥  | S.      | -2<br>-2<br>-2 | 28 NJ   | Z<br>7  | ŝ       | Z<br>Z  | Z Z     | 2       | 560               |
|                  | GW-WT-2-1196<br>96-5653               | 11/25/96     |                                      | Unknown Hydrocarban | Unknown Hydrocarbon | Unknown Hydrocabon | Unknown Hydrocarbon | Unknown Hydrocarban | Unknown Hydrocarbon | Unknown Hydrocarbun | Unknown Hydrocarbon | Unknown | Unknown | Unknown | Unknown | Unknown | Unknown | Uakmowa | Unknown | Овкнича | Unknown        | Unknown | Unknown | Unknown | Unknown | Unknewn | Unknown | Total SVOC TICS   |
|                  | a                                     |              |                                      | N s                 | S                   | ž                  | 2                   |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | 2.0               |
|                  | GW-WT-1B-0.997D<br>97-1208            | 03/26/97     |                                      | Unknown             | Unknown             | Unknown            | Unknown             |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | Total SVOC TICs   |
|                  |                                       |              |                                      |                     | SNJ Unit            |                    |                     | S NJ                | 29 NJ               |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | Ss Tet            |
| WT-01B           | GW-WT-1B-0397<br>97-1208              | 0.M2A/97     |                                      |                     | Hydrocarban         |                    | Unknown             | Unknown             |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | Total SVOC TICs 5 |
|                  | ے                                     |              |                                      | ž                   | Ž<br>=              | Ñ.                 |                     |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | 92                |
|                  | GW-WT-1B-1196<br>96-5528              | 11/19/96     |                                      | Unknows             | Unknown             | Unknown            |                     |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | Total SVOC TICs   |
|                  |                                       |              |                                      | ž                   | N S                 |                    |                     |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | =                 |
| W.T-01A          | GW-WT-1A-0397<br>97-1208              | 03/26/97     |                                      | Unknown             | Unknown             |                    |                     |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | Total SVOC TICs   |
| =                | 961                                   |              |                                      |                     |                     |                    |                     |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | =                 |
|                  | GW-WT-1A-1196<br>96-5528              | 01/11/11     |                                      |                     |                     |                    |                     |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         | Total SVOC TICs   |
| Samule Location: | Sample LD:<br>Laboratory Project No.: | Sample Date: | Near-Valatile Organics<br>130 year/0 |                     |                     |                    |                     |                     |                     |                     |                     |         |         |         |         |         |         |         |         |         |                |         |         |         |         |         |         |                   |

Table 4-11 (continued)

Groundwater Sample
TCL SVOC and SVOC TIC Data
Phase 1 RF1
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Sample 1.D.:<br>Laboratory Project No.:<br>Sample Date: | C;W-WT-03-1196<br>96-5528<br>11/19/96 | :W-WT-03-1196 | GW-WT-04-1196 G<br>96-5528<br>11/19/96 | GW-WT-04-1196D GW-WT-04-0397<br>96-5528 97-1208<br>11/19/96 03/26/97 | GW-WT-<br>97-12<br>03/26 |
|---------------------------------------------------------|---------------------------------------|---------------|----------------------------------------|----------------------------------------------------------------------|--------------------------|
| ГСL Semi-Volatile Organic Compounds (µg/1)(в)<br>Phanal | Π                                     | n =           | O 01                                   | U 01                                                                 |                          |
| Nashhaha                                                | )<br>=                                | 0 == 1        | U 01                                   | n 01                                                                 |                          |
| Di-a-butyl aluthalate                                   | ם ב                                   | חוו           | U 01                                   | n 01                                                                 |                          |
| Bis(2-ethylbexyl)bilithalate                            | 0 ==                                  | N II          | U 01                                   | 10 N                                                                 |                          |

TCL SVOC and SVOC TIC Data Phase 1 RF1 AL Tech Specialty Steel Corporation Dunkirk, New York Facility Groundwater Sample

Page 20 of 20

|                  |                                         |                  | Z Z<br>× 2                                                                                      |   |
|------------------|-----------------------------------------|------------------|-------------------------------------------------------------------------------------------------|---|
|                  | GW-WT-04-0.997<br>97-1208<br>03/26/97   | 1 - 10 - 10 - 10 | Unknown                                                                                         |   |
|                  | <b>_</b>                                |                  | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                           |   |
| WT-04            | GW-WF-04-1196D<br>96-5528<br>11/19/96   |                  | Unknown                 |   |
|                  | <u>s</u>                                |                  | 7 7 7<br>1 0 0                                                                                  |   |
|                  | GW-WT-04-1196<br>96-5528                | 1119/20          | Unknown<br>Unknown<br>Unknown                                                                   |   |
|                  | 7                                       |                  | Z Z Z                                                                                           |   |
|                  | GW-WT-03-0397<br>97-1208                | 19/26/97         | Unknawn<br>Unknawn<br>Unknawn                                                                   |   |
| WT-03            | 96                                      |                  | 2                                                                                               |   |
|                  | GW-WT-03-1196<br>96-5228                | 96/61/11         | Unknown | í |
| Sample Location: | Sample I.D.:<br>Laboratory Project No.: | Sample Date:     | Semi-Volutile Organics  TI(\$ (ppd) Un                      |   |

a/ TCL = target compound fist; SVOC = semi-volatific organic compounds; TIC = tentatively identified compounds. Only those TCL SVOC's detected in one or more of the groundwater samples have been retained in this table.

Unabridged analytical results are presented in Appendix M. b/ µg/l = interograms per liter. c/ Data Qualifiers:

U = constituent not detected at the noted detection limit.

 $J={\rm constituent}$  detected at an estimated concentration less than the method detected limit. Uf = constituent not detected at the estimated detection limit noted.

NJ = presumptive evidence of detection at an estimated concentration.

d/ NA = not analyzed.

e/ Total SVOCTICs represent the sum of all detected TICs. If The analysis for TCL SVOCs. If The analysical laboratory inadventently neglected to complete the analysis for TCL SVOCs. pl = 0 adopticate sample.

Table 4-12

Groundwater Sample
TCL, PCB and Miscellancous Parameter Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

| Samule Location:                           | 10-81                                                                                                                             |                                                                                                              | IAE-04                                                                                          | -0-                      | TVA                      | LAW-05                                          | 90-MVT                                  | 90-/                     |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------------------|-----------------------------------------|--------------------------|
| Sample LD:<br>Laboratory Project No.       | GW-B-1-1196<br>96-5507                                                                                                            | GW-B-1-0397<br>97-1208                                                                                       | GW-LAE-4-1196<br>96-5567                                                                        | GW-LAE-4-0397<br>97-1228 | GW-LAW-5-1196<br>96-5586 | GW-LAW-5-0397<br>97-1228                        | GW-LAW-6-1196<br>96-5586                | GW-LAW-6-0397<br>97-1228 |
| Sample Date:                               | 11/18/96                                                                                                                          | 03/27/97                                                                                                     | 11/20/96                                                                                        | 03/27/97                 | 11/21/96                 | 03/26/97                                        | 11/21/96                                | 03/26/97                 |
| TCL Polychlorinated Biphenyls (µg/l)       |                                                                                                                                   |                                                                                                              |                                                                                                 |                          |                          |                                                 |                                         |                          |
| Aroclar 1016                               | 1 U (c)                                                                                                                           | (P) VN                                                                                                       | <u> </u>                                                                                        | ٧X                       | a                        | ₹Z                                              | <b>6 1</b>                              | <z< td=""></z<>          |
| Appellir 1271                              | <b>5</b>                                                                                                                          | <z< td=""><td><b>D</b> -</td><td>۲×</td><td><u> </u></td><td>Ϋ́Z</td><td>3</td><td><z< td=""></z<></td></z<> | <b>D</b> -                                                                                      | ۲×                       | <u> </u>                 | Ϋ́Z                                             | 3                                       | <z< td=""></z<>          |
| Araclor 1232                               | ~                                                                                                                                 | ٧X                                                                                                           | ~                                                                                               | Ϋ́                       | ×                        | ۲Z                                              | ~                                       | <z< td=""></z<>          |
| Amily 1242                                 | חכו                                                                                                                               | ٧X                                                                                                           | 01                                                                                              | ۷N                       | 01                       | Š                                               | 5 -                                     | ۲Z                       |
| Araclor 1248                               | <b>D</b> -                                                                                                                        | √N<br>N                                                                                                      | =                                                                                               | Ϋ́N                      | ם -                      | <z< td=""><td>5_</td><td>&lt;<u>z</u></td></z<> | 5_                                      | < <u>z</u>               |
| Auxfor 1254                                | חו                                                                                                                                | VZ<br>VZ                                                                                                     | <u> </u>                                                                                        | Ϋ́                       | <u> </u>                 | ٧Z                                              | 3-                                      | <z< td=""></z<>          |
| Aroclor 1260                               | n i                                                                                                                               | ٧X                                                                                                           | n i                                                                                             | Š                        | 2                        | <b>∨</b> Z                                      | 5 -                                     | VN<br>V                  |
| Missell amount Darmadore                   |                                                                                                                                   |                                                                                                              |                                                                                                 |                          |                          |                                                 |                                         |                          |
|                                            | 7.26                                                                                                                              | 7.20                                                                                                         | 7,14                                                                                            | 7.05                     | 86.9                     | 06.9                                            | 8.98                                    | 9,19                     |
| Albahaiw (Totah (madi)                     | 0=                                                                                                                                | 328                                                                                                          | 176                                                                                             | 444                      | 233                      | 479                                             | 3360                                    | 3510                     |
| Total Phenols (1987)                       | 58                                                                                                                                | VA                                                                                                           | 5 B                                                                                             | N<br>N                   | S U                      | ΥN                                              | 3.0                                     | < Z                      |
| (Theride (med))                            |                                                                                                                                   | 3.8                                                                                                          | L8 J                                                                                            | 61                       | 300                      | 280                                             | 07-1                                    | 200                      |
| Eluside (me/l)                             | 0.26                                                                                                                              | 0.18                                                                                                         | 0.31                                                                                            | 0.24                     | 0.19                     | 0.18                                            | 6.3                                     | 3.8                      |
| Nitrate (me/l)                             | U 1.0                                                                                                                             | 0.1 UJ                                                                                                       | 0.1 U                                                                                           | U) I'O                   | 14.)                     | 101                                             | 30 J                                    | 24 J                     |
| Sulfate (me/l)                             | 120                                                                                                                               | 130                                                                                                          | 110                                                                                             | 150                      | 2300                     | 880                                             | 1100                                    | 2900                     |
| Ammonia (as N) (mo/l)                      | 0.73                                                                                                                              | 0.62                                                                                                         | 0.79                                                                                            | 0.78                     | 1.2                      |                                                 | 2.5                                     | 7.1                      |
| Specific Conductance (unihos/cm) (at 25°C) | 808                                                                                                                               | V.                                                                                                           | 892                                                                                             | 830                      | 3160                     | 2820                                            | 9700                                    | 0100                     |
| Total (heanis Cachan (mol))                | Š                                                                                                                                 | 160                                                                                                          | ٧X                                                                                              | ΥN                       | ۲Z                       | ٧Z                                              | ۷Z                                      | < Z                      |
| (Themical Oxygen Demand (my/l)             | <<br>Z                                                                                                                            | V                                                                                                            | <z< td=""><td>V.</td><td>VA</td><td>Y<br/>N</td><td>۲Z</td><td><z< td=""></z<></td></z<>        | V.                       | VA                       | Y<br>N                                          | ۲Z                                      | <z< td=""></z<>          |
| Total Susmarfed Solids (mod.) (at 105°C)   | <z< td=""><td>N</td><td><z< td=""><td>Š</td><td>VA</td><td>٧×</td><td><z< td=""><td><z< td=""></z<></td></z<></td></z<></td></z<> | N                                                                                                            | <z< td=""><td>Š</td><td>VA</td><td>٧×</td><td><z< td=""><td><z< td=""></z<></td></z<></td></z<> | Š                        | VA                       | ٧×                                              | <z< td=""><td><z< td=""></z<></td></z<> | <z< td=""></z<>          |
| Temperature ("C") (field)                  | 0.151                                                                                                                             | 8.7                                                                                                          | 13.6                                                                                            | 10.3                     | 14.8                     | 9.3                                             | 13.5                                    | 7.7                      |
| Turbidity (NTU) (field)                    | 10.0                                                                                                                              | <10 (e)                                                                                                      | 01                                                                                              | >1000                    | 9                        | 01                                              | 01                                      | 01                       |

Table 4-12 (continued)

Groundwater Sample
TCL PCB and Miscellaneous Parameter Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 2 of 9

| Samule Location:                          | 10-WIN                                  | 10-,                    | MW-03                   | -03                     | RFI-01                     | -01                        |                            | RFI-02                     |
|-------------------------------------------|-----------------------------------------|-------------------------|-------------------------|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Sample LD:                                | GW-MW-1-1196                            | GW-MW-1-0397<br>97-1208 | GW-MW-3-1196<br>96-5567 | GW-MW-3-0397<br>97-1208 | GW-RFI-001-1196<br>96-5507 | GW-RFI-001-0397<br>97-1208 | GW-RFI-002-1196<br>96-5507 | GW-RFI-002-0397<br>97-1208 |
| Sample Date:                              |                                         | 03/25/97                | 11/20/96                | 03/26/97                | 11/18/96                   | 03/24/97                   | 11/18/96                   | 03/24/97                   |
|                                           |                                         |                         |                         |                         |                            |                            |                            |                            |
| TCL, Polychlorinated Biphenyls (µg/l)     |                                         | VZ.                     | =                       | Ϋ́Χ                     | 0 -                        | Ϋ́Z                        | <u> </u>                   | <<br>Z                     |
| Alocio 1910                               |                                         | Z                       | -                       | Ϋ́                      | D -                        | ×Z                         | <u> </u>                   | SZ.                        |
| //ocion 1221                              | -<br>-                                  | Z                       | ~                       | ž                       | ~                          | Z                          | ~                          | S Z                        |
| Atomics 2.13                              | ======================================= | ž                       | =                       | ž                       | <u> </u>                   | ××                         | 0 -                        | <z< th=""></z<>            |
| Alochor 1242                              |                                         | Z                       | =                       | ×Z                      | חב                         | N<br>V                     | חו                         | Ϋ́Z                        |
| Armeter 1254                              |                                         | ×                       | 01                      | Ϋ́                      | n                          | ΥN                         | <u> </u>                   | <b>V</b> Z                 |
| Aracha 1960                               |                                         | VN                      | n I                     | V<br>N                  | n I                        | VΝ                         | n 1                        | <b>&lt;</b> Z              |
|                                           |                                         |                         |                         |                         |                            |                            |                            |                            |
| Miscellaneous Parameters                  | 7.51                                    | Fo L                    | 7.2.7                   | 7.17                    | 7.32                       | 7.27                       | 7.05                       | 7.03                       |
| A Hardining (Testula (man/l))             | 216                                     | 675                     | 192                     | 396                     | 76                         | 343                        | 170                        | 404                        |
| Ankanimy (10ad) (mga)                     | a                                       | VZ                      | 3.0                     | ΥN                      | S B                        | VN                         | 5 8                        | < Z                        |
| Charist minus (pga)                       | 57.                                     | ţ                       | 250 J                   | 430                     | 25                         | 20                         | 8.8                        | 3.3                        |
| Elimotide (mga)                           | 0 10                                    | 0.56                    | 0.63                    | 0.49                    | 0.31                       | 0.22                       | 0.26                       | 0.18                       |
| Nitrate (mga)                             | F 11:0                                  | f 68:0                  | f 83 J                  | 10 1                    | 0.51                       | 0.22 J                     | 0.1.0                      | 0.1 (4)                    |
| Suffice (mgh)                             | 350                                     | 280                     | 099                     | 720                     | 7.1                        | 2.5                        | 230                        | 430                        |
| Ammeria (as N) (mg/l)                     | 0.63                                    | 0.3                     | 0.1 U                   | 0.1 U                   | O.1 C                      | 0.1 U                      | 0.36                       | D 1'0                      |
| Sussific Conductance (unbostem) (at 25°C) | 1340                                    | 0001                    | 3250                    | 3200                    | 720                        | 675                        | 1000                       | 1200                       |
| Total Oceanic Culva (mall)                | Z                                       | Š                       | Ϋ́Z                     | ΥN                      | ٧Z                         | ۲Z                         | ٧Z                         | <b>₹</b> Z                 |
| Chanical Oxygen Demand (med)              | Z                                       | V                       | VN                      | ΥN                      | ٧Z                         | ٧X                         | <<br>Z                     | <z< th=""></z<>            |
| Total Sugmented Solide (mall) (at 105°C)  | ČZ.                                     | Ϋ́                      | N                       | \<br>N                  | ٧Z                         | V.                         | <<br>Z                     | <z< th=""></z<>            |
| Temperature (*f.) (field)                 | 6.6                                     | 8.7                     | 14.7                    | 9.3                     | 17.2                       | 7.5                        | 13.6                       | 0.0                        |
| Turbidity (NTU) (field)                   | 39                                      | OI>                     | 64                      | 1.1                     | 01                         | 666                        | 305                        | 122                        |
|                                           |                                         |                         |                         |                         |                            |                            |                            |                            |

Table 4-12 (continued)

Groundwater Sample
TCL PCB and Miscellancous Parameter Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

Page 3 of 9

| Sample Location: | RF<br>CW-REL-003-1196                   | RFI-03<br>6 CW-RFI-003-0397                                                              | RFI-004-1196 C      | CW-RFL-004-0397     | RF<br>GW-RFI-005-1196 | RFI-05<br>6 GW-RFI-005-0397           | RF<br>GW-RFL-006-1196                   | RF1-06<br>GW-RF1-006-0397 |
|------------------|-----------------------------------------|------------------------------------------------------------------------------------------|---------------------|---------------------|-----------------------|---------------------------------------|-----------------------------------------|---------------------------|
| ,                | 96-5507                                 | 97-1208                                                                                  | 96-5528<br>11/19/96 | 97-1208<br>03/25/97 | 96-5567<br>11/20/96   | 97-1228<br>03/27/97                   | 96-5567                                 | 97-1228                   |
|                  |                                         |                                                                                          | :                   | ;                   | :                     | į                                     | :                                       | ;                         |
|                  | <u> </u>                                | <z< td=""><td>2</td><td>VZ.</td><td><u> </u></td><td>42</td><td>5 -</td><td>ď.</td></z<> | 2                   | VZ.                 | <u> </u>              | 42                                    | 5 -                                     | ď.                        |
|                  | <u> </u>                                | Ϋ́Z                                                                                      | ומ                  | ۷X                  | D <b>-</b>            | ٧Z                                    | )<br> -                                 | <z< td=""></z<>           |
|                  | ~                                       | Ϋ́Z                                                                                      | ~                   | ۲×                  | ~                     | ٧Z                                    | ~                                       | ٧Z                        |
|                  | ======================================= | V.                                                                                       | 0.1                 | VV                  | 0                     | N.                                    | חו                                      | ٧Z                        |
|                  | n                                       | Š                                                                                        | ם -                 | ۲Z                  | ומ                    | ٧Z                                    | 0-                                      | <b>Y</b> Z                |
|                  | : <u>-</u>                              | ×                                                                                        | n -                 | N                   | กเ                    | VV                                    | n                                       | ₹Z                        |
|                  | <u>n</u>                                | V                                                                                        | n I                 | <b>₹</b> Z          | חו                    | ٧X                                    | חו                                      | ٧X                        |
|                  |                                         |                                                                                          |                     |                     |                       |                                       |                                         |                           |
|                  | 7.44                                    | 7.40                                                                                     | 7.31                | 7.33                | 7.43                  | 7.22                                  | 7.44                                    | 7.24                      |
|                  | 200                                     | 376                                                                                      | 202                 | 382                 | 091                   | 259                                   | 192                                     | 340                       |
|                  | 5 B                                     | VV                                                                                       | 5 8                 | VΝ                  | 5 8                   | Ϋ́N                                   | 5 B                                     | ۲Z                        |
|                  | 120                                     | 93                                                                                       | 81                  | 91                  | [ +1                  | 12                                    | 45 J                                    | 20                        |
|                  | 6.1                                     | =                                                                                        | 0.18                | 0.18                | 0.31                  | 0.21                                  | 0.34                                    | 0.27                      |
|                  | 0.1 U                                   | U) I (I)                                                                                 | 0.1 UJ              | 0.1 (1)             | 2.5 J                 | 2.4 J                                 | 0.1 UJ                                  | 0.1.0                     |
|                  | 230                                     | 230                                                                                      | 011                 | 110                 | 120                   | 0=                                    | 310                                     | 270                       |
|                  | 0.34                                    | 0.24                                                                                     | 0.31                | 0.21                | O.I.O                 | D I O                                 | 6.1                                     | 1.3                       |
|                  | 1410                                    | 1360                                                                                     | 841                 | 202                 | 716                   | 621                                   | 1180                                    | 1100                      |
|                  | Y.                                      | N<br>N                                                                                   | Y<br>V              | V.                  | NA                    | Ϋ́N                                   | ۷Z                                      | ۲Z                        |
|                  | ΥN                                      | ٧X                                                                                       | ٧X                  | Ϋ́Z                 | ۷Z                    | <<br>Z                                | <z< td=""><td><z< td=""></z<></td></z<> | <z< td=""></z<>           |
|                  | Š                                       | ٧Z                                                                                       | ٧Z                  | ٧X                  | ۷Z                    | <z< td=""><td>٧Z</td><td>۲Z</td></z<> | ٧Z                                      | ۲Z                        |
|                  | 16.5                                    | ۲Z                                                                                       | 12.8                | 10.2                | 9.11                  | 6.6                                   | 13.3                                    | 6.5                       |
|                  | 21                                      | V.                                                                                       | 10                  | 488                 | æ                     | 0I>                                   | 20                                      | 9                         |
|                  |                                         |                                                                                          |                     |                     |                       |                                       |                                         |                           |

Table 4-12 (continued)

Groundwater Sample
TCL PCB and Miscellaneous Parameter Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

| Samole Lacation:                                      | : X                                                                                                                           | RFI-07                                 | RF                                     | RFI-08                                 | RF                                     | RFI-09                                 | RFI-10                                 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Sample LD:<br>Laboratory Project No.:<br>Sample Date: | GW-RF1-007-1196<br>96-5567<br>11/20/96                                                                                        | GW-RFI-007-1196<br>97-1208<br>03/26/97 | GW-RFI-008-1196<br>96-5567<br>11/20/96 | GW-RFI-008-0397<br>97-1228<br>03/27/97 | GW-RFI-009-1196<br>96-5528<br>11/19/96 | GW-RFI-009-0397<br>97-1208<br>03/26/97 | GW-RF1-010-1196<br>96-5567<br>11/19/96 |
|                                                       |                                                                                                                               |                                        |                                        |                                        |                                        |                                        |                                        |
| TCL Polychlorinated Biphenyls (µg/l)                  |                                                                                                                               | 2                                      |                                        | Ž                                      |                                        | Š                                      | _                                      |
| Arocio 1016                                           |                                                                                                                               | V V                                    | 2 =                                    | Z                                      | ) =                                    | Ž                                      | ; <u> </u>                             |
| Alociol 1221                                          | -                                                                                                                             | × × ×                                  | ) a                                    | Z                                      |                                        | Z                                      | ) <u>a</u>                             |
| Arocioi 12.72                                         | < :                                                                                                                           | V.                                     | 4 <b>-</b>                             | Z                                      | :=                                     | Z                                      | -                                      |
| Atocior 1242                                          | <b>-</b>                                                                                                                      | VX                                     | > :                                    | · :                                    | ) :<br>                                |                                        |                                        |
| Aroclor 1248                                          | ם                                                                                                                             | ٧Z                                     | 0 -                                    | <<br>Z                                 | <u> </u>                               | <z< td=""><td>0 -</td></z<>            | 0 -                                    |
| Araclar 1254                                          | <u> </u>                                                                                                                      | ۲Z                                     | n                                      | ۲Z                                     | 0 -                                    | <<br>Z                                 | n <b>–</b>                             |
| Armiby 1760                                           |                                                                                                                               | Š                                      | ח                                      | ٧Z                                     | 01                                     | ٧Z                                     | <u> </u>                               |
|                                                       |                                                                                                                               |                                        |                                        |                                        |                                        |                                        |                                        |
| Miscellaneous Parameters                              |                                                                                                                               |                                        |                                        |                                        |                                        |                                        |                                        |
| 011 (8 11 )                                           | 7.03                                                                                                                          | 7.06                                   | 7.32                                   | 7.21                                   | 7.01                                   | 6.88                                   | 7.27                                   |
| Albelining Though (mach)                              | 961                                                                                                                           | 348                                    | 160                                    | 326                                    | 49.6                                   | 467                                    | 126                                    |
| Transferred Discourt Conferred                        | 25                                                                                                                            | , Z                                    | 8 5                                    | ×z                                     | 8 5                                    | 5 0.1                                  | 5.8                                    |
| foral factions (4g/1)                                 | 1 000                                                                                                                         | OSI                                    | 1 4                                    | 47                                     | - 1                                    |                                        | 1 050                                  |
| ( monde (mg/l)                                        | r 077                                                                                                                         | 061                                    |                                        | 100                                    |                                        |                                        | 0000                                   |
| Fluoride (mg/l)                                       | 0.56                                                                                                                          | 0.72                                   | 0.32                                   | 0.23                                   | 0.24                                   | 0.23                                   | 67.0                                   |
| Nitrate (mg/l)                                        | [ 19                                                                                                                          | 12 J                                   | 1.3.1                                  | 0.53 J                                 | 0.1 0                                  | U I I                                  | 1.2 J                                  |
| Sulfate (mv/l)                                        | 1500                                                                                                                          | 099                                    | 120                                    | 80                                     | 120                                    | 110                                    | 1500                                   |
| America (as N) (me/l)                                 | ×                                                                                                                             | 0.21                                   | 0.0                                    | O.1.0                                  | U 1.0                                  | 0.1.0                                  | 0.1 U                                  |
| Specific Conductance (umboskem) (at 25°C)             | 4130                                                                                                                          | 2060                                   | 616                                    | 812                                    | 166                                    | 806                                    | 1760                                   |
| Total Overeign Carbon (mark)                          | ×Z                                                                                                                            | Ϋ́Z                                    | Š                                      | <<br>Z                                 | 3.1                                    | Š                                      | Š                                      |
| Chamberl Oversen Danned (mad)                         | Z                                                                                                                             | Z                                      | Z                                      | ζ<br>Z                                 | 5 U                                    | <z< td=""><td>Ϋ́Z</td></z<>            | Ϋ́Z                                    |
| Chemical Caypen Deniana (mg/1)                        |                                                                                                                               | 2                                      |                                        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  |                                        | 2                                      | × 12                                   |
| Total Suspended, Solids (mg/l) (at 105°C)             | <z< td=""><td>AZ.</td><td>Y.</td><td>YN:</td><td>)<br/> </td><td>VAI</td><td>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td></z<> | AZ.                                    | Y.                                     | YN:                                    | )<br>                                  | VAI                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| Tenmerature ("C) (field)                              | 16.5                                                                                                                          | 9.6                                    | 10.3                                   | 8.0                                    | 13.9                                   | 6.7                                    | 8.6                                    |
| Turbidity (NTI) (field)                               | 9                                                                                                                             | 47                                     | 22                                     | >10                                    | 01                                     | 22                                     | 23                                     |
|                                                       |                                                                                                                               |                                        |                                        |                                        |                                        |                                        |                                        |

Table 4-12 (continued)

Groundwater Sample
TCL, PCB and Miscellaneous Parameter Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Page 5 of 9 |                    |                                                        |                                        |              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |              |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |                 |               |                 |                 |                |                       |                                           |                                                                                 |                                                        |                                          |                                   |                         |
|-------------|--------------------|--------------------------------------------------------|----------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------|-----------------|---------------|-----------------|-----------------|----------------|-----------------------|-------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------|-----------------------------------|-------------------------|
|             | -                  | GW-RFI-013-1196D<br>96-5567<br>11/20/96                | Ž                                      |              | <z< td=""><td><z< td=""><td>&lt;<br/>Z</td><td>&lt;<br/>Z</td><td>Ś</td><td>&lt;<br/>Z</td><td></td><td>06.0</td><td>238</td><td>Z</td><td>1.59</td><td>11:0</td><td>13.1</td><td>180</td><td>P'0</td><td>1170</td><td>&lt;<br/>Z</td><td>۲Z</td><td>&lt;<br/>Z</td><td>&lt; Z</td><td>٧Z</td></z<></td></z<> | <z< td=""><td>&lt;<br/>Z</td><td>&lt;<br/>Z</td><td>Ś</td><td>&lt;<br/>Z</td><td></td><td>06.0</td><td>238</td><td>Z</td><td>1.59</td><td>11:0</td><td>13.1</td><td>180</td><td>P'0</td><td>1170</td><td>&lt;<br/>Z</td><td>۲Z</td><td>&lt;<br/>Z</td><td>&lt; Z</td><td>٧Z</td></z<> | <<br>Z       | <<br>Z                                                                                                                                                                                                                                                               | Ś                                                                                                                                                                                                                                            | <<br>Z       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06.0  | 238                       | Z               | 1.59          | 11:0            | 13.1            | 180            | P'0                   | 1170                                      | <<br>Z                                                                          | ۲Z                                                     | <<br>Z                                   | < Z                               | ٧Z                      |
|             | REI-13             | GW-RF1-013-1196<br>96-5567<br>11/20/96                 | =                                      | ) :<br>- ·   |                                                                                                                                                                                                                                                                                                               | ~                                                                                                                                                                                                                                                                                     | <u> </u>     | 0 -                                                                                                                                                                                                                                                                  | 3 -                                                                                                                                                                                                                                          | n 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.17  | 217                       | 8 5             | 67.1          | 0.20            | 1.2 J           | 170            | 0.35                  | 991                                       | <z< td=""><td><z< td=""><td><b>∠</b>Z</td><td>=</td><td>35</td></z<></td></z<>  | <z< td=""><td><b>∠</b>Z</td><td>=</td><td>35</td></z<> | <b>∠</b> Z                               | =                                 | 35                      |
|             | 2                  | GW-RFI-012-0397<br>97-1228<br>03/27/97                 | Ž                                      |              | VZ.                                                                                                                                                                                                                                                                                                           | <z< td=""><td>NA</td><td>∠<br/>Z</td><td>VN<br/>N</td><td>Ϋ́<br/>V</td><td></td><td>7.62</td><td>225</td><td>Z</td><td>=</td><td>0.49</td><td>4.9 J</td><td>576</td><td>0.1 U</td><td>100</td><td>V.</td><td>YZ</td><td>VV</td><td>11.2</td><td>&lt;10</td></z<>                      | NA           | ∠<br>Z                                                                                                                                                                                                                                                               | VN<br>N                                                                                                                                                                                                                                      | Ϋ́<br>V      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.62  | 225                       | Z               | =             | 0.49            | 4.9 J           | 576            | 0.1 U                 | 100                                       | V.                                                                              | YZ                                                     | VV                                       | 11.2                              | <10                     |
|             | RFI-12             | GW-RF1-012-1196<br>96-5586<br>11/21/96                 | ==                                     |              | <b>-</b>                                                                                                                                                                                                                                                                                                      | ~                                                                                                                                                                                                                                                                                     | 0.1          | n                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                                     | חח           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.03  | 180                       | 5 B             | 12            | 0.49            | 0.67 J          | 160            | 0.15                  | 764                                       | VN                                                                              | ۷<br>۷                                                 | ۷Z                                       | 5.11                              | 33                      |
|             | =                  | GW-RFI-011-0397<br>97-1208<br>03/25/97                 | V                                      |              | VN                                                                                                                                                                                                                                                                                                            | ۷Z                                                                                                                                                                                                                                                                                    | ٧Z           | < <u>z</u>                                                                                                                                                                                                                                                           | ۲Z                                                                                                                                                                                                                                           | VV           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.52  | 399                       | ۲               | 24            | 0.34            | 0.1 UI          | 19             | 0.1 (                 | 352                                       | ٧Z                                                                              | <z< td=""><td>۷Z</td><td>10.0</td><td>01</td></z<>     | ۷Z                                       | 10.0                              | 01                      |
|             | RFI-11             | GW-RFI-011-1196<br>96-5528<br>11/18/96                 |                                        | · :          | 0                                                                                                                                                                                                                                                                                                             | ~                                                                                                                                                                                                                                                                                     | n -          | חר                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                          | 0.1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.28  | 200                       | 5 8             | 66            | 0.40            | 0.1 U           | 66             | 0.25                  | 096                                       | <z< td=""><td>ζZ</td><td>٧Z</td><td>11.3</td><td>156</td></z<>                  | ζZ                                                     | ٧Z                                       | 11.3                              | 156                     |
|             | ntinued)           | GW-RFI-010-0397D (f)<br>97-1208<br>03/25/97            | V N                                    | V.           | VZ.                                                                                                                                                                                                                                                                                                           | ٧Z                                                                                                                                                                                                                                                                                    | ₹Z           | <z< td=""><td><z< td=""><td>V.</td><td></td><td>7.32</td><td>320</td><td>Z</td><td>068</td><td>0.25</td><td>0.27 J</td><td>011</td><td>0.12</td><td>77.4</td><td><z< td=""><td>ΥZ</td><td>٧Z</td><td><z< td=""><td><b>∨</b>Z</td></z<></td></z<></td></z<></td></z<> | <z< td=""><td>V.</td><td></td><td>7.32</td><td>320</td><td>Z</td><td>068</td><td>0.25</td><td>0.27 J</td><td>011</td><td>0.12</td><td>77.4</td><td><z< td=""><td>ΥZ</td><td>٧Z</td><td><z< td=""><td><b>∨</b>Z</td></z<></td></z<></td></z<> | V.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.32  | 320                       | Z               | 068           | 0.25            | 0.27 J          | 011            | 0.12                  | 77.4                                      | <z< td=""><td>ΥZ</td><td>٧Z</td><td><z< td=""><td><b>∨</b>Z</td></z<></td></z<> | ΥZ                                                     | ٧Z                                       | <z< td=""><td><b>∨</b>Z</td></z<> | <b>∨</b> Z              |
|             | RFI-10 (continued) | GW-RFI-010-0397<br>97-1208<br>03/25/97                 | V IV                                   |              | <z< td=""><td>VZ.</td><td>۲Z</td><td>&lt; z</td><td>ζZ.</td><td>VZ</td><td></td><td>7 2 3</td><td>306</td><td>Z</td><td>060</td><td>50 O</td><td>0.34 J</td><td>150</td><td>U 1.0</td><td>1660</td><td>٧Z</td><td>۲Z</td><td>&lt;<br/>Z</td><td>8.5</td><td>&lt;10</td></z<>                                  | VZ.                                                                                                                                                                                                                                                                                   | ۲Z           | < z                                                                                                                                                                                                                                                                  | ζZ.                                                                                                                                                                                                                                          | VZ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 2 3 | 306                       | Z               | 060           | 50 O            | 0.34 J          | 150            | U 1.0                 | 1660                                      | ٧Z                                                                              | ۲Z                                                     | <<br>Z                                   | 8.5                               | <10                     |
|             | Sample Location:   | Sample LD.:<br>Laboratory Project No.:<br>Sample Date: | 1 C.L. Polychiormated Bipmenyis (µg/1) | Arograf 1910 | Atoclar 1221                                                                                                                                                                                                                                                                                                  | Argelor 1232                                                                                                                                                                                                                                                                          | Araclar 1242 | Aroclar 1248                                                                                                                                                                                                                                                         | Ataclar 1254                                                                                                                                                                                                                                 | Aroclor 1260 | A tierrall manner of the property of the prope |       | Albedining (Total) (mg/l) | The Description | Charles (man) | Greenigh (mg/l) | Nitrate (111/2) | Sulfate (mg/l) | Anmonia (as N) (mg/l) | Specific Conductance (umbos/em) (at 25°C) | Total Organic Carbon (mg/l)                                                     | Chemical Oxygen Demand (mg/l)                          | Total Suspended Solids (mg/l) (at 105°C) | Tennerature ("C") (field)         | Turbidity (NTU) (field) |

Table 4-12 (continued)

Groundwater Sample
TCL PCB and Miscellancous Parameter Data
Phase I RFI
AL Teeh Specialty Steel Corporation
Dunkirk, New York Facility

Page 6 of 9

|                                           | Samule Location:                        | RFI-13 (continued)                                                                                                                 | RFI-14                     | <u> </u>                                                                                                |                                                             | RFI-15                      |                                                | RFI-16                     | 91.                                   |
|-------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|------------------------------------------------|----------------------------|---------------------------------------|
|                                           | Sample I.D.:<br>Laboratory Project No.: | GW-RFI-013-0397<br>97-1228                                                                                                         | GW-RFI-014-1196<br>96-5567 | GW-RFI-014-0397<br>97-1208                                                                              | GW-RFI-015-1196<br>96-5567                                  | GW-RFI-015-1196D<br>96-5567 | GW-RF1-015-0397<br>97-1208                     | GW-RFI-016-1196<br>96-5507 | GW-RFI-016-0397<br>97-1208            |
|                                           | Sample Date:                            | 03/26/97                                                                                                                           | 11/20/96                   | 03/25/97                                                                                                | 11/20/96                                                    | 11/20/96                    | 03/25/97                                       | 11/18/96                   | 03/25/97                              |
| TCL Polychlorinated Biphenyls (µgA)       | Biphenyls (µgA)                         |                                                                                                                                    |                            |                                                                                                         |                                                             | :                           |                                                | :                          |                                       |
| Aroctor 1016                              |                                         | ΥZ                                                                                                                                 | ~                          | <z< td=""><td>D -</td><td>)<br/> </td><td>&lt;<br/>Z</td><td><b>-</b></td><td><z< td=""></z<></td></z<> | D -                                                         | )<br>                       | <<br>Z                                         | <b>-</b>                   | <z< td=""></z<>                       |
| Araylor 1221                              |                                         | <<br>Z                                                                                                                             | ~                          | <z< td=""><td>ے<br/>-</td><td><u> </u></td><td>۷Z</td><td>= -</td><td>٧Z</td></z<>                      | ے<br>-                                                      | <u> </u>                    | ۷Z                                             | = -                        | ٧Z                                    |
| Auctor 1232                               |                                         | <<br>Z                                                                                                                             | ×                          | VN                                                                                                      | ~                                                           | ~                           | Υ <sub>N</sub>                                 | ~                          | ٧X                                    |
| Aroclor 1242                              |                                         | <<br>Z                                                                                                                             | ~                          | VV                                                                                                      | 0 -                                                         | 0.1                         | NA                                             | 21                         | ۲Z                                    |
| Aroclor 1248                              |                                         | <<br>Z                                                                                                                             | ~                          | Ϋ́                                                                                                      | חר                                                          | ם<br>-                      | ۲Z                                             | חו                         | < <u>Z</u>                            |
| Aroclor 1254                              |                                         | <<br>Z                                                                                                                             | ~                          | V<br>V                                                                                                  | 10                                                          | 0                           | ×                                              | <u> </u>                   | ٧Z                                    |
| Aroclor 1260                              |                                         | ΥN                                                                                                                                 | æ                          | V.                                                                                                      | חו                                                          | 0 1                         | V.                                             | 2                          | <n<br>N</n<br>                        |
| 4 14                                      |                                         |                                                                                                                                    |                            |                                                                                                         |                                                             |                             |                                                |                            |                                       |
| MISCERARGORS Parameters                   | erers                                   | 2 23                                                                                                                               | 27 7                       | 7.48                                                                                                    | 717                                                         | 7.3                         | 7.50                                           | 7.16                       | 7.113                                 |
| pH (s.u.)                                 |                                         | 7.7.                                                                                                                               | 07.7                       | OF:                                                                                                     |                                                             | 2                           |                                                | 300                        |                                       |
| Alkalinity (Total) (mg/l)                 | =                                       | 400                                                                                                                                | 162                        | 317                                                                                                     | 100                                                         | 178                         |                                                | 077                        | **                                    |
| Total Phenols (ng/l)                      |                                         | <z< td=""><td>5 B</td><td><z< td=""><td>5 B</td><td>5 B</td><td><z< td=""><td>5 B</td><td>&lt;<br/>Z</td></z<></td></z<></td></z<> | 5 B                        | <z< td=""><td>5 B</td><td>5 B</td><td><z< td=""><td>5 B</td><td>&lt;<br/>Z</td></z<></td></z<>          | 5 B                                                         | 5 B                         | <z< td=""><td>5 B</td><td>&lt;<br/>Z</td></z<> | 5 B                        | <<br>Z                                |
| (Thoride (mg/l)                           |                                         | 86                                                                                                                                 | 39 J                       | 39                                                                                                      | F 001                                                       | 101                         | 43                                             | 35                         | 72                                    |
| Fluoride (mg/l)                           |                                         | 0.25                                                                                                                               | 0.59                       | 0.38                                                                                                    | 0.29                                                        | 0.31                        | 0.3                                            | 0.25                       | 0.25                                  |
| Nitrate (mr/l)                            |                                         | f +'9                                                                                                                              | 0.111 J                    | 0.1 (0                                                                                                  | 0.1 UJ                                                      | O.1 CI                      | 0.1 UJ                                         | 0.1 U                      | 0.11 J                                |
| Sulfate (mg/l)                            |                                         | 150                                                                                                                                | 08                         | 89                                                                                                      | 240                                                         | 260                         | <del>140</del>                                 | 130                        | 011                                   |
| Ammonia (as N) (mg/l)                     |                                         | 0.22                                                                                                                               | 0.84                       | 0.1 U                                                                                                   | 0.47                                                        | 0.30                        | 0.I U                                          | 0.1 U                      | 0.23                                  |
| Specific Conductance (umbos/em) (at 25°C) | umhos/em) (at 25°C)                     | 1180                                                                                                                               | 689                        | 480                                                                                                     | 08:1                                                        | 1140                        | 721                                            | 1050                       | 1070                                  |
| Total Organic Carbon (mg/l)               | mr/l)                                   | ۷Z                                                                                                                                 | ۲Z                         | Ϋ́Z                                                                                                     | <<br>Z                                                      | <<br>Z                      | ۲z                                             | <<br>Z                     | ٧Z                                    |
| Chemical Oxygen Demand (mg/l)             | (l/all)                                 | <<br>Z                                                                                                                             | <b>₹</b> Z                 | Ϋ́                                                                                                      | <z< td=""><td>٧Z</td><td>۲Z</td><td>٧X</td><td>٧z</td></z<> | ٧Z                          | ۲Z                                             | ٧X                         | ٧z                                    |
| Total Suspended, Solids (mg/l) (at 105"C) | s (mg/l) (at 105"C)                     | ₹Z                                                                                                                                 | ٧Z                         | VV                                                                                                      | ζZ                                                          | <<br>Z                      | ₹Z                                             | ۲Z                         | ۲Z                                    |
| Tenmerature ("C") (field)                 |                                         | 8.8                                                                                                                                | 11.2                       | 7.1                                                                                                     | 18.0                                                        | ٧X                          | 9.8                                            | 12.2                       | 6.7                                   |
| Turbidity (NTU)(field)                    |                                         | 21                                                                                                                                 | >1000                      | 544                                                                                                     | 952                                                         | ٧X                          | 395                                            | 42                         | × × × × × × × × × × × × × × × × × × × |
|                                           |                                         |                                                                                                                                    |                            |                                                                                                         |                                                             |                             |                                                |                            |                                       |

| Sample LD.:   GW-RF-017-1196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CW-RF1-017-0397 97-1208 97-1208 NA                     | GW-WP-1-0397<br>97-1208<br>03725/97<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | CW-WP-2-0397<br>97-1208<br>03/25/97<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | CW-WP-3-0397<br>97-1208<br>97-1208<br>03/25/97<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | CW-WP-4-1196<br>96-5586<br>11/21/96<br>1 U   U   R   R   R   R   R   R   R   R | CW-WP-4-0397<br>97-1208<br>97-1208<br>03/25/97<br>NA<br>NA<br>NA<br>NA<br>NA |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| TCL Polychlorinated Biphenyls (µg/l)   1 U Atochot 1221   1 U Atochot 1222   1 U R Atochot 1232   1 U R Atochot 1232   1 U R Atochot 1242   1 U Atochot 1248   1 U Atochot 1248   1 U Atochot 1248   1 U Atochot 1250   1 U R Atochot 1250   1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>22222</b> 22                                                                            | <b>\$</b> \$\$\$\$\$\$\$                                                                  | < < < < < < < < < < < < < < < < < < <                                               | < < < < < < < < z z z z z z z                                                            | DDⅅ:                                                                           | Ź Ź Ź Ź Ź Ź                                                                  |
| Hor 1016 Hor 1221 Hor 1221 Hor 1232 Hor 1232 Hor 1234 Hor 1248 Hor 1254 Hor 1254 Hor 1260 Hor                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < < < < < < < < < < z z z z z z z z                                                        | <u> </u>                                                                                  | < < < < < < < < < < < < < < < < < < <                                               | <u>\$</u> \$ \$ \$ \$ \$ \$                                                              | DD & DD;                                                                       | < < < < < < < < < < < < < < < < < < <                                        |
| tor 1221 1 U  Tor 1232 R  Tor 1242 1 U  Tor 1248 1 U  Tor 1254 1 U  Tor 1254 1 U  Tor 1260 I  Tor 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <<<<<<<<<< <z>z z z z z z z z z z z z z z</z>                                              | <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<                                                    | < < < < < < < < < < < < < < < < < < <                                               | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                    | D <b>≃</b> D D :                                                               | < < < < < < Z Z Z Z Z                                                        |
| lor 12.32 R Jor 12.42 1 U Jor 12.48 1 U Jor 12.54 1 U Jor 12.60 1 U Jor 12.60 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < < < < < < Z Z Z Z Z                                                                      | < < < < < < < z z z z z                                                                   | < < < < < < < < < < < < < < < < < < <                                               | <b>&amp; &amp; &amp; &amp; &amp;</b><br><b>Z Z Z Z</b>                                   | ₩ <u>D</u> D :                                                                 | \$ \$ \$ \$ \$<br>\$ Z Z Z                                                   |
| lor 1242<br>lor 1248<br>lor 1248<br>lor 1254<br>lor 1250<br>lor 1260<br>lor 250<br>lor 25 | \$ \$ \$ \$ \$<br>Z Z Z Z                                                                  | < < < < < < × × × ×                                                                       | <u> </u>                                                                            | < < < < z z z                                                                            | 22:                                                                            | SS S                                                                         |
| lor 1248 1 U for 1254 1 U for 1250 1 U for 1260 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y Z Z                                                                                      | <u> </u>                                                                                  | < < <<br>Z Z Z                                                                      | < < < z z                                                                                | 2:                                                                             | < < Z Z                                                                      |
| lor 1254 1 U lor 1260 1 U lor 1260 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < < Z Z                                                                                    | < < Z Z                                                                                   | ∢ ∢<br>Z Z                                                                          | Y<br>N                                                                                   |                                                                                | Ž                                                                            |
| in 1260<br>in 1260<br>reliancous Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VZ                                                                                         | N.                                                                                        | ۲Z                                                                                  |                                                                                          | _                                                                              | \ <u>\</u>                                                                   |
| ellaneous Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |                                                                                           |                                                                                     | ٧X                                                                                       | n I                                                                            | N<br>N                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |                                                                                           |                                                                                     |                                                                                          |                                                                                |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.16                                                                                       | ۷Z                                                                                        | ۲Z                                                                                  | ٧Z                                                                                       | 7.3                                                                            | 7.1.3                                                                        |
| Alkalinity (Fotal) (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 289                                                                                        | N.                                                                                        | ۲Z                                                                                  | ٧Z                                                                                       | 2.37                                                                           | 422                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ₹Z                                                                                         | VN<br>N                                                                                   | ۲Z                                                                                  | ٧Z                                                                                       | 5 B                                                                            | V                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 480                                                                                        | N.                                                                                        | VN                                                                                  | Š                                                                                        | 78                                                                             | 4)2                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.76                                                                                       | V.                                                                                        | ۲Z                                                                                  | ٧Z                                                                                       | 0.31                                                                           | 0.22                                                                         |
| Nitrate (mar/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 J                                                                                        | ٧N                                                                                        | <z< td=""><td>٧Z</td><td>0.1 U</td><td>U) 1.0</td></z<>                             | ٧Z                                                                                       | 0.1 U                                                                          | U) 1.0                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 330                                                                                        | ΥN                                                                                        | VN                                                                                  | N.                                                                                       | 150                                                                            | 150                                                                          |
| Annuonin (as N) (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.64                                                                                       | Ϋ́                                                                                        | V.                                                                                  | Š                                                                                        | 2.2                                                                            | U I.0                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2300                                                                                       | V.                                                                                        | <<br>Z                                                                              | ΥZ                                                                                       | 1220                                                                           | 1210                                                                         |
| Total Organic Carbon (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <z< td=""><td>Š</td><td>₹Z</td><td>٧Z</td><td><z< td=""><td>&lt;<br/>Z</td></z<></td></z<> | Š                                                                                         | ₹Z                                                                                  | ٧Z                                                                                       | <z< td=""><td>&lt;<br/>Z</td></z<>                                             | <<br>Z                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ϋ́Z                                                                                        | VV                                                                                        | <z< td=""><td>۲z</td><td>&lt; Z</td><td>Š</td></z<>                                 | ۲z                                                                                       | < Z                                                                            | Š                                                                            |
| 105°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٧X                                                                                         | ΝΑ                                                                                        | ΥN                                                                                  | ΥN                                                                                       | <z< td=""><td>۷<br/>۷</td></z<>                                                | ۷<br>۷                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6                                                                                        | 6.7                                                                                       | 8.3                                                                                 | 1.6                                                                                      | 12.3                                                                           | *.°×                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <10                                                                                        | 9I>                                                                                       | 01>                                                                                 | 01>                                                                                      | 13                                                                             | 7                                                                            |

