
SAMPLING REPORT December 2004

AlTech Specialty Steel Site Site No. 907022 Dunkirk (C), Chautauqua County

January 2005

New York State Department of Environmental Conservation **GEORGE E. PATAKI**, *Governor* **ERIN M. CROTTY**, *Commissioner*

TABLE OF CONTENTS

	<u>Page</u>
1.0	INTRODUCTION
2.0	WORK PERFORMED
3.0	RESULTS
4.0	CONCLUSIONS
FIGU	TRES
APPE	ENDICES

LIST OF FIGURES (Following Report)

Figure 1 AlTech Specialty Steel Site Location

Figure 2 Sampling Locations

LIST OF APPENDICES

Appendix A Analytical Data

1.0 INTRODUCTION

This document reports a December 2004 sediment sampling effort conducted on December 8, 2004. Sediment samples were collected from an unnamed tributary to and from Crooked Brook. The tributary flows westerly through the southeast corner of the AlTech Specialty Steel Site, Site # 907022 whereupon it joins with Crooked Brook before emptying into Lake Erie. The samples were collected to supplement results of a July 2004 sampling by the New York State Department of Environmental Conservation (NYSDEC).

1.1 PROJECT BACKGROUND

The AlTech Specialty Steel (AlTech) site is a 90 acre active industrial site which manufactures stainless steel rod, bar, and wire from 4.5" billets. The facility is located adjacent to a residential are which includes a recreational park. Running through the property is a tributary to a surface water stream named Crooked Brook. Area groundwater is not used for drinking. AlTech filed for bankruptcy in 1999 and emerged reorganized as Empire Specialty Steel. However, further financial problems have plagued the company which went bankrupt again in 2001. Since that time the facility has been obtained and the current owner of the property is operating as Dunkirk Specialty Steel.

In 1992 AlTech submitted a RCRA Facility Assessment (RFA) in accordance with the Resource Recovery and Conservation Act (RCRA), Corrective Action Program. This assessment identified 24 Solid Waste Management Units (SWMU's) and 11 Areas of Concern (AOC). Over the period 1995-1997 the company conducted RCRA Facilities Investigation (RFI) which has documented hazardous waste disposal in areas of the plant. Empire Specialty Steel had committed an environmental remediation trust fund and signed a RCRA order on consent in 1999 to remediate the Dunkirk property as well as a facility located in Watervliet. Additional investigation work is necessary and funding remains in place to complete a final RFI which is expected in 2004.

Initial RFI work had documented the disposal of hazardous waste at levels that are impacting the environment, i.e. groundwater and surface water/sediments. Monitoring of the groundwater indicated standards for metals and chlorinated solvents had been exceeded. Hazardous wastes, such as, chromium, lead, chlorinated solvents and polychlorinated biphenyls (PCBs) are present on the site. Limited RFI data suggests the contaminated groundwater is migrating off-site. Significant levels of metals in surface soils may be contributing to metals being found in surface waters leading from the site (i.e. chromium detected at 630 ug/l in stream vs. 50 ug/l guidance value). Soil surrounding transformers

have been found to have PCB contamination (87 mg/kg) while sediments in the on-site, manmade, Willowbrook pond contain PCBs as high as 2,100 mg/kg. These wastes are located in areas that may migrate to a nearby surface water stream or through groundwater to off-site locations.

Because residential areas surround the site and the proximity of the surface water stream, which has been impacted by site runoff, and the ability of the waste material to migrate from the site it was necessary to list this site on the Registry of Inactive Hazardous Waste Disposal Sites (Registry).

2.0 WORK PERFORMED

Five sediment/soil samples were collected by the NYSDEC on December 8, 2004. All samples were collected to further determine the extent of possible PCBs and total nickel in the tributary of Crooked Brook. Three of the five samples were collected from the upper sediments approximately three inches below the creek bed in the stream channel in areas of likely deposition. Two of the samples were soil samples collected from soils approximately six inches deep and next to the stream channel.

The first two samples D088A and D088AA were collected from the western side of the railroad tracks approximately 50 feet west of the culvert under the tracks. D088A was a shallow sediment sample and D088AA was a deeper (\sim 6") soil sample collected adjacent to the sediment sample.

Sample number D088B was collected at the opposite end of the large pool where the culvert discharged. Sample D088C was a soil sample collected from the southern bank on the western side of the tracks just after the culvert. This sample was collected from a likely area of deposition, 6-8 inches above the stream from a depth of about six inches.

Sample Number D088D was a shallow sediment sample collected approximately 195 feet east of Route 5 in an oxbow in the stream.

3.0 **SAMPLE RESULTS:**

Sediment and soil samples were analyzed for nickel and PCBs. Three of the five samples were collected from sediments within the stream channel. Because these three samples were collected from a stream channel, a comparison of results to the Technical Guidance for Screening

Contaminated Sediments¹ is applicable.

The sediment criteria for metals identifies two levels of risk for metals contamination, these are the Lowest Effect Level and the Severe Effect Level. A sediment is considered to be contaminated if either criterion is exceeded. If only the lowest effect level is exceeded then the sediment is said to be moderately contaminated. If both of the levels are exceeded then the sediment is said to be severely contaminated. Comparison of the three samples collected from the stream channel indicate that all three samples were impacted (table 1). All samples exceeded the lowest effect level and the Sever Effect Level for nickel indicating the three sediment samples are severely contaminated with nickel.

Two of the five samples Sample D088AA and D088C were collected from soil adjacent to the stream. Because the samples are not within the normal stream channel the samples were compared to guidance values presented in Technical, Administrative and Guidance Memorandum, HWR- 4046² (TAGM 4046). When compared to TAGM 4046 both of these samples exceeded the recommended soil cleanup values for nickel.

All five samples were compared to soil clean up guidance values found in TAGM 4046 for PCBs. Because none of the samples were analyzed for total organic carbon (toc) the PCB results could not be compared to the sediment screening criteria found in Technical Guidance for Screening Contaminated Sediments.

The family of chemicals known as PCBs are mixtures of up to 209 individual chlorinated compounds (known as congeners). Each congener is identified by a specific number. All five of the sample results noted the presence of PCB-1248 (580 ug/kg to 10,000J ug/kg). Four of the five samples had positive results for PCB-1254 (ND - 3300J). Only sample number D088B did not have a detection for PCB-1254.

To determine how a sample compares to soil cleanup guidance values all congeners detected in a specific sample are added to determine the sample's total PCBs. When compared to soil guidence values found in TAGM 4046 four of the five samples (6,900 ug/kg to 12,700 ug/kg) exceeded the 1 mg/kg (1000 ug/kg) surface soil concentration guidance value for PCBs

¹ New York State Department of Environmental Conservation, "Technical Guidance for Screening Contaminated Sediments", Division of Fish, Wildlife and Marine Resources, January 1999, 39 pp.

² New York State Department of Environmental Conservation, Technical Guidance and Administrative Memorandum, HWR 4046, "Determination of Soil Cleanup Objectives and Cleanup Levels", Division of Environmental Remediation, January 24, 1994

(table 2). Only one sediment sample, sample D088D, did not exceed the cleanup guidance value of 1 mg/kg.

4.0 **CONCLUSIONS:**

Offsite sediments and soils have also been impacted by metal contamination associated with the AlTech Specialty Steel Site. Nickel contamination was found in the stream channel in the tributary which flows through the Altech Specialty Steel Site and to Crooked Brook and in the flood plain soils. Three of the five sediment samples could be identified as severely contaminated with only sample D08804 considered being moderately contaminated. Both soil samples collected from the flood plain were also impacted by total chromium and nickel at numbers that exceed Eastern United States background levels.

In addition, sample results indicate that PCB contamination possibly associated with the AlTech Specialty Steel Site has impacted the stream channel and local flood plain. PCB contamination was found to exceed the soil cleanup guidance in TAGM 4046 in four of the five samples.

Table 1 **Soil/Sediment Sample Results**

Analyte	units	guidance	D088A	D088AA	D088B	D088C	D088D
		values					
Nickel	mg/k	16	199		256		457
	g	Lowest effect					
Nickel	mg/k	50	199		256		457
	g	Severe effect					
Nickel	mg/k	13 or SB*		209		348	
	g						

A "J" value is an estimated value.

Table 2 **Soil/Sediment Sample Results**

CAS	units	guidance	Analyte	D0880A	D088	D0880B	D0880C	D0880D
Number		values			0AA			
12672-29-	ug/kg	1 - 10	Arochlor-	5800	6600J	7000	10000J	580
6		mg/kg*	1248					
11097-	ug/kg	1 - 10	Arochlor-	1100J	3300J	ND	2700J	290
		mg/kg*	1254					
TOTAL	ug/kg	1 - 10	TOTAL PCBs	6900	9900	7000	12700	870
PCBs		mg/kg*						

A "J" value is an estimated value.

A shaded value indicates that the value exceeds guidance values.

N/A - Not Applicable

ND - Not Detected

^{*}TAGM 4046 Soil Cleanup Values, 13 or SB (Eastern United States background = 0.5 - 25 mg/kg) A shaded value indicates that the value exceeds guidance values.

^{* 1} mg/kg surface, 10 mg/kg 1 foot below surface for soils (note: soil values used, sediment values are based upon total organic carbon content of sediment which were not analyzed in this sampling). 1000 ug/kg = 1 mg/kg

FIGURES

Figure 1 **AlTech Specialty Steel Site** Site No. 907022

Figure 2 **Sampling Locations**

ANALYTICAL REPORT

Job#: <u>A04-C233</u>

STL Project#: NY1A8770.9

SDG#: 1208

Site Name: NYS DEC ASP Contract #C004154 - Region 9

Task: CASE SH904

Mr. Larry Bailey NYSDEC 625 Broadway - 4th Floor Albany, NY 12233

CC: Mr. Maurice Moore

STL Buffalo

Brian J. Fischer Project Manager

STL Buffalo Current Certifications

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP SDWA, CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP RCRA	E87672
Georgia	SDWA	. 956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
	SDWA	9937
Michigan Minnesota	CWA, RCRA	036-999-337
	NELAP SDWA, CWA	233701
New Hampshire	SDWA, CWA, RCRA, CLP	NY455
New Jersey	NELAP, AIR, SDWA, CWA, RCRA	10026
New York	CWA	411
North Carolina	SDWA, CWA, RCRA	R-176
North Dakota	CWA, RCRA	9421
Oklahoma	Env. Lab Reg.	68-281
Pennsylvania	RCRA	91013
South Carolina	FOREIGN SOIL PERMIT	S-41579
USDA	SDWA	278
Virginia	CWA	C254
Washington	CWA	252
West Virginia	CWA	998310390
Wisconsin	CWA	000010000

SAMPLE DATA SUMMARY PACKAGE

SAMPLE SUMMARY

			SAMPLET)	RECEIVE	ED CE
LAB SAMPLE ID	CLIENT SAMPLE II	2	DATE	TIME_	DATE	TIME
A4C23301	D088A		12/08/2004	11:00	12/08/2004	14:30
A4C23302	D088AA		12/08/2004	11:05	12/08/2004	14:30
A4C23303	D088B		12/08/2004	11:20	12/08/2004	14:30
A4C23304	D088C		12/08/2004	11:25	12/08/2004	14:30
A4C23305	D088D		12/08/2004	12:00	12/08/2004	14:30

METHODS SUMMARY

Job#: <u>A04-C233</u>

STL Project#: NY1A8770.9

SDG#: 1208 Site Name: NYS DEC ASP Contract #C004154 - Region 9

PARAMETER PARAMETER	ANALYTICAL METHOD
NYSDEC - METHOD 8082 - PCBS- S	ASP00 8082
Nickel - Total	ASP00 6010
Leachable pH	ASP00 9045

"Analytical Services Protocol", New York State Department of Conservation, ASP00 June 2000.

NON-CONFORMANCE SUMMARY

Job#: <u>A04-C233</u>

STL Project#: NY1A8770.9

SDG#: 1208

Site Name: NYS DEC ASP Contract #C004154 - Region 9

General Comments

The enclosed data have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A04-C233

Sample Cooler(s) were received at the following temperature(s); $4.6\,^{\circ}\text{C}$ All samples were received in good condition.

GC Extractable Data

For method 8082, some samples required dilution prior to analysis due to the high concentration of target analytes. The surrogates are diluted out of all sample extracts with a dilution factor of 10% or greater.

For method 8082, the recovery for sample D088D Matrix Spike exceeded quality control limits for Aroclor-1016. The Matrix Spike Duplicate and Matrix Spike Blank recoveries are compliant with quality control limits; no corrective action is indicated.

For method 8082, samples D088AA, D088C, and D088D have positive values reported for Aroclor-1248 and/or Aroclor-1254 that are above the laboratory quantification limit, but below the Project Reporting Limit. The values are flagged with a "J" to indicate this, though the values are not considered estimated and are valid numbers by method definition.

Metals Data

The recovery of sample D088A Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Nickel. Sample matrix is suspect. The RPD of sample D088A Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Nickel. However, the LCS (A4B2061101) was acceptable.

The Serial Dilution of sample D088A exceeded quality control limits for Nickel. However, the LCS (A4B2061101) was acceptable.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

1-6-24

Date

8/481

Page: 1
Rept: AN1266R

Dilution Log w/Code Information For Job A04-C233

Client Sample ID Lab Sample ID Parameter (Inorganic)/Method (Organic) Dilution Code D088A A4C23301 8082 50.00 008 D088AA A4C23302 8082 100.00 008 D088B A4C23303 8082 50.00 008 D088C A4C23304 8082 100.00 008 D088D A4C23305 8082 2.00 008 D088D 8082 2.00 008 A4C23305MS D088D 8082 2.00 008 A4C23305SD

Dilution Code Definition:

Date: 01/06/2005

Time: 08:49:34

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID			ANALY	TICAL REQ	UIREMENT	S	
·		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
D088A	A4C23301	1	_	-	ASP00	ASP00	-	ASP00
D088AA	A4C23302	-	-	-	ASP00	ASP00	1	ASP00
D088B	A4C23303	-	-	-	ASP00	ASP00	.	ASP00
D088C	A4C23304	-	_	-	ASP00	ASP00	-	ASP00
D088D	A4C23305	-	_	-	ASP00	ASP00	-	ASP00

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
D088A	SOIL	12/08/2004	12/08/2004	12/09/2004	12/12/2004
D088AA	SOIL	12/08/2004	12/08/2004	12/09/2004	12/12/2004
D088B	SOIL	12/08/2004	12/08/2004	12/09/2004	12/12/2004
D088C	SOIL	12/08/2004	12/08/2004	12/09/2004	12/12/2004
D088D	SOIL	12/08/2004	12/08/2004	12/09/2004	12/12/2004

SAMPLE PREPARATION AND ANALYTICAL SUMMARY INORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	METALS REQUESTED	DATE RECEIVED AT LAB	DATE DIGESTED	DATE ANALYZED
D088A	SOIL	T NI	12/08/2004	12/09/2004	12/10/2004
D088AA	SOIL	T NI	12/08/2004	12/09/2004	12/10/2004
D088B	SOIL	T NI	12/08/2004	12/09/2004	12/10/2004
D088C	SOIL	T NI	12/08/2004	12/09/2004	12/10/2004
D088D	SOIL	TNI	12/08/2004	12/09/2004	12/10/2004

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
D088A	SOIL	ASP00	SONC	NONE	SEE DILUTION LOG
D088AA	SOIL	ASP00	SONC	NONE	SEE DILUTION LOG
D088B	SOIL	ASP00	SONC	NONE	SEE DILUTION LOG
D088C	SOIL	ASP00	SONC	NONE	SEE DILUTION LOG
D088D	SOIL	ASP00	SONC	NONE	SEE DILUTION LOG

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LABORATORY SAMPLE CODE	MATRIX	ANALYTICAL PROTOCOL	DIGESTION PROCEDURE	MATRIX MODIFIER	DIL/CONC FACTOR
D088A	SOIL	ASP00	ASP00	NONE	SEE DILUTION LOG
D088AA	SOIL	ASP00	ASP00	NONE	SEE DILUTION LOG
D088B	SOIL	ASP00	ASP00	NONE	SEE DILUTION LOG
D088C	SOIL	ASP00	ASP00	NONE	SEE DILUTION LOG
D088D	SOIL	ASP00	ASP00	NONE	SEE DILUTION LOG

EDG No.: <u>1208</u> Lab Sample ID:	
Lab Sample ID:	
	A4C23301
Lab File ID:	14A42228.TX0
Date Samp/Recv:	12/08/2004 12/08/2004
Date Extracted:	12/09/2004
Date Analyzed:	12/12/2004
Dilution Factor:	<u>50.00</u>
Sulfur Cleanup:	(Y/N) <u>N</u>
ON UNITS: ug/Kg) <u>UG/KG</u>	Q
5300 5300 5300 5300 5300 5800 1100	U U U U
_	Lab File ID: Date Samp/Recv: Date Extracted: Date Analyzed: Dilution Factor: Sulfur Cleanup: CON UNITS: 1g/Kg) UG/KG 5300 5300 5300 5300 5300 5300 5300 53

Lab Name: <u>STL Buffalo</u>	Contract	: <u>C004154</u>		D088AA	
Lab Code: <u>RECNY</u> Case No			G No.: <u>1208</u>		
Matrix: (soil/water) SOIL		I	ab Sample ID:	A4C23302	
Sample wt/vol: 30.8	<u>1</u> (g/mL) <u>G</u>		ab File ID:	14A42229.T	<u>X0</u>
% Moisture: 19.1 decan	ted: (Y/N) <u>N</u>	, I	Date Samp/Recv:	12/08/2004	12/08/200
Extraction: (SepF/Cont/Son	c/Soxh): <u>SONC</u>	I.	ate Extracted:	12/09/2004	
Concentrated Extract Volum	e: <u>10000</u> (uL)	Γ	ate Analyzed:	12/12/2004	
Injection Volume: 1.00	(uL)	Ľ	ilution Factor:	100.00	
GPC Cleanup: (Y/N) N pH:	8.18	S	ulfur Cleanup:	(Y/N) <u>N</u>	
CAS NO. COMPOUND		CONCENTRATIC (ug/L or ug	N UNITS: (/Kg) <u>UG/KG</u>	Q	
12674-11-2PCB-1016 11104-28-2PCB-1221 11141-16-5PCB-1232 53469-21-9PCB-1242 12672-29-6PCB-1248 11097-69-1PCB-1254 11096-82-5PCB-1260			9600 9600 9600 9600 6600 3300 9600	ט ט ט ט ט ט ט	

Inh Name, CTI Duffalo Control		0088B	
Lab Name: <u>STL Buffalo</u> Contrac	ct: <u>C004154</u>		· · · · · · · · · · · · · · · · · · ·
Lab Code: RECNY Case No.: SH904 SAS No.:	: SDG No.: <u>1208</u>		• • • • • • • • • • • • • • • • • • •
Matrix: (soil/water) SOIL	Lab Sample ID: A	4C23303	
Sample wt/vol: 30.29 (g/mL) G	Lab File ID: 1	4A42230.T	<u>XO</u>
% Moisture: 38.6 decanted: (Y/N) N	Date Samp/Recv: 1	2/08/2004	12/08/200
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted: 1	2/09/2004	
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>1</u>	2/12/2004	
Injection Volume:1.00(uL)	Dilution Factor: _	50.00	
GPC Cleanup: (Y/N) N pH: 7.31	Sulfur Cleanup: (Y/N) <u>N</u>	er e
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>	Q	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
12674-11-2PCB-1016 11104-28-2PCB-1221 11141-16-5PCB-1232 53469-21-9PCB-1242 12672-29-6PCB-1248 11097-69-1PCB-1254	6400 6400 6400 6400 7000 6400	U U U U	
11096-82-5PCB-1260	6400	117	+ 4

	D088C
Lab Name: <u>STL Buffalo</u> Contrac	t: <u>C004154</u>
Lab Code: <u>RECNY</u> Case No.: <u>SH904</u> SAS No.:	SDG No.: <u>1208</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A4C23304
Sample wt/vol: 30.83 (g/mL) G	Lab File ID: <u>14A42231.TX0</u>
% Moisture: 29.8 decanted: (Y/N) N	Date Samp/Recv: 12/08/2004 12/08/2004
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted: <u>12/09/2004</u>
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>12/12/2004</u>
Injection Volume:1.00(uL)	Dilution Factor: 100.00
GPC Cleanup: (Y/N) N pH: 7.40	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
12674-11-2PCB-1016 11104-28-2PCB-1221 11141-16-5PCB-1232 53469-21-9PCB-1242	11000 U U T T T T T T T T T T T T T T T T
12672-29-6PCB-1248 11097-69-1PCB-1254 11096-82-5PCB-1260	10000 J 2700 J 11000 U

Lab Name: STL Buffalo Co	D088D	
Lab Code: RECNY Case No.: SH904 SAS	No.: SDG No.: <u>1208</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A4C23305	
Sample wt/vol: 30.34 (g/mL) G	Lab File ID: <u>14A42232.TX0</u>	•
% Moisture: 53.7 decanted: (Y/N) N	Date Samp/Recv: 12/08/2004 12/	08/2004
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted: <u>12/09/2004</u>	
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 12/12/2004	
Injection Volume:1.00(uL)	Dilution Factor: 2.00	
GPC Cleanup: (Y/N) N pH: 6.63	Sulfur Cleanup: (Y/N) N	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q	
12674-11-2PCB-1016 11104-28-2PCB-1221 11141-16-5PCB-1232 53469-21-9PCB-1242 12672-29-6PCB-1248 11097-69-1PCB-1254 11096-82-5PCB-1260	340 U 340 U 340 U 340 U 340 U 580 U 580 J 340 U	

-1-

INORGANIC	ANALYSIS	DATA	SHEET

SAMPLE	NO.
D088A	

Contract:

NY00-096

Lab Code: STLBFLO Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466610

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids: 76

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7440-02-0	Nickel	199		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:	
Comments:					
_				<u> </u>	

-1-

SAMPLE	NO.	

Contract: NIUU-U96	Contract:	NY00-096
--------------------	-----------	----------

Lab Code:

STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

D088AA

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466613

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids: 81

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7440-02-0	Nickel	209		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:	
Comments:					·
	a.c.o/w		· · · · · · · · · · · · · · · · · · ·		

-1-

SAMPLE	NO.		
D088B		Y .	

Contract: NY00-096

Lab Code:

STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466614

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids: 61

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	M
7440-02-0	Nickel	256		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:	
Comments:					
· · · · · · · · · · · · · · · · · · ·					

-1-

INORGANIC	ANALYSIS	DATA	SHEET
------------------	-----------------	------	-------

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466615

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids:

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7440-02-0	Nickel	348		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:	
Comments:					
<u> </u>					

-1-

INORGANIC	ANALYSIS	DATA	SHEET
-----------	-----------------	------	-------

SAMPLE NO.	
D088D	-

Contract: NY00-096

Lab Code:

STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466616

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids: 46

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	M
7440-02-0	Nickel	457		NE *	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:	
Comments:					

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Client Sample No.

D088A	
120001	

Lab Name: STL Buffalo

Contract: C004154

Lab Code: <u>RECNY</u> Case No.: <u>SH904</u>

SAS No.: ____

SDG No.: <u>1208</u>

Matrix (soil/water): SOIL

Lab Sample ID: A4C23301

% Solids:

0.0

Date Samp/Recv: <u>12/08/2004</u> <u>12/08/2004</u>

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Leachable pH	s.u.	7.30				9045	12/10/2004

Com	ments:				
					<u> </u>
				-	

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Client Sample No.

Date Samp/Recv: <u>12/08/2004</u> <u>12/08/2004</u>

Lab Name: <u>STL Buffalo</u>		Contract: C004154	D088AA		
Lab Code: <u>RECNY</u>	Case No.: <u>SH904</u>	SAS No.:	SDG No.: 1208		
Matrix (soil/water): §	SOIL	Lab Sample ID:	A4C23302		

% Solids:

0.0

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Leachable pH	s.u.	8.18				9045	12/10/2004

Comments:				
			-	
			_	
			·····	

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Client Sample No.

I ob Nome CIII Inffele		Contract: C004154					D088B					
Lab Name: <u>STL Buffalo</u>												
Lab Code: <u>RECNY</u>	Case No.: <u>SH904</u>	SAS No.	:				SDG No.: <u>12</u>	<u> 208</u>				
Matrix (soil/water): <u>S</u>	OIL		Lab Samp	ple	e ID:	<u>A4</u>	C23303					
% Solids: _		Date Sar	np/	'Recv:	12	/08/2004 12	2/08/2004					
Parame	ter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date				
Leachable pH		_S.U.	7.31		-	1	9045	12/10/2004				
Comments:												

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Client Sample No.

						F	 D088C	
Lab Name: <u>STL Buffalo</u>		Contract						
Lab Code: <u>RECNY</u>	Case No.: <u>SH904</u>	SAS No.	*			:	SDG No.: 12	08
Matrix (soil/water): <u>S</u> (DIL		Lab Samp	ρle	e ID:	<u>A4</u>	C23304	
% Solids: _	0.0		Date Sar	np/	'Recv:	12	/08/2004 12	<u>/08/2004</u>
Paramet	cer Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Leachable pH		_s.u.	7.40				9045	12/10/2004
Comments:								

NYS DEC NYS DEC ASP Contract #C004154 - Region 9

Wet Chemistry Analysis

			Client Sample No.
Lab Name: STL Buffalo		Contract: C004154	D088D
Lab Name. <u>511 Bullato</u>		Coliciact: C004134	
Lab Code: <u>RECNY</u>	Case No.: SH904	SAS No.:	SDG No.: <u>1208</u>

Matrix (soil/water): SOIL

Lab Sample ID: A4C23305

% Solids:

0.0

Date Samp/Recv: <u>12/08/2004</u> <u>12/08/2004</u>

Parameter Name	Units of Measure	Result	C	Q	M	Method Number	Analyzed Date
Leachable pH	s.u.	6.63				9045	12/10/2004
				L			·

Com	ments:						
_							
_							
_							
_			 				
		 ,		 			

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S SOIL SURROGATE RECOVERY

Lab Name: STL Buffalo

Contract: C004154 SAS No.:

Lab Code: RECNY

Case No.: <u>SH904</u>

SDG No.: 1208

GC Column(1): ZB-35

ID: <u>0.53</u> (mm)

Level (low/med): LOW

	Client Sample ID	Lab Sample ID			TCMX %REC	#							TOT OUT
	======================================	========	=====	=	=====	==	======	======	======	======	-=====	======	===
1	D088A	A4C23301	0	D	0	D			1	}	l		0
2	D088AA	A4C23302	0	D	0	D				1			0
3	D088B	A4C23303	0	D	0	D				ļ			0
4	D088C	A4C23304	0	D	0	D							0
5	D088D	A4C23305	101	1	86								0
6	D088D	A4C23305MS	115		88								0
7	D088D	A4C23305SD	72	1	68					`	1		0
8	Matrix Spike Blank	A4B2063801	91	1	85	i							0
9	Method Blank	A4B2063802	- 88		84	- 1							0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene (30-150)

(30-150)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogates diluted out

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S SOIL MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo Contract: C004154 Lab Samp ID: A4B2063802

Lab Code: RECNY Case No.: SH904 SAS No.: SDG No.: 1208

Matrix Spike - Client Sample No.: Method Blank

Level:(low/med) <u>LOW</u>

COMPOUND	SPIKE ADDED UG/KG	MSB CONCENTRATION UG/KG	MSB % REC #	QC LIMITS REC.	+
PCB-1260	166	169	102	41 - 139	-
PCB-1016	166	160	96	39 - 131	

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike recovery:	0 out c	of <u>2</u> outs	ide limits				
Comments:		·		· · ·	 	·	

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: STL Buffalo

Contract: C004154

Lab Samp ID: <u>A4C23305</u>

Lab Code: <u>RECNY</u>

Case No.: SH904

SAS No.: ____

SDG No.: 1208

Matrix Spike - Client Sample No.: <u>D088D</u>

Level: (low/med) LOW

COMPOUND	SPIKE ADDED UG/KG	SAMPLE CONCENTRATION UG/KG	MS CONCENTRATION UG/KG	MS % REC #	QC LIMITS REC.	+
PCB-1260	352	0	365	104	41 - 139	
PCB-1016	352	0	575	163 *	39 - 131	

COMPOUND	SPIKE ADDED UG/KG	MSD CONCENTRATION UG/KG	MSD % REC #	% RPD#		C LIMITS REC.	+
Aroclor 1260	349	279	80	26	35	41 - 139	
Aroclor 1016	349	426	122	29	35	39 - 131	

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

	out of <u>2</u> outside very: <u>1</u> out of _		
Comments: _	· · · · · · · · · · · · · · · · · · ·		

Nickel

75 - 125

NYS DEC

-5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

66.00

398.3

Contra	ict:	NY00-0	96						D088A	/MS				
Lab Co	de:	STLBFL	O Ca	se No.:	SH904		SAS No.:		SDG	NO.:	1208			_
Matrix	(soi	.l/water	: SOII	<u>.</u>				Level	(low/med)	:	LOW			_
% Soli	ds fo	r Sample	: <u>75.</u>	9	<u> </u>									
			Concen			(ug/L o	r mg/kg d	ry weight): MC	3/KG	-			
	Anal	yte.	Control Limit %R	Spiked Result	Sample (SSR)	С	Sample Result		Spike Added (S	A)	%R	Q	м	

462.3382

199.4591

Comments:	 		
	_		

Nickel

NYS DEC

-5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

62.73

170.0 N

Contra	ct:	NY00-0	96						D0882	/SD				
Lab Co	đe:	STLBFL	O Ca	se No.:	SH904	<u> </u>	AS No.:		SDG	NO.:	1208		(
Matrix	(soi	1/water	soii	<u>.</u>				Level	(low/med):	LOW			
% Soli	đs fo	r Sample	e: <u>75.</u>	9										
						(ug/L o		dry weight)	· · · · · · · · · · · · · · · · · · ·	G/KG	•			
	Anal	yte	Control Limit %R	Spiked Result	Sample (SSR)	С	Samp Result		Spike Added (S	SA)	%R	Q	м	

199.4591

306.0768

Comments:	 	 	
	 -		

NYS DEC -5B-

POST DIGEST SPIKE SAMPLE RECOVERY

SAMPLE NO.

D088AA	
1	

Contract: NY00-096

M100-030

STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

NO.: 1208

Matrix (soil/water):

Lab Code:

SOIL

Level (low/med):

LOW

Concentration Units:

ug/L

	Analyte	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR) C	Spike Added(SA)	%R C	2 M	
į	Nickel	75 - 125	1676.57	1520.15	200.0	78.2	E	ا ج

Comments:

NYS DEC -6-DUPLICATES

SAMPLE NO.

D0003/0D		
D088A/SD		

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Level (low/med):

LOW

% Solids for Sample:

75.9

% Solids for Duplicate:

75.9

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate	(D) C	F	RPD	Q	м
Nickel		462.3382	<u>: </u>		306.0768		40.7	*	P

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S

METHOD BLANK SUMMARY

Client No.

Lab Name:	STL Buffalo	Contract: C		Method Blank	
Lab Code:	RECNY Case No.: SH9	04 SAS No.	: S	DG No.: <u>1208</u>	
Lab Sample	e ID: <u>A4B2063802</u>	Lab	File ID: <u>14A4</u>	2227.TX0	
Matrix: (soil/water) <u>SOIL</u>	Extr	action:	SONC	· · · · · · · · · · · · · · · · · · ·
Sulfur Cle	eanup: (Y/N): <u>N</u>	Date	Extracted:	12/09/2004	
Date Analy	yzed (1): <u>12/11/2004</u>	Date	Analyzed (2)	· · · · · · · · · · · · · · · · · · ·	
Time Analy	yzed (1): <u>23:57</u>	Time	Analyzed (2)	:	
Instrument	ID (1): <u>HP5890-14</u>	Inst	rument ID (2)		
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u>	.53 (mm) GC C	olumn (2):	Dia: _	(mm)
7	THIS METHOD BLANK APPLI	ES TO THE FOLI	LOWING SAMPLES	S, MS AND MSD:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2	
1 2 3 4 5 6 7 8	D088A D088AA D088B D088C D088D D088D D088D Matrix Spike Blank	A4C23301 A4C23302 A4C23303 A4C23304 A4C23305 A4C23305MS A4C23305SD A4C23305SD	12/12/2004 12/12/2004 12/12/2004 12/12/2004 12/12/2004		
Comments:					

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S ANALYSIS DATA SHEET

Client No.

	Method Blank
Lab Name: STL Buffalo Contra	act: <u>C004154</u>
Lab Code: <u>RECNY</u> Case No.: <u>SH904</u> SAS No.	: SDG No.: 1208
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A4B2063802
Sample wt/vol: 30.08 (g/mL) G	Lab File ID: <u>14A42227.TX0</u>
% Moisture: decanted: (Y/N) \underline{N}	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted: <u>12/09/2004</u>
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>12/11/2004</u>
Injection Volume: 1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: _	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
12674-11-2PCB-1016 11104-28-2PCB-1221 11141-16-5PCB-1232 53469-21-9PCB-1242 12672-29-6PCB-1248 11097-69-1PCB-1254 11096-82-5PCB-1260	80 U U 80

-3-

BLANKS

Contract: NY00-096

Lab Code: STLBFLO

BFLO Case No.: SH904

SAS No.:

SDG NO.:

1208

Preparation Blank Matrix (soil/water):

SOIL

Preparation Blank Concentration Units (ug/L or mg/kg):

MG/KG

	Initial Calib. Blank				inuing (Blank ()		ion		Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	С		С	М
Nickel] 0.	ן ט 7.	0.	ן ס 7.	0.	ן ט 7.	0.	7 ט	0.066	ן ט	P

Comments:

-3-

BLANKS

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.: 1208

Preparation Blank Matrix (soil/water):

WATER

Preparation Blank Concentration Units (ug/L or mg/kg):

UG/L

	Initial Calib. Blank				inuing Blank (Calibrat ug/L)	ion		Preparation Blank		
Analyte	(ug/L)	c	1	C	2	C	3	С		С	М
Nickel			0.	ן ט 7	0	. 7 ט	0.	7 ט			P

-3-

BLANKS

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.: 1208

Preparation Blank Matrix (soil/water):

WATER

Preparation Blank Concentration Units (ug/L or mg/kg):

UG/L

	Initial Calib. Blank			Continuing Calibration Blank (ug/L) 1 C 2 C 3 C							
Analyte	(ug/L)	c	1	C	2	C	3	С		С	м
Nickel			0.	7 0							P

Comments:

DATA COMMENT PAGE

DRGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected at or above the reporting limit.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INDRGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- K Indicates the post digestion spike recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- M Indicates duplicate injection results exceeded quality control limits.
- Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- Indicates analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

SAMPLE DATA PACKAGE

SDG NARRATIVE

SAMPLE SUMMARY

			SAMPLE)	RECEIVE	ID:
LAB SAMPLE ID	CLIENT SAMPLE ID		DATE	TIME	DATE	TIME
A4C23301	D088A	13	2/08/2004	11:00	12/08/2004	14:30
A4C23302	D088AA	12	2/08/2004	11:05	12/08/2004	14:30
A4C23303	D088B	12	2/08/2004	11:20	12/08/2004	14:30
A4C23304	D088C	12	2/08/2004	11:25	12/08/2004	14:30
A4C23305	D088D	13	2/08/2004	12:00	12/08/2004	14:30

METHODS SUMMARY

Job#: <u>A04-C233</u>

STL Project#: NY1A8770.9

SDG#: 1208

Site Name: NYS DEC ASP Contract #C004154 - Region 9

PARAMETER	ANALYTICAL METHOD
NYSDEC - METHOD 8082 - PCBS- S	ASP00 8082
Nickel - Total	ASP00 6010
Leachable pH	ASP00 9045

ASP00 "Analytical Services Protocol", New York State Department of Conservation, June 2000.

NON-CONFORMANCE SUMMARY

Job#: A04-C233

STL Project#: NY1A8770.9

SDG#: 1208

Site Name: NYS DEC ASP Contract #C004154 - Region 9

General Comments

The enclosed data have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A04-C233

Sample Cooler(s) were received at the following temperature(s); 4.6 °C All samples were received in good condition.

GC Extractable Data

For method 8082, some samples required dilution prior to analysis due to the high concentration of target analytes. The surrogates are diluted out of all sample extracts with a dilution factor of 10% or greater.

For method 8082, the recovery for sample D088D Matrix Spike exceeded quality control limits for Aroclor-1016. The Matrix Spike Duplicate and Matrix Spike Blank recoveries are compliant with quality control limits; no corrective action is indicated.

For method 8082, samples D088AA, D088C, and D088D have positive values reported for Aroclor-1248 and/or Aroclor-1254 that are above the laboratory quantification limit, but below the Project Reporting Limit. The values are flagged with a "J" to indicate this, though the values are not considered estimated and are valid numbers by method definition.

Metals Data

The recovery of sample D088A Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Nickel. Sample matrix is suspect. The RPD of sample D088A Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Nickel. However, the LCS (A4B2061101) was acceptable.

The Serial Dilution of sample D088A exceeded quality control limits for Nickel. However, the LCS (A4B2061101) was acceptable.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

1-6-04

Date

CHAIN OF CUSTODY DOCUMENTATION

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901)				
Client 12 Gall Star NEC	Project Manager M. A. I. P. C.	E MORPE	Date 1.7 10.0	Chain of Custody Number
Address 870 Michigan Ark	Telephone Number (Area Code)/Fax Number)/Fax Number	Lab Number	Page
City Both Ly 14203	Site Contact	Lab Contact	Analysis (Attach list if more space is needed)	
State) - DUNKIRK	Carrier/Waybill Number	7		Special Instructions/
Quote No.	Matrix	Containers & 3 K & 2		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Air Air Air			
DOSS A 12/08/04	1100 K			
DOSS AA	Y S0//			
D088 B	1000 X			
D088C	11.45 × X			
D0887	- 130c X			
				-
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	Sample Disposal Beturn To Client	Disposal By Lab Archive For	(A fee may be asse Months longer than 1 mont	(A fee may be assessed if samples are retained longer than 1 month)
e Required 7 Days 14 Days	Days Other	QC Requirements (Spe		
Man Dur		1. Received By January	<i>*</i>	. 0
	1408/01 1480	2. Received By mag all	St-B-Ado	9/4 0Ehlu 40-5-6)
3. Relinquished By V	Dale Time	3. Received By		
Comments			<i>'</i> h	
DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy	stays with the Sample; PINK - Field Copy		13	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)				garage dans
☐ Lab personnel are expected to use of				
when handling this sample since it is materials(s)	s believe	d to contain signific	ant concentrations of hazar	dous and/or toxic
CHECK THE B	OX PRE	CEDING THE REQI	JESTED ANALYSIS	
PRIORITY POLLUTANTS (Water Part 136)—SPDE	S a la l		
☐ 2. 13PP Metals	□ 3. Vol	latiles—(USEPA 624 GC/M	S) 🗆 6. Pesticides/PCBs	(USEPA 608-GC)
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	□ 5. Cy	anide	□ 9. BOD	
☐ 7. Halogenated Volatiles (USEPA 601 GC)	□ 8. Arc	omatic Volatiles USEPA 602	2 GC) 🔲 12. TSS 📑 🎉	
□ 10. pH (1) 11. (1) 11. (1) 11. (1)	□ 11. C	OD	□ 15. Ammonia	
□ 13. Settleable Solids	□ 14. TI	KN	☐ 18. Réactive Phospl	norus :
☐ 16. Nitrate/Nitrite	□ 17. To	otal Phosphorus	☐ 21. Total Phenois	
□ 19. Oil/Grease)	□ 20. T	OC	☐ 60. PCBs congener	method (ASP 91-14)
☐ 22. Other	□ 59. P	CBs at 0.065 ug/l	☐ 64. Total Solids	
	□ 62. C	BOD	☐ 65. Volatiles (USEP/	524.2 GC/MS)
CONTRACT LABORATORY PROTOCOLS	}			
☐ 23 (ALL)—Water—Includes 24-28		□ 29. (ALL)—Soil	Sediments—Includes 30-34	
□ 24 Base/Neutral/Acid (B/N/A)—Water—GC/MS (A	SP #95-2)	□ 30. (B/N/A)—Sc	oil/Sediments-GC/MS (ASP #95-2)	**** (25) (3,00)
☐ 25 Volatile Organic Analysis VOA—Water—GC/MS	S (ASP #95	5-1) 🗆 31. VOA—Soil/S	Sediments—GC/MS (ASP #95-1)	
☐ 26 Pesticides/PCBs—Water—GC/MS (ASP #95-3	3)	☐ 32. Pesticides/P	CBs-Soil/Sediments-GC (ASP #9	5-3) 🔩 🐩 🐠 🗍
□ 27 Metals—23 in Water	1000	□ 33. Metals—23	in Søil/Sediments)	
□ 28 Cyanide—Water		☐ 34. Cyanide—S	oil/Sediments)	
☐ 66 Dioxin-Water (ASP #91-7)		☐ 67. Dioxin-Soil/S	Sediments (ASP #91-7)	
X 35 Other <u>PC3.5</u>	+ \(\)	lickel		
HAZARDOUS WASTES/RCRA ANALYSIS	SW-846			
☐ 36. EP Toxicity	□ 37. E	P Toxicity (Metals Only)	☐ 38. Ignitability	
□ 39. Corrosivity	□ 40. V	oa—(Usepa 8260 GC/MS	i) 🗆 41. BNA—(USEPA)	1270 GC/MS)
☐ 42. Pesticides/PCBs (USEPA 8081)	□ 43. T	CLP	☐ 44. TCLP (Metals 0	nly)
☐ 45. Reactivity	□ 46. D	ioxin (USEPA 8280)	☐ 47. Appendix IX	
□ 48. Other	☐ 63 Pe	ercent Solids	☐ 68. Metals—17 Haz	ardous
MUNICIPAL SLUDGE				* *************************************
□ 56. RS-01 □ 57. RS-02 □ 58. C	Other			
COLLECTED BY:		TELEPHONE N	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	REGION NO.:
M. Moore		E. 4485.4469	51-1220	7
CONTRACT LABORATORY:	L 24	UNTY:	SAMPLING DATE:	MILITARY TIME
<u> </u>		chart.	12/08/04	1160
SAMPLE MATRIX:				
☐ Air ☐ Groundwater ☐ Groundwater			stewater 🗀 Other	
CASE NO. SDG NO. SAMPLE I		CHECK FOR MS/M	The contract of the contract of the second of the contract of	
314191014/1210181 DIO181		☐ This sample	☐ Grab ☐ Composite	The second secon
Check if there will be more samples with this SDG	sent in this	calendar week.	Report via Category-B, unless che	
SAMPLING POINT:			Check if field duplicate □ Outfall I	
			Check if sampling is part of inspec	
			FLOW: GPD GPD	MGD
			SPDES NUMBER/REGISTI	THUMBER"

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)			
□ Lab personnel are expected to use when handling this sample since it materials(s)			restriction of the first of the contract of th
CHECK THE	BOX PRECEDING THE REC	UESTED ANALYSIS	
PRIORITY POLLUTANTS (Water Part 13	6)—SPDES		
☐ 2. 13PP Metals	☐ 3. Volatiles—(USEPA 624 GC/I	MS) . 🖂 🖂 6. Pesticides/PCBs	(USEPA 608-GE)
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	☐ 5. Cyanide	EJ 9. BOD	
☐ 7. Halogenated Volatiles (USEPA 601 GC)	☐ 8. Aromatic Volatiles USEPA 60	02 GC) 🗆 🗆 12. TSS 🐭	
□ 40. pH	□ 11. COD	□ 15. Ammonia	
□ 13. Settleable Solids	□ 14. TKN	☐ 18. Reactive Phospi	norus :
☐ 16. Nitrate/Nitrite	☐ 17. Total Phosphorus	□ 21. Total Phenols	
□ 19. Oil/Grease)	□ 20. TOC	☐ 60. PCBs congener	method (ASP 91-11)
□ 22. Other	□ 59. PCBs at 0.065 ug/l	→ □ 64. Total Solids	
	□ 62. CBOD	☐ 65. Volatiles (USEP)	1524.2 GC/MS)
CONTRACT LABORATORY PROTOCOL	.S -		
□ 23 (ALL)—Water—Includes 24-28	□ 29. (ALL)—So	il/Sediments—Includes 30-34	A Maria Cara Cara Cara Cara Cara Cara Cara
☐ 24 Base/Neutral/Acid (B/N/A)—Water—GC/MS	(ASP #95-2) □ 30. (B/N/A)—S	Soil/Sediments—GC/MS (ASP #95-2)	147 A 144
☐ 25 Volatile Organic Analysis VOA—Water—GC/M	MS (ASP.#95-1) □ 31. VOA—Soil	/Sediments—GC/MS (ASP,#95-1)	in a second
☐ 26 Pesticides/PCBs—Water—GC/MS (ASP #95	5-3) 🔲 32. Pesticides/	PCBs—Soil/Sediments—GC (ASP #9	5- 3) 🔩
□ 27 Metals—23 in Water	☐ 33. Metals—23	3 in Soil/Sediments)	
☐ 28 Cyanide—Water	☐ 34. Cyanide—	Soil/Sediments)	
□ 66 Dioxin-Water (ASP #91-7)	☐ 67. Dioxin-Soil	/Sediments (ASP #91-7)	
<u> </u>	nicke!		
HAZARDOUS WASTES/RCRA ANALYSI	S SW-846		
☐ 36. EP Toxicity	☐ 37. EP Toxicity (Metals Only)	☐ 38. Ignitability 🔏	
☐ 39. Corrosivity	☐ 40. VOA—(USEPA 8260 GC/M	is) 🗀 41. BNA—(Usepa)	8270.GC/MS)
☐ 42. Pesticides/PCBs (USEPA 8081)	☑ 43. TCLP	☐ 44. TCLP (Metals 0	nly)
☐ 45. Reactivity	☐ 46. Dioxin (USEPA 8280)	☐ 47. Appendix IX	
☐ 48. Other	_ G3 Percent Solids	☐ 68. Metals—17 Ha	eardous .
MUNICIPAL SLUDGE		Section 2	
□ 56. RS-01 □ 57. RS-02 □ 58.	Other		
COLLECTED BY:	TELEPHONE I	NUMBER:	REGION NO.
M. MooRE		7-7220	9
CONTRACT LABORATORY:	COUNTY:	SAMPLING DATE:	MILITARY TIME:
57	Chartman	12/08/04	11 05
SAMPLE MATRIX:			
☐ Air ☐ Solf/Sediment ☐ Groundwate	er 🔲 Surface Water 🔲 W	/astewater Other	
CASE NO. SAMPLE	The first of the control of the cont	MD TYPE OF SAMPLE	
S141910141/120181 DIO18	8 A A □ This sample	Grab Composite	
☐ Check if there will be more samples with this SD	G sent in this calendar week.	- Report via Category B, unlocs obs	
SAMPLING POINT:		Check if field duplicate Outfall	Number
		Check if sampling is part of inspec	tion 🗆 🗀
			The second second second second second
		FLOW: GPD SPDES NUMBER/REGIST	MGD