Table 4-12 (continued)

Groundwater Sample
TCL PCB and Miscellaneous Parameter Data
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|                  | 397D                                                    | , ,                                                                 |                                       | _           | _            | ب                                                                                                                                                                                                                  | _            |                          | ~         | æ             | 5 UJ                 | 0                | 2               | 5              | 0              | 9           | 1260                                      | _                                                            | _                             | _                                                  | ,,,                      | -                      |
|------------------|---------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|-----------|---------------|----------------------|------------------|-----------------|----------------|----------------|-------------|-------------------------------------------|--------------------------------------------------------------|-------------------------------|----------------------------------------------------|--------------------------|------------------------|
|                  | GW-WT-1B-0397D<br>97-1208<br>03/26/97                   | Z Z                                                                 | ż                                     | ż           | ž            | ž                                                                                                                                                                                                                  | ż            |                          | 7.2       | 20            |                      | 171              | 0.2             | 0.             | 21             | 0.2         | 126                                       | ž                                                            | ž                             | ż                                                  | Ž                        | ż                      |
| WT-01B           | GW-WT-1B-0397<br>97-1208<br>03/26/97                    | < <<br>Z Z                                                          | Z<br>Z                                | NA          | VN           | ΚZ                                                                                                                                                                                                                 | NA           |                          | 7.29      | 299           | S UI                 | 180              | 0.23            | 0.1 UJ         | 200            | 0.28        | 1280                                      | ۲Z                                                           | ۲Z                            | <<br>Z                                             | 7.0                      | 364                    |
|                  | GW-WT-1B-1196<br>96-5528<br>11/19/96                    | 2 =                                                                 | ~                                     | n           | 0            | <u> </u>                                                                                                                                                                                                           | 0.1          |                          | 7.1       | 123           | S B                  | 280              | 0.23            | 0.1 UJ         | 170            | 0.59        | 1560                                      | 2.3                                                          | 9.0                           | 300                                                | 10.5                     | 149                    |
| VIO              | GW-WT-1A-0397<br>97-1208<br>03/26/97                    | < <<br>Z Z                                                          | Υ <sub>N</sub>                        | V<br>N      | ۷N           | <z< td=""><td>٧X</td><td></td><td>7.16</td><td>351</td><td>s uu</td><td>011</td><td>0.59</td><td>0.2 J</td><td>96</td><td>0'I N</td><td>1080</td><td>۲Z</td><td>٧Z</td><td>٧Z</td><td>6.5</td><td>01&gt;</td></z<> | ٧X           |                          | 7.16      | 351           | s uu                 | 011              | 0.59            | 0.2 J          | 96             | 0'I N       | 1080                                      | ۲Z                                                           | ٧Z                            | ٧Z                                                 | 6.5                      | 01>                    |
| WT-01/           | GW-WT-1A-1196<br>96-5528<br>11/19/96                    | 2 =                                                                 | · ≃                                   | 2           | n 1          | <u>ہ</u>                                                                                                                                                                                                           | n            |                          | 7.05      | 256           | 5 B                  | 120              | 0.74            | 0.38 J         | 170            | 0.1 U       | 1400                                      | 9.5                                                          | 23                            | 113                                                | 12.1                     | 20                     |
| 05               | GW-WP-5-0397<br>97-1208<br>03/25/97                     | ₹ Ż                                                                 | S Z                                   | N<br>A      | N<br>N       | Š                                                                                                                                                                                                                  | VV           |                          | 7.15      | 249           | ٧N                   | 94               | 0.34            | 0.11.5         | <i>L</i> 9     |             | 634                                       | VN                                                           | ΥZ<br>Z                       | <z< td=""><td><del>-</del>.∞</td><td>137</td></z<> | <del>-</del> .∞          | 137                    |
| WP-05            | GW-WP-5-1196<br>96-5586<br>11/21/96                     | 2 =                                                                 | <u>∞</u>                              | D -         | n I          | חר                                                                                                                                                                                                                 | n I          |                          | 7.16      | 145           | 5.0                  | 21               | 0.36            | U I'0          | 19             | 4.1         | 67.3                                      | <z< td=""><td>₹Z</td><td>S</td><td>16.1</td><td>01</td></z<> | ₹Z                            | S                                                  | 16.1                     | 01                     |
| Sample Location: | Sample I.D.:<br>Laboratory Project No.:<br>Sample Date: | ICL Polychlorinated Biphenyls (нgЛ)<br>Aroclor 1016<br>Aroclor 1916 | · · · · · · · · · · · · · · · · · · · |             | sc sc        | -                                                                                                                                                                                                                  | 0            | Miscellancous Parameters |           | Total) (mg/l) | Total Phenols (ug/l) | (1)              | (V:             |                |                | s N) (mg/l) | Specific Conductance (umhos/cm) (at 25°C) | ic Carbon (mg/l)                                             | Themical Oxygen Demand (mg/l) | Fotal Suspended, Solids (mg/l) (at 105°C)          | Temperature (*C) (field) | TU)(field)             |
|                  |                                                         | TCL Polychi Aroclor 1016                                            | Aroctor 12.52                         | Aroclor 124 | Aroclor 1248 | Aroclor 1254                                                                                                                                                                                                       | Aroctor 1260 | Miscellanea              | pH (s.u.) | Alkalinity (  | Total Pheno          | ('hloride (mg/l) | Fluoride (mg/l) | Nitrate (mg/l) | Sulfate (mg/l) | Ammonia (a  | Specific Cor                              | Total Organ.                                                 | Chemical O.                   | Total Susper                                       | Temperatur               | Turbidity (NTU)(field) |

TCL PCB and Miscellaneous Parameter Data Phase I RFI Groundwater Sample

Al Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 9 of 9

| Sample LD: C<br>Laboratory Project No.:<br>Sample Date: |                                   |          | Marie Con Contract Co | CW WF 62 1106 | PACA CA WALL ALLA | 2011 10 0/11/11/11/2    | GW-WT-04-1196D     | C:W.W.F.04.0397 |
|---------------------------------------------------------|-----------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|-------------------------|--------------------|-----------------|
| , 1000 c. 1                                             | Sample I.D.:                      | 3        | GW-WT-02-0397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04 6629       | 07-1708           | 0411-64-1130<br>04-4538 | 30711-60-1 H-H-110 | 07-1708         |
|                                                         | ory Project 186.:<br>Sample Date: | 11/25/96 | 03/27/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/19/96      | 03/26/97          | 11/19/96                | 11/19/96           | 03/26/97        |
|                                                         |                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                         |                    |                 |
| ГСL. Polychlorinated Biphenyls (µg/l)                   | μg/l)                             | 0 -      | V<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n I           | VZ                | 0.1                     | n                  | VN              |
| Aroclor 1016                                            |                                   | 0        | Ϋ́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n I           | V.                | n                       | n <b>-</b>         | ΥN              |
| Aroclor 1221                                            |                                   | ~        | N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22            | Ϋ́                | <b>~</b>                | ~                  | V.V.            |
| Aroclor 1232                                            |                                   | 11       | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D -           | N.                | 0 I                     | n -                | N               |
| Aroclor 1242                                            |                                   | ==       | ZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - C           | ΥN                | n -                     | =                  | Š               |
| Aroclor 1248                                            |                                   | וה       | VZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | וו            | ΝΑ                | n I                     | n I                | Ϋ́N             |
| Aroclor 1254                                            |                                   | וה       | VZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2             | Ϋ́                | 0 -                     | n                  | ۷X              |
| Araclar 1260                                            |                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                         |                    |                 |
| Miscellaneous Parameters                                |                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                         |                    |                 |
| H (s.u.)                                                |                                   | 12.41    | 12.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.82          | 7.25              | 7.1                     | 7.11               | 7.08            |
| Alkalinity (Total) (mg/l)                               |                                   | 1020     | 616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145           | 413               | 250                     | 249                | 404             |
| Total Phenols (1g/l)                                    |                                   | 55       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 8           | S UJ              | 5 B                     | S B                | 5 U             |
| ('hloride (mg/l)                                        |                                   | 12       | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26            | 23                | 19                      | 0.2                | 45              |
| Fluoride (mg/l)                                         |                                   | 0.33     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1           | Ξ                 | 0.71                    | 0.74               | 0.43            |
| Nitrate (mg/l)                                          |                                   | 0.1 UJ   | 0.1 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1 UJ        | 0.1 UJ            | 0.1 UJ                  | 0.1 UJ             | 0.14 J          |
| Sulfate (mg/l)                                          |                                   | 8.8      | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200           | 620               | 300                     | 300                | 470             |
| Ammonia (as N) (mg/l)                                   |                                   | 2.9      | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5           | 9'1               | 1.7                     | 1.7                | =               |
| Specific Conductance (unhos/cm) (at 25°C)               | (at 25°C)                         | 4560     | 3340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1440          | 1700              | 1430                    | 1460               | 1490            |
| Total Organic Carbon (mg/l)                             |                                   | 15       | Ϋ́N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7           | Ϋ́                | 3.8                     | 3.9                | Y.V             |
| Chemical Oxygen Demand (mg/l)                           |                                   | 46       | VZ<br>VZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.4           | Ϋ́                | 5 U                     | 6.8                | ΥN              |
| Fotal Suspended, Solids (mg/l) (at 105°C)               | 105°C)                            | 129      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45            | ΥN                | =                       | =                  | VN              |
| Femperature ("C") (field)                               |                                   | 13.2     | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.3          | 8.9               | 11.3                    | VN                 | 10.2            |
| Furbidity (NTU) (field)                                 |                                   | 45       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3          | >10               | 2                       | Š                  | <10             |

al. TCL = Target Compound List.; PCB = polychlorinated hiphenyl.

b/ pg/l = nicrograms per liter. mg/l = milligrams per liter; s.u. = standard unit;
umhox/cm = nicrohoms per centimeter; "C = degrees celsius; NTU = nephelometric units.

as N = ammonia concentration reported as nitrogen.

c/ Data Qualifiers:
U = constituent not detected at the noted detection limit.

Jor B = constituent not detected at the estimated concentration less than the method detected limit.
UJ = constituent not detected at the estimated detection limit noted.

R = data rejected.

d/ NA = not analyzed.

c/ cor> = turbidity less than or greater than the equipment scale noted.

l/ D = duplicate sample.

**Table 4-13** 

## Surface Water Sample Data Phase I RFI ALTech Specialty Steel Corporation Dunkirk, New York Facility

R

Ð G S-02 S-03 Sample Location: S-01 SW-S01-1024 SW-S02-1024 SW-S03-1024 SW-S03-1024D (a) Sample I.D.: 96-5092 Laboratory Project No.: 96-5092 96-5092 96-5092 Sample Date: 10/24/96 10/24/96 10/24/96 10/24/96 TAL Inorganics plus Molybdenum (mg/l) (b) 0.0083 UJ 0.0083 U 0.0083 UJ (c) 0.0083 UJ Silver 0.058 U 0.069 0.058 U 0.058 U Aluminum 0.0018 UJ 0.0018 UJ 0.0018 U 0.0018 UJ Arsenic 0.073 J 0.086 J 0.087 J 0.089 Barium 0.0011 0.0015 0.0015 0.0016 Beryllium Calcium 64 79 80 81 0.0022 U Cadmium 0.0022 U 0.0022 U 0.0022 U 0.0056 UJ 0.0056 U 0.0056 UJ 0.0056 UJ Cobalt 0.0078 UJ 0.0086 0.0078 U 0.0089 Chromium (Total) 0.01 U 0.01 U 0.01 U 0.01 U Chromium (Hexavalent) 0.0047 UJ 0.0098 J 0.0047 UJ 0.0057 Copper 0.44 J 0.48 J 0.52 J 0.43 Iron 0.0002 J 0.0002 U 0.00029 0.00046 J Mercury 4.1 4.2 4.1 4.3 Potassium 14 14 14 Magnesium 11 0.041 J 0.042 0.048 J 0.042 J Manganese 0.039 0.046 0.021 0.054 Molybdenum 55 57 57 Sodium 46 0.01 U 0.01 U 0.01 U 0.01 U Nickel 0.0017 U 0.0017 U 0.0017 U 0.0018 Lead 0.0017 0.0016 U 0.0016 U 0.002 Antimony 0.0027 UJ 0.0027 U Selenium 0.0027 UJ 0.0027 UJ 0.0023 UJ 0.0023 UJ 0.0023 U 0.0023 UJ Thallium 0.0054 UJ 0.0054 UJ 0.0054 UJ 0.0054 U Vanadium 0.014 0.014 0.056 0.015 Zinc 0.009 UJ 0.005 U Cyanide (Total) 0.005 UJ 0.005 UJ

#### Table 4-13 (continued)

#### Surface Water Sample Data Phase I RFI ALTech Specialty Steel Corporation Dunkirk, New York Facility

Page 2 of 3

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samula Lauriana                             |        | 113  |      | 6-02 |             |      | S-03 | rage 2013   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------|------|------|------|-------------|------|------|-------------|
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Location:                            |        |      |      |      | SW-S03-1024 |      |      | SW-S03-0327 |
| Text   Author   Company    | •                                           |        |      |      |      |             |      |      |             |
| Procession   Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |        |      |      |      |             |      |      |             |
| Panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TCL Volatile Organic Compounds              | NA (d) | NA   | . NA | NA   | NA          | NA   | NA   | NA          |
| Decimination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TCI. Semi-Volatile Organic Compounds (ug/l) |        |      |      |      |             |      |      |             |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Phenol                                      | NA     | n u  | NA   | 11 U | NA          | 11 U | NA   | to U        |
| 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis(2-chloroethyl)ether                     | NA     | 11 U | NA   | пu   | NA          | HU   | NA   | , 10 U      |
| 1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Chlorophenol                              | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-Dichlorobenzene                         | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| December   SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4Dichlorobenzene                          | NA     | 11 U | NA   | пe   | NA          | II U | NA   | 10 U        |
| Description   SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2-Dichlorobenzene                         | NA     | 11 U | NA   | II U | NA          | 11 U | NA   | 10 U        |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o-Cresol                                    | NA     | II U | NA   | пU   | NA          |      | NA   |             |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bis(2-chloro-1-methylethyl) ether           | NA     |      | NA   |      |             |      |      |             |
| Section Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p-Cresol                                    | NA     |      |      |      |             |      |      |             |
| No.     No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.      | N-Nurosodi-n-propylamine                    | NA     |      |      |      |             |      |      |             |
| September   SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hexachloroethane                            | NA     |      |      |      |             |      |      |             |
| Sempremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nitrobenzene                                |        |      |      |      |             |      |      |             |
| 1-1   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2   1-2    |                                             |        |      |      |      |             |      |      |             |
| Section of the content of the cont   | 2-Nitrophenol                               |        |      |      |      |             |      |      |             |
| 1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-   1-1-      |                                             |        |      |      |      |             |      |      |             |
| 1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5    |                                             |        |      |      |      |             |      |      |             |
| New Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |        |      |      |      |             |      |      |             |
| A-Contention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |        |      |      |      |             |      |      |             |
| Mestademonitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                           |        |      |      |      |             |      |      |             |
| A-Control-process   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |        |      |      |      |             |      |      |             |
| Nation   N   |                                             |        |      |      |      |             |      |      |             |
| Basabongstepenatanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |        |      |      |      |             |      |      |             |
| 2.45 Precision-planed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |        |      |      |      |             |      |      |             |
| A-Francisphane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |        |      |      |      |             |      |      |             |
| Chicorographidane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                           |        |      |      |      |             |      |      |             |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |        |      |      |      |             |      |      |             |
| Dimensity phashate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |        |      |      |      |             |      |      |             |
| Accusplish fere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |        |      |      |      |             |      |      |             |
| 2.6-Disturbolicane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |        |      |      |      |             |      |      |             |
| Nationalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |        |      |      |      |             |      |      |             |
| Accomplation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |        |      |      |      |             |      |      |             |
| 2-4-Dimotophens    NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |        |      |      |      |             |      |      |             |
| A Surephens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |        |      |      |      |             |      |      |             |
| Dibensofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |        |      |      |      |             |      |      |             |
| 2.4-Diminisorlience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                           |        |      |      |      |             | 11 U | NA   | in U        |
| Diethyl pointaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | NA     | 11 U | NA   | H U  | NA          | ПÜ   | NA   | 10 U        |
| Chicropensyl pennyl ebers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |        |      |      |      |             | 11 U |      | 10 U        |
| Photographer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |        | пu   | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| 4-Nitroantine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| 2-Methyl-4.8-diminropensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | NA     | 27 U | NA   | 27 U | NA          | 27 U | NA   | 26 U        |
| Notice soliption plantation   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Methyl-4,6-dinitrophenol                  | NA     | 27 U | NA   | 27 U | NA          | 27 U | NA   | 26 U        |
| 4-Bromphenyl phenyl einer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | NA     | пu   | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | NA     | 11 U | NA   | 11 U | NA          | HU   | NA   | 10 U        |
| Antifracene NA II U NA IO U Carbazole NA II U NA II U NA II U NA IO U Dion-butyl phthalatic NA II U NA II U NA II U NA II U NA IO U NA II U NA | Pentachlorophenol                           | NA     | 27 U | NA   | 27 U | NA          | 27 U | NA   | 26 U        |
| Carbazole         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Don-buyl putulate         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Fluoranthene         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Pyrene         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Butyl bernyl pithalate         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Butyl bernyl pithalate         NA         11 U         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phenanthrene                                | NA     | H U  | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Dish-burg pathalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anthracene                                  | NA     | H U  | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Plugranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbazole                                   | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Di-n-butyl phthalate                        | NA     | 11 U | NA   | II U | NA          | 11 U | NA   | 10 U        |
| Butyl berryl printalare         NA         H U         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             | NA     | 11 U | NA   | H U  | NA          | ПÜ   | NA   | 10 U        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pyrene                                      | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Benzos quantifraciene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Butyl benzyl phthalate                      | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Benzoratumitracene         NA         11 U         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3-Dichlorobenzidine                       | NA     | 11 U | NA   | 11 U | NA          | пu   | NA   | 10 U        |
| Bis/Cethylhetyliphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Chrystene         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Dispositify phthalate         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Benziolofultorianthene         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Benziolofultorianthene         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Benziolofultorianthene         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Influencial Lid-sed pyrene         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Dibenziolathantiracene         NA         11 U         NA         11 U         NA         11 U         NA         10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | NA     | пU   | NA   | нU   | NA          | 11 U | NA   | 10 U        |
| Dispectly pathalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |        |      |      |      | NA          | пu   | NA   | 10 U        |
| Benzolo@ucrantenee         NA         11 U         NA         11 U         NA         10 U           Benzolo@ucrantenee         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Benzola@yrene         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Indens/1.2.b-cd/pyrene         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Dibenzola.huntiracene         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | NA     | 11 U | NA   | 11 U | NA          | пU   | NA   | 10 U        |
| Benzok/shorranhene         NA         H U         NA         H U         NA         H U         NA         10 U           Benzok/shorranhene         NA         H U         NA </td <td></td> <td>NA</td> <td>11 U</td> <td>NA</td> <td>11 U</td> <td>NA</td> <td>11 U</td> <td>NA</td> <td>10 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             | NA     | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Benzos apyrene         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Indexos L.2.3-cd spyrene         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U           Dibenas a, brantfracene         NA         11 U         NA         11 U         NA         11 U         NA         11 U         NA         10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |        |      |      |      |             | пu   | NA   | 10 U        |
| Indexes (2.23-cd pyrene         NA         H U         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |        | 11 U | NA   | 11 U | NA          | 11 U | NA   | 10 U        |
| Dibenzio Linguitzacene NA II-U NA III-U |                                             | NA     | пU   | NA   | пu   | NA          | 11 U | NA   | 10 U        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | NA     | 11 U | NA   | пu   | NA          | 11 U | NA   | to U        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzeeghoperylene                           | NA     | нu   | NA   | HU   | NA          | 11 U | NA   | 10 U        |

#### Table 4-13 (continued)

# Surface Water Sample Data Phase I RFI ALTech Specialty Steel Corporation Dunkirk, New York Facility

Page 3 of 3

| Sample Location:                         | S-01        | S-02        |             | 5-03         |
|------------------------------------------|-------------|-------------|-------------|--------------|
| Sample I.D.:                             | SW-S01-1024 | SW-S02-1024 | SW-S03-1024 | SW-S03-1024D |
| Laboratory Project No.:                  | 96-5092     | 96-5092     | 96-5092     | 96-5092      |
| Sample Date:                             | 10/24/96    | 10/24/96    | 10/24/96    | 10/24/96     |
|                                          |             |             |             |              |
| TCL Polychlorinated Biphenyls (µg/l)     |             |             |             |              |
| Aroclor 1016                             | 1 U         | 1 U         | I U         | 1 U          |
| Aroclor 1221                             | 1 U         | 1 U         | 1 U         | 1 U          |
| Aroclor 1232                             | R           | R           | R           | R            |
| Aroclor 1242                             | 1 U         | l U         | 1 U         | 1 U          |
| Aroclor 1248                             | l U         | 1 U         | 1 U         | 1 U          |
| Aroclor 1254                             | 1 U         | 1 U         | 1 U         | 1 U          |
| Aroclor 1260                             | 1 U         | 1 U         | 1 U         | 1 U          |
| Miscellaneous Parameters                 |             |             |             |              |
| Total Petroleum Hydrocarbons (µg/l)      | 1000 U      | 1000 UJ     | 1000 U      | 1000 UJ      |
| pH (s.u.)                                | 8.14        | 8.19        | 8.19        | 8.2          |
| Alkalinity (Total) (mg/l)                | 175         | 200         | 231         | 230          |
| Phenols (µg/l)                           | 5 U         | 5 U         | 5 U         | 5 U          |
| Chloride (mg/l)                          | 83          | 92          | 97          | 98           |
| Fluoride (mg/l)                          | 0.23        | 0.34        | 0.29        | 0.3          |
| Sulfate (mg/l)                           | 51 J        | 110 Ј       | 49 J        | 60           |
| Specific Conductance (µmhos/cm)(at 25°C) | 636         | 734         | 735         | 738          |

a/ D = duplicate sample

b/ TAL = Target Analyte List. This list also includes hexavalent chromium.

TCL = Target Compound List

mg/l = milligrams per liter; ug/l = micrograms per liter; s.u. = standard units;  $\mu mhos/cm = microhoms$  per centimeter;  $25^{\circ}C = 25$  degrees Celsius.

c/ Data Qualifiers:

U = constituent not detected at the noted detection limit.

J = constituent detected at an estimated concentration less than the method detected limit.

UJ = constituent not detected at the estimated detection limit noted.

R = data rejected.

d/ NA = not analyzed.

**Table 4-14** 

#### Sediment Sample Data Phase I RFI

### AL Tech Specialty Steel Corporation Dunkirk, New York Facility

|                               | 2 Por          | 502        | ्रें .     | V.              |
|-------------------------------|----------------|------------|------------|-----------------|
| Sample Location:              | S-01 🐣 🗸       | 5-02       | 5-0        |                 |
| Sample I.D.:                  | SD-S-01-06     | SD-S-02-06 | SD-S-03-06 | SD-S-03-06D (a) |
| Laboratory Project No.:       | 96-5092        | 96-5092    | 96-5092    | 96-5092         |
| Sample Interval:              | 0-0.5 foot     | 0-0.5 foot | 0-0.5 foot | 0-0.5 foot      |
| Sample Date:                  | 10/24/96       | 10/24/96   | 10/24/96   | 10/24/96        |
| TAL Inorganics plus Molybdenu | ım (mg/kg) (b) |            |            |                 |
| Silver                        | R (c)          | R          | R          | 0.81 U          |
| Aluminum                      | 4400 J         | 5300       | 5200       | 3900            |
| Arsenic                       | 7.7 J/         | 3.2 J      | 5.1 J      | 5.1             |
| Barium                        | 65 J           | 69 J       | 68 J       | 49              |
| Beryllium                     | 0.36 J         | 1 J        | 0.34 J     | 0.51            |
| Calcium                       | 5100 J         | 28000 J    | 2300 Ј     | 8300            |
| Cadmium                       | 2.5 J          | 3 J        | 2 Ј        | 2.2             |
| Cobalt                        | 6.6 J          | 9.1 J      | 5.1 J      | 12              |
| Chromium (Total)              | 25 J           | 430 J√     | 47 J       | 560             |
| Chromium (Hexavalent)         | 3.64           | 2.19 U     | 2.12 U     | 2.36 U          |
| Copper                        | 20 J           | 25 J       | 16 J       | 25              |
| Iron                          | 15000 J        | 16000      | 11000      | 14000           |
| Mercury                       | 0.1 U          | 0.1        | 0.1 U      | 0.1 U           |
| Potassium                     | 470 J          | 1100       | 470        | 410             |
| Magnesium                     | 2400 J         | 7200 J     | 1500 J     | 2300            |
| Manganese                     | 710 J          | 480 J      | 200 J      | 400             |
| Molybdenum                    | 7.4 J          | 20 J       | 18 J       | 51              |
| Sodium                        | 100 J          | 190        | 100        | 110             |
| Nickel                        | 24 J           | 240 Ј      | 39 J       | 420             |
| Lead                          | 40 Ј           | 8.4 J      | 190 Jv     | 23              |
| Antimony                      | 1.1            | 0.92       | 1.2        | 0.91            |
| Selenium                      | 0.25 U         | 0.24 U     | 0.26 U     | 0.26 U          |
| Thallium                      | 0.22 U         | 0.22 U     | 0.22 U     | 0.23 U          |
| Vanadium                      | 11 J           | 20 J       | 12 J       | 18              |
| Zinc                          | 110 J          | 39 J       | 57 J       | 62              |
| Cyanide (Total)               | I U            | 1 U        | 1 U        | 1 U             |
| Cyanide (Free) (mg/l)         | 0.005 U        | 0.005 U    | 0.005 U    | 0.005 U         |

#### Table 4-14 (continued)

# Sediment Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 2 of 3

| Sample Location:                                                            | S-01                                            | S-02                                            | S-                                              | 03                                               |
|-----------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SD-S-01-06<br>96-5092<br>0-0.5 foot<br>10/24/96 | SD-S-02-06<br>96-5092<br>0-0.5 foot<br>10/24/96 | SD-S-03-06<br>96-5092<br>0-0.5 foot<br>10/24/96 | SD-S-03-06D<br>96-5092<br>0-0.5 foot<br>10/24/96 |
| TCL Volatile Organic Compounds (µg/kg)                                      | NA                                              | NA                                              | NA                                              | NA                                               |
| TCL Semi-Volatile Organic Compounds (µg/kg)                                 |                                                 |                                                 |                                                 |                                                  |
| Acenaphthylene                                                              | 340 J                                           | 360 U                                           | 3300 U                                          | 1600 U                                           |
| Fluorene                                                                    | 370 J                                           | 360 U                                           | 3300 U                                          | 1600 U                                           |
| Phenanthrene                                                                | 2600                                            | 360 U                                           | 3300 U                                          | 3000 U                                           |
| Anthracene                                                                  | 480                                             | 360 U                                           | 3300 U                                          | 1600 U                                           |
| Fluoranthene                                                                | 2900                                            | 360 U                                           | 4600 U                                          | 3800 U                                           |
| Pyrene                                                                      | 2700 J                                          | 360 U                                           | 3600 U                                          | 3700 U                                           |
| Benzo(a)anthracene                                                          | 1300                                            | 360 U                                           | 3300 U                                          | 1600 U                                           |
| Chrysene                                                                    | 1400                                            | 360 U                                           | 2500 J                                          | 1800 U                                           |
| Benzo(b)fluoranthene                                                        | 1000                                            | 360 U                                           | 3300 U                                          | 1500 J                                           |
| Benzo(k)fluoranthene                                                        | 1100                                            | 360 U                                           | 3300 U                                          | 1500 J                                           |
| Benzo(a)pyrene                                                              | 1100                                            | 360 U                                           | 3300 U                                          | 1500 J                                           |
| Indeno(1,2,3-cd)pyrene                                                      | 410                                             | 360 U                                           | 3300 U                                          | 1600 U                                           |
| Benzo(ghi)perylene                                                          | 370 Ј                                           | 360 U                                           | 3300 U                                          | 1600 U                                           |

#### Table 4-14 (continued)

# Sediment Sample Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 3 of 3

| Sample Location:                                                            | S-01                                            | S-02                                            | S-                                              | 03                                               |
|-----------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| Sample I.D.:<br>Laboratory Project No.:<br>Sample Interval:<br>Sample Date: | SD-S-01-06<br>96-5092<br>0-0.5 foot<br>10/24/96 | SD-S-02-06<br>96-5092<br>0-0.5 foot<br>10/24/96 | SD-S-03-06<br>96-5092<br>0-0.5 foot<br>10/24/96 | SD-S-03-06D<br>96-5092<br>0-0.5 foot<br>10/24/96 |
| TCL Polychlorinated Biphenyls (mg/kg)                                       |                                                 |                                                 |                                                 |                                                  |
| Aroclor 1016                                                                | 1 UJ                                            | l UJ                                            | 1 UJ                                            | l UJ                                             |
| Aroclor 1221                                                                | I UJ                                            | 1 UJ                                            | 1 UJ                                            | 1 UJ                                             |
| Aroclor 1232                                                                | R                                               | R                                               | R                                               | R                                                |
| Aroclor 1242                                                                | 1 UJ                                            | 1 UJ                                            | 1 UJ                                            | 1 UJ                                             |
| Aroclor 1248                                                                | 1 UJ                                            | 1 UJ                                            | 1 UJ                                            | 1 UJ                                             |
| Aroclor 1254                                                                | 1 UJ                                            | 1 UJ                                            | l UJ                                            | 1 UJ                                             |
| Aroclor 1260                                                                | 1 UJ                                            | 1 UJ                                            | l UJ                                            | I UJ                                             |
| Miscellaneous Parameters                                                    |                                                 |                                                 |                                                 |                                                  |
| Total Petroleum Hydrocarbons (mg/kg)                                        | 120 UJ                                          | 130 J                                           | 120 UJ                                          | 120 UJ                                           |
| Total Phenolics (mg/kg)                                                     | 1 U                                             | 1 U                                             | 1 U                                             | 1 U                                              |
| Chloride (mg/l)                                                             | 39                                              | 1.8                                             | 2.3                                             | 2.5                                              |
| Fluoride (mg/l)                                                             | 1.0 U                                           | 1.0 U                                           | 1.0 U                                           | 1.0 U                                            |
| Nitrate (mg/l)                                                              | 0.13                                            | 0.1 U                                           | 0.1 U                                           | 0.1 U                                            |
| Sulfate (mg/l)                                                              | 6.2 J                                           | 1 U                                             | 42 J                                            | 27                                               |
| Total Organic Carbon (mg/l)                                                 | 3.4 J                                           | 2.9 J                                           | 2.9 Ј                                           | 2.3                                              |

a/ D = duplicate sample

b/ TAL = Target Analyte List. This list also includes hexavalent chromium and free cyanide.

TCL = Target Compound List

TIC = Tentatively Identified Compound

mg/l = milligrams per liter; mg/kg = milligrams per kilogram; ug/kg = micrograms per kilogram; NA = not analyzed.

c/ Data Qualifiers:

U = constituent not detected at the noted detection limit.

J = constituent detected at an estimated concentration less than the method detected limit.

UJ = constituent not detected at the estimated detection limit noted.

R = data rejected.

d/ Total SVOC TICs represent the sum of all detected TICs.

5.0

Date:

10/22/98

Page:

1 of 8

#### 5.0 SWMU 17 - Closed Surface Impoundment

A surface impoundment was used from 1976 to 1988 to hold spent pickle liquor (listed waste K062) and rinsate waters (SWMU 17). The lined impoundment covered an approximate 15,000 square-foot area immediately east of the facility's WWTP and had a capacity of approximately 750,000 gallons.

The materials stored in the impoundment included:

- lime
- dilute sodium hydroxide (Kolene salt)
- dilute sodium hydride
- oxylic, sulfuric, nitric, hydrochloric, and hydrofluoric acids
- spent pickle liquor
- barium chloride bath wastes
- rinse waters

The wastes contained high concentrations of chromium and nickel and, presumably, molybdenum.

Use of the impoundment was suspended in 1988 and it was closed in accordance with RCRA regulations in the spring of 1989. Figure 5-1 depicts the site conditions in this area at the time of closure, including the process and storm sewer lines and the extent of soils and bedrock excavated from the area during closure. Certification of clean closure was submitted to NYSDEC in October 1989.

Post-closure care included a provision for quarterly monitoring of groundwater from wells installed in the immediate vicinity of the former impoundment (WT-series compliance wells) for a period of three years. In May 1992, AL Tech submitted a request for NYSDEC to grant final approval for clean closure, following completion of three years of post-closure monitoring. The monitoring data indicated, to AL Tech, that clean closure had been accomplished.

In response to this request, NYSDEC expressed a concern regarding the presence of molybdenum and fluoride at elevated concentrations on several occasions (NYSDEC 1993). Both AL Tech and NYSDEC believed that these elevated concentrations were attributable to the existence of an industrial waste fill area located west of this area (subsequently identified as

10/22/98 Date:

Page: 2 of 8

SWMU 13C, Crucible Disposal Area; Figure 1-2). Despite this fact, however, approval of clean closure was not granted. The NYSDEC indicated that approval could be given following completion of the RFI, which, it was assumed, would provide sufficient information to support the belief that the industrial waste fill area, and not the closed surface impoundment, was the source of the elevated molybdenum and fluoride concentrations in the post-closure monitoring wells.

During implementation of the Phase I RFI, the following actions were taken to evaluate soil and groundwater conditions in this portion of the site:

- statistical analysis of fluoride and molybdenum concentrations (for the period of 1989 to 1996) for the compliance wells
- collection of groundwater samples (Rounds 1 and 2) from the newly installed site wells and select existing wells (including the WT-series wells)
- comparison of groundwater data for this area (WT-series wells and Wells RFI-09 and RFI-11) with groundwater data for the remainder of the site
- collection of soil samples from the SWMU 13C area on a continuous basis for analysis of molybdenum (and other parameters) from:
  - RFI-09 (from ground surface to 10 ft-bgs)
  - RFI-11 (from ground surface to 14 ft-bgs)
- comparison of soils data for this area with soils data for the remainder of the site

The findings generated via implementation of these activities are discussed below.

#### 5.1 **Groundwater Investigation and Evaluation**

The results of groundwater analyses for samples collected from the site wells during implementation of the Phase I RFI are presented in Table 4-9 through 4-12. A summary table of groundwater analytical data for samples collected from the background and compliance wells for this unit (WT-1A, WT-1B, WT-3, and WT-4) from 1989 through 1992 and 1995 through 1996 is presented as Table 5-1.

Date: 10/22/98

Page: 3 of 8

5.0

### 5.1.1 Compliance Well Groundwater Quality

Statistical analyses were performed on the groundwater data for molybdenum and fluoride generated for the background and the compliance monitoring wells (Table 5-1). The data from compliance monitoring wells, WT-3 and WT-4, were compared to the data from the background wells, WT-1A and WT-1B, to determine whether there is statistically significant evidence of molybdenum and fluoride impact. The statistical analyses were conducted in accordance with the U.S. EPA's guidance documents regarding statistical analysis of groundwater monitoring data at RCRA facilities (U.S. EPA 1989 and 1992).

Molybdenum concentrations detected in compliance wells were compared to molybdenum concentrations detected in background wells. Because the proportion of non-detectable concentrations in the data set was approximately 21 percent, a one-way non-parametric analysis of variance (ANOVA) was used for evaluating the molybdenum data (U.S. EPA 1989). In accordance with the U.S. EPA's guidance, non-detectable concentrations were represented as tied values (U.S. EPA 1992). The ANOVA results indicate that there is statistically significant evidence that molybdenum concentrations in WT-3 exceed the molybdenum concentrations detected in background wells (Appendix Q, Table Q-1). However, there is no statistical evidence that molybdenum concentrations in WT-4 exceed the molybdenum concentrations detected in background wells (Appendix Q, Table Q-1).

Fluoride concentrations detected in compliance wells were compared to fluoride concentrations detected in background wells. Because the proportion of non-detectable concentrations in the data set was less than 15 percent, a one-way parametric ANOVA was used for evaluating the fluoride data. Using the Shapiro-Francia test, the data were determined not to be normally distributed (U.S. EPA 1992). The data were transformed using natural logs and rechecked using the Shapiro-Francia test. The natural log of the data exhibited a normal distribution and was then analyzed using a one-way parametric ANOVA. The ANOVA results indicate that there is statistically significant evidence that the fluoride concentrations in both compliance wells, WT-3 and WT-4, exceed the fluoride concentrations in the background wells, WT-1A and WT-1B (Appendix Q, Table Q-1).

Section: 5.0 Revision: 0 Date: 10

5.0 0 10/22/98

Page:

4 of 8

### 5.1.2 Site Groundwater Quality

Molybdenum and fluoride were detected in a majority of the groundwater samples collected at the site during implementation of the Phase I RFI. The range of detected concentrations, and those wells from which samples with relatively higher concentrations of molybdenum and fluoride were detected are as follows:

#### • molybdenum

- molybdenum was detected in all of the Round 1 groundwater samples and in over one-half of the Round 2 groundwater samples
- typical range of concentrations was 0.01 to 0.1 mg/l
- exceptions:

| Well I.D. | Range of Concentrations |
|-----------|-------------------------|
| LAW-5     | 0.32 to 0.33 mg/l       |
| LAW-6     | 5.7 to 6.2 mg/l         |
| MW-1      | 0.38 to 0.6 mg/l        |
| MW-3      | 0.3 to 0.39 mg/l        |
| RFI-03    | 1.2 to 1.3 mg/l         |
| RFI-07    | 0.79 to 1.2 mg/l        |
| RFI-09    | 0.41 to 0.42 mg/l       |
| RFI-14    | 0.056 to 0.11 mg/l      |
| RFI-16    | 0.59 to 0.71 mg/l       |
| RFI-17    | 0.27 to 0.36 mg/l       |
| WP-4      | 0.4 to 0.48 mg/l        |
| WT-1A     | 0.27 to 0.32 mg/l       |
| WT-2      | 0.22 to 0.29 mg/l       |
| WT-3      | 1.7 to 2.4 mg/l         |
| WT-4      | 0.12 to 0.13 mg/l       |
|           |                         |

#### • fluoride

- fluoride was detected in all of the groundwater samples collected at the site, excluding the sample collected from MW-1 during Round 1
- typical range of concentrations of 0.18 to 0.34 mg/l
- exceptions:

| Well I.D. | Range of Concentrations               |
|-----------|---------------------------------------|
| LAW-6     | 3.8 to 6.3 mg/l                       |
| MW-1      | not detected at 0.1 mg/l to 0.56 mg/l |
| MW-3      | 0.49 to 0.63 mg/l                     |
| RFI-03    | 1.1 to 1.9 mg/l                       |
| RFI-07    | 0.56 to 0.72 mg/l                     |
| RFI-11    | 0.34 to 0.46 mg/l                     |

Date:

10/22/98

Page:

5 of 8

5.0

| Well I.D. | Range of Concentrations |
|-----------|-------------------------|
| RFI-12    | 0.49 mg/l               |
| RFI-14    | 0.38 to 0.59 mg/l       |
| RFI-17    | 0.57 to 0.76 mg/l       |
| WT-1A     | 0.59 to 0.74 mg/l       |
| WT-3      | 1.1 to 1.8 mg/l         |
| WT-4      | 0.49 to 0.74 mg/l       |

Approximately one-half of the wells identified above are located proximate to current or historical pickling operations.

#### 5.2 **Soils Investigation and Evaluation**

Soil samples representing the industrial waste landfill area were collected continuously from the ground surface to depths of 10 and 14 ft-bgs at RFI-09 and RFI-11 during implementation of the Phase I RFI. Each of these samples was submitted for analysis of TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide), TCL SVOCs, TCL PCBs, and select miscellaneous parameters. Analysis for fluoride in the soil samples was not performed.

The results of these analyses, which were presented in Section 4.3, indicate similar concentrations of constituents at these locations relative to the rest of the site, including notable decreases in the molybdenum concentrations with increased sample depth. At RFI-09 (and for many other site locations) molybdenum is present in the surface soils (0 to 3 in-bgs and 0 to 2 ftbgs) at concentrations above the soil action level promulgated in NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) 3028 (NYSDEC 1992a) of 390 mg/kg. For RFI-09 and RFI-11, the molybdenum concentrations decreased notably with increased sample depth and to below the soil action level. Similar conditions were observed throughout the site.

The soil samples collected from these locations (except the 0 to 3 in-bgs samples) were also submitted for analysis of TCL SVOCs. Phenanthrene and fluoranthene, both PAHs, were the only TCL SVOCs detected in these samples. Both constituents were detected in the 0 to 2 ftbgs sample collected from RFI-11 at concentrations of 650 and 460 µg/kg; fluoranthene was also detected in the 2 to 4 ft-bgs sample collected from RFI-11 at a concentration of 260 µg/kg. Both

Section: 5.0 Revision: 0

Date:

10/22/98 6 of 8

Page:

of these constituents were sporadically detected at similar concentrations in samples collected across the site. TCL SVOCs were not detected in any of the RFI-09 samples.

SVOC TICs were detected in each of the samples collected from these locations (except the 0 to 3 in-bgs samples which were not analyzed for SVOCs). The range of reported concentrations for samples collected from RFI-09 was 9,560 to 12,760  $\mu$ g/kg; the range of reported concentrations for the samples collected from RFI-11 was 1,204 to 3,422  $\mu$ g/kg. Similar concentrations were reported for many of the site soil samples.

Similar to most of the site soil samples, the analytical data for samples collected from RFI-09 and RFI-11 indicated:

- TCL PCBs were not detected in any samples
- TPH was not detected or was present at concentrations near the method detection limits
- pHs ranged from 7.36 to 8.39 s.u.
- total phenols was not detected in any samples
- TOC was detected in all samples at concentrations ranging from 1.5 to 3 mg/l

The surficial soil samples (0 to 3 in-bgs) collected from both locations and the 4 to 6 ft-bgs sample collected from RFI-11 were selected for TCLP extraction and analysis of the extract. Molybdenum was not detected in the extract generated for any of these three samples. Of the TC metals, only barium and total chromium were detected, both at concentrations below the TC limits.

#### 5.3 Conclusions

The analytical data for soil samples collected from the industrial waste landfill area do not indicate conditions that would pose a potential source of molybdenum to groundwater or conditions that otherwise differ from those observed across much of the site. Consequently, the potential effect from the landfilled materials in this area on groundwater quality, specifically molybdenum, is not supported by these data. In addition, the removal of approximately 5,000 cubic yards of material from the area of the former impoundment and backfilling of the

Section:

5.0

Revision: 0 Date: 10

10/22/98

Page:

7 of 8

excavation with clean fill effectively eliminated the potential effect from this unit on groundwater quality.

Based solely on the determination of significantly higher concentrations of molybdenum and fluoride in WT-3 and molybdenum in WT-4 than the background wells (WT-1A and WT-1B), it could be concluded that the former surface impoundment continues to impact groundwater quality and clean closure was not performed. However, this conclusion is not consistent with the thorough removal action performed almost 10 years ago (and the relative higher solubilities of molybdenum and fluoride). Furthermore, if the former impoundment continued to impact groundwater quality, the impact would be expected to consistently reflect higher concentrations other process-related constituents in groundwater samples from WT-3 and WT-4. Consequently, an evaluation of these constituents (i.e., total chromium, nickel, sulfate, nitrate, and chloride) was also performed.

- Total chromium was detected at similar concentrations in the background wells (WT-1A) and compliance wells (WT-3 and WT-4) for SWMU 17.
- Nickel was detected at slightly higher concentrations in the groundwater samples collected from WT-3.
- Chloride concentrations reported for samples collected from WT-1A and WT-1B were approximately 10-fold higher than those reported for samples collected from WT-3 and WT-4.
- Sulfate concentrations reported for samples collected from WT-3 and WT-4 were approximately 3-fold higher than those reported for samples collected from WT-1A and WT-1B.
- Nitrate, which was detected infrequently in site groundwater samples, was detected at generally similar concentrations in samples collected from WT-1A and WT-4, although the results for WT-4 were slightly lower than those for WT-1A.

Each of these constituents is associated with the historical and current process wastewater system at the facility, including operation of the impoundment. Based on the following factors, AL Tech believes that the historical and existing process sewer lines are the most probable source of impact observed not only for the compliance wells, but also the background wells:

5.0

Date: Page:

10/22/98 8 of 8

Chloride concentrations were significantly higher in samples collected from WT-1A and WT-1B, which are located in the proximity of the old grit chamber (WT-1A) and the "octopus" (an area of numerous process lines) (WT-1B) which received barium chloride discharges from the LAP West Pickle Facility from 1974 to 1989, as well as muriatic acid (HCl) from the metallurgical laboratory etch room (MetLab Etch Room). The laboratory started operations in 1960 and continues today.

- Sulfate concentrations were notably higher in samples collected from WT-3 and WT-4. These wells are located in the proximity of the spent sulfuric pit and spent acid pit, which receives and holds spent sulfuric acids.
- WT-4 is located close to the WWTP Outfall 5A sewer line, which historically has carried high nitrate effluent.

In addition, higher concentrations of barium reported for groundwater samples collected from WT-1A<sup>1</sup> are also believed to have resulted from historical discharge of waste from the barium chloride bath, located in the LAP West Pickle Facility, to the "octopus" and then to the old grit chamber for settling of solids before the wastewater was discharged to the former surface impoundment (Figure 5-1).

AL Tech is currently evaluating the most appropriate means of upgrading the existing pickling process sewer system. The upgrade is anticipated to remove further significant sources of spent pickle liquors to site groundwater.

<sup>&</sup>lt;sup>1</sup> WT-1B which is located closest to the octopus is screened approximately 10 feet deeper than the other WT-series wells. Therefore, less impact from operation of the octopus, or other site operations, would be anticipated.