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)	er in the second		7 d.X		
☐ Lab personnel are expected to use when handling this sample since materials(s)					
CHECK TH	BOX PREC	CEDING THE REQ	UEST	TED ANALYSIS	
PRIORITY POLLUTANTS (Water Part	136)—SPDE	S			
☐ 2. 13PP Metals	□ 3. Vola	atiles—(USEPA 624 GC/N	VIS)	☐ 6. Pesticides/PCBs	(USEPA 608-00)
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	☐ 5. Cya	nide		□ 9. BOD	
☐ 7. Halogenated Volatiles (USEPA 601 GC)	□ 8. Aro	matic Volatiles USEPA 60)2 GC)	□ 12. T\$\$	
□ 10. pH	□ 11. CC	OC		☐ 15. Ammonia	
☐ 13. Settleable Solids	□ 14. TK	n e		☐ 18. Reactive Phos	ohorus 🖫 🕹 🔑
☐ 16. Nitrate/Nitrite		tal Phosphorus		☐ 21. Total Phenols	478 (114
☐ 19. Oil/Grease)	□ 20. TC			☐ 60. PCBs congene	r method (ASP 91-11)
☐ 22. Other	□ 59. PC	CBs at 0.065 ug/l	£	☐ 64. Total Solids	
	 □ 62. CE			□ 65. Volatiles (USE	A 524.2 GC/MS)
CONTRACT LABORATORY PROTOCO	OLS				
☐ 23 (ALL)—Water—Includes 24-28	The project	□ 29. (ALL)—Soi	il/Sedim	nents-Includes 30-34	10 M
☐ 24 Base/Neutral/Acid (B/N/A)—Water—GC/M	S (ASP #95-2)				V in the second
☐ 25 Volatile Organic Analysis VOA—Water—G					
☐ 26 Pesticides/PCBs—Water—GC/MS (ASP #				Soil/Sediments-GC (ASP #	
☐ 27 Metals—23 in Water		☐ 33. Metals—23			
☐ 28 Cyanide—Water		☐ 34. Cyanide—S			
☐ 66 Dioxin-Water (ASP #91-7)		☐ 67. Dioxin-Soil/			
	3'5 xr	irvel			
HAZARDOUS WASTES/RCRA ANALY	SIS SW-846				
☐ 36. EP Toxicity		Toxicity (Metals Only)		☐ 38. Ignitability	
☐ 39. Corrosivity		DA(USEPA 8260 GC/M	S)	☐ 41. BNA—(USERA	8270 GC/MS\ 2
☐ 42. Pesticides/PCBs (USEPA 8081)	□ 43. TC		- ,	☐ 44. TCLP (Metals I	
☐ 45. Reactivity		oxin (USEPA 8280)		☐ 47. Appendix IX	
□ 48. Other		cent Solids		☐ 68. Metals—17 Ha	izanime
MUNICIPAL SLUDGE		Corn Condo			
	8. Other				
COLLECTED BY:	o. Othor	TELEPHONE N	ILIMP	ED.	REGION NO.:
M. Moore		TILL TORE	• ~~	1-7220	1. 4
CONTRACT LABORATORY:	COL	JNTY:	SAM	IPLING DATE:	MILITARY TIME:
5-12		hartausia	W 111	12/01/04	like
SAMPLE MATRIX:		in mora	<u> </u>	16/9/1-1	
☐ Air ☐ Soil/Sediment ☐ Groundw	nter 🗀 Su	rface Water 🔲 Wa	astewat	er 🗆 Other	
	E NO.	CHECK FOR MS/A		TYPE OF SAMPLE	
الكا مستناهيا أغاضا	318171	☐ This sample	ora see and	Grab Composite	☐ Term hours
☐ Check if there will be more samples with this \$			Ren	ort via Category-B, unless ch	
SAMPLING POINT:	grafine arrows	, and 1,	-	ck if field duplicate □ Outfall	Towns and the second se
				ck if sampling is part of inspe	
			FLOV		MGD
			-	DES NUMBER/REGIST	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)			
 Lab personnel are expected to use ca when handling this sample since it is materials(s) 		그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	
	X PRECEDING THE REQU	IERTER ANALYSIS	
		JESTED ANALYSIS	
PRIORITY POLLUTANTS (Water Part 136)- 2 13PP Metals			DA CAD CAD
	☐ 3. Volatiles—(USEPA 624 GC/M	S)	ra-oug-tasy
	☐ 5. Cyanide		
	□ 8. Aromatic Volatiles USEPA 602□ 11. COD	? GC) □ 12. T\$S :	
	☐ 14. TKN	☐ 18. Reactive Phosphorus	i kiloa d
[유도함 : 1. House of the control of t	☐ 17. Total Phosphorus	☐ 21. Total Phenois	
	□ 20. TOC	☐ 60. PCBs congener met	
	☐ 59. PCBs at 0.065 ug/l	☐ 64. Total Solids	
	☐ 62. CBOD	☐ 65. Volatiles (USEPA £24	SECOND 1
CONTRACT LABORATORY PROTOCOLS	⊔ vz. opo∪	LI 00. Vitalito (OUV AVAIL	
□ 23 (ALL)—Water—Includes 24-28	□ 20 (ALL)	Sediments—Includes 30-34	
☐ 24 Base/Neutral/Acid (B/N/A)—Water—GC/MS (AS		il/Sediments—GC/MS (ASP #95-2)	
☐ 25 Volatile Organic Analysis VOA—Water—GC/MS		rediments—GC/MS (ASP #95-1)	
☐ 26 Pesticides/PCBs—Water—GC/MS (ASP #95-3)		CBs—Soil/Sediments—GC (ASP #95-3)	
□ 27 Metals—23 in Water	☐ 33. Metals—23		- 1
□ 28 Cyanide—Water	□ 34. Cyanide + S		1335
☐ 66 Dioxin-Water (ASP #91-7)		ediments (ASP #91-7)	
□ 35 Other PCB'S 1 0			1.0
HAZARDOUS WASTES/RCRA ANALYSIS			
the second of the control of the second of t	☐ 37. EP Toxicity (Metals Only)	🗆 38. Ignitability 🦙 💤	
	☐ 40. VOA—(USEPA 8260 GC/MS		GCAMSU T
to the control of the	□ 43. TCLP	44. TCLP (Metals: Only)	
	☐ 46. Dioxin (USEPA 8280)	☐ 47. Appendix IX	
	☐ 63 Percent Solids	☐ 68. Metals—17 Hazardo	พร :
MUNICIPAL SLUDGE			
□ 56. RS-01 □ 57. RS-02 □ 58. Ot	her 💮 🔭		
COLLECTED BY:	TELEPHONE N	UMBER:	REGION NO.:
M. Moore	716 85	51-1220	
CONTRACT LABORATORY:	COUNTY:		LITARY TIME:
STZ	Charlesan	12/08/04	1135
SAMPLE MATRIX:	- CA INV AV JUC		
☐ Air ☐ Soit/Sediment ☐ Groundwater	☐ Surface Water ☐ Wa	stewater 🗆 Other	
CASE NO. SDG NO. SAMPLE N	O. CHECK FOR MS/M	D TYPE OF SAMPLE	
5 H1910 H / 12 10 18 1 N10 18 18	C □ This sample	☐ Grab ☐ Composite ☐ ☐	ierm hours
☐ Check if there will be more samples with this SDG s	ent in this calendar week.	Report via Category B, unless checked	. المستحدية
SAMPLING POINT:		Check if field duplicate Outfall Num	per
[[마스타스 및 마리[종목] 하기의 스트로이		Check if sampling is part of inspection	0
		FLOW: GPD M	GD 🛬
		SPDES NUMBER/REGISTRY	
		1 1 1 1 1 1 1 1 2 2 2	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)						1
			1 37 7	그는 지금 그는 그는 그는 사람들은 함께 가는 다음이다.	지수는 사람들은 하지 않는 학자 학생들은 사람들이 가는 것이다. 그 가는 것이다.	
□ Lab personnel are expected to use caution when handling DEC samples, however, please use special excition when handling this sample since it is believed to contain significant concentrations of hazardous and/or toxic materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS						
Lab personnel are expected to use caution when handling DEC samples, however, please use special caution when handling this sample since it is believed to contain significant concentrations of hazardous sandlor soulc materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 2. 13PP Metals 3. Volatiles—(USEPA 624 GC/MS) 5. Oyanide 9. B00. 9. B00. 9. B00. 7. Halogenated Volatiles (USEPA 624 GC/MS) 5. Oyanide 9. B00. 15. Anamotic Volatiles USEPA 602 GC 12. 12. TSS 10. pH 11. C00 15. Anamotic Volatiles USEPA 602 GC 15. 12. TSS 10. pH 11. C00 15. Anamotic Volatiles USEPA 602 GC 15. 12. TSS 10. pH 11. Total Phosphorus 16. NitratoNinfre 17. Total Phosphorus 28. Total Phosphorus 16. NitratoNinfre 17. Total Phosphorus 29. Total Phosphorus 29. Total Phosphorus 29. Volatile Volatiles (USEPA 524 2 GC/MS) 29. PCBs at 0.065 up1 64. Total Phosphorus 23. Aux Volatiles (USEPA 524 2 GC/MS) 29. ANAMOTIC Volatiles Volatiles Volatiles (USEPA 524 2 GC/MS) 29. ANAMOTIC Volatiles Volatiles Volatiles Volatiles (USEPA 524 2 GC/MS) 29. ANAMOTIC Volatiles Volatile						
□ 2. 13PP Metals □	3. Vola	tiles(USEPA 624 GC/	MS)	☐ 6. Pesticides/PCBs	(USEPA 608-GC) ****	l.
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS) ☐	5. Cyai	nide	nville-	□ 9. BOD		Ľ
☐ 7. Halogenated Volatiles (USEPA 601 GC) ☐	8. Aron	natic Volatiles USEPA 60	02 GC)			1
□ 10. pH	11. CO	D		□ 15. Ammonia 🐣		1
Lab personnel are expected to use caution when handling DEC samples, however, please the special caution when handling this sample since it is believed to contain significant concentrations of hazardicus and/or soute materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 2. 13PP Metals 3. Volatiles—(USEPA 624 GC/MS) 6. Pesticides/PCBs tUSEPA 604-GC) 7. Halogenated Violaties (USEPA 624 GC/MS) 5. Oyande 9. 800 9. 800 9. 800 15. Annatic Violaties USEPA 602 GC 13. 12. TSS 10. pH 11. COD 15. Annatic Violaties USEPA 602 GC 13. 12. TSS 10. pH 11. COD 15. Annatic Violaties USEPA 602 GC 13. 12. TSS 10. pH 11. COD 15. Annatic Violaties USEPA 602 GC 13. 12. TSS 16. Nitrate/Nutrite 17. Total Phosphorus 21. Total Phosphorus 21. Total Phosphorus 22. Total Phosphorus 22. Total Phosphorus 23. ALL Statistically experiments of the phosphorus 16. Nitrate/Nutrite 17. Total Phosphorus 29. (ALL)—Solf-Sediments—Includes 24.28 29. PCBs at 0.065 upi 64. Total Solids 69. PCBs compared method (ASP 91-1) 23. (ALL)—Water—Includes 24.28 29. (ALL)—Solf-Sediments—Includes 24.28 (USEPA 524.2 GC/Ms) 26. Pesticides/PCBs—Water—GC/MS (ASP #95-2) 30. (B/N/A)—Solf-Sediments—GC/MS (ASP #95-2) 22. Selection PCBs—Solf-Sediments—GC/MS (ASP #95-2) 31. Volatile Organic Analysis VOA—Water—GC/MS (ASP #95-3) 32. Posticides/PCBs—Solf-Sediments—GC/MS (ASP #95-3) 33. Metals—23 in solf-Sediments 66. (SP-#95-8) 34. Total Phosphorus 34. Organide—Nation 35. Total Phosphorus 35. Total Phosphorus 35. Organide—Nation 35. Total Phosphorus 35. Organide—Nation 35. Or						
Lab personnel are expected to use caution when handling DEC samples, however, please user special deadflow materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 2 . 13PP Metals 3 . Volatiles—(USEPA 624 GC/Ms) 6 . Pesilades PCBs (USEPA 604-GC) 7 . Halogenated Volatiles (USEPA 624 GC/Ms) 10 . A clais Base/Neutrals (USEPA 624 GC/Ms) 11 . T. Halogenated Volatiles (USEPA 624 GC/Ms) 12 . Sattleable Solids 13 . Sattleable Solids 14 . Tix 15 . Posilades PCBs (USEPA 604-GC) 16 . Notatile Volatiles (USEPA 604-GC) 17 . Total Phosphorus 18 . Reactive Phosphorus 19 . Dividrasis 10 . PCBs contingual inhabitot (ASP 91-1) 10 . PCBs contingual inhabitot (ASP 91-1) 10 . Reactive Phosphorus 10 . Dividrasis 10 . PCBs contingual inhabitot (ASP 91-1) 10 . Reactive Phosphorus 10 . PCBs contingual inhabitot (ASP 91-1) 10 . PCBs contingual inh						
Lab personnel are expected to use caution when handling DEC samples, however, please use special deadforwhen handling this sample since it is believed to contain significant concentrations of hazaerdous and/or soxic materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 2. 13PP Metals 3. Votalises—(USEPA 624 GC/MS) 6. Pestudase/PCBs (USEPA 601 GC) 6. A Aronate Votales (USEPA 624 GC/MS) 7. Halogenated Votales (USEPA 624 GC/MS) 10. pH 11. roto 11. roto 11. roto 11. settleable Solids 11. roto 11. Richard-Water Part 138)—SPDES 12. Total Phenods 13. Settleable Solids 14. TKN 18. Nearty-Partials (USEPA 624 GC/MS) 19. UGGresse) 20. Troc 60. PCBs companie method (ASP 91-1) 21. Total Phenods 22. Total Phenods 22. Total Phenods 23. (ALL)—Sol/Sediments—Includes 30-3-4 24. Base/Neutral/Acid (B.N/A)—Water—GC/MS (ASP #95-2) 25. Votalite (Irganic Analysis VDA—Water—GC/MS (ASP #95-2) 26. Pestidate/PCBs—Water—GC/MS (ASP #95-3) 27. Votalite (Irganic Analysis VDA—Water—GC/MS (ASP #95-3) 28. Sylarids—Water 29. Royalids—Sol/Sediments—GC/MS (ASP #95-3) 29. Residuale-23 in Water 29. Sylarids—Water 30. Cornswiny 30						
Lab personnel are expected to use caution when handling DEC samples, however, please use-special decition when handling this sample since it is believed to contain significant concentrations of hazardous and/or doxid materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 1 2. 19FP Metals 1 3. Volailles—(USEPA 624 GC/MS)						
	62. CB	OD		☐ 65. Volatiles (UŞÉF	A 524.2 GC/MS)	
CONTRACT LABORATORY PROTOCOLS			1 1 V			1
☐ 23 (ALL)—Water—Includes 24-28		□ 29. (ALL)—So	il/Sedime	nts-Includes 30-34		1
Lab personnel are expected to use caution when handling DEC samples, however, please use special desistion when handling this sample since it is believed to contain significant concentrations of hazardibus and/or soxic materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 2. 13PP Metals 3. Volatiles—(USEPA 624 GC/MS) 6. Pestidate/PCBs (USEPA 604-GC) 9. 800 9. 8						
Lab personnel are expected to use caution when handling DEC samples, however, please use specified reaution when handling this sample since it is believed to contain significant concentrations of hasericibure and/or doxid materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 2. 13PP Metals 3. Voiatiles—(USEPA 624 GC/MS) 6. Pestiodes/PC68* (USEPA 608-GC) 7. Teach of the voiatiles (USEPA 624 GC/MS) 9. 800. 7. Halogenated Voldatiles (USEPA 624 GC/MS) 9. 800.						
Lab personnel are expected to use caution when handling DEC samples, however, please use-special decition when handling this sample since it is believed to contain significant concentrations of trazentibuse and/for toxic materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS						
☐ 27 Metals—23 in Water	ab personnel are expected to use caution when handling DEC samples, however, please use special resultion hen handling this sample since it is believed to contain significant concentrations of hazardicus and/or toxic laterials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS INTY POLLUTANTS (Water Part 136)—SPDES 3PP Metals 3 - Violatiles—(USEPA 624 GC/MS) 6 - Pestiodea/PCBs (USEPA 682-GC) 0 - 12, TSS 3PP Metals 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					
☐ 28 Cyanide—Water	net are expected to use caution when handling DEC samples, however, please use special gesition ing this sample since it is believed to contain significant concentrations of hazer/duss and/or toxic CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS UTANTS (Water Part 136)—SPDES					
☐ 66 Dioxin-Water (ASP #91-7)	THE BOX PRECEDING THE REQUESTED ANALYSIS					
235_Other PCB's -	ab personnel are expected to use caution when handling DEC samples, however, please uses specific resistion when handling this sample since it is believed to contain significant concentrations of hazardous and/or toxic naterials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS RITY POLLUTANTS (Water Part 136)—SPDES 13PP Metals 13PP Metals 13PP Metals 13 - Volatiles—(USEPA 624 6C/MS) 15 - Cyanide 16 - Pesticides/PCBs (USEPA 696-6C) 26 - Cyanide 17 - Total Phiosphorus 27 - Total Phiosphorus 28 - Reactive Phiosphorus 29 - Total Phiosphorus 10 - For Total Phiosphorus 10 - For Total Phiosphorus 11 - Total Phiosphorus 12 - Total Phiosphorus 13 - For Total Phiosphorus 14 - Total Phiosphorus 15 - Total Phiosphorus 16 - PCBs compaser method (ASP 91-11) 17 - Total Phiosphorus 18 - Reactive Phiosphorus 19 - PCBs at 0.055 upl 10 - For Total Phiosphorus 19 - For Total Phiosphorus 19 - For Total Phiosphorus 10 - For Total Phiosphorus 11 - Total Phiosphorus 11 - Total Phiosphorus 12 - Total Phiosphorus 13 - For Total Phiosphorus 14 - Total Phiosphorus 15 - For Total Phiosphorus 16 - For For Phiosphorus 17 - For Total Phiosphorus 18 - For Total Phiosphorus 19 - For Total Phiosphorus 19 - For Total Phiosphorus 10 - For					
Lab personnel are expected to use caution when handling DEC samples, however, please use spendial caution when handling this sample since it is believed to contain significant concentrations of hazardbur and/or toxic materials (s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136) — SPDES 2. 13PP Metals 3. Volatiles—(USEPA 624 GC/MS) 6. Pestiodex/PC8s (USEPA 608-9C) 7. Hadognator Volatiles (USEPA 624 GC/MS) 8. Aromatic Volatiles (USEPA 624 GC/MS) 9. B0B. 7. Hadognator Volatiles (USEPA 624 GC/MS) 11. Coll 11. Coll 11. Coll 11. Coll 12. Aromatic Volatiles (USEPA 624 GC/MS) 13. Settleable Solids 14. TKN 18. Reserve Precipions 13. Settleable Solids 14. TKN 18. Reserve Precipions 13. Settleable Solids 17. Total Phosphorus 28. Total Phosphorus 28. Total Phosphorus 29. Total 15. Aromatic Volatiles (USEPA 624 GC/MS) 13. Settleable Solids 14. TKN 18. Reserve Precipions 18. Reserve Precipions 19. OutGresse) 29. Total 19. OutGresse) 29. Total 19. OutGresse) 29. Total 19. OutGresse) 29. Total 19. OutGresse) 29. Outgresses 29. (ALL)—Sol/Sediments—Includes 30-34 28. Volatiles (USEPA 524_2 GC/MS) 29. (ALL)—Sol/Sediments—GC/MS (ASP #95-2) 29. (ALL)—Sol/Se						
Lab personnel are expected to use caution when handling DEC samples, however, please use spential caution when handling this sample since it is believed to contain significant concentrations of hazardises and/or toxic materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRICRITY POLLUTANTS (Water Part 136) — SPDES 2. 13PP Metals 3. Volatiles—(USEPA 624 GC/MS) 6. Pestiodes/PC9s (USEPA 606-GC) 4. Adds Base/Neutrals (USEPA 624 GC/MS) 5. Cyanide 9. B0B. 7. Halogenetic Volatiles (USEPA 624 GC/MS) 11. Colo 15. Armenois 10. pH						
### Characteristics CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS						
Lab personnel are expected to use caution when handling DEC samples, however, please use special resultion when handling this sample since it is believed to contain significant concentrations of hazardbure and/or doxid materials) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136) - SPDES 3. Volatiles - (USEPA 624 GC/MS) 6. Pestiodise/PC95 (USEPA 604-GC) 6. Pestiodise/PC95 (USEPA						
☐ 45. Reactivity ☐	46. Dio	xin (USEPA 8280)		☐ 47. Appendix IX		I
□ 48. Other □	63 Per	cent Solids	1.50.	☐ 68. Metals—17 Ha	zardous	L
MUNICIPAL SLUDGE			4.19			1
□ 56. RS-01 □ 57. RS-02 □ 58. Other	•					l
COLLECTED BY:		TELEPHONE N			REGION NO.:	1
Lab personnel are expected to use caution when handling DEC samples, however, please use-special decition when handling this sample since it is believed to contain significant concentrations of trazentibuse and/for toxic materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS						
CONTRACT LABORATORY:	CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS LUTANTS (Water Part 136)—SPDES S					
Lab personnel are expected to use caution when handling DEC samples, however, please use-special decition when handling this sample since it is believed to contain significant concentrations of hazardbus and/or doxid materials). CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 2 . 139P Metab 3 . Volatiles-(USEPA 624 GC/MS) 6 . Pestiodes/PCBs (USEPA 604 GC) 7 . Halogenated Volatiles (USEPA 624 GC/MS) 7 . Halogenated Vola						
SAMPLE MATRIX:	ab personnel are expected to use caution when handking DEC samples, however, please use special resultor when handling this sample since it is believed to contain significant concentrations of hazardous and/or toxic naterials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS RITY POLLUTANTS (Water Part 136)—SPDES 39P Metals 3 - Voialities—(USEPA 624 GC/MS) 5 - Oyanide 9 - 800 4 - Resides PCBS (USEPA 601 GC) 6 - Pestiodes PCBS (USEPA 607 GC) 10 - 12. TSS ph					
☐ Air Soil/Sediment ☐Groundwater	PROPRIED AND PROTOCOLS					
CASE NO. SDG NO. SAMPLE NO	by personnel are expected to use caution when handling DEC samples, however, please use special resultors on handling this sample since it is believed to contain significant concentrations of hazerdoue and/or toxic terrials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS TY POLLUTANTS (Water Part 136)—SPDES PP Metals 3. Volatiles—(USEPA 624 GC/MS) 6. Pestindes/POBS (USEPA 608-GC) 8. Searchivertals (USEPA 624 GC/MS) 6. Pestindes/POBS (USEPA 608-GC) 8. Aromatic Volatiles USEPA 602 GC) 9. 80.0 10. 12. 122 TSS H					
Lab personnel are expected to use caution when handling DEC samples, however, please use spendial caution when handling this sample since it is believed to contain significant concentrations of hazardburs and/or toxic materials (s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRICRITY POLLUTANTS (Water Part 136) — SPPES 2. 13PP Metals						
Lab personnel are expected to use caution when handling DEC samples, however, please use spendial caution when handling this sample since it is believed to contain significant concentrations of hazardbur and/or doxid materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPDES 2. 13PP Metals						
SAMPLING POINT:	Lab personnel are expected to use caution when handling DEC samples, however, please use special qualitors when handling this sample since it is believed to contain significant concentrations of hazardicis and/or toxic materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS DRITY POLLUTANTS (Water Part 136)—SPDES 13P Metals 13. Volatiles—(USEPA 624 6C/MS)					
	Dersonnet are expected to use caution when handling DEC samples, however, please use special actition in handling this sample since it is believed to contain significant concentrations of hazardicus and/or toxic rials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS (POLLUTANTS (Water Part 136)—SPDES Matals 3 voialities—(USEPA 624 GC/MS) 6 Pesticides/PCBs (USEPA 698-66) Base/Neutrals (USEPA 601 GC) 7 S. Cyaride 9 9, 800 enated Volaties (USEPA 601 GC) 7 11, CO0 cable Solids 7 14, TKN 7 18, Reactive Photosphorus 11, TKN 7 18, Reactive Photosphorus 12, Total Photo					
	Connel are expected to use caution when handling DEC samples, however, please use special caution and ling this sample since it is believed to contain significant concentrations of hazardicis and/ior toxic (s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS ILLUTANTS (Water Part 136)—SPDES S					
Lab personnel are expected to use caution when handling DEC samples, however, please use special daution when handling this sample since it is believed to contain significant concentrations of hazardicus and/or toxic materials(s) CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS PRIORITY POLLUTANTS (Water Part 136)—SPPES 2. 13PP Metals 3. Volatiles—(USEPA 624 GC/MS) 6. Pestiodes/PC9s (USEPA 606-GC) 4. Acids Base/Neutrals (USEPA 624 GC/MS) 6. Cyanide 6. Aromatic Volatiles (USEPA 624 GC/MS) 6. Pestiodes/PC9s (USEPA 606-GC) 6. Aromatic Volatiles (USEPA 624 GC/MS) 6. Aromatic Volatiles (USEPA 624 GC/MS) 6. Aromatic Volatiles (USEPA 624 GC/MS) 6. Pestiodes/PC9s (USEPA 606-GC) 6. Aromatic Volatiles (USEPA 624 GC/MS) 6. Aromatic Volatiles (USEPA 624 GC/MS) 6. Aromatic Volatiles (USEPA 626 GC/MS) 6. Aro						
	CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS CHURCH					

8082 DATA

QC SUMMARY

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S SOIL SURROGATE RECOVERY

Lab Name: STL Buffalo

Contract: C004154

Lab Code: RECNY

Case No.: <u>SH904</u>

SAS No.: ____

SDG No.: 1208

GC Column(1): <u>ZB-35</u>

ID: 0.53 (mm)

Level (low/med): LOW

	Client Sample ID	Lab Sample ID	DCBP %REC	#	TCMX %REC	#					TOT OUT
1	D088A	A4C23301	0	 D	0	D	 	 			0
ż	D088AA	A4C23302	Ö	D	Ö	D					ŏ
3	D088B	A4C23303	0	D	0	D					0
4	D088C	A4C23304	0	D	0	D					0
5	D088D	A4C23305	101		86						0
6	D088D	A4C23305MS	115		88						0
7	D088D	A4C23305SD	72		68						0
8	Matrix Spike Blank	A4B2063801	91		85				1		0
9	Method Blank	A4B2063802	88		84					ļ	0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene (30-150)(30-150)

Column to be used to flag recovery values* Values outside of contract required QC limits

D Surrogates diluted out

NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S SOIL MATRIX SPIKE BLANK RECOVERY

Lab Name: <u>STL Buffalo</u>

Contract: C004154 Lab Samp ID: A4B2063802

Lab Code: <u>RECNY</u> Case No.: <u>SH904</u>

SAS No.: ____

SDG No.: <u>1208</u>

Matrix Spike - Client Sample No.: Method Blank Level: (low/med) LOW

COMPOUND	SPIKE ADDED UG/KG	MSB CONCENTRATION UG/KG	MSB % REC #	QC LIMITS REC.	+
PCB-1260PCB-1016	166 166	169 160	102 96	41 - 139 39 - 131	

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike recovery:	0 0	ut of	2	outside	limits			
Comments:							-	
	-	•						_

NYS DEC ASP CONTRACT #C004154 - REGION 9

NYSDEC - METHOD 8082 - PCBS- S

SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: STL Buffalo

Contract: C004154

Lab Samp ID: <u>A4C23305</u>

Lab Code: <u>RECNY</u>

Case No.: SH904

SAS No.: ____

SDG No.: <u>1208</u>

Matrix Spike - Client Sample No.: <u>D088D</u>

Level: (low/med) LOW

COMPOUND	SPIKE ADDED UG/KG	SAMPLE CONCENTRATION UG/KG	MS CONCENTRATION UG/KG	MS % REC #	QC LIMITS REC.	+
PCB-1260	352	0	365	104	41 - 139	
PCB-1016	352	0	575	163 *	39 - 131	

COMPOUND	SPIKE ADDED UG/KG	MSD CONCENTRATION UG/KG	MSD % REC #	% RPD #	_	C LIMITS REC.	+
Aroclor 1260	349	279	80	26	35	41 - 139	
Aroclor 1016	349	426	122	29	35	39 - 131	

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

	<u>0</u> out of covery:1		limits		
Comments	3 				

NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S METHOD BLANK SUMMARY

Client No.

Method Blank Lab Name: STL Buffalo Contract: C004154 Lab Code: RECNY Case No.: SH904 SAS No.: SDG No.: 1208 Lab Sample ID: A4B2063802 Lab File ID: <u>14A42227.TX0</u> Matrix: (soil/water) SOIL Extraction: SONC Sulfur Cleanup: (Y/N): N Date Extracted: <u>12/09/2004</u> Date Analyzed (1): 12/11/2004 Date Analyzed (2): Time Analyzed (1): <u>23:57</u> Time Analyzed (2): _____ Instrument ID (1): <u>HP5890-14</u> Instrument ID (2): GC Column (1): ZB-35 Dia: 0.53 (mm) GC Column (2): _____ Dia: ____ (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

					ż
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2	
1.	D088A	A4C23301	12/12/2004		
2	D088AA	A4C23302	12/12/2004		l
3	D088B	A4C23303	12/12/2004		
4	D088C	A4C23304	12/12/2004	·	
5	D088D	A4C23305	12/12/2004		
6	D088D	A4C23305MS	12/12/2004	·	
7	D088D	A4C23305SD	12/12/2004	'	
8	Matrix Spike Blank	A4B2063801	12/11/2004		

Comments:		

Date: 01/06/2005 Time: 08:53:02			Compare Client DL For ME	ent DL for PROJECT NY1A8770.9 and Task 1 to Lab MDL For METHOD: 8082 PROTOCOL: ASPOO	Task 1 to Lab MDL \SP00			Page: 1 Rept: AN1368
Laboratory: A Project Manager: B.IF								
	,	Tsk		TDL	ı			u
Client Name	Project No No	No	Parameter	Type Protcl Method	Test M UM	9	TDL	MDL X
Fraction: GE				:	l			
NYS DEC	NY1A8770.9	1 Aroclor 1016		CRQL ASP00 8082	CTA12950 S UG/KG		80.00000	0.62170 N
NYS DEC	NY1A8770.9	1 Aroclor 1016		CRQL ASP00 8082	CTA13957 W UG/L		0.50000	N 06650 0
NYS DEC	NY1A8770.9	1 Aroclor 1221		CRGL ASP00 8082	CTA12950 S UG/KG		80.00000	2.40840 N
NYS DEC	NY1A8770.9	1 Aroclor 1221		CRQL ASP00 8082	CTA13957 W UG/L		0.50000	0.10710 N
NYS DEC	NY1A8770.9	1 Aroctor 1232		CRQL ASP00 8082	CTA12950 S UG/KG		80.00000	5.55870 N
NYS DEC	NY1A8770.9	1 Aroclor 1232		CRQL ASP00 8082	CTA13957 W UG/L		0.50000	0.13750 N
NYS DEC	NY1A8770.9	1 Aroclor 1242		CRQL ASP00 8082	CTA12950 S UG/KG		80.0000	1.64810 N
NYS DEC	NY1A8770.9	1 Aroclor 1242		CRaL ASP00 8082	CTA13957 W UG/L		0.50000	0.04100 N
NYS DEC	NY1A8770.9	1 Aroclor 1248		CRQL ASP00 8082	CTA12950 S UG/KG		80.0000	0.91590 N
NYS DEC	NY1A8770.9	1 Arocior 1248		CRQL ASP00 8082	CTA13957 W UG/L		0.50000	0.07830 N
NYS DEC	NY1A8770.9	1 Aroclor 1254		CRQL ASP00 8082	CTA12950 S UG/KG		80.00000	2.18200 N
NYS DEC	NY1A8770.9	1 Aroclor 1254		CRQL ASP00 8082	CTA13957 W UG/L		0.50000	0.06480 N
NYS DEC	NY1A8770.9	1 Aroclor 1260		CRQL ASP00 8082	CTA12950 S UG/KG		80.00000	1.30650 N
NYS DEC	NY1A8770.9	1 Aroclor 1260		CRQL ASP00 8082	CTA13957 W UG/L		0.50000	0.04140 N

 \underline{M} - MDL>CDL (TDL Type CDL) or MDL>TDL (TDL Type CRQL,EQL)

E - TDL>CDL (TDL Type CDL)

- TDL=0 or MDL=0

N - MDL "Not Found"

ET - Exception Types:

SAMPLE DATA

NYS DEC

NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S ANALYSIS DATA SHEET

Client No.

D088A Lab Name: STL Buffalo Contract: C004154 Lab Code: RECNY Case No.: SH904 SAS No.: SDG No.: 1208 Matrix: (soil/water) SOIL Lab Sample ID: A4C23301 Sample wt/vol: 30.01 (q/mL) GLab File ID: 14A42228.TX0 % Moisture: 24.1 decanted: (Y/N) N Date Samp/Recv: <u>12/08/2004</u> <u>12/08/2004</u> Extraction: (SepF/Cont/Sonc/Soxh): SONC Date Extracted: <u>12/09/2004</u> Concentrated Extract Volume: 10000 (uL) Date Analyzed: 12/12/2004 Injection Volume: ____1.00(uL) Dilution Factor: ___50.00 GPC Cleanup: (Y/N) N pH: 7.30 Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) <u>UG/KG</u> COMPOUND Q U 12674-11-2---PCB-1016 5300 11104-28-2---PCB-1221 5300 U 11141-16-5----PCB-1232 5300 U 53469-21-9----PCB-1242 5300 U 12672-29-6----PCB-1248

11097-69-1----PCB-1254

11096-82-5----PCB-1260

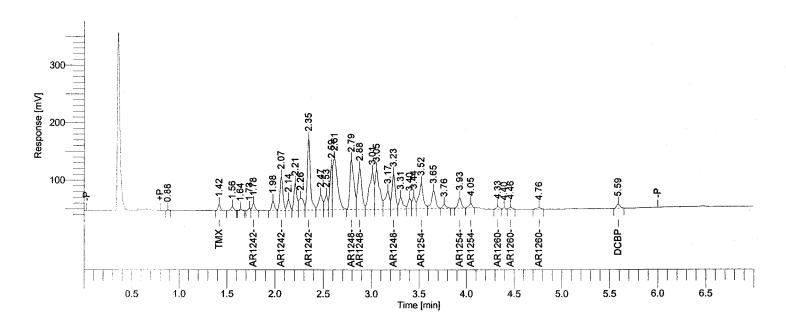
5800

1100

5300

J

U


Software Version	: 6.2.1.0.104:0104	Date	: 12/13/2004 09:30:40
Reprocess Number Operator	: buf2042: 38978 : tchrom	Sample Name	: AS40014806
Sample Number	: A4C23301	Study	: CTA12950
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: A
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3000-000000
Sample Amount	: 1.0000	Dilution Factor	: 50.00
Data Acquisition Time	e : 12/12/2004 00:09:28	Cycle	: 54

Raw Data File: H:\TURBO6\5890-14\14a42228.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42228.rst

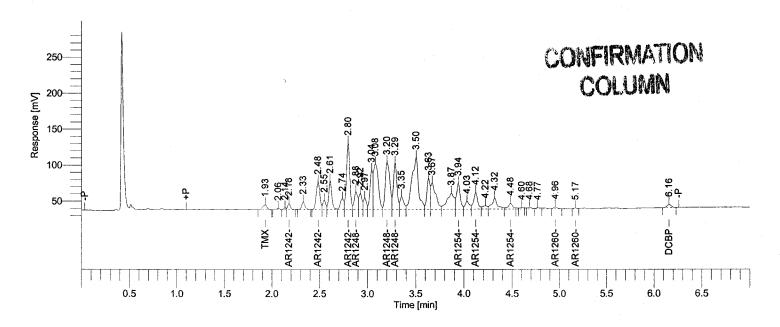
Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42228.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42228.rst

Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42228.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
2	1.42	BV	17619	TMX	-4e-05		0
	2.35		439633	AR1242	0.2287	0.0762	3
	2.79		617589	AR1248	0.2683	0.0894	3
	3.52		207115	AR1254	0.0533	0.0178	3
	4.33		26757	AR1260	-90-03		3
35	5.59	BB		DCBP	-4e-04		0
			1326473			0.1803	

Group Report	For AR	242					
	Ret Time		Area	Component	NG	AVG NG	# PEAKS
#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
6	1.78	VB	25077	AR1242-A	0:0823	0.0274	3
8	2.07	VV		AR1242-B	0.1869	0.0623	3
12	2.35	VV		AR1242-C	0.3050	0.1017	3
				,			
			439633			0.1914	
		_					
Group Report	For: AR1	248	·				
Peak	Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS
#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
				 -			
17	2.79			AR1248-A	0.2881	0.0960	3
18	2.88	VV		AR1248-B	0.2880	0.0960	3
22	3.23	VV	149159	AR1248-C	0.2208	0.0736	3
			617589			5 (0.2656)	/
		_			_		
O	VE / AD4	054	`				
Group Report				0	NO	AVO NO	# DEAKO
	Ret Time	RL	Area	Component	NG	AVG NG	# PEAKS
, #	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
26	3.52	1/1/	144002	AR1264-A	0.0864	0.0288	3
29	3.93	VB		AR1254-B	0.0604	0.0288	3
30	4.05	BB		AR1254-C	0.0451	0.0051	3
30	4.03	טט		AI(1204-0)	0.0104	0.0051	`
			207115	·		0.0483)
			201110			0.0703	
	-					2	
Group Report	For : AR1	260-	****		•		
	Ret Time		Area	Component	NG	AVG NG	# PEAKS
#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
					<u> </u>		
31	4.33	BV	10104	AR1260-A	-7e-03	-2e-03	3
33	4.46	VΒ	8548	AR1260-B	-0.0108		3
34	4.76	BB	8104	AR1260-C	-9e-03	-3e-03	3
						———————————————————————————————————————	
			26757			-9e-Q3	

Mizhaloy


Software Version : 6.2.1.0.104:0104 Date : 12/13/2004 09:30:42 Reprocess Number : buf2042: 38979 Operator : AS40014806 : tchrom Sample Name Study Sample Number A4C23301 CTA12950 **AutoSampler** HP 7673A Rack/Vial 0/0 Instrument Name 5890-14 : B Channel Interface Serial # : 9205571207 A/D mV Range: 1000 : 7.00 min **Delay Time** 0.00 min **End Time** Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject 3000.000000 Sample Amount : 1.0000 **Dilution Factor** Data Acquisition Time: 12/12/2004 00:09:28 Cycle

Raw Data File: H:\TURBO6\5890-14\14b42228.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42228.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42228.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42228.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42228.rst

P	eak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	1	1.93	BB	21321	TMX	3 .5e-04		0
		2.80		342800	AR1242	0.2213	0.0738	3
		3.20		440199	AR1248	0.2907	0.0969	3
		3.94		195015	AR1254	-0.0636	0.0212	3
		4.96		8660	AR1260	-7c-03	-2e-03	3
	34	6.16	BB		DCBP	5e-04	+	0
				1021423			0.1896	

12/13/2004 09:30:42 Result: H:\TURBO6\5890-14\14b42228.rst

Group Report Peak #	t For : AR4 Ret Time [min]		Area [uV-see]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
4	2.18	W	19008	AR1242-A	0.0794	0.0265	3
6	2.48	۷V		AR1242-B	0.0734	0.0576	3
10	2.80	VV		AR1242-C	0.3081	0.1027	3
10	2.00	vv	22 1070	AN1242-U	0.300 1	0.1027	3
			342800			0.1868	
Group Report	FOR: AR1	248					
	Ret Time		Area	Component	NG	AVG NG	# PEAKS
#	[min]	ᅜ	[uV-sec]	Name	conc.	CONC (5pts)	USED
<i>TT</i>	[111111]		[uv-sec]	Name	COHC.	CONC (Spis)	
11	2.88	VV	60704	AR1248-A	0.2542	0.0847	3
16	3.20	VV		AR1248-B	0.2985	0.0995	3
17	3.29	VV		AR1248-C	0.2964	0.0993	3
17	3.29	VV	103003	AR 1240-C	0.2904	011900	3
			440199)	0.2830	
		_					
Group Report	FOR ART	254	•				
	Ret Fime-		Area	Component	NG	AVG NG	# PEAKS
#	[min]	-UC	[uV-sec]	Name		CONC (5pts)	USED
π	[11111]		[uv-sec]	Valle	conc.	CONC (Spis)	USLD
23	3.94	1/1/	00000	AR1254-A	0.0975	0.0325	3
25 25	4.12	VV		AR1254-B	0.0973	0.0323	3
				`			3
28	4.48	VV	27786	AR1254-C	0.0254	0.0085	3
			405045	`		0.0647	
			195015			(0.0047	
						$\mathcal{N} \smile$	
Group Report	For · ND*	960					
	Ret Time		Area	Component	NG	AVG NG	# PEAKS
reak #		DL		Component			
#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
32	4.96	VB	6704	AR1260-A	-7e-03	-2e-03	3
33	5.17	BB		AR1260-B			3
33		DD			Ze-03	-2e-03	3
-	5.60		U	AR1260-C	0.0000		-

mi 12/14/09

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S

ANALYSIS DATA SHEET

D088AA

Client No.