Table 5-1
SWMU 17, Post Closure Groundwater Monitoring Data (a)
Phase 1 RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

| Sample Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 0801       |       |          |                                                                 | WT-1A   | ≤ s   |       |       |       |       | 1001  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-------|----------|-----------------------------------------------------------------|---------|-------|-------|-------|-------|-------|-------|--|
| Sample Mate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lst      | 2nd        | 3rd   | 4th      | Ist                                                             | 2nd     | 3rd   | 4th   | Ist   | 2nd   | 3rd   | 411   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.200    | BOL(b)     | BOL   | 0.048    | BQL                                                             | BQL     | BQL.  | BQL   | BQL   | BQI.  | BQL   | BQL   |  |
| Hexavalent Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.010   | BOL,       | BÓL   | BOL      | BOL                                                             | BOL     | BOL   | BQL   | BQL   | BOL   | BQL   | BOL   |  |
| Molyhdenan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.230    | 4.3        | 2.50  | 0.84     | 3.59                                                            | 4.17    | 1.78  | 2.09  | 2.02  | 2.94  | 2.86  | 2.67  |  |
| Nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.100   | BQL        | 1.6   | 0.03     | 0.02                                                            | 0.084   | 4.40  | 0.02  | 0.02  | 0.01  | 0.02  | BQL   |  |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.200    | 69.2       | 159   | 140      | 26                                                              | 33.0    | 100   | 76.0  | 46    | 68    | 001   | 76    |  |
| Phenods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.193    | BOL        | 9000  | BQL      | 0.005                                                           | 0.005   | 0.007 | 0.003 | 0.003 | ND(c) | 0.017 | 0.002 |  |
| Huoriek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.400    | <u> </u>   | 0.95  | 0.61     | 0.20                                                            | 09'0    | 0.49  | 0.44  | 0.36  | 19'0  | 0.64  | 0.72  |  |
| Chrominn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000     | BOL        | BOL   | 0.031    | BOL                                                             | BQL     | BQL   | BQL   | BQL   | BQL   | BQL   | BQL   |  |
| Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.020   | BOI.       | BOI.  | 0.041    | BOL                                                             | BOL     | BOL   | BOL   | BOL   | BOL   | BOL   | BOL   |  |
| Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.005   | BOE        | BOI.  | 0.014    | 0.025                                                           | 0.023   | BOL   | 0.005 | BOL   | BOL   | ROL   | 0.00  |  |
| read the experts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000.00   | 320        | 3 2   | 65       | 901                                                             | 09      | 2,7   | 320   | 140   | 205   | 971   | 091   |  |
| inspirately (1919)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,000   | 027        | 1 36  | 17.00    | 201                                                             | , , , , | 1 4   | 000   | 707   | (V. 5 | 7 7   | 001   |  |
| Fon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.100   | 9.77       | cc.   | 6.77     | \$ 15.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5 | 2.0.2   | 04.1  | 300   | 300   | 150   | # 000 | 0.07  |  |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000.000  | 000        | 071   | 0.1      | 2.5                                                             | 047     | 9 21  | 2 5   | 00:   | 001   | 3 :   | 0.1   |  |
| TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.400   | 52.1       | 477   | 1.60     | 47.0                                                            | 901     | c.c.  | 7.71  | 4:7   | 7.81  | 10.8  | 7.71  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.900   |            |       |          |                                                                 |         |       |       |       |       |       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.000   |            |       |          |                                                                 |         |       |       |       |       |       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.300   |            | ;     | ;        | ;                                                               | į       | ţ     | ţ     | ć     | i     |       | !     |  |
| TOX (ug/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.012    | 21.6       | 47.8  | 38.7     | 2.4                                                             | 7.1     | 4/    | 4     | 3.5   | 97    | 33    | 4.3   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010    |            |       |          |                                                                 |         |       |       |       |       |       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009    |            |       |          |                                                                 |         |       |       |       |       |       |       |  |
| Specific Conductance (umbos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1484.000 | 1600       | 1290  | 923      | 926                                                             | 920     | 1350  | 0011  | 11000 | 1701  | 1400  | 1500  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |       |          |                                                                 |         |       |       |       |       |       |       |  |
| Sample Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | _          | WT-1A |          |                                                                 |         |       |       |       |       |       |       |  |
| Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1992     |            | 1994  | 1995     | 9661                                                            |         |       |       |       |       |       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lst      | 2nd        |       |          |                                                                 |         |       |       |       |       |       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |       |          |                                                                 |         |       |       |       |       |       |       |  |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BQL      | 0.10       | 2.6   | 0.12     | 0.12                                                            | 3       |       |       |       |       |       |       |  |
| Hexavalent Chronnum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BQL      | ON<br>SC : | 2 2   | 0 K3     | 0.01                                                            | (2) 0   |       |       |       |       |       |       |  |
| Molybdentin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67.7     | 2.43       | 0.00  | 0.07     | 20.0                                                            |         |       |       |       |       |       |       |  |
| Milate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00     | 0.00       | ) E   | j š      | 07.1                                                            |         |       |       |       |       |       |       |  |
| Diamete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ŧ S      | : £        | Ş     | Ē        | 0.005                                                           |         |       |       |       |       |       |       |  |
| Fluxish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.0     | 0.95       | 0.65  | 0.83     | 0.74                                                            |         |       |       |       |       |       |       |  |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BOL      | ND         | 0.47  | 0.02     | 0.023                                                           |         |       |       |       |       |       |       |  |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BQL      | 10.0       | ÖN    | <u>Q</u> | 0.03                                                            |         |       |       |       |       |       |       |  |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BQL      | S          | QN    | ŝ        | 0.0023                                                          |         |       |       |       |       |       |       |  |
| Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 470      | 20         | (P)VN | Ϋ́       | 29                                                              |         |       |       |       |       |       |       |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.37     | 57.9       | 3.6   | 4.3      | 2.8                                                             |         |       |       |       |       |       |       |  |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 091      | 901        | 130   | 82       | 170                                                             |         |       |       |       |       |       |       |  |
| TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.5     | 9.91       | 5     | 70       | 9.5                                                             |         |       |       |       |       |       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |       |          |                                                                 |         |       |       |       |       |       |       |  |
| A Providence of the Providence | ,,       | αc         | CIN   | 30       | Z                                                               |         |       |       |       |       |       |       |  |
| 1 CA (ukh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | S.         | È     | -        | 5                                                               |         |       |       |       |       |       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | 3000       |       |          | 903                                                             |         |       |       |       |       |       |       |  |
| Specific Conductance (umhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1400     | 1300       |       |          | 0041                                                            |         |       |       |       |       |       |       |  |

Table 5-1 (continued)

SWMU 17, Post Closure Groundwater Monitoring Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 2 of 4

| Sample Location:                |       |        |        |       |       | WT-3     |       |       |            |       |          |
|---------------------------------|-------|--------|--------|-------|-------|----------|-------|-------|------------|-------|----------|
| Sample Date:                    |       | 6861   |        |       | 1     | 0661     |       |       | <u>661</u> | _     |          |
|                                 | 2nd   | 3rd    | 411    | 1st   | 2nd   | 3rd      | 407   | İst   | 2nd        | 3rd   | 411      |
| Barium                          | BOL   | BOL    | 0.024  | BQL   | BQL   | BQL      | BQL   | BQL   | BQL        | BQI.  | BQI.     |
| Hexavalem Chromum               | BOL   | 0.01   | BOL    | BQL   | BQL   | BQL      | BQL.  | BQL   | BQL        | BQL   | EÇ.      |
| Molyhedenum                     | 12.7  | 01     | ×      | 90.9  | 6.08  | 3.38     | 5.19  | 3.21  | 4.9        | 1.2   | 12.4     |
| Nitrate                         | 0.11  | 0.02   | 0.23   | 0.09  | 0.199 | 1.60     | 0.18  | 0.09  | 0.16       | 0.13  | 0.16     |
| Chloride                        | 43.4  | 39.6   | 33     | 04    | 37.0  | 31.0     | 30    | 30    | 28         | 0+    | 9        |
| Phenols                         | 0.051 | BQL    | BQL    | 0.008 | 0.003 | 0.006    | 0.004 | S     | Q.         | 0.068 | 0.002    |
| Physide                         | 2.4   | 3.8    | 2.17   | 1.36  | 2.25  | 3.28     | 0.25  | 1.39  | 2.04       | 3.36  | 2.64     |
| Сиговини                        | BQL   | BQL    | 0.02   | BQL   | BQL   | BQL      | BQL   | BQL   | BQL        | BQL   | BQL      |
| Copper                          | BOL   | BOL    | 0.037  | BOL   | BQL   | BQL      | BQL   | BQL   | BQL        | BQI.  | BQL      |
| Lead                            | BOL   | BOL    | BOL    | 0.024 | 0.010 | BQL      | BQL   | BQL   | BQL        | BQL   | BQL      |
| Turbidity (NTU)                 | 800   | 36     | 35     | 50    | 91    | 8.0      | 42    | 7     | 20         | 24    | <u> </u> |
| Iron                            | 8.7   | BOL    | 5.2    | 1.39  | 1.86  | 0.55     | 2.24  | 0.61  | 0.34       | 0.63  | 1.01     |
| Sulfate                         | 225   | 223    | 190    | 270   | 290   | 340      | 280   | 480   | 300        | 180   | 210      |
| LOC.                            | 6.4   | 7.5    | 9.01   | 32.7  | 23.8  | 4.01     | 5.17  | 13.3  | 3.99       | 3.75  | 3.40     |
|                                 |       |        |        |       |       |          |       |       |            |       |          |
| (Prox XO).                      | ROH   | EOR    | BOI    | ×     | 28    | Q<br>N   | ŝ     | 7.3   | 13         | Ŝ     | 5.7      |
| (aga)                           | Ż     | 1<br>? | )<br>} | }     | i     | <u>.</u> |       |       |            |       |          |
|                                 |       | 3      | ï      | ř     | SOF   | č        | 200   | 9000  |            | ŝ     | <u> </u> |
| Specific Conductance (umhos/cm) | 1030  | 066    | 505    | 9/8   | 900   | 676      | 678   | 17000 | 1304       | 040   | 0+1-     |

|      | 9661 |     | 0.024  | 0.01 U              | 2.1         | 0.017   | 26       | 0.005   | 8.       | 0.025    | 0.034  | 0.0028 | 113             | 2.4  | 200     | 3.7    | Ϋ́          |   | 1440                            |
|------|------|-----|--------|---------------------|-------------|---------|----------|---------|----------|----------|--------|--------|-----------------|------|---------|--------|-------------|---|---------------------------------|
|      | 1995 |     | 0.03   | QN<br>ON            | 3.7         | 0.20    | 30       | Ŝ       | 6.1      | QN.      | Q      | Q<br>N | Ϋ́Z             | 1.0  | 310     | 8.4    | =           | ; | Υ                               |
| WT-3 | 1994 |     | 1.3    | Q<br>N              | 3.0         | 80.0    | 29       | QN.     | 6.1      | QN       | ΩN     | QN.    | Ϋ́Z             | 0.36 | 390     | 3.2    | QN          | ! | Υ <sub>Z</sub>                  |
|      | 2    | 2nd | 0.02   | 2                   | 16.2        | 0.16    | 78       | 0.004   | 2.21     | Û.       | ΩN     | QN     | <u> </u>        | 0.37 | 270     | Q<br>N | QN          |   | 1200                            |
|      | 1992 | lst | BQL    | BOL                 | 10.4        | 0.70    | 38       | 0.002   | 1.94     | BOL      | BOL    | BQL    | <u>×</u>        | 0.77 | 300     | 3.68   | Ŝ           | 1 | 1200                            |
|      |      |     | Barium | Hexavalent Chromium | Molybedenum | Nitrate | Chloride | Phenols | Pluoride | Chromium | Copper | Lead   | Turbidity (NTU) | Iron | Sulfate | TOC    | TOX (119/l) |   | Specific Conductance (umbos/cm) |

Table 5-1 (continued)

SWMU 17, Post Closure Groundwater Monitoring Data Phase 1 RF1 AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 3 of 4

| Sample Location:                |              |       |      |       | Α     | WT-1B       |       |       |            |      |          |       |
|---------------------------------|--------------|-------|------|-------|-------|-------------|-------|-------|------------|------|----------|-------|
| Sample Date:                    | 101          | 1989  | 12.0 | 446   | 161   | 1990<br>2nd | 3rd   | 411   | let<br>let | 2nd  | 1<br>And | 411   |
|                                 | NCT .        |       |      |       |       |             |       |       |            |      |          |       |
| Barium                          | 0.2          | BQL   | BQL  | 0.059 | BQL   | BQL         | BQL   | BQL   | BQL        | BQL. | BQL      | BQL.  |
| Hexavalent Chromium             | <0.010       | BQL   | BQL  | BQL   | BQL   | BQL         | BQL   | BQL   | BQL        | BQL  | BQI.     | BQL   |
| Molyhdemm                       | 1.0.1        | BQL   | BQL  | 0.076 | BQL   | BQL         | BQL   | BQL   | BQL        | BQL  | BQL      | BQL   |
| Nitrate                         | 0.25         | 80.0  | 0.04 | 0.36  | 0.85  | 0.170       | 4.60  | 00.1  | 0.16       | 0.32 | 0.08     | 1.7   |
| Chloride                        | 146.2        | 383   | 64:4 | 420   | 390   | 485         | 340   | 88.5  | 420        | 420  | 400      | 280   |
| Phenols                         | 890:0        | 900.0 | BQL. | BQL   | 0.002 | 0.003       | 0.007 | 0.003 | 0.002      | Ê    | 0.003    | S     |
| Fluoride                        | 0.3          | 6.0   | 0.38 | 09.0  | 0.14  | 09:0        | 0.28  | 0.24  | 0.23       | 0.25 | 0.36     | 0.47  |
| Chromann                        | 0.013        | BQL   | BQL. | 0.015 | BQL   | BQL         | BQL   | BQL.  | BQL        | BQL  | BQL      | BQL   |
| Copper                          | <0.020       | BQL   | BQI. | BQL.  | BQL   | BQL         | BQL   | BQL   | BQL        | BQL. | BQL.     | BQL   |
| pia                             | <0.005       | BOL   | BOL  | 0.015 | 0.047 | 0.027       | BQL   | 0.005 | BQL        | BQL  | BQL      | 0.007 |
| Turbidity (NTC)                 | 24           | 280   | 140  | 36    | 200   | 28          | 88    | 220   | 160        | 30   | 240      | 70    |
| Iron                            | 3.5          | 40.1  | 0.32 | 18.8  | 16.3  | 24.6        | BQL   | 6.88  | 4.4        | 8.2  | 4.53     | 21.2  |
| Sulfate                         | 143,4        | 001   | 55   | 130   | 180   | 92          | 110   | 280   | 170        | 9/   | 82       | 200   |
| TOC                             | 9.9          | 19.7  | 34.5 | 33.8  | 80.8  | 58.7        | 4.50  | 4.10  | 29.3       | 1.26 | 2.87     | 2.32  |
|                                 | 9.9          |       |      |       |       |             |       |       |            |      |          |       |
|                                 | 6.2          |       |      |       |       |             |       |       |            |      |          |       |
|                                 | 6.2          |       |      |       |       |             |       |       |            |      |          |       |
| TOTAL (Ingl.)                   | <0.010       | BQL   | 15.5 | 86.4  | 91    | Q<br>N      | Ξ.    | 9.2   | 1.5        | 34   | 8.3      | Ŝ     |
|                                 | 01000>       |       |      |       |       |             |       |       |            |      |          |       |
| Specific Conductance (umbos/cm) | +601<br>+601 | 1960  | 1920 | 1350  | 1300  | 1400        | 1750  | 1000  | 13000      | 2304 | 2000     | 1820  |
|                                 |              |       |      |       |       |             |       |       |            |      |          |       |

| Sample Location:    |       | À     | WT-1B     |        |          |
|---------------------|-------|-------|-----------|--------|----------|
| Sample Date:        | 1992  |       | 1994      | 1995   | 1996     |
| -                   | 1st   | 2nd   |           |        |          |
| Rarium              | 0.32  | 0.12  | 1.2       | 0.19   | 0.082    |
| Hexavalent Chromium | BOL   | S     | S         | S      | 0.01 U   |
| Molyhdemin          | BOL   | 0.43  | 0.11      | 0.15   | 0.039    |
| Nitrate             | 1.36  | 09.0  | 0.50      | 0.29   | 0.1 U    |
| Chloride            | 420   | 380   | 260       | 170    | 280      |
| Phenols             | QN    | 0.004 | QN        | QN     | 0.005    |
| History             | 0.28  | 0.35  | 0.34      | 0.53   | 0.23     |
| Chromium            | 0.05  | ON.   | QN        | 0.02   | 0.0078 U |
| Conner              | 0.00  | 10.0  | <u>ON</u> | 10.0   | 0.013    |
|                     | 0.014 | Ŝ     | ΩN        | ΩN     | 0.0023   |
| Turbidity (NTU)     | 96    | 380   | ۷Z        | ۲<br>۲ | 79       |
| Iron                | 51.4  | 78.9  | 8.9       | 13.0   | 0.72     |
| Sulfate             | 061   | 190   | 150       | 130    | 170      |
| Toc                 | 40.7  | Î     | 3.3       | 8.4    | 2.3      |

| Š<br>Z     | 1560                            |
|------------|---------------------------------|
| 24.0       |                                 |
| 0.10       |                                 |
| 8.9        | 1900                            |
| ON         | 2000                            |
| TOX (ug/l) | Specific Conductance (unhos/cm) |

Table 5-1 (continued)

SWMU 17, Post Closure Groundwater Monitoring Data Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 4 of 4

| Sample Location:<br>Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 1980       |               |                                         | *************************************** | WT-4       | 0001          |                                                                    |                                                                    | 1001             |      |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-----------------------------------------|-----------------------------------------|------------|---------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------|------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ist    | 2nd        | 3rd           | #                                       | Ist                                     | 2nd        | 3rd           | ##                                                                 | Ist                                                                | 2nd              | 3rd  | 4th         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |               |                                         |                                         |            |               |                                                                    |                                                                    |                  |      |             |
| Barum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0    | 202        | BQL<br>BGI    |                                         | 10g<br>10g                              | 10 G       | BQL<br>BQL    | 80F                                                                | BQL                                                                | BQL              | BOL  | BQL         |
| Matthe Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 010.05 | מלך<br>מיל | ביים<br>הלבי  | 100<br>200                              | DQL                                     | בלה<br>בלה | north<br>Port | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | BQL<br>S         | BQL  | POL.        |
| Mingodelium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #:-    | Ç          | \$7.5<br>60.0 | 0.00                                    | 7/.1                                    | 6.2.1      | 00.1          | BQL<br>Oct                                                         | BQL<br>S                                                           | 00.0             | 2.89 | 1.59        |
| Catacida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I - 90 | 75.3       | 0.05          | 0.03                                    | 0.01                                    | 0.240      | 4,10          | 0.03                                                               | 90.0                                                               | 0.07             | 0.03 | 90:0        |
| Districts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04   | 5100       | 19.0          | 608                                     |                                         | 7.70       | 0.00.0        | 0.00                                                               | S 2                                                                | 800.0            | 2 3  | * :         |
| Fluxing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05.0   | 0 -        | 7~            | 27.0                                    | 0.033                                   | 3 000      | 1.7.1         | 1.50                                                               | UN 67.0                                                            | 0.00             |      | <u> </u>    |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002  | BOI        | BOE.          | 0.012                                   | ROIL                                    | ROI        | 108           | ROI                                                                | 8O1                                                                | 8O1              | 202  | 77.1        |
| ( only a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000>  | EQE<br>EQE | 202           | 210.0                                   | 252                                     | 2 2        | 252           | 252                                                                | 200                                                                | 3 2              | 2 2  | 2 2         |
| in the second se | 20:05  | 202        | 252           | BOI.                                    | 320 c                                   | 2 -        | 2 2           | 7 2                                                                | 2 2                                                                | 2 2              | 7 2  | 7 2         |
| Tirbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46     | 9          | ,<br>,        | 2.5                                     | 9.5                                     | 9          | 3 6           | ) <u>-</u>                                                         | ) c                                                                | 2 7<br>7 7       | ) ×  | )<br>-<br>- |
| From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91 0   | = =        | BOI.          | 0.20                                    | 0.30                                    | 0 63       | 95.0          | 17.0                                                               | 0.2<br>C£ 0                                                        | 9 <del>9</del> 0 | 0.0  | 0.1         |
| - Filling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 207    | 380        | 235           | 970                                     | 310                                     | 340        | 000           | 230                                                                | 080                                                                | 04.0             | 240  | 220         |
| TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4    | 29.3       | 29.4          | 33.9                                    | 79.8                                    | 12.5       | 3.87          | 5.35                                                               | 15.6                                                               | 4.21             | 6.24 | 5.00        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7    |            |               |                                         |                                         |            |               |                                                                    |                                                                    |                  | 1    | ON's        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2    |            |               |                                         |                                         |            |               |                                                                    |                                                                    |                  |      |             |
| A CONTRACTOR OF THE PROPERTY O | 4.3    | Ğ          | -             | 6                                       | 9.1                                     | ć          | -             | :                                                                  | 9                                                                  | ;                | ;    | :           |
| (ugu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010  | bŲI.       | C.C.          | 0.5.2                                   | ē                                       | 97         | <del>-</del>  | =                                                                  | 71                                                                 | =                |      | 4           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 010.0> |            |               |                                         |                                         |            |               |                                                                    |                                                                    |                  |      |             |
| Constitution Company Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.010 | 0091       | 098           | auo                                     | 0201                                    | 0001       | 300           | 0511                                                               | 00211                                                              | 0,01             | 9051 | i           |
| apecinic Contactance (animoscin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0771   | 0001       | 200           | 000                                     | 0201                                    | 00.1       | 72.5          | Or II                                                              | 300                                                                | 9001             | 0000 | 0/61        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |               |                                         |                                         |            |               |                                                                    |                                                                    |                  |      |             |
| Sample Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | *          | WT-4          |                                         |                                         |            | RF1-09        |                                                                    |                                                                    |                  |      |             |
| Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1992   |            | 1994          | 1995                                    | 1996                                    | ı          | 9661          |                                                                    |                                                                    |                  |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ist    | 2nd        |               | *************************************** |                                         | ,          |               |                                                                    |                                                                    |                  |      |             |
| Barinn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ICB    | FO 0       | 0.0           | 0.07                                    | 0.045                                   |            | 0.047         |                                                                    |                                                                    |                  |      |             |
| Hexavalent Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOR    | Ô          | S             | Q.                                      | 0.00                                    |            | 0.01          |                                                                    |                                                                    |                  |      |             |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BQL    | 1.20       | 0.20          | 0.18                                    | 0.14                                    |            | 0.48          |                                                                    |                                                                    |                  |      |             |
| Nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03   | 0.09       | QN            | 0.05                                    | 0.1 U                                   |            | 0.1 U         |                                                                    |                                                                    |                  |      |             |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99     | 63         | 7.5           | 70                                      | 19                                      |            | 7             |                                                                    |                                                                    |                  |      |             |
| Phenols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON S   | 0.002      | G S           | Q E                                     | 0.005                                   |            | 0.005         |                                                                    |                                                                    |                  |      |             |
| r Husandic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50   | (S)        | 0.02<br>CIM   | 0.01                                    | 0.71                                    |            | 0.04          |                                                                    |                                                                    |                  |      |             |
| Const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10E    | 2 5        | Ē             | 70.5<br>S                               | 0.017                                   |            | 0.041         |                                                                    |                                                                    |                  |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROL.   | S S        | Ê             | Ê                                       | 0.0017 11                               |            | 00000         |                                                                    |                                                                    |                  |      |             |
| Turbidicy (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2    | 6.4        | Ž             | Ž                                       |                                         |            | 01            |                                                                    |                                                                    |                  |      |             |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BQL.   | 0.84       | S             | 0.87                                    | 8.0                                     |            | 0.078         |                                                                    |                                                                    |                  |      |             |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 310    | 380        | 260           | 260                                     | 300                                     |            | 120           |                                                                    |                                                                    |                  |      |             |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.28   | 2.88       | 3.60          | 8.4                                     | 3.8                                     |            | 3.1           |                                                                    |                                                                    |                  |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |               |                                         |                                         |            |               |                                                                    |                                                                    |                  |      |             |
| (1/gu) XOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.6    | 91         | 0.05          | 0.61                                    | Υ<br>V                                  |            | ۲<br>۲        |                                                                    |                                                                    |                  |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |               |                                         |                                         |            |               |                                                                    |                                                                    |                  |      |             |
| Specific Conductance (umhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0091   | 1700       |               |                                         | 1430                                    |            | 106           |                                                                    |                                                                    |                  |      |             |

a/ All concentrations in mg/l, except as otherwise noted.

b/ BQL = below quantifiable limit
c/ ND = constituent not detected
d/ NA = not analyzed
c/ U = constituent not detected at noted detection limit
c/ U = constituent not detected at noted detection limit

6.0

Date: Page:

10/22/98 1 of 24

#### Evaluation of Analytical Data and Potentially Applicable Criteria 6.0

Analytical data for environmental media samples generated during the Phase I RFI have been compared with potentially applicable regulatory criteria as specified in the Phase I RFI Work Plan. The results of the comparisons are used to aid in identification of the most appropriate subsequent action (i.e., no action, Phase II, ICM, or CMS) for each SWMU, AOC, and CAMU.

#### 6.1 **Soils Evaluation**

Soil sample analytical data were evaluated with the following potentially applicable criteria:

- NYSDEC, November 30, 1992, "Contained-In Criteria for Environmental Media," TAGM 3028 (revised 1997) (NYSDEC 1992a)
- U.S. EPA, May 1996, "Soil Screening Guidance: Technical Background Document," EPA/540/R-95/138
- 40 Code of Federal Regulations, Part 264, Subpart S, Vol. 55, No. 145, July 27, 1990
- NYSDEC, August 1992, "Petroleum-Contaminated Soil Guidance Policy," Spill Technology and Remediation Series (STARS) Memo #1 (NYSDEC 1992b).

The potentially applicable criteria for each of the TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide), TCL VOC, TCL SVOCs, TCL PCBs, and miscellaneous parameters are presented in Table 6-1. Table 6-2 identifies the samples in which constituents were detected at concentrations above potentially applicable criteria, hereinafter referred to as "elevated concentrations." Soil sample data, relative to the potentially applicable criteria, are discussed in the following sections on an area-by-area basis, where appropriate.

The results of comparison of the 95 UCLs calculated for background soils and the NYSDEC cleanup objectives for inactive hazardous waste sites (TAGM 4046)

6.0

Date:

10/22/98

Page:

2 of 24

(NYSDEC 1994a), which are largely dependent on site background concentrations, are not presented in Table 6-2 for these reasons:

- the nature of operations at the facility has resulted in the majority of soil samples collected from the site having detected concentrations of inorganics that exceed background
- this is an active facility and cleanup to background is not feasible
- site-specific cleanup limits will be established during the RFI process, as necessary
- TAGM 4046 is applicable to <u>inactive</u> hazardous waste sites <sup>1</sup>

#### 6.1.1 Background Soils

Arsenic was detected in each of the surficial background soil samples (0 to 3 inbgs) at elevated concentrations. Beryllium was detected at elevated concentration in samples collected from BS-01, BS-03, and BS-07. Consequently, and because these metals were fairly consistently detected at elevated concentration in site soils, they are believed to be representative of regional conditions and are, therefore, not discussed further below.

Total chromium was detected at elevated concentrations in three of the seven background soil samples: BS-02, BS-03, and BS-06.

Four PAHs (TCL SVOCs) were detected at elevated concentrations in the sample collected from the BS-01 location:

- benzo(a)anthracene
- benzo(b)fluoranthene
- benzo(k)fluoranthene
- benzo(a)pyrene

Although several other PAHs were detected in the sample collected from BS-01, none were present at elevated concentrations. No other organic compounds were detected in the background soil samples.

<sup>&</sup>lt;sup>1</sup> AL Tech presumes that the registry listing for the Dunkirk facility will be deleted or amended as appropriate and that the facility will not be subject to the inactive site program requirements.

6.0 0

Date: Page:

10/22/98 3 of 24

#### 6.1.2 Transformer Soils

Cadmium, antimony, or both, were detected at elevated concentrations in each of the surficial soil samples (0 to 3 in-bgs) collected from the transformer areas.

Total chromium and nickel were detected at elevated concentrations in each of the samples collected for analysis of metals:

- Transformer T1 at Locations T1-01, T1-03, T1-05, and T1-07
- Transformer T2 at Locations T2-01 and T2-03
- Transformer T3 at Locations T3-01 and T3-03

Molybdenum was only detected at elevated concentrations in samples collected at T2-03, T3-01, and T3-03.

The TC limits were not exceeded in the extract from either of the two transformer area soil samples submitted for TCLP extraction (ALT-SS-T1-03 and ALT SS-T3-03).

PCBs were only detected at elevated concentrations (i.e., above 1 mg/kg) in the three samples collected from Transformer T3:

| Sample   | Detected       | Reported              |
|----------|----------------|-----------------------|
| Location | <u>Aroclor</u> | Concentration (mg/kg) |
| T3-01    | 1248           | 87                    |
| T3-02    | 1242           | 3.9                   |
|          | 1260           | 6.4                   |
| T3-03    | 1254           | 1.1                   |

#### 6.1.3 SWMU Soils

During implementation of the Phase I RFI, soil samples were collected specifically to address potential impact from 13 site SWMUs. The results of comparison between analytical data generated for samples collected from these locations and potentially applicable criteria are discussed in the following sections.

#### 6.1.3.1 SWMU 5/Former Grinding Room Pickling Process

Cadmium was detected at an elevated concentration in the surface soil sample (0 to 2 ft-bgs) collected from RB-01. Total chromium was also detected at an elevated concentration in the surface soil sample collected from this location. Total chromium

Date: Page:

10/22/98 4 of 24

6.0

was not detected at an elevated concentration in samples collected at this location from greater depths (to 9 ft-bgs).

### 6.1.3.2 SWMU 9/Former TCA Container Storage Area

No metals or organic constituents (which are of particular interest in this SWMU) were detected at elevated concentrations in soil samples collected from RB-02.

### 6.1.3.3 SWMU 11/Shark Pit Residual Material Loading Area

Total chromium, molybdenum, and nickel were detected at elevated concentrations in the surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs) collected from RFI-10. Only total chromium was detected at an elevated concentration in a subsurface sample collected at this location (8 to 10 ft-bgs).

## 6.1.3.4 <u>SWMU 13/Crucible Disposal Areas and SWMU 14/Waste Disposal</u> <u>Areas</u>

There are five areas defined within these two general SWMUs. A minimum of one test pit or boring was completed in each area:

| Test Pit/        |
|------------------|
| <b>Boring</b>    |
| TP-08            |
| TP-04 and RFI-04 |
| RFI-11           |
| TP-07            |
| TP-11            |
|                  |

Cadmium, barium, manganese, and antimony were detected at elevated concentrations infrequently in soil samples collected from these locations.

Total chromium and nickel were detected at elevated concentrations in each of the surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs) collected from these locations. Total chromium was also detected at elevated concentrations in samples collected from greater depths at four of these locations:

 Section:
 6.0

 Revision:
 0

 Date:
 10/22/98

Page:

5 of 24

|          | Sample          |
|----------|-----------------|
| Location | <u>Interval</u> |
| TP-08    | 7 to 8 ft-bgs   |
| RFI-11   | 2 to 4 ft-bgs   |
|          | 6 to 8 ft-bgs   |
| TP-07    | 3 to 4 ft-bgs   |
| TP-11    | 11 to 12 ft-bgs |

Samples were not collected at TP-08 or TP-11 from depths greater than 8 and 12 ft-bgs; therefore, the vertical extent of elevated total chromium concentrations is not known. Analytical data for samples collected at Locations RFI-11 and TP-07 indicated that total chromium was not detected at elevated concentrations in samples collected at depths greater than 8 ft-bgs.

The TC limits were not exceeded in extract from any of the five soil samples selected for TCLP extraction from these locations (ALT-SB-TP07-0304, ALT-SB-TP11-0002D, ALT-SB-RFI04-0002, ALT-SS-RFI11-03, and ALT-SB-RFI11-0406).

Several PAHs (TCL SVOCs) were detected in surface soil samples collected from these locations at elevated concentrations:

|                    | Sample          |                         |
|--------------------|-----------------|-------------------------|
| Location           | <u>Interval</u> | Constituent             |
| SWMUs 13B and 14B/ |                 |                         |
| TP-04              | 0 to 2 ft-bgs   | benzo(a)anthracene      |
| RFI-04             | 0 to 2 ft-bgs   | benzo(a)anthrancene     |
|                    |                 | benzo(a)pyrene          |
|                    |                 | dibenzo(a,h)anthrancene |
| SWMU 14A/          |                 |                         |
| TP-07              | 0 to 3 in-bgs   | benzo(a)anthrancene     |
|                    |                 | benzo(b)fluoranthene    |
|                    |                 | benzo(k)fluoranthene    |
|                    |                 | benzo(a)pyrene          |

These constituents were not detected at elevated concentration in any of the subsurface soil samples collected from these locations.

PCB Aroclor 1260 was detected at an elevated concentration of 31 mg/kg in the sample collected from 8 to 10 ft-bgs at RFI-11. No other Aroclors were detected in soil samples collected from this location.

6.0

Date: Page:

10/22/98 6 of 24

#### 6.1.3.5 SWMU 15/Former Waste Acid Surface Impoundments

Cadmium was detected at an elevated concentration in the sample collected from 10 to 12 ft-bgs at RFI-02.

Total chromium was detected at elevated concentrations in the surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs) collected from this location. Nickel was detected at an elevated concentration in the 0 to 3 in-bgs sample. These constituents were not detected at elevated concentrations in samples collected from greater depths at this location (to 12 ft-bgs).

#### 6.1.3.6 SWMU 16/Willowbrook Pond

Total chromium was detected at elevated concentrations in each of the soil samples collected from RFI-14 (0 to 3 in-bgs and 2 to 4 and 12 to 14 ft-bgs). Total chromium was only detected at an elevated concentration in the surficial soil sample (0 to 3 in-bgs) collected from RFI-15. Nickel was detected at elevated concentrations in the surficial soil samples collected from both RFI-14 and RFI-15 and the sample collected from 2 to 4 ft-bgs at RFI-14.

PCB Aroclor 1248 was detected at an elevated concentration of 2.6 mg/kg in the surficial soil sample (0 to 3 in-bgs) collected from RFI-15. No other Aroclors were detected in soil samples collected from this location.

## 6.1.3.7 SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewater Treatment Plant Areas

Total chromium was detected at elevated concentrations in several soil samples collected from RFI-09 including: 0 to 3 in-bgs and 0 to 2 and 8 to 10 ft-bgs. Molybdenum was detected at an elevated concentration in the surficial soil sample (0 to 3 in-bgs) collected from this location. Nickel was detected at elevated concentrations in the surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs). Neither molybdenum nor nickel was detected at elevated concentrations in samples collected at this location from greater depths (to 10 ft-bgs).

The TC limits were not exceeded in the extract from the one sample selected for TCLP extraction from this location (ALT-SS-RFI09-03).

6.0

Date:

10/22/98 7 of 24

Page:

#### 6.1.3.8 SWMU 18/Grinding Dust Transfer Pile

Cadmium and vanadium were detected at elevated concentrations in the surficial soil samples (0 to 3 in-bgs) collected from TP-02, in the inactive grinding dust transfer pile area. Antimony was detected at an elevated concentration in the sample collected from 9 to 10 ft-bgs at this location.

Total chromium and nickel were detected at elevated concentrations in the surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs) and the sample collected from 9 to 10 ft-bgs at TP-02. Molybdenum was detected at elevated concentrations in the samples collected from 0 to 2 and 9 to 10 ft-bgs at location. None of these constituents were detected at elevated concentrations in the intermediate sample collected from 3 to 4 ft-bgs.

The TC limits were not exceeded in the extract from two samples that were selected for TCLP extraction from this location (ALT-SS-TP02-03 and ALT-SB-TP02-0910).

Benzo(a)anthrancene was detected at an elevated concentration in the sample collected from 9 to 19 ft-bgs at TP-02.

#### 6.1.3.9 SWMU 19/Former Waste Pile

Cadmium and lead were detected at elevated concentrations in the surface soil sample (0 to 2 ft-bgs) collected from TP-06.

Total chromium, molybdenum, and nickel were detected at elevated concentrations in the 0 to 2 ft-bgs sample collected from this location. Total chromium and nickel were also detected at elevated concentrations in the sample collected from 7 to 8 ft-bgs. However, neither of these constituents was detected at elevated concentrations in the intermediate sample collected from 3 to 4 ft-bgs.

Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene were each detected at an elevated concentration in the sample collected from 0 to 2 ft-bgs at TP-06.

#### 6.1.3.10 SWMU 20/Waste Asbestos Accumulation Area

Asbestos was not present in the two surficial soil samples (0 to 3 in-bgs) collected from this SWMU at GS-01 and GS-02.

Cadmium was detected in the sample collected from GS-02.

6.0

Date:

10/22/98 8 of 24

Page:

Total chromium and nickel were detected at elevated concentrations in the surficial soil samples collected from GS-01 and GS-02. (These data are also discussed as part of the evaluation of general site conditions in Section 6.1.4.)

#### 6.1.3.11 SWMU 21/Grinding Swarf Storage Area

Total chromium, molybdenum, and nickel were detected at elevated concentrations in the sample collected from 0 to 2 ft-bgs at TP-03. Total chromium and nickel were also detected at elevated concentrations in the sample collected from 5 to 6 ft-bgs at this location. Only total chromium was detected at an elevated concentration in the sample collected from 11 to 12 ft-bgs.

The TC limits were not exceeded in the extract for the one sample selected for TCLP extraction from this location (ALT-SB-TP03-0002).

#### 6.1.3.12 SWMU 23/API Oil/Water Separator

Total chromium and nickel were detected at elevated concentrations in each of the samples collected from RFI-03 including: 0 to 3 in-bgs and 0 to 2 and 4 to 6 ft-bgs.

Phenanthrene was detected at an elevated concentration in the sample collected from 0 to 2 ft-bgs at RFI-03.

#### 6.1.4 AOC Soils

During implementation of the Phase I RFI, soil samples were collected to address potential impact from five site AOCs. The results of comparison between analytical data generated for samples collected from these locations and potentially applicable criteria are discussed in the following sections.

#### 6.1.4.1 AOC 3/Cooling Towers

Cadmium, manganese, and vanadium were detected at elevated concentrations in the surficial soil sample (0 to 3 in-bgs) collected from RB-07 in AOC 3A (Rust Furnace Cooling Tower).

Total chromium was detected at an elevated concentration in the shallower samples collected from RB-07: 0 to 3 in-bgs and 0 to 2 and 6 to 8 ft-bgs. Molybdenum was only detected at an elevated concentration in the surficial soil sample (0 to 3 in-bgs) collected from this location. Nickel was only detected in the soil samples collected from 0 to 3 in-

6.0

Date:

10/22/98 9 of 24

Page:

bgs and 0 to 2 ft-bgs. None of these metals was detected at an elevated concentration in the sample collected from 8 to 10 ft-bgs at RB-07.

1,4-Dichlorobenzene (TCL SVOC) was detected at an elevated concentration in the sample collected from 6 to 8 ft-bgs at RB-07. Four PAHs (TCL SVOCs) were detected at elevated concentrations in both of the samples collected from 0 to 2 and 6 to 8 ft-bgs at this location:

- benzo(a)anthracene
- benzo(b)fluoranthene
- benzo(k)fluoranthene
- benzo(a)pyrene

Indeno(1,2,3,-cd)pyrene and dibenzo(a,h)anthrancene were also detected at elevated concentrations in the 0 to 2 ft-bgs sample. However, none of these constituents were detected in the sample collected from 8 to 10 ft-bgs at RB-07.

PCBs were detected at elevated concentrations in two samples collected at RB-07:

|                 |                | Reported       |
|-----------------|----------------|----------------|
| Sample          | Detected       | Concentration  |
| <u>Interval</u> | <u>Aroclor</u> | <u>(mg/kg)</u> |
| 0 to 2 ft-bgs   | 1242           | 21             |
| 6 to 8 ft-bgs   | 1242           | 3.9            |

Total chromium was detected at an elevated concentration in the surficial soil sample (0 to 3 in-bgs) collected from RB-06 in AOC 3B (HAP Cooling Tower). No other constituents were detected at elevated concentrations in the soil samples collected at this location.

#### 6.1.4.2 AOC 6/Former Above Ground Fuel Oil Tank

Four PAHs (TCL SVOCs) were detected at elevated concentrations in the surface soil sample (0 to 2 ft-bgs) collected at TP-09, including:

- benzo(a)anthracene
- benzo(b)fluoranthene
- benzo(k)fluoranthene
- benzo(a)pyrene

6.0

Revision: Date:

Date: Page:

10/22/98 10 of 24

No PAHs were detected in the samples collected from greater depths (to 8 ft-bgs) at this location.

### 6.1.4.3 AOC 7/Scrap Steel Storage Areas

Three test pits were completed in the scrap steel storage areas:

| AOC    | Test Pit |
|--------|----------|
| AOC 7A | TP-01    |
| AOC 7B | TP-05    |
| AOC 7C | TP-10    |

Total chromium was detected at elevated concentration the soil samples collected from the surface (0 to 2 ft-bgs) and from 8 to 9 ft-bgs at TP-01. Nickel was also detected at an elevated concentration in the surface soil sample collected from this location. Neither metal was detected at an elevated concentration in the intermediate sample collected from 3 to 4 ft-bgs.

Lead was detected at an elevated concentration in the surface soil sample (0 to 2 ft-bgs) collected from TP-05. Total chromium and nickel were detected at elevated concentrations in each of the soil samples collected from this location: 0 to 3 in-bgs and 0 to 2, 2 to 3, and 8 to 9 ft-bgs.

Cadmium was detected at an elevated concentration in the surface soil sample (0 to 2 ft-bgs) collected from TP-10. Total chromium and nickel were also detected at elevated concentrations in the surface soil sample and the sample collected from 8 to 9 ft-bgs at this location. Molybdenum was only detected at an elevated concentration in the surface soil sample.

The TC limits were not exceeded in the extract for the three samples selected for TCLP extraction from this location (ALT-SB-TP05-0002, ALT-SB-TP05-0809, and ALT-SB-TP10-0809).

Five PAHs (TCL SVOCs) were detected at elevated concentrations in one or more of the samples collected at TP-05 (AOC 7 B) from 0 to 3 in-bgs and 0 to 2 and 2 to 3 ft-bgs. However, these constituents were not detected at elevated concentrations in the sample collected from 8 to 9 ft-bgs at this location.

6.0

Revision: 0
Date: 10

10/22/98 11 of 24

Page:

- benzo(a)anthracene
- benzo(b)fluoranthene
- benzo(k)fluoranthene
- benzo(a)pyrene
- dibenzo(a,h)anthracene

### 6.1.4.4 AOC 8/Former Coal Storage Area

Total chromium and nickel were detected at elevated concentration in both of the surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs) collected from RB-03.

Four PAHs (TCL SVOCs) were detected at elevated concentrations in the surface soil sample (0 to 2 ft-bgs) collected at RB-03.

- benzo(a)anthracene
- benzo(b)fluoranthene
- benzo(k)fluoranthene
- benzo(a)pyrene

The 0 to 2 ft-bgs sample was the deepest sample collected at this location.

### 6.1.4.5 AOC 11/Former Coal Gasification Plant

Total chromium and nickel were detected at elevated concentrations in samples collected from 0 to 3 in-bgs and 2 to 4 ft-bgs at RFI-06.

Five PAHs (TCL SVOCs) were detected at elevated concentrations in the sample collected from 0 to 3 in-bgs at RFI-06.

- benzo(a)anthracene
- benzo(b)fluoranthene
- benzo(k)fluoranthene
- benzo(a)pyrene
- dibenzo(a,h)anthrancene

Phenanthrene was the only PAH detected at an elevated concentration in the sample collected from 0 to 2 ft-bgs at RFI-06.

None of these metals or PAHS were detected at elevated concentrations in the sample collected from 4 to 6 ft-bgs at RFI-06.

6.0

Revision: Date:

10/22/98 12 of 24

Page:

### 6.1.5 CAMU Soils

During implementation of the Phase I RFI, soil samples were collected from interior or exterior borings, or both, completed proximate to the four CAMUs. The results of comparison between analytical data generated for samples collected from these locations and potentially applicable criteria are discussed in the following sections.

### 6.1.5.1 CAMU A/Former LAP West Pickling Facility

Two borings were completed exterior to the Former LAP West Pickle Facility: RB-04 and RB-05. Four borings were completed within the former pickle facility: LWB-01 through LWB-04.

### Exterior Borings

Lead was detected at an elevated concentration in the surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs) collected from RB-04. Antimony was also detected at an elevated concentration in the 0 to 2 ft-bgs sample collected from this location.

Total chromium was detected at elevated concentrations in each of the samples collected at RB-04, except in the deepest sample collected at this location, from 7 to 9 ft-bgs. Nickel was also detected at elevated concentrations in each of the samples collected from this location, except for the sample collected from 4 to 6 ft-bgs.

The TC limit for lead was exceeded in the extract for the soil sample selected for TCLP extraction from RB-04 (ALT-SB-RB04-0002).

Total chromium was detected at elevated concentrations in each of the samples collected at RB-05 (0 to 10 ft-bgs). Hexavalent chromium was also detected at an elevated concentration in the sample collected from 2 to 4 ft-bgs at this location. Nickel was only detected at an elevated concentration in the surficial soil sample (0 to 3 in-bgs).

### Interior Borings

Cadmium was detected at elevated concentrations in one soil sample each collected from LWB-01 (2 to 4 ft-bgs) and LWB-04 (0 to 2 ft-bgs).

Total chromium was detected at elevated concentrations in each of the interior borings, except the samples collected from 0 to 2 ft-bgs at LWB-03 and LWB-04. Hexavalent chromium was detected at elevated concentrations in the samples collected from 6 to 8 ft-bgs at LWB-02 and LWB-03.

6.0

Date:

10/22/98

Page:

13 of 24

The TC limit for total chromium was exceeded in the extract for the sample selected for TCLP extraction from LWB-03 (ALT-SB-LWB03-0608).

### 6.1.5.2 CAMU B/Former BRP Pickling Facility

One boring was completed exterior to the Former BRP Pickle Facility: RFI-13. Two borings were completed within the former pickle facility: BRB-01 and BRB-03.

### Exterior Boring

Total chromium was detected at an elevated concentration in the surficial soil sample (0 to 3 in-bgs) collected from RFI-13. Total chromium was not detected at elevated concentrations in the deeper samples collected at this location (to 18 ft-bgs).

### Interior Borings

Cadmium was detected at an elevated concentration in the surface soil sample (0 to 2 ft-bgs) collected from BRB-01.

Total chromium was detected at elevated concentrations in the three shallow samples collected from BRB-01 (0 to 2 and 2 to 4 ft-bgs) and BRB-03 (1 to 3 ft-bgs). Total chromium was not detected at elevated concentrations in the deeper samples collected at BRB-01 (15 to 17 ft-bgs).

### 6.1.5.3 CAMU C/BFS Pickling Facility

Total chromium and nickel were detected at elevated concentrations in samples collected from 0 to 3 in-bgs and 2 to 4 ft-bgs at RFI-07, but were not detected at an elevated concentration in the sample collected from 6 to 8 ft-bgs.

No constituents were detected at elevated concentrations in the samples collected at RFI-17 (to 8 ft-bgs).

### 6.1.5.4 CAMU D/Former LAP East Pickling Facility

One boring was completed exterior to the Former LAP East Pickle Facility: RFI-05. Three borings were completed within the former pickle facility: LEB-01, LEB-02, and LEB-03.

### **Exterior Boring**

Total chromium and nickel were detected at elevated concentrations in the surficial soil sample (0 to 3 in-bgs) collected from RFI-05.

6.0

Date:

10/22/98 14 of 24

Page:

Carbon disulfide (TCL VOC) was detected at an elevated concentration in the sample collected from 12 to 14 ft-bgs at RFI-05.

### Interior Borings

Cadmium was detected at an elevated concentration in the sample collected from 11 to 13 ft-bgs at LEB-03.

Total chromium was detected at elevated concentrations in soil samples collected from LEB-01 (2 to 4 ft-bgs) and LEB-03 (0 to 2 ft-bgs).

TCL VOCs were detected at elevated concentrations in five of seven soil samples collected from LEB-02 and LEB-03:

| <u>Location</u><br>LEB-01 | Sample <u>Depth</u> 2 to 4 ft-bgs | Constituent<br>trichloroethene                               |
|---------------------------|-----------------------------------|--------------------------------------------------------------|
| LEB-02                    | 6 to 8 ft-bgs                     | trichloroethene                                              |
| LEB-03                    | 0 to 2 ft-bgs<br>7 to 9 ft-bgs    | trichloroethene<br>trichloroethene<br>cis-1,2-dichloroethene |
|                           | 11 to 13 ft-bgs                   | trichloroethene cis-1,2-dichloroethene                       |

### 6.1.6 General Site Soils

Soil samples were collected from the following locations to evaluate general site conditions: GS-01 through GS-05, RFI-01, RFI-08, RFI-12, and RFI-16. (Data for GS-01 and GS-02 were also addressed under SWMU 20, Waste Asbestos Accumulation Area, in Section 6.1.3.10.)

Cadmium was detected at elevated concentrations in the surficial soil samples (0 to 3 in-bgs) collected from GS-02, GS-03, and RFI-08. Antimony was detected at elevated concentrations in the surficial soil samples collected from GS-03 and RFI-08. Lead was detected at an elevated concentration in the surficial soil sample collected from RFI-08.

Date: 10/22/98 Page:

15 of 24

Total chromium, molybdenum, and nickel detected at elevated concentrations in the surficial soil samples collected from each of the general site locations.

| <u>Location</u><br>GS-01 | Constituent<br>total chromium<br>nickel |
|--------------------------|-----------------------------------------|
| GS-02                    | total chromium<br>nickel                |
| GS-03                    | total chromium<br>molybdenum<br>nickel  |
| GS-04                    | total chromium<br>nickel                |
| GS-05                    | total chromium<br>nickel                |
| RFI-05                   | total chromium                          |
| RFI-08                   | total chromium<br>molybdenum<br>nickel  |
| RFI-12                   | total chromium                          |
| RFI-16                   | total chromium<br>nickel                |

No exceedances of these metals occurred for subsurface soil samples collected from these locations (i.e., RFI-01, RFI-08, RFI-12, and RFI-16).

The TC limit for lead was exceeded in the extract for the sample selected for TCLP extraction from RFI-08 (ALT-SS-RFI08-03). The TC limits were not exceeded in the extract for the sample selected for TCLP extraction from GS-03 (ALT-SS-GS03-03).

Five PAHs (TCL SVOCs) were detected at elevated concentrations in the surficial soil sample (0 to 3 in-bgs) collected at RFI-08.

6.0

Date: Page:

10/22/98 16 of 24

benzo(a)anthracene

- benzo(b)fluoranthene
- benzo(k)fluoranthene
- benzo(a)pyrene
- indeno(1,2,3-cd)pyrene

These constituents were not detected at elevated concentrations in the other sample collected from 5 to 7 ft-bgs at this location.

#### 6.2 **Groundwater Evaluation**

Groundwater analytical data were evaluated with the following potentially applicable criteria:

- NYSDEC, November 30, 1992, "Contained-In Criteria for Environmental Media," TAGM 3028 (revised 1997) (NYSDEC 1992a)
- New York Codes, Rules, and Regulations, Title 6, Chapter X, Parts 700-705 (New York State Water Quality Standards for Class GA Waters)
- U.S. Environmental Protection Agency, Final Maximum Contaminant Levels (MCLs) for drinking water
- 40 Code of Federal Regulations, Part 264, Subpart S, Vol. 55, No. 145, July 27, 1990

The potentially applicable criteria for each of the TAL Inorganics (plus molybdenum, hexavalent chromium, and free cyanide), TCL VOCs and SVOCs, and miscellaneous parameters are presented in Table 6-3. Constituents that were detected at concentrations in exceedance of one or more of the potentially applicable criteria (e.g., elevated concentrations) are presented in Table 6-4.