Lab Name: STL Buffalo Contract: C004154

Lab Code: RECNY Case No.: SH904 SAS No.: SDG No.: 1208

Matrix: (soil/water) SOIL Lab Sample ID: A4C23302

14A42229.TX0 Sample wt/vol: 30.81 (g/mL) G Lab File ID:

Date Samp/Recv: 12/08/2004 12/08/2004 % Moisture: 19.1 decanted: (Y/N) N

Extraction: (SepF/Cont/Sonc/Soxh): SONC Date Extracted: 12/09/2004

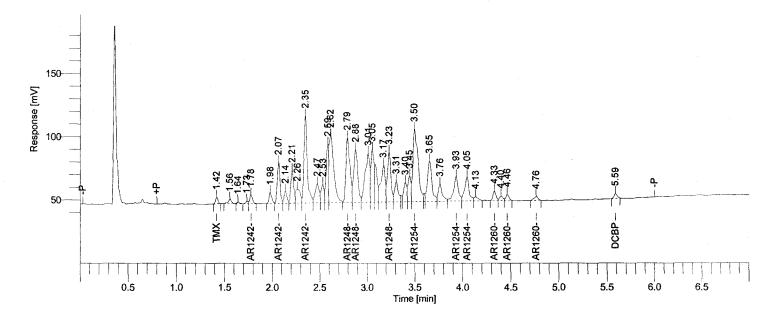
Concentrated Extract Volume: _10000(uL) Date Analyzed: 12/12/2004

Injection Volume: 1.00(uL) Dilution Factor: 100.00

GPC Cleanup: (Y/N) N pH: 8.18Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/kg</u>	Q
12674-11-2	?PCB-1016	9600	U
11104-28-2	?PCB-1221	9600	U
11141-16-5	5PCB-1232	9600	U
53469-21-9)PCB-1242	9600	ַ ע
12672-29-6	5PCB-1248	6600	J
11097-69-1	PCB-1254	3300	J
11096-82-5	5PCB-1260	9600	U .
			1


: 6.2.1.0.104:0104 : buf2042: 38980	Date	: 12/13/2004 09:30:45
: tchrom	Sample Name	: AS40014807
: A4C23302	Study	: CTA12950
: HP 7673A	Rack/Vial	: 0/0
: 5890-14	Channel	: A
: 9205571207	A/D mV Range	: 1000
: 0.00 min	End Time	: 7.00 min
: 16.6660 pts/s		
: 1.000000 uL	Area Reject	: <u>3000.0</u> 00000
: 1.0000	Dilution Factor	. 100.00
: 12/12/2004 00:21:55	Cycle	: 55 WV
	: buf2042: 38980 : tchrom : A4C23302 : HP 7673A : 5890-14 : 9205571207 : 0.00 min : 16.6660 pts/s : 1.000000 uL : 1.0000	: buf2042: 38980 : tchrom Sample Name : A4C23302 Study : HP 7673A Rack/Vial : 5890-14 Channel : 9205571207 A/D mV Range : 0.00 min End Time : 16.6660 pts/s : 1.000000 uL Area Reject : 1.0000

Raw Data File: H:\TURBO6\5890-14\14a42229.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42229.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42229.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42229.rst

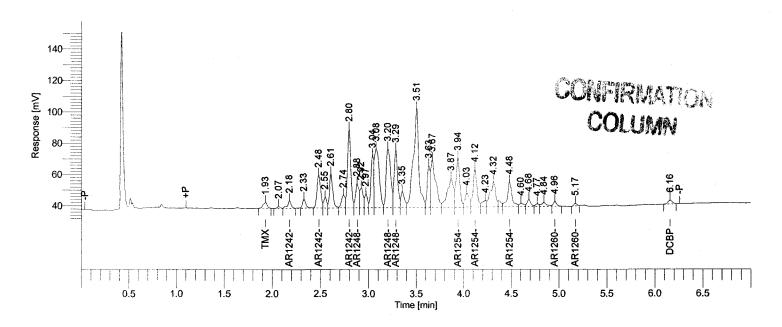
Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42229.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
1	1.42	BB	8907	TMX	-50-04		0
	2.35		251322	AR1242	0.1307	0.0436	3
	2.79		379251	AR1248	0.1648	0.0549	3
	3.50		343136	AR1254	0.0883	0.0294	3
	4.33			AR1260	-7e-03	-2e-03	3
35	5.59	BB		DCBP	- 1e-03		0
			1027236			0.1256	

12/13/2004 09:30:45 Result: H:\TURBO6\5890-14\14a42229.rst

Group I	Report	For : ART	24 2	, where				
		Ret Time		Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-see]	Name	conc.	CONC (5pts)	USED
	5	1.78	VB		AR1242-A	0.0463	0.0154	3
	7	2.07	VV		AR1242-B	0.1034	0.0345	3
	11	2.35	VV	168116	AR1242-C	0.1770	0.0590	3
				251322			0.1089	
Group I	Report	: F&r : AR1.	248					•
		Ret Time		Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]		conc.	CONC (5pts)	USED
	16	2.79	VV	150386	AR1248-A	0.1711	0.0570	3
	17	2.88	VV		AR1248-B	0.1700	0.0567	3
	21	3.23	VV	101857	AR1248-C	0.1507	0.0502	3
				379251			0.1639	
			>					
Group		For: AR1		***************************************				
		Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
	25	3.50	VV		AR1254-A	0.1283	0.0428	3
	28	3.93	VV		AR1254-B	0.0646	0.0215	3
	29	4.05	VV	62176	AR1254-C	0.0523	0.0174	. 3
				343136	·		0.0817)
							5	
Group I		For : AR1						
	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG	AVG NG CONC (5pts)	# PEAKS USED
	#				Ivalle	conc.	- CONC (Spis)	
	31	4.33	VV		AR1260-A	3.2e-04		
	33	4.46	VB		AR1260-B	-1e-02	•	
	34	4.76	BB	9169	AR1260-C	-9e-03	-3e-03	3
				35871			-6e-03	

Michalor


Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38981	Date	: 12/13/2004 09:30:47
Operator	: tchrom	Sample Name	: AS40014807
Sample Number	: A4C23302	Study	: CTA12950
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: B
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	:/3000.000009
Sample Amount	: 1.0000	Dilution Factor	: 100.000
Data Acquisition Time	: 12/12/2004 00:21:55	Cycle	: 55

Raw Data File: H:\TURBO6\5890-14\14b42229.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42229.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42229.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42229.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42229.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
 1	1.93	ВВ	10896	TMX			0
	2.80		189244	AR1242	0:1222	0.0407	3
	3.20		256547	AR1248	0 .1694	0.0565	3
	3.94		204470	AR1254	0 .066 7.	0.0222	3
	4.96		11097	AR1260	-60- 03	-2e-03	3
34	6.16	BB		DCBP	-90- 04		0
			679417			0.1175	

12/13/2004 09:30:47 Result: H:\TURBO6\5890-14\14b42229.rst

Group		For: AR4								
	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name		NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	3 5 9	2.18 2.48 2.80	VV	55061	AR1242-A AR1242-B AR1242-C		9.0530 0.0934 0.1687	0.0177 0.0311 0.0562	3 3	
	9	2.00	VV	189244	AR 1242-C		0.1007	0.1050	`	
Group		For : AR1						•		
	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name		NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	10 15	2.88 3.20	VV	124405	AR1248-A AR1248-B		0.1630 0.1716	0.0543 0.0572	3 3	
	16	3.29	VV	93164 256547	AR1248-6	_	0.1694	0.0565	3	
Group		For: AR1 Ret Time [min]		Area [uV-sec]	Component Name		NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	22 24 27	3.94 4.12 4.48	VV	67593	AR1254-A AR1254-B AR1254-C	_	0.0830 0.0704 0.0482	0.0277 0.0235 0.0161	3 3 3	
				204470				0.0672)	
Group	Report	For : AR	260					•		
		Ret Time [min]		Area [uV-sec]	Component Name		NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	32 33 -	4.96 5.17 5.60		3530	AR1260-A AR1260-B AR1260-C		-6e-03 -4e-03 0.0900	-2e-03 -1e-03	3 3	
				11097				-3e-03		W12/4/09

NYS DEC

NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S ANALYSIS DATA SHEET

Client No.

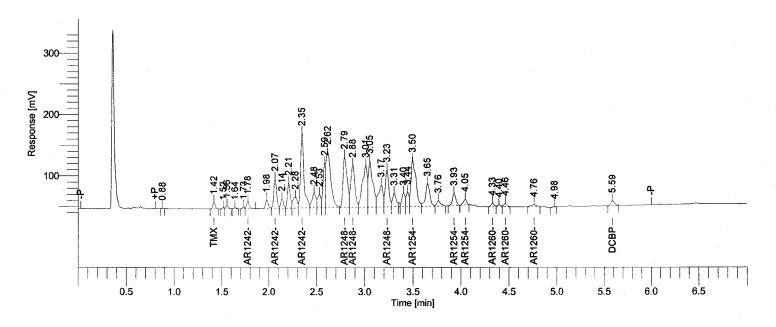
D088B Lab Name: STL Buffalo Contract: C004154 Lab Code: RECNY Case No.: SH904 SAS No.: SDG No.: 1208 Matrix: (soil/water) SOIL Lab Sample ID: A4C23303__ Sample wt/vol: 30.29 (q/mL) GLab File ID: 14A42230.TX0 Date Samp/Recv: 12/08/2004 12/08/2004 % Moisture: 38.6 decanted: (Y/N) N Extraction: (SepF/Cont/Sonc/Soxh): SONC Date Extracted: <u>12/09/2004</u> Concentrated Extract Volume: 10000(uL) Date Analyzed: 12/12/2004 Injection Volume: ____1.00(uL) Dilution Factor: ____50.00 Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.31CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) <u>UG/KG</u> COMPOUND Q U 12674-11-2---PCB-1016 6400 6400 U 11104-28-2---PCB-1221 11141-16-5---PCB-1232 6400 U IJ 53469-21-9---PCB-1242 6400 12672-29-6----PCB-1248 7000 11097-69-1---PCB-1254 U

11096-82-5---PCB-1260

6400

6400

U


Software Version : 6.2.1.0.104:0104 : 12/14/2004 13:53:30 Date FIL Switched
File Switched
in Total chrom Reprocess Number : buf2046: 17172 Operator. : AS40014808 : tchrom Sample Name Sample Number : A4C23303 Study CTA12950 AutoSampler : HP 7673A Rack/Vial 0/0Instrument Name 5890-14 Channel Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** : 0.00 min **End Time** : 7.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject : 3000.000000 Sample Amount : 1.0000 Dilution Factor Data Acquisition Time: 12/12/2004 00:34:17 Cycle

Raw Data File: H:\TURBO6\5890-14\14a42230.raw < Modified>

Result File: H:\TURBO6\5890-14\14a42230.rst

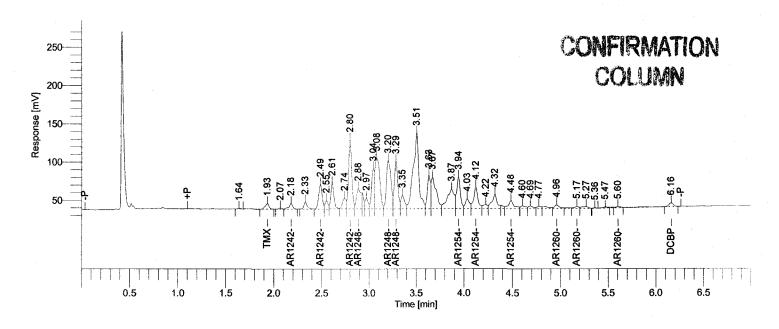
Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42230.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42230.rst

Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42230.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
2	1.42	ВВ	19096	TMX	3 .4e-05 -		0
	2.35		424886	AR1242	0:2210	0.0737	3
	2.79		605379	AR1248	0.2630	0.0877	3
	3.50		339096	AR1254	0.0873	0.0291	3
	4.33		38234	AR1260	-6e-03	-2e-03	3
37	5.59	BB	19601	DCBP	-3e-04		0
			1446293			0.1883	

12/14/2004 13:53:30 Result: H:\TURBO6\5890-14\14a42230.rst

Group Rep	ort	For: AR	242							
Pe	ak	Ret Time	BL	Area	Component		NG	AVG NG	# PEAKS	
	<u>.</u>	[min]		[uV-sec]	Name		conc.	CONC (5pts)	USED	
	7	1.78			AR1242-A		0.0727	0.0242	3	
	9	2.07	W		AR1242-B	****	Q.1507	0.0502	3	
	13	2.35	VV	302075	AR1242-C		0.3480	0.1060	3	
				424886				9.1805		
Group Rep										
		Ret Time	-BL	Area	Component		NG	AVG NG	# PEAKS	
#	<u></u>	[min]		[uV-sec]	Name		conc.	CONC (5pts)	USED	
	18	2.79	VV	244884	AR1248 A		0.2785	0.0928	3	
	19	2.88	VV	207116	AR1248-B		0.2772	0.0924	3	
	23	3.23	VV	153380	AR1248-C		0.2270	0.0757	_ 3	
				605379				0.2609		
Group Rep	ort	Eor : ADA	ne a					3)		
		Ret Time		Area	Component		NG	AVG NG	# PEAKS	
#		[min]	DL	[uV-sec]	Name		conc.	CONC (5pts)	USED	
	27	3.50			AR1254-A	\	0.1596	0.0532	3	
	30	3.93			AR1254-B		0.0483	0.0161	3	
	31	4.05	BB	22170	AR1254-C		0.0186	0.0062	3	
				339096				0.0755		
Group Rep	ort	For: AD1	റമര്							
		Ret Time		Area	Component		NG	AVG NG	# PEAKS	1
#		[min]		[uV-sec]	Name		conc.	CONC (5pts)	USED	
	32	4.33	BV	12688	AR1260-A		-4e-03	-1e-03	3	
	34	4.46			AR1260-B		-8e-Q3	-3e-03	3 3	
;	35	4.76	BB		AR1260-C		-6e-03	-2e-03	3	12/10/19/109
				38234				-6e-03		MAZ
										•


Software Version : 6.2.1.0.104:0104 Date : 12/14/2004 13:53:32 Reprocess Number : buf2046: 17173 Operator : tchrom Sample Name : AS40014808 Sample Number A4C23303 Study CTA12950 AutoSampler HP 7673A Rack/Vial 0/0 KB Instrument Name 5890-14 Channel Interface Serial # : 9205571207 A/D mV Range: 1000 : 0.00 min **End Time** : 7.00 min **Delay Time** Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject 3000:000000 Sample Amount : 1.0000 **Dilution Factor** Data Acquisition Time: 12/12/2004 00:34:17 Cycle

Raw Data File: H:\TURBO6\5890-14\14b42230.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42230.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42230.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42230.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42230.rst

 Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
2	1.93	VB	19740	TMX	2. 4e-04		0
	2.80		318426	AR1242	0 :2058	0.0685	3
	3.20		459047	AR1248	0:3032	0.1011	3
	3.94		239649	AR1254	0.0781	0.0260	3
	4.96		30096	AR1260	0.0020	6.6e-04	3
37	6.16	VB	15018	DCBP	-4e-64		0
			1081975			0.1963	

12/14/2004 13:53:32 Result: H:\TURBO6\5890-14\14b42230.rst

Group	Report	For : AR4	242						
Croup		Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	4	2.18	VV	19913	AR1242-A	0.0832	0.0277	3	
	6	2.49	VV		AR1242-B	0.1396	0.0465	3	
	10	2.80	VV	216243	AR1242-C	0.3003	0.1001	3	
				318426			0.1743		
Group	Report	For: AR1	248	\					
		Ret Time		Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
					-				
	11	2.88			AR1248-A	0.3795	0.1265	3	
	15	3.20	VV		AR1248-B	0.2913	0.0971	3	
	16	3.29	VV	15/031	AR1248-C	0.2856	0.0952	3	
				459047			0.3188)	
_		<.				4			
Group		For: AR4							
		Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
	22	3.94	VV	111125	AR1254-A	0.1096	0.0365	3	
	24	4.12			AR1254-B	0.0894	0.0298	3	
	27	4.48	VV		AR1254-C	0.0391	0.0130	3	
				239649			0.0793		
									1
Group	Report	For : AR1	260						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		Ret Time		Area	Component	NG	AVG NG	# PEAKS	$\Delta = \ln \ln \Delta$
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)) USED	1/2/12/11/11/11
									Purlyon
	31	4.96			AR1260-A	4.6e-04		3 3 2 3	1 " 1
	32	5.17			AR1260-B	0.0030		-	
	36	5.60	VV	5099	AR1260-C	0.0066	0.0022	2 3	
				30096			0.0634	•	
				50030			0.00		

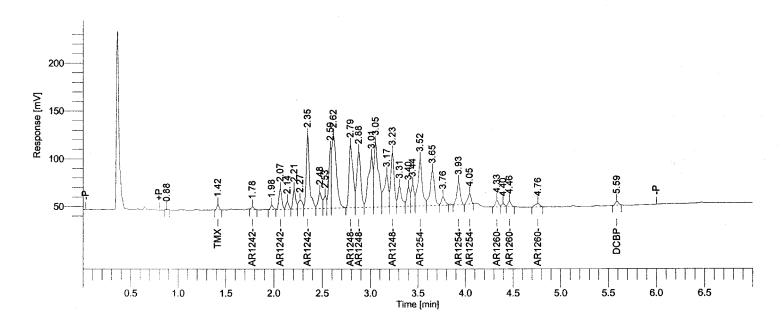
NYS DEC

NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S ANALYSIS DATA SHEET

Client No.

	D088C
Lab Name: <u>STL Buffalo</u> Contrac	t: <u>C004154</u>
Lab Code: <u>RECNY</u> Case No.: <u>SH904</u> SAS No.:	SDG No.: <u>1208</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A4C23304
Sample wt/vol: 30.83 (g/mL) G	Lab File ID: <u>14A42231.TX0</u>
% Moisture: 29.8 decanted: (Y/N) N	Date Samp/Recv: <u>12/08/2004</u> <u>12/08/2004</u>
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u>	Date Extracted: <u>12/09/2004</u>
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>12/12/2004</u>
Injection Volume:1.00(uL)	Dilution Factor: 100.00
GPC Cleanup: (Y/N) N pH: _7.40	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
12674-11-2PCB-1016 11104-28-2PCB-1221 11141-16-5PCB-1232 53469-21-9PCB-1242 12672-29-6PCB-1248 11097-69-1PCB-1254	11000 U 11000 U 11000 U 11000 U 11000 U 10000 J 2700 J
11096-82-5PCB-1260	11000 [U

11096-82-5----PCB-1260


Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38984	Date : 1	2/13/2004 09:30:55
Operator	: tchrom	Sample Name : A	S40014809
Sample Number	: A4C23304	Study : C	TA12950
AutoSampler	: HP 7673A	Rack/Vial : 0	/0
Instrument Name	: 5890-14	Channel : A	\
Interface Serial #	: 9205571207	A/D mV Range: 1	000
Delay Time	: 0.00 min	End Time : 7	.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject : 3	000,000000
Sample Amount	: 1.0000	Dilution Factor (1	00.00 \(\) \(\) \(\)
Data Acquisition Time	e : 12/12/2004 00:46:42	Cycle : 5	7-1/1

Raw Data File: H:\TURBO6\5890-14\14a42231.raw < Modified>

Result File: H:\TURBO6\5890-14\14a42231.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42231.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42231.rst

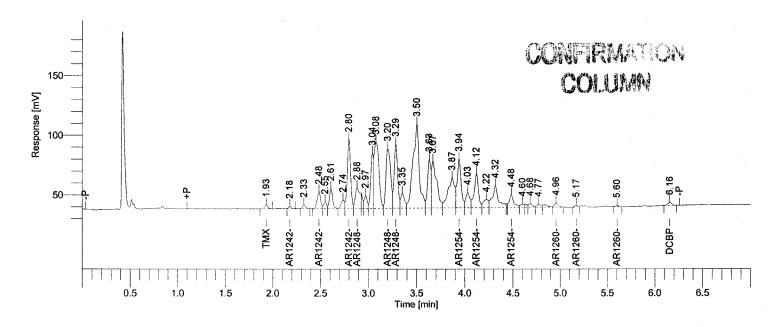
Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42231.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
2	1.42	BB	9548	TMX	40-04	# 40 to to 10 to 10	0
	2.35		238260	AR1242	0.1230	0.0413	3
	2.79		502694	AR1248	0.2184	0.0728	3
	3.52		242282	AR1254	0.0624	0.0208	3
	4.33		40860	AR1260	-60-03	-2e-03	3
32	5.59	BB	9450	DCBP	<u> 9e-04</u>		0
			1043094			0.1330	

12/13/2004 09:30:55 Result: H:\TURBO6\5890-14\14a42231.rst

Group R	Report	For: AR1	242						· · · · /
		Ret Time		Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
								· · · · · · · · · · · · · · · · · · ·	
	3	1.78	BB	4982	AR1242-A	0.0164	0.0055	3	
	5	2.07	٧٧		AR1242-B	0.0671	0.0224	3	
	9	2.35	Ŵ		AR1242-C	0.1984	9.0661	3	
	Ū	2.00	• •		70(12-12-0	0.1001		_	
				238260			0.0940		
				200200			0.4		
				\sim					
Group R	eport	F6r : AR1:	248						
		Ref Time		Area	Component	NG	AVG NG	# PEAKS	
•	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
					Traine		——————————————————————————————————————		
	14	2.79	RV	191901	AR1248-A	0.2183	0.0728	3	
	15	2.88			AR1248-B	0.2283	0.0761	3	
	19	3.23			AR1248-C	0.2076	0.0692	3	
	10	0.20	• •		AI (12-10-0	0.2070	0.0002		
				502694			0.2180		
				002.004			~ (0.2,100)		
			_						
Group R	enort	For: AR1	254	•					
		Ret Time		Area	Component	NG	AVG NG	# PEAKS	
•	#	[min]	UL	[uV-sec]	Name	conc.	CONC (5pts)	USED	
	<i>TT</i>	firmi)		[0.4-300]	Traine		——————————————————————————————————————		
	23	3.52	۱۸۷	155/30	AR1254-A	0.0927	0.0309	3	
	26	3.93			AR1254-B	0.0527	0.0200	3	
	27	4.05			AR1254-C	0.0333	0.0200	3	
	21	4.00	UU	23033	AIT1254-C	0.0210	0.0073	<u> </u>	
				242282			0.0581		
				242202			(0.0301		
							\sim		
Group P	anort	For: ART	ജ						
		Ret Time		Area	Component	NG	AVG NG	# PEAKS	
	#	[min]	DL	[uV-sec]	Name	conc.	CONC (5pts)	USED	
	#	[111111]		[uv-sec]	Hame	CONG.	CONC (Spis)	USED	
	28	4.33	BV.	15622	AR1260-A	-3e-04	-1e-04	3	
	30	4.33 4.46			AR1260-A AR1260-B	-3e-04 -8e-03	-1e-04 -3e-03	3	
	31	4.76			AR1260-B	-7e-03	-3e-03 -2e-03	3	^
	31	4.70	סס	11900	AR 1200-C	-/ U- U3	-Ze-03	3	$(1) \setminus C$
				40860			-5e-0 \$		MALI
				40000			-56-03		NUS
								•	7.7M

molylog


Software Version	: 6.2.1.0.104:0104	Date	: 12/13/2004 09:30:57
Reprocess Number	: buf2042: 38985		
Operator	: tchrom	Sample Name	: AS40014809
Sample Number	: A4C23304	Study	: CTA12950
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: B
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3 900.9 00000
Sample Amount	: 1.0000	Dilution Factor	(100.00)
Data Acquisition Time	: 12/12/2004 00:46:42	Cycle	: 57

Raw Data File: H:\TURBO6\5890-14\14b42231.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42231.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42231.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42231.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42231.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
 1	1.93	BV	7145	TMX	-7e -04		0
	2.80		176025	AR1242	0.1136		3
	3.29		358218	AR1248	0.2366	0.0789	3
	3.94		238835	AR1254	0.0779	- 0.0260	3
	4.96		14546	AR1260	-4e-03	-1e-03	3
32	6.16	BB	7415	DCBP	-9 e- 04		0
					_		
			802185			0.1412	

12/13/2004 09:30:57 Result: H:\TURBO6\5890-14\14b42231.rst

Group I	Report	For: AR4	242						
		Ret Time		Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
									
	2	2.18			AR1242-A	0.0164	0.0055	3	
	4	2.48			AR1242-B	0.0602	0.0201	3	
	8	2.80	VV	136586	AR1242-C	0.1897	0.0632	3	
				470005			0,000		
				176025			0.0688		
			\				\		
Group I	Report	For AR1	248 `	l _v					
Cloup i		Ret Time		Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
	9	2.88	VV	58089	AR1248-A	0.2429	0.0810	3	
	13	3.20	W		AR1248-B	0.2284	0.0761	3	
	14	3.29	VV		AR1248-C	0.2446	0,0815	3	
				358218			(0.2386	/	
			_			_	\sim \sim		
		- (25.4				,)		
Group I		For : AR1		A	0	NO	A) (O N) O	# DEAKO	
		RetTime	ВL	Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		- [uV-3e c]	Name	conc.	CONC (5pts)	USED	
	20	3.94	\/\/	115594	AR1254-A	0.1140	0.0380	3	
	22	4.12			AR1254-B	0.0909	0.0303	3	,
	25	4.48			AR1254-C	0.0328	0 <u>.01</u> 09	3	
		7. 10	• •		74112010	0.0020		_	
				238835			0.0793)	
						`	<i>J)(U</i>		
			_						
Group I		For: AR1							1
		Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS	i
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	· \
		4.00	\/C	0000	AD4000 A	4-00	4- 00		Mishalon
	29 30	4.96 5.17	VB BB		AR1260-A	4e-03 -5e-03	-1e-03 -2e-03	ა ე	
	31	5.17	BB		AR1260-B AR1260-C	-se-63 -3e-03	-2e-03 -9e-04	3 3 3	
	31	5.00	טט	1990	AI\1200-C	-56-03	-36-04	3	MAZ
				14546			-4e-93		V ·
							.5 5		

U

340

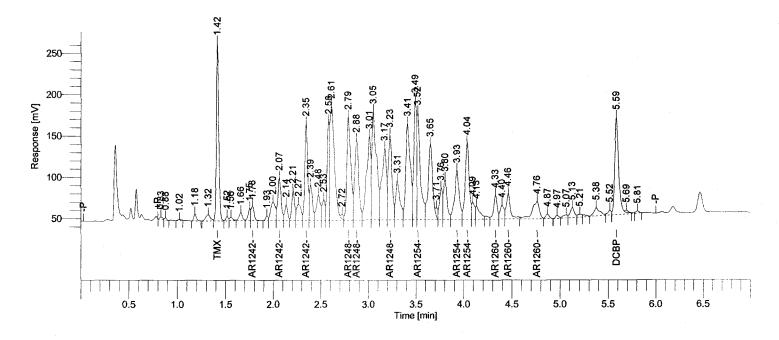
NYS DEC

NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S ANALYSIS DATA SHEET

Client No.

D088D Lab Name: STL Buffalo Contract: C004154 Lab Code: <u>RECNY</u> Case No.: <u>SH904</u> SAS No.: ____ SDG No.: 1208 Matrix: (soil/water) SOIL Lab Sample ID: A4C23305 Sample wt/vol: 30.34 (g/mL) G Lab File ID: 14A42232.TX0 % Moisture: 53.7 decanted: (Y/N) N Date Samp/Recv: <u>12/08/2004</u> <u>12/08/2004</u> Extraction: (SepF/Cont/Sonc/Soxh): SONC Date Extracted: <u>12/09/2004</u> Concentrated Extract Volume: 10000(uL) Date Analyzed: 12/12/2004 Injection Volume: ____1.00(uL) Dilution Factor: 2.00 GPC Cleanup: (Y/N) N pH: <u>6.63</u> Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) <u>UG/KG</u> COMPOUND Q U 12674-11-2---PCB-1016 340 11104-28-2---PCB-1221 U 340 11141-16-5---PCB-1232 U 340 U 53469-21-9---PCB-1242 340 12672-29-6----PCB-1248 580 11097-69-1---PCB-1254 290 J

11096-82-5---PCB-1260


Software Version	: 6.2.1.0.104:0104	Date : 12/13/2004 09:30:59
Reprocess Number	: buf2042: 38986	Comple Name . AC40044940
Operator	: tchrom	Sample Name : AS40014810
Sample Number	: A4C23305	Study : CTA12950
AutoSampler	: HP 7673A	Rack/Vial : 0/0
Instrument Name	: 5890-14	Channel : A
Interface Serial #	: 9205571207	A/D mV Range : 1000
Delay Time	: 0.00 min	End Time : 7.00 min
Sampling Rate	: 16.6660 pts/s	
Sample Volume	: 1.000000 uL	Area Reject : 3000,000000
Sample Amount	: 1.0000	Dilution Factor (: 2.00
Data Acquisition Time	: 12/12/2004 00:59:03	Cycle : 58

Raw Data File: H:\TURBO6\5890-14\14a42232.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42232.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42232.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42232.rst

Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42232.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
6	1.42	VV	362107	TMX	0.0171	<u></u>	0
	2.35		415445	AR1242	0.2161	0.0720	3
	2.79		933098	AR1248	0.4054	0.1351	3
	3.52		783673	AR1254	0.2017	- 0.0672	3
	4.46		280797	AR1260	0.0561	0.0184	3
54	5.59	VE	339062	DCBP	0.0202	—	0
			3114182			0.2928	

12/13/2004 09:30:59 Result: H:\TURBO6\5890-14\14a42232.rst

Group		For: AR1						
		Ret Time	BL	Area -	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
	11	1.78	VB	39060	AR1242-A	9.1282	0.0427	3
	14	2.07	VV	124556	AR1242-B	0.1865	0.0622	3
	18	2.35	VV	251829	AR1242-C	0.2651	0.0884	3
				415445			0.1933	
_	_	- (_					
Group		Fok: AR1 Ret Time		Area	Component	NG	AVG NG	# PEAKS
					Component			# PEARS USED
	#	[min] 		[uV-sec]	Name	conc.	CONC (5pts)	
	25	2.79	VV	365115	AR1248-A	0.4153	0.1384	3
	26	2.88	Ŵ		AR1248-B	0.3848	0.1283	3
	30				AR1248-C	0.4152	0.1384	3
				933098			0.4051	
			_					
Group	Donor	For(; AR1	254	\				
Gloup		Ret Time		Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
	34	3.52	VV	313750	AR1254-A	0.1870	0.0623	3
	39	3.93	VV	200043	AR1254-B	0.1966	0.0655	3
	40	4.04	VV	269880	AR1254-C	0.2269	0.0756	3
				783673			0.2035	
Group	Report	For : AR1	<u>⊅66</u>	_		š		
р		Ret Time		Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
	43	4.33	W	74071	AR1260-A	0.0671	0.0224	3
	45	4.46	VV		AR1260-B	0.0431	0.0144	3
	46	4.76	VV	113242	AR1260-C	0.0608	0.0203	3
				280797			0.0579	

Mishalor

Software Version : 6.2.1.0.104:0104 Date : 12/13/2004 09:31:01 Reprocess Number : buf2042: 38987 Operator : AS40014810 : tchrom Sample Name Sample Number : A4C23305 Study CTA12950 **AutoSampler** : HP 7673A Rack/Vial : 0/0 Instrument Name 5890-14 Channel : B Interface Serial # A/D mV Range: 1000 : 9205571207 **End Time** : 7.00 min **Delay Time** : 0.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL 3000.000000 Area Reject Sample Amount : 1.0000 **Dilution Factor** Data Acquisition Time: 12/12/2004 00:59:03 Cycle

Raw Data File: H:\TURBO6\5890-14\14b42232.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42232.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42232.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42232.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42232.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

CONFIRMATION

200 3.63.67 Response [mV] 150 100 ¥Μ AR1260-DCBP AR1254-AR1254-AR1242-AR1260-AR1242-AR1260-AR1254 0.5 2.5 3.0 4.0 4.5 5.5 6.0 1.0 1.5 2.0 3.5 Time [min]

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
6	1.93	BE	274337	TMX	0.0184	S	0
	2.80		328943	AR1242	0.2124	- 0.0708	3
	3.20		701129	AR1248	0.4631	0.1544	3
	3.94		596330	AR1254	0.1944	0.0648	3
	4.96		127077	AR1260	0-0422	0.0141	3
53	6.16	VB	257734	DCBP	0.0177	<i></i>	0
			2285550			0.3040	

12/13/2004 09:31:01 Result: H:\TURBO6\5890-14\14b42232.rst

	rt For : AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
8	3 2.18	VB	20544	AR1242-A	0.0858	0.0286	3	
12		VV		AR1242-B	0.1666	0.0555	3	
16		VV		AR1242-C	0.2949	0,0973	3	
			328943			0.1814		
O D	4 E.C. AD4	040	\					
Group Repo	Ret Time			Component	NG	AVG NG	# PEAKS	
rear #		DL	Area	Component Name			USED	
#	[min] 		[uV-sec]	Name	conc.	CONC (5pts)	0350	
17	2.89	\/\/	157203	AR1248-A	0.6572	0.2191	3	
21		VV		AR1248-B	0.4453	0.1484	3	
22				AR1248-C	0.4020	0.1340	3	
	0.20	• •		74(12-100	0.4020	0.1040	· · · · · · · · · · · · · · · · · · ·	
			701129			0.5015		
					,			
Group Repo								
	Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS	
.11			F \ /	Mama		CONIC (Enta)	HOED	
#	[min]		[uV-sec]	Mame	conc.	CONC (5pts)	USED	
				$\overline{}$				
30	3.94		281443	AR1254-A	0.2776	0.0925	3	
30	3.94	VV	281443 201261	AR1254-A AR1254-B	0.2776 0.2096	0.0925 0.0699	3 3	
30	3.94	VV	281443 201261	AR1254-A	0.2776	0.0925	3	
30	3.94	VV	281443 201261 113626	AR1254-A AR1254-B	0.2776 0.2096	0.0925 0.0699 0.0346	3 3	
30	3.94	VV	281443 201261	AR1254-A AR1254-B	0.2776 0.2096	0.0925 0.0699	3 3	
30	3.94	VV	281443 201261 113626	AR1254-A AR1254-B	0.2776 0.2096	0.0925 0.0699 0.0346	3 3	
30 32 38	3.94 2. 4.12 3. 4.48	VV VV	281443 201261 113626	AR1254-A AR1254-B	0.2776 0.2096	0.0925 0.0699 0.0346	3 3	
30 32 38 Group Repo	3.94 2. 4.12 3. 4.48 rt For : ART	>> >> 260	281443 201261 113626 596330	AR1254-A AR1254-B AR1254-C	0.2776 0.2096 0.1939	0.0925 0.0699 0.0346 0.1970	3 3 3	
30 32 38 Group Repo Peak	3.94 4.12 4.48 rt For : ART	>> >> 260	281443 201261 113626 596330	AR1254-A AR1254-B AR1254-C Component	0.2776 0.2096 0.1039 NG	0.0925 0.0699 0.0346 0.1970 AVG NG	3 3 3 3 **	
30 32 38 Group Repo	3.94 2. 4.12 3. 4.48 rt For : ART	>> >> 260	281443 201261 113626 596330	AR1254-A AR1254-B AR1254-C	0.2776 0.2096 0.1939	0.0925 0.0699 0.0346 0.1970	3 3 3	
Group Repo	3.94 2. 4.12 3. 4.48 rt For : ART 4. Ret Time [min]	260 BL	281443 201261 113626 596330 Area [uV-sec]	AR1254-A AR1254-B AR1254-C Component Name	0.2776 0.2096 0.1039 NG conc.	0.0925 0.0699 0.0346 0.1970 AVG NG CONC (5pts)	# PEAKS USED	`
30 32 38 Group Repo Peak #	3.94 4.12 4.48 rt For : ART Ret Time [min]	260 BL	281443 201261 113626 596330 Area [uV-sec]	AR1254-A AR1254-B AR1254-C Component Name	0.2776 0.2096 0.1039 NG conc.	0.0925 0.0699 0.0346 0.1970 AVG NG CONC (5pts) 0.0137	# PEAKS USED 3	•
30 32 38 Group Repo Peak #	3.94 4.12 4.48 rt For : ART Ret Time [min] 4.96 5.17	260 BL 	281443 201261 113626 596330 Area [uV-sec] 74789 27208	AR1254-A AR1254-B AR1254-C Component Name AR1260-A AR1260-B	0.2776 0.2096 0.1039 NG conc. 0.0411 0.0323	0.0925 0.0699 0.0346 0.1970 AVG NG CONC (5pts) 0.0137 0.0108	# PEAKS USED 3 3	•
30 32 38 Group Repo Peak #	3.94 4.12 4.48 rt For : ART Ret Time [min] 4.96 5.17	260 BL 	281443 201261 113626 596330 Area [uV-sec] 74789 27208	AR1254-A AR1254-B AR1254-C Component Name	0.2776 0.2096 0.1039 NG conc.	0.0925 0.0699 0.0346 0.1970 AVG NG CONC (5pts) 0.0137	# PEAKS USED 3	

Mishalon

STANDARDS

PCB INITIAL CALIBRATION OF MULTI-COMPONENT ANALYTES

Lab Name: STL Buffalo

Contract:

Instrument: 5890-14

. A Da

-

Date(s) Analyzed:

Column: ZB-35

12/08/2004 to

12/08/2004

	—					⊢—
	Curve R Squared	0.997828	0.998496		0.999972	0.999870
	Curve	2nd	2nd		2nd	2nd
	2.5	4965813				
	1.0		3489523	0.05	942468	751153
	0.5	1342022	1962580	0.04	96292	612181
	0.25	759326	1099515	0.03	599453	481674
(ng/ul) Area	0.1	359427	500301	0.02	418157	335965
LEVEL (ng/ul) Area	0.05	179980	266366	0.01	224819	186744
	0.025	95467	141602	0.005	121185	104372
	COMPOUND 0.025	AR1016	4R1260	COMPOUND	MX	CBP

63763

-310581 -396795

43391

2733709 3961091

m₂

Ë

18392

-49965118 -37361625

20958373 16321635

24757

Formula	Amt = (Area - b) / m	der $ Amt = (-m_1 + SQRT(m_1^2 - 4m_2b))/(2m_2)$
Curve	1st Order	2nd Order

H:\TURBO6\5890-14\14a42045.raw

H:\TURBO6\5890-14\14a42044.raw

0.25

0.5

H:\TURBO6\5890-14\14a42047.raw H:\TURBO6\5890-14\14a42046.raw

Level 0.025

0.05

ICM66JE ICM66JG

Name

ICM66JE ICM66JD ICM66JD ICM66JC

0.1

H:\TURBO6\5890-14\14a42043.raw H:\TURBO6\5890-14\14a42042.raw H:\TURBO6\5890-14\14a42041.raw

7 3 3004

FORM VIA PCB

PCB INITIAL RT WINDOW OF MULTI-COMPONENT ANALYTES

Lab Name: STL Buffalo

Contract:

Instrument:

5890-14 A

Date(s) Analyzed:

Column:

ZB-35

12/08/04

to

12/08/04

		LEVEL					
						INITIAL	WINDOW
COMPOUND	Α	С	E	AVE RT	WINDOW	From	То
					(+/-)		
TMX	1.42	1.42	1.42	1.42	0.08	1.34	1.50
AR1016-A	2.07	2.06	2.06	2.06	0.08	1.98	2.14
AR1016-B	2.35	2.35	2.35	2.35	0.08	2.27	2.43
AR1016-C	2.45	2.45	2.45	2.45	0.08	2.37	2.53
AR1260-A	4.33	4.33	4.33	4.33	0.08	4.25	4.41
AR1260-B	4.46	4.46	4.46	4.46	0.08	4.38	4.54
AR1260-C	4.76	4.76	4.76	4.76	0.08	4.68	4.84
DCBP	5.59	5.59	5.59	5.59	0.08	5.51	5.67
	0.03	0.09	0.09	3.33	0.00	<u> </u>	3.07

MW DEC 2 3 2004

FORM VIB PCB

PCB SINGLE POINT CALIBRATION OF MULTI-COMPONENT ANALYTES

Lab Name:

STL Buffalo

Instrument:

5890-14

ZB-35

Column:

⋖

Date(s) Analyzed:

12/08/2004 \$

12/08/2004

	LEVEL (ng/ul)				
COMPOUND	0.5				
		Colibration Factor		2	F
	Area	Calloration ractor	TIE IU:	Date	ıme
AR1221	270934	541868	H:\TURBO6\5890-14\14a42031.raw	12/08/20	12/08/2004 15:09
AR1232	719810	1439620	H:\TURBO6\5890-14\14a42033.raw	12/08/20	12/08/2004 15:33
AR1242	961302	1922604	H:\TURBO6\5890-14\14a42035.raw	12/08/20	12/08/2004 15:58
AR1248	1150945	2301890	H:\TURBO6\5890-14\14a42037.raw	12/08/20	12/08/2004 16:23
AR1254	1942240	3884480	H:\TURBO6\5890-14\14a42039.raw	12/08/20	12/08/2004 16:48

FORM VIA PCB

6B

PCB INITIAL RT WINDOW OF MULTI-COMPONENT ANALYTES

Lab Name:

STL Buffalo

Instrument:

5890-14 A

Date(s) Analyzed:

Column:

ZB-35

12/08/04

to

12/08/04

			*	
			INITIAL	WINDOW
COMPOUND	Retention	WINDOW	From	То
	Time	(+/-)		
AR1221-A	1.18	0.08	1.10	1.26
AR1221-B	1.55	80.0	1.47	1.63
AR1221-C	1.64	0.08	1.56	1.72
AR1232-A	1.78	80.0	1.70	1.86
AR1232-B	2.06	0.08	1.98	2.14
AR1232-C	2.35	0.08	2.27	2.43
AR1242-A	1.78	0.08	1.70	1.86
AR1242-B	2.06	0.08	1.98	2.14
AR1242-C	2.35	0.08	2.27	2.43
AR1248-A	2.79	0.08	2.71	2.87
AR1248-B	2.88	0.08	2.80	2.96
AR1248-C	3.23	0.08	3.15	3.31
AR1254-A	3.52	0.08	3.44	3.60
AR1254-B	3.93	0.08	3.85	4.01
AR1254-C	4.05	0.08	3.97	4.13

DEC 2 3 2004

FORM VIB PCB

PCB INITIAL CALIBRATION OF MULTI-COMPONENT ANALYTES

Lab Name: STL Buffalo

Contract:

Instrument:

Ω

5890-14

Date(s) Analyzed:

ZB-5 Column:

2 12/08/2004

12/08/2004

								-
	m ₂	-211638	-204715				25591076	-32135404
	m,	2128085	2421495				13520522	14005625
	Curve R Squared	0 998447	0.999391				0.999317	0.999949
	Curve	2nd	2nd				2nd	2nd
	2.5	4056718	4815010					
	1.0	1887044	2188191		0.05		766311	640726
	0.5	1053859	1195629		0.04	-	588325	528352
	0.25	593637	634308		0.03		438254	413217
(ng/ul) Area	0.1	276956	283367		0.02		302746	285646
LEVEL (ng/ul)	0.05	150241	153046		0.01		158719	158827
	0.025	79315	76229		0.005		82612	89196
	COMPOUND	AR1016	AR1260		COMPOUND		TMX	DCBP

39228 25278

16535 20433

Curve 1st Order Amt = $(Area - b) / m_1$ 2nd Order Amt = $(-m_1 + SQRT(m_1^2))$

H:\TURBO6\5890-14\14b42045.raw

H:\TURBO6\5890-14\14b42043.raw

0.25

0.1

H:\TURBO6\5890-14\14b42044.raw

H:\TURBO6\5890-14\14b42041.raw

H:\TURBO6\5890-14\14b42042.raw

H:\TURBO6\5890-14\14b42047.raw H:\TURBO6\5890-14\14b42046.raw

Level 0.025 0.05

> ICM66JE CM66JG CM66JF CM66JE CM66JD CM66JC **CM66JB**

Name

アく) DEC 2 3 2004

FORM VIA PCB

PCB INITIAL RT WINDOW OF MULTI-COMPONENT ANALYTES

Lab Name: STL Buffalo

Contract:

Instrument:

5890-14 B

Date(s) Analyzed:

Column:

ZB-5

12/08/04

to

12/08/04

		LEVEL					
						INITIAL	WINDOW
COMPOUND	A	C	E	AVE RT	WINDOW	From	То
					(+/-)		
TMX	1.93	1.93	1.02	1.02	0.00	4 05	2 04
AR1016-A	2.48	2.47	1.93 2.47	1.93	0.08	1.85 2.39	2.01 2.55
AR1016-B	2.40	2.47	2.47	2.47	0.08	2.53	2.55
AR1016-C	2.79	2.79	2.79	2.79	0.08	2.71	2.87
AR1260-A	4.96	4.95	4.95	4.95	0.08	4.87	5.03
AR1260-B	5.17	5.17	5.17	5.17	0.08	5.09	5.25
AR1260-C	5.60	5.60	5.60	5.60	0.08	5.52	5.68
DCBP	6.15	6.15	6.15	6.15	80.0	6.07	6.23

DEC 23 2004

PCB SINGLE POINT CALIBRATION OF MULTI-COMPONENT ANALYTES

Lab Name:

STL Buffalo

5890-14 Instrument:

മ

ZB-5

Column:

Date(s) Analyzed:

2 12/08/2004

12/08/2004

Time 12/08/2004 15:09 12/08/2004 15:33 12/08/2004 15:58 12/08/2004 16:23 12/08/2004 16:48 Date H:\TURBO6\5890-14\14b42037.raw H:\TURBO6\5890-14\14b42035.raw H:\TURBO6\5890-14\14b42039.raw H:\TURBO6\5890-14\14b42031.raw H:\TURBO6\5890-14\14b42033.raw File ID: Calibration Factor 1548970 1514080 3067664 465896 380852 LEVEL (ng/ul) 190426 232948 774485 757040 1533832 Area 0.5 COMPOUND AR1242 AR1232 AR1248 AR1254 AR1221

FORM VIA PCB

6B

PCB INITIAL RT WINDOW OF MULTI-COMPONENT ANALYTES

Lab Name:

STL Buffalo

Instrument:

5890-14 B

Date(s) Analyzed:

Column:

ZB-5

12/08/04

to

12/08/04

			INITIAL	WINDOW
COMPOUND	Retention	WINDOW	From	То
	Time	(+/-)		
AR1221-A	1.52	0.08	1.44	1.60
AR1221-B	1.77	0.08	1.69	1.85
AR1221-C	2.06	0.08	1.98	2.14
AR1232-A	1.91	0.08	1.83	1.99
AR1232-B	2.06	0.08	1.98	2.14
AR1232-C	2.18	0.08	2.10	2.26
AR1242-A	2.18	0.08	2.10	2.26
AR1242-B	2.47	0.08	2.39	2.55
AR1242-C	2.79	0.08	2.71	2.87
AR1248-A	2.87	0.08	2.79	2.95
AR1248-B	3.20	0.08	3.12	3.28
AR1248-C	3.29	0.08	3.21	3.37
AR1254-A	3.94	0.08	3.86	4.02
AR1254-B	4.12	0.08	4.04	4.20
AR1254-C	4.48	0.08	4.40	4.56

MUS DEC 2 3 2004

7A

PCB CONTINUING CALIBRATION VERIFICATION

Lab Name: STL Buffalo

Contract:

Instrument:

5890-14 A

ICAL Date(s) Analyzed:

Column:

ZB-35

12/08/04

to:

12/08/04

CCV ID:

ICM54RA

Date/Time:

12/11/2004 23:19

FILE ID:

H:\TURBO6\5890-14\14a42224.raw

		INITIAL	WINDOW	Calc	Expected	
COMPOUND	RT	From	То	Amt.(ng)	Amt.(ng)	% D
TMX	1.42	1.34	1.50	0.0319	0.0300	6.3
AR1254	3.52	3.44	3.60	0.5485	0.500	9.7
DCBP	5.59	5.51	5.67	0.0318	0.0300	6.0

Ave %D =

7.3

^{*} Value >15.0% Difference

7A

PCB CONTINUING CALIBRATION VERIFICATION

Lab Name: STL Buffalo

Contract:

Instrument:

5890-14 A

ICAL Date(s) Analyzed:

Column:

ZB-35

12/08/2004

to:

12/08/2004

CCV ID:

ICM66JD

Date/Time:

12/12/2004 01:48

FILE ID:

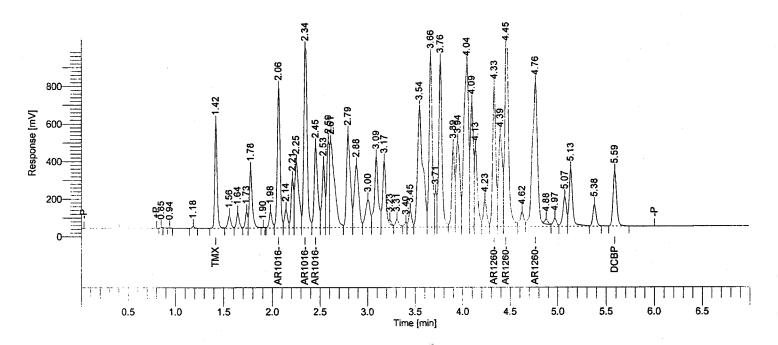
H:\TURBO6\5890-14\14a42236.raw

		DAILY	WINDOW	Calc	Expected	
COMPOUND	RT	From	То	Amt.(ng)	Amt.(ng)	% D
TMX	1.42	1.34	1.50	0.0308	0.0300	2.5
AR1016	2.34	2.26	2.42	0.5244	0.500	4.9
AR1260	4.46	4.38	4.54	0.5102	0.500	2.0
DCBP	5.59	5.51	5.67	0.0287	0.0300	-4.4

Ave %D = 3.5

^{*} Value >15.0% Difference

: 6.2.1.0.104:0104 Date : 12/09/2004 09:56:10 Software Version Reprocess Number : buf2042: 38535 Sample Name : ICM66JB Operator tchrom Sample Number 2.5NG Study : ICAL : 0/0 Rack/Vial **AutoSampler** HP 7673A Instrument Name 5890-14 Channel : A A/D mV Range: 1000 Interface Serial # 9205571207 **Delay Time** 0.00 min **End Time** : 7.00 min Sampling Rate 16.6660 pts/s 1.000000 uL : 3000.000000 Area Reject Sample Volume Sample Amount : 1.0000 Dilution Factor: 1.00 : 1 Data Acquisition Time: 12/08/2004 17:12:57 Cycle


Raw Data File: H:\TURBO6\5890-14\14a42041.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42041.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42041.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42041.rst

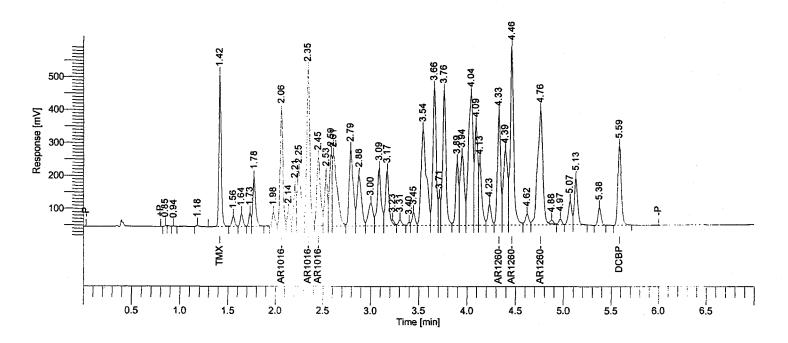
Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42041.rst

Report Format File: h:\turbo6\5890_14\nsamp.fpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
 4	1.42	BV	942468	TMX	0.0500		0
	2.34		4965813	AR1016	2.5000	0.8333	3
	4.45		7525818	AR1260	2.5000	0.8333	3
49	5.59	VB	751153	DCBP	0.0500	prody. His die die Stadie	0
			14185252			1.6667	

12/09/2004 09:56:10 Result: H:\TURBO6\5890-14\14a42041.rst

Group	· · · · ·	For : AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	11	2.06			AR1016-A	2.5000	0.8333	3
	15 16	2.34 2.45			AR1016-B AR1016-C	2.5000 2.5000	0.8333 0.8333	3 3
				4965813			2.5000	
Group	Report	For : AR1	260					
	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	39	4.33	VV	1690176	AR1260-A	2.5000	0.8333	3
	41	4.45	VV	2869479	AR1260-B	2.5000	0.8333	3
	43	4.76	VE	2966163	AR1260-C	2.5000	0.8333	3
				7525818			2.5000	


Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38536	Date	: 12/09/2004 09:56:13
Operator	: tchrom	Sample Name	: ICM66JC
Sample Number	: 1.0NG	Study	: ICAL
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: A
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3000.000000
Sample Amount	: 1.0000	Dilution Factor	: 1.00
Data Acquisition Time	: 12/08/2004 17:25:19	Cycle	: 2

Raw Data File: H:\TURBO6\5890-14\14a42042.raw < Modified>

Result File: H:\TURBO6\5890-14\14a42042.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42042.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42042.rst Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42042.rst Report Format File: h:\turbo6\5890-14\nsamp.rpt

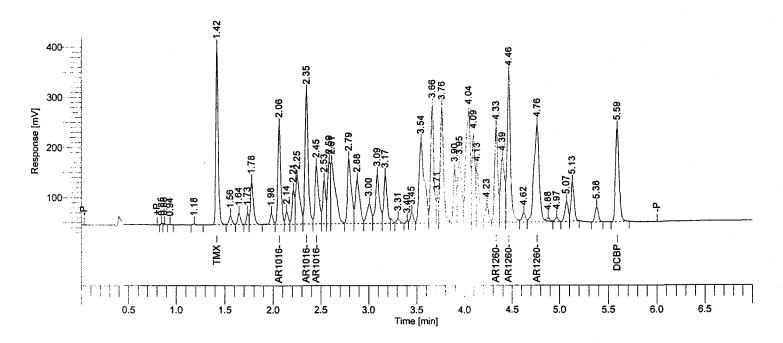
Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	-	NG onc.	AVG NG CONC (5pts)	
4	1.42	W	776796	TMX	0.	0400		0
	2.35		2362428	AR1016	1.0	0000	0.3333	3
	4.46		3489523	AR1260	1.0	0000	0.3333	3
48	5.59	BB	612181	DCBP	0.	0400		0
			7240928				0.6667	

12/09/2004 09:56:13 Result: H:\TURBO6\5890-14\14a42042.rst

					016	For: AR1	Group Report
# PEAKS USED	AVG NG CONC (5pts)	NG conc.	Component Name	Area [uV-sec]		Ret Time [min]	
3	0.3333	1.0000	AR1016-A	740571	W	2.06	10
3	0.3333	1.0000	AR1016-B	1071808	W	2.35	14
3	0.3333	1.0000	AR1016-C	550049	VV	2.45	15
	1.0000			2362428			
					260	For : AR1:	Group Report
# PEAKS USED	AVG NG CONC (5pts)	NG conc.	Component Name	Area [uV-sec]	BL	Ret Time [min]	• •
3	0.3333	1.0000	AR1260-A	774120	W	4.33	38
3	0.3333	1.0000	AR1260-B	1382927	W	4.46	40
3	0.3333	1.0000	AR1260-C	1332476	VE	4.76	42
	1.0000			3489523			

Software Version : 6.2.1.0.104:0104 Date : 12/09/2004 09:56:15 Reprocess Number : buf2042: 38537 Sample Name : ICM66JD Operator : tchrom : ICAL Sample Number 0.5NG Study Rack/Vial : 0/0 **AutoSampler** HP 7673A Instrument Name 5890-14 Channel : A Interface Serial # 9205571207 A/D mV Range: 1000 : 7.00 min **Delay Time** 0.00 min End Time Sampling Rate 16.6660 pts/s : 3000.000000 Area Reject Sample Volume 1.000000 uL Sample Amount 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 17:37:44 Cycle : 3


Raw Data File: H:\TURBO6\5890-14\14a42043.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42043.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42043.raw Proc Method: h:\turbo6\5890-14\naproc.mth from \h:\TURBO6\5890-14\14a42043.rst

Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42043.rst

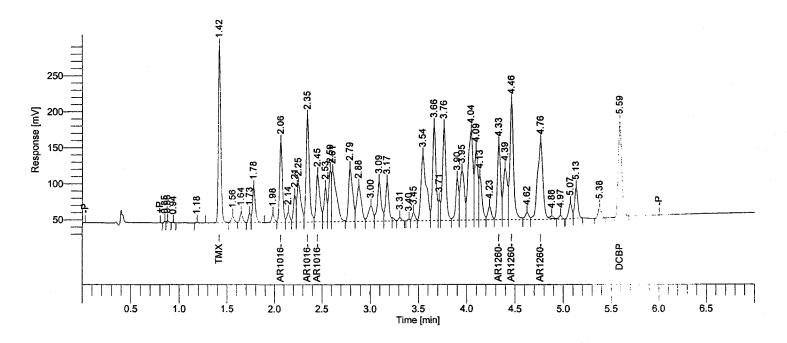
Report Format File: h:\turbo6\5890-14\nsamp.rpt
Sequence File: H:\TURBO6\5890-14\14D42.seq

	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name		NG conc.	AVG NG CONC (5pts)	
	5	1.42	W	599453	TMX		0.0300		0
	_	2.35		1342022			0.5000	0.1667	3
		4.46		1962580	AR1260	(0.5000	0.1667	3
	48	5.59	BB	481674	DCBP	(0.0300		0
									
				4385730				0.3333	

12/09/2004 09:56:15 Result: H:\TURBO6\5890-14\14a42043.rst

Group	Report	For: AR1	016					
·	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	11	2.06	VV	422341	AR1016-A	 0.5000	0.1667	3
	15	2.35	VV	605456	AR1016-B	0.5000	0.1667	3
	16	2.45	VV	314225	AR1016-C	0.5000	0.1667	3
				1342022			0.5000	
Group	Report	For: AR1	260					
•		Ret Time		Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
	38	4.33	VV	435874	AR1260-A	 0.5000	0.1667	3
	40	4.46	VV	774480	AR1260-B	0.5000	0.1667	3
	42	4.76	VE	752226	AR1260-C	0.5000	0.1667	3
				1962580			0.5000	

Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38538	Date	: 12/09/2004 09:56:18
Operator	: tchrom	Sample Name	: ICM66JE
Sample Number	: 0.25NG	Study	: ICAL
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: A
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3000.000000
Sample Amount	: 1.0000	Dilution Factor	: 1.00
Data Acquisition Time	: 12/08/2004 17:50:09	Cycle	: 4


Raw Data File: H:\TURBO6\5890-14\14a42044.raw < Modified>

Result File: H:\TURBO6\5890-14\14a42044.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42044.raw Proc Method: h:\turbo6\5890-14\napree:mth from H:\TURBO6\5890-14\14a42044.rst

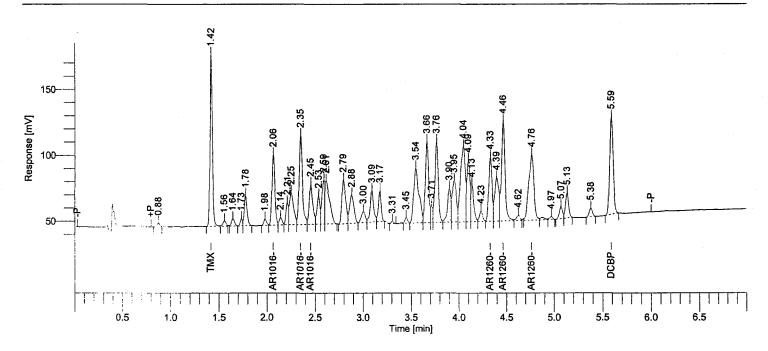
Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42044.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
5	1.42	W	418157	TMX	0.0200		0
	2.35		759326	AR1016	0.2500	0.0833	3
	4.46		1099515	AR1260	0.2500	0.0833	3
48	5.59	BB	335965	DCBP	0.0200	******	0
			2612963			0.1667	

12/09/2004 09:56:18 Result: H:\TURBO6\5890-14\14a42044.rst

Group	Report	For: AR1	016					
•		Ret Time [min]		Area [uV-sec]	Component Name	NG conc	AVG NG CONC (5pts)	# PEAKS USED
	11	2.06	W	240529	AR1016-A	0.250	0.0833	3
	15	2.35	W	340705	AR1016-B	0.250	0.0833	3
	16	2.45	VV	178092	AR1016-C	0.250		3
				759326			0.2500	
Group	Report	For: AR1	260					
		Ret Time		Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]	Name	conc		
	38	4.33	W	244007	AR1260-A	0.250	0.0833	3
	40	4.46	VV	434656	AR1260-B	0.250	0.0833	3
	42	4.76	VE	420852	AR1260-C	0.250		
				1099515			0.2500	- I


Software Version Reprocess Number		6.2.1.0.104:0104 buf2042: 38539	Date	:	12/09/2004 09:56:20
Operator		chrom	Sample Name	:	ICM66JF
Sample Number	: 0	0.1NG	Study	:	ICAL
AutoSampler	: +	HP 7673A	Rack/Vial	:	0/0
Instrument Name	: 5	5890-14	Channel	:	Α
Interface Serial #	: 9	9205571207	A/D mV Range	:	1000
Delay Time	: 0	0.00 min	End Time	:	7.00 min
Sampling Rate	: 1	16.6660 pts/s			
Sample Volume	: 1	1.000000 uL	Area Reject	:	3000.000000
Sample Amount	: 1	1.0000	Dilution Factor	:	1.00
Data Acquisition Time	: 1	12/08/2004 18:02:35	Cycle	:	5

Raw Data File: H:\TURBO6\5890-14\14a42045.raw < Modified>

Result File: H:\TURBO6\5890-14\14a42045.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42045.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H;\TURBO6\5890-14\14a42045.rst Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42045.rst

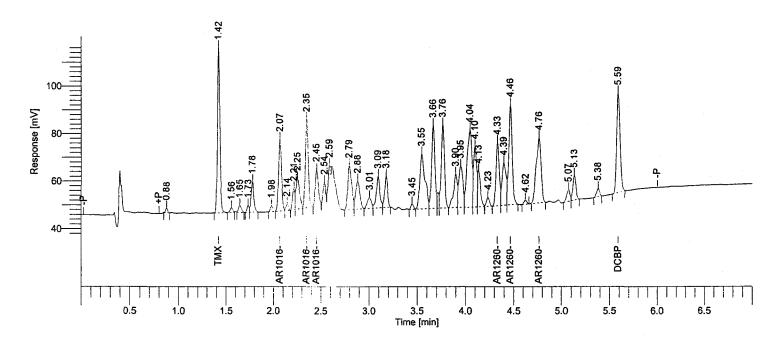
Report Format File: h:\turbo6\5890=14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
2	1.42	BV	224819	TMX	0.0100	****	0
	2.35		359427	AR1016	0.1000	0.0333	3
	4.46		500301	AR1260	0.1000	0.0333	3
43	5.59	BB	186744	DCBP	0.0100		0
			1271292			0.0667	

12/09/2004 09:56:20 Result: H:\TURBO6\5890-14\14a42045.rst

Group	•	For : AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	8 12	2.06	VV VV		AR1016-A AR1016-B	0.1000 0.1000	0.0333 0.0333	3
	13	2.45	VV		AR1016-B AR1016-C	0.1000	0.0333	3
				359427			0.1000	
Group	Report	: For : AR1	260					
	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	34	4.33	VV	112976	AR1260-A	0.1000	0.0333	3
	36 38	4.46 4.76	VV		AR1260-B AR1260-C	0.1000 0.1000	0.0333 0.0333	3 3
	00	4.70	• •	500301	741200-0	0.1000	0.1000	J

Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38540	Date	: 12/09/2004 09:56:23
Operator	: tchrom	Sample Name	: ICM66JG
Sample Number	: 0.05NG	Study	: ICAL
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: A
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3000.000000
Sample Amount	: 1.0000	Dilution Factor	: 1.00
Data Acquisition Time	: 12/08/2004 18:15:28	Cycle	: 6


Raw Data File: H:\TURBO6\5890-14\14a42046.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42046.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42046.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42046.rst

Calib Method: h:\turbo6\5890-14\na66(12-8-04) with from H:\TURBO6\5890-14\14a42046.rst

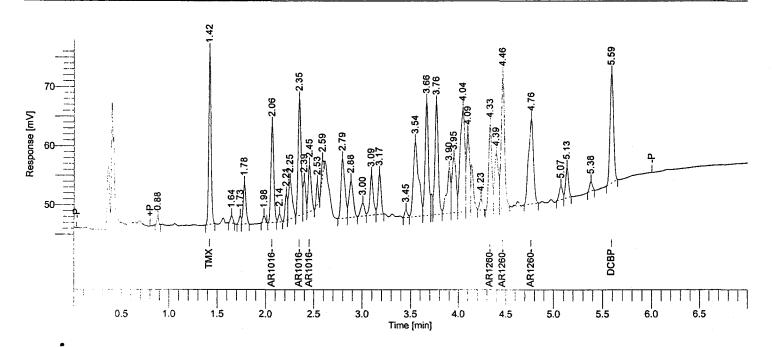
Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

 Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
2	1.42	BV	121185	TMX	0.0050		0
	2.35		179980	AR1016	0.0500	0.0167	3
	4.46		266366	AR1260	0.0500	0.0167	3
39	5.59	BB	104372	DCBP	0.0050	\$20 TOTAL SEED TOTAL S	0
			671903			0.0333	

12/09/2004 09:56:23 Result: H:\TURBO6\5890-14\14a42046.rst

•	•	For : AR1 Ret Time [min]	016 BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	8 12	2.07 2.35	VV VB		AR1016-A AR1016-B	0.0500	0.0167 0.0167	3
	13	2.45	BB		AR1016-C	0.0500	0.0167	3
				179980			0.0500	
Group R	Report	For : AR1	260					
		Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	31	4.33	BV		AR1260-A	0.0500	0.0167	3
	33 35	4.46 4.76	VB VB	106057 99359	AR1260-B AR1260-C	0.0500 0.0500	0.0167 0.0167	3 3
				266366		,	0.0500	

Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38541	Date : 12/09/2004 09:56:25
Operator	: tchrom	Sample Name : ICM66JE
Sample Number	: 0.025NG	Study : ICAL
AutoSampler	: HP 7673A	Rack/Vial : 0/0
Instrument Name	: 5890 - 14	Channel : A
Interface Serial #	: 9205571207	A/D mV Range: 1000
Delay Time	: 0.00 min	End Time : 7.00 min
Sampling Rate	: 16.6660 pts/s	
Sample Volume	: 1.000000 uL	Area Reject : 3000.000000
Sample Amount	: 1.0000	Dilution Factor : 1.00
Data Acquisition Time	e: 12/08/2004 18:27:52	Cycle : 7


Raw Data File: H:\TURBO6\5890-14\14a42047.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42047.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42047.raw Proc Method: h:\turbo6\5890-14\naproc:mth from H:\TURBO6\5890-14\14a42047.rst

Calib Method: h:\turbo6\5890-(14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42047.rst

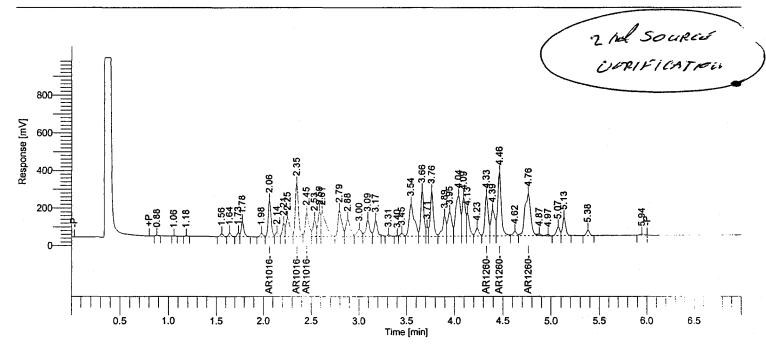
Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

 Peak #	Ret Time [min]	BL		Component Name	NG conc.	AVG NG CONC (5pts)	
2	1.42	вв	5 1351	TMX	0.0016		0
	2.35		95467	AR1016	0.0250	0.0083	3
	4.46		141602	AR1260	0.0250	0.0083	3
37	5.59	BB	45932	DCBP	0.0015		0
			334352			0.0167	

12/09/2004 09:56:25 Result: H:\TURBO6\5890-14\14a42047.rst

Group	•	For : AR1		٨٠٥٥	Component	NG	AVG NG	# DEAVO
	#	[min]	DL.	Area [uV-sec]	Component Name	conc.	CONC (5pts)	# PEAKS USED
	7	2.06	BV		AR1016-A	0.0250	0.0083	3
	11 13	2.35 2.45	VV VB		AR1016-B AR1016-C	0.0250 0.0250	0.0083 0.0083	3 3
				95467			0.0250	
Group	Report	For : AR1	260					
		Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	30	4.33	BV		AR1260-A	0.0250	0.0083	3
	32 33	4.46 4.76	VV VB		AR1260-B AR1260-C	0.0250 0.0250	0.0083 0.0083	3 3
				141602			0.0250	

Software Version : 6.2.1.0.104:0104 Date : 12/09/2004 10:06:13 Reprocess Number : buf2042: 38542 ACM66BB Operator Sample Name : tchrom Sample Number 0.6NG ACM Study AutoSampler HP 7673A Rack/Vial 0/0 Instrument Name Α 5890-14 Channel Interface Serial # 9205571207 A/D mV Range: 1000 : 7.00 min **Delay Time** 0.00 min **End Time** Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject : 8000.00000 Sample Amount 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 18:40:16 Cycle : 1


Raw Data File: H:\TURBO6\5890-14\14a42048.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42048.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42048.raw Proc Method: h:\turbo6\5890-14\naproc.mth from \text{H:\TURBO6\5890-14\14a42048.rst}

Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42048.rst

Report Format File: h:\turbo6\default\acm-%d.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

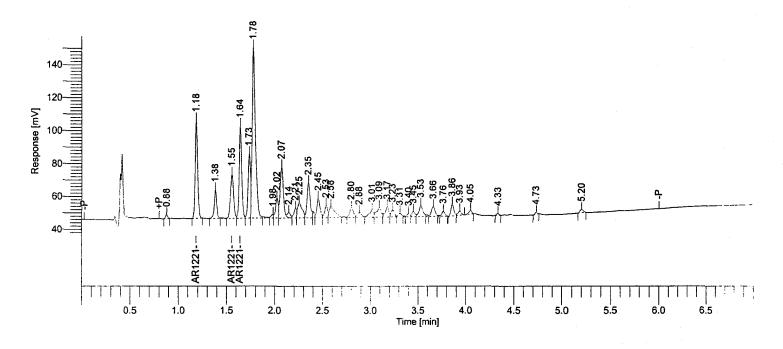
2nd Source Check

Ret Time BL [min]	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D		
		·						11.
2.35	1409890	AR1016	0.5320	2.6500e+06	2.8198e+06	-11.3) .	12/5/4
4.46	2310013	AR1260	0.6036	3.8272e+06	4.6200e+06	0.6	/ '	THE STATE OF THE S
								
	3719904		1.1356		7.4398e+06			

12/09/2004 10:06:13 Result: H:\TURBO6\5890-14\14a42048.rst

Group Re Ret Time [min]				CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
2.06 2.35 2.45		651002	AR1016-A AR1016-B AR1016-C	0.5447	1.1951e+06	8.3077e+05 1.3020e+06 6.8701e+05	-17.5 -9.2 -7.3
	• •	1409890		1.5963	0.17010400	2.8198e+06	
Group Rep Ret Time [min]	•	For : AR12 Area [uV-sec]		CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
4.33 4.46 4.76	VV VV VE	872998	AR1260-A AR1260-B AR1260-C	0.5727	1.5245e+06	9.7986e+05 1.7460e+06 1.8942e+06	-4.6
		2310013		1.7993		4.6200e+06	

Software Version : 6.2.1.0.104:0104 Date : 12/09/2004 12:09:08 Reprocess Number : buf2042: 38551 Operator : tchrom Sample Name : ICM21PA Sample Number : 0.5NG : ICAL Study : HP 7673A Rack/Vial **AutoSampler** : 0/0 Instrument Name : 5890-14 Channel : A Interface Serial # : 9205571207 A/D mV Range: 1000 **Delay Time** : 0.00 min End Time : 7.00 min Sampling Rate : 16.6660 pts/s Sample Volume Area Reject : 3000.000000 : 1.000000 uL Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 15:09:03 Cvcle : 1


Raw Data File: H:\TURBO6\5890-14\14a42031.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42031.rst

 $Inst\ Method: H:\ TURBO6\ 5890-14\ 14dins\ from\ H:\ TURBO6\ 5890-14\ 14a42031. raw\ Proc\ Method: h:\ turbo6\ 5890-14\ naproc.mth\ from\ H:\ TURBO6\ 5890-14\ 14a42031. rst$

Calib Method: h:\turbo6\5890-14\na21(12-8-04).mth from H:\TURBO6\5890-14\14a42031.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Pea #			Component Name		AVG NG CONC (5pts)	
	1.18	 270934	AR1221	0.5000	0.1667	3
		270934			0.1667	

Processed by: <u>@10</u> 12 15 164
Processed by: <u>@10</u> 12 10 10V

12/09/2004 12:09:08 Result: H:\TURBO6\5890-14\14a42031.rst

Group	Report	For ·	AR1221
CICUP	1 (CPOI)		7111221

Сходр	•	Ret Time [min]	BL		Component Name		NG conc.	AVG NG CONC (5pts)	
	2 4 5	1.55	VV	61878	AR1221-A AR1221-B AR1221-C	0.	.5000 .5000	0.1667 0.1667 0.1667	3 3 3
				270934				0.5000	

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38553

Operator : tchrom Sample Number 0.6NG **AutoSampler** HP 7673A Instrument Name 5890-14 Interface Serial # 9205571207 **Delay Time** 0.00 min Sampling Rate

Sample Volume

16.6660 pts/s 1.000000 uL

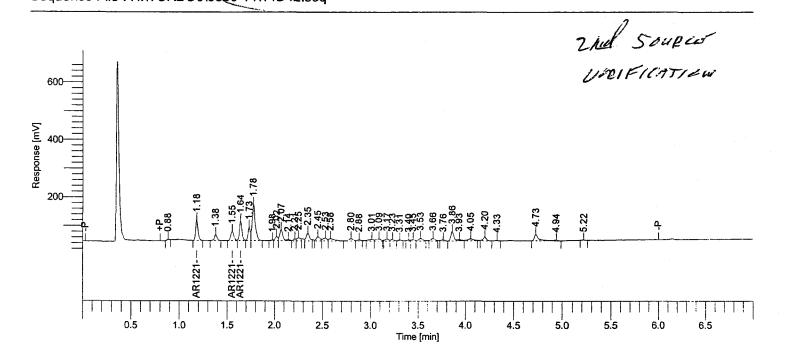
Sample Amount 1.0000 Data Acquisition Time: 12/08/2004 15:21:24

Date : 12/09/2004 12:09:14

Sample Name : ACM21NA Study : ACM Rack/Vial : 0/0 Channel : A

A/D mV Range: 1000 **End Time** : 7.00 min

Area Reject : 8000.00000


Dilution Factor: 1.00 Cycle : 2

Raw Data File: H:\TURBO6\5890-14\14a42032.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42032.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42032.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42032.rst Calib Method: h:\turbo6\5890-14\na21(12-8-04).mth from H:\TURBO6\5890-14\14a42032.rst

Report Format File: h:\turbo6\default\acm-%d:rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time BL [min]	Area [uV-sec]		CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D	•
1.18	322956	AR1221	0.5960	5.4187e+05	6.4591e+05	-0.7	12/9
	322956		0.5960		6.4591e+05		0

12/09/2004 12:09:14 Result: H:\TURBO6\5890-14\14a42032.rst

Group Report For: AR1221

oup ite	port	01.7331	<u> </u>				
	BL	Area	Component	CONCENTRATION	Initial	Continuing	%D
[min]		[uV-sec]	Name	NG	Cal Factor	Cal Factor	
1.18	BB	120594	AR1221-A	0.5834	2.0670e+05	2.4119e+05	-2.8
1.55	BV	73948	AR1221-B	0.5975	1.2376e+05	1.4790e+05	-0.4
1.64	VV	128414	AR1221-C	0.6074	2.1141e+05	2.5683e+05	1.2
		322956		1.7884		6.4591e+05	
	Ret Time [min] 1.18 1.55	Ret Time BL [min] ————————————————————————————————————	Ret Time BL Area [uV-sec] 1.18 BB 120594 1.55 BV 73948 1.64 VV 128414	[min] [uV-sec] Name 1.18 BB 120594 AR1221-A 1.55 BV 73948 AR1221-B 1.64 VV 128414 AR1221-C	Ret Time BL [min] Area [uV-sec] Component NG CONCENTRATION NG 1.18 BB 120594 AR1221-A AR1221-B 0.5975 0.5975 1.64 VV 128414 AR1221-C 0.6074	Ret Time [min] BL [uV-sec] Area [uV-sec] Component NG CONCENTRATION Cal Factor Initial Cal Factor 1.18 BB 120594 AR1221-A 1.55 BV 73948 AR1221-B 1.64 VV 128414 AR1221-C 0.5834 2.0670e+05 1.2376e+05 1.23	Ret Time [min] BL [uV-sec] Area [uV-sec] Component NG CONCENTRATION NG Initial Cal Factor Continuing Cal Factor 1.18 BB 120594 AR1221-A 1.55 BV 73948 AR1221-B 1.64 VV 128414 AR1221-C 0.5834 2.0670e+05 2.4119e+05 1.4790e+05 1.4790e+05 2.5683e+05

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38555

Operator : tchrom
Sample Number : 0.5NG
AutoSampler : HP 7673A
Instrument Name : 5890-14
Interface Serial # : 9205571207
Delay Time : 0.00 min
Sampling Rate : 16 6660 pts/s

Sampling Rate : 16.6660 pts/s Sample Volume : 1.000000 uL

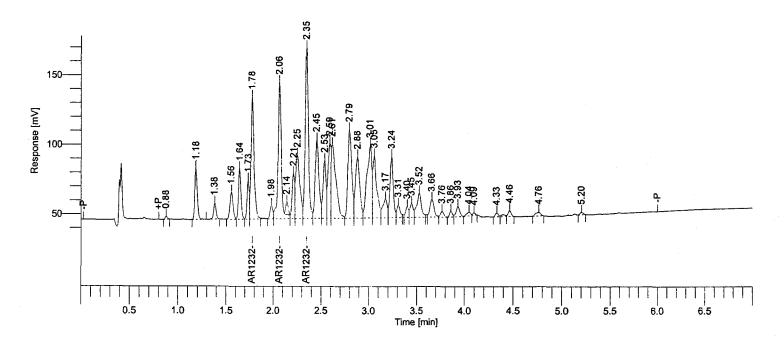
Sample Amount : 1.0000 Data Acquisition Time : 12/08/2004 15:33:49 Date : 12/09/2004 12:09:19

Sample Name : ICM32DA Study : ICAL

Rack/Vial : 0/0
Channel : A
A/D mV Range : 1000
End Time : 7.00 min

Area Reject : 3000.000000

Dilution Factor : 1.00 Cycle : 3


Raw Data File: H:\TURBO6\5890-14\14a42033.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42033.rst

Inst Method : H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42033.raw Proc Method : h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42033.rst

Calib Method: h:\turbo6\5890-14\na32(12-8-04).mth from H:\TURBO6\5890-14\14a42033.rst

Report Format File: h:\turbo6\5890-14\nsamp:rpt
Sequence File: H:\TURBO6\5890-14\14D42.seq

	BL Area [uV-sec]			AVG NG CONC (5pts)	
 2.35	719810	Ar1232	0.5000	0.1667	3
	719810			0.1667	

Processed by: 662 12 18 104

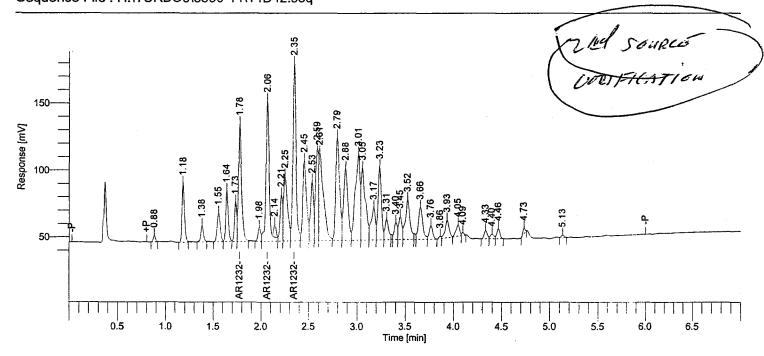
Reviewed by: 60 210 104

12/09/2004 12:09:19 Result: H:\TURBO6\5890-14\14a42033.rst

Group	Report	For:	Ar1232
-------	--------	------	--------

 •	Ret Time [min]			Component Name	NG conc.	AVG NG CONC (5pts)	
7	1.78	VV	194529	AR1232-A	0.5000	0.1667	3
9	2.06	VΕ	238540	AR1232-B	0.5000	0.1667	3
13	2.35	VV	286742	AR1232-C	0.5000	0.1667	3
			719810			0.5000	

Software Version : 6.2.1.0.104:0104 Date : 12/09/2004 12:09:25 Reprocess Number buf2042: 38557 Operator : tchrom Sample Name : ACM32YA Sample Number : 0.6NG ACM Study AutoSampler : 0/0 HP 7673A Rack/Vial Instrument Name 5890-14 Channel : A Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min **End Time** : 7.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL : 8000.00000 Area Reiect Sample Amount 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 15:46:12 Cycle : 4


Raw Data File: H:\TURBO6\5890-14\14a42034.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42034.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42034.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42034.rst

Calib Method: h:\turbo6\5890-14\na32(12-8-04).mth from H:\TURBO6\5890-14\14a42034.rst

Report Format File: h:\turbo6\default\acm-%d.rpt
Sequence File: H:\TURBO6\5890-14\14D42.seq

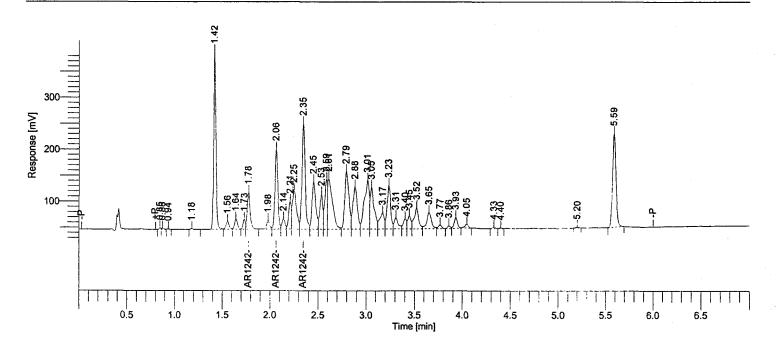
2nd Source Check

Ret Time BL [min]	Area [uV-sec]	•	CONCENTRATION NG		Continuing Cal Factor	%D	<i>i. I</i>
2.35	758769	Ar1232	0.5271	1.4396e+06	1.5175e+Ø6	-12.2	12/9/24
	758769		0.5271		1.5175e+06		

12/09/2004 12:09:25 Result: H:\TURBO6\5890-14\14a42034.rst

Group Report For: Ar1232

Ret Time [min]	BL	Area		CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
2.06	VΕ	252065	AR1232-A AR1232-B AR1232-C	0.5283	4.7708e+05	3.9349e+05 5.0413e+05 6.1992e+05	-11.9
		758769		1.5745		1.5175e+06	


Software Version : 6.2.1.0.104:0104 : 12/09/2004 12:09:30 Date Reprocess Number : buf2042: 38559 Operator : tchrom Sample Name : ICM42QA Sample Number : 0.5NG : ICAL Study AutoSampler : HP 7673A Rack/Vial : 0/0 Instrument Name 5890-14 Channel : A Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min **End Time** : 7.00 min Sampling Rate : 16.6660 pts/s Sample Volume Area Reject : 1.000000 uL : 3000.000000 Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 15:58:37 Cycle : 5

Raw Data File: H:\TURBO6\5890-14\14a42035.raw < Modified>

Result File: H:\TURBO6\5890-14\14a42035.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42035.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42035.rst Calib Method: h:\turbo6\5890-14\14a42035.rst

Report Format File: h:\turbo6\5890-14\nsamp;rpt Sequence File: H:\TURBO6\5890=14\14D42.seq

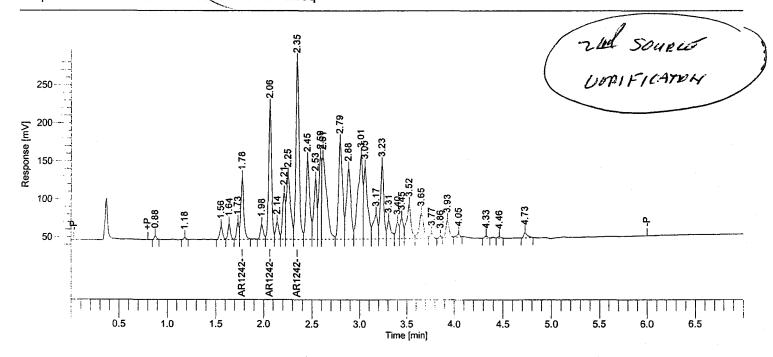
Peak #			Component Name		AVG NG CONC (5pts)	
	2.35	 961302	AR1242	0.5000	0.1667	3
		961302			0.1667	

12/09/2004 12:09:30 Result: H:\TURBO6\5890-14\14a42035.rst

Group F	Report	For:	AR1242
---------	--------	------	--------

•	Peak #	Ret Time [min]			Component Name	NG conc.	AVG NG CONC (5pts)	
	9	1.78	W	152353	AR1242-A	0.5000	0.1667	3
	11	2.06	W	334013	AR1242-B	0.5000	0.1667	3
	15	2.35	VV	474936	AR1242-C	0.5000	0.1667	3
				961302			0.5000	

Software Version : 6.2.1.0.104:0104 Date : 12/09/2004 12:09:33 Reprocess Number : buf2042: 38560 Operator : tchrom Sample Name : ACM42LA Sample Number 0.6NG Study : ACM AutoSampler HP 7673A Rack/Vial 0/0 Instrument Name 5890-14 Channel Α Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min **End Time** : 7.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject : 8000.000000 Sample Amount 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 16:10:58 Cycle : 6


Raw Data File: H:\TURBO6\5890-14\14a42036.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42036.rst

Inst Method: H:\TURBO6\5890-14\14dins-from H:\TURBO6\5890-14\14a42036.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42036.rst

Calib Method: h:\turbo6\5890-14\na42(12-8-04).mth from H:\TURBO6\5890-14\14a42036.rst

Report Format File: h:\turbo6\\(\phi\)efault\acm-\(\psi\)d.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time BL [min]	Area [uV-sec]	Component Name	CONCENTRATION NG		Continuing %D Cal Factor	,
2.35	1091502	AR1242	0.5677	1.9226e+06	2.1830e+06 -5.4	12/5
	1091502		0.5677		2.1830e+06	01

12/09/2004 12:09:33 Result: H:\TURBO6\5890-14\14a42036.rst

Group Report For: AR1242

Ret Time [min]			Component Name	CONCENTRATION NG		Continuing Cal Factor	%D
2.06	VV	377244	AR1242-A AR1242-B AR1242-C	0.5647	6.6803e+05	3.4422e+05 7.5449e+05 1.0843e+06	-5.9
		1091502		1.7003		2.1830e+06	

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38561

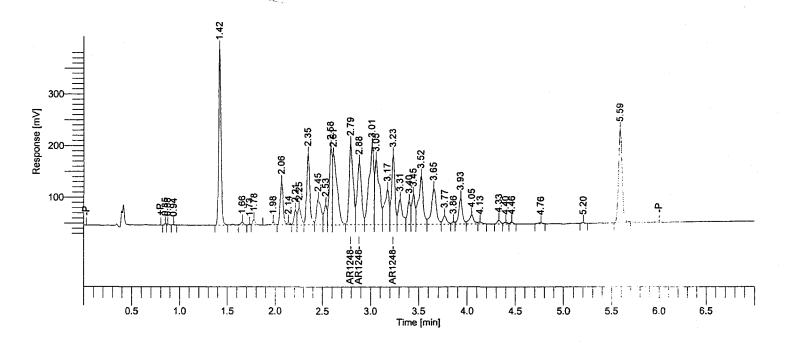
Operator : tchrom
Sample Number : 0.5NG
AutoSampler : HP 7673A
Instrument Name : 5890-14
Interface Serial # : 9205571207
Delay Time : 0.00 min

Delay Time : 0.00 min
Sampling Rate : 16.6660 pts/s
Sample Volume : 1.000000 uL

Sample Amount : 1.0000 Data Acquisition Time : 12/08/2004 16:23:22 Date : 12/09/2004 12:09:36

Sample Name : ICM48PA Study : ICAL Rack/Vial : 0/0 Channel : A A/D mV Range : 1000 End Time : 7.00 min

Area Reject : 3000.000000


Dilution Factor : 1.00 Cycle : 7

Raw Data File: H:\TURBO6\5890-14\14a42037.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42037.rst

Inst Method: H:\TURBO6\5890-14\14dirs from H:\TURBO6\5890-14\14a42037.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42037.rst Calib Method: h:\turbo6\5890-14\na48(12-8-04).mtb-from H:\TURBO6\5890-14\14a42037.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

	et Time [min]	Area [uV-sec]	Component Name		AVG NG CONC (5pts)	
	2.79	 1150945	AR1248	 0.5000	0.1667	3
		1150945			0.1667	

Processed by: GFD 1215 154
Proviewed by: W 7210 104

12/09/2004 12:09:36 Result: H:\TURBO6\5890-14\14a42037.rst

Group Re	ort For	: AR1248
----------	---------	----------

 Peak #	Ret Time [min]			Component Name	NG conc.	AVG NG CONC (5pts)	
18	2.79	VV	439577	AR1248-A	 0.5000	0.1667	3
19	2.88	W	373522	AR1248-B	0.5000	0.1667	3
23	3.23	W	337846	AR1248-C	0.5000	0.1667	3
			1150945			0.5000	

O. bro

: 12/09/2004 12:09:40

Software Version : 6.2.1.0.104:0104
Reprocess Number : buf2042: 38563

Operator tchrom Sample Number 0.6NG AutoSampler HP 7673A Instrument Name 5890-14 Interface Serial # : 9205571207 **Delay Time** 0.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL

 chrom
 Sample Name
 : ACM48JA

 0.6NG
 Study
 : ACM

 0.4P 7673A
 Rack/Vial
 : 0/0

 0.890-14
 Channel
 : A

 0.205571207
 A/D mV Range
 : 1000

 0.00 min
 End Time
 : 7.00 min

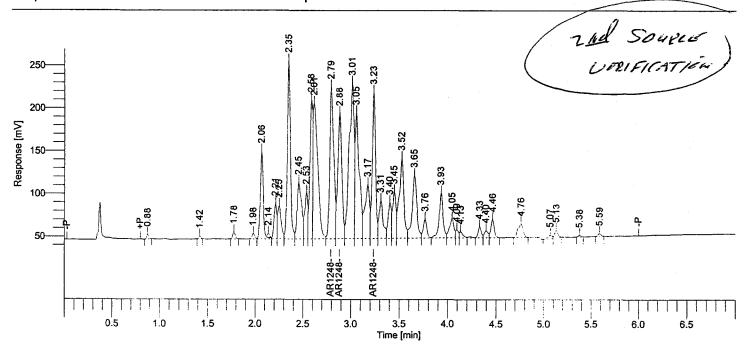
 6.6660 pts/s

Date

 Sample Volume
 : 1.000000 uL
 Area Reject
 : 8000.000000

 Sample Amount
 : 1.0000
 Dilution Factor
 : 1.00

 Data Acquisition Time
 : 12/08/2004 16:35:45
 Cycle
 : 8


Raw Data File: H:\TURBO6\5890-14\14a42038.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42038.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42038.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42038.rst