Wells associated with the following units have been separated out from the remaining site wells, as impact in these wells may be due to the unit operations:

- SWMU 16, Willowbrook Pond
- SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewater Treatment Plant Areas
- CAMU A, Former LAP West Pickling House
- CAMU B, Former BRP Pickling Facility

6.0

Revision: Date:

Page:

10/22/98 17 of 24

• CAMU C, BFS Pickling Facility

• CAMU D, Former LAP East Pickling House

For metals, total concentrations were evaluated with the potentially applicable criteria, except for instances in which dissolved data were required due to high sample turbidity. The sample aliquot (total or dissolved) is identified in the Table 6-4. The areaby-area discussions presented below are focused on four key metals (hexavalent chromium, total chromium, molybdenum, and nickel) that are believed to be key indicator parameters of impact from site operations. Metals that were detected at elevated concentrations in Wells B-1 and RFI-01 (which may be representative of background conditions), included aluminum, beryllium, iron, manganese, sodium, thallium, and antimony. Most of these metals were also frequently detected at elevated concentrations in groundwater samples collected from other site monitoring wells. Therefore, exceedances of criteria for these metals are not discussed further below.

TCL PCBs were not detected in any of the site groundwater samples. Therefore, potentially applicable criteria for these compounds are not presented in Table 6-3.

Figure 6-1 identifies those locations from which groundwater samples were collected and the analytical data indicated exceedances of potentially applicable criteria (e.g., elevated concentrations) for key metals (i.e., total chromium, hexavalent chromium, molybdenum, and nickel) TCL VOCs, TCL SVOCs, and miscellaneous parameters.

### 6.2.1 SWMU 16 - Willowbrook Pond

Groundwater quality in this area was monitored during the Phase I RFI by Wells WP-1 through WP-4, RFI-14, and RFI-15.

Molybdenum was the only metal indicator parameter detected at an elevated concentration in groundwater samples collected from this area. Molybdenum was detected at an elevated concentration in the groundwater samples collected from WP-4 during Round 1 and Round 2.

cis-1,2-Dichloroethene and trichloroethene (TCL VOCs) were detected at elevated concentrations in groundwater samples collected from WP-4 during Round 1 and Round 2 and the groundwater sample collected from RFI-15 during Round 2.

10/22/98 18 of 24

6.0

Date: Page:

Ammonia was detected at an elevated concentration in the sample collected from WP-4 during Round 1.

### 6.2.2 <u>SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewater Treatment</u> Plant Areas

Groundwater quality in the SWMU 17 area was monitored during the Phase I RFI by Wells WT-1A, WT-1B, WT-2, WT-3, WT-4, and RFI-09. Groundwater quality in the area of SWMU 22 was monitored by RFI-09.

Molybdenum was detected at an elevated concentration in several of the groundwater samples collected from this area during both sampling rounds.

|             | Sample                 |
|-------------|------------------------|
| <u>Well</u> | $\underline{Round(s)}$ |
| WT-1A       | 1 and 2                |
| WT-1B       | -                      |
| WT-2        | 1 and 2                |
| WT-3        | 1 and 2                |
| WT-4        | -                      |
| RFI-09      | 1 and 2                |

Nickel was detected at an elevated concentration in the groundwater sample collected from WT-2 during Round 1.

Vinyl chloride, cis-1,2-dichloroethene, and trichloroethene (TCL VOCs) were detected at elevated concentrations in the groundwater samples collected from WT-2 during both sampling rounds.

Several of the miscellaneous parameters were detected at elevated concentrations in groundwater samples collected from this area:

|             | Sample |                            |
|-------------|--------|----------------------------|
| <u>Well</u> | Round  | Constituent                |
| WT-1B       | 1      | chloride                   |
| WT-2        | 1      | pH, total phenols, ammonia |
|             | 2      | pH, total phenols, ammonia |
| WT-3        | 1      | fluoride, sulfate          |
|             | 2      | sulfate                    |

Section: 6.0 Revision: 0

Date: 10/22/98 Page: 19 of 24

| Sample |       |             |
|--------|-------|-------------|
| Well   | Round | Constituent |
| WT-4   | 1     | sulfate     |
|        | 2     | sulfate     |

### 6.2.3 CAMU A - Former LAP West Pickling Facility

Groundwater quality in this area was monitored during the Phase I RFI by Wells LAW-5 and LAW-6.

Hexavalent chromium, total chromium, and molybdenum were detected at elevated concentrations in the groundwater samples collected from LAW-5 and LAW-6 during both sampling rounds.

Chloride, nitrate, fluoride, and sulfate were frequently detected at elevated concentrations in the groundwater samples collected from these wells.

| <u>Well</u> | Round | Constituent                |
|-------------|-------|----------------------------|
| LAW-5       | 1     | chloride, nitrate, sulfate |
|             | 2     | chloride, sulfate          |
| LAW-6       | 1     | nitrate, fluoride, sulfate |
|             | 2     | nitrate, fluoride, sulfate |

The pHs of the samples were elevated (and basic in nature) in the samples collected from LAW-6 during both rounds.

### 6.2.4 CAMU B - Former BRP Pickling Facility

Groundwater quality in this area was monitored during the Phase I RFI by Wells MW-1 and RFI-13.

Both molybdenum and sulfate were detected at elevated concentrations in the groundwater samples collected during Rounds 1 and 2 from MW-1. Neither of these constituents was detected at elevated concentrations in the samples collected from RFI-13.

### 6.2.5 CAMU C - BFS Pickling Facility

Groundwater quality in this area was monitored during the Phase I RFI by Wells MW-3, RFI-07, and RFI-17.

6.0

Date:

10/22/98 20 of 24

Page:

Hexavalent chromium and total chromium were detected at elevated concentrations in groundwater samples collected from MW-3 during Rounds 1 and 2. Total chromium was detected at an elevated concentration in the groundwater sample collected from RFI-17 during Round 2.

Molybdenum was detected at elevated concentrations in each of the groundwater samples collected from MW-3, RFI-07, and RFI-17 during both sampling rounds.

Chloride, nitrate, and sulfate were frequently detected at elevated concentrations in the groundwater samples collected from these wells.

| <u>Well</u> | <u>Round</u> | Constituent                |
|-------------|--------------|----------------------------|
| MW-3        | 1            | nitrate, sulfate           |
|             | 2            | chloride, nitrate, sulfate |
| RFI-07      | 1            | nitrate, sulfate           |
|             | 2            | nitrate, sulfate           |
| RFI-17      | 1            | chloride, sulfate          |
|             | 2            | chloride, sulfate          |

### 6.2.6 CAMU D - Former LAP East Pickling Facility

Groundwater quality in this area was monitored during the Phase I RFI by Wells LAE-4 and RFI-05.

Key metal and miscellaneous parameters were not detected at elevated concentrations in groundwater samples collected from wells in this area (LAE-4 and RFI-05) during either sampling round.

Vinyl chloride, 1,1-dichloroethene, trans-1,2-dichloroethene, cis-1,2-dichloroethene, and trichloroethene (TCL VOCs) were detected at elevated concentrations in the groundwater samples collected from LAE-4 during Rounds 1 and 2.

Naphthalene (TCL SVOC) was detected at an elevated concentration in the groundwater sample collected from LAE-4 during Round 2. This was the only detection of a TCL SVOC at an elevated concentration in groundwater samples collected during the Phase I RFI at the site.

6.0

Date:

10/22/98

Page: 21 of 24

### 6.2.7 Site Groundwater

Site and perimeter groundwater quality were monitored during the Phase I RFI by Wells B-1 and RFI-01 (potentially representing background groundwater quality), RFI-02, RFI-03, RFI-04, RFI-06, RFI-08, RFI-10, RFI-11, RFI-12, and RFI-16.

Molybdenum was the only key metal detected at an elevated concentration in a groundwater samples collected from the general site and perimeter monitoring wells. This constituent was detected at elevated concentrations in the samples collected from RFI-03 and RFI-16 during Round 1 and Round 2.

cis-1,2-Dichloroethene and trichloroethene (TCL VOCs) were detected at elevated concentrations in the groundwater sample collected from RFI-16 during Round 1.

Fluoride, sulfate, and chloride were detected at elevated concentrations in these groundwater samples:

| Well<br>RFI-03 | Sample<br><u>Round</u><br>1 | Constituent<br>fluoride |
|----------------|-----------------------------|-------------------------|
| RFI-06         | 1<br>2                      | sulfate<br>sulfate      |
| RFI-10         | 1<br>2                      | sulfate<br>chloride     |

### 6.3 Surface Water and Sediment Evaluations

Surface water and sediment analytical data were evaluated with the following potentially applicable criteria:

- surface water
  - New York Codes, Rules, and Regulations, Title 6, Chapter X, Parts 700-705 (New York State Water Quality Standard for Class D Surface Water)
- sediment
  - NYSDEC, July 1994b, "Technical Guidance for Screening Contaminated Sediments"

6.0

Date:

10/22/98 22 of 24

Page:

6.3.1 Surface Water

The potentially applicable surface water criteria are presented, for detected

parameters only, in Table 6-5. Because hardness was not determined for these samples,

many of the water quality standards could not be calculated for evaluation (see Table 6-

5).

Iron was the only parameter detected at an elevated concentration in the three surface

water samples collected during implementation of the Phase I RFI. The Class D Water

Quality Standard for iron is 0.3 mg/l; iron was detected in each of the surface water

samples (and duplicate) at concentrations of 0.43 to 0.52 mg/l.

6.3.2 Sediment

The potentially applicable sediment criteria are presented, for detected parameters

only, in Table 6-6. The screening guidance document provides two levels of impact for

metals which are to be used as screening tools, not cleanup or action criteria/levels. The

Lowest Effect Level indicates a level of sediment impact that can be tolerated by the

majority of benthic organisms, but still causes toxicity to a few species. The Severe

Effect Level indicates the concentration at which pronounced disturbance of the sediment

dwelling community can be expected.

The levels of protection addressed for organic constituents include:

• Human Health Bioaccumulation

• Benthic Aquatic Life:

- Acute Toxicity
- Chronic Toxicity

• Wildlife Bioaccumulation

The following metals were detected at concentrations above the Low or Severe

Effect Levels in one or more of the sediment samples:

**ESC** 

6.0 0

Date: Page: 10/22/98 23 of 24

arsenic

• manganese

cadmium

nickel

total chromium

lead

• copper

Arsenic was detected in the sample collected from S-01, at a concentration of 7.7 mg/kg, which is slightly above the Low Effect Level of 6 mg/kg, but well below the Severe Effect Level of 33 mg/kg.

Cadmium was detected at similar concentrations in each of the three sediment (and duplicate) samples. All of the reported concentrations, which ranged from 2 to 3 mg/kg, were above the Lowest Effect Level of 0.6 mg/kg, but well below the Severe Effect Level of 9 mg/kg.

Total chromium was detected in sample collected from S-03 at a concentration of 47 mg/kg. The Lowest Effect Levels is 26 mg/kg. The total chromium concentrations reported for the sample collected from S-02 (430 mg/kg) and the duplicate from S-03 (560 mg/kg) were both above the Severe Effect Levels of 110 mg/kg.

Copper was detected in the samples collected from S-01 and S-02 (and the duplicate collected from S-03) at concentrations of 20 to 25 mg/kg. The Lowest Effect Level for copper is 16 mg/kg. All of the reported concentrations in these samples were well below the Severe Effect Level of 110 mg/kg.

Manganese was detected in the samples collected from S-01 and S-02 at concentrations of 710 and 480 mg/kg. The Lowest Effect Level for manganese is 460 mg/kg. These concentrations, however, are well below the Severe Effect Level of 1,100 mg/kg.

Nickel was detected in the samples collected from S-01 and S-03 at concentrations of 24 and 39 mg/kg. The Lowest Effect Level for nickel is 16 mg/kg. Nickel was also detected in the sample collected from S-02 (and the duplicate collected from S-03) at concentrations of 240 and 420 mg/kg, which are above the Severe Effect Level for nickel of 50 mg/kg.

Lead was detected in the sample collected from S-01 at a concentration of 40 mg/kg. The Lowest Effect Level is 31 mg/kg. Lead was also detected in the sample

6.0

Date:

10/22/98

24 of 24

Page:

collected from S-03 at a concentration of 190 mg/kg, which is above the Severe Effect Level for lead is 110 mg/kg.

Screening criteria for TCL SVOCs which were exceeded in the sediment samples are based on human health bioaccumulation and benthic aquatic life chronic toxicity (Table 6-6). Several PAHs (TCL SVOCs) were detected in the samples collected from S-01 and S-03 at concentrations above the potentially applicable criteria.

| Location | <u>Constituent</u>       | Concentration | <u>Criteria</u> |
|----------|--------------------------|---------------|-----------------|
| S-01     | chrysene                 | 1,400 µg/kg   | 1,300 μg/kg     |
| S-03     | chrysene                 | 2,500 μg/kg   | 1,300 µg/kg     |
|          | benzo(b)fluoranthene (a) | 1,500 μg/kg   | 1,300 µg/kg     |
|          | benzo(k)fluoranthene (a) | 1,500 μg/kg   | 1,300 µg/kg     |
|          | benzo(a)pyrene (a)       | 1,500 μg/kg   | 1,300 µg/kg     |

a/ These constituents were only detected at concentrations above the screening level criteria in the duplicate collected from S-03. However, it should be noted that the detection limits for the S-03 sample were elevated above the screening criteria (Table 4-14).

Table 6-1

Potentially Applicable Soil Criteria Plaxe I RFI A1 Tech Specially Steel Corporation Dunkirk, New York Facility

|                                | Ruckersund Sail Concretrations (a) | nerentrations (a) | NYSDEC<br>TAGM 3028 | U.S. I        | U.S. EPA Technical Background<br>Document for Soil |                | Proposed        | Human Health<br>Caidance Values |                 |
|--------------------------------|------------------------------------|-------------------|---------------------|---------------|----------------------------------------------------|----------------|-----------------|---------------------------------|-----------------|
|                                | Eastern                            |                   | Soil Action         |               | Screening Levels Guidance (c)                      |                | 40 CFR Part 264 | NYSDEC STARS                    |                 |
| Parameters                     | United States                      | Site 95 UCL       | Level (b)           | Ingestion (d) | Inhalation (e)                                     | 20 DAF (f)     | Subpart S (g)   | Memo No. 1 (h)                  | TCLP (mg/l) (i) |
| TAL Inorganics (k) (mg/kg) (l) |                                    |                   |                     |               |                                                    |                |                 |                                 |                 |
| Silver                         | €.                                 | 7.0               | 0008                | 390 (111)     | •                                                  | 34 (111,11)    | 200             |                                 | v.              |
| Авиния                         | 33000                              | 8956,34           | 4                   | 3             | •                                                  |                | ,               |                                 |                 |
| Aiseme                         | 3 - 12 (0)                         | 7.28              | 0.4                 | 0.4 (p)       | 750 (p)                                            | (n) 67         | 88              | •                               | ··              |
| Banum                          | 15 - 600                           | 52.37             | 8200                | 5500 (111)    | (40) (00)                                          | (u) ()(u)      | 0001            | 1                               | 001             |
| Beryffinn                      | 0 - 1.75                           | 0.21              | 0.15                | 0.1 (p)       | 1300 (p)                                           | (0.3 (10)      | 0.2             |                                 |                 |
| Calciun                        | 130 - 35,000 (a)                   | 784.07            |                     | •             | 4                                                  |                |                 | •                               |                 |
| Calmun                         | 0.1 - 1                            | 2.46              | 7.X                 | 78 (111,q)    | 1800 (p)                                           | N (m)          | 9               |                                 | -               |
| Cobult                         | 2.5 - (0) (0)                      | 11.90             | •                   |               | •                                                  |                |                 | •                               |                 |
| (Tucquium (Tetal)              | 1.5 - 40 (a)                       | 52.70             |                     | ,390 (m)      | 270 (p)                                            | 38 (11)        | ,               |                                 | 3               |
| (Jacuntum (Hexavalem)          |                                    |                   | 300                 | 390 (111)     | 270 (p)                                            | (3) (3)        | 907             |                                 |                 |
| Copper                         | 1.0 - 50                           | 23.08             |                     | •             | •                                                  |                |                 |                                 |                 |
| Irm                            | 2000 - 550000                      | 13164.79          |                     |               |                                                    |                |                 | 4                               |                 |
| Mercury                        | 0.001 - 0.2                        |                   | 53                  | •             |                                                    | ٠              | 20              |                                 | 0.2             |
| Potassium                      | 8500 - 43000 (a)                   | 736.20            |                     | •             |                                                    |                | •               | •                               |                 |
| Magnesium                      | 100 - 5000                         | 1418.27           |                     | •             | •                                                  | •              | •               | •                               | ٠               |
| Manganese                      | 50 - 5000                          | 217.83            | 11000               | ,             |                                                    |                | •               | •                               |                 |
| Molybakmun                     |                                    | 22. Fo            | 066                 | •             | ,                                                  | ٠              | •               | •                               | •               |
| Sodium                         | (AOO) - X(KK)                      |                   | •                   | •             |                                                    | •              | •               | •                               |                 |
| Nickel                         | 0.5 - 25                           | 39.08             | 1000                | (m) (m)       | 13000 (p)                                          | (n) 08' J      | 2000            |                                 |                 |
| Lead                           | (i) ·                              | 30.93             | ()()+               | 400 (s)       | (s) -                                              | (x) ·          | •               | •                               | S               |
| Antimony                       |                                    | 0.89              | 33                  | 31 (111)      | •                                                  | S              | 30              | •                               |                 |
| Selenium                       | 0.1 - 3.9                          |                   | 990                 | 390 (m)       |                                                    | S (n)          | •               |                                 | -               |
| Thatten                        |                                    |                   | 7.8                 | •             | •                                                  | 0.7 (11)       |                 | •                               |                 |
| Variadium                      | 1 - 300                            | 14.67             | 550                 | 550 (m)       | •                                                  | (11) 0009      | •               |                                 |                 |
| Zinc                           | 9.0 - 50                           | 68.55             | 23000               | 23000 (m)     |                                                    | 12000 (m,n)    |                 |                                 |                 |
| Cyanide (Total)                | •                                  |                   | 1600                | •             |                                                    |                | 2000            | •                               |                 |
| Cyanide (Free)                 |                                    |                   | •                   | 16(H) (m)     | •                                                  | O <del>p</del> | *               | •                               |                 |

Page 2 of 3

|                                         | TAGM 3028<br>Soil Action | Document for Soil<br>Screening Levels Guidance | Document for Soil<br>Servening Levels Guidance |              | Proposed<br>40 CFR Part 264 | Guidance Values<br>NYSDEC STARS |
|-----------------------------------------|--------------------------|------------------------------------------------|------------------------------------------------|--------------|-----------------------------|---------------------------------|
| Parameters                              | 1.evel                   | Ingestion                                      | Inhabation                                     | 20 DAF       | Subpart S                   | Memo No. 1                      |
| Volatile Organic Compounds (ug/kg)      |                          |                                                |                                                |              |                             |                                 |
| Carbon Disullide                        | Тикини                   | 78(H)(K)(III)                                  | 720000 (1)                                     | 32000 (1)    | КККККК                      | •                               |
| as-1,2-Dichlomethene                    | 78(888)                  | 78(000) (101)                                  | 1200000 (1)                                    | 400          | •                           | •                               |
| 2-Butamme                               | 47000000                 |                                                |                                                |              | 4000000                     |                                 |
| Treblorethene                           | 58000                    | 580(R) (p)                                     | 5000 (11)                                      | 90           | 00000                       |                                 |
| Венлене                                 | 22000                    | 22000 (p)                                      | 800 (o)                                        | 30           |                             | 24000                           |
| 2-Hexanone                              |                          |                                                |                                                |              | •                           |                                 |
| Ferrachbaroethene                       | 1,2000                   | 12000 (p)                                      | 11000 (0)                                      | 09           | 10000                       | 1                               |
| Foluene                                 | 1000000                  | 16000000 (m)                                   | 650000 (1)                                     | 12000        | 2000000                     | 20000000                        |
| Chlombenzene                            | Тойкий                   | (m) (m)                                        | 1,300000 (1)                                   | 1000         | 200000                      |                                 |
| Ethylbenzene                            | 7кинии)                  | 7800000 (m)                                    | 400000                                         | 0.000.1      | кинини                      | KOOOOK                          |
| Styrene                                 | 21000                    | (111) (111)(111)                               | 1500000 (1)                                    | 4000         | 2000 и в                    | •                               |
| Xylene (Total)                          | 160000000                |                                                |                                                | •            | 200000000                   | 20000000                        |
| Semi-Volutile Oceanic Connounds (ug/kg) |                          |                                                |                                                |              |                             |                                 |
| . A. Dichknabenzene                     | •                        |                                                |                                                |              | •                           |                                 |
| 4-Dichlandrenzene                       | 27000                    | 27000 (p)                                      | (1)                                            | 2000         |                             | •                               |
| 2,4-Trichtmobenzene                     | 780000                   | 7K(KKK) (m)                                    | 3200000 (11)                                   | 9005         | 2000000                     |                                 |
| Naphthalene                             | 310000                   | 3100000 (111)                                  | •                                              | 84000 (1)    | ,                           | жж                              |
| 2-Methylnaphthalene                     |                          |                                                |                                                | •            | •                           | •                               |
| Directly! phthalate                     | 7800000                  | •                                              |                                                | •            | •                           |                                 |
| Ассиаринене                             | 4700000                  | 4700000 (m)                                    |                                                | 570000 (m)   | •                           | SOUGHOUS                        |
| Acenaphthylene                          | •                        | -                                              |                                                | ٠            | •                           | ٠                               |
| Aibenzofuran                            | i                        |                                                |                                                |              | 1                           | •                               |
| Hustene                                 | 310000                   | 3100000 (111)                                  |                                                | 560000 (111) | •                           | 3000000                         |
| Thenanthene                             | ,                        |                                                | i                                              | F            | ,                           | •                               |
| Anthracene                              | 2300000                  | 23000000 (m)                                   | i                                              | 12000000 (m) |                             | СИХИХИКИ                        |
| Carbazok                                | 32000                    | 32000 (p)                                      | •                                              | (d) (000     | •                           | •                               |
| American                                | 3100000                  | 3100000 (111)                                  | i                                              | 4300000 (m)  |                             | жжж                             |
| Рукие                                   | 230000                   | 2300000 (111)                                  |                                                | 4200000 (m)  |                             | 2000000                         |
| Butyl benzyl phthalate                  | LGCKKOKKO                | 16000000 (m)                                   | 930000 (u)                                     | 930000 (u)   | 20,000,000                  | •                               |
| 3.3-Dichlorobenzidine                   | 1000                     | (d) 0001                                       |                                                | 7 (p,v)      | 2000                        | •                               |
| Зепхи(а)анИпасепе                       | 906                      | (d) (006                                       |                                                | 2000 (p)     | •                           | 220                             |
| Chrysene                                | XXOOO                    | 88(00) (p)                                     | ٠                                              | 160000 (p)   | •                           | ٠                               |
| Benzo(b)Huoranthene                     | 006                      | (d) (O)                                        |                                                | (d) 0005     | ı                           | 220                             |
| Benza(k)Hustantkene                     | 0006                     | (d) ()(0)(h                                    | •                                              | 48000 (b)    | •                           | 220                             |
| Веплека)ругене                          | 96                       | (v.q) 00                                       |                                                | 8000         | •                           | 3                               |
| Indemo(1,2,3-ed)pyrene                  | (30)6                    | (d) (00)                                       | •                                              | (d) (000)    |                             | ٠                               |
| Dibenzo(a,h)anthracene                  | 0)()                     | 90 (p,v)                                       |                                                | 2000 (p)     | •                           | -                               |
|                                         |                          |                                                |                                                |              |                             |                                 |

Page 3 of 3

| Human Health                  | Cuidanes Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | Demonstrad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U.S. EPA Technical Background | 10.00 mg 10. |
| NYSDEC                        | OF 11 T 4 1 7 T 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                      | TAGM 3028   |           | Document for Soil      |           | Preposed        |            |
|--------------------------------------|-------------|-----------|------------------------|-----------|-----------------|------------|
|                                      | Soil Action | ×         | ereening Levels Guidan | 2         | 40 CFR Purt 264 |            |
| Parameters                           | Level       | Ingestion | Ingestion Inhalation   | 20 DAF    | Subpart S       | Memo No. 1 |
| Polychlorinated Biphenyls (mg/kg)    | -           | I (w)     |                        | ,         | 00:00           |            |
| Miscellaneous Parameters             |             |           |                        |           |                 |            |
| pH (s.u.)                            |             |           |                        | •         |                 |            |
| Total Petroleum Hydrocarbons (mg/kg) |             |           |                        | •         |                 |            |
| Total Phenots (mg/kg)                |             | 47000 (m) | •                      | (11) (10) | 50000           | •          |

at New York State Department of Environmental Conservation, January 24, 1994, "Determination of Soil Cleanup Objectives and Cleanup Levels," Technical and Administrative Guidance Memorandum (TAGM) 4046 (HWR-94-4046, revised).
Reter to Appendix O for calculation of the 95 percent upper confidence limit (95 UCL) background concentrations of the site.

Total Phenols (mg/kg) Total Organic Carbon (mg/l)

b/ New York State Department of Environmental Conservation, November 30, 1992, "Contained-In Cineria for Environmental Media."

Technical and Administrative Guidance Memorandum (TAGM) 3028 (revised 1997).

(et U.S. Environmental Protection Agency, May 1996, "Soil Screening Guidance: Technical Background Document," EPA/540/R-95/L28.

(d. Soil screening level 1581.) based on direct ingestion of sulgitive dust (in the case of metals and inorganics).

If Soil severating level based on the magration to groundwater pathway developed using a delault DAF (dilution-attenuation factor) of 20 to account for mutual representations in the subsurface.

Performer or Soild Waste Management Units at Hazardneaw Waste Management Eachtides, Proposed Rule," 55 FR 30708; July 27, 1990, IV New York State Department of Environmental Conservation, August 1992, "Petroleum-Contaminated Soil Guidance Policy," Spill Technology

and Remediation Series (STARS) Memo #1. if TCLP = Toxicity Leaching Procedure.

J TAL = Target Analyte List; this list also includes bexavalent etronium, molyhdenum, and free eyanide. An of the molyhdenum, and free eyanide. An offer an inflagams to light an infligurance pet Magnam, upkly = inflictorgamne pet Kilogram; s.u. = standard unit; ing/l = inillignams pet liter. If " : " inflictores eleaning objective and established of bokground soils concentrations not available. In! ( 'akeulated values correspond to a noncancer hazard quotient of L.

of New York State background level. n/ SSL based on pH of 6.8.

p/. Calculated values correspond to a cancer risk of level of 1 in 1,000,000.

q/ SSL is based on dietary RID,

if Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4 - 61 ppm. Average background levels in metropolitan or salemban areas or near highways are much higher and typically range from 200 - 500 ppm.
A A screening level of 400 mg/kg has been set for lead based on Revixed Interim Soil Levil Guidance for CERCLA Sites and RCRA Corrective Action

Facilities (U.S. EPA, 1994).

If Chemical specific properties are such that this pathway is not of concern at any soil contaminant concentration.

u/ Soil saturation concentration (Ca).

of Level is at or below Contract Laboratory Program required quantitation limit for Regular Analytical Services (RAS).

W. A preliminary remediation goal of 1 mg/kg has been set for PCBs based on Guidance on Remedial Actions for Superfund Actions for Superfund Actions for Superfund Sites with PCB Contamination.

Table 6-2

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase 1 RF1 AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Potentially Applicable Criteria (a) Soil Screening Guidance TAGM 40 CFR TC Constituents Sample Area 3028 Ingestion Inhalation 20 DAF Subpart S STARS Limits Location Sample I.D. Exceeding Criteria Description Background BS-01 SS-BS-01-03 - (b) NA Arsenic Beryllium Х Х Х NA Benzo(a)anthracene Х Х NA NA Benzo(b)fluoranthene Х Х NA Benzo(k)fluoranthene Benzo(a)pyrene X Х Х NA NA BS-02 SS-BS-02-03 Arsenic Х Х Х NA Total Chromium BS-03 SS-BS-03-03 х х NA Arsenic ΝA Beryllium  $\mathbf{X}$ X Total Chromium Х NΑ BS-04 SS-BS-04-03 х NA Arsenic SS-BS-05-03 х NA BS-05 Arsenic BS-06 SS-BS-06-03 x Х NA Arsenic Total Chromium Х NA BS-07 SS-BS-07-03 Arsenic х х NA NA Beryllium  $\mathbf{X}$ X AOC 1/Transformers NA SS-T1-01-03 Х х T1-01 Arsenic Х NA x Beryllium  $\mathbf{x}$ Х NΑ Cadmium Х х NA Total Chromium NA Nickel X Х Х Х NA Lead T1-02 SS-T1-02-03 NA T1-03 SS-T1-03-03 Arsenic х х х Beryllium X Х Cadmium Х x х Total Chromium Х X Nickel X X х Х Lead х NA Antimony T1-04 SS-T1-04-03 NA T1-05 SS-T1-05-03 Arsenic х X NA Beryllium X X Х NA Cadmium Х NA Х Х NA **Total Chromium** X X NA Nickel NA SS-T1-06-03 T1-06 NA SS-T1-07-03 T1-07 Arsenic  $_{\rm X}^{\rm X}$ х X х NA Beryllium Х NΑ Cadmium Total Chromium х X X NΑ X NΑ Nickel Lead X X х Х NA SS-T2-01-03 X Х Х NΑ T2-01 Arsenic Beryllium Х  $\mathbf{X}$ Х NA Х Cadmium NA Х NA Total Chromium х Х х NA Nickel T2-02 SS-T2-02-03 NA х X NA T2-03 SS-T2-03-03 Arsenic Х Х х NΑ Beryllium Х Х Х NA Cadmium X х NΑ Total Chromium х NA Molybdenum х х NΑ Nickel NA Х Antimony T3-01 SS-T3-01-03 х Х Arsenic  $\mathbf{x}$ Beryllium Х Х Х Cadmium Total Chromium X х Х Molybdenum Х Х X Nickel Х Antimony Х NA PCBs X Х Х NΑ T3-02 SS-T3-02-03 PCB<sub>5</sub> Х NA

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 2 of 10

|                     |                      |                   |                                    | Potentially Applicable Criteria Soil Screening Guidance |           |            |        |                     |       |              |
|---------------------|----------------------|-------------------|------------------------------------|---------------------------------------------------------|-----------|------------|--------|---------------------|-------|--------------|
| Area<br>Description | Sample<br>Location   | Sample I.D.       | Constituents<br>Exceeding Criteria | TAGM<br>3028                                            | Ingestion | Inhalation | 20 DAF | 40 CFR<br>Subpart S | STARS | TC<br>Limits |
| AOC 1/Transformers  | (continued)          |                   |                                    |                                                         |           |            |        |                     |       |              |
| toe 17 Transfermers | T3-03                | SS-T3-03-03       | Arsenic                            | X                                                       | X         |            |        |                     |       |              |
|                     |                      |                   | Beryllium                          | X                                                       | X         | -          | _      | -                   | -     |              |
|                     |                      |                   | Cadmium                            | -                                                       | -         |            | X      |                     |       |              |
|                     |                      |                   | Total Chromium                     | -                                                       | X         | X          | X      | -                   | -     |              |
|                     |                      |                   | Molybdenum                         | X                                                       | -         | -          | -      |                     | -     |              |
|                     |                      |                   | Nickel                             | X                                                       | X         | -          | X      | X                   |       | -            |
|                     |                      |                   | Antimony                           | •                                                       | -         | -          | X      | -                   |       | NA           |
|                     |                      |                   | PCBs                               | X                                                       | X         | -          | -      | X                   | -     | NA           |
| WMU 5/Former Gri    | nding Room Picklin   | n Process         |                                    |                                                         |           |            |        |                     |       |              |
| WATE STROTTING GET  | RB-01                | SB-RB-01-0002     | Arsenic                            | X                                                       | X         | _          |        |                     |       | NA           |
|                     | KD-01                | 30-00-01-002      | Cadmium                            | Α                                                       |           | •          | X      | x                   |       | NA<br>NA     |
|                     |                      |                   | Total Chromium                     |                                                         |           | -          | X      | *                   |       | NA<br>NA     |
|                     |                      | SB-RB-01-0507     | Arsenic                            | X                                                       | X         | _          | -      |                     | -     | NA<br>NA     |
|                     |                      | 35-105-01-0507    | Beryllium                          | X                                                       | X         | -          |        | X                   |       | NA<br>NA     |
|                     |                      | SB-RB-01-0709     | Arsenic                            | X                                                       | X         | -          | -      |                     | -     | NA<br>NA     |
|                     |                      | SU-RU-WIW         | Beryllium                          | X                                                       | X         | -          |        | X                   | -     | NA<br>NA     |
|                     |                      |                   | Deryman                            |                                                         |           | _          | -      |                     | _     |              |
| WMU 9/Former TC     | A Container Storag   | e Area            |                                    |                                                         |           |            |        |                     |       |              |
|                     | RB-02                | SB-RB-02-0002     | Arsenic                            | X                                                       | X         | -          | -      | -                   | -     | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         | -          | -      | X                   | -     | NA           |
|                     |                      | SB-RB-02-1618     | Arsenic                            | X                                                       | X         | -          | -      |                     | -     | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         | -          | -      | X                   | -     | NA           |
|                     |                      |                   |                                    |                                                         |           |            |        |                     |       |              |
| WMU 11/Shark Pit I  |                      |                   |                                    |                                                         |           |            |        |                     |       |              |
|                     | RFI-10               | SS-RFI-10-03      | Arsenic                            | X                                                       | X         | •          | -      | -                   | -     | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         |            | -      | X                   | •     | NA           |
|                     |                      |                   | Total Chromium                     | -                                                       | X         | X          | Х      | •                   | •     | NA           |
|                     |                      |                   | Molybdenum                         | X                                                       | -         | •          | •      | -                   | -     | NA           |
|                     |                      |                   | Nickel                             | X                                                       | X         | •          | X      | X                   | •     | NA           |
|                     |                      | SB-RFI-10-0002    | Arsenic                            | X                                                       | X         | *          | •      | -                   | •     | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         |            | -      | Х                   | -     | NA           |
|                     |                      |                   | Total Chromium                     |                                                         | Х         | X          | X      | •                   | -     | NA           |
|                     |                      |                   | Molybdenum                         | X                                                       | -         | -          |        | •                   | -     | NA           |
|                     |                      | CD DEL 10 0201    | Nickel                             | 20                                                      |           | -          | X      | -                   | -     | NA           |
|                     |                      | SB-RFI-10-0204    | Arsenic                            | X                                                       | X         | •          | -      |                     | -     | NA.          |
|                     |                      | CD DEL 10 0010    | Beryllium                          | X                                                       | X         | -          | -      | X                   | -     | NA           |
|                     |                      | SB-RFI-10-0810    | Arsenic                            | X                                                       | X         | -          |        |                     | •     | NA           |
|                     |                      |                   | Beryllium<br>Total Chromium        | X                                                       | X         | -          | X      | X                   |       | NA<br>NA     |
|                     |                      |                   | rom chroman                        |                                                         |           |            |        |                     |       | ••••         |
| WMU 13/Crucible D   | risposal Areas and S | WMU1 4/Waste Disp | osal Areas                         |                                                         |           |            |        |                     |       |              |
| S                   | WMU 13 A/TP-08       | SB-TP-08-0002     | Arsenic                            | X                                                       | X         | -          | -      | -                   | -     | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         | •          | •      | X                   | -     | NA           |
|                     |                      |                   | Cadmium                            | -                                                       | -         | •          | X      | -                   | •     | NA           |
|                     |                      |                   | Total Chromium                     | -                                                       | X         | X          | X      | -                   | -     | NA           |
|                     |                      |                   | Nickel                             | X                                                       | •         | -          | X      | •                   | -     | NA           |
|                     |                      | SB-TP-08-0304     | Arsenic                            | X                                                       | X         | -          | -      |                     | -     | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         |            | -      | X                   | •     | NA           |
|                     |                      | SB-TP-08-0708     | Arsenic                            | X                                                       | X         | •          | -      | -                   | -     | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         | -          | •      | X                   |       | NA           |
|                     |                      |                   | Total Chromium                     | -                                                       | -         | -          | X      | •                   | -     | NA           |
| SW                  | MUs 13B and 14B/     | SB-TP-04-0002     | Arsenic                            | X                                                       | X         | -          | -      | •                   | •     | NA           |
|                     | TP-04 and RFI-04     |                   | Beryllium                          | X                                                       | X         | •          | -      | X                   | -     | NA           |
|                     |                      |                   | Total Chromium                     | -                                                       | X         | X          | X      | •                   | •     | NA           |
|                     |                      |                   | Nickel                             | -                                                       | -         | -          | X      | •                   | ·     | NA           |
|                     |                      |                   | Benzo(a)anthracene                 | -                                                       | -         |            | -      | -                   | X     | NA           |
|                     |                      | SB-TP-04-1112     | Arsenic                            | X                                                       | X         | -          | -      | -                   |       | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         | -          | -      | X                   | -     | NA           |
|                     |                      | SS-RFI-04-03      | Arsenic                            | X                                                       | X         | -          |        |                     | -     | NA           |
|                     |                      |                   | Beryllium                          | X                                                       | X         | -          | -      | X                   | -     | NA           |
|                     |                      |                   | Total Chromium                     | -                                                       | X         | X          | X      |                     | -     | NA           |
|                     |                      |                   |                                    |                                                         |           |            |        |                     |       |              |
|                     |                      |                   | Nickel                             |                                                         |           | •          | X      |                     |       | NA           |

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 3 of 10

|                                |                        |                   |                                 |              | Soi       | Poten<br>il Screening Guid | tially Applicabl | e Criteria          |       |            |
|--------------------------------|------------------------|-------------------|---------------------------------|--------------|-----------|----------------------------|------------------|---------------------|-------|------------|
| Area<br>Description            | Sample<br>Location     | Sample I.D.       | Constituents Exceeding Criteria | TAGM<br>3028 | Ingestion | Inhalation                 | 20 DAF           | 40 CFR<br>Subpart S | STARS | TC<br>Limi |
| VMU 13/Crucible<br>(continued) | e Disposal Areas and S | WMU1 4/Waste Disp | osal Areas                      |              |           |                            |                  |                     |       |            |
|                                | RFI-04                 | SB-RFI04-0002     | Arsenic                         | X            | X         | -                          |                  | -                   | -     | -          |
|                                | (continued)            |                   | Beryllium                       | X            | X         | -                          | •                | X                   | -     | ٠ .        |
|                                |                        |                   | Total Chromium                  | -            | X         | X                          | X                | -                   | •     | -          |
|                                |                        |                   | Nickel                          | -            | -         | -                          | X                | -                   | -     | -          |
|                                |                        |                   | Benzo(a)anthracene              |              | •         |                            | -                | -                   | X     | NA         |
|                                |                        |                   | Benzo(a)pyrene                  | X            | X         | -                          | -                | -                   | X     | NA         |
|                                |                        |                   | Dibenzo(ah)anthracene           | X            | X         | •                          | -                | •                   | X     | NA         |
|                                |                        | SB-RF104-0204     | Arsenie                         | X            | X         | •                          |                  | •                   | -     | NA         |
|                                |                        |                   | Beryllium                       | X            | X         | •                          | -                | X                   | •     | NA         |
|                                |                        |                   | Manganese                       | X            |           | -                          | -                | -                   | -     | NA         |
|                                |                        | SB-RFI04-2022     | Arsenic                         | X            | X         | -                          | -                | -                   | •     | NA         |
|                                |                        |                   | Beryllium                       | Х            | X         | •                          | -                | X                   | •     | NA         |
|                                | SWMU 13C/RFI-11        | SS-RFI-11-03      | Arsenic                         | X            | X         |                            | -                | -                   |       |            |
|                                |                        |                   | Barium                          | X            | X         | -                          | X                | X                   | -     | -          |
|                                |                        |                   | Beryllium                       | X            | X         | •                          | -                | X                   | -     | -          |
|                                |                        |                   | Cadmium                         | -            | -         | •                          | X                | -                   |       | -          |
|                                |                        |                   | Total Chromium                  | -            | X         | X                          | X                | •                   |       | -          |
|                                |                        |                   | Mercury                         | X            | -         | -                          | -                | X                   | -     |            |
|                                |                        |                   | Nickel                          | X            | X         | •                          | X                | X                   | -     | -          |
|                                |                        | SB-RFI-11-0002    | Arsenic                         | X            | X         | -                          | X                | X                   | -     | NA         |
|                                |                        |                   | Barium                          | -            | -         | -                          | X                | •                   | -     | N.A        |
|                                |                        |                   | Beryllium                       | X            | X         | •                          | -                | X                   | -     | NA         |
|                                |                        |                   | Cadmium                         | -            | -         | -                          | X                | -                   |       | NA         |
|                                |                        |                   | Total Chromium                  | -            | X         | X                          | X                | •                   | •     | N.A        |
|                                |                        |                   | Nickel                          | Х            | X         | -                          | X                | X                   | -     | NA         |
|                                |                        | Antimony          | -                               | •            | -         | Х                          | -                | •                   | N.A   |            |
|                                | SB-RFI-11-0204         | Arsenie           | X                               | X            | -         | -                          | -                |                     | NA    |            |
|                                |                        | Barium            | -                               | -            | -         | X                          | •                | -                   | NA    |            |
|                                |                        | Beryllium         | X                               | X            |           |                            | X                | -                   | N.A   |            |
|                                |                        |                   | Total Chromium                  | -            | X         | X                          | X                | -                   | -     | N.A        |
|                                |                        |                   | Nickel                          | -            | -         | -                          | X                | •                   | •     | NA         |
|                                |                        | SB-RFI-11-0406    | Arsenie                         | X            | X         | -                          | -                | -                   |       | -          |
|                                |                        |                   | Barium                          | -            | -         | •                          | X                |                     | •     |            |
|                                |                        |                   | Beryllium                       | X            | X         | -                          | -                | X                   | •     | -          |
|                                |                        | SB-RFI-11-0608    | Arsenic                         | X            | X         | -                          | -                | •                   | •     | NA         |
|                                |                        |                   | Beryllium                       | X            | X         | -                          | -                | X                   | •     | NA         |
|                                |                        |                   | Total Chromium                  | -            | -         | -                          | X                | -                   | -     | N.A        |
|                                |                        | SB-RFI-11-0810    | Arsenic                         | X            | X         | *                          | -                | •                   | *     | N.A        |
|                                |                        |                   | Beryllium                       | X            | X         | -                          | -                | X                   | -     | NA         |
|                                |                        |                   | Antimony                        | -            | -         | *                          | X                | •                   | -     | N.A        |
|                                |                        |                   | PCBs                            | X            | X         | -                          | -                | X                   | •     | N/         |
|                                |                        | SB-RFI-11-1012    | Arsenic                         | X            | X         | •                          | -                | -                   | -     | N.A        |
|                                |                        |                   | Beryllium                       | X            | X         | -                          | •                | X                   | -     | NA<br>NA   |
|                                |                        | SB-RFI-11-1214    | Arsenic                         | X            | X         | -                          | -                | -                   | -     | N.A        |
|                                |                        |                   | Beryllium                       | Х            | X         | -                          | -                | X                   | •     | NA         |
|                                | SWMU 14A/TP-07         | SS-TP-07-03       | Arsenic                         | X            | X         | -                          | -                | •                   | -     | N.A        |
|                                |                        |                   | Beryllium                       | X            | X         |                            | -                | X                   |       | N.A        |
|                                |                        |                   | Total Chromium                  | -            | X         | X                          | X                |                     |       | N.A        |
|                                |                        |                   | Nickel                          |              |           | -                          | X                |                     | -     | N.ª        |
|                                |                        |                   | Benzo(a)anthracene              | -            | -         | -                          | -                | -                   | X     | N.A        |
|                                |                        |                   | Benzo(b)fluoranthene            | -            | -         | •                          | •                | •                   | X     | N#         |
|                                |                        |                   | Benzo(k)fluoranthene            | -            | -         | -                          | •                | •                   | X     | N#         |
|                                |                        |                   | Benzo(a)pyrene                  | X            | X         | -                          | -                | -                   | X     | N/         |
|                                |                        | SB-TP-07-0002     | Arsenic                         | X            | X         | -                          | -                | *                   | -     | N.A        |
|                                |                        |                   | Beryllium                       | X            | X         | •                          | •                | X                   | -     | N.A        |
|                                |                        |                   | Total Chromium                  |              | X         | X                          | X                | •                   |       | N.A        |
|                                |                        |                   | Nickel                          | •            | -         | -                          | X                | -                   | -     | N/         |
|                                |                        | SB-TP-07-0304     | Arsenic                         | X            | X         | -                          | *                | -                   | -     | -          |
|                                |                        |                   | Beryllium                       | X            | X         |                            | -                | X                   |       |            |
|                                |                        |                   | Cadmium                         | -            | -         | •                          | X                |                     | -     | -          |
|                                |                        |                   | Total Chromium                  |              | X         | X                          | X                | -                   |       |            |
|                                |                        |                   | Nickel                          | -            | -         |                            | X                |                     | -     | -          |
|                                |                        | SB-TP-07-0809     | Arsenic                         | X            | X         |                            | -                |                     |       | N.         |
|                                |                        |                   | Bervilium                       | X            | X         |                            |                  | X                   |       | N/         |

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase 1 RF1 AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 4 of 10

|                 |                       |                     |                                 |              | 6.11      |                           | tially Applicabl | e Criteria          |       |              |
|-----------------|-----------------------|---------------------|---------------------------------|--------------|-----------|---------------------------|------------------|---------------------|-------|--------------|
| Area            | Sample<br>Location    | Sample L.D.         | Constituents Exceeding Criteria | TAGM<br>3028 |           | Screening Guid Inhalation | 20 DAF           | 40 CFR<br>Subpart S | CTIPE | TC<br>Limits |
| Description     | Location              | Sample L.D.         | Exceeding Criteria              | 3020         | Ingestion | maration                  | 20 DAF           | SuppartS            | STARS | Limits       |
|                 |                       | SWMU1 4/Waste Dispo |                                 |              |           |                           |                  |                     |       |              |
| (continued)     | SWMU 14C/TP-11        | SS-TP-11-03         | Arsenic                         | X            | X         | -                         | •                | •                   | •     | NA           |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   | -     | NA           |
|                 |                       |                     | Total Chromium<br>Nickel        |              | X         | X                         | X<br>X           |                     | •     | ' NA         |
|                 |                       | SB-TP-11-0002 (c)   | Arsenie                         | X            | X         | -                         | A -              | -                   | •     | NA<br>NA     |
|                 |                       | 35 11 11 (11)       | Beryllium                       | X            | X         |                           |                  | X                   | -     | NA<br>NA     |
|                 |                       |                     | Total Chromium                  |              | X         | X                         | X                |                     |       | NA           |
|                 |                       |                     | Nickel                          | -            |           | -                         | X                | -                   | -     | NA           |
|                 |                       | SB-TP-11-1011       | Arsenic                         | X            | X         | -                         |                  |                     | -     | NA           |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   | •     | NA           |
|                 |                       | SB-TP-11-1112       | Arsenic                         | X            | X         | *                         |                  | •                   | -     | NA           |
|                 |                       |                     | Beryllium<br>Total Chromium     | X            | X         | -                         | X                | X                   | -     | NA<br>NA     |
|                 |                       |                     | Total Chromium                  | -            | -         |                           | Х                | •                   | •     | NA           |
| SWMU 15/Former  | Waste Acid Surface I  | mpoundments         |                                 |              |           |                           |                  |                     |       |              |
|                 | RFI-02                | SS-RFI-02-03        | Arsenic                         | X            | X         | -                         | -                | -                   |       | NA           |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   | -     | NA           |
|                 |                       |                     | Total Chromium                  | -            |           | -                         | X                | -                   | -     | NA           |
|                 |                       |                     | Nickel                          | -            | -         | -                         | X                | -                   |       | NA           |
|                 |                       | SB-RFI02-0002       | Arsenic                         | X            | X         | -                         | -                | •                   | •     | NA           |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   | •     | NA           |
|                 |                       |                     | Total Chromium                  | -            | *         | -                         | X                | -                   | -     | NA           |
|                 |                       | SB-RFI02-0810       | Arsenic                         | X            | X         | -                         | -                | -                   | •     | NA           |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   | *     | NA           |
|                 |                       | SB-RFI02-1012       | Arsenic                         | X            | X         | -                         | -                | -                   | •     | NA           |
|                 |                       |                     | Beryllium<br>Cadmium            | X            | X         | -                         | X                | X                   | -     | NA<br>NA     |
|                 |                       |                     | Caumum                          | •            | -         | •                         | ^                | •                   | -     | IVA          |
| SWMU 16/Willow  | brook Pond            |                     |                                 |              |           |                           |                  |                     |       |              |
|                 | RFI-14                | SS-RFI-14-03        | Arsenic                         | X            | X         |                           |                  |                     | -     | NA           |
|                 |                       |                     | Beryllium                       | X            | X         |                           | -                | X                   | -     | NA           |
|                 |                       |                     | Total Chromium                  | -            | X         | X                         | X                | •                   | •     | NA           |
|                 |                       |                     | Nickel                          | -            | •         | -                         | X                | •                   | -     | NA           |
|                 |                       | SB-RFI-14-0204      | Arsenic                         | X            | X         | -                         | -                | -                   | •     | NA           |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   | -     | NA           |
|                 |                       |                     | Total Chromium                  | •            | -         | -                         | X                | •                   | •     | NA           |
|                 |                       | SB-RFI-14-1214      | Nickel<br>Arsenic               | X            | X         | -                         | X                | -                   |       | NA<br>NA     |
|                 |                       | 3D-KI 1-14-12-14    | Beryllium                       | X            | X         | -                         | -                | X                   | •     | NA<br>NA     |
|                 |                       |                     | Total Chromium                  |              | -         |                           | X                |                     |       | NA<br>NA     |
|                 | RFI-15                | SS-RFI-15-03        | Arsenic                         | X            | X         |                           |                  |                     | -     | NA<br>NA     |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   |       | NA           |
|                 |                       |                     | Total Chromium                  | -            | X         | X                         | X                |                     |       | NA           |
|                 |                       |                     | Nickel                          | -            | •         | -                         | X                |                     | -     | NA           |
|                 |                       |                     | PCBs                            | X            | X         |                           | -                | -                   | -     | NA           |
|                 |                       | SB-RFI-15-0608      | Arsenic                         | X            | X         | •                         | -                | -                   |       | NA           |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   | •     | NA           |
|                 |                       | SB-RFI-15-1516      | Arsenic                         | X            | X         | -                         | -                | -                   | •     | NA           |
|                 |                       |                     | Beryllium                       | X            | X         |                           | -                | X                   | •     | NA           |
| SWMI: 17/Closed | Surface Impoundment   | 1                   |                                 |              |           |                           |                  |                     |       |              |
|                 | vater Treatment Plant | •                   |                                 |              |           |                           |                  |                     |       |              |
|                 | RFI-09                | SS-RFI-09-03        | Arsenic                         | X            | x         | -                         | _                | -                   |       | •            |
|                 |                       |                     | Beryllium                       | X            | x         | -                         | -                | X                   | -     | -            |
|                 |                       |                     | Cadmium                         | •            | -         | -                         | X                | -                   | -     | -            |
|                 |                       |                     | Total Chromium                  |              | X         | X                         | X                | *                   | *     | -            |
|                 |                       |                     | Molybdenum                      | X            | -         | -                         | •                |                     | -     |              |
|                 |                       |                     | Nickel                          | X            | X         | X                         | X                | X                   | -     | -            |
|                 |                       | SB-RFI-09-0002      | Arsenic                         | X            | X         | -                         | •                | *                   | -     | NA           |
|                 |                       |                     | Beryllium                       | X            | X         | -                         | -                | X                   |       | NA           |
|                 |                       |                     | Cadmium                         | •            |           |                           | X                | *                   | -     | NA           |
|                 |                       |                     | Total Chromium                  |              | X         | X                         | X                |                     | •     | NA           |
|                 |                       |                     | Nickel                          | X            | X         | •                         | X                | X                   | -     | NA           |
|                 |                       | SB-RFI-09-0204      | Antimony                        | · v          | •         | -                         | X                | -                   | *     | NA<br>NA     |
|                 |                       | 20-KE1-09-0204      | Arsenic<br>Beryllium            | X<br>X       | X<br>X    | -                         |                  | X                   |       | NA<br>NA     |
|                 |                       | SB-RFI-09-0406      | Arsenic                         | X            | X         | -                         |                  | . A                 | -     | NA<br>NA     |
|                 |                       | - be 444 6 97 WTM   | Beryllium                       | X            | X         | -                         | -                | X                   | -     | NA<br>NA     |
|                 |                       |                     |                                 | ••           |           |                           |                  |                     |       |              |

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 5 of 10

|                     |                            |                |                                 |              | Soi       | Poten<br>Screening Guid | tially Applicabl | e Criteria          |             |             |
|---------------------|----------------------------|----------------|---------------------------------|--------------|-----------|-------------------------|------------------|---------------------|-------------|-------------|
| Area<br>Description | Sample<br>Location         | Sample I.D.    | Constituents Exceeding Criteria | TAGM<br>3028 | Ingestion | Inhalation              | 20 DAF           | 40 CFR<br>Subpart S | STARS       | TC<br>Limit |
| SWMU 17/Closed Surf | face Impoundment           | /              |                                 |              |           |                         |                  |                     |             |             |
| SWMU 22/Wastewater  | r Treatment Plant          |                |                                 |              |           |                         |                  |                     |             |             |
|                     | RFI-09                     | SB-RFI-09-0608 | Arsenic                         | X            | X         | -                       | -                | -                   |             | NA          |
|                     | (continued)                |                | Beryllium                       | X            | X         | -                       | -                | X                   | -           | NA          |
|                     |                            | SB-RFI-09-0810 | Arsenic                         | X            | X         | -                       | -                | -                   | -           | NA          |
|                     |                            |                | Beryllium<br>Total Chromium     | X            | X         |                         | X                | X                   |             | NA<br>NA    |
|                     |                            |                |                                 |              |           |                         |                  |                     |             |             |
| WMU 18/Grinding D   |                            |                |                                 |              | .,        |                         |                  |                     |             |             |
|                     | TP-02                      | SS-TP-02-03    | Arsenic                         | X            | X         | •                       | •                |                     | -           | -           |
|                     |                            |                | Beryllium                       | X            | X         | -                       | ·                | X                   | •           | -           |
|                     |                            |                | Cadmium                         | •            | V         | -<br>V                  | X                | X                   | •           | -           |
|                     |                            |                | Total Chromium                  | -<br>V       | X         | X                       | X                |                     | -           | -           |
|                     |                            |                | Molybdenum                      | X            | V         | X                       | X                | X                   | •           | •           |
|                     |                            |                | Nickel                          | X            | X         |                         |                  |                     | •           | •           |
|                     |                            | an Th 42 4442  | Vanadium                        | X            | X         | -                       | -                | -                   | -           |             |
|                     |                            | SB-TP-02-0002  | Arsenic                         | X            | X         | •                       | •                |                     | -           | NA<br>NA    |
|                     |                            |                | Beryllium                       | X            | X         | -                       | -                | X                   | -           | NA          |
|                     |                            |                | Total Chromium                  | -            | -         | -                       | X                | -                   | -           | NA          |
|                     |                            |                | Molybdenum                      | X            | -         | •                       | -                | -                   | -           | NA          |
|                     |                            |                | Nickel                          | -            | -         | •                       | X                | •                   | -           | NA          |
|                     |                            | SB-TP-02-0304  | Arsenic                         | X            | X         |                         | -                | •                   | -           | NA          |
|                     |                            |                | Beryllium                       | X            | X         |                         | -                | X                   | -           | NA          |
|                     |                            | SB-TP-02-0910  | Arsenic                         | X            | X         | -                       | -                | -                   | -           | •           |
|                     |                            |                | Beryllium                       | X            | X         | •                       | -                | X                   | -           | -           |
|                     |                            |                | Total Chromium                  | -            | X         | X                       | X                | -                   | -           | -           |
|                     |                            |                | Nickel                          | -            | -         |                         | X                | -                   |             |             |
|                     |                            |                | Antimony                        | -            | -         | -                       | -                |                     | -           | NA          |
|                     |                            |                | Benzo(a)anthracene              | -            | -         | -                       | •                | •                   | X           | NA          |
| WMU 19/Former Wa    | iste Pile                  |                |                                 |              |           |                         |                  |                     |             |             |
|                     | TP-06                      | SB-TP-06-0002  | Arsenic                         | x            | X         |                         |                  | -                   | -           | NA          |
|                     |                            |                | Beryllium                       | X            | X         | -                       |                  | X                   | -           | NA          |
|                     |                            |                | Cadmium                         |              |           |                         | X                | _                   | -           | NA          |
|                     |                            |                | Total Chromium                  | -            | X         | X                       | X                |                     | -           | NA          |
|                     |                            |                | Molybdenum                      | X            |           |                         |                  | _                   | -           | NA          |
|                     |                            |                | Nickel                          | X            | X         |                         | X                | _                   |             | NA          |
|                     |                            |                | Lead                            |              | X         |                         | x                |                     |             | NA          |
|                     |                            |                | Benzo(a)anthracene              | -            | ^         |                         |                  |                     | x           | NA.         |
|                     |                            |                |                                 |              | -         |                         | •                |                     |             | NA<br>NA    |
|                     |                            |                | Benzo(b)fluoranthene            | -            |           | •                       | -                | •                   | X           |             |
|                     |                            |                | Benzo(k)fluoranthene            | -            | -         | *                       | -                | -                   | X           | NA          |
|                     |                            |                | Benzo(a)pyrene                  | X            | X         |                         | -                | -                   | X           | NA          |
|                     |                            | SB-TP06-0304   | Arsenic                         | X            | X         | •                       | -                |                     | -           | NA          |
|                     |                            |                | Beryllium                       | X            | X         | *                       | -                | X                   | -           | NA          |
|                     |                            | SB-TP06-0708   | Arsenic                         | X            | X         | -                       | -                | -                   | -           | NA          |
|                     |                            |                | Beryllium                       | X            | X         | -                       |                  | X                   | -           | NA          |
|                     |                            |                | Total Chromium                  | •            | -         | -                       | X                | -                   | -           | NA          |
|                     |                            |                | Nickel                          | -            | -         | •                       | X                | -                   | *           | NA          |
| SWMU 20/Waste Asbe  | estos Accumulation         | Area           |                                 |              |           |                         |                  |                     |             |             |
|                     | GS-01                      | SS-GS-01-03    | Arsenic                         | X            | X         | -                       |                  | -                   |             | NA          |
|                     |                            |                | Beryllium                       | X            | x         | -                       | -                | X                   | _           | NA          |
|                     |                            |                | Total Chromium                  |              | X         | X                       | X                |                     |             | NA.         |
|                     |                            |                | Nickel                          |              | -         |                         | X                |                     | •           | NA<br>NA    |
|                     | GS-02                      | SS-GS-02-03    | Arsenic                         |              |           | •                       | . A              |                     |             | NA<br>NA    |
|                     | G2-02                      | 33-03-112-113  |                                 | X            | X         | -                       |                  |                     |             |             |
|                     |                            |                | Beryllium                       | X            | X         | -                       |                  | X                   | -           | NA          |
|                     |                            |                | Cadmium                         | *            | -         |                         | X                | -                   | -           | NA<br>NA    |
|                     |                            |                | Total Chromium<br>Nickel        |              | X         | X                       | X<br>X           | -                   | -           | NA<br>NA    |
|                     |                            |                | , richel                        | •            | •         | •                       | Λ                | -                   | •           |             |
|                     |                            |                |                                 |              |           |                         |                  |                     |             |             |
| SWMU 21/Grinding S  |                            |                |                                 |              |           |                         |                  |                     |             |             |
| SWMU 21/Grinding S  | warf Storage Area<br>TP-03 | SB-TP-03-0002  | Arsenic                         | X            | X         | •                       | •                | -                   | •           |             |
| SWMU 21/Grinding S  |                            |                | Arsenic<br>Beryllium            | X<br>X       | X<br>X    |                         | -                | X                   | -           | -           |
| SWMU 21/Grinding S  |                            |                |                                 |              |           |                         |                  |                     | -           | -           |
| SWMU 21/Grinding S  |                            |                | Beryllium                       | X            | X         |                         | -                | X                   | -<br>-<br>- | -           |

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 6 of 10

| Area Description SWMU 21/Grinding S | Sample<br>Location         |                |                                        | Potentially Applicable Criteria Soil Screening Guidance |           |            |        |                     |        |              |  |
|-------------------------------------|----------------------------|----------------|----------------------------------------|---------------------------------------------------------|-----------|------------|--------|---------------------|--------|--------------|--|
|                                     | ·····                      | Sample I.D.    | Constituents Exceeding Criteria        | TAGM<br>3028                                            | Ingestion | Inhalation | 20 DAF | 40 CFR<br>Subpart S | STARS  | TC<br>Limits |  |
| SWMU 21/Granding S                  |                            |                |                                        |                                                         |           |            |        |                     |        |              |  |
|                                     | Wari Storage Area<br>TP-03 | SB-TP-03-0506  | Arsenic                                | X                                                       | Х         |            | _      |                     |        | NA           |  |
|                                     | (continued)                |                | Beryllium                              | X                                                       | X         | -          | -      | X                   | -      | NA           |  |
|                                     |                            |                | Total Chromium                         | -                                                       | -         | X          | X      | -                   | -      | NA.          |  |
|                                     |                            |                | Nickel                                 | -                                                       | *         | -          | X      | -                   |        | NA           |  |
|                                     |                            | SB-TP-03-1112  | Arsenic                                | X                                                       | X         | -          | -      | -                   | -      | NA           |  |
|                                     |                            |                | Beryllium<br>Total Chromium            | X                                                       | X         | X          | X      | X                   |        | NA<br>NA     |  |
|                                     |                            |                | Total Chromain                         | •                                                       | •         |            | Δ.     | •                   | •      | NA           |  |
| SWMU 23/API Oil/Wa                  | ater Separator             |                |                                        |                                                         |           |            |        |                     |        |              |  |
|                                     | RF1-03                     | SB-RFI-03-03   | Arsenic                                | X                                                       | X         | -          | -      | -                   | -      | NA           |  |
|                                     |                            |                | Beryllium                              | X                                                       | X         | -          | -      | X                   | -      | NA           |  |
|                                     |                            |                | Total Chromium<br>Nickel               | •                                                       | -         | •          | X      | -                   | •      | NA           |  |
|                                     |                            | SB-RFI-03-0002 | Arsenic                                | X                                                       | X         |            | X      | -                   |        | NA<br>NA     |  |
|                                     |                            | 30-101-03-0002 | Beryllium                              | X                                                       | X         | -          |        | X                   | -<br>- | NA<br>NA     |  |
|                                     |                            |                | Total Chromium                         |                                                         | X         | X          | X      | •                   |        | NA           |  |
|                                     |                            |                | Nickel                                 |                                                         | -         | -          | X      |                     |        | NA           |  |
|                                     |                            |                | Phenanthrene                           | X                                                       | •         | -          | -      | -                   | -      | NA           |  |
|                                     |                            | SB-RFI-03-0406 | Arsenic                                | X                                                       | X         | -          | •      | -                   | •      | NA           |  |
|                                     |                            |                | Beryllium                              | X                                                       | X         |            |        | X                   | •      | NA           |  |
|                                     |                            |                | Total Chromium<br>Nickel               |                                                         | X         | X          | X<br>X |                     | -      | NA<br>NA     |  |
|                                     |                            |                | Mickel                                 |                                                         |           |            |        |                     |        | .***         |  |
| AOC 3/Cooling Tower                 | s                          |                |                                        |                                                         |           |            |        |                     |        |              |  |
|                                     | AOC 3A/RB-07               | SS-RB-07-03    | Arsenic                                | X                                                       | X         | -          | -      | -                   | *      | NA           |  |
|                                     |                            |                | Beryllium                              | X                                                       | X         | •          |        | X                   | •      | NA           |  |
|                                     |                            |                | Cadmium                                | •                                                       |           | X          | X<br>X | -                   | -      | NA           |  |
|                                     |                            |                | Total Chromium<br>Manganese            | X                                                       | X         |            |        | -                   | -      | NA<br>NA     |  |
|                                     |                            |                | Molybdenum                             | X                                                       |           | -          | -      | -                   | -      | NA.          |  |
|                                     |                            |                | Nickel                                 | X                                                       | x         | -          | X      | -                   | -      | NA           |  |
|                                     |                            |                | Vanadium                               | X                                                       | X         | -          | -      | -                   | -      | NA           |  |
|                                     |                            | SB-RB-07-0002  | Arsenic                                | X                                                       | X         | -          | -      | -                   | -      | NA           |  |
|                                     |                            |                | Beryllium                              | X                                                       | X         |            |        | X                   | •      | NA           |  |
|                                     |                            |                | Total Chromium<br>Nickel               | x                                                       | X         | X          | X<br>X | •                   | •      | NA<br>NA     |  |
|                                     |                            |                | Benzo(a)anthracene                     | X                                                       | X         |            |        |                     | X      | NA<br>NA     |  |
|                                     |                            |                | Benzo(b)fluoranthene                   | X                                                       | x         | -          |        |                     | x      | NA           |  |
|                                     |                            |                | Benzo(k)fluoranthene                   |                                                         |           | -          | -      | -                   | X      | NA           |  |
|                                     |                            |                | Benzo(a)pyrene                         | X                                                       | X         | -          | -      | *                   | X      | NA           |  |
|                                     |                            |                | Indeno(123-cd)pyrene                   | X                                                       | X         | -          | •      | -                   | X      | NA           |  |
|                                     |                            |                | Dibenzo(a.h)anthrancene                | X                                                       | X         | -          | -      | -                   | X      | NA           |  |
|                                     |                            | SB-RB-07-0608  | PCBs<br>Arsenie                        | X<br>X                                                  | X<br>X    | -          | •      | X                   | •      | NA<br>NA     |  |
|                                     |                            | 3D-KD-07-0008  | Beryllium                              | X                                                       | X         | -          |        | X                   | -      | NA<br>NA     |  |
|                                     |                            |                | Total Chromium                         |                                                         | -         | -          | X      |                     |        | NA.          |  |
|                                     |                            |                | 1.4-Dichlorobenzene                    | -                                                       | -         |            | X      | •                   | -      | NA           |  |
|                                     |                            |                | Benzo(a)anthracene                     | X                                                       | X         | -          |        | *                   | X      | NA           |  |
|                                     |                            |                | Benzo(b)fluoranthene                   |                                                         | -         | -          | -      | •                   | X      | NA           |  |
|                                     |                            |                | Benzo(k)fluoranthene                   | *                                                       |           | -          | -      | -                   | X      | NA           |  |
|                                     |                            |                | Benzo(a)pyrene                         | X                                                       | X         | •          | -      | ·<br>V              | X      | NA           |  |
|                                     |                            | SB-RB-07-0810  | PCBs<br>Arsenie                        | X<br>X                                                  | X<br>X    | •          | •      | X                   |        | NA<br>NA     |  |
|                                     |                            | 30-RD-07-0010  | Beryllium                              | X                                                       | X         | -          | -      | X                   | -      | NA.          |  |
|                                     |                            |                | 20171111111                            |                                                         |           | -          |        | -                   |        | N.A          |  |
|                                     | AOC 3B/RB-06               | SS-RB-06-03    | Arsenie                                | X                                                       | X         | -          |        | -                   |        | NA           |  |
|                                     |                            |                | Beryllium                              | X                                                       | X         | •          | -      | X                   | -      | NA           |  |
|                                     |                            | 08 8 F         | Total Chromium                         | -                                                       | :.        | -          | X      | *                   | •      | NA           |  |
|                                     |                            | SB-RB-06-0002  | Arsenic                                | X                                                       | X         | •          | -      |                     | -      | NA<br>NA     |  |
|                                     |                            | SB-RB-06-0406  | Beryllium                              | X<br>X                                                  | X<br>X    | -          | -      | X                   | *      | NA<br>NA     |  |
|                                     |                            | 3D*RD*00*0400  | Arsenic<br>Beryllium                   | X                                                       | X         | -          | -      | X                   | -      | NA<br>NA     |  |
|                                     |                            | SB-RB06-0608   | Arsenic                                | X                                                       | X         |            |        |                     | •      | NA<br>NA     |  |
|                                     |                            |                | Beryllium                              | X                                                       | X         | -          |        | X                   | •      | NA.          |  |
|                                     |                            |                | -                                      |                                                         |           |            |        |                     |        |              |  |
| AOC 6/Former Above                  |                            |                |                                        |                                                         |           |            |        |                     |        |              |  |
|                                     | TP-09                      | SB-TP-09-0002  | Benzo(a)anthracene                     | X                                                       | X         |            | •      | -                   | X      | NA           |  |
|                                     |                            |                | Benzo(b)(fluoranthene                  | X                                                       | X         | •          | •      | •                   | X      | NA<br>NA     |  |
|                                     |                            |                | Benzo(k)fluoranthene<br>Benzo(a)pyrene | X                                                       | X         |            |        |                     | X<br>X | NA<br>NA     |  |
|                                     |                            |                | жимарунн                               | .,                                                      | Α         | -          | -      | -                   |        | 2177         |  |

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 7 of 10

|                     |                    |                |                          | Potentially Applicable Criteria |           |                  |        |                     |        |              |  |  |
|---------------------|--------------------|----------------|--------------------------|---------------------------------|-----------|------------------|--------|---------------------|--------|--------------|--|--|
| •                   | e1-                |                | Constituents             | TICH                            | Soi       | I Screening Guid | ance   | to CED              |        | TC           |  |  |
| Area<br>Description | Sample<br>Location | Sample I.D.    | Exceeding Criteria       | TAGM<br>3028                    | Ingestion | Inhalation       | 20 DAF | 40 CFR<br>Subpart S | STARS  | TC<br>Limits |  |  |
| AOC 7/Scrap Steel S | torage Areas       |                |                          |                                 |           |                  |        |                     |        |              |  |  |
| •                   | AOC 7A/TP-01       | SB-TP-01-(XX)2 | Arsenic                  | X                               | X         | -                | -      | •                   | -      | NA           |  |  |
|                     |                    |                | Beryllium                | X                               | X         | -                | -      | X                   | -      | NA           |  |  |
|                     |                    |                | Total Chromium           | •                               | X         | X                | X      | -                   | -      | NA           |  |  |
|                     |                    | CD TD 01 0204  | Nickel                   | -                               |           | •                | X      | -                   |        | NA           |  |  |
|                     |                    | SB-TP-01-0304  | Arsenic<br>Beryllium     | X<br>X                          | X<br>X    | -                |        | X                   |        | NA<br>NA     |  |  |
|                     |                    | SB-TP-01-0809  | Arsenic                  | X                               | X         | -                |        |                     |        | NA<br>NA     |  |  |
|                     |                    | 33 11 11 1110  | Beryllium                | X                               | X         |                  | -      | X                   | -      | NA           |  |  |
|                     |                    |                | Total Chromium           | •                               | +         | -                | X      | -                   | -      | NA           |  |  |
|                     | AOC 7B/TP-05       | SS-TP-05-03    | Arsenic                  | X                               | X         | _                |        | -                   | _      | NA           |  |  |
|                     |                    |                | Beryllium                | X                               | X         |                  | _      | X                   | -      | NA           |  |  |
|                     |                    |                | Total Chromium           | -                               | X         | X                | X      | -                   | -      | NA           |  |  |
|                     |                    |                | Nickel                   | -                               | -         | -                | X      | -                   | -      | NA           |  |  |
|                     |                    |                | Benzo(a)anthracene       | X                               | X         | -                | -      |                     | X      | NA           |  |  |
|                     |                    |                | Benzo(b)fluoranthene     | -                               | -         | -                | -      | -                   | X      | NA           |  |  |
|                     |                    |                | Benzo(k)fluoranthene     | -                               | •         | -                | -      | -                   | X      | NA           |  |  |
|                     |                    |                | Benzo(a)pyrene           | X                               | X         | -                | -      | -                   | X      | NA           |  |  |
|                     |                    | CD TD 05 0003  | Dibenzo(a.h)anthracene   | X                               | X         | -                | -      | -                   | X      | NA           |  |  |
|                     |                    | SB-TP-05-0002  | Arsenic                  | X                               | X         | -                | -      |                     | •      | -            |  |  |
|                     |                    |                | Beryllium                | X                               | X         |                  |        | Х                   |        | -            |  |  |
|                     |                    |                | Total Chromium           |                                 | X         | X                | X      | -                   | -      | -            |  |  |
|                     |                    |                | Nickel<br>Lead           | X                               | X         |                  | X      | -                   |        |              |  |  |
|                     |                    |                | Benzo(a)anthracene       |                                 |           | -                | -      |                     | x      | NA           |  |  |
|                     |                    |                | Benzo(b)fluoranthene     | -                               | -         |                  | -      | -                   | x      | NA           |  |  |
|                     |                    |                | Benzo(k)fluoranthene     | -                               | _         |                  | -      |                     | x      | NA           |  |  |
|                     |                    |                | Benzo(a)pyrene           | x                               | x         |                  | -      | _                   | X      | NA           |  |  |
|                     |                    | SB-TP-05-0203  | Arsenic                  | X                               | X         |                  |        |                     |        | NA           |  |  |
|                     |                    |                | Beryllium                | X                               | X         | •                | -      | X                   | -      | NA           |  |  |
|                     |                    |                | Total Chromium           |                                 | X         | X                | X      | -                   |        | NA           |  |  |
|                     |                    |                | Nickel                   |                                 | -         | -                | X      | -                   |        | NA           |  |  |
|                     |                    |                | Benzo(a)anthracene       |                                 | -         | -                | -      | -                   | X      | NA           |  |  |
|                     |                    |                | Benzo(b)fluoranthene     | -                               | -         | -                | -      | -                   | X      | NA           |  |  |
|                     |                    |                | Benzo(a)pyrene           | X                               | X         | -                | -      | •                   | X      | NA           |  |  |
|                     |                    | SB-TP-05-0809  | Arsenic                  | X                               | X         | -                | -      |                     | •      | •            |  |  |
|                     |                    |                | Beryllium                | X                               | X         | X                | X      | X                   | •      | •            |  |  |
|                     |                    |                | Total Chromium<br>Nickel |                                 | X<br>-    |                  | X      | -                   | -      |              |  |  |
|                     | AOC 7C/TP-10       | SB-TP-10-0002  | Arsenic                  | х                               | x         | _                | _      | _                   |        | NA           |  |  |
|                     |                    |                | Beryllium                | X                               | X         | -                |        | X                   |        | NA           |  |  |
|                     |                    |                | Cadmium                  | -                               |           | _                | X      |                     |        | NA           |  |  |
|                     |                    |                | Total Chromium           |                                 | X         | X                | X      |                     |        | NA           |  |  |
|                     |                    |                | Molybdenum               | X                               | -         | -                | -      |                     | -      | NA           |  |  |
|                     |                    |                | Nickel                   | X                               | X         | X                | x      | X                   | -      | NA           |  |  |
|                     |                    | SB-TP-10-0809  | Arsenic                  | X                               | X         | -                | -      | -                   | -      | •            |  |  |
|                     |                    |                | Beryllium                | X                               | X         | -                | -      | X                   |        | -            |  |  |
|                     |                    |                | Total Chromium           | -                               | X         | X                | X      | •                   | •      | •            |  |  |
|                     |                    |                | Nickel                   | X                               | X         |                  | X      | -                   |        | -            |  |  |
| AOC 8/Former Coal   | Storage Area       |                |                          |                                 |           |                  |        |                     |        |              |  |  |
|                     | RB-03              | SS-RB-03-03    | Arsenic                  | X                               | X         | -                |        | -                   | -      | NA           |  |  |
|                     | -                  |                | Beryllium                | X                               | X         | -                |        | X                   |        | NA           |  |  |
|                     |                    |                | Total Chromium           |                                 | -         | X                | X      | •                   |        | NA           |  |  |
|                     |                    |                | Nickel                   |                                 | -         | -                | X      | -                   | -      | NA           |  |  |
|                     |                    | SB-RB-03-0002  | Arsenic                  | X                               | X         | -                | -      |                     |        | NA           |  |  |
|                     |                    |                | Beryllium                | X                               | X         |                  |        | X                   |        | NA           |  |  |
|                     |                    |                | Total Chromium           | -                               | X         | X                | X      | -                   | *      | NA           |  |  |
|                     |                    |                | Nickel                   |                                 | -         | -                | X      | -                   | -      | NA           |  |  |
|                     |                    |                | Benzo(a)anthracene       |                                 | -         | •                | -      | -                   | X      | NA           |  |  |
|                     |                    |                | Benzo(b)fluoranthene     | X                               | X         | -                | -      | -                   | X      | NA           |  |  |
|                     |                    |                | Benzo(k)fluoranthene     |                                 |           | •                | •      | •                   | X<br>X | NA           |  |  |
|                     |                    |                | Benzota)pyrene           | X                               | X         |                  |        |                     |        | NA           |  |  |

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 8 of 10

|                     |                      |                |                                 |              | c         | Potent<br>Screening Guida | tially Applicabl | e Criteria          | ·     |             |
|---------------------|----------------------|----------------|---------------------------------|--------------|-----------|---------------------------|------------------|---------------------|-------|-------------|
| Area<br>Description | Sample<br>Location   | Sample I.D.    | Constituents Exceeding Criteria | TAGM<br>3028 | Ingestion | Inhalation                | 20 DAF           | 40 CFR<br>Subpart S | STARS | TC<br>Limit |
| AOC 11/Former Coal  | Gasification Plant   |                |                                 |              |           |                           |                  |                     |       |             |
| OC 11/1 OF MICE COM | RFI-06               | SS-RFI-06-03   | Arsenic                         | X            | X         |                           | •                | -                   |       | NA          |
|                     |                      |                | Beryllium                       | X            | X         |                           |                  | X                   | -     | NA          |
|                     |                      |                | Total Chromium                  | -            | X         | X                         | X                |                     | -     | ' NA        |
|                     |                      |                | Nickel                          | -            | -         | -                         | X                | -                   | •     | NA          |
|                     |                      |                | Benzo(a)anthracene              | X            | X         | -                         | -                | -                   | X     | NA          |
|                     |                      |                | Benzo(b)fluoranthene            | X            | X         | -                         | -                |                     | X     | NA          |
|                     |                      |                | Benzo(k)fluoranthene            | -            | -         | •                         |                  | -                   | X     | NA          |
|                     |                      |                | Benzo(a)pyrene                  | X            | X         | -                         | -                | -                   | X     | NA          |
|                     |                      |                | Dibenzo(a,h)anthracene          | X            | X         | -                         | -                | -                   | X     | NA          |
|                     |                      | SB-RFI-06-0204 | Arsenic                         | X            | X         | •                         | -                | -                   |       | NA          |
|                     |                      |                | Beryllium                       | X            | X         | •                         | -                | X                   | -     | NA          |
|                     |                      |                | Total Chromium                  | *            | X         | X                         | X                | •                   | •     | NA          |
|                     |                      |                | Nickel                          | -            | -         | -                         | X                | -                   | -     | NA          |
|                     |                      |                | Phenanthrene                    | X            | -         | •                         | -                | •                   | -     | NA          |
|                     |                      | SB-RFI-06-0406 | Arsenic                         | X            | X         |                           | •                |                     | -     | NA          |
|                     |                      |                | Beryllium                       | X            | X         | •                         | •                | X                   | -     | NA          |
| AMU A/Former LA     | P West Pickle Facili |                |                                 |              |           |                           |                  |                     |       |             |
|                     | RB-04                | SS-RB-04-03    | Arsenic                         | X            | X         |                           | •                | •                   | -     | NA          |
|                     |                      |                | Beryllium                       | X            | X         | -                         | -                | X                   | -     | NA          |
|                     |                      |                | Total Chromium                  | -            | X         | X                         | X                | -                   | -     | NA          |
|                     |                      |                | Nickel                          | -            | •         | -                         | X                | -                   | •     | NA          |
|                     |                      |                | Lead                            | X            | X         | -                         | -                | -                   | -     | NA          |
|                     |                      | CD DD 01 0000  | Antimony                        | -            | -         | -                         | X                | -                   | -     | NA          |
|                     |                      | SB-RB-04-0002  | Arsenie                         | X            | X         | -                         | -                | -                   | -     | -           |
|                     |                      |                | Beryllium                       | X            | X         |                           |                  | Х                   | -     | -           |
|                     |                      |                | Total Chromium                  |              | X         | Х                         | X                | -                   | -     | -           |
|                     |                      |                | Nickel<br>Land                  | X            | X         |                           | X                | •                   | -     | X           |
|                     |                      |                | Lead                            | X            | X         | •                         | -<br>V           | •                   | -     |             |
|                     |                      | SB-RB-04-0406  | Antimony                        | X            | X         | •                         | X                | •                   | -     | NA          |
|                     |                      | 3B-KB-04-0400  | Arsenic<br>Beryllium            | X            |           | -                         | -                | X                   | -     | NA<br>NA    |
|                     |                      |                | Total Chromium                  |              | X         | X                         | X                |                     | -     | NA<br>NA    |
|                     |                      | SB-RB-04-0709  | Arsenic                         | X            | X         |                           |                  | -                   | •     | NA<br>NA    |
|                     |                      | 30-10-04-0707  | Beryllium                       | X            | X         |                           | -                | X                   | -     | NA<br>NA    |
|                     |                      |                | Nickel                          |              |           |                           | X                |                     |       | NA<br>NA    |
|                     | RB-05                | SS-RB-05-03    | Arsenic                         | X            | X         |                           |                  | -                   | -     | NA<br>NA    |
|                     |                      | 00 112 02 02   | Beryllium                       | X            | x         |                           |                  | X                   |       | NA          |
|                     |                      |                | Total Chromium                  |              | x         | X                         | X                |                     | _     | NA          |
|                     |                      |                | Nickel                          |              |           |                           | x                |                     | -     | NA          |
|                     |                      | SB-RB-05-(XX)2 | Arsenic                         | X            | X         | -                         | -                | -                   | _     | NA          |
|                     |                      |                | Beryllium                       | X            | X         |                           |                  | X                   | -     | NA          |
|                     |                      |                | Total Chromium                  |              | -         | X                         | х                |                     | -     | NA          |
|                     |                      | SB-RB-05-0204  | Arsenic                         | X            | X         | -                         | -                |                     | -     | NA          |
|                     |                      |                | Beryllium                       | X            | X         |                           | -                | X                   |       | NA          |
|                     |                      |                | Total Chromium                  |              | X         | X                         | X                |                     | -     | NA          |
|                     |                      |                | Hexavalent Chromium             | -            |           |                           | X                | -                   | -     | NA          |
|                     |                      | SB-RB-05-0810  | Arsenic                         | X            | X         |                           |                  | -                   |       | NA          |
|                     |                      |                | Beryllium                       | X            | X         | -                         | -                | X                   | -     | NA          |
|                     |                      |                | Total Chromium                  | -            | -         | -                         | X                | -                   | -     | NA          |
|                     | LWB-01               | SB-LWB-01-0204 | Arsenic                         | X            | X         | -                         | -                | •                   |       | NA          |
|                     |                      |                | Cadmium                         |              | -         | -                         | X                | -                   | -     | NA          |
|                     |                      |                | Total Chromium                  | -            | -         | -                         | X                | •                   | -     | NA          |
|                     |                      | SB-LWB-01-0608 | Arsenic                         | X            | X         | -                         | -                | -                   | -     | NA          |
|                     |                      |                | Total Chromium                  |              | -         |                           | X                | -                   |       | N.A         |
|                     | LWB-02               | SB-LWB-02-0002 | Arsenic                         | X            | X         | -                         | -                | -                   | -     | N,a         |
|                     |                      |                | Total Chromium                  |              | -         | -                         | X                | -                   |       | NA          |
|                     |                      | SB-LWB-02-0608 | Arsenic                         | X            | X         | -                         | ~                | •                   |       | N.A         |
|                     |                      |                | Total Chromium                  |              | -         | X                         | X                | -                   | -     | NA          |
|                     |                      |                | Hexavalent Chromium             | X            | -         |                           | -                | -                   | -     | NA          |
|                     | LWB-03               | SB-LWB-03-0002 | Arsenie                         | X            | X         |                           |                  | -                   |       | N.A         |
|                     |                      | SB-LWB-03-0608 | Arsenic                         | X            | X         |                           |                  |                     | -     | -           |
|                     |                      |                | Total Chromium                  |              | X         | X                         | X                |                     |       | X           |
|                     |                      |                | Hexavalent Chromium             | X            | X         | X                         | X                | X                   |       | NA          |
|                     | LWB-04               | SB-LWB-04-0002 | Arsenic                         | X            | X         | -                         | -                | •                   |       | N.A         |
|                     | 2,,,,,,,             |                | Cadmium                         |              |           | -                         | X                | -                   |       | NA<br>NA    |
|                     |                      |                |                                 |              |           | •                         |                  | -                   | -     |             |
|                     |                      | SB-LWB-04-0608 | Arsenic                         | X            | X         | -                         |                  |                     |       | NA          |

### Soil Samples in Exceedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 9 of 10

|                     |                       |                 | _                               |              | Sai       | Poten<br>I Screening Guid | tially Applicabl | le Criteria         | · · · · · · · · · · · · · · · · · · · |             |
|---------------------|-----------------------|-----------------|---------------------------------|--------------|-----------|---------------------------|------------------|---------------------|---------------------------------------|-------------|
| Area<br>Description | Sample<br>Location    | Sample I.D.     | Constituents Exceeding Criteria | TAGM<br>3028 | Ingestion | Inhalation                | 20 DAF           | 40 CFR<br>Subpart S | STARS                                 | TC<br>Limit |
| CAMU B/Former BR    | R Pickle Facility     |                 |                                 |              |           |                           |                  |                     |                                       |             |
|                     | RFI-13                | SS-RFI-13-03    | Arsenic                         | X            | X         | -                         |                  | -                   |                                       | NA          |
|                     |                       |                 | Beryllium                       | X            | X         | -                         | -                | X                   | -                                     | NA          |
|                     |                       |                 | Total Chromium                  | -            | -         | -                         | X                | -                   | *                                     | NA          |
|                     |                       | SB-RFI-13-0406  | Arsenic                         | X            | X         | -                         | -                | -                   | •                                     | NA          |
|                     |                       |                 | Beryllium                       | X            | X         | -                         | -                | X                   | -                                     | NA          |
|                     |                       | SB-RFI-13-1618  | Arsenic                         | X            | X         | -                         | -                | •                   |                                       | NA          |
|                     | 555 (1)               | 25 555 H        | Beryllium                       | X            | X         | -                         | •                | X                   | -                                     | NA          |
|                     | BRB-01                | SB-BRB-01-0002  | Arsenic                         | X            | X         | •                         | -                | -                   | •                                     | NA          |
|                     |                       |                 | Cadmium<br>Total Chromium       |              |           | -                         | X<br>X           | X                   | *                                     | NA<br>NA    |
|                     |                       | SB-BRB-01-0204  | Arsenie                         | X            | X         |                           | -                | -                   |                                       | NA<br>NA    |
|                     |                       | 35 510 til 0204 | Total Chromium                  |              | -         | _                         | X                |                     | -                                     | NA<br>NA    |
|                     |                       | SB-BRB-01-1517  | Arsenic                         | X            | X         | -                         |                  |                     | _                                     | NA          |
|                     | BRB-03                | SB-BRB-03-0103  | Arsenic                         | X            | X         | -                         | -                |                     |                                       | NA          |
|                     |                       |                 | Total Chromium                  | -            | -         | -                         | X                | -                   | -                                     | NA          |
|                     |                       |                 |                                 |              |           |                           |                  |                     |                                       |             |
| CAMU C/BFS Pickle   |                       | CC PT (15       |                                 |              |           |                           |                  |                     |                                       |             |
|                     | RFI-07                | SS-RFI-07-03    | Arsenic                         | X            | X         | -                         | -                | -<br>V              | -                                     | NA          |
|                     |                       |                 | Beryllium                       | X            | X         | -<br>V                    | · ·              | X                   | •                                     | NA          |
|                     |                       |                 | Total Chromium<br>Nickel        |              | X         | X                         | X<br>X           | -                   | *                                     | NA<br>NA    |
|                     |                       | SB-RFI-07-0204  | Arsenic                         | X            | X         | -                         |                  | -                   | •                                     | NA<br>NA    |
|                     |                       | 30-101-07-0204  | Beryllium                       | X            | X         | -                         | -                | x                   |                                       | NA<br>NA    |
|                     |                       |                 | Total Chromium                  | -            | X         | X                         | X                | -                   | _                                     | NA<br>NA    |
|                     |                       |                 | Nickel                          | -            | -         | -                         | x                | -                   | -                                     | NA          |
|                     |                       | SB-RFI-07-0608  | Arsenic                         | X            | X         |                           |                  |                     | -                                     | NA          |
|                     |                       |                 | Beryllium                       | x            | X         | -                         | -                | X                   | -                                     | NA          |
|                     | RFI-17                | SB-RFI-17-0204  | Arsenic                         | X            | X         |                           | -                | -                   |                                       | NA          |
|                     |                       |                 | Beryllium                       | X            | X         | -                         | -                | X                   |                                       | NA          |
|                     |                       | SB-RFI-17-0608  | Arsenic                         | X            | X         | •                         | -                | •                   | -                                     | NA          |
|                     |                       |                 | Beryllium                       | X            | X         | -                         | -                | X                   | -                                     | NA          |
| CAMU D/Former LA    | D Fast Dialda Fasilia |                 |                                 |              |           |                           |                  |                     |                                       |             |
| CAMU D/FORMER LA    | RFI-05                | SS-RFI-05-03    | Arsenic                         | X            | X         |                           |                  | -                   |                                       | NA          |
|                     | KITOJ                 | 33-Ki 1403-03   | Beryllium                       | X            | X         | -                         |                  | X                   | •                                     | NA<br>NA    |
|                     |                       |                 | Total Chromium                  | -            | X         | X                         | X                | -                   | -                                     | NA<br>NA    |
|                     |                       |                 | Nickel                          | -            |           |                           | x                | -                   | -                                     | NA          |
|                     |                       | SB-RFI-05-0204  | Arsenic                         | X            | X         | -                         | -                |                     | -                                     | NA          |
|                     |                       |                 | Beryllium                       | X            | X         | •                         |                  | X                   | -                                     | NA          |
|                     |                       | SB-RFI-05-1214  | Arsenic                         | X            | X         | -                         | -                |                     | -                                     | NA          |
|                     |                       |                 | Beryllium                       | X            | X         | -                         | -                | X                   | -                                     | NA          |
|                     |                       |                 | Carbon Disulfide                | X            | -         | -                         |                  | -                   | -                                     | NA          |
|                     | LEB-01                | SB-LEB-01-0204  | Arsenic                         | X            | X         | -                         | -                | •                   | -                                     | NA          |
|                     |                       |                 | Total Chromium                  | •            | •         | -                         | X                | -                   | -                                     | NA          |
|                     |                       | SD LED ALASIA   | Trichloroethene                 |              | -         | •                         | X                | •                   | -                                     | NA          |
|                     | 1 50 03               | SB-LEB-01-0810  | Arsenic                         | X            | X         | -                         | -                | •                   | -                                     | NA          |
|                     | LEB-02                | SB-LEB-02-0608  | Arsenie                         | X            | X         | •                         |                  | -                   | -                                     | NA          |
|                     |                       | SB-LEB-02-0810  | Trichloroethene<br>Arsenie      | X            | X         | -                         | X                | -                   |                                       | NA<br>NA    |
|                     | LEB-03                | SB-LEB-03-0XXX  | Arsenie                         | X            | X         | -                         | -                |                     |                                       | NA<br>NA    |
|                     | LLD-VO                | 3D-LLD-03-00/2  | Total Chromium                  |              | X         | x                         | X                |                     |                                       | NA<br>NA    |
|                     |                       |                 | Trichloroethene                 |              |           |                           | X                |                     | -                                     | NA<br>NA    |
|                     |                       | SB-LEB-03-0709  | Arsenic                         | X            | X         | -                         |                  | -                   | -                                     | NA          |
|                     |                       |                 | cis-1.2-Dichloroethene          | -            | -         | -                         | X                |                     | -                                     | NA          |
|                     |                       |                 | Trichloroethene                 |              |           |                           | X                |                     |                                       | NA          |
|                     |                       | SB-LEB-03-1113  | Arsenic                         | X            | X         | -                         |                  | -                   |                                       | NA          |
|                     |                       |                 | Cadmium                         | +            | -         | -                         | X                | -                   |                                       | NA          |
|                     |                       |                 | cis-1.2-Dichloroethene          | -            | -         |                           | X                | •                   | -                                     | NA          |
|                     |                       |                 | Trichloroethene                 | -            | -         | -                         | X                | -                   | -                                     | NA          |
|                     |                       |                 |                                 |              |           |                           |                  |                     |                                       |             |
| General Site        | 60.00                 | ee ce m m       | <b>.</b>                        |              | •         |                           |                  |                     |                                       |             |
|                     | GS-01                 | SS-GS-01-03     | Arsenic                         | X            | X         | -                         | •                |                     | -                                     | NA<br>NA    |
|                     |                       |                 | Beryllium<br>Taral Chromina     | X            | X         |                           | ·                | X                   | •                                     | NA          |
|                     |                       |                 | Total Chromium                  | •            | X         | Х                         | X                | -                   | -                                     | NA          |
|                     | GS-02                 | \$\$-G\$-02-03  | Nickel                          | X            | X         |                           | X                | -                   | -                                     | NA<br>NA    |
|                     | U3-112                | 22-03-11-112    | Arsenic<br>Beryllium            | X<br>X       | X<br>X    | -                         |                  | X                   |                                       | NA<br>NA    |
|                     |                       |                 | Cadmium                         | .\           |           | -                         | X                |                     |                                       | NA<br>NA    |
|                     |                       |                 | Total Chromium                  |              | X         | X                         | X                | •                   | -                                     | NA<br>NA    |
|                     |                       |                 |                                 |              |           |                           |                  |                     |                                       |             |

#### Soil Samples in Exceedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation

Dunkirk, New York Facility

Page 10 of 10

|                         |                    |                |                      |      |           |                | tially Applicab | le Criteria |       |        |
|-------------------------|--------------------|----------------|----------------------|------|-----------|----------------|-----------------|-------------|-------|--------|
|                         | Camala             |                | Constituents         | TAGM | Soil      | Screening Guid | ance            | 40 CFR      |       | TC     |
| Area<br>Description     | Sample<br>Location | Sample I.D.    | Exceeding Criteria   | 3028 | Ingestion | Inhalation     | 20 DAF          | Subpart S   | STARS | Limits |
| eneral Site (continued) |                    |                |                      |      |           |                |                 |             |       |        |
| eneral site (continued) | GS-03              | SS-GS-03-03    | Beryllium            | X    | X         | -              | -               | X           |       |        |
|                         | 355                |                | Cadmium              |      | -         |                | X               |             |       | _      |
|                         |                    |                | Total Chromium       |      | X         | X              | X               |             |       | ٠.     |
|                         |                    |                | Molybdenum           | X    |           | -              | -               | _           |       |        |
|                         |                    |                | Nickel               |      | X         | -              | X               |             | -     | _      |
|                         |                    |                | Antimony             |      |           | -              | X               | -           |       | NA     |
|                         | GS-04              | SS-GS-04-03    | Arsenic              | X    | X         |                |                 |             | _     | NA     |
|                         |                    |                | Beryllium            | X    | X         | -              | -               | X           | -     | NA     |
|                         |                    |                | Total Chromium       | -    | X         | X              | X               |             |       | NA     |
|                         |                    |                | Nickel               | _    |           | -              | X               |             |       | NA     |
|                         | GS-05              | SS-GS-05-03    | Arsenic              | X    | X         | -              | -               | -           |       | NA     |
|                         |                    |                | Beryllium            | X    | X         |                | -               | X           |       | NA     |
|                         |                    |                | Total Chromium       | -    |           | X              | X               | -           | -     | NA     |
|                         |                    |                | Nickel               | -    | -         |                | X               | -           | -     | NA     |
|                         | RFI-01             | SS-RFI-01-03   | Arsenic              | X    | X         |                | -               | -           | _     | NA     |
|                         |                    |                | Beryllium            | X    | X         |                | -               | X           | -     | NA     |
|                         |                    |                | Total Chromium       | -    |           | _              | X               |             |       | NA     |
|                         |                    | SB-RFI-01-0406 | Arsenic              | x    | X         |                | -               | -           |       | NA     |
|                         |                    |                | Beryllium            | Х    | X         | -              | _               | X           | -     | NA     |
|                         |                    | SB-RFI-01-1012 | Arsenic              | X    | X         | -              | -               | -           | -     | NA     |
|                         |                    |                | Beryllium            | x    | X         |                | -               | X           |       | NA     |
|                         | RFI-08             | SS-RFI-08-03   | Beryllium            | X    | X         |                | -               | X           |       |        |
|                         |                    |                | Cadmium              | -    |           | -              | X               | -           |       | -      |
|                         |                    |                | Total Chromium       | -    | X         | X              | X               | _           | -     |        |
|                         |                    |                | Molybdenum           | X    | _         |                | _               | -           | -     |        |
|                         |                    |                | Nickel               | X    | X         | x              | X               | X           | -     | _      |
|                         |                    |                | Lead                 | X    | X         | -              | -               |             |       | X      |
|                         |                    |                | Antimony             | X    | X         | -              | X               | X           |       | NA     |
|                         |                    |                | Benzo(a)anthracene   | X    | X         | -              | X               |             | X     | NA     |
|                         |                    |                | Benzo(b)fluoranthene | X    | X         |                | -               |             | X     | NA     |
|                         |                    |                | Benzo(k)fluoranthene |      |           |                | -               |             | X     | NA     |
|                         |                    |                | Benzo(a)pyrene       | X    | X         |                | -               | -           | X     | NA     |
|                         |                    |                | Indeno(123-cd)pyrene | X    | X         |                | -               |             |       | NA     |
|                         |                    | SB-RFI-08-0507 | Arsenie              | X    | X         |                | -               |             | -     | NA     |
|                         |                    |                | Beryllium            | X    | X         | •              | -               | X           | -     | NA     |
|                         | RFI-12             | SS-RFI-12-03   | Arsenic              | X    | X         |                | -               |             | -     | NA     |
|                         |                    |                | Beryllium            | x    | X         | _              | -               | X           | -     | NA     |
|                         |                    |                | Total Chromium       | -    | -         |                | X               | -           | -     | NA     |
|                         |                    | SB-RFI-12-0204 | Arsenic              | X    | X         |                | -               |             | -     | NA     |
|                         |                    |                | Beryllium            | X    | X         | -              | -               | X           | -     | NA     |
|                         |                    | SB-RFI-12-1416 | Arsenic              | X    | X         |                | -               | -           | -     | NA     |
|                         |                    |                | Beryllium            | X    | X         | -              | -               | X           | -     | NA     |
|                         | RFI-16             | SS-RFI-16-03   | Arsenic              | X    | X         | -              | -               |             | -     | NA     |
|                         |                    |                | Beryllium            | X    | X         |                | -               | X           | -     | NA     |
|                         |                    |                | Total Chromium       | -    | X         | X              | X               | -           | -     | NA     |
|                         |                    |                | Nickel               | X    | X         |                | X               | X           |       | NA     |
|                         |                    | SB-RFI-16-0406 | Arsenie              | X    | X         |                | -               | -           |       | NA     |
|                         |                    |                | Beryllium            | X    | X         | -              |                 | X           |       | NA     |
|                         |                    | SB-RFI-16-1415 | Arsenic              | X    | x         |                | -               | -           |       | NA     |
|                         |                    |                | Beryllium            | X    | x         | _              | _               | X           |       | NA     |

a/ TAGM 3028 source: New York State Department of Environmental Conservation, November 30, 1992 "Contained-In Criteria for Environmental Media." Technical and Administrative Guidance Memorandum (TAGM) 3028 (revised 1997).