Calib Method: h:\turbo6\5890-14\na48(12-8-04).mth_from H:\TURBO6\5890-14\14a42038.rst

Report Format File: h:\turbo6\default\acm-%d:rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time BL [min]	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing %D Cal Factor
2.79	1378476	AR1248	0.5988	2.3019e+06	2.7570e+06 -0.2
	1378476		0.5988		2.7570e+06

12/9/eg

130/481

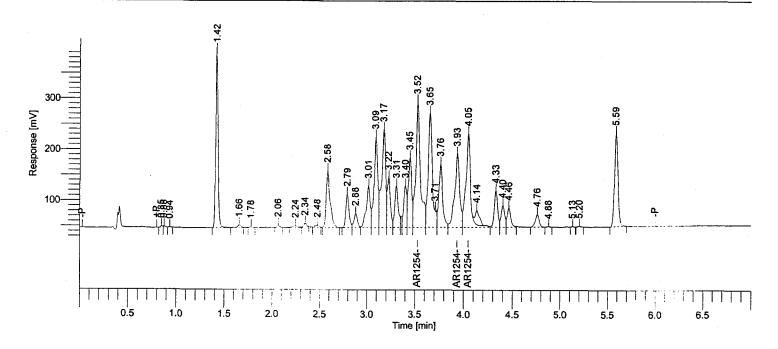
Page 2 of 2

12/09/2004 12:09:40 Result: H:\TURBO6\5890-14\14a42038.rst

Group Report For : AR1248

Ret Time [min]	BL		Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
2.79	VV	505339	AR1248-A	0.5748	8.7915e+05	1.0107e+06	-4.2
2.88	W	452908	AR1248-B	0.6063	7.4704e+05	9.0582e+05	1.0
3.23	VV	420229	AR1248-C	0.6219	6.7569e+05	8.4046e+05	3.7
		1378476		1.8030		2.7570e+06	

Software Version : 6.2.1.0.104:0104 Date : 12/09/2004 12:36:07 Reprocess Number : buf2042: 38573 Operator : tchrom Sample Name : ICM54RA Sample Number : 0.5NG Study : ICAL AutoSampler : HP 7673A Rack/Vial : 0/0 Instrument Name : 5890-14 Channel : A Interface Serial # : 9205571207 A/D mV Range: 1000 **Delay Time** : 0.00 min End Time : 7.00 min Sampling Rate : 16.6660 pts/s Sample Volume : 1.000000 uL Area Reject : 3000.000000 Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 16:48:11 Cycle : 1


Raw Data File: H:\TURBO6\5890-14\14a42039.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42039.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42039.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42039.rst

Calib Method: h:\turbo6\5890(-14\na54(12-8-04).mth/from H:\TURBO6\5890-14\14a42039.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

F	Peak #	Ret Time [min]		Component Name		AVG NG CONC (5pts)	
		3.52	1942240	AR1254	0.5000	0.1667	3
			1942240			0.1667	

Reviewed by: GPD 1215 164

Reviewed by: DW 1210 CM

12/09/2004 12:36:07 Result: H:\TURBO6\5890-14\14a42039.rst

Group Report For : AR1254

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
21	3.52	W	838793	AR1254-A	0.5000	0.1667	3
25	3.93	VV	508805	AR1254-B	0.5000	0.1667	3
26	4.05	VΕ	594641	AR1254-C	0.5000	0.1667	3
			1942240			0.5000	

0.6

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38575

Operator tchrom Sample Number 0.6NG AutoSampler : HP 7673A Instrument Name : 5890-14 Interface Serial # : 9205571207 **Delay Time** 0.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL

Sample Name : ACM54DA Study : ACM Rack/Vial : 0/0 Channel : A A/D mV Range: 1000 End Time

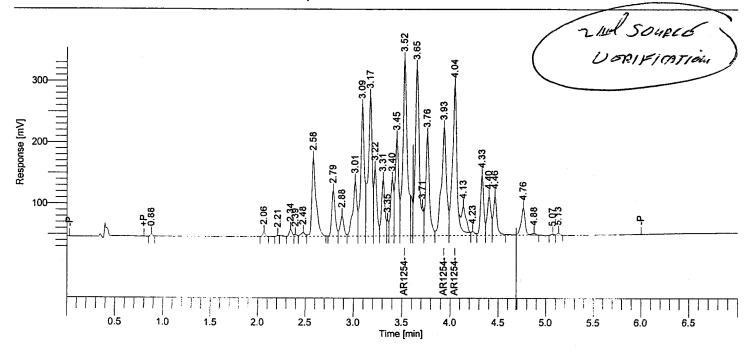
Date

: 7.00 min

: 12/09/2004 12:36:11

Area Reject : 8000.000000 Dilution Factor: 1.00

Sample Amount : 1.0000 Data Acquisition Time: 12/08/2004 17:00:33 Cycle : 2


Raw Data File: H:\TURBO6\5890-14\14a42040.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42040.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42040.raw Proc Method: h:\turbo6\5890-14\naproc.mth from A;\TURBO6\5890-14\14a42040.rst

Calib Method: h:\turbo6\58\\$0-14\na54(12-8-04).mth\from H:\TURBO6\58\90-14\14a42040.rst

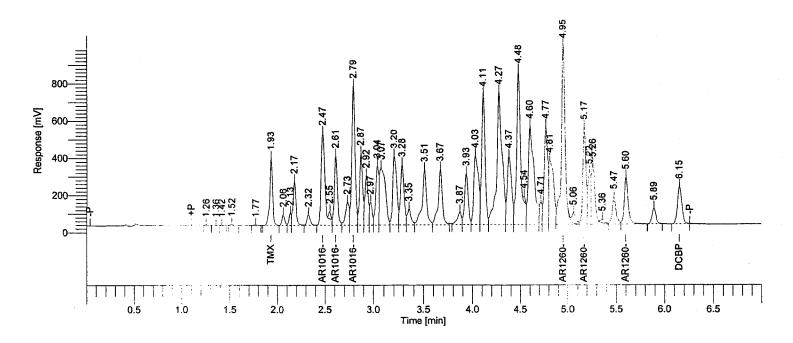
Report Format File: h:\turboo\default\acm-\%d.ret Sequence File: H:\TURBO6\5890=14\14D42.seq

2nd Source Check

Ret Time BL [min]	Area [uV-sec]	Component Name	CONCENTRATION NG		Continuing %D Cal Factor	
3.52	2385537	AR1254	0.6141	3.8845e+06	4.7711e+06 2.4	12/
	2385537		0.6141		4.7711e+06	14

12/09/2004 12:36:11 Result: H:\TURBO6\5890-14\14a42040.rst

Ret Time [min]			Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
3.93	VV	641073	AR1254-A AR1254-B AR1254-C	0.6300	1.0176e+06	1.8263e+06 1.2821e+06 1.6626e+06	5.0
		2385537		1.8733		4.7711e+06	


Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38543	Date	: 12/09/2004 10:31:44
Operator	: tchrom	Sample Name	: ICM66JB
Sample Number	: 2.5NG	Study	: ICAL
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: B
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3000.00000
Sample Amount	: 1.0000	Dilution Factor	: 1.00
Data Acquisition Time	: 12/08/2004 17:12:57	Cycle	: 1

Raw Data File: H:\TURBO6\5890-14\14b42041.raw < Modified >

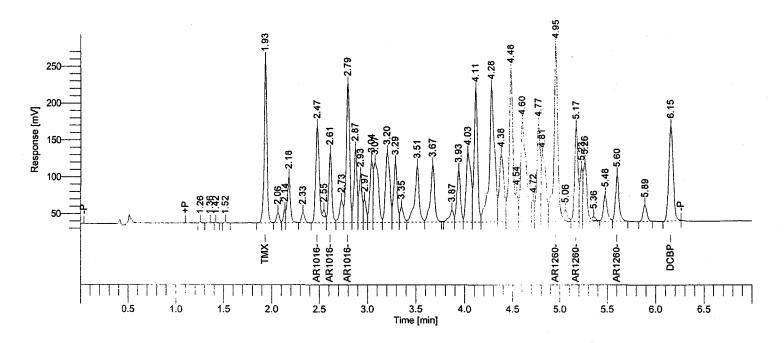
Result File: H:\TURBO6\5890-14\14b42041.rst

Inst Method: H:\TURBO6\5890-14\14dins-from-H:\TURBO6\5890-14\14b42041.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from N:\TURBO6\5890-14\14b42041.rst Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42041.rst

Report Format File: h:\turbo6\\$890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
 6	1.93	BV	766311	TMX	0.0500		0
	2.79		4056718	AR1016	2.5000	0.8333	3
	4.95		4815010	AR1260	2.5000	0.8333	3
47	6.15	*BB	640726	DCBP	0.0500		0
			10278765			1.6667	

Software Version : 6.2.1.0.104:0104 : 12/09/2004 10:31:49 Date Reprocess Number : buf2042: 38545 Operator : tchrom Sample Name : ICM66JD Sample Number : 0.5NG Study : ICAL Rack/Vial **AutoSampler** : HP 7673A : 0/0 Instrument Name : B : 5890-14 Channel Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min : 7.00 min End Time Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject : 3000.000000 Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 17:37:44 Cycle : 3


Raw Data File: H:\TURBO6\5890-14\14b42043.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42043.rst

Inst Method: H:\TURBO6\5890-14\14\dins from H:\TURBO6\5890-14\14b42043.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42043.rst

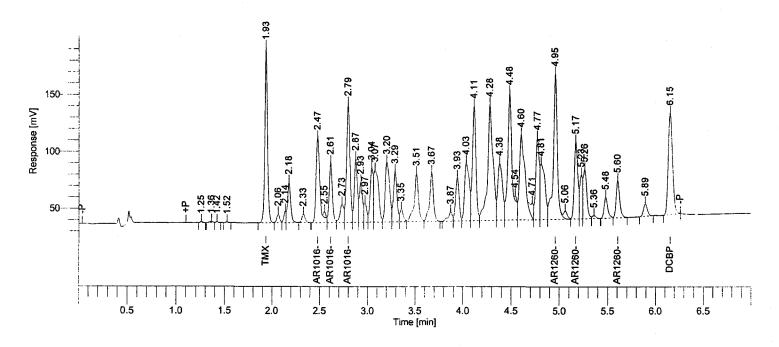
Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42043.rst

Report Format File: h:\turbo6\5890=14\nsamp.rpt
Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	N(cor	_	AVG NG CONC (5pts)	
5	1.93	BV	438254	TMX	0.03	300	Ma (per tiler you wis seen give	0
	2.79		1053859	AR1016	0.50	000	0.1667	3
	4.95		1195629	AR1260	0.50	000	0.1667	3
46	6.15	*BB	413217	DCBP	0.03	300		0
			3100959				0.3333	

12/09/2004 10:31:49 Result: H:\TURBO6\5890-14\14b42043.rst

Group		For : AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	10 12	2.47	VE VV		AR1016-A AR1016-B	0.5000 0.5000	0.1667 0.1667	3 3
	14	2.79	VV		AR1016-C	0.5000	0.1667	3
				1053859			0.5000	
Group	•	For : AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	37	4.95	VE		AR1260-A	0.5000	0.1667	3
	39 44	5.17 5.60	VV VB	320441 167175	AR1260-B AR1260-C	0.5000 0.5000	0.1667 0.1667	3 3
				1195629			0.5000	


Software Version Reprocess Number		6.2.1.0.104:0104 buf2042: 38546	Date	:	12/09/2004 10:31:52
Operator	:	tchrom	Sample Name	:	ICM66JE
Sample Number	:	0.25NG	Study	:	ICAL
AutoSampler	:	HP 7673A	Rack/Vial	:	0/0
Instrument Name	:	5890-14	Channel	:	В
Interface Serial #	:	9205571207	A/D mV Range	:	1000
Delay Time	:	0.00 min	End Time	:	7.00 min
Sampling Rate	:	16.6660 pts/s			
Sample Volume	:	1.000000 uL	Area Reject	:	3000.000000
Sample Amount	:	1.0000	Dilution Factor	:	1.00
Data Acquisition Time	:	12/08/2004 17:50:09	Cycle	:	4

Raw Data File: H:\TURBO6\5890-14\14b42044.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42044.rst

Inst Method: H:\TURBO6\5890-14\14dins.from: H:\TURBO6\5890-14\14b42044.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42044.rst Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42044.rst

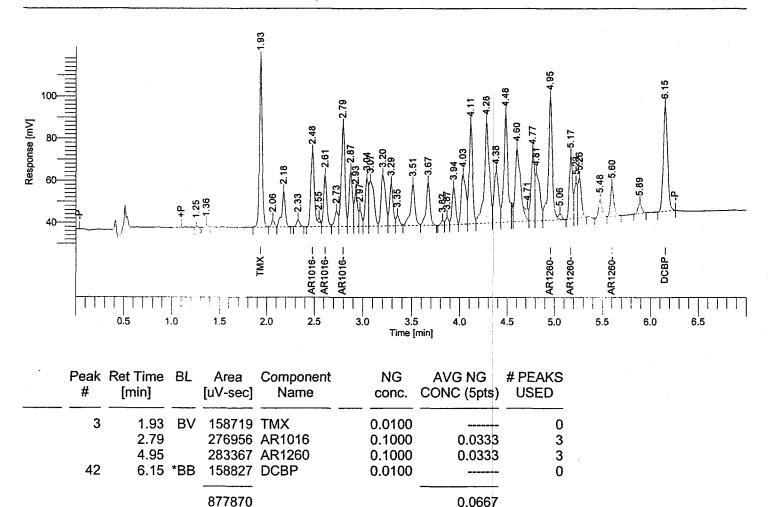
Report Format File: h:\turbo6\5890=14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

 Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	_
5	1.93	BV	302746	TMX	0.0200		0
	2.79		593637	AR1016	0.2500	0.0833	3
	4.95		634308	AR1260	0.2500	0.0833	3
46	6.15	*BB	285646	DCBP	0.0200		0
			1816337			0.1667	

12/09/2004 10:31:52 Result: H:\TURBO6\5890-14\14b42044.rst

Group Repo Pea #	ort For : AR k Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	0 2.47			AR1016-A	0.2500		3
1		VV VV		AR1016-B AR1016-C	0.2500 0.2500	0.0833 0.0833	3 3
			593637			0.2500	
Group Repo	ort For : AR	1260					
Pea #	k Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
3	7 4.95	VE	380226	AR1260-A	0.2500	0.0833	3
3		VV VB	168451	AR1260-B AR1260-C	0.2500 0.2500	0.0833 0.0833	3 3
4	+ 5.60	٧Đ	00001	AR 1200-C	0.2500	0.0633	3
			634308			0.2500	

Software Version : 6.2.1.0.104:0104 : 12/09/2004 10:31:54 Date Reprocess Number buf2042: 38547 Operator tchrom Sample Name : ICM66JF Sample Number : ICAL 0.1NG Study **AutoSampler** Rack/Vial : 0/0 : HP 7673A Instrument Name 5890-14 Channel : B Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min **End Time** : 7.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL : 3000.000000 Area Reject Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 18:02:35 Cycle : 5


Raw Data File: H:\TURBO6\5890-14\14b42045.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42045.rst

Inst Method: H:\TURBO6\5890-14\14dins.from H:\TURBO6\5890-14\14b42045.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42045.rst

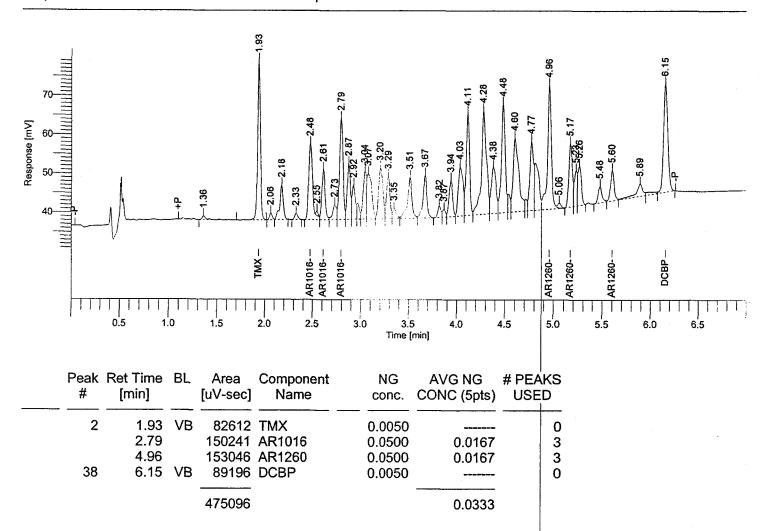
Calib Method: h:\turbo6\589@-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42045.rst

Report Format File: h:\turbo6\\$890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

12/09/2004 10:31:54 Result: H:\TURBO6\5890-14\14b42045.rst

Group	Report	For: AR1	016					
·	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	7	2.48	BE		AR1016-A	 0.1000	0.0333	3
	9 11	2.61 2.79	VV		AR1016-B AR1016-C	0.1000 0.1000	0.0333 0.0333	3 3
				276956			0.1000	
Group	Report	For : AR1	260					
·	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	34	4.95	VE	171905	AR1260-A	0.1000	0.0333	3
	36 40	5.17 5.60	BV VB		AR1260-B AR1260-C	0.1000 0.1000	0.0333 0.0333	3 3
				283367			0.1000	

Software Version : 6.2.1.0.104:0104 Date : 12/09/2004 10:31:56 Reprocess Number : buf2042: 38548 Operator : tchrom Sample Name : ICM66JG Sample Number : 0.05NG Study : ICAL **AutoSampler** : HP 7673A Rack/Vial : 0/0 Instrument Name 5890-14 Channel : B Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min **End Time** : 7.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject : 3000.000000 Sample Amount 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 18:15:28 Cycle : 6


Raw Data File: H:\TURBO6\5890-14\14b42046.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42046.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42046.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from N:\TURBO6\5890-14\14b42046.rst

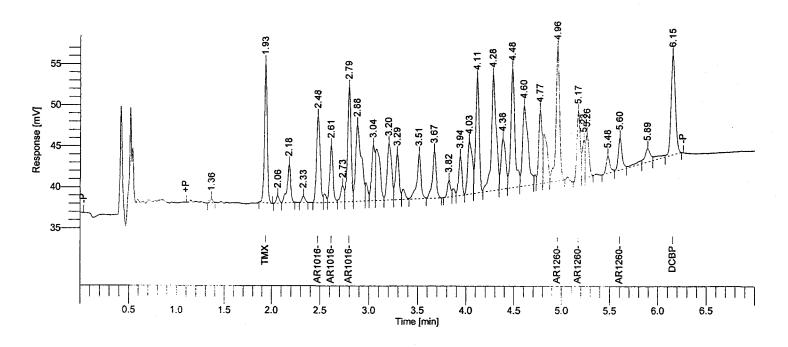
Calib Method: h:\turbo6\589\phi-14\nb66(12-8-04).mth)from H:\TURBO6\5890-14\14b42046.rst

Report Format File: h:\turbo6\\$890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

12/09/2004 10:31:56 Result: H:\TURBO6\5890-14\14b42046.rst

Group		For : AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	6 8 10	2.48 2.61 2.79	BE VV VV	30167	AR1016-A AR1016-B AR1016-C	0.0500 0.0500 0.0500	0.0167 0.0167 0.0167	3 3 3
				150241			0.0500	
Group		For : AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	30 32 36	4.96 5.17 5.60	VE BV VV	40171	AR1260-A AR1260-B AR1260-C	0.0500 0.0500 0.0500	0.0167 0.0167 0.0167	3 3 3
				153046			0.0500	

Software Version	: 6.2.1.0.104:0104	Date	:	12/09/2004 10:31:59
Reprocess Number	: buf2042: 38549		-	
Operator	: tchrom	Sample Name	:	ICM66JE
Sample Number	: 0.025NG	Study	:	ICAL
AutoSampler	: HP 7673A	Rack/Vial	:	0/0
Instrument Name	: 5890-14	Channel	:	В
Interface Serial #	: 9205571207	A/D mV Range	:	1000
Delay Time	: 0.00 min	End Time	:	7.00 min
Sampling Rate	: 16.6660 pts/s			
Sample Volume	: 1.000000 uL	Area Reject	: :	3000.000000
Sample Amount	: 1.0000	Dilution Factor	:	1.00
Data Acquisition Time	: 12/08/2004 18:27:52	Cycle	:	7


Raw Data File: H:\TURBO6\5890-14\14b42047.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42047.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42047.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42047.rst

Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42047.rst

Report Format File: h:\turbo\\$\5890-14\nsamp.rpt
Sequence File: H:\TURBO6\5890-14\14D42.seq

	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
-	2	1.93-	BB	34721	TMX	0.0019		0
		2.79		79315	AR1016	0.0250	0.0083	3
		4.96		76229	AR1260	0.0250	0.0083	3
	32	6.15	-VB	- 38866	-DCBP	0.0014		0
				229130			0.0167	

12/09/2004 10:31:59 Result: H:\TURBO6\5890-14\14b42047.rst

Group	Report	For: AR1	016					
·	•	Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	6	2.48	BV		AR1016-A	0.0250	0.0083	3
	7 9	2.61 2.79	VV		AR1016-B AR1016-C	0.0250 0.0250	0.0083 0.0083	3 3
				79315			0.0250	
Group	Report	For : AR1	260					
·		Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	25	4.96	VB		AR1260-A	0.0250	0.0083	3
	26 30	5.17 5.60	BV VV		AR1260-B AR1260-C	0.0250 0.0250	0.0083 0.0083	3 3
				76229			0.0250	

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38550

Operator : tchrom
Sample Number : 0.6NG
AutoSampler : HP 7673A
Instrument Name : 5890-14
Interface Serial # : 9205571207
Delay Time : 0.00 min
Sampling Rate : 16.6660 pts/s

Date : 12/09/2004 10:39:54

Sample Name : ACM66BB Study : ACM Rack/Vial : 0/0 Channel : B A/D mV Range : 1000 End Time : 7.00 min

0.6 ng

Sample Volume : 1.000000 uL Area Reject : 8000.000000 Sample Amount : 1.0000 Dilution Factor : 1.00


Raw Data File: H:\TURBO6\5890-14\14b42048.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42048.rst

Inst Method: H:\TURBO6\5890-14\14dins.from H:\TURBO6\5890-14\14b42048.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42048.rst

Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42048.rst

Report Format File: h:\turbo6\tefault\acm-%d.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time [min]		Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
2.79	BB.	30933 1044920	AR1016	0.0011 0.4972	2.9107e+07 2.1018e+06	61865.4746 2.0898e+06/	-17.1
4.95		1308031 2383884	AR1260	0.5559 1.0541	2.3532e+06	2.6161e+06 4.7678e+06	-7.4/

149/9

12/09/2004 10:39:54 Result: H:\TURBO6\5890-14\14b42048.rst

Group	Report	For:	AR1016
up			

Ret Time [min]	BL	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
2.47	BE	375542	AR1016-A	0.5068	7.4104e+05	7.5108e+05	-15.5
			AR1016-B		4.3200e+05		
2.79	VV	452765	AR1016-C	0.4877	9.2843e+05	9.0553e+05	-18.7
		1044920		1.4959		2.0898e+06	

Ret Time [min]	BL		Component Name	CONCENTRATION NG	Initial Cal Factor		%D
			AR1260-A AR1260-B		1.3925e+06 6.3257e+05		
			AR1260-C		3.2801e+05		
		1308031		1.6744		2.6161e+06	

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38552 Operator : tchrom

Sample Number 0.5NG AutoSampler HP 7673A Instrument Name 5890-14 Interface Serial # : 9205571207 **Delay Time** : 0.00 min Sampling Rate 16.6660 pts/s

Sample Volume 1.000000 uL Sample Amount 1.0000

Data Acquisition Time: 12/08/2004 15:09:03

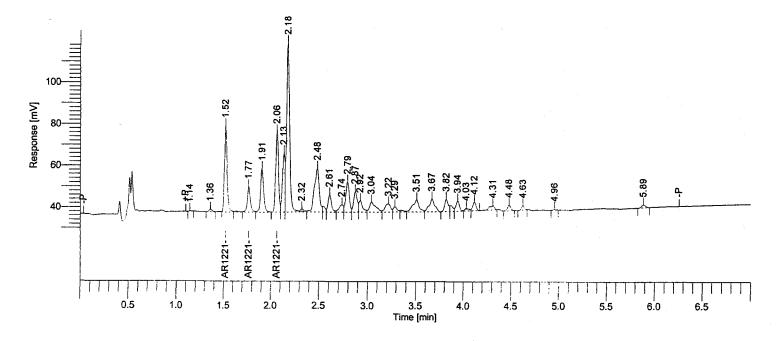
Date : 12/09/2004 12:09:11

Sample Name : ICM21PA Study : ICAL Rack/Vial : 0/0 : B Channel AVD mV Range: 1000 **End Time** : 7.00 min

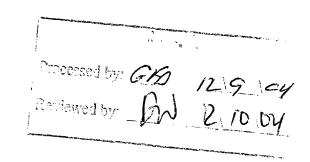
Area Reject : 3000.000000

Dilution Factor: 1.00

Cycle : 1


Raw Data File: H:\TURBO6\5890-14\14b42031.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42031.rst


Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42031.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42031.rst

Calib Method: h:\turbo6\5890-14\nb21(12-8-04).mtb/from H:\TURBO6\5890-14\14b42031.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

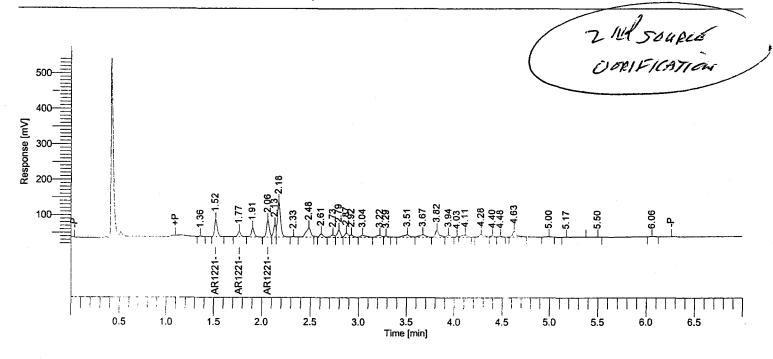
Peak #		BL Area [uV-sec]	•		AVG NG CONC (5pts)	
	1.52	190426	AR1221	0.5000	0.1667	3
		190426			0.1667	

12/09/2004 12:09:11 Result: H:\TURBO6\5890-14\14b42031.rst

Group F	Report For	: AR1221
---------	------------	----------

 Peak #	Ret Time [min]			Component Name	NG conc.	AVG NG CONC (5pts)	
3	1.52	VV	83360	AR1221-A	0.5000	0.1667	3
4	1.77	W	26661	AR1221-B	0.5000	0.1667	3
6	2.06	BV	80405	AR1221-C	0.5000	0.1667	3
			190426			0.5000	

Software Version : 6.2.1.0.104:0104 : 12/09/2004 12:09:16 Date Reprocess Number buf2042: 38554 Operator tchrom Sample Name : ACM21NA Sample Number 0.6NG Study ACM AutoSampler HP 7673A Rack/Vial : 0/0 Instrument Name 5890-14 : B Channel Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min **End Time** : 7.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL : 8000.00000 Area Reject Sample Amount 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 15:21:24 Cycle : 2


Raw Data File: H:\TURBO6\5890-14\14b42032.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42032.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42032.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\\TURBO6\5890-14\14b42032.rst

Calib Method: h:\turbo6\5890-14\nb21(12-8-04).mtb-from H:\TURBO6\5890-14\14b42032.rst

Report Format File: h:\turbo6\default\acm-%d.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time [[min]	BL Area [uV-sec]	•	CONCENTRATION NG		Continuing Cal Factor	%D	, lakel
1.52	226220	AR1221	0.5940	3.8085e+05	4.5244e 05	-1.0	149/0
	226220		0.5940		4.5244e+05		

12/09/2004 12:09:16 Result: H:\TURBO6\5890-14\14b42032.rst

Ret Time [min]			Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
1.52 1.77 2.06	W	33340	AR1221-A AR1221-B AR1221-C	0.6253	53321.9568	1.9106e+05 66680.3150 1.9470e+05	4.2
		226220		1.8036		4.5244e+05	

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38556 Operator tchrom

Sample Number 0.5NG AutoSampler : HP 7673A Instrument Name : 5890-14 Interface Serial # : 9205571207 **Delay Time** 0.00 min Sampling Rate 16.6660 pts/s

Sample Volume 1.000000 uL

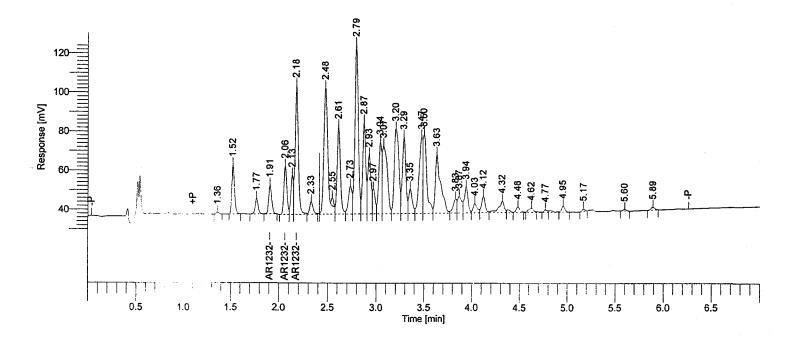
Sample Amount : 1.0000 Data Acquisition Time: 12/08/2004 15:33:49 Date : 12/09/2004 12:09:22

Sample Name: ICM32DA Study **ICAL** Rack/Vial : 0/0 Channel : B A/D mV Range: 1000 End Time : 7.00 min

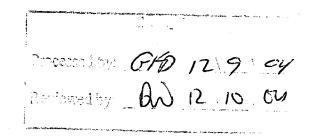
Area Reject : 3000.000000

Dilution Factor: 1.00

Cycle : 3


Raw Data File: H:\TURBO6\5890-14\14b42033.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42033.rst


Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42033.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42033.rst

Calib Method: h:\turbo6\5890-14\nb32(12-8-04).mth-from H:\TURBO6\5890-14\14b42033.rst

Report Format File: h:\turbo6\\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

F	Peak #			Component Name		AVG NG CONC (5pts)	
		2.18	 232948	AR1232	 0.5000	0.1667	3
			232948			0.1667	

12/09/2004 12:09:22 Result: H:\TURBO6\5890-14\14b42033.rst

	Peak #	Ret Time [min]			Component Name		AVG NG CONC (5pts)	
	4	1.91			AR1232-A	0.5000	0.1667	3
	5	2.06	BV	51521	AR1232-B	0.5000	0.1667	3
	7	2.18	VV	149588	AR1232-C	0.5000	0.1667	3
				232948			0.5000	

Software Version : 6.2.1.0.104:0104 Reprocess Number buf2042: 38558

Operator tchrom Sample Number 0.6NG AutoSampler : HP 7673A Instrument Name : 5890-14 Interface Serial # : 9205571207 Delay Time 0.00 min Sampling Rate

16.6660 pts/s Sample Volume 1.000000 uL

Sample Amount : 1.0000 Data Acquisition Time: 12/08/2004 15:46:12

Channel A/D mV Range: 1000 End Time Area Reject

: 8000.00000 Dilution Factor: 1.00

Date

Study

Rack/Vial

Sample Name : ACM32YA

: ACM

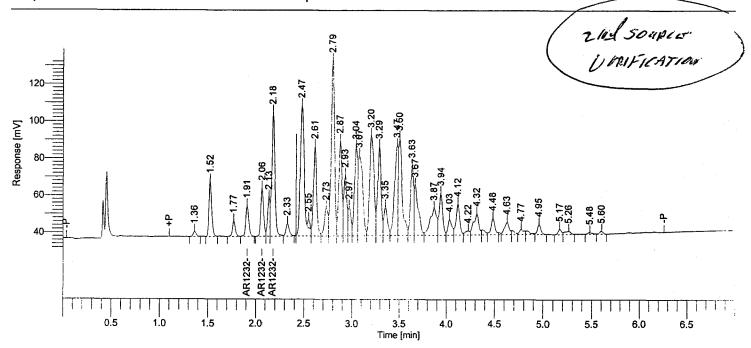
: 7.00 min

: 0/0

: B

: 12/09/2004 12:09:27

Cycle : 4


Raw Data File: H:\TURBO6\5890-14\14b42034.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42034.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42034.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42034.rst

Calib Method: h:\turbo6\5890-{4\nb32(12-8-04).pxth from H:\TURBO6\5890-14\14b42034.rst

Report Format File: h:\turbo6\default\acm-%d.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time BL [min]	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing %D Cal Factor	
2.18	242343	AR1232	0.5202	4.6590e+05	4.8469e+Ø5 -13.3	12,
	242343		0.5202		4.8469e+05	

12/09/2004 12:09:27 Result: H:\TURBO6\5890-14\14b42034.rst

Ret Time [min]			Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
	BV	54435	AR1232-A AR1232-B AR1232-C	0.5283	1.0304e+05	72531.7510 1.0887e+05 3.0328e+05	-12.0
		242343		1.6047		4.8469e+05	

Software Version : 6.2.1.0.104:0104
Reprocess Number : buf2042: 38571

Operator : tchrom
Sample Number : 0.5NG
AutoSampler : HP 7673A
Instrument Name : 5890-14
Interface Serial # : 9205571207
Delay Time : 0.00 min
Sampling Rate : 16.6660 pts/s

Sampling Rate : 16.6660 pts/s Sample Volume : 1.000000 uL

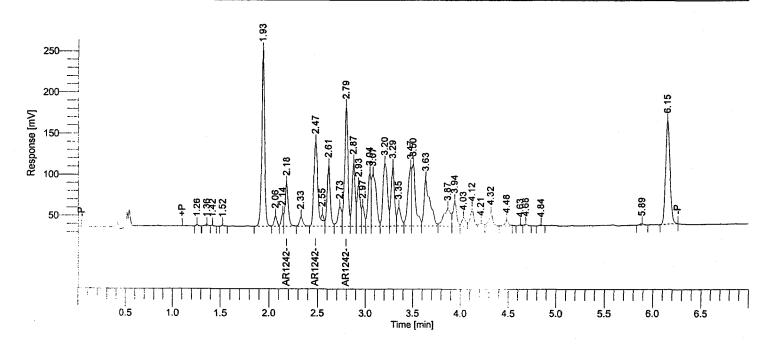
Sample Amount : 1.0000 Data Acquisition Time : 12/08/2004 15:58:37 Date : 12/09/2004 12:28:04

Sample Name : ICM42QA Study : ICAL Rack/Vial : 0/0 Channel : B A/D mV Range : 1000 End Time : 7.00 min

Area Reject : 3000.000000

Dilution Factor : 1.00 Cycle : 1

Cycle : 1


Raw Data File: H:\TURBO6\5890-14\14b42035.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42035.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42035.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42035.rst

Calib Method: h:\turbo6\5890-14\nb42(12-8-04).mth/from H:\TURBO6\5890-14\14b42035.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt
Sequence File: H:\TURBO6\5890-14\14D42.seq

 Peak #			Component Name		AVG NG CONC (5pts)	
	2.79	 774485	AR1242	 0.5000	0.1667	3
		774485			0.1667	

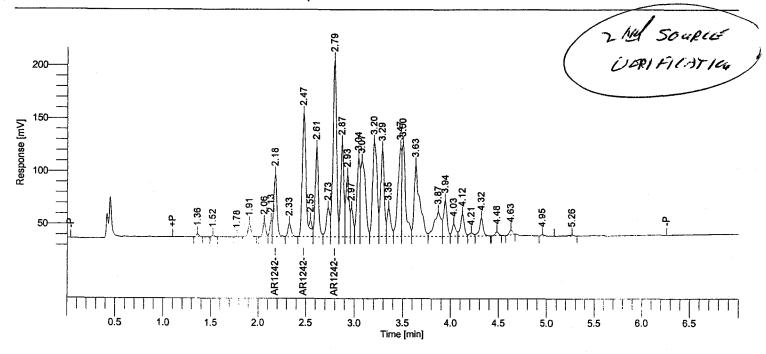
Processed by: 60 1219 1919
Proviewed by: 60 1210, 64

12/09/2004 12:28:04 Result: H:\TURBO6\5890-14\14b42035.rst

Group	Report	For:	AR1242
-------	--------	------	--------

 Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
8	2.18	W	119684	AR1242-A	0.5000	0.1667	3
10	2.47	VΕ	294708	AR1242-B	0.5000	0.1667	3
14	2.79	W	360093	AR1242-C	0.5000	0.1667	3
			774485			0.5000	

Software Version : 6.2.1.0.104:0104 Date : 12/09/2004 12:28:06 Reprocess Number buf2042: 38572 Operator tchrom Sample Name : ACM42LA Sample Number 0.6NG Study : ACM **AutoSampler** : HP 7673A Rack/Vial : 0/0 Instrument Name : B : 5890-14 Channel Interface Serial # : 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min **End Time** : 7.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject : 8000.00000 Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 16:10:58 Cycle : 2


Raw Data File: H:\TURBO6\5890-14\14b42036.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42036.rst

Inst Method: H:\TURBO6\5890-14\14dins.from H:\TURBO6\5890-14\14b42036.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42036.rst

Calib Method: h:\turbo6\5890-14\nb42(12-8-04).mth from H:\TURBO6\5890-14\14b42036.rst

Report Format File: h:\turbo6\default\acm-%d.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time BL [min]	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing %D Cal Factor	10/0
2.79	880365	AR1242	0.5684	1.5490e+06	1.7607e+06 -5.3	12/9/2
	880365		0.5684		1.7607e+06	2.17

12/09/2004 12:28:06 Result: H:\TURBO6\5890-14\14b42036.rst

Ret Time [min]			Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D
2.47	VΕ	331911	AR1242-A AR1242-B AR1242-C	0.5631	5.8942e+05	2.6803e+05 6.6382e+05 8.2888e+05	-6.1
		880365		1.6985		1.7607e+06	

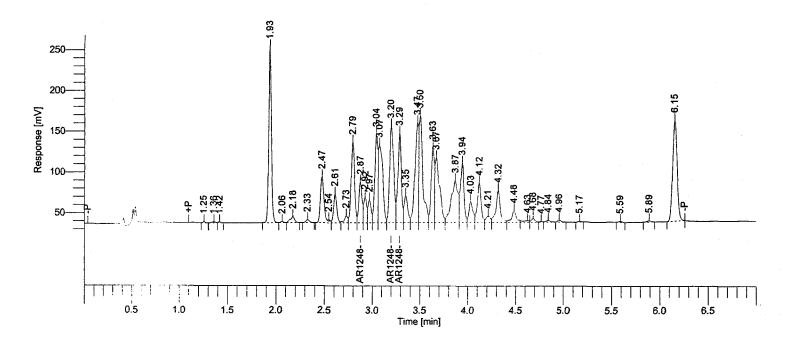
: 12/09/2004 12:09:38

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38562

Operator : tchrom
Sample Number : 0.5NG
AutoSampler : HP 7673A
Instrument Name : 5890-14
Interface Serial # : 9205571207
Delay Time : 0.00 min

Sampling Rate : 16.6660 pts/s
Sample Volume : 1.000000 uL

Sample Amount : 1.0000 Dilution Factor : 1.00 Cycle : 7


Raw Data File : H:\TURBO6\5890-14\14b42037.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42037.rst

Inst Method: H:\TURBO6\5890-14\14dins-from H:\TURBO6\5890-14\14b42037.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42037.rst

Calib Method : h:\turbo6\5890-14\nb48(12-8-04).mth_from H:\TURBO6\5890-14\14b42037.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Date

Study

Rack/Vial

Channel

End Time

Area Reject

Sample Name : ICM48PA

A/D mV Range: 1000

: ICAL

: 7.00 min

: 3000.000000

: 0/0

: B

Peak #		BL Area [uV-sec]	Component Name			AVG NG CONC (5pts)	
	3.20	757040	AR1248	0.	5000	0.1667	3
		757040	•			0.1667	

Processed by: GB 1215 164
Provioused by: QW 12/10/04

12/09/2004 12:09:38 Result: H:\TURBO6\5890-14\14b42037.rst

		Ret Time [min]	BL		Component Name	NG conc.	AVG NG CONC (5pts)	
	13 18				AR1248-A AR1248-B	0.5000	0.1667	3
	19				AR1248-C	0.5000 0.5000	0.1667 0.1667	3
				757040			0.5000	

Software Version : 6.2.1.0.104:0104 Reprocess Number buf2042: 38564

Operator tchrom Sample Number : 0.6NG **AutoSampler** : HP 7673A Instrument Name 5890-14 Interface Serial # 9205571207 Delay Time 0.00 min Sampling Rate 16.6660 pts/s Sample Volume

1.000000 uL Sample Amount : 1.0000 Data Acquisition Time: 12/08/2004 16:35:45

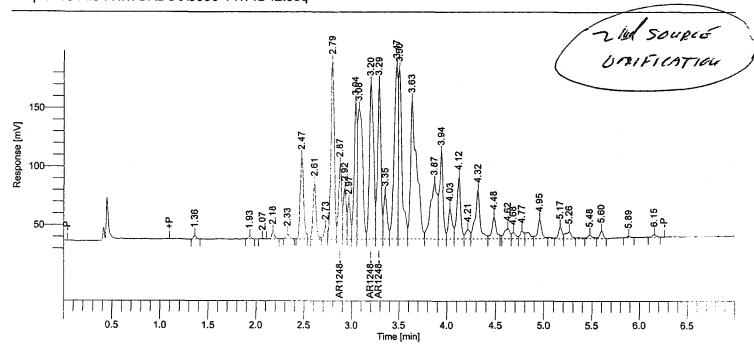
Date

: 12/09/2004 12:09:42

Sample Name : ACM48JA Study : ACM Rack/Vial : 0/0 Channel : B A/D mV Range: 1000 : 7.00 min End Time

: 8000.00000 Area Reject

Dilution Factor: 1.00 Cycle : 8


Raw Data File: H:\TURBO6\5890-14\14b42038.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42038.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42038.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42038.rst

Calib Method: h:\turbo6\5890f14\nb48(12-8-04).mth from H:\TURBO6\5890-14\14b42038.rst

Report Format File: h:\turbo6\default\acm-%d.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time BL [min]	Area [uV-sec]		CONCENTRATION NG		Continuing %D Cal Factor	1.1
3.29	895856	AR1248	0.5917	1.5141e+06	1.7917e+06 -1.4	N/9/2
	895856		0.5917		1.7917e+06	

12/09/2004 12:09:42 Result: H:\TURBO6\5890-14\14b42038.rst

Ret Time [min]			Component Name	CONCENTRATION NG		Continuing Cal Factor	%D
3.20	VV	414541	AR1248-A AR1248-B AR1248-C	0.5718	7.2503e+05	2.9663e+05 8.2908e+05 6.6600e+05	-4.7
		895856		1.7974		1.7917e+06	

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38574

Operator : tchrom
Sample Number : 0.5NG
AutoSampler : HP 7673A
Instrument Name : 5890-14
Interface Serial # : 9205571207
Delay Time : 0.00 min

Sampling Rate : 16.6660 pts/s Sample Volume : 1.000000 uL

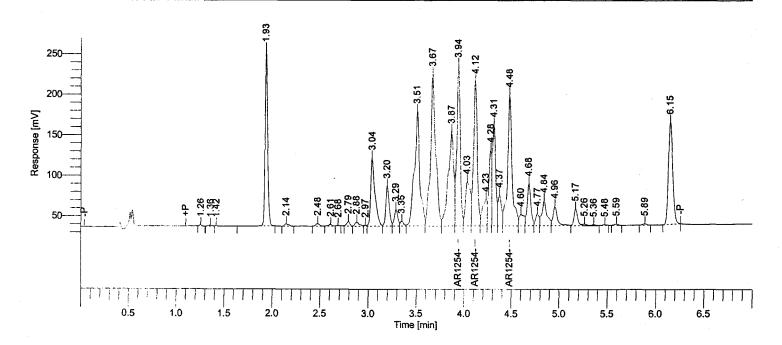
Sample Amount : 1.0000 Data Acquisition Time : 12/08/2004 16:48:11 Date : 12/09/2004 12:36:10

Sample Name : ICM54RA Study : ICAL Rack/Vial : 0/0 Channel : B A/D mV Range : 1000

End Time : 7.00 min

Area Reject : 3000.000000

Dilution Factor : 1.00 Cycle : 1


Raw Data File: H:\TURBO6\5890-14\14b42039.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42039.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42039.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42039.rst

Calib Method: h:\turbo6\5890-14\nb54(12-8-04).mth from H:\TURBO6\5890-14\14b42039.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #		Area [uV-sec]	Component Name		AVG NG CONC (5pts)	
	3.94	 1533832	AR1254	0.5000	0.1667	3
		1533832			0.1667	

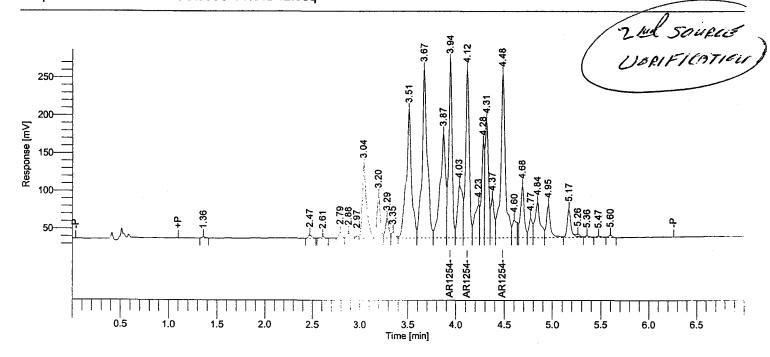
Processed by: GAD 12/5/ey
Proviewed by: BD 12/10/09

12/09/2004 12:36:10 Result: H:\TURBO6\5890-14\14b42039.rst

Group Report I	For: AR1254
----------------	-------------

,	•	Ret Time [min]	BL		Component Name	NG conc.	AVG NG CONC (5pts)	
	19	3.94	W	506900	AR1254-A	0.5000	0.1667	3
	21	4.12	W	480028	AR1254-B	0.5000	0.1667	3
	26	4.48	W	546904	AR1254-C	0.5000	0.1667	3
				1533832			0.5000	

Software Version : 6.2.1.0.104:0104 : 12/09/2004 12:36:13 Date Reprocess Number : buf2042: 38576 Operator tchrom Sample Name : ACM54DA Sample Number : ACM 0.6NG Study **AutoSampler** HP 7673A Rack/Vial : 0/0 Instrument Name 5890-14 Channel : B Interface Serial # 9205571207 A/D mV Range: 1000 **Delay Time** 0.00 min **End Time** 7.00 min Sampling Rate 16.6660 pts/s Sample Volume 1.000000 uL Area Reject : 8000.00000 Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/08/2004 17:00:33 Cycle : 2


Raw Data File: H:\TURBO6\5890-14\14b42040.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42040.rst

Inst Method: H:\TURBO6\5890-14\14dfins from-H:\TURBO6\5890-14\14b42040.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42040.rst

Calib Method: h:\turbo6\5890-14\nb54(12-8-04).mth from H:\TURBO6\5890-14\14b42040.rst Report Format File: h:\turbo6\default\acm-%d.rpt

Sequence File: H:\TURBO6\5890-14\14D42.seq

2nd Source Check

Ret Time BL [min]	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing %D Cal Factor
3.94	1925553	AR1254	0.6277	3.0677e+06	3.8511e+06 4.6
	1925553		0.6277		3.8511e+06

12/09/2004 12:36:13 Result: H:\TURBO6\5890-14\14b42040.rst

Ret Time [min]	BL		Component Name	CONCENTRATION NG	Initial Cal Factor		%D
4.12	VV	597177	AR1254-A AR1254-B AR1254-C	0.6220	9.6006e+05	1.1913e+06 1.1944e+06 1.4655e+06	3.7
		1925553		1.8794		3.8511e+06	

GC INJECTION LOG BOOK 000008

COLUMN ID'S A "20-35

H05530-14

INSTRUMENT ID

SYRINGE LOT #

SOLVENT LOT #

SEQUENCE _

20.5

MAINT - CUT LOOP GUIRD MAKE IMA. O CLETHY Now Secuence 42 COMMENTS Trax 4 24.2 1016 A 327 CLEAN PROCESS GC METHOD B 6/-30 FILE ID 189 150 reich 20 E ⋖ Ы VIAL ID 6.4.3 ICM54 RA OS ACM 88 54 06 ICM 36% Jas ICM 42 CA 67 ICKI DA GS ICH LL IF C. ICMYLGA OS V ICM 48 DA C ACMSY DA GA ICMSY RA C.S ICMYSOA 65 ICM32.DA C. ICM32DA G ACM426A G. 占 TUMBOIF G ICM 6450 2 ACM32 YA G [CM36r ACKAL / KK ICM 21 PA Harryan PRIMA PRIMA VIAL ID TCAC| ICAC Acre Cic ICAC ICAL kcm ACM 402 Cil UVK 752 ACX A IGAC # BOS <u>כבת</u> ſ DATE & INIT.

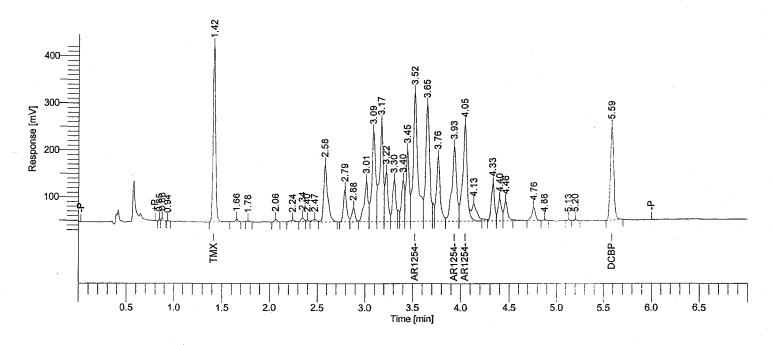
SEVERN TRENT LABORATORIES, INC. — BUFFALO

REVIEWED BY

THE STATE OF T SEVERN TRENT LABORATORIES, INC. - BUFFALO

在我的时间,我们们是一个人,我们们的时间,我们们们的一个人,我们们们们,我们们们们们们的一个人,我们们的一个人,我们的一个人,我们们的一个人,我们们的一个人的

GC INJECTION LOG BOOK


Software Version : 6.2.1.0.104:0104 Date : 12/13/2004 09:30:17 Reprocess Number : buf2042: 38970 Operator : tchrom Sample Name : ICM54RA Sample Number : 0.5NG Study CCV **AutoSampler** : HP 7673A Rack/Vial : 0/0 Instrument Name : 5890-14 Channel : A Interface Serial # : 9205571207 A/D mV Range: 1000 **Delay Time** : 0.00 min End Time : 7.00 min Sampling Rate 16.6660 pts/s : 8000.00000 Sample Volume 1.000000 uL Area Reject Sample Amount 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/11/2004 23:19:58 Cycle : 50

Raw Data File: H:\TURBO6\5890-14\14a42224.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42224.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42224.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42224.rst

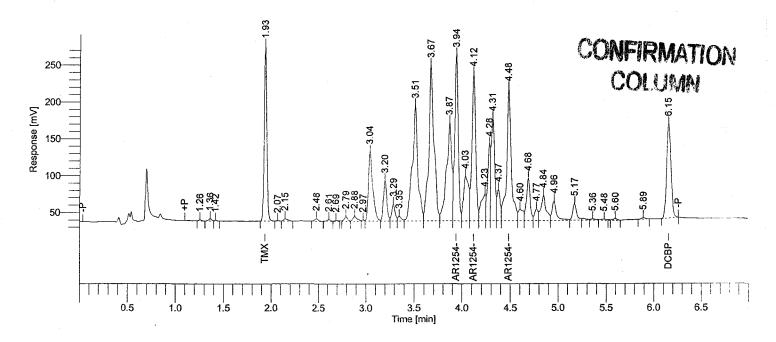
Calib Method: h:\turbo6\5890-14\na54(12-8-04).mth from H:\TURBO6\5890-14\14a42224.rst

Ret Time [min]	BL	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D	Relative	- RT Window
1.42 3.52 5.59	BV BB	635911 2130467 505866	AR1254	0.5485	3.8845e+06	1.2718e406 4.2609e+06 1.0117e+06	9.7	1.35 3.45 5.52	- 3.59
		3272243		0.6121		6.5445e+06	12	13/9	

12/13/2004 09:30:17 Result: H:\TURBO6\5890-14\14a42224.rst

Group Report For : AR1254

Ret Time I		Area [uV-sec]	•	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D	Relative - R	T Window
3.93	VV .	552544	AR1254-A AR1254-B AR1254-C	0.5430	1.0176e+06	1.8356e+06 1.1051e+06 1.3203e+06	8.6	3.45 - 3.86 - 3.98 -	3.59 4.00 4.12
		2130467		1.6451		4.2609e+06			


Software Version : 6.2.1.0.104:0104 Date : 12/13/2004 09:30:20 Reprocess Number : buf2042: 38971 Operator : tchrom Sample Name : ICM54RA Sample Number Study CCV 0.5NG AutoSampler Rack/Vial : 0/0 : HP 7673A Instrument Name : 5890-14 Channel : B Interface Serial # : 9205571207 A/D mV Range: 1000 **Delay Time** : 7.00 min : 0.00 min **End Time** Sampling Rate 16.6660 pts/s : 8000.000000 Sample Volume : 1.000000 uL Area Reject Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/11/2004 23:19:58 : 50

Raw Data File: H:\TURBO6\5890-14\14b42224.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42224.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42224.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42224.rst

Calib Method: h:\turbo6\5890-14\nb54(12-8-04).mth from H:\TURBO6\5890-14\14b42224.rst

Ret Time [min]	BL	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D	Relative -	RT Window
									
1.93	ВV	442749	TMX	0.0298	1.4838e+07	8.8550e+05	-0.5	1.86 -	
3.94		1712972	AR1254	0.5584	3.0677e+06	3.4259e+06	11.7	3.87 -	4.01
6.15	*BB	407054	DCBP	0.0296	1.3744e+07	8.1411+05	-1.3	6.08 -	6.22
								1	
		2562776		0.6179		5.1256e+96		i kil	
							100	13/09	

12/13/2004 09:30:20 Result: H:\TURBO6\5890-14\14b42224.rst

Group Report For: AR12	
	5/1
CIUCU NGDUILI DI . MINIZ	

				CONCENTRATION NG		Continuing Cal Factor	%D	Relative - RT	Window
4.12	VV	536243	AR1254-A AR1254-B AR1254-C	0.5586	9.6006e+05	1.1459e+06 1.0725e+06 1.2075e+06	11.7	3.87 - 4.05 - 4.41 -	4.01 4.19 4.55
		1712972		1.6757		3.4259e+06			

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38972

Operator : tchrom
Sample Number : 0.03NG
AutoSampler : HP 7673A
Instrument Name : 5890-14
Interface Serial # : 9205571207
Delay Time : 0.00 min

Delay Time : 9205571207

Sampling Rate : 16.6660 pts/s

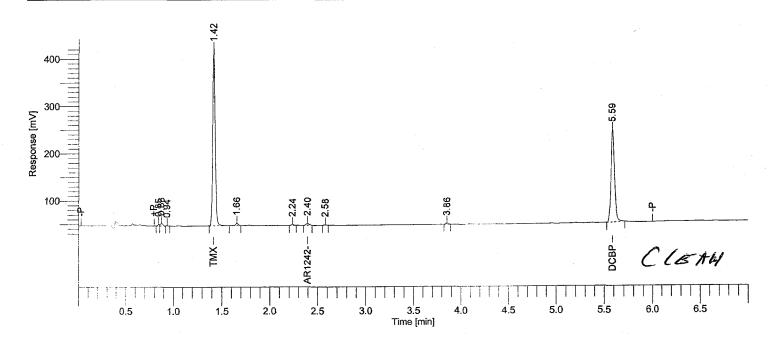
Sample Volume : 1.000000 uL

Sample Amount : 1.0000 Data Acquisition Time : 12/11/2004 23:32:23 Date : 12/13/2004 09:30:23

Sample Name : ICM3GF Study : IBLK Rack/Vial : 0/0 Channel : A A/D mV Range : 1000 End Time : 7.00 min

Area Reject : 3000.000000

Dilution Factor : 1.00 Cycle : 51


Raw Data File: H:\TURBO6\5890-14\14a42225.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42225.rst

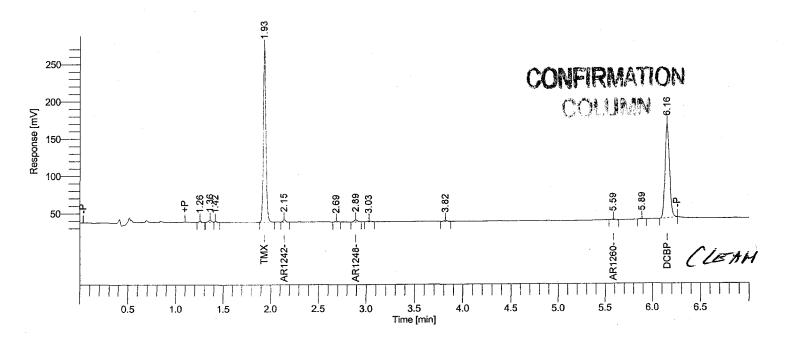
Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42225.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42225.rst

Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42225.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
4	1.42 2.40 5.59		637160 8326 504026	AR1242	0.0320 0.0043 0.0317	0.0014	0 3 0
			1149512			0.0014	

/2/13/e/


: 12/13/2004 09:30:26 : 6.2.1.0.104:0104 Date Software Version Reprocess Number : buf2042: 38973 Sample Name: ICM3GF Operator : tchrom Study : IBLK Sample Number 0.03NG Rack/Vial : 0/0 HP 7673A AutoSampler : B Instrument Name : 5890-14 Channel Interface Serial # A/D mV Range: 1000 : 9205571207 : 7.00 min **Delay Time** 0.00 min End Time Sampling Rate 16.6660 pts/s : 3000.000000 Area Reject Sample Volume : 1.000000 uL Dilution Factor: 1.00 Sample Amount : 1.0000 Cycle : 51 Data Acquisition Time: 12/11/2004 23:32:23

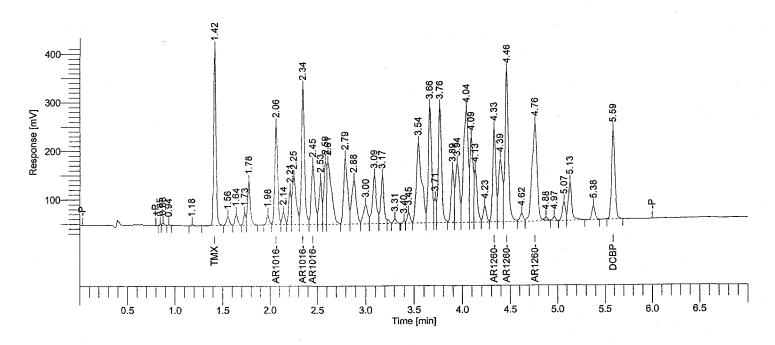
Raw Data File: H:\TURBO6\5890-14\14b42225.raw <Modified>

Result File: H:\TURBO6\5890-14\14b42225.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42225.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42225.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42225.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name		AVG NG CONC (5pts)	# PEAKS USED	,
4	1.93 2.15	BV	440330 6483	TMX A R1242	0.0297	0.0014	0 3	12/13/21
12	2.89 6.16	*BB	6638 404755	A R1248 DCBP	0. 0044 0.0294	0.0015	3 0	
			858205			0.0029		


Date : 12/13/2004 09:31:14 Software Version : 6.2.1.0.104:0104 : buf2042: 38994 Reprocess Number : ICM66JD Sample Name Operator tchrom CCV Sample Number : 0.5NG Study Rack/Vial : 0/0 AutoSampler : HP 7673A Instrument Name : 5890-14 Channel : A A/D mV Range: 1000 Interface Serial # : 9205571207 : 7.00 min **Delay Time** 0.00 min **End Time** Sampling Rate 16.6660 pts/s : 8000.000000 Sample Volume : 1.000000 uL Area Reject Dilution Factor: 1.00 Sample Amount : 1.0000 : 62 Data Acquisition Time: 12/12/2004 01:48:46

Raw Data File: H:\TURBO6\5890-14\14a42236.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42236.rst

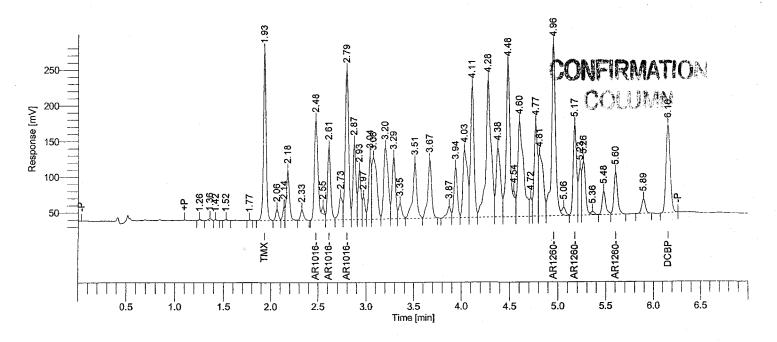
Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42236.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42236.rst

Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42236.rst

Ret Time [min]	BL	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D F	Relative -	RT Window
1.42		615648	TNAV	0.0308	2.0020e+07	1 23130+06	25	1.35 -	1.49
2.34	VV	1391589			2.6536e+06			2.27 -	2.41
4.46	\ /D	1981277			3.8836e+06			4.39 - 5.52 -	4.53 5.66
5.59	VB	462009	DCBP	0.0287	1.6114e+07	9.24020+05	-4.4	5.52 -	3.00
		4450523		1.0940		8.9010e+06	\mathcal{I}_{l}	be	
		**					. in [[3/2	

12/13/2004 09:31:14 Result: H:\TURBO6\5890-14\14a42236.rst

Group Re	•			CONCENTRATION	1	0	0/ D	Relative - RT Window	
Ret Time [min]	BL	Area [uV-sec]	Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D	Relative - RT Willidow	V
									-
2.06	VV		AR1016-A	0.5171	8.3504e+05	8.6358e+05	3.4	1.99 - 2.13	_
2.34	VV	639015	AR1016-B	0.5337	1.1974e+06	1.2780e+06	6.7	2.27 - 2.4	
2.45	VV	320783	AR1016-C	0.5165	6.2104e+05	6.4157e+05	3.3	2.38 - 2.52	2
		1391589		1.5673		2.7832e+06			
Group Re	port f	For : AR12	260						
Ret Time [min]	BL	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D	Relative - RT Window	٧
4.33	VV	436562	AR1260-A	0.5065	8.6195e+05	8.7312e+05	1.3	4.26 - 4.40	0
4.46	VV	789864	AR1260-B	0.5127	1.5405e+06	1.5797e+06	2.5	4.39 - 4.53	3
4.76	VE	754850	AR1260-C	0.5097	1.4811e+06	1.5097e+06	1.9	4.69 - 4.83	3
		1981277		1.5289		3.9626e+06			


Software Version : 6.2.1.0.104:0104 Date : 12/13/2004 09:31:16 Reprocess Number : buf2042: 38995 : ICM66JD Operator : tchrom Sample Name Sample Number 0.5NG Study CCV 0/0 AutoSampler : HP 7673A Rack/Vial В : 5890-14 Channel Instrument Name A/D mV Range: 1000 Interface Serial # : 9205571207 : 7.00 min **Delay Time** : 0.00 min **End Time** Sampling Rate 16.6660 pts/s Sample Volume Area Reject : 8000.00000 1.000000 uL : 1.0000 Dilution Factor: 1.00 Sample Amount Data Acquisition Time: 12/12/2004 01:48:46 Cycle : 62

Raw Data File: H:\TURBO6\5890-14\14b42236.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42236.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42236.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42236.rst

Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42236.rst

Ret Time [min]	BL	Area [uV-sec]	Component Name	CONCENTRATION NG	Initial Cal Factor	Continuing Cal Factor	%D	Relative - F	RT Window
1.93 2.79 4.96 6.16		465082 1131452 1151522 384074 3132131	AR1016 AR1260	0.5425 0.4850	1.4850e+07 2.0856e+06 2.3743e+06 1.3852e+07	2.2629e+06 2.3030e+06	8.5 -3.0	1.86 - 2.72 - 4.89 - 6.09 -	2.00 2.86 5.03 6.23

12/13/2004 09:31:16 Result: H:\TURBO6\5890-14\14b42236.rst

Group Re	port l	or : AR10	016							
Ret Time	BL	Area	Component	CONCENTRATION	Initial	Continuing	%D	Relative	 RT Win 	dow
[min]		[uV-sec]	Name	NG	Cal Factor	Cal Factor				
2.48	BE	394512	AR1016-A	0.5352	7.3717e+05	7.8902e+05	7.0	2.41	_	2.55
2.61	W	227276	AR1016-B	0.5285	4.3005e+05	4.5455e+05	5.7	2.54	-	2.68
2.79	VV	509664	AR1016-C	0.5549	9.1843e+05	1.0193e+06	11.0	2.72	- .	2.86
		1131452		1.6186		2.2629e+06				
Group Re	port f	For : AR12	260							
Ret Time		Area		CONCENTRATION	Initial	Continuing	%D	Relative	- RT Wind	wob
[min]		[uV-sec]	Name	NG	Cal Factor	Cal Factor				
4.96	VE	688117	AR1260-A	0.4893	1.4064e+06	1.3762e+06	-2.1	4.89		5.03
5.17	W	310471	AR1260-B	0.4893	6.3448e+05	6.2094e+05	-2.1	5.10		5.24
5.60	VB	152934	AR1260-C	0.4592	3.3304e+05	3.0587e+05	-8.2	5.53	-	5.67
-		1151522		1.4378		2.3030e+06				

Software Version : 6.2.1.0.104:0104 Reprocess Number : buf2042: 38996 Operator

Sample Number

Instrument Name

Interface Serial #

AutoSampler

Delay Time

: tchrom : 0.03NG : HP 7673A 5890-14 : 9205571207

: 0.00 min

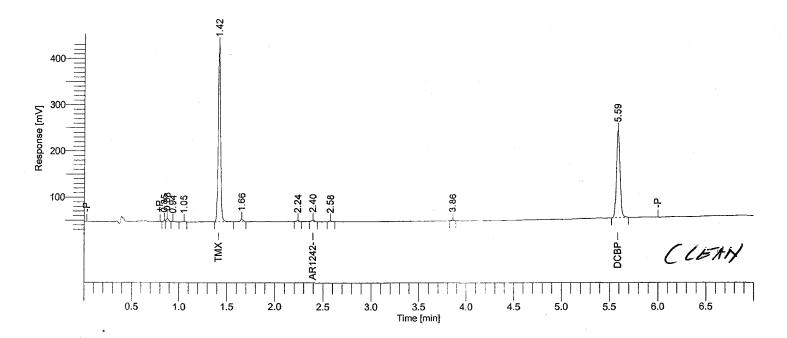
Sampling Rate : 16.6660 pts/s Sample Volume 1.000000 uL Sample Amount : 1.0000

Data Acquisition Time : 12/12/2004 02:01:11

: 12/13/2004 09:31:17 Date

Sample Name : ICM3GF Study : IBLK Rack/Vial : 0/0 Channel : A A/D mV Range: 1000 **End Time** : 7.00 min

Area Reject : 3000.000000


Dilution Factor: 1.00 Cycle : 63

Raw Data File: H:\TURBO6\5890-14\14a42237.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42237.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42237.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42237.rst

Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42237.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pt	# PEAKS s) USED	
5	1.42 2.40	BV	648394 6350	TMX AR1242	0.0326		0 11 3	12/13/20
11	5.59	BB	479100		0.0299	<u> </u>	0 	(OR)
			1133844			0.00	11	

: 12/13/2004 09:31:19

Software Version : 6.2.1.0.104:0104

Reprocess Number : buf2042: 38997

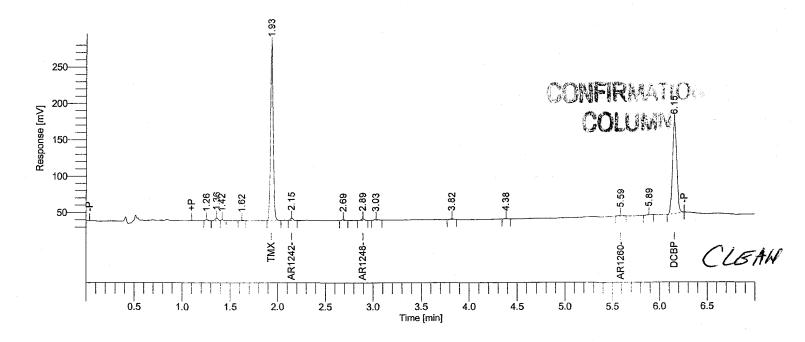
Sample Name Operator : tchrom : ICM3GF Sample Number 0.03NG Study : IBLK AutoSampler HP 7673A Rack/Vial : 0/0 Instrument Name : B 5890-14 Channel Interface Serial # : 9205571207 A/D mV Range: 1000 **Delay Time** : 0.00 min **End Time** : 7.00 min

Sampling Rate : 16.6660 pts/s Sample Volume : 1.000000 uL

 Sample Volume
 : 1.000000 uL
 Area Reject
 : 3000.000000

 Sample Amount
 : 1.0000
 Dilution Factor
 : 1.00

 Data Acquisition Time
 : 12/12/2004 02:01:11
 Cycle
 : 63


Raw Data File: H:\TURBO6\5890-14\14b42237.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42237.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42237.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42237.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42237.rst

Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Date

Peak #	Ret Time [min]	BL		Component Name	NG A\		# PEAKS USED
 5	1.93 2.15	BV	451193	TMX AR1242	0.0304	0.0014	0 3
	2.89 5.59		5125	AR1248 AR1260	0.0043 0.0034 -9e-03	0.0014 0.0011 -3e-03	3
14		*BB	395783		0.0287	-36-03	0
			862107			-5e-04	

12/13/5/

RAW QC DATA

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S

NYSDEC - METHOD 8082 - PCE ANALYSIS DATA SHEET

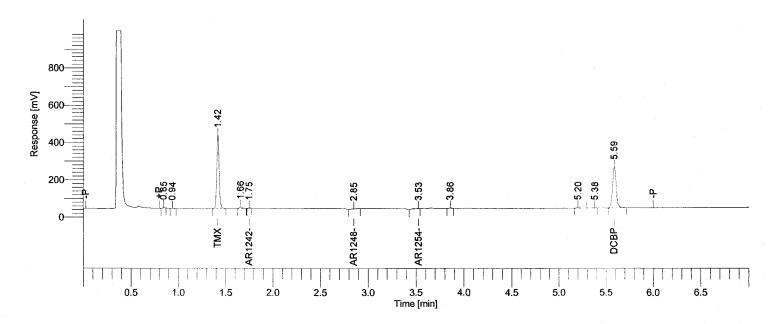
Client No.

Method Blank Lab Name: STL Buffalo Contract: C004154 Lab Code: RECNY Case No.: SH904 SAS No.: ____ SDG No.: 1208 Matrix: (soil/water) SOIL Lab Sample ID: A4B2063802 Sample wt/vol: 30.08 (g/mL) G Lab File ID: 14A42227.TX0 % Moisture: decanted: (Y/N) N Date Samp/Recv: Extraction: (SepF/Cont/Sonc/Soxh): SONC Date Extracted: 12/09/2004 Concentrated Extract Volume: 10000(uL) Date Analyzed: 12/11/2004 Injection Volume: ____1.00(uL) Dilution Factor: ____1.00 GPC Cleanup: (Y/N) N pH: _ Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) <u>UG/KG</u> COMPOUND Q 12674-11-2---PCB-1016 U 80 11104-28-2---PCB-1221 80 U 11141-16-5----PCB-1232 U 80 53469-21-9----PCB-1242 80 U U 12672-29-6----PCB-1248 80 U 11097-69-1----PCB-1254 80

80

U

11096-82-5----PCB-1260


Software Version : 6.2.1.0.104:0104 Date : 12/13/2004 09:30:34 Reprocess Number : buf2042: 38976 Operator : AS40014805-MBLK : tchrom Sample Name Study Sample Number : A4B2063802 : CTA12950 Rack/Vial AutoSampler : HP 7673A : 0/0 Instrument Name : 5890-14 Channel : A Interface Serial # : 9205571207 A/D mV Range: 1000 **Delay Time** : 0.00 min **End Time** : 7.00 min Sampling Rate : 16.6660 pts/s Sample Volume : 3000.000000 : 1.000000 uL Area Reject : 1.0000 Sample Amount Dilution Factor: 1.00 Data Acquisition Time: 12/11/2004 23:57:06 Cycle : 53

Raw Data File: H:\TURBO6\5890-14\14a42227.raw < Modified >

Result File: H:\TURBO6\5890-14\14a42227.rst

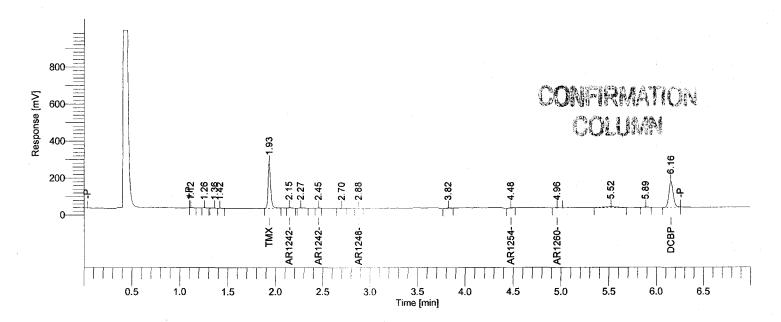
Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42227.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42227.rst

Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42227.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	1,/21
 3	1.42	ВВ	662086		0334)	0	N/W/ C11
	2.85 3.53			AR1248 AR1254	0. 003 7 0. 002 5	0.0012 8.5e-04	3	MINI
11	5.59	BB	553176	DCBP	0.0352	<u> </u>	0	X
			1233546			0.0021		

12/13/2004 09:30:34 Result: H:\TURBO6\5890-14\14a42227.rst

Group	Report	For : AR	242					
	Peak #	Ret Time [min]	BIT	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	5	1.75	ВВ	1807	AR1242-A	0.0059	0.0020	3
	-	2.06		∕ 0	AR1242-B	0.0000		-
	-	2.35)*Q	AR1242-C	0.0000		-
				1807			0.0020	
					1	,	ge ^{pter}	
0	D	. F 4 D4	040			p. de		
Group		For : AR1 Ret Time		A ====	Companiat	ŃG	AVG NG	# PEAKS
	reak #	[min]	DL	Area [uV-sec]	Component Name	conc.	CONC (5pts)	# PEARS
					- Ivaille	/ CONC.	(Spis)	
	-	2.79		0	AR1248-A \/	0.0000		-
	6	2.85	BB		AR1248-B	0.0113	0.0038	3
	-	3.23		0	AR1248-C/ \	0.0000		-
				8430	/ /	and the state of t	0.0038	
				0.00	/	No. of the Control of	0.0000	
					<i>f</i>	4		
0	m	. F	054		/	9,000		
Group		For : AR1		Aroo	Component	A C	AVG NG	# DEAKS
Group	Peak	Ret Time		Area	Component	NG	AVG NG	# PEAKS
Group				Area [uV-sec]		NG conc.	AVG NG CONC (5pts)	# PEAKS USED
Group	Peak	Ret Time	BL —	[uV-sec]		4		
Group	Peak #	Ret Time [min]	BL —	9853 0	Name	conc.	CONC (5pts)	USED
Group	Peak #	Ret Time [min] 3.53	BL —	9853 0	Name	conc. 0.0059	CONC (5pts)	USED
Group	Peak #	Ret Time [min] 3.53 3.93	BL —	9853 0	Name	0.0059 0.0000	0.0020	USED
Group	Peak #	Ret Time [min] 3.53 3.93	BL —	9853 0	Name	0.0059 0.0000	CONC (5pts)	USED
	Peak # 	Ret Time [min] 3.53 3.93 4.05	BL BB	9853 0	Name	0.0059 0.0000	0.0020	USED
	Peak # 7	Ret Time [min] 3.53 3.93 4.05	BL BB	9853 0 0 9853	Name ————————————————————————————————————	0.0059 0.0000 0.0000	0.0020 0.0020	USED 3 -
	Peak # 7 Report	Ret Time [min] 3.53 3.93 4.05 For: AR1 Ret Time	BL BB 260 BL	9853 0 0 9853 Area	Name AR1254-A AR1254-B AR1254-C Component	0.0059 0.0000 0.0000	0.0020 0.0020 AVG NG	USED 3
	Peak # 7	Ret Time [min] 3.53 3.93 4.05	BL BB 260 BL	9853 0 0 9853	Name ————————————————————————————————————	0.0059 0.0000 0.0000	0.0020 0.0020	USED 3 -
	Peak # 7 Report	Ret Time [min] 3.53 3.93 4.05 For: AR1 Ret Time	BL BB 260 BL	9853 0 0 9853 Area [uV-sec]	Name AR1254-A AR1254-B AR1254-C Component	0.0059 0.0000 0.0000	0.0020 0.0020 AVG NG	USED 3
	Peak # 7 Report	Ret Time [min] 3.53 3.93 4.05 For : AR1 Ret Time [min]	BL BB 260 BL	9853 0 0 9853 Area [uV-sec]	Name AR1254-A AR1254-B AR1254-C Component Name	0.0059 0.0000 0.0000 NG conc.	0.0020 0.0020 AVG NG	USED 3
	Peak # 7 Report	Ret Time [min] 3.53 3.93 4.05 For: AR1 Ret Time [min] 4.33	BL BB 260 BL	9853 0 0 9853 Area [uV-sec]	Name AR1254-A AR1254-B AR1254-C Component Name AR1260-A	0.0059 0.0000 0.0000 NG conc.	0.0020 0.0020 AVG NG	USED 3
	Peak # 7 Report	Ret Time [min] 3.53 3.93 4.05 For : AR1 Ret Time [min] 4.33 4.46	BL BB 260 BL	9853 0 0 9853 Area [uV-sec] 0 0	Name AR1254-A AR1254-B AR1254-C Component Name AR1260-A AR1260-B	0.0059 0.0000 0.0000 NG conc. 0.0000 0.0000	ONC (5pts) 0.0020 0.0020 AVG NG CONC (5pts)	USED 3
	Peak # 7 Report	Ret Time [min] 3.53 3.93 4.05 For : AR1 Ret Time [min] 4.33 4.46	BL BB 260 BL	9853 0 0 9853 Area [uV-sec]	Name AR1254-A AR1254-B AR1254-C Component Name AR1260-A AR1260-B	0.0059 0.0000 0.0000 NG conc. 0.0000 0.0000	0.0020 0.0020 AVG NG	USED 3


Software Version : 6.2.1.0.104:0104 Date : 12/13/2004 09:30:37 Reprocess Number : buf2042: 38977 Operator Sample Name : AS40014805-MBLK : tchrom Sample Number A4B2063802 Study CTA12950 AutoSampler Rack/Vial HP 7673A : 0/0 Instrument Name 5890-14 Channel : B Interface Serial # : 9205571207 A/D mV Range: 1000 **End Time** : 7.00 min **Delay Time** 0.00 min Sampling Rate 16.6660 pts/s Sample Volume : 3000.000000 1.000000 uL Area Reject Sample Amount : 1.0000 Dilution Factor: 1.00 Data Acquisition Time: 12/11/2004 23:57:06 Cycle : 53

Raw Data File: H:\TURBO6\5890-14\14b42227.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42227.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42227.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42227.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42227.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG A		# PEAKS USED	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
 5	1.93	BV	467770		0.0315		0	Jan
	2.15			AR1242	0.9057	0.0019	3	MINIO
	4.48			AR 1254	8.0020	6.8e-04	3	V V
16	6.16	*BB	442291	DCBP	0.0326		0	y
			925116			0.0026		

12/13/2004 09:30/37 Result: H:\TURBO6\5890-14\14b42227.rst

Group	Report	:For:AR1	242					
		Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	6	2.15	VB	7849	AR1242-A	0.0328	0.0109	3
	8	2.45	BB		AR1242-B	0.0016	5.5e-04	3
	-	2.79		Ø	AR1242-C	0.0000		_
				8814		/* /*	0.0115	
					3.4	1		
Group		For : AR1			_ \	- / <u>-</u>		
		Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS
	#	[min] 		[uV-sec]	Namè	conc.	CONC (5pts)	USED
	10	2.88	вв	1939	AR1248-A	0.0081	0.0027	3
	- '	3.20			AR1248-B	0.0000		-
	-	3.29		0	AR1248-C \	0.0000	4600485	-
				1939	/ \		0.0027	
				1333			0.0027	
Group	Report	For: AR1	254		/			
Cioup					1			
Oroup	Peak	Ret Time		Area	Component	NG	AVG NG	# PEAKS
Стоир				Area [uV-sec]		NG conc.		# PEAKS USED
	Peak	Ret Time [min]		[uV-sec]	/ Name 	conc.		
	Peak	Ret Time		[uV-sec] 0				
	Peak	Ret Time [min] 3.94		[uV-sec] 0 0	Name — — — AR1254-A	conc. 0.0000		
	Peak # 	Ret Time [min] 3.94 4.12	BL 	[uV-sec] 0 0 6240	AR1254-A AR1254-B	0.0000 0.0000	CONC (5pts) 0.0019	USED -
	Peak # 	Ret Time [min] 3.94 4.12	BL 	[uV-sec] 0 0	AR1254-A AR1254-B	0.0000 0.0000	CONC (5pts)	USED -
	Peak # 	Ret Time [min] 3.94 4.12	BL 	[uV-sec] 0 0 6240	AR1254-A AR1254-B	0.0000 0.0000	CONC (5pts) 0.0019	USED -
·	Peak # 12	Ret Time [min] 3.94 4.12 4.48 For: AR1	BL —— BB	[uV-sec] 0 0 6240	Name AR1254-A AR1254-B AR1254-C	0.0000 0.0000	CONC (5pts) 0.0019	USED -
·	Peak # 12 Report Peak	Ret Time [min] 3.94 4.12 4.48 For: AR1 Ret Time	BL —— BB	[uV-sec] 0 0 6240 6240 Area	AR1254-A AR1254-B AR1254-C	0.0000 0.0000 0.0057	0.0019 AVG NG	USED - 3
·	Peak # 12	Ret Time [min] 3.94 4.12 4.48 For: AR1	BL —— BB	[uV-sec] 0 0 6240 6240	Name AR1254-A AR1254-B AR1254-C	0.0000 0.0000 0.0057	0.0019	USED - 3
·	Peak # 12 Report Peak #	Ret Time [min] 3.94 4.12 4.48 For : AR1 Ret Time [min]	BB BB 260 BL/	[uV-sec] 0 6240 6240 Area [uV-sec]	Name AR1254-A AR1254-B AR1254-C Component Name	0.0000 0.0000 0.0057	ONC (5pts) 0.0019 0.0019 AVG NG CONC (5pts)	USED
·	Peak # 12 Report Peak	Ret Time [min] 3.94 4.12 4.48 For: AR1 Ret Time	BB BB 260 BL/	[uV-sec] 0 6240 6240 Area [uV-sec] 1712	AR1254-A AR1254-B AR1254-C	0.0000 0.0000 0.0057	0.0019 AVG NG	USED - 3
·	Peak # 12 Report Peak #	Ret Time [min] 3.94 4.12 4.48 For : AR1 Ret Time [min] 4.96	BB BB 260 BL/	0 0 6240 6240 Area [uV-sec] 1712 0	Name AR1254-A AR1254-B AR1254-C Component Name AR1260-A	0.0000 0.0000 0.0057 NG conc.	ONC (5pts) 0.0019 0.0019 AVG NG CONC (5pts)	USED
·	Peak # 12 Report Peak #	Ret Time [min] 3.94 4.12 4.48 For : AR1 Ret Time [min] 4.96 5.17	BB BB 260 BL/	0 0 6240 6240 Area [uV-sec] 1712 0 0	AR1254-A AR1254-B AR1254-C Component Name AR1260-A AR1260-B	0.0000 0.0000 0.0057 NG conc. -1e-02 0.0000	ONC (5pts) 0.0019 0.0019 AVG NG CONC (5pts) -3e-03	USED
·	Peak # 12 Report Peak #	Ret Time [min] 3.94 4.12 4.48 For : AR1 Ret Time [min] 4.96 5.17	BB BB 260 BL/	0 0 6240 6240 Area [uV-sec] 1712 0	AR1254-A AR1254-B AR1254-C Component Name AR1260-A AR1260-B	0.0000 0.0000 0.0057 NG conc. -1e-02 0.0000	ONC (5pts) 0.0019 0.0019 AVG NG CONC (5pts)	USED

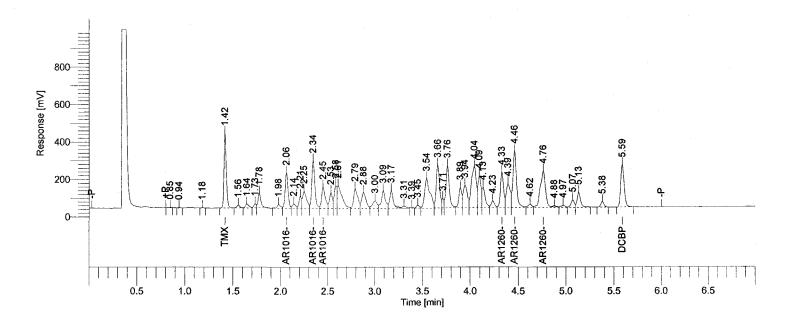
NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9

NYSDEC - METHOD 8082 - PCBS- S

ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u> Contrac	Matrix Spike Blank
Lab Code: <u>RECNY</u> Case No.: <u>SH904</u> SAS No.:	SDG No.: <u>1208</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A4B2063801</u>
Sample wt/vol: 30.08 (g/mL) G	Lab File ID: <u>14A42226.TX0</u>
% Moisture: 0.0 decanted: (Y/N) \underline{N}	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted: 12/09/2004
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>12/11/2004</u>
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: _	Sulfur Cleanup: (Y/N) N
	CONCENTRATION UNITS:
CAS NO. COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u> Q
12674-11-2PCB-1016	160
11104-28-2PCB-1221 11141-16-5PCB-1232	
53469-21-9PCB-1242	80 U
12672-29-6PCB-1248	80 U
11097-69-1PCB-1254	80 U
11096-82-5PCB-1260	170


Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38974	Date	: 12/13/2004 09:30:29
Operator	: tchrom	Sample Name	: AS40014804-MSB
Sample Number	: A4B2063801	Study	
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: A
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3000.000000
Sample Amount	: 1.0000	Dilution Factor	: 1.00
Data Acquisition Time	: 12/11/2004 23:44:44	Cycle	: 52

Raw Data File: H:\TURBO6\5890-14\14a42226.raw < Modified >

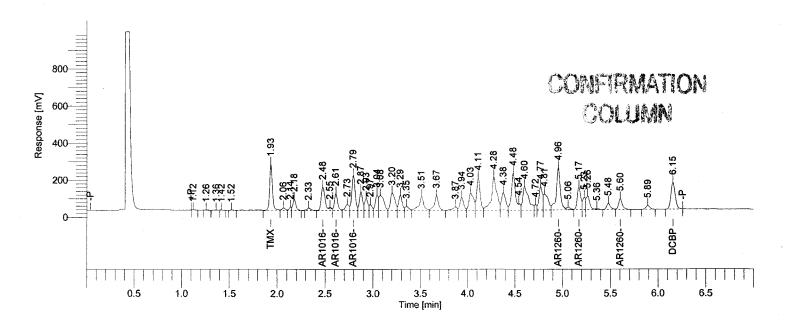
Result File: H:\TURBO6\5890-14\14a42226.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42226.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42226.rst

Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42226.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
4	1.42	BV	672557	TMX	0340	>	0
	2.34		1286050	AR1016	0.4808	0.1603	3
	4.46		1987639	AR1260	0.5149	0.1706	3
47	5.59	BB	569124	DCBP	0.0364		0
			4515370			0.3309	

12/13/2004 09:30:29 Result: H:\TURBO6\5890-14\14a42226.rst


Group		For: AR1			_				
		Ret Time-	_BL_	Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
	10	2.06	W	402417	AR1016-A	0.4780	0.1593	3	
	14	2.34	W		AR1016-B	0.4805		3	
	15	2.45	VV		AR1016-C	0.4854	0.1618	3	
				1286050			0.4813	·)	
Group I	Report	For AR1	260			_			
,	Peak	Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
	37	4.33	VV	434455	AR1260-A	0.5038	0.1679	3	
	39	4.46	VV		AR1260-B	0.5119	0.1706	3	
	41	4.76	VΕ		AR1260-C	0.5167	0.1722	3	i
				4007000			0.5108		1 .1 .
				1987639		1	(0.5108	/ ^	alilla
									\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
							-	M	and . "
								y •	1

Software Version : 6.2.1.0.104:0104 Date : 12/13/2004 09:30:31 Reprocess Number : buf2042: 38975 Operator Sample Name : AS40014804-MSB tchrom Sample Number A4B2063801 Study CTA12950 Rack/Vial **AutoSampler** HP 7673A 0/0 Instrument Name 5890-14 Channel : B Interface Serial # 9205571207 A/D mV Range: 1000 **End Time** : 7.00 min **Delay Time** 0.00 min Sampling Rate 16.6660 pts/s 1.000000 uL : 3000.000000 Sample Volume Area Reject Sample Amount 1.0000 Dilution Factor : 1.00 Data Acquisition Time: 12/11/2004 23:44:44 Cycle : 52

Raw Data File: H:\TURBO6\5890-14\14b42226.raw < Modified >

Result File: H:\TURBO6\5890-14\14b42226.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42226.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42226.rst Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42226.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	1 / 1
6	1.93 2.79	VV	502565 1042689		0.0338	0.1653	0 3	a williage
47	4.96 6.15	*BB	1136504 459066	AR1260	0.4782	0.1594	3	Min
,,	0.70		3140824	5051	0.001	0.3247	ŭ	V

12/13/	2004 08	7.30.31 <u>10</u>	Suit.	H:/TURB()6\5890-14\14b4	2220.151		
Group	•	For: AR1		•				
		Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
*********		0.40		004000	12100	0.4005	0.4000	
	11	2.48	VΕ		AR1016-A	0.4865	0.1622	3
	13	2.61	VV	214243	AR1016-B	0.4954	0.1651	3
	15	2.79	VV	466521	AR1016-C	0.5038	0,1679	3
					`			· · · · · · · · · · · · · · · · · · ·
				1042689			0.4953)
							う し /	
				_		,		
Croun								
Gioup	Report	For: AR1	260					
Gioup		For: AR1 Ret Time		_ Area_	Component	NG	AVG NG	# PEAKS
Gloup				Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
	Peak	Ret Time		[uV-sec]				
	Peak # 	Rel Time [min] 4.96	BL VE	[uV-sec] 677124	Name AR1260-A	conc. 0.4809	CONC (5pts) 0.1603	USED 3
	Peak # 	Ret Time [min] 4.96 5.17	BL VE VV	[uV-sec] 677124 304956	Name	0.4809 0.4801	O.1603 0.1600	USED
Gloup	Peak # 	Rel Time [min] 4.96	BL VE	[uV-sec] 677124 304956	Name AR1260-A	conc. 0.4809	CONC (5pts) 0.1603	USED33

NYS DEC

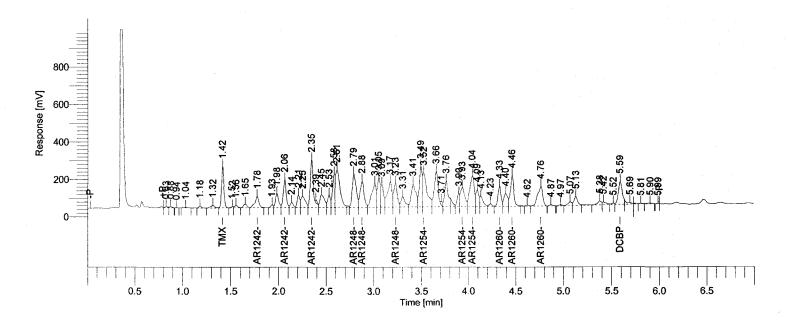
NYS DEC ASP CONTRACT #C004154 - REGION 9 NYSDEC - METHOD 8082 - PCBS- S ANALYSIS DATA SHEET

Client No.