Soil Screening Guidance source: U.S. Environmental Protection Agency, May 1996, "Soil Screening Guidance:" Technical Background Document," EPA/54/R-95/128. Subpart S source: "Corrective Action for Solid Waste Management Units at Hazardous Waste Management Facilities: Proposed Rule." 55 FR 30798, July 27, 1990. STARS source: New York State Department of Environmental Conservation, August 1992, "Petroleum-Contaminated Soil Guidance Policy," Spill Technology and Remediation Series (STARS) Memo #1.

TC Limits source: Title 40 CFR 261.24 Table I. Maximum Concentration of Contaminants for the Toxicity Characteristic.

b/  $\,$  "-" indicates soil sample not in exceedance of potentially applicable criteria.

NA = not analyzed/not applicable.

c/ The duplicate for this sample was selected for TCLP extraction and analysis of the extract. There were no exceedances of the TC limits.

#### Potentially Applicable Groundwater Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

| Parameters                           | NYSDEC<br>TAGM 3028<br>Groundwater<br>Action Levels (a) | New York State<br>Water Quality<br>Standards for Class<br>GA Waters (b) | U.S. EPA<br>Maximum<br>Contaminant<br>Level (c) | 40 CFR 264<br>Subpart S (d) |
|--------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|
| TAL Inorganics (mg/l) (e, f)         |                                                         |                                                                         |                                                 |                             |
| Silver                               | 0.05                                                    | 0.05                                                                    | 0.1 (g)                                         | 0.05                        |
| Aluminum                             | - (i)                                                   | -                                                                       | 0.05 - 0.2 (g)                                  | -                           |
| Arsenic                              | 0.025                                                   | 0.025                                                                   | 0.05 (j)                                        | 0.05 (h)                    |
| Barium                               | 1                                                       | 1                                                                       | 2                                               | 1 (h)                       |
| Beryllium                            | 0.004                                                   | 0.003                                                                   | 0.004                                           | 0.000008                    |
| Calcium                              | -                                                       | -                                                                       | •                                               | -                           |
| Cadmium                              | 0.005                                                   | 0.005                                                                   | 0.005                                           | 0.01 (h)                    |
| Cobalt                               | -                                                       | -                                                                       | -                                               | -                           |
| Chromium (Total)                     | 0.05                                                    | 0.05                                                                    | 0.1                                             | _                           |
| Chromium (Hexavalent)                | 0.05                                                    | 0.05                                                                    | -                                               | 0.05 (h)                    |
| Copper                               | <0.20 (k)                                               | 0.2                                                                     | 1.0 (g)                                         | -                           |
| Iron                                 | 0.3 (m)                                                 | 0.3 (m)                                                                 | 0.3 (g)                                         | -                           |
| Mercury                              | 0.002                                                   | 0.0007                                                                  | 0.002                                           | 0.002 (h)                   |
| Potassium                            | -                                                       | -                                                                       | •                                               | -                           |
| Magnesium                            | 35                                                      | -                                                                       |                                                 | -                           |
| Manganese                            | 0.3 (m)                                                 | 0.3 (m)                                                                 | 0.05 (g)                                        | -                           |
| Molybdenum                           | 0.18                                                    | -                                                                       | -                                               | -                           |
| Sodium                               | <20                                                     | 20                                                                      | •                                               | -                           |
| Nickel                               | 0.1                                                     | 0.1                                                                     | 1000                                            | 0.7                         |
| Lead                                 | 0.015                                                   | 0.025                                                                   | - (1)                                           | 0.05 (h)                    |
| Antimony                             | 0.003                                                   | 0.003                                                                   | 0.006                                           | 0.01                        |
| Selenium                             | 0.01                                                    | 0.01                                                                    | 0.05                                            | -                           |
| Thallium                             | 0.002                                                   | -                                                                       | 0.002                                           | -                           |
| Vanadium                             | 0.25                                                    | •                                                                       | -                                               | -                           |
| Zinc                                 | <0.3                                                    | -                                                                       | 5 (g)                                           | •                           |
| Cyanide (Total)                      | <0.1                                                    | 0.02                                                                    | 0.2                                             | 0.7                         |
| Cyanide (Free)                       | -                                                       | •                                                                       | -                                               | -                           |
| Volatile Organic Compounds (µg/l)    |                                                         |                                                                         |                                                 |                             |
| 2-Butanone (MEK)                     | 50                                                      | 50 -                                                                    |                                                 | 200                         |
| Carbon Disulfide                     | 5                                                       | -                                                                       | •                                               | 4000                        |
| Chloroform                           | 7                                                       | 7                                                                       | 100                                             | 6                           |
| cis-1.2-Dichloroethene               | 5                                                       | 5                                                                       | 70                                              | -                           |
| 1.1-Dichloroethene                   | 5                                                       | 5                                                                       | 7                                               | 7 (h)                       |
| trans-1.2-Dichloroethene             | 5                                                       | 5                                                                       | 100                                             | -                           |
| Trichloroethene                      | 5                                                       | 5                                                                       | 5                                               | 5 (h)                       |
| Vinyl Chloride                       | 2                                                       | 2                                                                       | 2                                               | •                           |
| Semi-Volatile Organic Compounds (µg/ |                                                         |                                                                         |                                                 |                             |
| Naphthalene                          | 10                                                      | •                                                                       | •                                               | •                           |
| Miscellaneous Parameters             |                                                         |                                                                         |                                                 |                             |
| pH (s.u.)                            | •                                                       | 6.5 < 8.5                                                               | 6.5 < 8.5 (g)                                   | -                           |
| Alkalinity                           | -                                                       | -                                                                       | -                                               | -                           |
| Total Phenols (ug/l)                 | 1                                                       | 1                                                                       | •                                               | 20.000                      |
| Chloride (mg/l)                      | 250                                                     | 250                                                                     | 250 (g)                                         | -                           |
| Fluoride (mg/l)                      | <1.5                                                    | 2                                                                       | 2 (g)                                           | -                           |
| Nitrate (mg/l)                       | 10                                                      | 10                                                                      | 10                                              | -                           |
| Sulfate (mg/l)                       | 250                                                     | 250                                                                     | 250 (g)                                         | -                           |
| Ammonia (mad)                        | ر ر                                                     | 2 ( 31)                                                                 |                                                 |                             |

a/ New York State Department of Environmental Conservation. November 30, 1992, "Contained-In Criteria for Environmental Media," Technical Administrative Guidance Memorandum (TAGM) 3028 (revised 1997).

Ammonia (mg/l) Total Organic Carbon

b/ New York State, June 1998. "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations". Division of Water Technical and Operational Guidance Series (NYS Water Quality Standards for Class GA Waters).

c/ U.S. EPA Final Maximum Contaminant Levels (MCLs) for drinking water: the values are current.

d/ "Corrective Action for Solid Waste Management Units at Hazardous Waste Management Facilities: Proposed Rule" 55 FR 30798; July 27, 1990.

e/ TAL = Target Analyte List; this list also includes hexavalent chromium, molybdenum, and free cyanide.

f/ mg/l = milligrams per liter.

 $<sup>\</sup>mu g/l = micrograms per liter.$ 

s.u. = standard units.

g/ This is a National Secondary Drinking Water Standard (unenforceable federal guidelines).

h/ Action level based directly on final MCL.

i/ "-" indicates a groundwater standard has not been established.

j/ Interim MCL standard for drinking water.

k/ "<" indicates the concentrations is to be below the level noted.

m/ The sum total of iron and manganese concentrations shall not be greater than 0.5 mg/l.

Table 6-4

Groundwater Samples in Excedance of Potentially Applicable Criteria
Phase I RFI
AL Tech Specialty Steel Corporation
Dunkirk, New York Facility

|                    |                    | Sample<br>Event | Constituents<br>Exceeding<br>Criteria | Total (T) or                   | Potentially Applicable Criteria (a) |          |        |                     |
|--------------------|--------------------|-----------------|---------------------------------------|--------------------------------|-------------------------------------|----------|--------|---------------------|
| Area Description   | Sample<br>Location |                 |                                       | Dissolved (D)  Metals  Aliquot | TAGM<br>3028                        | Class GA | MCL    | 40 CFR<br>Subpart S |
| SWMU 16/ Willowb   | rook Pond          |                 |                                       |                                |                                     |          |        |                     |
| 311110 10/11110401 | WP-1               | 03/97           | - (b)                                 |                                |                                     | _        | _      | _                   |
|                    | WP-2               | 03/97           | - (0)                                 | -                              | •                                   | -        | -      | -                   |
|                    | WP-3               | 03/97           | -                                     |                                | •                                   |          | -      | -                   |
|                    | WP-4               | 11/96           |                                       | T                              |                                     | -        | X      | -                   |
|                    | W F+               | 11/90           | Aluminum                              | T                              | -                                   | -        | -      | X                   |
|                    |                    |                 | Beryllium                             |                                |                                     |          | X      |                     |
|                    |                    |                 | Cadmium                               | T                              | X                                   | X        |        | -                   |
|                    |                    |                 | Iron                                  | T                              | X                                   | X        | X      |                     |
|                    |                    |                 | Magnesium                             | T                              | X                                   | -        | -<br>V | -                   |
|                    |                    |                 | Manganese                             | T                              |                                     | -        | X      | -                   |
|                    |                    |                 | Molybdenum                            | T                              | X                                   | -        | -      | -                   |
|                    |                    |                 | Sodium                                | T                              | X                                   | X        |        | -                   |
|                    |                    |                 | cis-1.2-Dichloroethene                | -                              | X                                   | X        | X      | -                   |
|                    |                    |                 | Trichloroethene                       | -                              | X                                   | X        | X      | X                   |
|                    |                    |                 | Ammonia                               | -                              | X                                   | X        | -      | -                   |
|                    |                    | 03/97           | Magnesium                             | T                              | X                                   | -        | -      | -                   |
|                    |                    |                 | Manganese                             | T                              | -                                   | -        | X      | -                   |
|                    |                    |                 | Molybdenum                            | T                              | X                                   | -        | -      | -                   |
|                    |                    |                 | Sodium                                | T                              | X                                   | X        | -      | -                   |
|                    |                    |                 | cis-1.2-Dichloroethene                | -                              | X                                   | X        | X      | -                   |
|                    |                    |                 | Trichloroethene                       | -                              | X                                   | X        | X      | X                   |
|                    | WP-5               | 11/96           | Aluminum                              | T                              | -                                   | -        | X      | -                   |
|                    |                    |                 | Beryllium                             | T                              | -                                   | -        | -      | X                   |
|                    |                    |                 | Iron                                  | T                              | X                                   | X        | X      | -                   |
|                    |                    |                 | Manganese                             | T                              | X                                   | X        | X      | -                   |
|                    |                    | 03/97           | Cadmium                               | D                              | X                                   | X        | X      | -                   |
|                    |                    |                 | Iron                                  | D                              | X                                   | X        | X      | -                   |
|                    |                    |                 | Manganese                             | D                              | X                                   | X        | X      | -                   |
|                    |                    |                 | Sodium                                | D                              | X                                   | X        | -      | -                   |
|                    | RFI-14             | 11/96           | Aluminum                              | D                              | -                                   | -        | X      |                     |
|                    |                    |                 | Beryllium                             | D                              | _                                   | -        | -      | X                   |
|                    |                    |                 | Cadmium                               | D                              | X                                   | X        | X      | •                   |
|                    |                    |                 | Iron                                  | D                              | X                                   | X        | X      | _                   |
|                    |                    |                 | Manganese                             | D                              |                                     | -        | X      | -                   |
|                    |                    |                 | Sodium                                | D                              | X                                   | X        | -      |                     |
|                    |                    |                 | Antimony                              | D                              | X                                   | X        | _      | _                   |
|                    |                    | 03/97           | Manganese                             | D                              | -                                   | -        | X      |                     |
|                    |                    | 03/9/           | Sodium                                | D                              | X                                   | x        |        | -                   |
|                    |                    |                 |                                       | D                              | X                                   |          | X      | -                   |
|                    | RFI-15             | 11/06           | Thallium                              | D                              |                                     | -        | X      | -                   |
|                    | KF1-15             | 11/96           | Aluminum                              |                                | v                                   |          |        |                     |
|                    |                    |                 | Beryllium                             | D                              | X                                   | X        | X      | X                   |
|                    |                    |                 | Cadmium                               | D                              | X                                   | X        | X      | X                   |
|                    |                    |                 | Magnesium                             | D                              | X                                   | +        |        | -                   |
|                    |                    |                 | Manganese                             | D                              | -                                   | -        | X      | -                   |
|                    |                    |                 | Sodium                                | D                              | X                                   | X        | -      | -                   |
|                    |                    | 03/97           | Aluminum                              | T                              | -                                   | -        | X      | -                   |
|                    |                    |                 | Iron                                  | T                              | X                                   | X        | X      | -                   |
|                    |                    |                 | Magnesium                             | T                              | X                                   | -        | -      | -                   |
|                    |                    |                 | Manganese                             | T                              | -                                   | -        | X      | -                   |
|                    |                    |                 | cis-1.2-Dichloroethene                | -                              | X                                   | ~        | X      | -                   |
|                    |                    |                 | Trichloroethene                       | -                              | X                                   | -        | X      | X                   |

# Groundwater Samples in Exeedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 2 of 9

|                      |                    |                 |                                 | Total (T) or                   | Potentially Applicable Criteria (a) |          |     |                     |
|----------------------|--------------------|-----------------|---------------------------------|--------------------------------|-------------------------------------|----------|-----|---------------------|
| Area Description     | Sample<br>Location | Sample<br>Event | Constituents Exceeding Criteria | Dissolved (D)  Metals  Aliquot | TAGM<br>3028                        | Class GA | MCL | 40 CFR<br>Subpart S |
| SWMU 17/Closed Su    | rface Imnoundm     | nent            |                                 |                                |                                     |          |     |                     |
| 3 11110 177010300 00 | WT-1A              | 11/96           | Aluminum                        | Đ                              | -                                   | -        | X   | -                   |
|                      |                    |                 | Beryllium                       | D                              | X                                   | X        | X   | X                   |
|                      |                    |                 | Magnesium                       | D                              | X                                   | -        | _   | -                   |
|                      |                    |                 | Manganese                       | D                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Molybdenum                      | D                              | X                                   | -        | -   | -                   |
|                      |                    |                 | Sodium                          | D                              | X                                   | X        | -   | _                   |
|                      |                    | 03/97           | Aluminum                        | T                              | -                                   | -        | X   | -                   |
|                      |                    |                 | Cadmium                         | Т                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Iron                            | T                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Manganese                       | Т                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Molybdenum                      | T                              | X                                   | -        | _   | -                   |
|                      |                    |                 | Sodium                          | T                              | X                                   | X        | -   | -                   |
|                      |                    |                 | Antimony                        | T                              | X                                   | -        | _   | -                   |
|                      | WT-1B              | 11/96           | Aluminum                        | D                              | -                                   | -        | X   | -                   |
|                      |                    |                 | Beryllium                       | D                              | X                                   | X        | X   | X                   |
|                      |                    |                 | Iron                            | D                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Magnesium                       | D                              | X                                   | -        | -   | -                   |
|                      |                    |                 | Manganese                       | D                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Sodium                          | D                              | X                                   | X        | -   | -                   |
|                      |                    |                 | Chloride                        | -                              | X                                   | X        | X   | -                   |
|                      |                    | 03/97           | Magnesium                       | D                              | X                                   | -        | -   | -                   |
|                      |                    |                 | Manganese                       | D                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Sodium                          | D                              | X                                   | X        | -   | -                   |
|                      | WT-2               | 11/96           | Aluminum                        | D                              | -                                   | -        | X   | -                   |
|                      |                    |                 | Beryllium                       | D                              | X                                   | X        | X   | X                   |
|                      |                    |                 | Cadmium                         | D                              | X                                   | X        | X   | X                   |
|                      |                    |                 | Molybdenum                      | D                              | X                                   | -        | -   | -                   |
|                      |                    |                 | Sodium                          | D                              | X                                   | X        | -   | -                   |
|                      |                    |                 | Nickel                          | D                              | X                                   | X        | -   | -                   |
|                      |                    |                 | Lead                            | D                              | X                                   | X        | -   | X                   |
|                      |                    |                 | Vinyl chloride                  | -                              | X                                   | X        | X   | -                   |
|                      |                    |                 | cis-1.2-Dichloroethene          | -                              | X                                   | X        | -   | -                   |
|                      |                    |                 | Trichloroethene                 | -                              | X                                   | X        | X   | X                   |
|                      |                    |                 | pН                              | -                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Total phenols                   | -                              | X                                   | X        | -   | -                   |
|                      |                    |                 | Ammonia                         | -                              | X                                   | X        | -   | -                   |
|                      |                    | 03/97           | Aluminum                        | T                              | -                                   | -        | X   | -                   |
|                      |                    |                 | Molybdenum                      | T                              | X                                   | -        | -   | ÷                   |
|                      |                    |                 | Sodium                          | T                              | X                                   | X        | -   | -                   |
|                      |                    |                 | Vinyl chloride                  | -                              | X                                   | X        | X   | -                   |
|                      |                    |                 | cis-1.2-Dichloroethene          | •                              | X                                   | X        | -   | -                   |
|                      |                    |                 | Trichloroethene                 |                                | X                                   | X        | X   | X                   |
|                      |                    |                 | pН                              | -                              | X                                   | X        | X   | -                   |
|                      |                    |                 | Total phenols                   | •                              | X                                   | X        | •   | -                   |
|                      |                    |                 | Ammonia                         | -                              | X                                   | X        | -   | -                   |

# Groundwater Samples in Excedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 3 of 9

|                   |                    | Sample<br>Event | Constituents<br>Exceeding<br>Criteria | Total (T) or                   | Potentially Applicable Criteria (a) |          |        |                     |
|-------------------|--------------------|-----------------|---------------------------------------|--------------------------------|-------------------------------------|----------|--------|---------------------|
| Area Description  | Sample<br>Location |                 |                                       | Dissolved (D)  Metals  Aliquot | TAGM<br>3028                        | Class GA | MCL    | 40 CFR<br>Subpart S |
| SWMU 17/Closed Su | rface Impoundn     | nent (continued | 1)                                    |                                |                                     |          |        |                     |
|                   | WT-3               | 11/96           | Aluminum                              | D                              | -                                   | -        | X      | _                   |
|                   |                    |                 | Beryllium                             | D                              | X                                   | X        | X      | X                   |
|                   |                    |                 | Iron                                  | D                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Magnesium                             | D                              | X                                   | -        | -      | -                   |
|                   |                    |                 | Manganese                             | D                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Molybdenum                            | D                              | X                                   | -        | -      | -                   |
|                   |                    |                 | Sodium                                | D                              | X                                   | X        | -      | -                   |
|                   |                    |                 | Fluoride                              | -                              | X                                   | X        | -      | -                   |
|                   |                    |                 | Sulfate                               | -                              | X                                   | X        | X      | -                   |
|                   |                    | 03/97           | Aluminum                              | T                              | -                                   | -        | X      | -                   |
|                   |                    |                 | Cadmium                               | T                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Iron                                  | T                              | X                                   | X        | X      | +                   |
|                   |                    |                 | Magnesium                             | T                              | X                                   | -        | -      | -                   |
|                   |                    |                 | Manganese                             | Т                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Molybdenum                            | Т                              | X                                   | -        | -      | -                   |
|                   |                    |                 | Sodium                                | T                              | X                                   | X        | *      | -                   |
|                   |                    |                 | Sulfate                               | -                              | X                                   | X        | X      | -                   |
|                   | WT-4               | 11/96           | Aluminum                              | D                              | -                                   | -        | X      | -                   |
|                   |                    |                 | Beryllium                             | D                              | -                                   | X        | -      | X                   |
|                   |                    |                 | Iron                                  | D                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Manganese                             | D                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Sodium                                | D                              | X                                   | X        | -      | -                   |
|                   |                    | 04/08           | Sulfate                               | -                              | X                                   | X        | X      | -                   |
|                   |                    | 03/97           | Iron                                  | T                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Magnesium                             | T                              | X                                   | -        | -<br>V | -                   |
|                   |                    |                 | Manganese                             | T                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Sodium                                | Т                              | X                                   | X        | V      | -                   |
|                   | DEI 00             | 11/06           | Sulfate                               | -                              | X                                   | X<br>X   | X      | -<br>V              |
|                   | RFI-09             | 11/96           | Beryllium                             | D<br>D                         | x                                   | . A      | -      | X                   |
|                   |                    |                 | Magnesium                             | D                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Manganese<br>Molybdenum               | D<br>D                         | X                                   |          | -      | -                   |
|                   |                    |                 | Sodium                                | D                              | X                                   | X        | _      | -                   |
|                   |                    |                 | Total Cyanide                         | T                              | X                                   |          | _      | -                   |
|                   |                    | 03/97           | Aluminum                              | Ť                              |                                     | -        | X      | -                   |
|                   |                    | 03/7/           | Arsenic                               | T                              | X                                   | x        | -      | -                   |
|                   |                    |                 | Cadmium                               | Ť                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Iron                                  | Ť                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Magnesium                             | T                              | X                                   | -        | -      | -                   |
|                   |                    |                 | Manganese                             | T                              | X                                   | X        | X      | -                   |
|                   |                    |                 | Molybdenum                            | Ť                              | X                                   |          | _      | -                   |
|                   |                    |                 | Sodium                                | Ť                              | X                                   | X        | -      | -                   |
|                   |                    |                 | Antimony                              | Ť                              | X                                   | X        | -      | _                   |
|                   |                    |                 | Selenium                              | T                              | X                                   | X        | -      | -                   |
|                   |                    |                 | Thallium                              | T                              | X                                   | -        | X      | -                   |
|                   |                    |                 | ı namum                               | ı                              | А                                   | -        | Λ.     | •                   |

### Groundwater Samples in Excedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 4 of 9

|                       |                    |                 |                                       | Total (T) or                   | Potentially Applicable Criteria (a) |          |     |                     |
|-----------------------|--------------------|-----------------|---------------------------------------|--------------------------------|-------------------------------------|----------|-----|---------------------|
| Area Description      | Sample<br>Location | Sample<br>Event | Constituents<br>Exceeding<br>Criteria | Dissolved (D)  Metals  Aliquot | TAGM<br>3028                        | Class GA | MCL | 40 CFR<br>Subpart S |
| CAMU A/Former LA      | P West Pickle F    | acility         |                                       |                                |                                     |          |     |                     |
| CAMPO I DI OMMEI E. C | LAW-5              | 11/96           | Beryllium                             | Т                              | -                                   | -        | -   | X                   |
|                       |                    |                 | Total chromium                        | T                              | X                                   | X        | χ . | -                   |
|                       |                    |                 | Hexavalent chromium                   | T                              | X                                   | X        | -   | X                   |
|                       |                    |                 | Magnesium                             | Т                              | X                                   | -        | X   | -                   |
|                       |                    |                 | Manganese                             | Т                              | -                                   | •        | X   | -                   |
|                       |                    |                 | Molybdenum                            | T                              | X                                   | -        | •   | -                   |
|                       |                    |                 | Sodium                                | T                              | X                                   | X        | -   | -                   |
|                       |                    |                 | Antimony                              | Т                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Thallium                              | T                              | X                                   | -        | X   | -                   |
|                       |                    |                 | Chloride                              | -                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Nitrate                               | -                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Sulfate                               | -                              | X                                   | X        | X   | -                   |
|                       |                    | 03/97           | Total chromium                        | T                              | X                                   | X        | X   | +                   |
|                       |                    |                 | Hexavalent chromium                   | T                              | X                                   | X        | -   | X                   |
|                       |                    |                 | Magnesium                             | T                              | X                                   | -        | -   | -                   |
|                       |                    |                 | Manganese                             | T                              | -                                   | -        | X   | -                   |
|                       |                    |                 | Molybdenum                            | T                              | X                                   | -        | -   | -                   |
|                       |                    |                 | Sodium                                | T                              | X                                   | X        | -   | -                   |
|                       |                    |                 | Antimony                              | T                              | X                                   | X        | X   | X                   |
|                       |                    |                 | Chloride                              | -                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Sulfate                               | -                              | X                                   | X        | X   | -                   |
|                       | LAW-6              | 11/96           | Aluminum                              | D                              | -                                   | -        | X   | -                   |
|                       |                    |                 | Arsenic                               | D                              | X                                   | X        | X   | X                   |
|                       |                    |                 | Total chromium                        | D                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Hexavalent chromium                   | T                              | X                                   | X        | -   | X                   |
|                       |                    |                 | Iron                                  | D                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Magnesium                             | D                              | X                                   | -        | -   | -                   |
|                       |                    |                 | Molybdenum                            | D                              | X                                   | -        | -   | -                   |
|                       |                    |                 | Sodium                                | D                              | X                                   | X        | -   | -                   |
|                       |                    |                 | Antimony                              | D                              | X                                   | X        | X   | X                   |
|                       |                    |                 | Selenium                              | D                              | X                                   | X        | -   | -                   |
|                       |                    |                 | Thallium                              | D                              | X                                   | -        | X   | -                   |
|                       |                    |                 | Total Cyanide                         | T                              | X                                   | -        | *   | -                   |
|                       |                    |                 | Free Cyanide                          | Т                              | •                                   | X        | -   | -                   |
|                       |                    |                 | pН                                    | -                              | -                                   | X        | X   | -                   |
|                       |                    |                 | Fluoride                              | -                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Nitrate                               | -                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Sulfate                               | -                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Ammonia                               | -                              | X                                   | X        | -   | -                   |
|                       |                    | 03/97           | Aluminum                              | T                              | •<br>V                              | v        | X   | -<br>V              |
|                       |                    |                 | Arsenic                               | T                              | X                                   | X        | X   | X                   |
|                       |                    |                 | Cadmium                               | T                              | X                                   | X        | X   | -                   |
|                       |                    |                 | Total chromium                        | T                              | X                                   | X        | X   |                     |
|                       |                    |                 | Hexavalent chromium                   | T                              | X                                   | X        | •   | X                   |
|                       |                    |                 | Magnesium                             | T                              | X                                   | -        | -   | -                   |
|                       |                    |                 | Molybdenum                            | T                              | X                                   | -        | -   | •                   |
|                       |                    |                 | Sodium                                | T                              | X                                   | X        | -   | -                   |

# Groundwater Samples in Excedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 5 of 9

| Sample   Sample   Exceeding   Marco   Maignot   Maigno |                   |                    |                  | _                   |   | Potentially Applicable Criteria (a) |          |     |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------------|---------------------|---|-------------------------------------|----------|-----|---|
| LAW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area Description  | •                  |                  |                     |   |                                     | Class GA | MCL |   |
| LAW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAMU A/Former LA  | AP West Pickle F   | acility (continu | ied)                |   |                                     |          |     |   |
| Selenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                    |                  |                     | T | X                                   | X        | X   | X |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  | Selenium            | Т | X                                   | X        | -   | - |
| PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                    |                  | Thallium            | T | X                                   | -        | X   | - |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                    |                  | Vanadium            | T | X                                   | -        | -   | - |
| Nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                    |                  | pН                  | - | -                                   | X        | X   | - |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                    |                  | Fluoride            | - | X                                   | X        | X   | - |
| CAMU B/Former BRP Pickle Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                  | Nitrate             | - | X                                   | X        | X   | - |
| CAMU B/Former BRP Pickle Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                  | Sulfate             | - | X                                   | X        | X   | - |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  |                     | - | -                                   | -        | _   | - |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAMU B/Former BR  | RP Pickle Facility |                  |                     | - | -                                   | -        | -   | • |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | MW-1               | 11/96            | Aluminum            | T | -                                   | -        | X   | - |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                    |                  | Iron                | T | X                                   | X        | X   | - |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                    |                  | Manganese           | T | -                                   | -        | X   | - |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                    |                  | Molybdenum          | T | X                                   | -        | -   | - |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  | Sodium              | T | X                                   | X        | -   | - |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  | Sulfate             | - | X                                   | X        | X   |   |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                    | 03/97            | Aluminum            | T | -                                   | +        | X   | - |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                    |                  | Iron                | Т | X                                   | X        | x   | - |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                    |                  | Manganese           | Т | -                                   | -        | X   | - |
| RFI-13  11/96     Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                    |                  |                     |   | X                                   | -        |     | - |
| RFI-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                    |                  |                     |   | X                                   | X        | -   | - |
| RFI-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                    |                  | Sulfate             | - | X                                   | X        | X   | - |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | RFI-13             | 11/96            | Aluminum            | Т | -                                   | -        |     | - |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                    |                  |                     |   | -                                   | X        |     | X |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  |                     | Т | X                                   | X        | X   | X |
| Manganese   T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                  | Iron                |   |                                     |          |     |   |
| Manganese   T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                  |                     |   |                                     | _        |     | - |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                    |                  | <del>-</del>        |   |                                     | =        | X   | - |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  |                     |   | X                                   | X        |     | - |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    | 03/97            |                     |   |                                     |          | X   | _ |
| Magnesium   T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                  |                     |   | X                                   | X        |     | - |
| Manganese   T   -   -   X   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                  | Magnesium           |   | X                                   | -        | -   | _ |
| Sodium   T   X   X   X   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                    |                  | _                   |   |                                     | -        | X   | - |
| MW-3  11/96 Beryllium D - X - X - X  Total chromium D X X X - X  Hexavalent chromium T X X X - X  Magnesium D X X  Manganese D X X  Molybdenum D X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  | ~                   |   | X                                   | X        |     | - |
| MW-3  11/96 Beryllium D - X - X - X  Total chromium D X X X - X  Hexavalent chromium T X X X - X  Magnesium D X X  Manganese D X X  Molybdenum D X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  |                     |   |                                     |          |     |   |
| Total chromium         D         X         X         X         -         -         -         X         X         -         X         X         -         X         X         -         X         -         X         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAMU C/BFS Pickle | -                  |                  |                     |   |                                     |          |     |   |
| Hexavalent chromium         T         X         X         -         X           Magnesium         D         X         -         -         -           Manganese         D         -         -         X         -           Molybdenum         D         X         -         -         -           Sodium         D         X         X         -         -           Antimony         D         X         X         X         -           Nitrate         -         X         X         X         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | MW-3               | 11/96            | Beryllium           | D |                                     |          | -   | X |
| Magnesium         D         X         -         -         -           Manganese         D         -         -         X         -           Molybdenum         D         X         -         -         -           Sodium         D         X         X         -         -           Antimony         D         X         X         X         -           Nitrate         -         X         X         X         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  | Total chromium      | D | X                                   |          | X   | * |
| Manganese         D         -         -         X         -           Molybdenum         D         X         -         -         -           Sodium         D         X         X         -         -           Antimony         D         X         X         X         -           Nitrate         -         X         X         X         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                    |                  | Hexavalent chromium | T |                                     | X        | -   | X |
| Molybdenum         D         X         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  | Magnesium           | D | X                                   | -        | -   | - |
| Sodium         D         X         X         -         -         -           Antimony         D         X         X         X         -         -           Nitrate         -         X         X         X         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                    |                  | Manganese           | D |                                     | -        | X   | - |
| Antimony D X X X - Nitrate - X X X -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                  | Molybdenum          | D | X                                   | -        | -   | - |
| Nitrate - X X -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                    |                  | Sodium              | D | X                                   | X        | -   | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                    |                  | Antimony            | D | X                                   | X        | X   |   |
| Sulfate - X X X -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                  | Nitrate             | - | X                                   | X        | X   | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                    |                  | Sulfate             | - | X                                   | X        | X   | - |

## Groundwater Samples in Excedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 6 of 9

|                   |                    |                 |                                       | Total (T) or         | Potentially Applicable Criteria (a) |           |        |           |
|-------------------|--------------------|-----------------|---------------------------------------|----------------------|-------------------------------------|-----------|--------|-----------|
| Area Description  | Sample<br>Location | Sample<br>Event | Constituents<br>Exceeding<br>Criteria | Dissolved (D) Metals | TAGM<br>3028                        | Class C.A | MCI    | 40 CFR    |
| Area Description  | Location           |                 | Citteria                              | Aliquot              | 3028                                | Class GA  | MCL    | Subpart S |
| CAMU C/BFS Pickle | Facility (continu  | ued)            |                                       |                      |                                     |           |        |           |
|                   | MW-3               | 03/97           | Aluminum                              | T                    | -                                   | -         | X      | _         |
|                   |                    |                 | Cadmium                               | T                    | X                                   | X         | X      | -         |
|                   |                    |                 | Total chromium                        | T                    | X                                   | X         | X      | -         |
|                   |                    |                 | Hexavalent chromium                   | T                    | X                                   | X         | -      | X         |
|                   |                    |                 | Iron                                  | T                    | X                                   | X         | X      | -         |
|                   |                    |                 | Magnesium                             | Т                    | X                                   | -         | -      | -         |
|                   |                    |                 | Manganese                             | T                    | _                                   | -         | X      | -         |
|                   |                    |                 | Molybdenum                            | Т                    | X                                   | _         | -      | -         |
|                   |                    |                 | Sodium                                | T                    | X                                   | X         | -      |           |
|                   |                    |                 | Antimony                              | T                    | X                                   | X         | X      | X         |
|                   |                    |                 | Chloride                              | -                    | X                                   | X         | X      | -         |
|                   |                    |                 | Nitrate                               | -                    | X                                   | X         | X      | -         |
|                   |                    |                 | Sulfate                               | -                    | X                                   | X         | X      | -         |
|                   | RFI-07             | 11/96           | Aluminum                              | T                    | _                                   | -         | X      | _         |
|                   |                    |                 | Beryllium                             | Т                    | X                                   | X         | X      | Х         |
|                   |                    |                 | Iron                                  | T                    | X                                   | X         | X      | -         |
|                   |                    |                 | Magnesium                             | Т                    | X                                   | _         | -      | _         |
|                   |                    |                 | Manganese                             | T                    | X                                   | X         | X      | _         |
|                   |                    |                 | Molybdenum                            | T                    | x                                   | -         | -      | *         |
|                   |                    |                 | Sodium                                | Т                    | X                                   | X         | _      | -         |
|                   |                    | Nitrate         | -                                     | х                    | X                                   | X         | -      |           |
|                   |                    |                 | Sulfate                               | _                    | Х                                   | X         | X      | -         |
|                   |                    | 03/97           | Aluminum                              | D                    | -                                   | •         | X      | •         |
|                   |                    |                 | Cadmium                               | D                    | X                                   | X         | X      | -         |
|                   |                    |                 | Iron                                  | D                    | X                                   | X         | -      | -         |
|                   |                    |                 | Magnesium                             | D                    | X                                   | -         | _      | -         |
|                   |                    |                 | Manganese                             | D                    | X                                   | X         | X      | -         |
|                   |                    |                 | Molybdenum                            | D                    | X                                   | *         | -      | _         |
|                   |                    |                 | Sodium                                | D                    | X                                   | X         | -      | -         |
|                   |                    |                 | Antimony                              | D                    | X                                   | X         | -      | _         |
|                   |                    |                 | Nitrate                               | -                    | X                                   | X         | X      | _         |
|                   |                    |                 | Sulfate                               | -                    | X                                   | X         | X      | -         |
|                   | RFI-17             | 11/96           | Beryllium                             | D                    | -                                   | -         | -      | X         |
|                   |                    |                 | Magnesium                             | D                    | X                                   | -         |        |           |
|                   |                    | Manganese       | D                                     | -                    | -                                   | X         | -      |           |
|                   |                    |                 | Molybdenum                            | D                    | X                                   | -         | -      | _         |
|                   |                    |                 | Sodium                                | D                    | X                                   | X         | -      | -         |
|                   |                    |                 | Chloride                              | -                    | X                                   | X         | X      | -         |
|                   |                    |                 | Sulfate                               | ÷                    | X                                   | X         | X      | _         |
|                   |                    | 03/97           | Aluminum                              | T                    | -                                   | -         | X      | _         |
|                   |                    |                 | Cadmium                               | Ť                    | X                                   | X         | X      | _         |
|                   |                    |                 | Total chromium                        | Ť                    | X                                   | X         | -      | _         |
|                   |                    |                 | Iron                                  | Ť                    | X                                   | X         | X      | -         |
|                   |                    |                 | Magnesium                             | Ť                    | X                                   | -         |        |           |
|                   |                    |                 | Manganese                             | Ť                    | X                                   | X         | X      | -         |
|                   |                    |                 | Molybdenum                            | τ<br>Τ               | X                                   | - A       | . A    | -         |
|                   |                    |                 | Sodium                                | T                    | X                                   | X         |        | -         |
|                   |                    |                 | Chloride                              | -                    | X                                   | X         | -<br>v | -         |
|                   |                    |                 | Sulfate                               |                      |                                     |           | X      | -         |
|                   |                    |                 | Juliate                               | -                    | X                                   | X         | X      | •         |

## Groundwater Samples in Excedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 7 of 9

|                |                        |                 |                                 | Total (T) or                   | Potentially Applicable Criteria (a) |          |        |                     |
|----------------|------------------------|-----------------|---------------------------------|--------------------------------|-------------------------------------|----------|--------|---------------------|
| Area Descripti | Sample<br>on Location  | Sample<br>Event | Constituents Exceeding Criteria | Dissolved (D)  Metals  Aliquot | TAGM<br>3028                        | Class GA | MCL    | 40 CFR<br>Subpart S |
| CAMU D/ Form   | ner LAP East Pickle Fa | acility         |                                 |                                |                                     |          |        |                     |
|                | LAE-4                  | 11/96           | Aluminum                        | D                              | -                                   | •        | X      | -                   |
|                |                        |                 | Iron                            | D                              | X                                   | X        | X      | -                   |
|                |                        |                 | Manganese                       | D                              | -                                   | -        | X      | -                   |
|                |                        |                 | Sodium                          | D                              | X                                   | X        | •      | -                   |
|                |                        |                 | Vinyl chloride                  | -                              | X                                   | X        | X      | -                   |
|                |                        |                 | 1.1-Dichloroethene              | -                              | X                                   | X        | X      | X                   |
|                |                        |                 | trans-1,2-Dichloroethene        | •                              | X                                   | X        | -      | -                   |
|                |                        |                 | cis-1,2-Dichloroethene          | -                              | X                                   | X        | X      | -                   |
|                |                        |                 | Trichloroethene                 | -                              | X                                   | X        | X      | X                   |
|                |                        | 03/97           | Iron                            | D                              | X                                   | X        | X      | -                   |
|                |                        |                 | Manganese                       | D                              | X                                   | X        | X      | -                   |
|                |                        |                 | Sodium                          | D                              | X                                   | X        | -      | -                   |
|                |                        |                 | Vinyl chloride                  | -                              | X                                   | X        | X      | -                   |
|                |                        |                 | 1.1-Dichloroethene              | -                              | X                                   | X        | X      | X                   |
|                |                        |                 | trans-1.2-Dichloroethene        | -                              | X                                   | X        | -      | -                   |
|                |                        |                 | cis-1.2-Dichloroethene          | -                              | X                                   | X        | X      | -                   |
|                |                        |                 | Trichloroethene                 | -                              | X                                   | X        | X      | X                   |
|                |                        |                 | Naphthalene                     | -                              | X                                   | -        | -      | -                   |
|                | RFI-05                 | 11/96           | Aluminum                        | T                              | -                                   | ~        | X      | -                   |
|                |                        |                 | Beryllium                       | T                              | -                                   | -        | -      | X                   |
|                |                        |                 | Iron                            | T                              | X                                   | X        | X      | -                   |
|                |                        |                 | Sodium                          | Т                              | X                                   | X        | -      | -                   |
|                |                        | 03/97           | Aluminum                        | T                              |                                     | +        | X      | -                   |
|                |                        |                 | Sodium                          | T                              | X                                   | X        | -      | -                   |
| Site Wells     |                        |                 |                                 |                                |                                     |          |        |                     |
|                | B-I                    | 11/96           | Magnesium                       | τ                              | X                                   | -        | -      | -                   |
|                |                        |                 | Sodium                          | T                              | X                                   | X        | -      | •                   |
|                |                        | 03/97           | Magnesium                       | T                              | X                                   | -        | -      | -                   |
|                |                        |                 | Thallium                        | T                              | X                                   | -        | X      | -                   |
|                | RFI-01                 | 11/96           | Aluminum                        | T                              | -                                   | -        | X      | -                   |
|                |                        |                 | Beryllium                       | T                              | -                                   | -        | -      | X                   |
|                |                        |                 | Iron                            | T                              | X                                   | X        | X      | -                   |
|                |                        |                 | Manganese                       | T                              | -                                   | -        | X      | -                   |
|                |                        |                 | Sodium                          | T                              | X                                   | X        | -      | -                   |
|                |                        |                 | Thallium                        | T                              | X                                   | -        | X      | -                   |
|                |                        | 03/97           | Manganese                       | D                              | -                                   | -        | X      | -                   |
|                |                        |                 | Antimony                        | D                              | X                                   | -        | -      | -                   |
|                | RFI-02                 | 11/96           | Aluminum                        | T                              | -                                   | -        | X      | -                   |
|                |                        |                 | Iron                            | T                              | X                                   | X        | X      | -                   |
|                |                        |                 | Magnesium                       | T                              | X                                   | -        | -      | -                   |
|                |                        |                 | Manganese                       | T                              | -                                   | -        | X      | -                   |
|                |                        |                 | Carbon Disulfide                | •                              | X                                   | -        | -      | -                   |
|                |                        | 03/97           | Aluminum                        | D                              | -                                   | -        | X      | -                   |
|                |                        |                 | Cadmium                         | D                              | X                                   | X        | X      | -                   |
|                |                        |                 | Iron                            | D                              | X                                   | X        | X      | -                   |
|                |                        |                 | Magnesium                       | D                              | X                                   | -        | -      | -                   |
|                |                        |                 |                                 |                                |                                     |          |        |                     |
|                |                        |                 | Manganese                       | D                              | X                                   | x        | X<br>X | -                   |

#### Table 6-4 (continued)

# Groundwater Samples in Excedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 8 of 9

| Sample   Sample   Seventing   Criteria   Aliquot   3028   Class GA   MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          |       |            | Total (T) or | Potentially Applicable Criteria (a) |          |        |                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-------|------------|--------------|-------------------------------------|----------|--------|---------------------|--|
| Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Area Description | -        | •     |            |              |                                     | Class GA | MCI.   | 40 CFR<br>Subpart S |  |
| RFI-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Area Description | Location | Diene | Cincia     | Anquoi       | 3020                                | <u> </u> | - Incb | <u>ouopart o</u>    |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Site (continued) |          |       |            |              |                                     |          |        |                     |  |
| Magaesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | RFI-03   | 11/96 |            |              |                                     |          |        | -                   |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       |            |              |                                     |          |        | -                   |  |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |       |            |              |                                     |          |        | -                   |  |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       |            |              |                                     |          |        | -                   |  |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          |       |            |              |                                     |          |        | -                   |  |
| O3497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |          |       |            |              |                                     |          |        | -                   |  |
| Fron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |       |            |              |                                     |          |        | -                   |  |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          | 03/97 |            |              |                                     |          |        | -                   |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       |            |              |                                     |          |        | -                   |  |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |       |            |              |                                     |          |        | -                   |  |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       | Manganese  |              |                                     | X        | X      | -                   |  |
| RFI-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       | Molybdenum | T            |                                     |          | -      | -                   |  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       | Sodium     | T            | X                                   | X        | -      | -                   |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | RFI-04   | 11/96 | Aluminum   | T            | -                                   | -        | X      | -                   |  |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       | Beryllium  | Т            | -                                   | X        | -      | X                   |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       | Iron       | T            | X                                   | X        | X      | -                   |  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |       | Magnesium  | T            | X                                   | -        | -      | -                   |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |       | Manganese  | T            | -                                   | -        | X      | -                   |  |
| RFI-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          | 03/97 | Aluminum   | D            | -                                   | -        | X      | -                   |  |
| RFI-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       | Iron       | D            | X                                   | X        | X      | -                   |  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       | Magnesium  | D            | x                                   | -        | -      | -                   |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | RFI-06   | 11/96 | Aluminum   | T            | -                                   | _        | X      | -                   |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |       | Beryllium  | Т            | -                                   | -        | -      | X                   |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       |            | Т            | X                                   | X        | X      | -                   |  |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       | Manganese  |              | -                                   | -        | X      | -                   |  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |       |            | Т            | X                                   | X        | -      | -                   |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |       | Sulfate    | <del>-</del> | X                                   | X        | X      | -                   |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          | 03/97 | Aluminum   | Т            | -                                   | -        | X      | -                   |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       |            |              | X                                   | X        |        | _                   |  |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       | Manganese  |              |                                     |          |        | -                   |  |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          |       |            |              | X                                   | X        |        | -                   |  |
| RFI-08   11/96   Aluminum   T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |          |       |            |              |                                     |          | X      | -                   |  |
| RFI-08    11/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |       |            |              |                                     |          |        | -                   |  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | RFI-08   | 11/96 |            |              |                                     |          |        | -                   |  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |          |       |            |              |                                     |          |        | X                   |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |       | •          |              |                                     |          |        |                     |  |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       |            |              |                                     |          |        | -                   |  |
| 03/97   Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |       |            |              |                                     |          |        | _                   |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          | 03/97 |            |              |                                     |          |        | _                   |  |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          | 03/7/ |            |              |                                     |          |        | _                   |  |
| RFI-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       | -          |              |                                     |          |        | _                   |  |
| RFI-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       |            |              |                                     |          |        |                     |  |
| Beryllium         T         X         X         X           Cadmium         T         X         X         X           Iron         T         X         X         X           Magnesium         T         X         -         -           Manganese         T         -         -         X           Sodium         T         X         X         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | DET 10   | 11/04 |            |              |                                     |          |        | -                   |  |
| Cadmium         T         X         X         X           Iron         T         X         X         X           Magnesium         T         X         -         -           Manganese         T         -         -         X           Sodium         T         X         X         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | KL1-10   | 11/90 |            |              |                                     |          | A<br>V | X                   |  |
| Iron         T         X         X         X           Magnesium         T         X         -         -           Manganese         T         -         -         X           Sodium         T         X         X         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |          |       |            |              | A<br>V                              |          | A<br>V | X                   |  |
| Magnesium         T         X         -         -           Manganese         T         -         -         X           Sodium         T         X         X         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          |       |            |              | A<br>V                              |          | Λ<br>v |                     |  |
| Manganese T X Sodium T X X -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |          |       |            |              | A<br>V                              |          |        | -                   |  |
| Sodium T X X -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |          |       |            |              |                                     |          |        | -                   |  |
| Sodium T X X -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |          |       |            |              |                                     |          |        | -                   |  |
| man and the second seco |                  |          |       |            |              | X                                   | X        |        | -                   |  |
| Sulfate - X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |       | Sultate    | *            | X                                   | X        | X      | -                   |  |

#### Table 6-4 (continued)

# Groundwater Samples in Excedance of Potentially Applicable Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk. New York Facility

Page 9 of 9

|                  |                    |                 |                                 | Total (T) or                   | Potentially Applicable Criteria (a) |          |     |                     |  |
|------------------|--------------------|-----------------|---------------------------------|--------------------------------|-------------------------------------|----------|-----|---------------------|--|
| Area Description | Sample<br>Location | Sample<br>Event | Constituents Exceeding Criteria | Dissolved (D)  Metals  Aliquot | TAGM<br>3028                        | Class GA | MCL | 40 CFR<br>Subpart S |  |
| Site (continued) |                    |                 |                                 |                                |                                     |          |     |                     |  |
|                  | RFI-10             | 03/97           | Aluminum                        | T                              | -                                   | ~        | X   | -                   |  |
|                  |                    |                 | Iron                            | T                              | X                                   | X        | X   | -                   |  |
|                  |                    |                 | Magnesium                       | T                              | X                                   | +        | -   | -                   |  |
|                  |                    |                 | Manganese                       | T                              | -                                   | -        | X   | -                   |  |
|                  |                    |                 | Sodium                          | T                              | X                                   | X        | -   | -                   |  |
|                  |                    |                 | Chloride                        | -                              | X                                   | X        | X   | -                   |  |
|                  | RFI-11             | 11/96           | Aluminum                        | D                              | -                                   | -        | X   | -                   |  |
|                  |                    |                 | Beryllium                       | D                              | X                                   | X        | X   | X                   |  |
|                  |                    |                 | Manganese                       | D                              | X                                   | X        | X   | -                   |  |
|                  |                    |                 | Sodium                          | D                              | X                                   | X        | -   | _                   |  |
|                  |                    | 03/97           | Aluminum                        | Т                              | -                                   | -        | X   | -                   |  |
|                  |                    |                 | Iron                            | T                              | X                                   | X        | X   | -                   |  |
|                  |                    |                 | Manganese                       | Т                              | X                                   | X        | X   | -                   |  |
|                  |                    |                 | Sodium                          | Т                              | X                                   | X        | _   | -                   |  |
|                  | RFI-12             | 11/96           | Magnesium                       | T                              | X                                   | -        | X   |                     |  |
|                  |                    |                 | Manganese                       | T                              | _                                   | -        | X   | _                   |  |
|                  |                    |                 | Sodium                          | Т                              | X                                   | X        | -   | -                   |  |
|                  |                    |                 | Zinc                            | T                              | X                                   | -        | _   | -                   |  |
|                  |                    | 03/97           | Aluminum                        | T                              | -                                   | _        | x   | -                   |  |
|                  |                    |                 | Iron                            | Т                              | X                                   | X        | X   | -                   |  |
|                  |                    |                 | Manganese                       | Т                              | _                                   | · -      | X   |                     |  |
|                  | RFI-16             | 11/96           | Iron                            | Т                              | Х                                   | X        | X   | -                   |  |
|                  |                    |                 | Magnesium                       | Т                              | X                                   | -        | -   | •                   |  |
|                  |                    |                 | Manganese                       | T                              | _                                   | -        | X   | -                   |  |
|                  |                    |                 | Molybdenum                      | т                              | x                                   | _        | -   | -                   |  |
|                  |                    |                 | Sodium                          | T                              | X                                   | X        | -   | _                   |  |
|                  |                    |                 | cis-1.2-Dichloroethene          | -                              | X                                   | X        | X   | -                   |  |
|                  |                    |                 | Trichloroethene                 | -                              | X                                   | X        | X   | Х                   |  |
|                  |                    | 03/97           | Aluminum                        | T                              |                                     | -        | X   | -                   |  |
|                  |                    | 22177           | Iron                            | T                              | X                                   | X        | X   | -                   |  |
|                  |                    |                 | Magnesium                       | Ť                              | X                                   | -        | -   | -                   |  |
|                  |                    |                 | Manganese                       | Ť                              | X                                   | x        | X   | _                   |  |
|                  |                    |                 | Molybdenum                      | T                              | X                                   | -        | -   | -                   |  |
|                  |                    |                 | Sodium                          | T                              | X                                   | X        | -   | -                   |  |

a/ TAGM 3028 source: New York State Department of Environmental Conservation. November 30, 1992, "Contained-In Criteria for Environmental Media." Technical Administrative Guidance Memorandum (TAGM) 3028 (revised 1997).
 Class GA source: New York State, June 2998, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations: Division of Water Technical and Operational Guidance Series (NYS Water Quality Standard for Class GA Waters).
 MCL source: U.S. EPA Final Maximum Contaminant Levels (MCLs) for drinking water: the values are current.
 Subpart S source: "Corrective Action for Solid Wate Management Units at Hazardous Waste Management Facilities: Proposed Rule." 55 FR 30798, July 27, 1990.

b/ "-" indicates groundwater sample not in exceedance of potentially applicable criteria.