Inh Name, CTT Duffalo Cor	ntract: C004154	D088D
Lab Name: <u>STL Buffalo</u> Cor	101aCC: <u>C004154</u>	
Lab Code: RECNY Case No.: SH904 SAS	No.: SDG No.: <u>1208</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A4C23305MS
Sample wt/vol: 30.61 (g/mL) G	Lab File ID:	14A42233.TX0
% Moisture: 53.7 decanted: (Y/N) N	Date Samp/Recv:	12/08/2004 12/08/2004
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted:	12/09/2004
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	12/12/2004
Injection Volume: 1.00 (uL)	Dilution Factor:	2.00
GPC Cleanup: (Y/N) N pH: 6.63	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>	Q
12674-11-2PCB-1016 11104-28-2PCB-1221	580 340	U
11141-16-5PCB-1232	340	U
53469-21-9PCB-1242	340	U
12672-29-6PCB-1248	770	
11097-69-1PCB-1254	520	

360

11096-82-5----PCB-1260


Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2046: 17174	Date : 12/14/2004 14:37:50
Operator	: tchrom	Sample Name : AS40014811-MS
Sample Number	: A4C23305MS	Study : CTA12950
AutoSampler	: HP 7673A	Rack/Vial : 0/0
Instrument Name	: 5890-14	Channel : A
Interface Serial #	: 9205571207	A/D mV Range : 1000
Delay Time	: 0.00 min	End Time : 7.00 min
Sampling Rate	: 16.6660 pts/s	
Sample Volume	: 1.000000 uL	Area Reject ; 3000,000000
Sample Amount	: 1.0000	Dilution Factor (2.00%)
Data Acquisition Time	e : 12/12/2004 01:11:28	Cycle : 1 V7

Raw Data File: H:\TURBO6\5890-14\14a42233.raw < Modified> Result File: H:\TURBO6\5890-14\14a42233-20041214-143749.rst

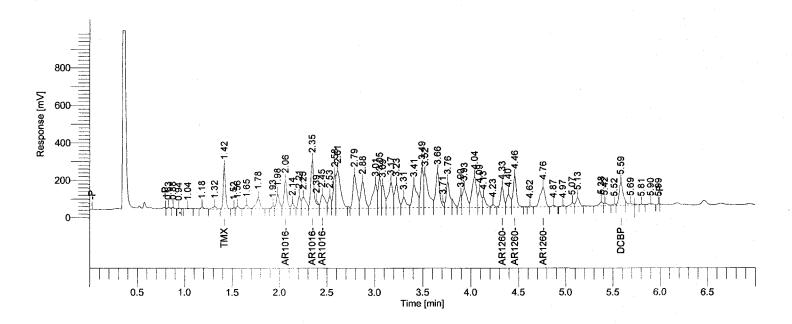
Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42233.raw

 $Proc\ Method: h: \turbo6\ 5890-14\ naproc.mth\ from\ H: \turbo6\ 5890-14\ 14a42233-20041214-143749.rst$

Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42233-20041214-143749.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
 7	1.42	VV	373802	TMX	0.0177		0
	2.35		1090533	AR1242	0.5672	0.1891	3
	2.79		1267168	AR1248	0.5505	0.1835	3
	3.52		1438385	AR1254	0:3703	0.1234	3
	4.46		1055116	AR1260	0,2569	0.0856	3
56	5.59	VV	379904	DCBP	(0.0230)		0
			5604908			0.5816	.

12/14/2004 14:37:50 Result: H:\TURBO6\5890-14\14a42233-20041214-143749.rst


Group Repor			_					
Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
11	1.78	VV	173175	AR1242-A	0:5683	0.1894	3	
14		VV		AR1242-B	0.4811	0.1604	3	
18	2.35	VE	595996	AR1242-C	0.6274	0.2091	3	
		•	1090533			0.5589		
0 - 5	(~	`					
Group Repor			Λ	Commonant	NG	AVG NG	# PEAKS	
reak #	Ret Time [min]	BL	Area	Component Name		CONC (5pts)	# PEARS	
<i>#</i>	frame)		[nv-2667	Name	conc.	CONC (Spis)	0360	
24	2.79	VV	517319	AR1248-A	0.5884	0.1961	3	
25	2.88	VV	415008	AR1248-B	0.5555	0.1852	3	
30	3.23	VV	334841	AR1248-C	0.4956	0.1652	3	
			1267168			0.5465		
						$\supset \smile$		
Group Repor	+ E04 : AD1	254	`					
	Ret Fime		Area	Component	NG	AVG NG	# PEAKS	
#	[min]	UL	[uV-sec]	Name	conc.	CONC (5pts)	USED	
34	3.52	VV	577446	AR1254-A	0.3442	0.1147	3	
39	3.93	VV	331985	AR1254-B	0.3262	0.1087	3	
40	4.04	VV	528954	AR1254-C	0.4448	0.1483	3	
			1438385			(0.3717		
						5		
Group Repor	t Ear - ARI	260						
	Ret Time		Area	Component	NG	AVG NG	# PEAKS	
#	[min]	DL	[uV-sec]	Name	conc.	CONC (5pts)	USED	ſ
44	4.33	\/\/	247421	AR1260-A		0.0908	3	1 1
46				AR1260-A	0.2124	0.0832	3	
48				AR1260-C	0.2556		3	$A \sim 100$
			1055116			0.2592		MANAMIN
			0110001			0.2382		W V CO

Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38988	Date : 12/13/2004 09:31:03	3
Operator	: tchrom	Sample Name : AS40014811-MS	
Sample Number AutoSampler	: A4C23305MS : HP 7673A	Study : CTA12950 Rack/Vial : 0/0	
Instrument Name Interface Serial #	: 5890-14 : 9205571207	Channel : A A/D mV Range : 1000	
Delay Time Sampling Rate	: 0.00 min : 16.6660 pts/s	End Time : 7.00 min	
Sample Volume	: 1.000000 uL	Area Reject : 3000,000000	
Sample Amount Data Acquisition Time	: 1.0000 : 12/12/2004 01:11:28	Dilution Factor (2.00) Cycle 59	

Raw Data File: H:\TURBO6\5890-14\14a42233.raw < Modified>

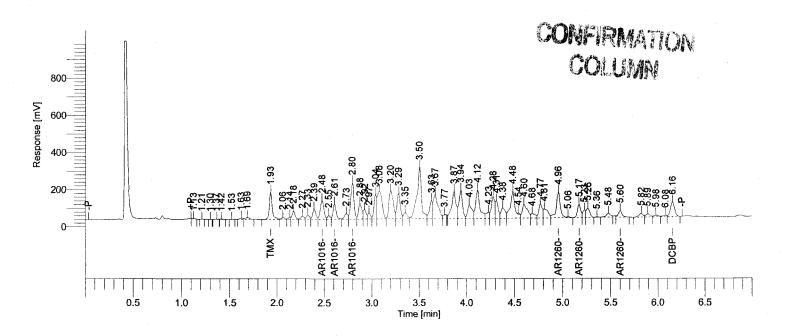
Result File: H:\TURBO6\5890-14\14a42233.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42233.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42233.rst Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42233.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
 	4.40		27222	TAAV	-		
1	1.42	VV	373802		0.0177	>	0
	2.35		1145200	AR1016	0.4234	_ 0.1411	3
	4.46		1055116	AR1260	0.2569	- 0.0856	3
56	5.59	W	379904	DCBP	(0.0230		0
							
			2954022			0.2268	

12/13/2004 09:31:03 Result: H:\TURBO6\5890-14\14a42233.rst

Group Report Peak #	For : AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
14 18	2.06 2.35	VV VE		AR1016-A AR1016-B	0.3721 0.4943	0.1240 0.1648	3 3	
20	2.45	VV		AR1016-C	0.3578	0.1046 0.1193	3	
			1145200			0.4081		
Group Report	For : AR1	260						
	Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
44				AR1260-A	0.2724	0.0908	3	
46 48	4.46 4.76	VV VB		AR1260-B AR1260-C	0.2495 0.2556	0.0832 0.0852	3 3	
			1055116		1	0.2592		
								Tuld
						6	7/16	114101


: 6.2.1.0.104:0104	Date : 12/13/2004 09:31:05
: buf2042: 38989	
: tchrom	Sample Name : AS40014811-MS
: A4C23305MS	Study : CTA12950
: HP 7673A	Rack/Vial : 0/0
: 5890-14	Channel : B
: 9205571207	A/D mV Range:1000
: 0.00 min	End Time : 7.00 min
: 16.6660 pts/s	
: 1.000000 uL	Area Reject : 3000,000000
: 1.0000	Dilution Factor (: 2.00)
: 12/12/2004 01:11:28	Cycle 59
	: buf2042: 38989 : tchrom : A4C23305MS : HP 7673A : 5890-14 : 9205571207 : 0.00 min : 16.6660 pts/s : 1.000000 uL : 1.0000

Raw Data File: H:\TURBO6\5890-14\14b42233.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42233.rst

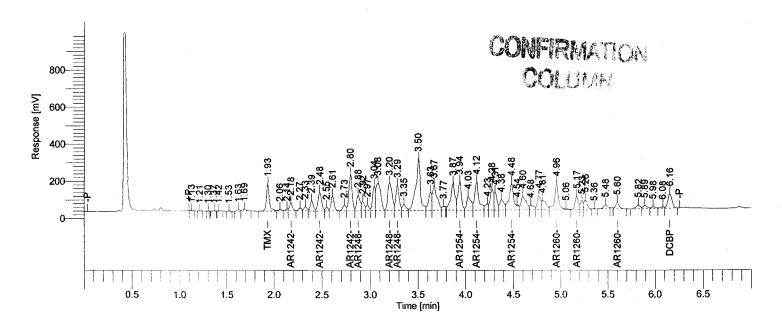
 $Inst\ Method: H:\ TURBO6\ 5890-14\ 14dins\ from\ H:\ TURBO6\ 5890-14\ 14b42233.raw\ Proc\ Method: h:\ turbo6\ 5890-14\ nbproc.mth\ from\ H:\ TURBO6\ 5890-14\ 14b42233.rst$

Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42233.rst

Peak #	Ret Time [min]	BL.	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	(
 9	1.93	BV	306183		0.0206	>	0	j .
	2.80 4.96			AR1016 AR1260	0:4281 0:2723	0.1427	3 3	$VOlbilai \cap$
59	6.16	VB	241464	DCBP	0.0164	<u> </u>	0	Michael
			2128711		$\overline{}$	0.2335		

12/13/2004 09:31:05 Result: H:\TURBO6\5890-14\14b42233.rst

Group		For AR1 Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	16	2.48	VV	265018	AR1016-A	0.3451	0.1150	3	
	18	2.61	VV	187010	AR1016-B	0.4271	0.1424	3 3 3	
	20	2.80	VV		AR1016-C	0.4956	0.1652	3	
				911535			0.4226		
Group		For : AR1							
	Peak #	Ret Time [min]	-BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	47	4.96	VE	404171	AR126Q-A	0.2773	0.0924	3	
	49	5.17	BV	168579	AR1260-B	0.2557	0.0852	3	
	54	5.60	VB	96779	AR1260-C	0.2833	0.0944	3	
				669529			0.2721	\geq	,
						,	9)	20	Juley
							à	11010	ı


Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2046: 17175	Date	: 12/14/2004 14:37:51
Operator	: tchrom	Sample Name	: AS40014811-MS
Sample Number	: A4C23305MS	Study	: CTA12950
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: B
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 300 0.000000
Sample Amount	: 1.0000	Dilution Factor	(2.00)
Data Acquisition Time	: 12/12/2004 01:11:28	Cycle	: Two

Raw Data File: H:\TURBO6\5890-14\14b42233.raw < Modified > Result File: H:\TURBO6\5890-14\14b42233-20041214-143751.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42233.raw

Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42233-20041214-143751.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42233-20041214-143751.rst

	Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
							7	
	9	1.93	BV	306183	TMX	(0.0206		0
		2.80		814498	AR1242	0.5258	0.1753	3
		3.20		1015996	AR1248	0.6710	_ 0.2237	3
		4.12		1371981	AR1254	0.4472	0.1491	.3
		4.96		669529	AR1260	9. 2723	0.0908	3
	59	6.16	VB	241464	DCBP	0.0164		0
				4419652			0.6388	

12/14/2004 14:37:51 Result: H:\TURBO6\5890-14\14b42233-20041214-143751.rst

	Peak	Ret Time	RI	Area	Component	NG	AVG NG	# PEAKS
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
	12	2.18	VV	89974	AR1242-A	0.3759	0.1253	3
	16	2.48	۷V		AR1242-B	0.3735	0.1499	3
	20	2.80	VV		AR1242-C	0.6380	0.2127	3
				814498			0.4878	
			\			,		
Group		: Far : AR1		\ _				
		RelTime	BL	Area	Component	NG	AVG NG	# PEAKS
	#	[min] 		[uV-sec]	Name	conc.	CONC (5pts)	USED
	21	2.88	VV	207129	AR1248-A	0.8659	0.2886	3
	26	3.20	VV	480468	AR1248-B	0.6627	0.2209	3
	27	3.29	VV	328399	AR1248-C	0.5972	0.1991	- 3
				1015996			0.7086)
Group		: [for : AR1.	254`					
	Peak			-			****	
		Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS
	#	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	••
	# 34	[min] 		[uV-sec] 400560	Name AR1254-A	conc. 0.3951	O.1317	USED
	# 34 36	[min] 3.94 4.12	VV VV	[uV-sec] 400560 467568	Name AR1254-A AR1254-B	0.3951 0.4870	0.1317 0.1623	USED
	# 34	[min] 		[uV-sec] 400560 467568	Name AR1254-A	conc. 0.3951	O.1317	USED
	# 34 36	[min] 3.94 4.12	VV VV	[uV-sec] 400560 467568	Name AR1254-A AR1254-B	0.3951 0.4870	0.1317 0.1623	USED
	# 34 36 41	[min] 3.94 4.12 4.48	VV VV VE	[uV-sec] 400560 467568 503854	Name AR1254-A AR1254-B	0.3951 0.4870	0.1317 0.1623 0.1535	USED
Group	# 34 36 41 Report	[min] 3.94 4.12 4.48 For : ART	VV VV VE	[uV-sec] 400560 467568 503854 1371981	Name AR1254-A AR1254-B AR1254-C	0.3951 0.4870 0.4606	0.1317 0.1623 0.1535 0.4476	USED
Group	# 34 36 41 Report	[min] 3.94 4.12 4.48	VV VV VE	[uV-sec] 400560 467568 503854	Name AR1254-A AR1254-B	0.3951 0.4870	0.1317 0.1623 0.1535	USED
Group	# 34 36 41 Report	[min] 3.94 4.12 4.48 For : ART Ret Time	VV VV VE	400560 467568 503854 1371981 Area [uV-sec]	Name AR1254-A AR1254-B AR1254-C Component	0.3951 0.4870 0.4606 NG	0.1317 0.1623 0.1535 0.4476	# PEAKS USED
Group	# 34 36 41 Report Peak #	[min] 3.94 4.12 4.48 For : ART Ret Time [min]	VV VV VE 260 BL	400560 467568 503854 1371981 Area [uV-sec]	Name AR1254-A AR1254-B AR1254-C Component Name	0.3951 0.4870 0.4606 NG conc.	0.1317 0.1623 0.1535 0.4476 AVG NG CONC (5pts)	# PEAKS USED
Group	# 34 36 41 Report Peak # 47	[min] 3.94 4.12 4.48 For : ART Ret Time [min] 4.96	VV VV VE 260 BL VE	400560 467568 503854 1371981 Area [uV-sec] 404171 168579	Name AR1254-A AR1254-B AR1254-C Component Name AR1260-A	0.3951 0.4870 0.4606 NG conc.	ONC (5pts) 0.1317 0.1623 0.1535 0.4476 AVG NG CONC (5pts) 0.0924	# PEAKS USED

M12/14/04

NYS DEC NYS DEC ASP CONTRACT #C004154 - REGION 9

NYSDEC - METHOD 8082 - PCBS- S ANALYSIS DATA SHEET

Client No.

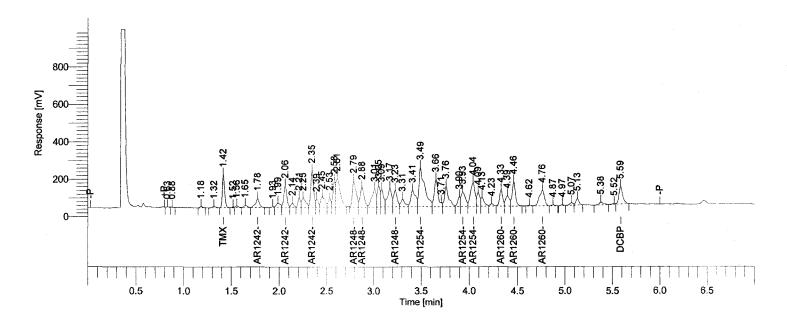
Ish Nama. CTT Duff	:-1 o	Control	G0041E4		D088D	
ran Name: 21r pari	alo	Contract:	C004154			
Lab Code: <u>RECNY</u>	Case No.: <u>SH904</u>	SAS No.: _		SDG No.: <u>1208</u>		
Matrix: (soil/wate	er) <u>SOIL</u>			Lab Sample ID:	A4C23305SI	· ?
Sample wt/vol:	30.88 (g/mL) <u>G</u>	_		Lab File ID:	14A42234.7	<u>X0</u>
% Moisture: <u>53.7</u>	decanted: (Y/N) <u>N</u>		Date Samp/Recv:	12/08/2004	12/08/200
Extraction: (SepF/	'Cont/Sonc/Soxh) : <u>S</u>	ONC		Date Extracted:	12/09/2004	
Concentrated Extra	act Volume: 10000	uL)		Date Analyzed:	12/12/2004	<u>:</u>
Injection Volume:	<u>1.00</u> (uL)			Dilution Factor:	2.00	
GPC Cleanup: (Y/N	I) <u>N</u> pH: <u>6.63</u>			Sulfur Cleanup:	(Y/N) <u>N</u>	
CAS NO.	COMPOUND	-		TON UNITS: ug/Kg) <u>UG/KG</u>	Q	
12674-11-2 11104-28-2 11141-16-5 53469-21-9	PCB-1221 PCB-1232 PCB-1242			430 340 340 340 570	n n	

520

280

11097-69-1----PCB-1254

11096-82-5----PCB-1260


Software Version	: 6.2.1.0.104:0104	Date	: 12/14/2004 14:37:53
Reprocess Number	: buf2046: 17176		
Operator	: tchrom	Sample Name	: AS40014812-SD
Sample Number	: A4C23305SD	Study	: CTA12950
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: A
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		_
Sample Volume	: 1.000000 uL	Area Reject	: 3 000 00000
Sample Amount	: 1.0000	Dilution Factor	(2.00)
Data Acquisition Time	: 12/12/2004 01:23:54	Cycle	2

Raw Data File: H:\TURBO6\5890-14\14a42234.raw < Modified > Result File: H:\TURBO6\5890-14\14a42234-20041214-143752.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42234.raw

Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42234-20041214-143752.rst

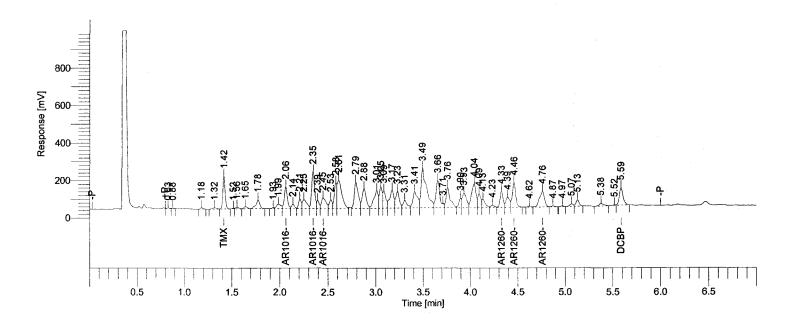
Calib Method: h:\turbo6\5890-14\na-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14a42234-20041214-143752.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
5	1.42	VV	294130	TMX	0.0136		0
	2.35		813005	AR1242	0.4229	0.1410	3
	2.79		956817	AR1248	0:4157	- 0.1386	3
	3.49		1530602	AR1254	0:3940	0.1313	3
	4.46		835197	AR1260	(7 .1987	- 0.0662	3
52	5.59	VΒ	254144	DCBP	0.0145	/	0
						/	
			4683895			0.4771	

12/14/2004 14:37:53 Result: H:\TURBO6\5890-14\14a42234-20041214-143752.rst

835197

Group Rep	ort	For : ART	242						
	ak	Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
- Additional Control of the Control	9	1.78 2.06	VB VV		AR1242-A AR1242-B	0.42 82 0.3869	0.1427 0.1290	3 3	
	16	2.35	VV		AR1242-C	0.4464	0.1488	3	
				813005			0.4205	`	
Group Rep				•					
Pe: #		Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	22	2.79	VV		AR1248-A	0.4614	0.1538	3	
	23 28	2.88 3.23	VV		AR1248-B AR1248-C	0.4244 0.3465	0.1415 0.1155	3 3	
				956817			0.4108	•	
				950017			1 (0.4100		
Group Rep	ort	For · ART	254			<u>_</u>			
	ak	Ret Time [min]		Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
	31	3.49			AR1254-A	0.5156			
	36 37	3.93 4.04			AR1254-B AR1254-C	0.2481 0.3474	0.0827 0.1158		
				1530602		\	0.3704		
Common David		F (AB)	~~~			ت			
Group Rep		Ret Time		Area	Component	NG	AVG NG	# PEAKS	
#		[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
	41	4.33			AR1260-A	0.2080	0.0693	3	
	43 45	4.46 4.76	VV VV		AR1260-B AR1260-C	0.1936 0.198Z	0.0645 0.0662	3 3	fa) Willy


0.2001

Software Version Reprocess Number	: 6.2.1.0.104:0104 : buf2042: 38990	Date	: 12/13/2004 09:31:07
Operator	: tchrom	Cample Name	: AS40014812-SD
	. tchion	Sample Name	. A340014012-3D
Sample Number	: A4C23305SD	Study	: CTA12950
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: A
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3000.000000
Sample Amount	: 1.0000	Dilution Factor	
•	: 12/12/2004 01:23:54	Cycle	<i>(</i> : 60 <i>)</i>

Raw Data File: H:\TURBO6\5890-14\14a42234.raw < Modified>

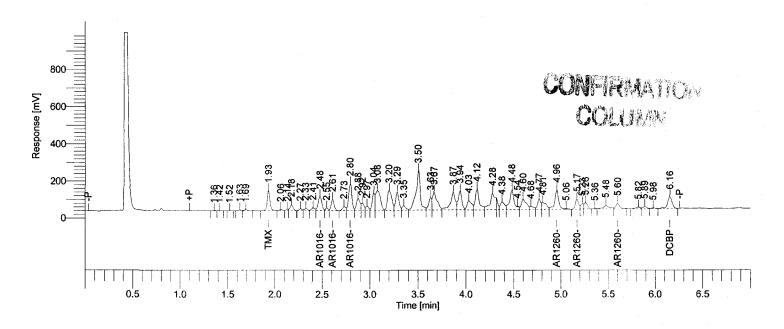
Result File: H:\TURBO6\5890-14\14a42234.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14a42234.raw Proc Method: h:\turbo6\5890-14\naproc.mth from H:\TURBO6\5890-14\14a42234.rst Calib Method: h:\turbo6\5890-14\na66(12-8-04).mth from H:\TURBO6\5890-14\14a42234.rst

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	
 5	1.42	VV	294130	TMX	0.0136	7	0
	2.35		864888	AR1016	0.3115	0.1038	3
	4.46		835197	AR1260	0.1987	0.0662	3
52	5.59	VB	254144	DCBP	(0.0145)	0
							
			2248359			0.1701	

12/13/2004 09:31:0	7 Result: H:\TURBO	6\5890-14\14a42234.rst
--------------------	--------------------	------------------------

Group Report Peak #	For : AR1010 Ret Time B [min]		Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
12 16	2.06 V 2.35 V		AR1016-A AR1016-B	0.2917 0.3407	0.0972 0.1136	3	
18	2.45 V		AR1016-C	0.2825	0.0942	3	
		864888		\	0.3050		
Group Report	For: AR126			/)		
Peak #	Ret Time B [min]	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED	
41	4.33 V	V 193808	AR1268-A	0.2080	0.0693	3	
43	4.46 V	V 325292	AR1260-B	0.1936	0.0645	3	
45	4.76 V	V 316097	AR1260-C	0.1987	0.0662	3	1
		835197		,	0.2001) A	212/14/04


Software Version	: 6.2.1.0.104:0104	Date	: 12/13/2004 09:31:09
Reprocess Number	: buf2042: 38991		
Operator	: tchrom	Sample Name	: AS40014812-SD
Sample Number	: A4C23305SD	Study	: CTA12950
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: B
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	: 3000\000000
Sample Amount	: 1.0000	Dilution Factor	:(2.00)
Data Acquisition Time	: 12/12/2004 01:23:54	Cycle	:60

Raw Data File: H:\TURBO6\5890-14\14b42234.raw < Modified>

Result File: H:\TURBO6\5890-14\14b42234.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42234.raw Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42234.rst Calib Method: h:\turbo6\5890-14\nb66(12-8-04).mth from H:\TURBO6\5890-14\14b42234.rst

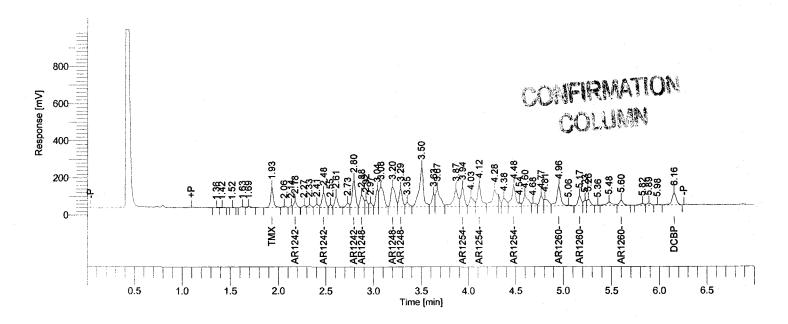
Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak #	Ret Time [min]	BL	Area [uV-sec]	Component Name	NG conc.	AVG NG CONC (5pts)	# PEAKS USED
 6	1.93	BV	222525	TMX	0.0148	<u> </u>	0
	2.80		686910	AR1016	0.3142	0.1047	3
	4.96		517578	AR1260	9.2069	0.0690	3
52	6.16	VB	206359	DCBP	(0.0137	/	0
			1633372			0.1737	

40/40/0004 00 04 00 D 1/ 11/TI	100000000000000000000000000000000000000
12/13/2004 09:31:09 Result: H:\TU	IRRO6\5890-14\14642234 rst
12/ 10/2001 00:01:00 Inspant: 11:11 0	11000000 11111012201.130

_		- (`						
Group	•	For: AR1			_					
		ReNime	BL	Area	Component		NG	AVG NG	# PEAKS	
	#	[min]	THE PERSON NAMED IN	[uV-sec]	Name		conc.	CONC (5pts)	USED	
								· · · · · · · · · · · · · · · · · · ·		
	13	2.48	VV		AR1016-A		0.2619	0.0873	3	
	15	2.61	VV		AR1018-B		0.3049	0.1016	3	
	17	2.80	VV	343142	AR1016-C		0.3606	0.1202	3	
									_	
				686910		`	\ .	(0.3091)	
							7	$\setminus \bigvee$		
Group	Report	For: AR1	260							
·	Peak	Ret Time	BL	- Area	Component		NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name		conc.	CONC (5pts)	USED	
					$\overline{}$					
	41	4.96	VΕ	305601	AR1260-A		0.2056	0.0685	3	ì
	43	5.17	BV		AR1260-B		0.1900	0.0633	3	1 /
	48	5.60	VV		AR1260-C	•	0.2453	0.0818	3	
		0.00	• •		,		2/2.00		_	
				517578				0.2136	\ \ \ \	
				011010			`	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\mathcal{I}	h 1 / 1 / 1 / 1 / 1
								Y	1/	11/0101.
									· · · · · · · · · · · · · · · · · · ·	1/ 1

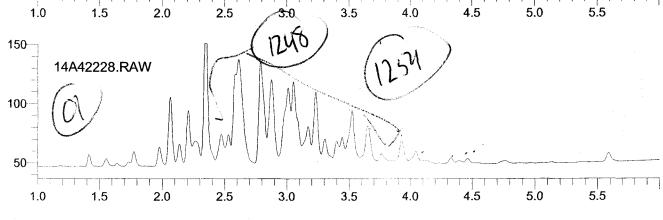
Software Version	: 6.2.1.0.104:0104	Date	: 12/14/2004 14:37:54
Reprocess Number	: buf2046: 17177		
Operator	: tchrom	Sample Name	: AS40014812-SD
Sample Number	: A4C23305SD	Study	: CTA12950
AutoSampler	: HP 7673A	Rack/Vial	: 0/0
Instrument Name	: 5890-14	Channel	: B
Interface Serial #	: 9205571207	A/D mV Range	: 1000
Delay Time	: 0.00 min	End Time	: 7.00 min
Sampling Rate	: 16.6660 pts/s		
Sample Volume	: 1.000000 uL	Area Reject	3000.000000
Sample Amount	: 1.0000	Dilution Factor	(: 2.00 <i>)</i>
Data Acquisition Time	: 12/12/2004 01:23:54	Cycle	.2


Raw Data File: H:\TURBO6\5890-14\14b42234.raw < Modified > Result File: H:\TURBO6\5890-14\14b42234-20041214-143754.rst

Inst Method: H:\TURBO6\5890-14\14dins from H:\TURBO6\5890-14\14b42234.raw

Proc Method: h:\turbo6\5890-14\nbproc.mth from H:\TURBO6\5890-14\14b42234-20041214-143754.rst

Calib Method: h:\turbo6\5890-14\nb-4pcb(12-8-04).mth from H:\TURBO6\5890-14\14b42234-20041214-143754.rst


Report Format File: h:\turbo6\5890-14\nsamp.rpt Sequence File: H:\TURBO6\5890-14\14D42.seq

Peak	Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS
#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED
 							
6	1.93	BV	222525	TMX	0.0148		0
	2.80		616492	AR1242	0.3980	- 0.1327	3
	3.20		752430	AR1248	0.4970	0.1657	3
	4.12		971541	AR1254	0.3167	0.1056	3
	4.96		517578	AR1260	0.2069	0.0690	3
52	6.16	VB	206359	DCBP	(0.0137	>	0
			3286925			0.4729	

12/14/2004 14:37:54 Result: H:\TURBO6\5890-14\14b42234-20041214-143754.rst

^	D	G	*	•					
Group		For : AR1		A	0	NO	AVO NO	# DEAKO	
		Ret Time	BL	Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
	9	2.18	VB	66877	AR1242-A	0.2794	0.0931	3	
	13	2.48			AR1242-B	0.2734	0.1168	3	
	17	2.80			AR1242-C	0.4765	0.1588	3	
	• • •	2.00	• •		7((12-12-0)	0.4700	0.1000	Ü	
				616492			0.3887		
				_					
				?					
Group		: Fo(: AR1							
		Rel Time	-BL	Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
	18	2.88	10/	474025	AD4040	0.7076	0.2425		
	23	3.20	VV		AR1248-A AR1248-B	0.7276 0.4746	0.2425	3	
	23 24	3.20			AR1248-C	0.4746	0.1362 0.1420	3	
	24	3.29	vv	234204	AN 1240-C	0.4201	420	3	
				752430			0.5428)	
				102100		, ,			
Group	Report	For : AR1	254	}					
-	Peak	Ret Time	-BL	Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	
					-				
	30	3.94			AR1254-A	0.2666	0.0889	3	
	32	4.12			AR1254-B	0.3513	0.1171	3	
	35	4.48	VE	364001	AR1254-C	0.3328	0.1109	- 3	
				971541			0.2460		
				9/1541			0.3169		
Group	Report	For : AR1	260						
up		Ret Time		Area	Component	NG	AVG NG	# PEAKS	
	#	[min]		[uV-sec]	Name	conc.	CONC (5pts)	USED	e e
									1
	41	4.96	VE	305601	AR1260-A	0.2056	0.0685	3	
	43	5.17			AR1260-B	Q.1900	0.0633	3	
	48	5.60	VV	84435	AR1260-C	0.2453	0.0818	3	1 milion
							/ /		M M M M
				517578			0.2136		11/1/1/1/1/1
							//	_	MINO
							_	_	/W V \

SIL BUITALO Date: 12/27/2004 Time: 14:48:22	10 27/2004 48:22					J	Organic Prep Log Book (3550B) 8082 SOIL A4B20638 (Closed)	rep Log 8082 S ⁴ 38 (Clos	Book OIL æd)					Rej	Rept: AN0501	501
ഗ്ഗ	Surrogate Amount:	int:		1000.00 ul							Matrix	Matrix Spike Amount:	Amount:	1000	1000.00 ul	
Dat	Date Ext/Initials:	als:		12/09/2004 KLE						Pre	sconc Da	Preconc Date/Initials:	ials:			
Cleanup	Cleanup Date/Initials:	મીક:		12/09/2004 KLE			SOLID EXTRACTIONS	TRACTIC	SNC	Final	Conc Da	Final Conc Date/Initials:		12/09/2004	004 KLE	
Job Number	Sample	超日	BT Samp ID Type	Vial #	Test	Protoc	Method	Surr	Spike Code	Sample Weight (g)	Clean Up	Final Volume (ml)	Dish Wght	Comb	Comb Dry	Å
A4B20638	A4B20638 A4B2063801 Z		MSB	AS40014804 ASP00	ASP00	ASPOO	8082	A00093 A00222	A00222	30.0800		10.00	00.0	00.0	0.00	z
A4B20638	A4B20638 A4B2063802 Z		MBLK	MBLK AS40014805 ASP00	ASPOO	ASP00	8082	A00093		30,0800		10.00	00.00	00.00	0.00	
A04-C233	A04-C233 A4C23301	4	FS	AS40014806 ASP00	ASPOO	ASPOO	8082	A00093		30.0100		10.00	1.21	5.86	4.74	z
A04-C233	A04-C233 A4C23302	A	FS	AS40014807 ASP00	ASP00	ASP00	8082	A00093		30.8100		10.00	1.22	6.36	5.38	z
A04-C233	A04-C233 A4C23303	4	FS	AS40014808 ASP00	ASP00	ASP00	8082	A00093		30.2900		10.00	1.23	5.14	3.63	Z
A04-C233	A04-C233 A4C23304	A	F.S.	AS40014809 ASP00	ASPOO	ASP00	8082	A00093		30.8300		10.00	1.19	7.87	5.88	
A04-C233	A04-C233 A4C23305	K	FI Si	AS40014810 ASP00	ASPOO	ASPOO	8082	A00093		30.3400		10.00	1.24	6.92	3.87 N	
A04-C233	A04-C233 A4C23305MS A MS	Z Z		AS40014811 ASP00	ASP00	ASPOO	8082	A00093 A00222	A00222	30.6100		10.00	1.24	6.92	3.87 N	
A04-C233	A04-C233 A4C23305SD A		ß	AS40014812 ASP00	ASPOO	ASP00	8082	A00093 A00222	A00222	30.8800		10.00	1.24	6.92	3.87 N	
	_	_		_	_	_	_	_	_	_	_	_	-			

V
ō
ŏ
ă
(5
ŏ
ĭ
7
$\overline{0}$
Ĕ
່ວ
Щ
2
4
O
Ğ

INSTRUMENT ID THE SPECIAL

214/481 Clarky B CLETHY K A 7 COMMENTS SEQUENCE _ CLESTIN A CLOTY CK ナメな * Cex Cuts Cuth アーア ř, PROCESS Y/N 1/2/10 8 TA SELECT COLUMNID'S A 29 35 SOLVENT LOT # 2/2 500 45.7 4 f 2 FILE ID 230 238 130 220 239 235 DF VIAL ID 14811 M5x2 14812 SDX2 1480 X100 (480) NIOO AWYOOISOT) MALK 14805 MAUK 14806 150 14808 150 AS400/484 MSB 14810 X2 ICM 36F 603 15059 MJ 25040 50 ICM SYRA 63 Р 25023 13061 2542 2505 AW 400 25044 ICM 6650 AW400250CS ICAN 36/ Hermo Harras Hoyame HOYAND VIAL ID 2016 TOLK 6573 523 200 10B # CCV C233 High CC } 263 SYRINGE LOT # DATE & INIT.