#### Table 6-5

#### Potentially Applicable Surface Water Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

#### New York State Water Quality Standards For Class D Surface Water (a)

| Parameters                      | For Class D Surface Water (a) |
|---------------------------------|-------------------------------|
| Metals (b) (mg/l) (c)           |                               |
| Aluminum                        | - (d)                         |
| Barium                          |                               |
| Beryllium                       | •                             |
| Calcium                         | -                             |
| Chromium (Total)                | (e)                           |
| Copper                          | (f)                           |
| Iron                            | 0.3                           |
| Mercury                         | -                             |
| Potassium                       | -                             |
| Magnesium                       | -                             |
| Manganese                       | -                             |
| Molybdenum                      | -                             |
| Lead                            | (g)                           |
| Antimony                        | -                             |
| Zinc                            | (h)                           |
| Miscellaneous Parameters (mg/l) |                               |
| pH (s.u.)                       | •                             |
| -<br>Alkalinity                 | -                             |
| Chloride                        | -                             |
| Fluoride                        | (i)                           |
| Sulfate                         | -                             |
|                                 |                               |

a/ New York State. June 1998. "Ambient Water Quality Standards and Guidances Values and Groundwater Limitations: Division of Water Technical and Operational Guidance Series (NYS Water Quality Standards for Class D Waters).

b/ This list contains only detected Target Analyte List Inorganics (and molybdenum).

c/ mg/l = milligrams per liter; s.u. = standard unit.

d/ " - " indicates water quality standard has not been established.

e/ The water quality standard for total chromium is exp(0.819[ln(ppm hardness)] + 3.7256).

f/ The water quality standard for copper is exp(0.9422[ln(ppm hardness)] - 1.7).

g/ The water quality standard for lead is exp(1.273[ln(ppm hardness)] - 1.052).

h/ The water quality standard for zinc is exp(0.85[ln(ppm hardness)] + 0.884).

i/ The water quality standard for fluoride is  $(0.1)\exp(0.907[ln(ppm\ hardness)] + 7.394)$ .

Table 6-6

# Potentially Applicable Sediment Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

#### Sediment Criteria for Fresh Water (a)

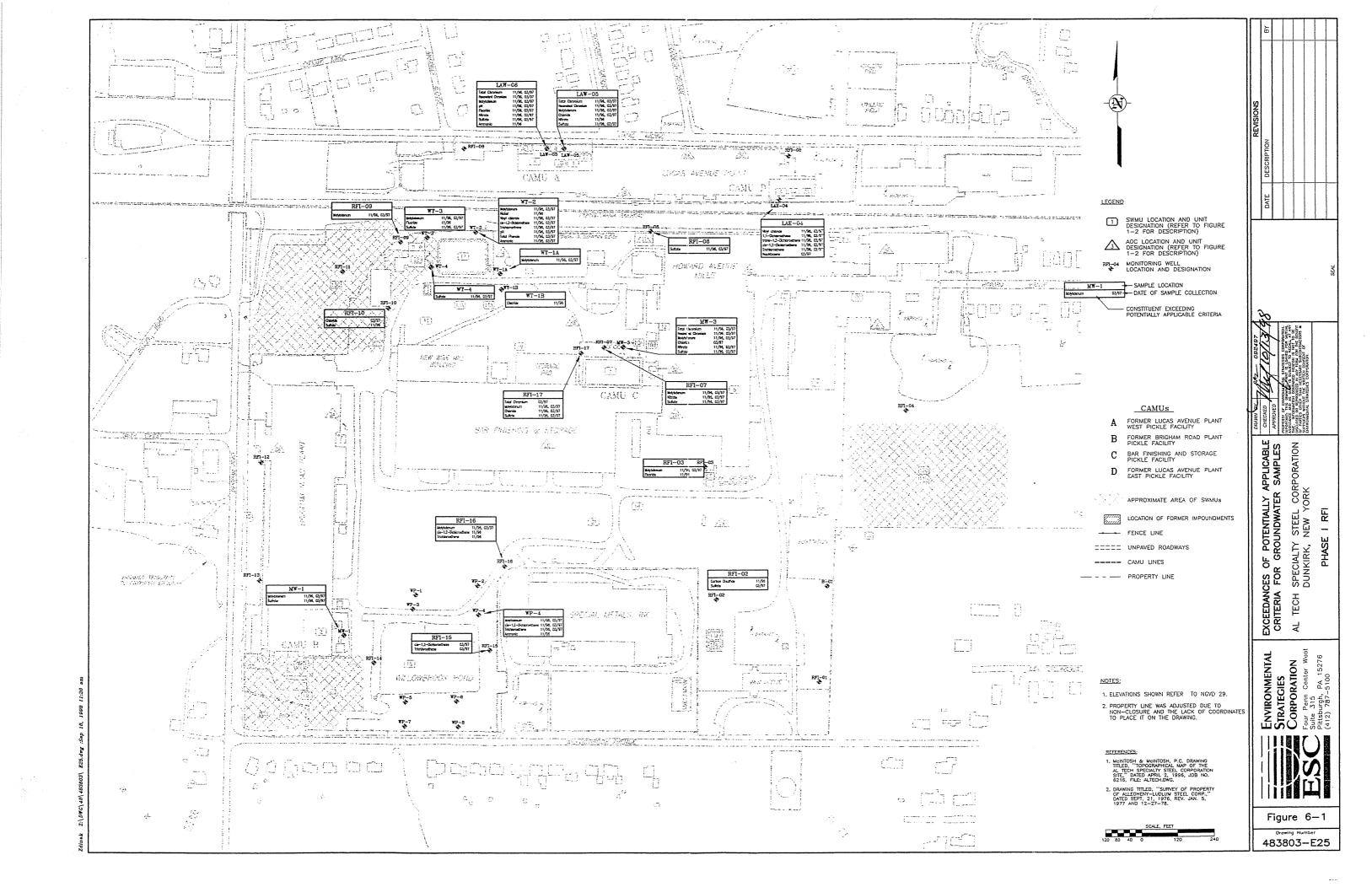
| Parameters         Low         Severe           TAL Inorganics plus Molybdenum (mg/kg) (b,c)         1         2.2           Silver         1         2.2           Aluminum         - (d)         -           Arsenic         6         33           Barium         -         -           Beryllium         -         -           Calcium         -         -           Calcium         -         -           Cadmium         0.6         9           Cobalt         -         -           Chromium (Total)         26         110           Chromium (Hexavalent)         -         -           Copper         16         110           Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Mangesium         -         -           Manganese         460         1100           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2 </th <th></th> <th colspan="5">Effect Level</th> |                                              | Effect Level |        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|--------|--|--|--|
| Silver         1         2.2           Aluminum         - (d)         -           Arsenic         6         33           Barium         -         -           Beryllium         -         -           Calcium         -         -           Cadmium         0.6         9           Cobalt         -         -           Chromium (Total)         26         110           Chromium (Hexavalent)         -         -           Copper         16         110           Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Manganese         460         1100           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                          | Parameters                                   | Low          | Severe |  |  |  |
| Aluminum       - (d)       -         Arsenic       6       33         Barium       -       -         Beryllium       -       -         Calcium       -       -         Cadmium       0.6       9         Cobalt       -       -         Chromium (Total)       26       110         Chromium (Hexavalent)       -       -         Copper       16       110         Iron       2% (e)       4%         Mercury       0.15       1.3         Potassium       -       -         Magnesium       -       -         Molybdenum       -       -         Sodium       -       -         Nickel       16       50         Lead       31       110         Antimony       2       25                                                                                                                                                                                                                                                                                                                                                                                                              | TAL Inorganics plus Molybdenum (mg/kg) (b,c) |              |        |  |  |  |
| Arsenic       6       33         Barium       -       -         Beryllium       -       -         Calcium       -       -         Cadmium       0.6       9         Cobalt       -       -         Chromium (Total)       26       110         Chromium (Hexavalent)       -       -         Copper       16       110         Iron       2% (e)       4%         Mercury       0.15       1.3         Potassium       -       -         Magnesium       -       -         Molybdenum       -       -         Sodium       -       -         Nickel       16       50         Lead       31       110         Antimony       2       25                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Silver                                       | 1            | 2.2    |  |  |  |
| Barium         -         -           Beryllium         -         -           Calcium         -         -           Cadmium         0.6         9           Cobalt         -         -           Chromium (Total)         26         110           Chromium (Hexavalent)         -         -           Copper         16         110           Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                | Aluminum                                     | - (d)        | -      |  |  |  |
| Beryllium         -         -           Calcium         -         -           Cadmium         0.6         9           Cobalt         -         -           Chromium (Total)         26         110           Chromium (Hexavalent)         -         -           Copper         16         110           Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                     | Arsenic                                      | 6            | 33     |  |  |  |
| Calcium         -         -           Cadmium         0.6         9           Cobalt         -         -           Chromium (Total)         26         110           Chromium (Hexavalent)         -         -           Copper         16         110           Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Barium                                       | -            | -      |  |  |  |
| Cadmium         0.6         9           Cobalt         -         -           Chromium (Total)         26         110           Chromium (Hexavalent)         -         -           Copper         16         110           Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Manganese         460         1100           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beryllium                                    | -            | -      |  |  |  |
| Cobalt         -         -           Chromium (Total)         26         110           Chromium (Hexavalent)         -         -           Copper         16         110           Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calcium                                      | ~            | -      |  |  |  |
| Chromium (Total)       26       110         Chromium (Hexavalent)       -       -         Copper       16       110         Iron       2% (e)       4%         Mercury       0.15       1.3         Potassium       -       -         Magnesium       -       -         Manganese       460       1100         Molybdenum       -       -         Sodium       -       -         Nickel       16       50         Lead       31       110         Antimony       2       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cadmium                                      | 0.6          | 9      |  |  |  |
| Chromium (Hexavalent)         -         -           Copper         16         110           Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Manganese         460         1100           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cobalt                                       | -            | -      |  |  |  |
| Copper       16       110         Iron       2% (e)       4%         Mercury       0.15       1.3         Potassium       -       -         Magnesium       -       -         Manganese       460       1100         Molybdenum       -       -         Sodium       -       -         Nickel       16       50         Lead       31       110         Antimony       2       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chromium (Total)                             | 26           | 110    |  |  |  |
| Iron         2% (e)         4%           Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Manganese         460         1100           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chromium (Hexavalent)                        | -            | -      |  |  |  |
| Mercury         0.15         1.3           Potassium         -         -           Magnesium         -         -           Manganese         460         1100           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Copper                                       | 16           | 110    |  |  |  |
| Potassium         -         -           Magnesium         -         -           Manganese         460         1100           Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iron                                         | 2% (e)       | 4%     |  |  |  |
| Magnesium       -       -         Manganese       460       1100         Molybdenum       -       -         Sodium       -       -         Nickel       16       50         Lead       31       110         Antimony       2       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mercury                                      | 0.15         | 1.3    |  |  |  |
| Manganese     460     1100       Molybdenum     -     -       Sodium     -     -       Nickel     16     50       Lead     31     110       Antimony     2     25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Potassium                                    | -            | -      |  |  |  |
| Molybdenum         -         -           Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Magnesium                                    | -            | -      |  |  |  |
| Sodium         -         -           Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Manganese                                    | 460          | 1100   |  |  |  |
| Nickel         16         50           Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Molybdenum                                   | -            | -      |  |  |  |
| Lead         31         110           Antimony         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sodium                                       | -            | -      |  |  |  |
| Antimony 2 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nickel                                       | 16           | 50     |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead                                         | 31           | 110    |  |  |  |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Antimony                                     | 2            | 25     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vanadium                                     | -            | _      |  |  |  |
| Zinc 120 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zinc                                         | 120          | 270    |  |  |  |

#### Table 6-6 (continued)

#### Potentially Applicable Sediment Criteria Phase I RFI AL Tech Specialty Steel Corporation Dunkirk, New York Facility

Page 2 of 2

|                                | Sediment Criteria for Fresh Water |                |                  |                 |  |  |  |  |  |  |
|--------------------------------|-----------------------------------|----------------|------------------|-----------------|--|--|--|--|--|--|
|                                |                                   | Benthic        | Benthic          |                 |  |  |  |  |  |  |
|                                | Human Health                      | Aquatic Life   | Aquatic Life     | Wildlife        |  |  |  |  |  |  |
| Parameters                     | Bioaccumulation                   | Acute Toxicity | Chronic Toxicity | Bioaccumulation |  |  |  |  |  |  |
| TCL Semi-Volatile Organic Comp | ounds (μg/kg)                     |                |                  | •               |  |  |  |  |  |  |
| Phenanthrene                   | ·                                 | -              | 120,000          | -               |  |  |  |  |  |  |
| Anthracene                     | -                                 | •              | -                | -               |  |  |  |  |  |  |
| Fluoranthene                   | -                                 | •              | 1.020.000        | -               |  |  |  |  |  |  |
| Pyrene                         | -                                 | -              | -                | <u>.</u>        |  |  |  |  |  |  |
| Benzo(a)anthracene             | 1,300                             | -              | -                | -               |  |  |  |  |  |  |
| Chrysene                       | 1.300                             | -              | -                | -               |  |  |  |  |  |  |
| Benzo(b)fluoranthene           | 1,300                             | -              | -                | -               |  |  |  |  |  |  |
| Benzo(k)fluoranthene           | 1,300                             | -              | -                | •               |  |  |  |  |  |  |
| Benzo(a)pyrene                 | 1,300                             | -              | -                | -               |  |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene         | 1,300                             | *              | -                | -               |  |  |  |  |  |  |
| Benzo(g,h,i)perylene           | -                                 | -              | -                | -               |  |  |  |  |  |  |
| Miscellaneous Parameters       |                                   |                |                  |                 |  |  |  |  |  |  |
| Total Petroleum Hydrocarbons   | -                                 |                | •                | -               |  |  |  |  |  |  |
| Chloride                       | -                                 | -              | -                | -               |  |  |  |  |  |  |
| Nitrate                        | -                                 | -              | -                | -               |  |  |  |  |  |  |
| Sulfate                        | -                                 | •              | -                | -               |  |  |  |  |  |  |
| Total Organic Carbon           | -                                 | -              | -                | -               |  |  |  |  |  |  |


a/ New York State Department of Environmental Conservation, July 1994, "Technical Guidance for Screening Contaminated Sediments."

b/ Only detected Target Analyte List Inorganics (and hexavalent chromium and molybdenum) are included.

c/ mg/kg = milligrams per kilogram; µg/kg = micrograms per kilogram.

d/ " - " indicates that a standard has not been developed.

e/ "%" = percent.



7.0

Date:

10/22/98

Page:

1 of 21

#### 7.0 **Investigation Analysis**

The following sections present an analysis of conditions at the site, including an evaluation of potential impact from the SWMUs, AOCs, and CAMUs on relevant environmental media and identification of necessary subsequent actions, if any. Consistent with the previous sections, these summaries are presented on an area-by-area basis.

During implementation of the Phase I RFI, samples were collected for chemical laboratory analysis from four environmental media: soil, groundwater, surface water, and sediment. The evaluation and discussion of impact from associated units to site soil and groundwater conditions is generally focused on key metals (hexavalent chromium, total chromium, molybdenum, and nickel) and TCL VOCs, SVOCs, and PCBs, and miscellaneous indicator parameters (chloride, fluoride, sulfate, and nitrate). Conditions which appear to be indicative of general impact from site operations are typically not discussed below. These conditions include:

- the presence of total chromium, molybdenum, and nickel at elevated concentrations in the shallow soil samples collected across the site (0 to 3 in-bgs and 0 to 2 ft-bgs)
- total chromium present at elevated concentrations in several deeper, subsurface soil samples collected from the site
- the presence of molybdenum at elevated concentrations in site groundwater samples

In addition, several metals were nearly consistently detected in groundwater samples at concentrations above the potentially applicable criteria and are believed to be indicative of local water quality and may not be representative of impact purely from the site (e.g., aluminum, beryllium, iron, manganese, sodium). Therefore, no further action has been identified to address these constituents at elevated concentrations in groundwater.

A summary of recommended and anticipated future actions for all SWMUs, AOCs, and CAMUs, as discussed in the following sections, is presented in Table 7-1.

The results of the Air Pathways Analysis for the site are summarized in Section 7.5. The Air Pathways Analysis report is presented in its entirety in Appendix R.

Section: 7.0 Revision: 0

Date:

10/22/98

Page:

2 of 21

#### 7.1 Analysis of SWMU Conditions

#### 7.1.1 <u>SWMU 5/Former Grinding Room Pickling Process</u>

Potential SWMU-related materials associated with this unit include: acid-related constituents, lime, chromium, and nickel. Potential indication of impact from operation of this unit on environmental media is limited to the varying pH levels reported for the three samples collected at RB-01:

- 4.48 s.u. in the 0 to 2 ft-bgs sample
- 7.37 s.u. in the 5 to 7 ft-bgs sample
- 10.93 s.u. in the 7 to 9 ft-bgs sample

pH levels in site soils typically ranged from 7 to 8.5 s.u. This observation and the type of operations performed at this unit suggest some impact to the underlying soils.

Soil conditions in this area have apparently been impacted by operation of this SWMU. However, no further action is currently warranted for this SWMU there is no current potential for exposure to the soils containing elevated concentrations of metals.

There is no apparent groundwater impact associated with this SWMU. Similar parameters to those associated with this SWMU that were present in the groundwater samples from Wells MW-3, RFI-07, and RFI-17 are believed to be indicative of impact from operation of the BFS Pickling Facility (Section 7.3.3).

#### 7.1.2 SWMU 9/Former TCA Container Storage Area

Potential SWMU-related materials associated with operation of this unit include: trichloroethane, oils, solvents, paints, and thinners. Potential indications of impact from operation of the unit on environmental media include the presence of TCL VOCs (trichloroethene, toluene, and styrene) and VOC TICs in soil samples collected at RB-02. Despite limited apparent impact from SWMU operations on soil conditions, no further action is warranted for this SWMU, because there is no current potential for exposure to the soils containing elevated concentrations of metals and VOCs.

None of these constituents were detected at elevated concentrations, suggesting apparent impact from this unit is minimal. This also suggests low potential for groundwater impact from

7.0

Date:

10/22/98

Page:

3 of 21

this unit. Similar parameters to those associated with this SWMU that were present in groundwater samples from Well LAE-4 are believed to be indicative of impact from operation of  $\checkmark$  the 1,1,1-trichloroethane tank area within the Former LAP East Pickling Facility (Section 7.3.4).

#### 7.1.3 SWMU 11/Shark Pit Residual Material Loading Area

Potential SWMU-related materials associated with operation of this unit include: metal oxides, oil, oily sludges, and PCBs. Potential indications of impact on environmental media in this area, which are not necessarily attributable to this SWMU, include:

- the presence of SVOC TICs at concentrations above background in soil samples collected from 2 to 4 and 9 to 10 ft-bgs at RFI-10
- the presence of sulfate and chloride at elevated concentrations in groundwater samples collected from RFI-10
- the presence of nitrate in groundwater samples collected from RFI-10

Placement of Well RFI-10 was appropriate for monitoring groundwater quality downgradient of this SWMU. However, given the distance between SWMU 11 and the RFI-10 boring it is not certain that the soil impact observed at this location from SVOC TICs is indicative of impact from this SWMU. The source is more likely associated with SWMU 13C, Crucible Disposal Area, than SWMU 11. Consequently, investigation of soil conditions immediately proximate to SWMU 11 will be performed as part of the Phase II RFI to address this data gap. Given the nature of the constituents associated with SWMU 11, impact to soil, if any, is anticipated to be limited.

The Phase II RFI will include the development of site-specific risk-based action levels for RCRA and facility-related metals (and PAHs). These action levels will be compared with the site surface and subsurface soil data to identify the need for an ICM or further evaluation of site soil as part of the CMS.

Based on the water quality data generated for groundwater samples collected from RFI-10, there is no apparent impact to groundwater quality from SWMU 11. Consequently, no further evaluation of potential impact from this SWMU on groundwater quality is warranted. Impact to groundwater quality from sulfate, chloride, and nitrate, in this area will be monitored

Date:

10/22/98

Page:

4 of 21

as part of an anticipated compliance monitoring program along the facility's downgradient property boundaries.

#### SWMU 13/Crucible Disposal Areas and SWMU 14/Waste Disposal Areas

Potential SWMU-related materials associated with operation of SWMU 13 include: metals, metal salts, and mill scale. Potential SWMU-related materials associated with operation of SWMU 14 include: metals (from swarf, slag, and crucibles).

Potential indications of impact to environmental media in these areas include:

- one or more PAHs (TCL SVOCs) were detected at elevated concentrations in the surface soil samples (0 to 2 ft-bgs) collected from TP-04 and RFI-04 and the surficial soil sample (0 to 3 in-bgs) collected from TP-07
- SVOC TICs were detected at total concentrations above background in the majority of soil samples collected from these locations, particularly in the shallow samples (0 to 3 in-bgs and 0 to 2 ft-bgs)
- PCB Aroclor 1260 was detected at an elevated concentration in the sample collected at RFI-11 from 8 to 10 ft-bgs (SWMU 13C)

Operation of this SWMUs is believed to be the source of these constituents in soil. However, no further action is currently warranted for soils in these areas based on the following factors.

- Site soils will be compared with site-specific risk-based action levels for RCRA and facility-related metals and PAHs as part of the Phase II RFI (Section 7.1.3).
- Although Aroclor was detected at a concentration of 31 mg/kg in the sample collected from 8 to 10 ft-bgs at RFI-11, which exceeds the PCB Spill Cleanup limit of 25 mg/kg in surface and subsurface soils in restricted areas (40 CFR 761.125), there is currently no complete exposure pathway to the subsurface soil.

The absence of key metals (excluding molybdenum) at elevated concentrations and the absence of TCL SVOCs and SVOC TICs in groundwater samples collected from RFI-04 and

SWMU 13A - TP-08

SWMU 14A - TP-07

SWMU 13B - RFI-04 and TP-04 SWMU 14B - RFI-04 and TP-04

SWMU 13C - RFI-11

SWMU 14C - TP-11

<sup>&</sup>lt;sup>1</sup> The following units and sample locations are associated as noted:

7.0

Date:

10/22/98

Page:

5 of 21

RFI-11 suggest little impact from operation of these disposal areas on site groundwater quality. Therefore, no further evaluation of groundwater quality in these areas is warranted.

#### 7.1.5 SWMU 15/Former Waste Acid Surface Impoundments

Potential SWMU-related materials associated with operation of this unit include: nitric, sulfuric, and hydrofluoric acids, lime, and metals. The soil and groundwater sample data collected from RFI-02 do not indicate impact consistent with the materials handled in this SWMU. However, the boring and monitoring well location may not have been installed at the most appropriate location to detect impacts from this unit (Figure 2-1).

During the Phase II RFI, a soil boring/monitoring well will be installed within or immediately downgradient (i.e., to the south) of the former impoundments to address this data gap. The need for future potential action, in response to elevated metals concentrations in soil, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

#### 7.1.6 SWMU 16/Willowbrook Pond

Potential SWMU-related materials associated with operation of this unit include: metals and PCBs. Potential indications of impact on environmental media in this area include:

- PCB Aroclor 1248 was detected at an elevated concentration in the surficial soil sample collected from RFI-15
- cis-1,2-dichloroethene and trichloroethene (TCL VOCs) were detected at elevated concentrations in groundwater samples collected from WP-4 and RFI-15
- ammonia was detected at an elevated concentration in a groundwater sample collected from WP-4

The presence of PCBs in the surficial soil sample collected from RFI-15 is not typical of site conditions. However, the only means of migration from the pond to the ground surface would be via overflow from the pond and Willowbrook Pond is not known to have overflowed its berms in recent years. Consequently, the source of the low PCB concentration reported for this sample is uncertain.

The presence of TCL VOCs in groundwater samples collected from WP-4 and RFI-15 is not typical of site conditions. However, the source of these constituents is not believed to be Willowbrook Pond, based on the detection of these constituents in the groundwater sample

7.0

Date:

10/22/98

Page:

6 of 21

collected during Round 1 from RFI-16, which appears to be hydraulically upgradient of both WP-4 and RFI-15. Similarly, the source of ammonia in the groundwater sample collected from WP-4 is not believed to be Willowbrook Pond.

Although impact to soil and groundwater has occurred in this area, it is not believed to have resulted from operation of this SWMU. No further action is required to address the PCBs detected in the surface soil sample collected from RFI-15, because the reported concentration of 2.6 is below the PCB Spill Cleanup limit of 25 mg/kg for soil in restricted areas. The need for future potential action, in response to elevated metals concentrations in soil, will be addressed during the Phase II RFI, as discussed in Section 7.1.3. Groundwater quality in the area of WP-4 and RFI-15, and RFI-16 (which is hydraulically upgradient of Willowbrook Pond), will be evaluated during the Phase II RFI to determine the source and extent of TCL VOC impact.

# 7.1.7 <u>SWMU 17/Closed Surface Impoundment and SWMU 22/Wastewater Treatment Plant</u> Areas

No further action for soil is currently warranted for this area. The need for future potential action, in response to elevated concentrations of metals in soil will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

Groundwater quality in this general has been impacted by plant operations. The impacted wells include WT-1A, WT-1B, WT-2, WT-3, WT-4, RFI-09, RFI-10, and RFI-11. The parameters indicative of impact include: TCL VOCs and VOC TICs, TCL SVOCs and SVOC TICs, metals and miscellaneous parameters.

Because of the overlapping physical nature of these operations and similarities in the associated substances of concern, accurate identification of the source is difficult. Consequently, AL Tech proposes to evaluate groundwater quality associated with this general area as a CAMU (i.e., CAMU E), which is addressed in Section 7.3.5.

#### 7.1.8 SWMU 18/Grinding Dust Transfer Pile

Potential SWMU-related materials associated with historical operation of this unit include: metals (from grindings and grinding wheel grit), and oils. Potential indications of impact to environmental media from operation of this unit appear to be limited to the presence of

Section: 7.0 Revision: 0

Date: Page: 10/22/98 7 of 21

SVOC TICs at total concentrations at concentrations above background in each of the soil samples collected from TP-02.

Although soil in this area appears to have been impacted by unit operations, no further action is currently warranted for soils. The need for future potential action, in response to elevated concentrations of metals in soil, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

There is no apparent impact to downgradient groundwater quality from this SWMU.

#### 7.1.9 SWMU 19/Former Waste Pile

Potential SWMU-related materials associated with operation of this unit include: metals (from grinding wheels, scrap, shavings), coal, and oils. Potential indications of impact to environmental media from operation of this unit appear to be limited to the presence of benzo(a)anthracene (PAH) at an elevated concentration in the soil sample collected from 9 to 10 ft-bgs at TP-06 and the presence of SVOC TICs at concentrations above background in each of the soil samples collected from this location.

Soil in this area has been impacted, possibly by unit operations. No further action is currently warranted for soils. The need for future potential action, in response to elevated concentrations of metals and benzo(a)anthracene (a PAH) in soil, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

There is no apparent impact to downgradient groundwater quality from this SWMU. Groundwater quality for Wells WT-1A, WT-1B, and WT-4 (downgradient of this SWMU) is believed to be indicative of impact from other sources.

#### 7.1.10 SWMU 20/Waste Asbestos Accumulation Area

Asbestos is the only SWMU-related material associated with this unit. Asbestos was present in either of the two surface soil samples collected from this area during the Phase I RFI. Therefore, it is apparent that unit operations have not impacted site conditions.

Soil in this area has been impacted, although not by operation of this SWMU. No further action is currently warranted for soils. The need for future potential action, in response to elevated metals concentrations in soil, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

Section:

7.0 Revision: 0

Date:

10/22/98

Page:

8 of 21

### 7.1.11 SWMU 21/Grinding Swarf Storage Area

Potential SWMU-related materials associated with operation of this unit include: metals (from grinding wheels and scrap). Potential indications of impact to environmental from operation of this unit include the presence of SVOC TICs at concentrations above background concentrations in each of the soil samples collected from TP-03.

Soil in this area has been impacted, possibly by SWMU operations. No further action is currently warranted for soils. The need for future potential action, in response to elevated concentrations of metals in soil, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

There is no apparent impact to downgradient groundwater quality from this SWMU.

#### 7.1.12 SWMU 23/API Oil/Water Separator

Potential SWMU-related materials associated with operation of this unit include: oils, mill scale, and metals. Potential indications of impact to environmental media in this area, but which are not necessarily related to SWMU operations include:

- phenanthrene (TCL SVOC/PAH) was detected at an elevated concentration in the surface soil sample collected from 0 to 2 ft-bgs at RFI-03; SVOC TICs were detected in the surficial soil sample (0 to 3 in-bgs) collected from this location at a total concentration above background
- molybdenum was detected at elevated concentrations and at the highest concentrations reported in nonunit-specific monitoring wells (i.e., site or perimeter wells) in the groundwater samples collected from RFI-03 during both sampling rounds
- hexavalent chromium was detected in a groundwater sample collected from RFI-03 during Round 2 (but was not detected in the second sample collected during Round 2 or in the sample collected during Round 1)
- fluoride was detected at an elevated concentration and at the highest concentration reported for non-specific monitoring wells (i.e., site or perimeter wells) in the groundwater samples collected from RFI-03 during both sampling rounds

Only phenanthrene is potentially indicative of operations-related impact. The source of groundwater impact is not known.

Section: 7.0 Revision: 0

Date: Page: 10/22/98 9 of 21

Soil in this area has been impacted, possibly by SWMU operations. No further action is currently warranted for soils. The need for future potential action, in response to elevated concentrations of metals and phenanthrene (a PAH) in soil, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

Groundwater quality in this area has been impacted, although probably not as a result of SWMU operations. Due to the location of this area within the central portion of the facility (i.e., limited potential for offsite migration) and an anticipated compliance monitoring program at the facility's downgradient property boundaries, no further action is necessary to address the presence of metals or miscellaneous parameters at elevated concentrations in groundwater samples from RFI-03.

#### 7.2 Analysis of AOC Conditions

#### 7.2.1 AOC 1/Transformers

Potential AOC-related materials associated with operation of the transformers include: PCBs and oils. Potential indications of impact to soils near Transformers T1, T2, and T3 include:

- PCB Aroclors were detected at elevated concentrations in three of the four soil samples collected from Transformer T3
- TPH was detected in soil samples collected from each of the transformer areas at higher concentrations than typically observed in other site samples, particularly samples collected from T3

Both constituents suggest impact from operation or maintenance of these transformers.

The presence of total chromium, molybdenum, and nickel at elevated concentrations (as discussed in Section 6) is typical of site conditions as well as the slag used to cover these areas. The presence of PCBs (which were otherwise rarely detected in site soil samples) and the notably higher concentrations of TPH, are clearly believed to be related to operation of these units.

Soil in this area has been impacted. No further action is currently warranted to address the presence of elevated concentrations of metals in the soil. The need for future potential

7.0

Date:

10/22/98 10 of 21

Page:

action, in response to metals, will be addressed during the Phase II RFI, as discussed in Section 7.1.3. Further action in this area is, however, required to address the presence of PCBs at a concentration above the PCB Spill Cleanup limit of 25 mg/kg for restricted areas in one location in Transformer T3. AL Tech proposes to implement an ICM (Section 8.2.2).

There was no evaluation of potential impact to groundwater quality from these units as neither PCBs nor TPH would be anticipated to be present or present at notable concentrations in groundwater.

#### 7.2.2 AOC 3/Cooling Towers

Potential AOC-related materials associated with these units (AOC 3A and AOC 3B) include: oils, metals, and PCBs.

#### 7.2.2.1 AOC 3A/Rust Furnace Cooling Tower

Indications of potential impact to environmental in this area include:

- the presence of SVOCs
  - 1,4-dichlorobenzene was detected at an elevated concentration in the sample collected from 6 to 8 ft-bgs at RB-07; 1,3-dichlorobenzene, 1,2,4trichlorobenzene, dibenzofuran, and carbazole, were detected in samples collected from 0 to 2 and 6 to 8 ft-bgs
  - PAHs were detected at elevated concentrations in samples collected from 0 to 2 and 6 to 8 ft-bgs at this location
  - SVOC TICs were detected at concentrations above background in soil samples collected from 0 to 2, 6 to 8, and 8 to 10 ft-bgs at this location
- PCB Aroclors were detected at elevated concentrations in samples collected from 0 to 2 and 6 to 8 ft-bgs at RB-07

Both of these factors suggest impact from operation of this unit. However, the presence of the SVOC TICs, PAHs and PCBs could also be related to the historical operation of a former transformer in this area.

Soil in this area has been impacted, possibly as a result of operation of this SWMU. No further action is currently warranted for soil containing metals and PAHs at elevated concentrations. The need for future potential action, in response to elevated concentrations of metals and PAHs in soil samples, will be addressed during the Phase II RFI, as discussed in

Section: 7.0 Revision: 0

Date:

10/22/98

Page:

ge: 11 of 21

Section 7.1.3. No further action is required to address PCBs in this area because the reported concentrations were below the PCB Spill Cleanup limit of 25 mg/kg for soil in restricted areas.

There was no evaluation of potential impact to groundwater quality from this unit as neither the SVOCs nor PCBs would be anticipated to be present or present at notable concentrations in groundwater.

#### 7.2.2.2 AOC 3B/HAP Cooling Tower

The only potential indication of impact to environmental media in the area of this unit, is the detection of SVOC TICs in the surface soil sample collected from RB-06 (0 to 2 ft-bgs) at a total concentration higher than reported in background samples.

Additional surface soil samples will be completed in immediately proximity of this cooling tower during the Phase II RFI. The location in which RB-06 was completed during the Phase I RFI was not appropriate for evaluating potential impacts from this AOC. The need for future potential action, in response to elevated concentrations of metals in soil samples collected from RB-06, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

There was no elevation of potential impact to groundwater quality from this unit as neither the SVOCs nor PCBs would be anticipated to be present or present at notable concentrations in groundwater.

#### 7.2.3 AOC 6/Former Above Ground Fuel Oil Tank

Fuel oil and its constituents are the only potential AOC-related materials associated with this unit. Indications of potential impact to environmental media in this area, from operation of AOC 6, include:

- the presence of PAHs (TCL SVOCs) at elevated concentrations in the soil sample collected at TP-09 from 0 to 2 ft-bgs
- the presence of SVOC TICs at total concentrations above background, and increasing total SVOC TIC concentrations with increased sample depth
- the presence of TPH at concentrations above those typically observed in site soil samples, particularly in the sample collected from 0 to 2 ft-bgs

The location in which RB-06 was completed during the Phase I RFI was not appropriate for evaluating potential impacts from this AOC. Additional surface soil samples will be

7.0

Date:

10/22/98 12 of 21

Page:

completed in immediately proximity of this cooling tower during the Phase II RFI. The need for

future potential action, in response to elevated concentrations of metals and PAHs in soil

samples collected from RB-06, will be addressed during the Phase II RFI, as discussed in Section

7.1.3.

There is no apparent impact to groundwater quality data from this AOC. Groundwater

quality for Well WT-1A is not believed to be indicative of impact from AOC 6, due to the nature

of the constituents detected in samples collected from this well.

7.2.4 AOC 7/Scrap Steel Storage Areas

Potential AOC-related materials associated with operation of these units (AOC 7A, 7B,

and 7C) include: oils and metals.<sup>2</sup> Indications of potential impact to environmental media

included:

• the presence of PAHs (TCL SVOCs) at elevated concentrations in samples collected

at TP-05 from ground surface to a depth of 3 feet

• the presence of SVOC TICs at total concentrations higher than those reported for

background in each of the three samples collected from TP-01, three of four samples

collected from TP-05, and in both samples collected from TP-10

In addition, total chromium and nickel were detected at elevated concentrations in most of the

samples collected from test is completed in these areas to depths of 9 feet (TP-01, TP-05, and

TP-10), which is somewhat unusual for site soils.

Soil in this area has been impacted, possibly as a result of operation of this SWMU. No

further action is currently warranted for soil. The need for future potential action, in response to

elevated concentrations of metals in soil samples, will be addressed during the Phase II RFI, as

discussed in Section 7.1.3.

There is no apparent impact to downgradient groundwater quality from operation of these

areas.

<sup>2</sup> The following units and sample locations are associated as noted:

AOC 7A - TP-01, AOC 7B - TP-05, AOC 7C - TP-10

**ESC** 

Section: 7.0 Revision: 0

Date:

10/22/98

Page:

13 of 21

### 7.2.5 AOC 8/Former Coal Storage Area

Potential AOC-related materials associated with operation of this unit include: PAHs (TCL SVOCs). The only indication of potential impact from operation of this unit is the presence of PAHs at elevated concentrations in the shallow soil sample(s) collected at RB-03. However, no further action is currently warranted for soil. The need for future potential action, in response to elevated concentrations of metals and PAHs in soil samples, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

There was no evaluation of potential impact to groundwater quality from this unit. In addition, PAHs would not typically be anticipated to be present or present at notable concentrations in groundwater.

#### 7.2.6 AOC 11/Former Coal Gasification Plant

Potential AOC-related materials associated with operation of this unit include: coal derivatives and cyanide. Impact from operation of this unit would be anticipated to include the presence of PAHs and cyanide at elevated concentrations throughout the soil column or in groundwater or both. The only potential indication of impact from this unit is the detection of five PAHs at elevated concentrations in the sample collected at RFI-06 from 0 to 3 in-bgs; phenanthrene was also detected at an elevated concentration in the sample collected at this location (0 to 2 ft-bgs).

The presence of elevated concentrations of PAHs at the ground surface in this area may also be related to the nearby Former Coal Storage Area (AOC 8), because the coal storage area was accessed through the area in which RFI-06 was completed.

Soil in this area has been impacted, possibly as a result of operation of this AOC. No further action is currently warranted for soil. The need for future potential action, in response to elevated concentrations of metals and PAHs in soil samples, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

There was no apparent impact to groundwater quality from this unit.

7.0

Date:

10/22/98

Page: 14 of 21

#### 7.3 **Analysis of CAMU Conditions**

Four CAMUs were identified in the NYSDEC-approved Work Plan, including:

- CAMU A Former LAP West Pickling Facility Area
- CAMU B Former BRP Pickling Facility Area
- CAMU C BFS Pickling Facility
- CAMU D Former LAP East Pickling Facility Area

As stated in Section 7.1, AL Tech proposes to classify another area as a CAMU, CAMU E. AL Tech believes this classification is appropriate based on the variety of constituents detected in groundwater proximate to SWMU 13C, SWMU 17, and SWMU 22, and the variety of activities that have historically taken place in this area.

#### 7.3.1 CAMU A/Former LAP West Pickling Facility

Each of the following factors indicates impact from operation of this unit on adjacent soil and groundwater quality:

- lead was detected in the TCLP extract for the soil sample collected from 0 to 2 ft-bgs at RB-04 at a concentration above the TC limit
- hexavalent chromium was detected at an elevated concentration in the soil sample collected from 2 to 4 ft-bgs at RB-05; pHs in the soil samples collected from this location ranged from approximately 4 s.u. (0 to 4 ft-bgs) to 9.93 s.u. (8 to 10 ft-bgs)
- hexavalent chromium was detected at elevated concentrations in soil samples collected from 6 to 8 ft-bgs at LWB-02 and LWB-03; pHs in the soil samples collected from the interior borings ranged widely with depth at each location (from 3.52 to 11.06 s.u.)
- total chromium was detected in the TCLP extract for the soil sample collected from 6 to 8 ft-bgs at LWB-03 at a concentration above the TC limit
- a wide range of metals and cyanide were detected at elevated concentrations in one or more groundwater samples collected from LAW-5 and LAW-6
- total chromium and hexavalent chromium were detected at elevated concentrations in the groundwater samples collected from LAW-5 and LAW-6
- pHs in the groundwater samples collected from LAW-6 were more basic than typically observed in site groundwater (8.98 and 9.19 s.u.)

Section: 7.0 Revision: 0

Date: 10/22/98 Page: 15 of 21

• fluoride, chloride, nitrate, and sulfate were detected at elevated concentrations in one or more groundwater samples collected from LAW-5 and LAW-6

Soil and groundwater in this area have been affected. AL Tech prepared and submitted an ICM work plan to perform additional investigation and, as appropriate, implement corrective measures (ESC 1997) for this CAMU and CAMU C. The work plan was approved by NYSDEC (1997). Implementation of the work plan began in September 1997; a summary of the findings to date is presented in Appendix S. Additional ICM work is anticipated to be performed during the fall of 1998. The additional work will include a soil ICM to address conditions at RB-04 (Section 8.2.2).

As part of the effort to address this area, AL Tech also performed limited remediation of the pickle house area which consisted of the removal of 95 percent of the crystalline Kolene bath and the sodium hydride bath and repair of the LAP West Pickle House roof. A summary of these activities is also presented in Appendix S.

#### 7.3.2 CAMU B/Former BRP Pickling Facility

Only two factors indicate impact from operation of this unit on adjacent soil and groundwater: pH levels in soil samples collected from the interior borings varied from 4.48 to 10.32 s.u. and sulfate was detected at elevated concentrations in the groundwater samples collected from MW-1.

Based on the current understanding of groundwater flow at the site, RFI-13 may not have been appropriately located to evaluate potential impact of this CAMU on groundwater quality. Consequently, two shallow monitoring wells will be installed at locations downgradient of the former BRP Pickle Facility during the Phase II RFI to evaluate groundwater quality.

The need for future potential action, in response to elevated concentrations of metals in soil samples collected from RFI-13, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

#### 7.3.3 CAMU C/BFS Pickling Facility

Three factors indicate impact to environmental media from operation of this unit:

• total chromium and hexavalent chromium were detected at elevated concentrations in groundwater samples collected from MW-3

Section: 7.0 Revision: 0

Date: Page:

10/22/98 16 of 21

• total chromium was detected at elevated concentrations in groundwater samples collected from RFI-17

• chloride, nitrate, and sulfate were detected at elevated concentrations in groundwater samples collected from MW-3, RFI-07, and RFI-17.

Soil and groundwater in this area have been affected by pickling operations. AL Tech prepared and submitted an ICM work plan to perform additional investigation and, as appropriate, implement corrective measures (ESC 1996a) for this CAMU and CAMU A. The work plan was approved by NYSDEC (1997). Implementation of the ICM work plan for this area has not been initiated, because CAMU C is located within the central portion of the facility and poses negligible potential for offsite impact and because BFS is currently operational.

#### 7.3.4 CAMU D/Former LAP East Pickling Facility

Each of the following factors indicates impact to environmental media from operation of this unit on soil and groundwater quality:

- trichloroethene (TCL VOC) was detected at elevated concentrations in 5 of 7 soil samples collected at interior boring locations at depths to 13 feet and cis-1,2-dichloroethene (TCL VOC) was detected at an elevated concentration in samples collected from 7 to 9 and 11 to 13 ft-bgs at LEB-03
- vinyl chloride, 1,1-dichloroethene, trans-1,2-dichloroethene, cis-1,2-dichloroethene, and trichloroethene (TCL VOCs) were detected at elevated concentrations in the groundwater samples collected from LAE-4; VOC TICs were also detected in the groundwater samples collected from this location
- naphthalene (TCL SVOC/PAH) was detected at an elevated concentration in a groundwater sample collected from LAE-4

Soil and groundwater in this area have been affected by CAMU operations. The source and extent of TCL VOCs in both media will be defined during the Phase II RFI. The need for future potential action, in response to elevated concentrations of metals and PAHs in soil samples, will be addressed during the Phase II RFI, as discussed in Section 7.1.4.

7.0

Date:

10/22/98

Page:

17 of 21

#### 7.3.5 CAMU E/Northwest Quadrant Fill Area

The detection of SVOC TICs at concentrations above background in several of the soil samples collected from RFI-09 and RFI-10 indicate potential impact from facility operations in this area. The presence of the TICs does not warrant further investigation of soils. The need for future potential action, in response to elevated concentrations of metals in soil, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

Indications of impact from facility operations on groundwater quality in this area include:

- vinyl chloride, cis-1,2-dichloroethene, and trichloroethene (TCL VOCs) at elevated concentrations in groundwater samples collected from WT-2
- fluoride was detected at an elevated concentration in a groundwater sample collected from WT-3
- chloride was detected at an elevated concentration in a groundwater sample collected from WT-1B
- sulfate was detected at elevated concentrations in groundwater samples collected from WT-3 and WT-4
- pH, total phenols, and ammonia were detected at elevated concentrations in the groundwater samples collected from WT-2

The presence of most of these constituents is not indicative of impact from general operations but a variety of potential sources.

The nature of these constituents, excluding the TCL VOCs, do not warrant further investigation. In addition, the location of this CAMU limits the potential for offsite migration of these constituents at elevated concentrations. However, groundwater quality downgradient of this CAMU is anticipated to be evaluated as part of a compliance monitoring program along the downgradient boundaries of the facility.

The nature of the TCL VOCs suggests that additional evaluation of this area, particularly in proximity to WT-2, should be addressed during the Phase II RFI.

Section: 7.0 Revision: 0

Date:

10/22/98

Page:

18 of 21

#### 7.4 Analysis of General and Perimeter Site Conditions

The general site and perimeter environmental media sample locations include GS-01 through GS-05, RFI-01, RFI-08, RFI-12, and RFI-16 (GS-01 and GS-02 were also addressed in Section 7.1.10). The only indications of impact from site operations, in addition to elevated concentrations of total chromium, molybdenum, and nickel in the soil and molybdenum in the groundwater, include:

- lead was detected in the TCLP extract for the soil sample collected from 0 to 3 in-bgs at RFI-08 at a concentration above the TC limit
- the presence of PAHs (TCL SVOCs) at elevated concentrations in the surficial soil sample collected from RFI-08
- pHs of 8.5 s.u. and higher in soil samples collected from RFI-16
- the presence of cis-1,2-dichloroethene and trichloroethene at elevated concentrations in the groundwater sample collected from RFI-16 (Round 1)

The exact location and nature of the sources of impact are not known.

Except for RFI-08, the need for future potential action in response to elevated concentrations of metals and PAHs in soil samples, will be addressed during the Phase II RFI, as discussed in Section 7.1.3.

Because lead was also detected at an elevated concentration in one of the groundwater samples collected from RFI-08 and this well is located near the downgradient facility boundary, additional investigation of groundwater quality is warranted during the Phase II RFI. A soil ICM will also be performed to address the presence of lead above the TC limit in the surficial soil sample collected from this location. Both scopes of work are addressed in Section 8.2.

As discussed in Sections 7.1.6, additional investigation of soil and groundwater in the area of RFI-16 will also be performed during the Phase II RFI.

Section: 7.0 Revision: 0

Date:

10/22/98

Page:

ge: 19 of 21

### 7.5 Unnamed Tributary to Crooked Brook

#### 7.5.1. Surface Water

Only one constituent was detected at an elevated concentration in the surface water samples collected during implementation of the Phase I RFI: iron was detected in each of the samples collected from S-01, S-02, and S-03 at concentrations slightly above the Class D water quality standard.

Based on these data, it does not appear that surface water quality in the unnamed tributary to Crooked Brook has been adversely affected by facility operations. Therefore, no further action is necessary for surface water.

#### 7.5.2 Sediment

The data for sediment samples collected from S-01, S-02, and S-03 suggest impact to sediment. This conclusion is based on these factors:

- arsenic, cadmium, copper, manganese, nickel, and lead were detected at concentrations above the Lowest Effect Level in one or more samples collected from each of the three locations
- chromium was detected at concentrations above the Lowest Effect Level in samples collected from S-01 and S-03 (duplicate)
- nickel was detected at a concentration above the Severe Effect Level in the samples collected from S-02 and S-03
- lead was detected at a concentration above the Severe Effect Level in the sample collected from S-03
- hexavalent chromium was detected in the sample collected from S-01 at a concentration slightly above the detection limit (there is no established criteria applicable to hexavalent chromium in sediment)
- PAHs (TCL SVOCs) were detected at elevated concentrations in samples collected from S-01 (chrysene only) and S-03 (chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene
- SVOC TICs were detected in samples collected from S-01 and S-02 (there is no established criteria applicable to SVOC TICs in sediment)

Section: 7.0 Revision: 0

Date:

10/22/98

Page:

20 of 21

• chloride was detected in the sample collected from S-01 at a notably higher concentration (15 to 20 times) than in the samples collected from S-02 and S-03

Due to the apparent impact to the stream and uncertainty as to "background" conditions based on the location of S-01, additional investigation of sediments in the tributary is warranted as part of the Phase II RFI.

#### 7.6 Air Pathways Analysis Summary

The evaluation of predicted fenceline and off-site ambient air concentrations of  $PM_{10}$  and TAL Inorganics using the ISCST3 model were shown to be below state and federal ambient concentration limits. The impact of TAL Inorganics on off-site receptors was less than one percent of the cited state limit for all compounds. The 24-hour and annual concentration of  $PM_{10}$  was found to be 80 percent and 81 percent, respectively of the federal limit.

#### 7.7 Process Pits and Sewers

#### 7.7.1 Process Pits

The findings of the process pit inspections suggest there is not a significant potential for any of the pits to have affected adjacent soil and groundwater quality. The only pits proximate to sampling locations for soil or groundwater were those associated with the facility's WWTP, RFI-09. Although this location appears to have been generally impacted by site operations, there is no clear indication that any of the impact is associated with the inspected pits (Nos. 26, 27, and 29).

The inspection did, however, identify the need to perform repairs, cleanouts, or both for several of the pits, including:

|                                         |               | Proposed        |
|-----------------------------------------|---------------|-----------------|
| Pit No./Description                     | <u>Status</u> | Action          |
| Nos. 3E and 3W/Drawing Oil Storage Pits | inactive      | cleanout        |
| No. 8/Shark Pit                         | active        | cleanout/repair |
| No. 11/Olson Pump Pit                   | active        | repair          |
| No. 16/Shape Mill Pit (scale pit only)  | active        | repair          |
| and Mini Mill Pit                       | active        | cleanout/repair |

Section: 7.0 Revision: 0

Date: 10/22/98 Page: 21 of 21

Proposed

Pit No./DescriptionStatusActionNo. 17/HAP Pump PitactiverepairNo. 29/Serpentine Outfallactiverepair

#### 7.7.2 Process Sewers

It appears that the handling of process wastewaters has had a limited affect on groundwater quality and (to a less defined extent) soils, in a limited area of the site based on:

- the known locations of the historical and current process sewers
- history of reportable releases
- groundwater conditions proximate to the WWTP and former closed surface impoundment,

AL Tech is currently evaluating the most appropriate means of upgrading the existing pickling process sewer system (SWMU 24). The upgrade is anticipated to remove further significant sources of pickling wastes to site groundwater, as discussed in Section 5.

Table 7-1

# RCRA Corrective Action Program Summary Phase I RFI AL Tech Specialty Steel Corporation

Dunkirk, New York Facility

|                     |                                                          | <del></del> |                  | Action Items (c) |            |        |  |
|---------------------|----------------------------------------------------------|-------------|------------------|------------------|------------|--------|--|
|                     | Identified Action Items (d) Anticipated Action Items (e) |             |                  |                  |            |        |  |
| Unit No. (a)        | Unit Description (b)                                     | Order       | Phase I RFI      | Phase II RFI     | <u>ICM</u> | CMS    |  |
| SWMUs               |                                                          |             |                  |                  |            |        |  |
| SWMU 5              | Former Grinding Room Pickling Process                    | RFI         | NFA              | ~                | -          |        |  |
| SWMU 9              | Former TCA Container Storage Area                        | RFI         | NFA              | -                |            |        |  |
| SWMU 10 (f)         | Waste Container Accumulation Areas                       | NFA         | -                |                  |            | -      |  |
| SWMU 10A            | - near BFS                                               |             |                  |                  | _          | -      |  |
| SWMU 10B            | - in Old Hot Top Building/HAP                            |             |                  |                  |            |        |  |
| SWMU IOC            | - in Warehouse/HAP                                       |             |                  |                  |            |        |  |
| SWMU 11             | Shark Pit Residual Material Loading Area                 | RFI         | DL II DTI        | NFA              |            |        |  |
| SWMU 12             | Ç.                                                       |             | Phase II RFI (g) | NFA              | •          | -      |  |
|                     | Former Lime Disposal Area                                | RFI         | NFA              |                  | -          | -      |  |
| SWMU 13             | Crucible Disposal Areas                                  | RFI         | NFA              | -                | -          | •      |  |
| SWMU 13A            | - near BFS                                               |             |                  |                  |            |        |  |
| SWMU 13B            | - near HAP Parking Lot                                   |             |                  |                  |            |        |  |
| SWMU 13C            | - near BRP                                               |             |                  |                  |            |        |  |
| SWMU 14             | Waste Disposal Facilities                                | RFI         | NFA              | -                | -          | -      |  |
| SWMU 14A            | - near BFS                                               |             |                  |                  |            |        |  |
| SWMU 14B            | - near HAP Parking Lot                                   |             |                  |                  |            |        |  |
| SWMU 14C            | - near BRP                                               |             |                  |                  |            |        |  |
| SWMU 15             | Former Waste Acid Surface Impoundments                   | RFI         | Phase II RFI (g) | NFA              | -          | •      |  |
|                     | (15A and 15B)                                            |             |                  |                  |            |        |  |
| SWMU 16 (h)         | Willowbrook Pond                                         |             |                  |                  |            |        |  |
|                     | - investigation                                          | RFI         | Phase II RFI (i) | CMS              | -          | CM     |  |
|                     | - closure                                                | -           |                  | -                | -          | CM (j) |  |
| SWMU 17             | Closed Surface Impoundment                               | RFI         | NFA              | -                | -          | -      |  |
| SWMU 18             | Grinding Dust Transfer Pile                              | RFI         | NFA              | -                |            | -      |  |
| SWMU 19             | Former Waste Pile                                        | RFI         | NFA              | -                |            |        |  |
| SWMU 20             | Waste Asbestos Accumulation Area                         | RFI         | NFA              | -                |            |        |  |
| SWMU 21             | Grinding Swarf Storage Area                              | RFI         | NFA              | -                | _          |        |  |
| SWMU 22             | Wastewater Treatment Plant                               | RFI         | NFA              |                  | -          | _      |  |
| SWMU 23             | API Oil/Water Separator                                  | RFI         | NFA              | -                | -          | -      |  |
| SWMU 24             | Process Sewers                                           | RFI         | NFA (k)          | +                | -          |        |  |
| AOCs                |                                                          |             |                  |                  |            |        |  |
| AOC 1               | Transformers                                             |             |                  |                  |            |        |  |
| AUC I               | - Transformer T1                                         | DIT         | NICA             |                  |            |        |  |
|                     |                                                          | RFI         | NFA              | -                | -          | -      |  |
|                     | - Transformer T2                                         | RFI         | NFA              | •                |            |        |  |
|                     | - Transformer T3                                         | RFI         | ICM              | •                | CMS        | NFA    |  |
|                     | - Transformer T4                                         | RFI (l)     | NFA (l)          | •                | -          | -      |  |
|                     | - Transformer T5                                         | RFI (l)     | NFA (I)          | -                | -          | -      |  |
|                     | - Transformer T6                                         | RFI (l)     | NFA (l)          | -                | -          | -      |  |
| AOC 2 (f)           | Battery Storage Areas                                    | NFA         | -                | -                | -          | -      |  |
| AOC 3               | Cooling Towers and Process Pits                          | RFI         |                  |                  |            |        |  |
| AOC 3A              | - Rust Furnace Cooling Tower                             |             | NFA              | •                | -          | -      |  |
| AOC 3B              | - HAP Cooling Tower                                      |             | Phase II RFI (g) | NFA              | -          | -      |  |
| Process Pits        |                                                          |             | NFA (m)          | -                | -          | -      |  |
| AOC 4 (f)           | Former Heat Treating Facility                            | NFA         | -                | -                | -          | •      |  |
| AOC 5               | Lucas Avenue Oil Tanks                                   | RFI         | NFA              | -                | -          | -      |  |
| AOC 5A              | - LAP West Oil Tanks                                     |             |                  |                  |            |        |  |
| AOC 5B              | - LAP East Oil Tanks                                     |             |                  |                  |            |        |  |
| AOC 6               | Former Aboveground Fuel Oil Tank                         | RFI         | NFA              | •                | -          | -      |  |
| AOC 7               | Scrap Steel Storage Areas                                | RFI         | NFA              | -                | -          | -      |  |
| AOC 7A              | - HAP                                                    |             |                  |                  |            |        |  |
| AOC 7B              | - BFS west                                               |             |                  |                  |            |        |  |
| A0C 7C              | - BFS east                                               |             |                  |                  |            |        |  |
| AOC 8               | Former Coal Storage Area                                 | RFI         | NFA              | -                | -          |        |  |
|                     | 11                                                       | n m         | Phase II RFI     | CMS              |            | CM     |  |
| AOC 9               | Unnamed Tributary to Crooked Brook                       | RFI         | LHTETHELL        | CIVIS            | -          | CIVI   |  |
| AOC 9<br>AOC 10 (f) | Oiled Roads                                              | NFA         | -                | -                | -          | - CM   |  |

#### Table 7-1 (continued)

#### RCRA Corrective Action Program Summary Phase I RFI AL Tech Specialty Steel Corporation

Dunkirk, New York Facility

Page 2 of 2

|             |                                      | **COLUMN TO THE TOTAL THE TOTAL TO AL TO THE | Action Items                    |              |                   |            |  |  |  |
|-------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|-------------------|------------|--|--|--|
|             |                                      | Identifie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d Action Items                  | Ant          | icipated Action I | tems       |  |  |  |
| Unit No.    | Unit Description                     | <u>Order</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phase I RFI                     | Phase II RFI | <u>ICM</u>        | CMS        |  |  |  |
| CAMUs       |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| CAMU A      | Former LAP West Pickling Facility    | RFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ICM                             | -            | CMS               | CM'(n)     |  |  |  |
| SWMU 1 (o)  | Former LAP West Pickle Facility      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              | 01.10             | 0.1.1 (11) |  |  |  |
| SWMU 6      | Former Barium Chloride Bath          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| SWMU 7B     | Continuous Lead Coating              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| SWMU7C      | Batch Lead Coating                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| SWMU 7E (p) | Non-Electrolytic Copper Coating      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| SWMU 8 (f)  | Former LAP West Neutralization Plant |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| CAMU B      | Former BRP Pickling Facility         | RFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phase II RFI (i)                | CMS          | _                 | CM         |  |  |  |
| SWMU 2 (q)  | Former BRP Pickle Facility           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| CAMU C      | BFS Pickling Facility                | RFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ICM                             | -            | NFA               |            |  |  |  |
| SWMU 3      | BFS Pickle Facility                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| CAMU D      | Former LAP East Pickling Facility    | RFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phase II RFI                    | ICM          | CMS               | CM         |  |  |  |
| SWMU 4      | Former LAP East Pickle Facility      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| SWMU 7A     | Continuous Lead Coating              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| SWMU7D      | Copper Coating                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                   |            |  |  |  |
| CAMU E (r)  | Northwest Quadrant Fill Area         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phase II RFI                    | CMS          | -                 | NFA        |  |  |  |
| Other       | Site Soils (r)                       | RFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phase II RFI (t)                | CMS          |                   | СМ         |  |  |  |
|             | RFI-08                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phase II RFI (u)<br>and ICM (v) | NFA (u)      | CMS (v)           | NFA (v)    |  |  |  |

- a/ Unit numbers are as listed in the Order, not necessarily as defined in the RCRA Facility Assessment (RFA).
  SWMU = solid waste management unit. AOC = area of concern; CAMU = corrective action management unit.
- b/ TCA = 1,1,1-Trichloroethane; BFS = Bar Finishing & Storage; HAP = Howard Avenue Plant; BRP = Brigham Road Plant; LAP = Lucas Avenue Plant.
- c/ Identified Action Items include those actions required under the Order and as identified based on the findings of the Phase I RCRA Facility Investigation.

  Anticipated Action Items include those actions that have yet to be identified in an approved document.
- d/ RFI = RCRA Facility Investigation (Phase I RFI); ICM = interim corrective measure; NFA = no further action; "-" = not applicable.
- e/ CMS = Corrective Measure Study; CM = corrective measure.
- f/ The Order indicates that no further action was required for these SWMUs and AOCs based on information presented in the RCRA Facility Assessment (Appendix B, Section C).
- g/ Investigation during the Phase II RFI is necessary to address data gaps identified during the Phase I RFI (i.e., inaccurate location of monitoring wells or soil samples).
- h/ The Order requires both the investigation of this area as part of the RFI and closure of the impoundment (Appendix B, Prioritization Schedule, Tier II).
- i/ At present, it is not believed that the source of chlorinated volatile organic compounds at concentrations above the potentially applicable criteria (detected in groundwater samples collected from WP-4, RFI-15, and RFI-16) is Willowbrook Pond. The SWMU has been identified to provide an understanding of the general area of interest.
- j/ A conceptual plan for closure of the impoundment was previously developed. It is likely that AL Tech may wish to re-evaluate the existing plan as part of the CMS.
- k/ As part of facility operations practices, AL Tech intends to perform periodic pressure testing of the process sewers to ensure their integrity.

  No further action is believed to be warranted under the RCRA Corrective Action Program.
- 1/ As agreed to by representatives of AL Tech and NYSDEC, these transformer areas were cleaned and wipe test performed. Additional cleaning and confirmatory sampling of T4 and T6 are to be performed.
- m/ As part of facility operations practices, AL Tech intends to make necessary repairs to the process pits. No further action is believed to be warranted under the RCRA Corrective Action Program.
- n/ The corrective measure is anticipated to address groundwater. It is anticipated that the ICM for soil at RB-04 will suffice as a final measure.
- o/ The Order requires both the investigation of this area as part of the RFI and demolition of the Former LAP West Pickling Facility (Appendix C, Prioritization Schedule, Tier II).
- p/ During the Phase I RFI, it was determined that the non-electrolytic copper coating system was never constructed.
- q/ The Order requires both the investigation of this area as part of the RFI and closure of the waste acid pit (Appendix B, Prioritization Schedule, Tier II).
- t/ This CAMU includes areas potentially impacted by SWMUs 13C, 17, and 22, and historical and recent process line leaks.
- s/ Surface and subsurface soil samples were collected throughout the facility, including locations not associated with a specific unit (i.e., general sample locations). Impact to the soils typically appears to be associated with general operations and CAMU-, SWMU-, or AOC-specific operations. Therefore, further evaluation of soils during the Phase II RFI, with regard to metals and PAHs, will be on a facility-wide basis.
- V The Phase II RFI will include the calculation of site-specific risked-based action levels for metals and PAHs in soil for further evaluation in the CMS, consistent with that performed for the AL Tech facility in Watervliet, New York.
- u/ Groundwater quality at RFI-08 will be re-evaluated as part of the Phase II RFI; no further action is anticipated.
- v/ Surface soil conditions at RFI-08 will be addressed through an ICM. It is anticipated that the ICM for soil at RFI-08 will suffice as a final measure.

8.0

Date:

10/22/98 1 of 13

Page:

#### 8.0 **Summaries and Recommendations**

Summaries and recommendations resulting from the Phase I RFI are presented by environmental media in Section 8.1. Only the SWMUs, AOCs, and CAMUs for which additional work has been identified are discussed. The recommended scopes of additional work to be implemented as part of the Phase II RFI or an ICM are presented in Section 8.2.

As shown in Table 7-1, no further action (NFA) has been determined for the most of the SWMUs and AOCs. Of the 17 site SWMUs not incorporated into CAMUs, only three have been identified for additional action under the RCRA Corrective Action Program:

- SWMU 11 Shark Pit Residual Material Loading Area
- SWMU 15 Former Waste Acid Surface Impoundments (15A and 15B)
- SWMU 16 Willowbrook Pond

Investigation of SWMUs 11 and 15 during the Phase II RFI has only been proposed to address data gaps (i.e., inappropriate placement of soil borings/well during the Phase I RFI). Investigation of SWMU 16 during the Phase II RFI has been proposed to evaluate the extent and source of VOCs in groundwater proximate to and hydraulically upgradient of Willowbrook Pond, although the pond itself is not believed to be a source of impact or to have been impacted.

Of the 11 site AOCs, only three have been identified for additional action:

- AOC 1 Transformer T3<sup>1</sup>
- AOC 3B HAP Cooling Tower
- AOC 9 Unnamed Tributary to Crooked Brook

AL Tech proposes to implement an ICM at Transformer T3, which is anticipated to be the final measure selected for this area. Investigation of AOCs 3B and 9 during the Phase II RFI has only been proposed to address data gaps (i.e., inappropriate placement of soil boring/sample locations during the Phase I RFI).

Each of the CAMUs specified in the NYSDEC-approved work plan (CAMUs A through D) and proposed CAMU E, have been identified for additional action:

<sup>&</sup>lt;sup>1</sup> Additional cleaning and confirmatory sampling for Transformers T4 and T6 will be performed by AL Tech. The results will be included in the report of findings for the Phase II RFI.

Section:

8.0 Revision:

Date:

10/22/98

Page:

2 of 13

• CAMU A – Former LAP West Pickling Facility Area

- CAMU B Former BRP Pickling Facility Area
- CAMU C BFS Pickling Facility
- CAMU D Former LAP East Pickling Facility Area
- CAMU E Northwest Quadrant Fill Area

Further evaluation of the areas proximate to CAMU B, CAMU D, and CAMU E is proposed as part of the Phase II RFI. CAMU A and CAMU C are to be addressed through implementation of ICMs.

Additional work has been recommended for the location of Well RFI-08 as part of the Phase II RFI and an ICM.

#### 8.1 **Site Summaries**

Sections 8.1.1 through 8.1.3 present a generalized summary of site soil, groundwater, and surface water and sediment conditions based on analytical parameter groups (e.g., TAL Inorganics). SWMUs, AOCs, and CAMUs identified for additional work based on apparent or potential impact from the various parameter groups are also identified.

#### 8.1.1 Site Soil

Soil samples collected at the site were typically analyzed for metals, VOCs, SVOCs, and PCBs. As would be expected at a steel-making facility, the data indicated that site soils were generally not impacted, except by metals.

Limited investigation of soil in specific areas has been proposed for implementation during either a Phase II RFI or an ICM to address the presence of TAL Inorganics, TCL VOCs. TCL SVOCs, and TCL PCBs, as described below.

Potential impact to groundwater from site soil will be evaluated through the implementation of a compliance monitoring program along the facility's downgradient boundaries.

Date: 10/22/98

Page:

3 of 13

8.0

0

#### 8.1.1.1 TAL Inorganics

AL Tech currently recommends no further action for most site soil.

Based on the findings of the Air Pathway Analysis, site soils do not pose an offsite risk. However, as part of the Phase II RFI, it is recommended that site-specific risk-based action levels for onsite soils be calculated for select TAL Inorganics and PAHs. These action levels will then be used to determine if further evaluation of site soil is to be included as part of the CMS. A similar approach has been used at AL Tech's facility in Watervliet, New York.

In addition, the need to address site surface soil conditions will be re-evaluated during the Phase II RFI based on the results of the additional sediment sampling program for the unnamed tributary (i.e., if offsite sediments have been impacted by facility operations some action may be required).

The following activities are recommended as part of the Phase II RFI or an ICM:

#### • Phase II RFI

- SWMU 11, Shark Pit Residual Material Loading Area, based on the absence of soil samples in the immediate area of this SWMU
- SWMU 15, Former Waste Acid Impoundment, based on the absence of soil samples and monitoring well within or downgradient of the closed impoundments
- CAMU B, BRP Pickling Facility, based on the absence of soil samples and monitoring well within or downgradient of the pickling area

#### • ICM

- CAMU A, Former LAP West Pickling Facility, based on exceedance of the TC limits in soil samples collected from RB-04 (for lead) and LWB-03 (for total chromium) and metals and miscellaneous parameters at elevated concentrations in groundwater samples collected from LAW-5 and LAW-6 (work plan addressing groundwater previously approved)
- RFI-08, based on exceedance of the TC limit for lead in the surficial soil sample collected from RFI-08 and the detection of lead at an elevated concentration in a groundwater sample collected from this location (further evaluation of groundwater in this area will be addressed through the Phase II RFI)

#### 8.1.1.2 TCL VOCs

TCL VOCs were detected at elevated concentrations in one soil sample collected from AOC 3A, Rust Furnace Cooling Tower, and five soil samples collected from within CAMU D, Former LAP East Pickling Facility.

8.0

Date:

10/22/98

Page:

4 of 13

Additional investigation is not warranted to address the detection of 1,3-dichlorobenzene in the sample collected from 6 to 8 ft-bgs at RB-07, in AOC 3A. This constituent was not detected in any other site environmental media samples.

Chlorinated volatile compounds were detected in soil samples collected within CAMU D. Similar constituents were also detected in groundwater samples collected from nearby LAE-4. Further evaluation of CAMU D will be performed during the Phase II RFI to address and identify the extent of potential risks associated with these conditions.

#### 8.1.1.3 TCL SVOCs

TCL SVOCs (typically PAHs) were detected in approximately one-half of the sampling locations across the site at elevated concentrations and typically in the surface soil samples (0 to 3 in-bgs and 0 to 2 ft-bgs). Additional investigation is not needed to address PAHs at this time. However, as part of the Phase II RFI, site-specific risk-based action levels for site soils will be calculated for select TAL Inorganics and PAHs, as discussed in Section 8.1.1.1.

#### 8.1.1.4 <u>TCL PCBs</u>

The location of RB-06 was inappropriate for the evaluation of potential impact from AOC 3B, HAP Cooling Tower. Consequently, the collection of surface soil samples in the immediate vicinity of this AOC is recommended as part of the Phase II RFI.

PCBs were detected at concentrations above the PCB Spill Cleanup limit for soils in restricted areas of 25 mg/kg in surface soil samples collected from AOC 1, Transformer T3. An ICM is recommended for this area. It is anticipated that the ICM will be selected as the final measure for Transformer T3.

#### 8.1.2 Site Groundwater

Limited investigation of site groundwater conditions is proposed for implementation during either the Phase II RFI or an ICM to address the presence of TAL Inorganics (including molybdenum and hexavalent chromium) and TCL VOCs. The presence of elevated levels of miscellaneous parameters is typically addressed through the proposed scopes of work developed for areas impacted by TAL Inorganics. No further action is required to address TCL SVOCs, based on the general absence of these constituents in site groundwater samples and the presence of only one constituent at an elevated concentration in site groundwater samples. No further

Section: 8.0 Revision: 0 Date: 10/2

Page:

10/22/98 5 of 13

action is required to address TCL PCBs, based on the complete absence of PCB Aroclors in site groundwater samples.

#### 8.1.2.1 TAL Inorganics

Each site groundwater sample collected during one or both of the Phase I RFI sampling rounds contained elevated concentrations of one or more of the TAL Inorganics, molybdenum, hexavalent chromium, or free cyanide.

Background conditions for groundwater are based on data for Wells B-1 and RFI-01. Constituents that were detected at elevated concentrations in groundwater samples collected from these wells during the Phase I RFI included: aluminum, beryllium, iron, magnesium, manganese, sodium, and thallium. Deleting these constituents from consideration, data for the following locations indicate one or more metals at elevated concentrations:

|            |           |           | Const                  | ituents ] | <u>Present</u> | at Eleva  | ated Co   | ncentra   | tions            |                  |             |
|------------|-----------|-----------|------------------------|-----------|----------------|-----------|-----------|-----------|------------------|------------------|-------------|
|            |           |           | $Cr^{+3}$ /            |           |                |           |           |           |                  |                  |             |
| Location   | <u>As</u> | <u>Cd</u> | <u>Cr<sup>+6</sup></u> | <u>Mo</u> | <u>Ni</u>      | <u>Pb</u> | <u>Sb</u> | <u>Se</u> | $\underline{Vn}$ | $\underline{Zn}$ | <u>CN</u> - |
| SWMU 16, W | Villowb   | rook Po   | nd                     |           |                |           |           |           |                  |                  |             |
| WP-4       | -         | X         | -                      | X         | _              |           | _         | _         | _                | _                | _           |
| WP-5       | -         | X         | -                      | _         | _              | -         | _         | _         | -                | _                | _           |
| RFI-14     | _         | X         |                        | -         | _              | _         | X         | _         | _                | ~                |             |
| RFI-15     | -         | X         | _                      | _         | _              | _         | -         | -         | _                | _                | _           |
|            |           |           |                        |           |                |           |           |           |                  |                  |             |
| CAMU A, Fo | rmer L    | AP Wes    | t Pickli               | ng Faci   | lity           |           |           |           |                  |                  |             |
| LAW-5      |           | -         | _                      | X/X       | X              | _         | •••       | X         | _                | _                | •••         |
| -          |           |           |                        |           |                |           |           |           |                  |                  |             |
| LAW-6      |           | X         | X                      | X/X       | X              |           | -         | X         | X                | X                | -           |
|            |           |           |                        |           |                |           |           |           |                  |                  |             |
|            |           |           |                        |           |                |           |           |           |                  |                  |             |
| CAMU B, Fo | rmer Bl   | RP Pick   | ling Fac               | cility    |                |           |           |           |                  |                  |             |
| MW-1       | -         |           | -                      | X         | -              | -         | _         | _         | -                | _                | _           |
| RFI-13     | -         | X         | -                      | ***       | -              | -         | X         | -         | _                |                  |             |
|            |           |           |                        |           |                |           |           |           |                  |                  |             |
| CAMU C, BF | S Pickl   | ing Fac   | ility                  |           |                |           |           |           |                  |                  |             |
| MW-3       | -         | X         | X/X                    | X         | -              | -         | X         | -         | _                | -                | _           |
| RFI-07     | -         | X         | -                      | X         | -              |           | X         | -         | -                | _                | -           |
| RFI-17     | -         | X         | X/-                    | X         | _              | -         | -         | -         | -                |                  | •••         |
|            | -         |           | -<br>X/-               |           | -              | -         | X<br>-    | -         | -                | _                | _           |

8.0

Date: Page: 10/22/98 6 of 13

| Constituents Present at Elevated Concentrations |           |           |                                                         |      |    |           |           |           |           |           |             |
|-------------------------------------------------|-----------|-----------|---------------------------------------------------------|------|----|-----------|-----------|-----------|-----------|-----------|-------------|
| Location                                        | <u>As</u> | <u>Cd</u> | $\frac{\operatorname{Cr}^{+3}}{\operatorname{Cr}^{+6}}$ | Mo   | Ni | <u>Pb</u> | <u>Sb</u> | <u>Se</u> | <u>Vn</u> | <u>Zn</u> | <u>CN</u> - |
| CAMU E, No                                      | orthwes   | t Quadr   | ant Fill                                                | Area |    |           |           |           |           |           |             |
| WT-1A                                           |           | _         | X                                                       | -    | X  | -         | -         | X         | -         | _         | -           |
| WT-1B                                           |           | -         | -                                                       | -    | -  | -         | -         | -         | -         | -         | -           |
| WT-2                                            | _         | X         | _                                                       | X    | X  | X         | -         | _         | _         | _         | _           |
| WT-3                                            | -         | X         | -                                                       | X    | _  | -         | _         | _         | _         | •••       | _           |
| RFI-09                                          | X         | X         | -                                                       | X    | -  | _         | X         | X         | _         | _         | X           |
| RFI-10                                          | -         | X         | _                                                       | _    | -  | _         | _         | _         | _         | _         | _           |
| RFI-11                                          | -         | -         | -                                                       | -    | -  | -         | -         | -         | -         | -         | -           |
| Site                                            |           |           |                                                         |      |    |           |           |           |           |           |             |
| RFI-02                                          | -         | X         | -                                                       | -    | _  | -         | -         | _         | _         | _         | _           |
| RFI-03                                          | -         | -         | -                                                       | X    |    | _         | _         | -         | _         | _         | -           |
| RFI-08                                          | -         | X         | -                                                       | -    | _  | X         | -         | _         | -         | -         | _           |
| RFI-12                                          | -         | -         | -                                                       | -    | -  | -         | -         | -         | -         | X         | _           |
| RFI-16                                          | -         | -         | -                                                       | X    | -  | _         | _         | _         | -         | _         | -           |

AL Tech has identified the following need for additional work, based on the presence of metals in groundwater samples, for the following.

- CAMU A, which is to be addressed through the NYSDEC-approved ICM.
- CAMU B, for which additional wells are to be installed in this area during the Phase II RFI to address the absence of downgradient monitoring locations.
- CAMU C, which is to be addressed through the NYSDEC-approved ICM.
- CAMU E, is recommended to evaluate TCL VOCs during the Phase II RFI; analysis of groundwater samples from the existing and recommended wells will include molybdenum and fluoride.
- RFI-08, which is to be addressed through additional investigation during the Phase II RFI (specifically for lead; refer also to Section 8.1.1.1).

In the vicinity of SWMU 16 and in general site wells, further action is only warranted for RFI-08. This decision takes into consideration the following factors:

Section: 8.0 Revision: 0

Date: 10/22/98

Page: 7 of 13

• only a limited number of metals were detected at elevated concentrations in these wells

- the absence of any exposure pathway; groundwater is not used for potable purposes
- an anticipated groundwater compliance monitoring program along the facility's downgradient boundaries that will be used to evaluate potential offsite migration of impacted groundwater
- RFI-08 is located along a downgradient boundary of the facility

#### 8.1.2.2 TCL VOCs

TCL VOCs were detected at elevated concentrations in groundwater samples collected from four areas of the site:

- SWMU 15, Former Waste Acid Surface Impoundments, at RFI-02
- SWMU 16, Willowbrook Pond at WP-4, RFI-15, and RFI-16
- CAMU D, Former LAP East Pickling Facility, at LAE-4
- CAMU E, Northwest Quadrant Fill Area, at WT-2

Further investigation of the presence of VOCs in each of these areas is proposed for the Phase II RFI, except near SWMU 15. Additional investigation to address the detection of carbon disulfide at SWMU 15 is not recommended, because:

- carbon disulfide was detected at an elevated concentration in only one groundwater sample collected from the site
- carbon disulfide is a laboratory contaminant
- carbon disulfide is not anticipated to be associated with operation of this unit or any other units

Installation of an overburden monitoring well downgradient of SWMU 15 and RFI-02 during the Phase II RFI is recommended, however, to address an identified data gap (i.e., inappropriate placement of the well).

Section: 8.0

Revision:

Date: Page: 10/22/98 8 of 13

#### 8.1.2.3 <u>Miscellaneous Parameters</u>

One or more of the miscellaneous parameters (pH, total phenols, chloride, fluoride, nitrate, sulfate, and ammonia) were detected at elevated concentrations in groundwater samples collected from at least one well in four units and three general site wells:

- CAMU A, Former LAP West Pickling Facility
- CAMU B, Former BRP Pickling Facility
- CAMU C, BFS Pickling Facility
- CAMU E, Northwest Quadrant Fill Area
- Site
  - RFI-02
  - RFI-03
  - RFI-06

AL Tech does not believe that, independent of other constituents, the presence of these miscellaneous parameters at elevated levels requires additional investigation. However, in consideration of other groundwater quality data, AL Tech will be evaluating groundwater quality proximate to each of the specific units as part of the Phase II RFI or an ICM. In addition, groundwater quality downgradient of each of these general site wells is currently monitored or is anticipated to be part of the compliance monitoring program for the site.

#### 8.1.3 Surface Water and Sediment

AL Tech does not recommend any additional investigation of surface water quality for the unnamed tributary to Crooked Brook (AOC 9) based on the absence of detected constituents at elevated levels in the samples collected during the Phase I RFI. AL Tech does recommend the collection of additional sediment samples from the tributary during the Phase II RFI to establish background conditions and to evaluate if the sediments have been impacted by facility operations.

#### 8.2 Recommendations for Additional Work

Generalized scopes of work for the Phase II RFI and ICMs are presented in Section 8.2.1 and 8.2.2. Activities identified for implementation at the process pits and tanks and process sewers are presented in Section 8.2.3.

Section:

Revision: 0

0.8

Date: 10/22/98 Page: 9 of 13

## 8.2.1 Phase II RFI

The Phase II RFI scope of work will address the SWMUs, AOCs, CAMUs, or general areas:

- SWMU 11 Shark Pit Residual Material Loading Area (a)
- SWMU 15 Former Waste Acid Surface Impoundments (a)
- SWMU 16 Willowbrook Pond area (b)
- AOC 3B HAP Cooling Tower (a)
- AOC 9 Unnamed Tributary to Crooked Brook (a)
- CAMU B Former BRP Pickling Facility (a)
- CAMU D Former LAP East Pickling Facility
- CAMU E Northwest Quadrant Fill Area
- RFI-08 (c)

The generalized scopes of work to be implemented during the Phase II RFI for the areas are presented below.

#### • SWMU 11 - Shark Pit Residual Material Loading Area

- completion of one soil boring
- collection and analysis of one surface and two subsurface soil samples from this boring for analysis of RCRA and facility-related metals, TCL SVOCs, and TCL PCBs

#### • SWMU 15 – Former Waste Acid Surface Impoundments

- installation of one downgradient shallow groundwater monitoring well
- collection and laboratory analysis of two subsurface soil samples from this well boring for RCRA and facility-related metals
- two rounds of groundwater sample collection and laboratory analysis for RCRA and facility-related metals and miscellaneous parameters from:
  - the proposed Phase II RFI well
  - two existing nearby wells (RFI-02 and RFI-03)

a/ Investigations of SWMUs, AOCs, and CAMU are proposed to address data gaps (i.e., inappropriate placement of borings/wells during the Phase I RFI).

b/ The TCL VOCs detected at elevated concentrations in groundwater samples in the vicinity of SWMU 16 are not believed to be related to operation of the pond. This unit had merely been cited to indicate the area of interest.

c/ Groundwater quality at RFI-08 will be further evaluated during the Phase II RFI. The presence of lead in soil at an elevated total concentration and in the TC extract will be addressed by an ICM.

Date:

10/22/98

8.0

Page:

10 of 13

### SWMU 16 – Willowbrook Pond Area

- completion of adequate soil borings (maximum of six)
- installation of adequate shallow temporary monitoring wells (maximum of three)
- collection and laboratory analysis of a maximum of 10 subsurface soil samples from the soil and well borings for TCL VOCs
- two rounds of groundwater sample collection and laboratory analysis for TCL VOCs and miscellaneous parameters from:
  - three proposed Phase II RFI wells
  - five existing nearby wells (RFI-15, RFI-16, WP-1, WP-2, and WP-4)

#### AOC 3B – HAP Cooling Tower

- collection and laboratory analysis of a maximum of six surface soil samples for TCL PCBs

#### AOC 9 - Unnamed Tributary to Crooked Brook

- collection and laboratory analysis of sediment samples for RCRA and facility-related metals and PAHs from:
  - a minimum of two upstream samples to be collected south of Willowbrook Avenue
  - one sample to be collected at the culvert discharge point immediately west of Brigham Road
  - two samples to be collected downstream of S-3

### • <u>CAMU B – Former BRP Pickling Facility</u>

- installation of two downgradient shallow groundwater monitoring wells
- collection and laboratory analysis of four subsurface soil samples from the well borings for RCRA and facility-related metals
- two rounds of groundwater sample collection and laboratory analysis for RCRA and facility-related metals and miscellaneous parameters from:
  - two proposed Phase II RFI wells
  - three existing nearby wells (RFI-13, MW-1, and RFI-14)

## CAMU D – Former LAP East Pickling Facility

- completion of adequate soil borings (maximum of six)
- installation of adequate shallow temporary groundwater monitoring wells (maximum of four)
- collection and laboratory analysis of a maximum of 15 subsurface soil samples from the soil and well borings TCL VOCs
- two rounds of groundwater sample collection and laboratory analysis for TCL VOCs and miscellaneous parameters from:
  - four proposed Phase II RFI wells
  - two existing nearby wells (LAE-4 and RFI-05)

Date: 10/22/98

Page:

11 of 13

8.0

#### • CAMU E – Northwest Quadrant Fill Area

- installation of one shallow downgradient perimeter monitoring well
- completion of adequate soil borings (maximum of six)
- installation of adequate shallow temporary monitoring wells (maximum of three)
- collection and laboratory analysis of a maximum of 15 subsurface soil samples from the soil and well borings for TCL VOCs
- two rounds of groundwater sample collection and laboratory analysis for TCL VOCs, molybdenum, and miscellaneous parameters from:
  - one proposed perimeter monitoring Phase II RFI well (samples from this well will also be submitted for analysis of RCRA and facility-related metals)
  - three proposed Phase II RFI Wells
  - four existing nearby wells (WT-1A, WT-1B, WT-2, and WT-3)

#### • RFI-08

- collection of total and dissolved groundwater aliquots for laboratory analysis of lead

As discussed previously, AL Tech recommends no further action for facility soils impacted by metals (except as expressly identified above) or PAHs. However, as part of the Phase II RFI, AL Tech proposes to calculate site-specific risk-based action levels for metals and PAHs in soil based on potential risk to human health. These values will be used to determine if it is necessary to evaluate facility soils as part of the CMS. These values will also be used to develop necessary and appropriate health and safety requirements for potential construction scenarios in which exposure to subsurface soils might occur.

#### 8.2.2 ICMs

ICMs have been approved by NYSDEC for CAMU A, Former LAP West Pickling Facility, and CAMU C, BFS Pickling Facility. A summary discussion of the approved ICMs is presented in Section 8.2.2.1. The ICMs proposed for AOC 1 (Transformer T3) and RFI-08 are discussed in Section 8.2.2.2. Based on the presence of lead at elevated concentrations in the surface soil sample collected from RB-04, in CAMU A, AL Tech is proposing a supplement to the approved ICM for this CAMU, which is also addressed in Section 8.2.2.2.

#### 8.2.2.1 NYSDEC-Approved ICMs

Implementation of the ICM for CAMU A was begun in September 1997. The scope of work completed to date includes the following:

• installation of temporary wells monitoring shallow groundwater quality (TW-1 through TW-4) and monitoring bedrock groundwater quality (TPZ-1)

Date:

10/22/98

Page:

12 of 13

8.0

collection of groundwater samples for laboratory analysis of hexavalent chromium from TW-1 through TW-4, TPZ-1, LAW-5, and LAW-6

excavation of two test pits to evaluate the condition of the sewer line in this area and determine if water, containing hexavalent chromium was migrating along the sewer line or through the sewer line backfill

Hexavalent chromium was present at concentration above the potentially applicable action level (0.05 mg/l) in groundwater samples from each of the shallow temporary wells and LAW-5 and LAW-6. The findings of the sewer line evaluation indicated that the lines were in good condition and that water was not present in the backfill material. Summaries of this investigation and its findings are presented in Appendix S. Additional investigation implementation of an ICM are necessary for this area. The scope of the next phase of work will be proposed to NYSDEC under separate cover.

The NYSDEC-approved scope of work for a CAMU C includes the following:

- installation of a groundwater recovery well immediately adjacent to Well MW-3
- collection of samples of recovered water on a monthly basis for analysis of hexavalent chromium
- operation of the system until hexavalent chromium levels reach 0.05 mg/l, or a CMS defines an alternative cleanup standard or corrective measure
- installation of two temporary wells downgradient of MW-3 for groundwater sampling and analysis for hexavalent chromium and water-level monitoring

#### 8.2.2.2 Proposed ICMs

At AOC 1, Transformer T3, AL Tech proposes to delineate the extent of surface soil samples containing PCBs at concentrations above the PCB Spill Cleanup limit of 25 mg/kg for soil in restricted areas. Soils containing PCBs at concentrations above this limit will be either removed and disposed offsite (in accordance with applicable federal, state, and local requirements) or the area will be fenced off to prohibit access to onsite workers.

At RFI-08 and RB-04 (in CAMU A), AL Tech proposes to delineate the extent of surface soil samples containing lead in TCLP extract at concentrations above the TC limit. Soils containing lead above this limit will be either removed and disposed offsite (in accordance with

Section:

8.0

Revision:

Date: Page: 10/22/98 13 of 13

applicable federal, state, and local requirements) or the areas will be covered to prevent future potential migration of lead to groundwater and exposure to onsite workers.

#### 8.2.3 Process Pits and Tanks and Process Sewers

Repairs, cleanout, or both have been identified as appropriate for the following process pits:

|                                         |               | Proposed        |
|-----------------------------------------|---------------|-----------------|
| Pit/Description                         | <u>Status</u> | Action Action   |
| Nos. 3E and 3W/Drawing Oil Storage Pits | inactive      | cleanout        |
| No. 8/Shark Pit                         | active        | cleanout/repair |
| No. 11/Olson Pump Pit                   | active        | repair          |
| No. 16/Shape-Mill Pit (scale pit only)  | active        | repair          |
| and Mini-Mill Pit                       | active        | cleanout/repair |
| No. 17/HAP Pump Pit                     | active        | repair          |
| No. 29/Serpentine Outfall               | active        | repair          |

The cleanout and repair of these pits will be handled as part of routine maintenance activities at the facility. Reports summarizing these activities will be provided to the NYSDEC as they are performed.

Metals and miscellaneous parameters detected in groundwater samples in the vicinity of SWMU 17 and SWM 22 are believed to have resulted from historical and recent leaks in the process sewer lines. The impact from historical lines will decrease with time. AL Tech pressure tested the two existing lines to confirm their integrity in the fall of 1998. The findings are summarized in Appendix T. Periodic testing will be performed in the future as part of routine facility maintenance. If the test results indicate leakage at any time, necessary repairs will be made and subsequent replacement of the line(s) will be considered. Testing and potential line replacement activities will be summarized and provided to the NYSDEC as they are completed.

Based on the location of this area within the central portion of the facility and probable long-term downgradient perimeter monitoring of groundwater, further investigation of the process lines is not currently warranted.

Section:

References

Revision: 0

Date:

Page:

10/22/98 1 of 3

#### References

- 6 New York Codes, Rules, and Regulations, Parts 700-705, New York State Water Quality Standards for Class GA Waters.
- 6 New York Codes, Rules, and Regulations, Parts 700-705, New York State Water Quality Standards for Class D Surface Waters.
- 40 Code of Federal Regulations, Parts 141-143. Safe Drinking Water Act. "Final Maximum Contaminant Levels (MCLs)."
- 40 Code of Federal Regulations, Part 264, Subpart S, Vol. 55, No. 145, July 27, 1990.
- 40 Code of Federal Regulations, Part 761.125. "Requirements for PCB Spill Cleanup."
- Bouwer, M.J. and R.C. Rice. 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with completely or Partially Penetrating Wells," Water Resources Research, Vol. 12, No. 3.
- Environmental Strategies Corporation. 1997. "Groundwater Analytical Parameters, Second Round - Phase I RCRA Facility Investigation, EPA I.D. No. NYD030215529, AL Tech Specialty Steel Corporation, Dunkirk, New York Facility." February 14.
- Environmental Strategies Corporation. 1996a. "Pre-Investigation Evaluation of Corrective Measures Study, AL Tech Specialty Steel Corporation, Dunkirk, New York Facility." AL Tech Specialty Steel Corporation, Dunkirk, New York. April 18.
- Environmental Strategies Corporation. 1996b. "Phase I RCRA Facility Investigation Work Plan, AL Tech Specialty Steel Corporation, Dunkirk, New York." May 17 (revised October 16).
- Environmental Strategies Corporation. 1996c. "Interim Corrective Measures Lucas Avenue Plant and Bar Finishing & Storage, EPA I.D. No. NYD030215529, AL Tech Specialty Steel Corporation, Dunkirk, New York Facility. December 30 (revised March 7, 1997).
- McLaren/Hart Engineering Corporation. 1992a. "RCRA Facility Assessment Report, AL Tech Specialty Steel, Dunkirk, New York." AL Tech Specialty Steel, Dunkirk, New York. December 23.
- McLaren/Hart Environmental Engineering Corporation. 1992b. "RCRA Facility Investigation Description of Current Conditions Report, AL Tech Specialty Steel, Dunkirk, New York." AL Tech Specialty Steel, Dunkirk, New York. December.

Section: References

Revision: 0

Date:

10/22/98 2 of 3

Page:

## References

(continued)

- New York State Department of Environmental Conservation. 1997. "RCRA Interim Corrective Measures at Lucas Avenue Plant West and Bar Finishing and Storage, EPA I.D. No NYD030215529." May 9.
- New York State Department of Environmental Conservation. 1996. "Draft Phase I RCRA Facility Investigation (RFI) Work Plan, Dunkirk, New York, EPA ID No. NYD030215529. September 30.
- New York Department of Environmental Conservation. 1995. "Order on Consent between the State of New York Department of Environmental Conservation and AL Tech Specialty Steel Corporation (respondent)." DEC File No. R4-1467-93-02.
- New York State Department of Environmental Conservation. 1994. "Determination of Soil Cleanup Objectives and Cleanup Levels." Technical Administrative Guidance Memorandum 4046 (HWR-92-4046, revised).
- New York State Department of Environmental Conservation. 1993. "Closure Plan for the Surface Impoundment at AL Tech Specialty Steel, Dunkirk, New York." September 1.
- New York State Department of Environmental Conservation. 1992a. "Contained-In Criteria for Environmental Media." Technical Administrative Guidance Memorandum 3028. Revised 1997.
- New York State Department of Environmental Conservation. 1992b. "Spill Technology and Remediation Series, STARS Memo #1, Petroleum-Contaminated Soil Guidance Policy (STARS)."
- U.S. Environmental Protection Agency. 1996. "Soil Screening Guidance: Technical Background Document." EPA/540/R-95/138.
- U.S. Environmental Protection Agency. 1994a. "National Functional Guidelines for Inorganic Data Review." EPA-540/R-94-013.
- U.S. Environmental Protection Agency. 1994b. "National Functional Guidelines for Organic Data Review." EPA-540/R-94-012.
- U.S. Environmental Protection Agency. 1992. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities. Draft Addendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division. Washington, DC. July.

Section:

References

Revision:

Date:

10/22/98

Page:

3 of 3

# References (continued)

U.S. Environmental Protection Agency. 1989. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities. Interim Final Guidance. Office of Solid Waste, Waste Management Division. Washington, DC. April. EPA/530-SW-89-026.

Walton, Wm. C. 1988. "Groundwater Pumping Tests." Lewis Publishers. 202 pp.