METALS DATA

		COVER PAGE - INO	RGANIC A	NALYSIS DATA PACK	AGE		
Contract:	NY00-096				SDG No.:	1208	
Lab Code:	STLBFLO	Case No.:	SH904		SAS No.:		
	· · · · · · · · · · · · · · · · · · ·						
SOW No.:							
	Sample ID.			Lab Sample No.			
	D088A			A4C23301			
	D088A/MS			A4C23301MS			
	D088A/SD			A4C23301SD			
	D088AA			A4C23302			
	D088B			A4C23303			
	D088C			A4C23304			
	D088D			A4C23305			
Were ICP	interelement correct	ions applied?			Yes/No	YES	
	background correction				Yes/No	YES	
	yes-were raw data ge: lication of backgrou				Yes/No	NO	
app	rication of Datagrou	nd corrections;			Tes/NO	<u>NO</u>	
Comments	:						
				Marie		<u> </u>	
··				<u> </u>			
contract, above. Re submitted	both technically and elease of the data c	d for completeness ontained in this l has been authorize	s, for ot hardcopy	the terms and condit her than the conditi data package and in Laboratory Manager	ons detailed the computer	-readable	data nee, as
	$\lambda \rightarrow 0$						
Signature:	Delit		Name:	<u>Br</u> ian Fischer	** - ,		
	()	a.					
Date:	1-1-04		Title	: Project Manage	er ·		
				- <u> </u>			

-1-

INORGANIC	ANALYSIS	DATA	SHEET
------------------	-----------------	-------------	-------

SAMPLE	NO.	
D088A		

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466610

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids: 76

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7440-02-0	Nickel	199		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:	
Comments:					
<u> </u>					
	<u>.</u>				

-1-

INORGANIC	ANALYSIS	DATA	SHEET
------------------	-----------------	-------------	-------

	SHALLE	NO.
Г		
	AA8800	

Contract:

NY00-096

Lab Code:

STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466613

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids:

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7440-02-0	Nickel	209		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL	
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:		<u></u>
Comments:						
_						

-1-

SAMPLE	NO.
D088B	
בטטטם	

Contract: NY00)-096	3
----------------	-------	---

Lab Code:

STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466614

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids: 61

Concentration Units (ug/L or mg/kg dry weight):

	CAS No.	Analyte	Concentration	С	Q	М
-	7440-02-0	Nickel	256		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:	
Comments:					
_			***************************************		

-1-

•	Servic Tre-	NO.	
יש ו	700C		

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466615

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids: 70

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7440-02-0	Nickel	348		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:	
Comments:			· .		
	*				

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.	
D088D	

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Lab Sample ID:

AD466616

Level (low/med):

LOW

Date Received:

12/8/2004

% Solids: 46

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-02-0	Nickel	457		NE*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL		
Color After:	BROWN	Clarity After:	CLDY/FI	Artifacts:			
Comments:			.,		A STATE OF THE STA		
				·			

222/481

- MDL>CDL (TDL Type CDL) or MDL>TDL (TDL Type CRQL, EQL)

- TDL>CDL (TDL Type CDL)

ШJ

2.00000 N 0.10100 1.00000 1.00000 1.00000 1 1.000001 0.90000 0.90000 30.00000 30.00000 3.65000 5.50000 5.50000 4.90000 4.90000 1.00000 0.13000 0.04000 2.80000 0.38000 0.59000 0.06300 0.59000 0.59000 4.40000 21.00000 21.00000 0.90000 0.13900 2.00000 0.23800 2.40000 2.40000 2.20000 4.90000 0.64000 4.90000 줄 2.50000 5.00000 20.00000 500.00000 00000.0000 5000,00000 1.00000 10,00000 50,00000 5.00000 25.00000 00000.000 200.00000 60.00000 60.00000 10.00000 10.0000 200.00000 200,00000 20.00000 200.00000 0.50000 5.00000 2.00000 5.00000 0.50000 5.00000 10.00000 10.00000 50,00000 25.00000 20.00000 6.00000 10.00000 1.00000 10.00000 5.00000 TDL ᅙ ₹ CTA13462 S MG/KG S MG/KG CTA14378 S MG/KG CTA13460 S MG/KG CTA19581 S MG/KG CTA13461 S MG/KG CTA16278 S MG/KG S MG/KG CTA13407 S MG/KG CTA14379 S MG/KG TA16277 S MG/KG CTA18065 W UG/L CTA13859 W UG/L STA00990 W UG/L STA01015 W UG/L CTA13858 W UG/L STA00987 W UG/L CTA20975 W UG/L CTA13285 W UG/L STA00988 W UG/L CTA13286 W UG/L CTA13860 W UG/L STA01016 W UG/L CTA13861 W UG/L STA00989 W UG/L CTA18076 W UG/L CTA13287 W UG/L CTA13862 W UG/L CTA18066 W UG/L STA01017 W UG/L CTA13288 W UG/L CTA13863 W UG/L STA00991 W UG/L CTA13864 W UG/L STA01018 W UG/L STA00992 W UG/L CTA13408 :TA13463 Test Method 6010 Type Protol ASP00 ROL ASP00 CROL ASPOO CROL ASPOO CROL ASPOO CROL ASP00 CROL ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 CROL ASPOO CROL ASP00 CROL ASPOO CROL ASP00 CROL ASP00 CROL ASP00 CROL ASP00 CROL ASP00 CROL ASPOO CROL ASP00 CROL ASP00 CROL ASPOO CROL ASP00 CROL ASP00 CROL ASP00 CROL CROL CROL CROL CROL CRQL / CROL CROL CROL CROL CROL CRaL CROL CROL ם 님 Parameter Arsenic - Soluble Beryllium - Total Beryllium - Total Beryllium - Total Antimony - Total Antimony - Total Antimony - Total Aluminum - Total Aluminum - Total Chromium - Total Chromium - Total Chromium - Total 1 Aluminum - Total Chromium - Total Arsenic - Total Arsenic - Total Calcium - Total Calcium - Total Arsenic - Total Arsenic - Total Cadmium - Total Calcium - Total Barium - Total Barium - Total Cadmium - Total Cadmium - Total Cadmium - Total Barium - Total Barium - Total Cobalt - Total Cobalt - Total Cobalt - Total Copper - Total Copper - Total Copper - Total Boron - Total Boron - Total Project No No Ιsk NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 IY1A8770.9 NY1A8770.9 VY1A8770.9 IY1A8770.9 NY 1A8770.9 IY1A8770.9 NY1A8770.9 VY1A8770.9 NY 1A8770.9 VY1A8770.9 NY1A8770.9 NY 1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY 1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 VY1A8770.9 NY1A8770.9 NY1A8770.9 VY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 IY1A8770.9 Client Name Fraction: ME NYS DEC YYS DEC YS DEC NYS DEC VYS DEC NYS DEC NYS DEC NYS DEC NYS DEC NYS DEC NYS DEC VYS DEC VYS DEC NYS DEC NYS DEC YYS DEC

AN1368

Rept:

Compare Client DL for PROJECT NY1A8770.9 and Task 1 to Lab MDL

PROTOCOL: ASP00

For METHOD: 6010

Project Manager: BJF Laboratory: A

Date: 01/06/2005 Time: 09:01:48 ET - Exception Types:

N - MDL "Not Found"

- TDL=0 or MDL=0

Σl

Compare Client DL for PROJECT NY1A8770.9 and Task 1 to Lab MDL

Rept: AN1368

PROTOCOL: ASP00 For METHOD: 6010

Laboratory: A

Date: 01/06/2005 Time: 09:01:48

ш 5.60000 Y 1.10000 Y 5.60000 Y 5.60000 Y 2.46800 Y 3.10000 N 0.48000 N 5.90000 N 0.98000 N 0.09500 N 17.00000 N 0.33000 N 1.60000 N 1.60000 N 8.40000 N N 000000.00 0.9000 N 339.00000 N 41.70000 N 17.00000 1.30000 19.60000 19.60000 0.05300 0.33000 0.12000 00000.001 0.14500 0.90000 0.9000 339,00000 5.70000 5.70000 1.30000 0.30700 1.30000 1.30000 0.90000 5.00000 00000.00 00000.00 5.00000 5.00000 5.00000 500,00000 5000.00000 1.50000 15.00000 15.00000 4.00000 40.00000 40.00000 500.00000 5000.00000 5000.00000 5.00000 0.50000 5.00000 10.00000 1.00000 10.00000 10.0000 500.00000 00000.0000 0000,0000 1.00000 10,00000 10,00000 4.00000 50.00000 0.50000 5.00000 2000.00000 40.0000 10.0000 5.00000 ទ <u>₹</u> CTA16279 S MG/KG S MG/KG CTA16280 S MG/KG CTA16281 S MG/KG CTA13465 S MG/KG CTA16283 S MG/KG CTA13466 S MG/KG CTA13467 S MG/KG CTA16284 S MG/KG CTA13468 S MG/KG CTA14380 S MG/KG CTA14381 S MG/KG CTA18067 W UG/L CTA20976 W UG/L CTA13289 W UG/L CTA13866 W UG/L STA00993 W UG/L CTA18068 W UG/L STA01020 W UG/L CTA18069 W UG/L STA01021 W UG/L CTA13868 W UG/L STA00994 W UG/L CTA18070 W UG/L STA01023 W UG/L CTA13290 W UG/L CTA13869 W UG/L CTA13291 W UG/L CTA13870 W UG/L STA00996 W UG/L CTA18071 W UG/L STA01024 W UG/L CTA13871 W UG/L STA00997 W UG/L CTA17831 W UG/L STA01019 W UG/L STA00995 W UG/L CTA13872 W UG/L CTA13464 Test Method 6010 Protcl CRQL ASP00 CROL ASP00 ASP00 ASP00 ASP00 CROL ASP00 CROL ASP00 ASP00 CROL ASPOO SROL ASPOO CROL ASPOO Ral ASP00 CROL ASPOO CROL ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 CROL ASPOO SROL ASPOO CROL ASPOO CROL ASP00 CROL ASP00 CROL ASPOO CROL ASP00 Type CROL CROL CROL CROL CROL CROL CROL CROL CROL Parameter Magnesium - Total Magnesium - Total Manganese - Total Magnesium - Total Manganese - Total Manganese - Total Potassium - Tota(Potassium - Total Potassium - Total Selenium - Total | Vanadium - Total Selenium - Total Selenium - Total Selenium - Total Thallium - Total Thallium - Total 1 Vanadium - Total Thallium - Total Nickel - Total Lead - Soluble Nickel - Total Nickel - Total Sodium - Total Sodium - Total Silver - Total Silver - Total Silver - Total Silver - Total Sodium - Total Lead - Total Lead - Total Lead - Total Iron - Total Iron - Total Iron - Total Lead - Total Tin - Total Tin - Total Project No No Isk NY1A8770.9 NY1A8770.9 NY1A8770.9 VY1A8770.9 NY1A8770.9 IY1A8770.9 NY 1A8770.9 NY1A8770.9 NY 1A8770.9 NY 1A8770.9 NY 1A8770.9 NY 1A8770.9 NY1A8770.9 NY1A8770.9 NY 1A8770.9 NY 1A8770.9 NY 1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY1A8770.9 NY 1A8770.9 NY1A8770.9 Project Manager: BJF Client Name NYS DEC NYS DEC NYS DEC NYS DEC YS DEC NYS DEC VYS DEC NYS DEC VYS DEC VYS DEC VYS DEC VYS DEC NYS DEC VYS DEC VYS DEC NYS DEC NYS DEC NYS DEC NYS DEC NYS DEC NYS DEC IYS DEC NYS DEC IYS DEC IYS DEC YS DEC VYS DEC YYS DEC YYS DEC YYS DEC VYS DEC

ET - Exception Types:

- MDL "Not Found"

- TDL=0 or MDL=0

- MDL>CDL (TDL Type CDL) or MDL>TDL (TDL Type CRQL, EQL)

E - TDL>CDL (TDL Type CDL)

223/481

3 AN1368	ш	×	z 2		z					224/4	81	
Page: Rept: AN		MDL	0.98000	1.40000	1.40000 N							e CDL)
		TDL	50.00000	20.00000	20.0000							- TDL>CDL (TDL Type CDL)
												E - TO
		COL										SROL, EQL)
isk 1 to Lab MDL POO	۰	Test M UM	STA01025 W UG/L		STA00998 W UG/L							MDL>TDL (TDL Type (
Compare Client DL for PROJECT NY1A8770.9 and Task 1 to Lab MDL For METHOD: 6010 PROTOCOL: ASPOO		Type Protci Method	ASP00 6010 ASP00 6010	ASP00 6010	ASP00 6010							- MDL>CDL (TDL Type CDL) or MDL>TDL (TDL Type CRQL,EQL)
ent DL for PROJEC For METHOD: 6010	TDL	Type	CROL	CROL	CROL							M - MDL>CD
Compare Clie		Parameter	otal									* - TDL=0 or MDL=0
	Tsk	No	1 Vanadium - Total	-	1 Zinc - Total							<u>N</u> - MDL "Not Found"
		Project No	NY1A8770.9 NY1A8770.9	NY1A8770.9	NY1A8770.9					*		
Date: 01/06/2005 Time: 09:01:48	Laboratory: A Project Manager: BJF	Client Name	NYS DEC	NYS DEC	NYS DEC							ET - Exception Types:
Dat Tim	Pro	1	NYS	NYS	NYS							ET

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904 SAS No.: SDG NO.: 1208

Initial Calibration Source: VHG/INO.VENT.

Continuing Calibration Source: VHG/INOR.VENT.

Concentration Units: ug/L

	Initial Ca	alibration	:	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Nickel	375.0	376.72	100.5	500.0	502.37	100.5	496.39	99.3	P

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

SDG NO.: 1208

NYS DEC

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904 SAS No.:

THIC / TATO THERM

Initial Calibration Source: VHG/INO.VENT.

Continuing Calibration Source: VHG/INOR.VENT.

Concentration Units: ug/L

	Initial	Calibration		Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Nickel	1			500.0	504.9	4 101.0	509.	16 101.8	P

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904 SAS No.:

SDG NO.: 1208

Initial Calibration Source:

VHG/INO.VENT.

Continuing Calibration Source:

VHG/INOR.VENT.

Concentration Units: ug/L

	Initial Calibration			Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Nickel	İ			500.0	500.2	9 100.1	512.	45 102.5	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: NY00-096

Lab Code: STLBFLO

Case No.:

SH904 SAS No.: SDG NO.: 1208

Initial Calibration Source:

VHG/INO.VENT.

Continuing Calibration Source:

VHG/INOR.VENT.

Concentration Units: ug/L

	Initial Calibration			Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Nickel				500.0	500.7	4 100.1			P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

-3-

BLANKS

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.: 1208

Preparation Blank Matrix (soil/water):

SOIL

Preparation Blank Concentration Units (ug/L or mg/kg):

MG/KG

Analyte	Initial Calib. Blank			Continuing Calibration Blank (ug/L)					Preparation Blank		
	(ug/L)	C	1	С	2	С	3	С	c	:	M
Nickel	[).7 ช	(ס.7 די	0	. 7 ט	0.	7 ט	0.066	ן ט	P

-3-

BLANKS

Contract: NY00-096

Lab Code: STLBFLO

TLBFLO Case No.: SH904

SAS No.:

SDG NO.: 1208

Preparation Blank Matrix (soil/water):

WATER

Preparation Blank Concentration Units (ug/L or mg/kg):

UG/L

	Initial Calib. Blank (ug/L) C		Continuing Calibration Blank (ug/L)						Preparation		
Analyte		1	c	2	C	3	С		С	М	
Nickel			0.	7 0	0	.7 U	0.	7 0			2

-3-

BLANKS

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.: 1208

Preparation Blank Matrix (soil/water):

WATER

Preparation Blank Concentration Units (ug/L or mg/kg):

UG/L

	Initial Calib. Blank		Continuing Calibration Blank (ug/L)					Preparation Blank				
Analyte	(ug/L)	С	1	C	2	C	3	С		C		M
Nickel	Ì		0.	. 7 ೮					Ī		П	P

-4-

ICP INTERFERENCE CHECK SAMPLE

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904 SAS No.: SDG NO.: 1208

ICP ID Number: SUPERTRACE2 ICS Source: VHG

Concentration Units): ug/L

	Tru	e	Ini	Initial Found				Final Found			
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	%	R	Sol.A	Sol.AB	%R		
Nickel	1	1000		2 911	.6 91	L.2		2 908.1	90.8		

398.3 N P

75 - 125

NYS DEC -5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

66.00

ontract:	NY00-0	96						D088A/MS			
ab Code:	STLBFL	O Ca	se No.:	SH904		SAS No.:		SDG NO.:	1208		
atrix (so	il/water): SOII	•				Level	(low/med):	LOW		
Solids fo	or Sample	e: <u>75.</u>	9								
		Concent	ration	Units	(ug/L d	or mg/kg d	ry weight)	: MG/KG	-		-
Ana	lyte	Control Limit %R	Spiked Result	Sample (SSR)	c	Sample Result		Spike Added (SA)	%R	Q	M
Nick	el	75 - 125		462.	3382	1 19	99.4591	66,00	398.3	N	P

199.4591

462.3382

Nickel

NYS DEC -5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

62.73

170.0

Contract:	NY00-096							D088A/SD				
Lab Code:	STLBFI	O Ca	se No.:	SH904	s	AS No.:		SDG NO.:	1208			
Matrix (so	il/water): SOII	1				Level	(low/med):	LOW			
% Solids fo	or Sampl	e: <u>75.</u>	9									
Ana	lyte	Concent		Sample	g/L or	mg/kg dry Sample Result (Si		: MG/KG Spike Added (SA)	%R		M	

306.0768

199.4591

NYS DEC -5B-

POST DIGEST SPIKE SAMPLE RECOVERY

Sample 1	VO.
----------	-----

				D088AA
Contract:	NY00-096			
ab Code:	C.T.R.R.T.P.D	Case No · SHOOA	SAS No .	SDG NO • 1209

Matrix (soil/water): SOIL Level (low/med): LOW

Concentration Units:

ug/L

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	C	Spike Added(SA)	%R	Q	М
Nickel	75 - 125	167	6.57	1520.15		200.0	78.2		P

NYS DEC -6-DUPLICATES

SAMPLE NO.

D088A/SD	
1	

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO .:

1208

Matrix (soil/water):

SOIL

Level (low/med):

LOW

% Solids for Sample:

75.9

% Solids for Duplicate:

75.9

Concentration Units (ug/L or mg/kg dry weight):

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	м
Nickel	<u> </u>	462.3382		30	6.0768	40.7	*	P

-7-

LABORATORY CONTROL SAMPLE

Contract: NY00-096

Lab Code: STLBFLO

TLBFLO Case No.: SH904

SAS No.:

SDG NO.: 1208

Solid LCS Source:

ERA 145

Aqueous LCS Source:

	Aqueous (ug/L)			Solid (mg/kg)					
Analyte	True	Found	%R	True	Found	С	Limits	. 9	%R
Nickel				72.7	69.70		59.3	86.1	95.9

-9-

ICP SERIAL DILUTIONS

SAMPLE NO.

D088AL	D088AL			
		D088AL		

Contract: NY00-096

Lab Code: STLBFLO

STLBFLO Case No.: SH904

SAS No.:

SDG NO.:

1208

Matrix (soil/water):

SOIL

Level (low/med):

FOM

Concentration Units:

ug/Ĺ

Analyte	Initial Sample Result (I) C	Serial Dilution Result (S)	С	% . Differ- ence	Q	м
Nickel	1520.15	1742.00		14.6	E	P

-10-

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Contract:	MX00-096						
Lab Code:	STLBFLO	Case No.: SH904	SAS No.	:	SDG NO.:	1208	
ICP ID Numb	er: SUPERT	RACE2	Date:	9/22/2004		<u> </u>	-
Flame AA ID	Number:						
Furnace AA	ID Number:						

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	M
Nickel	231.604		40	0.7	P

Comments:

Form X - IN

1208

NYS DEC

-11A-

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Contract: NY00-096

Lab Code: STLBFLO SAS No.:

Case No.: SH904 SDG NO.:

ICP ID Number: SUPERTRACE2 Date: 9/21/2004

	Wave- length	Interelement Correction Factors for:							
Analyte	(nm)	Al	Ca	Fe	В	Be			
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Antimony	206.838	0.0000000	0.0000000	0.0000250	0.0000000	0.000000			
Arsenic	189.042	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Beryllium	313.042	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Cadmium	226.502	0.0000000	0.0000000	0.0000490	0.0000000	0.000000			
Calcium	317.90	0.0000000	0.0000000	0.0003540	0.0000000	0.000000			
Chromium	267.716	0.0000400	0.0000000	0.0000000	0.0000000	0.000000			
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Copper	324.753	0.0000000	0.0000000	0.0000080	0.0000000	0.0000000			
Iron	271.441	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Lead	220.352	0.0004020	0.0000000	0.0000640	0.0000000	0.0000000			
Magnesium	279.00	0.0000000	0.000000	0.0000000	0.0000000	0.000000			
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Potassium	766.491	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Selenium	196.021	0.0000000	0.0000000	-0.0000400	0.0000000	0.0000000			
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Thallium	190.864	0.0000000	0.0000000	-0.0003600	0.0000000	0.000000			
Tin	189.989	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Titanium	337.28	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Vanadium	292.402	0.0000000	0.0000000	0.0000200	0.0000000	0.0000000			
Zinc	206.20	0.0000000	0.0000000	-0.0000500	0.0000000	0.000000			

Comments:				
	Marine Control of the	 	 	

-11B-

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904

SAS No.:

SDG NO.:

1208

ICP ID Number:

SUPERTRACE2

Date:

9/21/2004

	Wave- length					
Analyte	(nm)	Cd	Со	Cr	Cu	Mn
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.838	0.0000000	0.0000000	0.0063290	0.0000000	0.000000
Arsenic	189.042	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	313.042	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Calcium	317.90	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	-0.0004100
Cobalt	228.616	0.0000000	0.0000000	-0.0004000	0.0000000	0.000000
Copper	324.753	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Iron	271.441	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Lead	220.352	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Magnesium	279.00	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	-0.0013200	0.0000000	0.0000000	0.000000
Potassium	766.491	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.021	0.0000000	0.0001120	0.0000000	0.0000000	0.000000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Thallium	190.864	0.0000000	-0.0005300	0.0000000	0.0000000	0.0004420
Tin	189.989	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Titanium	337.28	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	206.20	0.0000000	0.0000000	0.0009550	0.0000000	0.000000

-11B-

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Contract: NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG NO.:

1208

ICP ID Number:

SUPERTRACE2

Date:

9/21/2004

	Wave- length		Interelement	Correction Factor	ors for:	
Analyte	(nm)	Na	Ni	Pb	Sb	Se
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.838	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	313.042	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Calcium	317.90	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Copper	324.753	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.441	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.352	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Magnesium	279.00	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.491	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.021	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Thallium	190.864	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Tin	189.989	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Titanium	337.28	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	206.20	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000

Comments:

-11B-

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904 SAS No.: SDG NO.: 1208

ICP ID Number: SUPERTRACE2 Date: 9/21/2004

	Wave- length		Interelement (Correction Factors for	or:
Analyte	(mm)	Tl	v	Zn	
Aluminum	308.215	0.0000000	0.0170340	0.0000000	
Antimony	206.838	0.0000000	0.0000000	0.0000000	
Arsenic	189.042	0.0000000	0.0000000	0.0000000	
Barium	493.409	0.0000000	0.0000000	0.0000000	
Beryllium	313.042	0.0000000	0.0001790	0.0000000	
Boron	249.678	0.0000000	0.0000000	0.0000000	
Cadmium	226.502	0.0000000	0.0000000	0.0000000	
Calcium	317.90	0.0000000	0.0000000	0.0000000	
Chromium	267.716	0.0000000	0.0000180	0.0000000	
Cobalt	228.616	0.0000000	0.0000000	0.0000000	
Copper	324.753	0.0000000	0.0000000	0.000000	
Iron	271.441	0.0000000	0.0120740	0.0000000	
Lead	220.352	0.0000000	0.0000000	0.0000000	
Magnesium	279.00	0.0000000	0.0000000	0.0000000	
Manganese	257.610	0.0000000	0.0000000	0.0000000	
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	
Nickel	231.604	0.0000000	0.0000000	0.000000	
Potassium	766.491	0.0000000	0.0000000	0.0000000	
Selenium	196.021	0.0000000	0.0000000	0.0000000	
Silver	328.068	0.0000000	0.0000000	0.0000000	
Sodium	330.232	0.0000000	0.0000000	0.0000000	
Thallium	190.864	0.0000000	-0.0002000	0.0000000	
Tin	189.989	0.0000000	0.0000000	0.0000000	
Titanium	337.28	0.0000000	0.0000000	0.0000000	1
Vanadium	292.402	0.0000000	0.0000000	0.0000000	
Zinc	206.20	0.0000000	0.0000000	0.0000000	

Comments:				
-	_		 	

NYS DEC -12-ICP LINEAR RANGES (QUARTERLY)

Contract:	NY00-096	

Lab Code: STLBFLO Case No.: SH904 SAS No.: SDG NO.: 1208

ICP ID Number: SUPERTRACE2 Date: 9/22/2004

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Nickel	15.00	25000	P

Comments:				
	· · · · · · · · · · · · · · · · · · ·	 	 	

-13-

PREPARATION LOG

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904 SAS

SAS No.: SDG NO.: 1208

Method: P

Prep Method:

Sample ID	Preparation Date	Initial Weight (g)	Final Volume (mL)
LCS CLP Soils	12/9/2004	0.50	50.0
Method Blank	12/9/2004	0.50	50.0
D088A	12/9/2004	0.50	50.0
D088A/MS	12/9/2004	0.50	50.0
D088A/SD	12/9/2004	0.52	50.0
D088AA	12/9/2004	0.48	50.0
D088B	12/9/2004	0.56	50.0
D088C	12/9/2004	0.49	50.0
D088D	12/9/2004	0.46	50.0

Comments:

-14-

ANALYSIS RUN LOG

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904 SAS No.: 1208 SDG No.:

Instrument ID Number: SUPERTRACE2 Method:

12/10/2004 Start Date: 12/10/2004 End Date:

tart Date: 12/1	0/2004							En					_			_											
Sample	D/F	Time	% R	_										Ana		_				_							_
ID.	_		" "	A L	S B	A S	B A	B	C D	C A	C R	0	D C	f		M G		H	N	K	S	A G	N A	T L	V	z N	
STD BLK	1.00	10:47																	x					*			Ī
STD 1	1.00	10:52																	x								Γ
STD 2	1.00	10:56																	X								T
STD 3	1.00	11:00																	х								Γ
STD 3 VER	1.00	11:05																	Х								Γ
ICV	1.00	11:09																	X								Ī
ICB	1.00	11:14																	x							П	Γ
CRI	1.00	11:18																	х								Г
ICSA	1.00	11:22																	x								ſ
ICSAB	1.00	11:27																	x								ſ
ccv	1.00	11:32																	х								ſ
ССВ	1.00	11:37																	х								ſ
Method Blank	1.00	11:41														Ĭ			X								ſ
LCS CLP Soils	1.00	11:46																	х								Γ
D088A	1.00	11:50																	х								Ī
D088AL	5.00	11:54																	х								Ī
D088AA	1.00	11:59																	х								Ī
D088A/MS	1.00	12:03																	x								Ī
D088A/SD	1.00	12:08																	х								Ī
D088AA	1.00	12:12	7																х								ſ
D088B	1.00	12:16	*****																х				- 1				Ī
D088C	1.00	12:21																	х								Ī
CCA	1.00	12:26																	х								ſ
ССВ	1.00	12:31																	x								ſ
D088D	1.00	12:35																	х								ſ
ZZZZZZ		12:40													Ī										j		ſ
ZZZZZZ	1.00	12:44													Ī										Ì		Γ
ZZZZZZ	1.00	12:48										Ī			T				j						T		٢
ZZZZZZ	5.00	12:53										Ī	Ī	T	T		j		Ť	Ī					T		٢
ZZZZZZ	1.00	12:57													T		j		T	T					j		Γ
ZZZZZZ	1.00	13:02										T		j	T			T	Tİ				j		寸	Πİ	Г
ZZZZZZ	1.00	13:06										i		j	j	j	j		Ì	j				j	j		Γ
ZZZZZZ	1.00	13:10								T		T	T	寸	Ť	٦	T	i	寸	T			j	T	T		٢

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

NYS DEC -14-

ANALYSIS RÚN LOG

Contract: NY00-096

Lab Code: STLBFLO Case No.: SH904 SAS No.: SDG No.: 1208

Instrument ID Number: SUPERTRACE2 Method: P

Start Date: 12/10/2004 End Date: 12/10/2004

tart Date: 12/1	0/2004						En									_			_							
Sample	D/F	Time	 % R										Ana													
ID.		Time	* K	A L	AS	B A	BE	C D	C A	C R	C 0	C		P B	M G	M N	H G	N	K	S	A G	N A	T	V	z N	
zzzzz	1.00	13:15								i																Γ
ccv	1.00	13:20																X								T
ССВ	1.00	13:25																X								Γ
ZZZZZZ	1.00	13:29																								Τ
ZZZZZZ	1.00	13:34																								Ī
ZZZZZZ	1.00	13:38																								Ī
ZZZZZZ	1.00	13:42																								Ī
ZZZZZZ	1.00	13:47		Γ																						T
ZZZZZZ	1.00	13:51																								Τ
ZZZZZZ	1.00	13:56																								T
ZZZZZZ	1.00	14:19																								T
ZZZZZZ	1.00	14:23																								Ť
ZZZZZZ	1.00	14:28											Ì													Ť
CCA	1.00	14:33											T					х								Ť
ССВ	1.00	14:38											j					X								Ť
ZZZZZZ	1.00	14:42		T-	_																					Ť
ZZZZZZ	5.00	14:46		T									Ť													Ť
ZZZZZZ	1.00	14:51										j	Ť	j												Ť
ZZZZZZ	1.00	14:55		T								i	T	Ì												Ť
ZZZZZZ	1.00	15:00		T			-					j	Ť	T												Ť
ZZZZZZ	1.00	15:04		Τ								İ	T	T												Ť
ZZZZZZ	1.00	15:08		┢									Ť	Ť												Ť
ZZZZZZ		15:13		T								ĺ	Ť	T												Ť
ZZZZZZ		15:17		-								j	T	寸												Ť
ZZZZZZ	1.00	15:22			_								T	T				j								Ť
CCA		15:27											Ť	7				х								T
ССВ		15:32		T								T	寸	T	_			х								İ
ZZZZZZ		15:36										寸	T	寸												Ť
ZZZZZZ		15:40		T-			-	П	T			ij	j	寸		i		ī				T				İ
ZZZZZZ		15:45										ᅥ	寸	ᅧ												İ
ZZZZZZ		15:49							H			寸	寸	ᅥ		H				Н						t
ZZZZZZ		15:54									H	┪	寸	寸		T						T				ŕ
ZZZZZZ		15:58		H							۲	-	÷	ᅥ		H										t

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

NYS DEC -14-

ANALYSIS RUN LOG

Contract:

NY00-096

Lab Code: STLBFLO

Case No.: SH904

SAS No.:

SDG No.: 1208

Instrument ID Number:

SUPERTRACE2

Method:

12/10/2004 Start Date: 12/10/2004 End Date:

																				_							
Sample	7/7	Time	% R											Ana	ly	tes	3										
ID.	D/F		~ K	A L	S B	A S	B A	BE	C D	C A	C R	0	a C	HE	P	M		H G	N	K	S	A G	N A	T L	٧	z N	
ZZZZZZ	10.00	16:02																									
ZZZZZZ	10.00	16:07																									
ZZZZZZ	1.00	16:11																									
ZZZZZZ	1.00	16:16																									
CCA	1.00	16:21																	X								
CCB	1.00	16:26																	X								
ZZZZZZ	1.00	16:38																						1			
ZZZZZZ	5.00	16:43																									П
ZZZZZZ	1.00	16:47																									
ZZZZZZ	1.00	16:51		T																							Г
ZZZZZZ	1.00	16:56																									
ZZZZZZ	1.00	17:00																									
ZZZZZZ	1.00	17:05																									
CRI	1.00	17:10																	X								
ICSA	1.00	17:15																	x								
ICSAB	1.00	17:19																	X								
CCV	1.00	17:23																	X								Γ
ССВ	1.00	17:28																	X								

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

METALS RAW DATA

12/11/04 11:20:26 AM

page 1

STL Buffalo Analyst: Date: 12/11/07 Secondary Review: BKL Date: 12/13/04 Spikes: MDL-6-26, MDL-7-26, 4-143-E, 4-143-F
Pippettes: 11/11/04-1,11/11/04-2,11/11/04-3,11/11/04-4,11/11/04-5,11/11/04-6, 11/11/04-7,11/11/04-8,11/11/04-9,11/11/04-10,11/11/04-11

		• • •	, ,			•			
	#	Sample Name	File	Method	Date	Time	OpID	Туре	Mode
-									
	-	STD BLK 4-14-A	7101004	MD & CDO	10/10/04	10.47		v	TD
	1		A121004	TRACE2	12/10/04	10:47		X	IR
	2	STD 1 4-14-C	A121004	TRACE2	12/10/04	10:52		X	IR
	3	STD 2	A121004	TRACE2	12/10/04	10:56		X	IR
	4	STD 3	A121004	TRACE2	12/10/04	11:00		X	IR
	5	STD 3 VER	A121004	TRACE2	12/10/04	11:05		В	CONC
	6		A121004	TRACE2	12/10/04	11:09		Q	CONC
	7	ICB 4-14-4	A121004	TRACE2	12/10/04	11:14		В	CONC
	8	CRI 4-10-A	A121004	TRACE2	12/10/04	11:18	SW	В	CONC
	9	ICSA J.	A121004	TRACE2	12/10/04	11:22	SW	Q	CONC
	10	ICSAB V C	A121004	TRACE2	12/10/04	11:27	SW	Q	CONC
	11	•	A121004	TRACE2	12/10/04	11:32	SW	Q	CONC
	12		A121004	TRACE2	12/10/04	11:37		В	CONC
	13	AD466618/PB	A121004	TRACE2	12/10/04	11:41		S	CONC
		AD466617/CLPSL	A121004	TRACE2	12/10/04	11:46	SW	S	CONC
		AD466610 CZJJ	A121004	TRACE2	12/10/04	11:50	SW	S	CONC
		AD466610/L (1:5)	A121004	TRACE2	12/10/04	11:54	SW	S	CONC
	17	AD466610/PS	A121004	TRACE2	12/10/04	11:59	SW	S	CONC
		AD466611/MS	A121004	TRACE2	12/10/04	12:03	SW	S	CONC
		AD466612/SD	A121004	TRACE2	12/10/04	12:08	SW	S	CONC
		AD466613	A121004	TRACE2	12/10/04	12:12	SW	S	CONC
	21	AD466614	A121004	TRACE2	12/10/04	12:16	SW	S	CONC
		AD466615	A121004	TRACE2	12/10/04	12:21	SW	S .	CONC
	23	CCV	A121004	TRACE2	12/10/04	12:26	SW	Q	CONC
	24	CCB	A121004	TRACE2	12/10/04	12:31	SW	В	CONC
		AD466616	A121004	TRACE2	12/10/04	12:35	SW	S	CONC
	26	AD466768/PB	A121004	TRACE2	12/10/04	12:40	SW	S	CONC
	27	AD466767/FB	A121004	TRACE2	12/10/04	12:44	SW	S	CONC
	28	AD466754 C249	A121004	TRACE2	12/10/04	12:48	SW	S	CONC
	29	AD466754/L (1:5)	A121004	TRACE2	12/10/04	12:53	SW	S	CONC
	30	AD466754/PS	A121004	TRACE2	12/10/04	12:57	SW	S	CONC
	31	AD466755/MS	A121004	TRACE2	12/10/04	13:02	SW	S	CONC
	32	AD466756/SD	A121004	TRACE2	12/10/04	13:06	SW	S	CONC
	33	AD466757	A121004	TRACE2	12/10/04	13:10	SW	S	CONC
	34	AD466758	A121004	TRACE2	12/10/04	13:15	SW -	S	CONC
	35	CCV	A121004	TRACE2	12/10/04	13:20	SW	Q	CONC
	36	CCB	A121004	TRACE2	12/10/04	13:25	SW	В	CONC
	37	AD466759	A121004	TRACE2	12/10/04	13:29	SW	S	CONC
	38	AD466760	A121004	TRACE2	12/10/04	13:34	SW	S	CONC
	39	AD466761	A121004	TRACE2	12/10/04	13:38	SW	S	CONC
	40	AD466762	A121004	TRACE2	12/10/04	13:42		S	CONC
	41	AD466763	A121004	TRACE2	12/10/04	13:47		S	CONC
	42	AD466764	A121004	TRACE2	12/10/04	13:51	SW	S	CONC
		AD466765	A121004	TRACE2	12/10/04	13:56	SW	S	CONC
		AD466766	A121004	TRACE2	12/10/04	14:19	SW	S	CONC
		AD466741/PB	A121004	TRACE2	12/10/04	14:23	SW	S	CONC
		AD466740/FB	A121004	TRACE2	12/10/04	14:28	SW	S	CONC
		CCV	A121004	TRACE2	12/10/04	14:33	SW	Q	CONC
	48	CCB	A121004	TRACE2	12/10/04	14:38		B	CONC
	49	AD466727	A121004	TRACE2	12/10/04	14:42		S	CONC
					· •				

File Method Date Sample Name Time OpID Type Mode S CONC S CONC S CONC S CONC S CONC S CONC S CONC S CONC Q CONC B CONC CONC S S S CONC CONC S CONC S S 12/10/04 16:02 SW S CONC CONC S S S CONC Q CONC B CONC S CONC S CONC S CONC S CONC S CONC S CONC B CONC Q CONC Q CONC 17:23 SW Q CONC В CONC 12/10/04 17:38 12/10/04 17:43 X IR 17:47 X 17:51 Y IR IR IR 17:56 SW В CONC Q 18:00 SW CONC В CONC В CONC Q CONC Q CONC Q CONC В CONC S CONC S CONC S CONC 12/10/04 18:45 SW S CONC 12/10/04 18:50 SW S CONC 12/10/04 18:54 SW S CONC S CONC

Analysis Report Summary 12/11/04 11:20:26 AM page 2

Analysis Report	Summary		12/11/04 1	1:20:26	5 AM		page	2 3
# Sample Name	File	Method	Date	Time	OpID	Type	Mode	
104 AD466941 (レ门 105 AD466942	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	19:03 19:07		S S	CONC	
106 AD466943	A121004	TRACE2	12/10/04	19:12	SW	S	CONC	
107 CCV	A121004	TRACE2	12/10/04	19:18		Q	CONC	
108 CCB	A121004	TRACE2	12/10/04	19:22	SW	В	CONC	
109 AD466944	A121004	TRACE2	12/10/04	19:26		S	CONC	
110 AD466945	A121004	TRACE2	12/10/04	19:31		S	CONC	
111 AD466945/L (1:5) 112 AD466945/PS	A121004	TRACE2	12/10/04	19:35		S	CONC	
112 AD466945/PS 113 AD466946/MS	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	19:40 19:44	SW SW	S S	CONC	
114 AD466947/SD	A121004	TRACE2	12/10/04	19:44	SW	S	CONC.	
115 AD466948	A121004	TRACE2	12/10/04	19:53		S	CONC	
116 AD466949 C258	A121004	TRACE2	12/10/04	19:57	SW	S	CONC	
117 AD466950	A121004	TRACE2	12/10/04	20:02	SW	S	CONC	
118 AD466951	A121004	TRACE2	12/10/04	20:06	SW	S	CONC	
119 CCV	A121004	TRACE2	12/10/04	20:12	SW	Q	CONC	
120 CCB 121 AD466952	A121004	TRACE2	12/10/04	20:16	SW	В	CONC	
121 AD466952 122 AD466953	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	20:21 20:25	SW SW	S S	CONC	
123 AD466954	A121004 A121004	TRACE2	12/10/04	20:25	SW	S	CONC	
124 AD466955	A121004	TRACE2	12/10/04	20:34	SW	S	CONC	
125 AD466956 C2 6 0	A121004	TRACE2	12/10/04	20:38	SW	S	CONC	
126 AD466957	A121004	TRACE2	12/10/04	20:43	SW	S	CONC	
127 AD466958	A121004	TRACE2	12/10/04	20:47	SW	S	CONC	
128 AD466959	A121004	TRACE2	12/10/04	20:51	SW	S	CONC	
129 AD466960 (268 130 AD466961 (269	A121004	TRACE2	12/10/04	20:56	SW	S	CONC	
131 CCV	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	21:00	SW	S	CONC	
132 CCB	A121004	TRACE2	12/10/04	21:06 21:10	SW SW	Q B	CONC	
133 AD466939/PB	A121004	TRACE2	12/10/04		SW	S	CONC	
134 AD466938/FB	A121004	TRACE2	12/10/04	21:19		S	CONC	
135 AD466916 C259	A121004	TRACE2	12/10/04	21:24		S	CONC	
136 AD466917	A121004	TRACE2	12/10/04	21:28		S	CONC	
137 AD466918 (26)	A121004	TRACE2	12/10/04	21:32		S	CONC	
138 AD466919 139 AD466920	A121004	TRACE2	12/10/04			S	CONC	
140 AD466921	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	21:41 21:46		S S	CONC	
141 AD466922	A121004	TRACE2	12/10/04		SW	S	CONC	
142 AD466923	A121004	TRACE2	12/10/04		SW	S	CONC	
143 CCV	A121004	TRACE2	12/10/04		SW	Q	CONC	
144 CCB	A121004	TRACE2	12/10/04	22:05		В	CONC	
145 AD466924 146 AD466925 C263	A121004	TRACE2	12/10/04	22:09		S	CONC	
146 AD466925 C265 147 AD466926	A121004	TRACE2	12/10/04	22:14		S	CONC	
147 AD466926 148 AD466927	A121004 A121004	TRACE2	12/10/04 12/10/04	22:18		S	CONC	
149 AD466928	A121004 A121004	TRACE2 TRACE2	12/10/04	22:22		s s	CONC	
150 AD466929	A121004	TRACE2	12/10/04	22:27		S	CONC	
151 AD466930	A121004	TRACE2	12/10/04	22:36		S	CONC	
152 AD466931 C265	A121004	TRACE2	12/10/04	22:40	SW	S	CONC	
153 AD466932	A121004	TRACE2	12/10/04	22:44		S	CONC	
154 AD466933	A121004	TRACE2	12/10/04	22:49		S	CONC	
155 CCV 156 CCB	A121004	TRACE2	12/10/04		SW	Q	CONC	
157 AD466934	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	22:59 23:04	SW	B S	CONC	
	777707	11/4/52	14/10/04	23:04	OM	ت	CONC	

Analysis Report	Summary		12/11/04 11:20:26 AM					e 4
# Sample Name	File	Method	Date	Time	OpID	Туре	Mode	
158 AD466935 (265 159 AD466935/L (1:5)	A121004 A121004	TRACE2	12/10/04 12/10/04	23:08 23:12	SW	s s	CONC	
160 AD466936/MS 161 AD466937/SD 162 AD466883/PB	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	23:17	SW	S S	CONC	
163 AD466882/FB 164 AD466869 (256	A121004 A121004 A121004	TRACE2 TRACE2 TRACE2	12/10/04 12/10/04 12/10/04	23:26 23:30 23:34	SW SW SW	S S S	CONC CONC CONC	
165 AD466870 166 AD466871	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04 12/10/04	23:39 23:43		S S	CONC	
167 CCV 168 CCB	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	23:49 23:53	SW	Q B	CONC	
169 STD BLK 170 STD 1	A121004 A121004	TRACE2	12/11/04 12/11/04	00:04 00:08		X X	IR IR	
171 STD 2 172 STD 3 173 STD 3 VER	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04	00:13	OLI.	X	IR IR	
174 ICV 175 ICB	A121004 A121004 A121004	TRACE2 TRACE2 TRACE2	12/11/04 12/11/04 12/11/04		SW SW	B Q B	CONC CONC	
176 CRI 177 ICSA	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04		SW	B Q	CONC	
178 ICSAB 179 CCV	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04	00:43 00:49	SW SW	Q Q	CONC	
180 CCB 181 AD466872 182 AD466873	A121004 A121004	TRACE2	12/11/04 12/11/04	00:53 00:58	SW	B S	CONC	
182 AD466873 183 AD466874 184 AD466875	A121004 A121004 A121004	TRACE2 TRACE2 TRACE2	12/11/04 12/11/04 12/11/04	01:02 01:07 01:11	SW SW SW	S S	CONC	
185 AD466876 186 AD466877 C262	A121004 A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04 12/11/04	01:11 01:16 01:20	SW SW	S S S	CONC CONC CONC	
187 AD466878 188 AD466879	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04	01:24 01:29	SW	s s	CONC	
189 AD466879/L (1:5) 190 AD466880/MS	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04	01:33 01:38	SW SW	S S	CONC CONC	
191 CCV 192 CCB	A121004 A121004	TRACE2	12/11/04 12/11/04	01:48	SW	Q B	CONC	
193 AD466881/SD 194 AD466902/PB 195 AD466901/FB	A121004 A121004 A121004	TRACE2 TRACE2 TRACE2	12/11/04 12/11/04 12/11/04	01:57	SW	S S	CONC	
196 AD466884 C252 197 AD466885	A121004 A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04 12/11/04	02:01 02:06 02:10	SW	S S S	CONC CONC	
198 AD466886 199 AD466887	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04	02:14 02:19	SW	S S	CONC	
200 AD466888 201 AD466889 202 AD466890	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04	02:23 02:28	SW	S S	CONC	
202 AD466690 203 CCV 204 CCB	A121004 A121004 A121004	TRACE2 TRACE2 TRACE2	12/11/04 12/11/04 12/11/04	02:32 02:38 02:42	SW	S Q B	CONC CONC	
205 AD466891 206 AD466892	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04 12/11/04	02:47 02:51	SW	S S	CONC	
207 AD466893 208 AD466894 CLSS	A121004 A121004	TRACE2	12/11/04 12/11/04	02:56 03:00	SW SW	s s	CONC CONC	
209 AD466895 C170 210 AD466896 211 AD466897	A121004 A121004 A121004	TRACE2 TRACE2 TRACE2	12/11/04 12/11/04 12/11/04	03:04 03:09 03:13	SW	S S S	CONC CONC	

Ana	lysis Report Sum		12/11/04 11:20:26 AM				page	5	
#	Sample Name	File	Method	Date	Time	OpID	Туре	Mode	
212	AD466898 (270	A121004	TRACE2	12/11/04	03:18	SW	S	CONC	
213	AD466898/L (1:5)	A121004	TRACE2	12/11/04	03:22	SW	S	CONC	
214	AD466899/MS	A121004	TRACE2	12/11/04	03:27	SW	S	CONC	
215	CCV	A121004	TRACE2	12/11/04	03:32	SW	Q	CONC	
216	CCB	A121004	TRACE2	12/11/04	03:37	SW	В	CONC	
	AD466900/SD	A121004	TRACE2	12/11/04	03:41		S	CONC	
218	AD466155/(1:10) C124	A121004	TRACE2	12/11/04	03:46	SW	S	CONC	
219	AD466393/(1:5) CITY	A121004	TRACE2	12/11/04	03:50	SW	S	CONC	
220	AD466642/(1:5) CZJO	A121004	TRACE2	12/11/04	03:54	SW	S	CONC	
	AD466643/(1:5)	A121004	TRACE2	12/11/04	03:59	SW	S	CONC	
	AD466644/(1:5)	A121004	TRACE2	12/11/04	04:03	SW	S	CONC	
	AD466647/(1:5)	A121004	TRACE2	12/11/04	04:08	SW	S	CONC	
	AD466648/(1:5)	A121004	TRACE2	12/11/04	04:12	SW	S	CONC	
	AD466649/(1:5)	A121004	TRACE2	12/11/04	04:17	SW	S	CONC	j
	AD466650/(1:5)	A121004	TRACE2	12/11/04	04:21	SW	S	CONC	
	CCV	A121004	TRACE2	12/11/04	04:27	SW	Q	CONC	
	CCB	A121004	TRACE2	12/11/04	04:31	SW	В	CONC	
229	AD466651/(1:5)	A121004	TRACE2	12/11/04	04:36	SW	S	CONC	
230	AD466629/(1:10) CZZF	A121004	TRACE2	12/11/04	04:40	SW	S	CONC	
231	AD466628/(1:5) C229	A121004	TRACE2	12/11/04	04:44	SW	S	CONC	
	AD467013/PB	A121004	TRACE2	12/11/04	04:49	SW	S	CONC	
	AD467012/CLPSL	A121004	TRACE2	12/11/04	04:53	SW	S	CONC	
	AD467007 C286	A121004	TRACE2	12/11/04	04:58	SW	S	CONC	
	AD467007/L (1:5)	A121004	TRACE2	12/11/04	05:02	SW	S	CONC	
	AD467007/PS	A121004	TRACE2	12/11/04	05:07	SW	S	CONC	
	AD467008/MS	A121004	TRACE2	12/11/04	05:11	SW	S	CONC	
	AD467009/SD	A121004	TRACE2	12/11/04	05:15	SW	S	CONC	
	CCV	A121004	TRACE2	12/11/04	05:21		Q	CONC	
	CCB	A121004	TRACE2	12/11/04	05:26	SW	В	CONC	
	AD467010	A121004	TRACE2	12/11/04	05:30	SW	S	CONC	
	AD467011	A121004	TRACE2	12/11/04	05:35	SW	S	CONC	
	CRI	A121004	TRACE2	12/11/04	05:40	SW	В	CONC	
	ICSA	A121004	TRACE2	12/11/04	05:45	SW	Q	CONC	
	ICSAB	A121004	TRACE2	12/11/04	05:49	SW	Q	CONC	
	CCV	A121004	TRACE2	12/11/04	05:53	SW	Q	CONC	
24/	CCB	A121004	TRACE2	12/11/04	05:58	SW	В	CONC	

#	Sample Name	File	Method	Date	Time	OpID	Туре	Mode
1	AD466155/(1:10)	A121004	TRACE2	12/11/04	03:46	SW	S	CONC
	AD466312/(1:10)	A121004	TRACE2	12/10/04	15:58		S	CONC
	AD466320/(1:10)	A121004	TRACE2	12/10/04	16:02		S	CONC
	AD466323/(1:10)	A121004	TRACE2	12/10/04	16:07		S	CONC
	AD466393/(1:5)	A121004	TRACE2	12/11/04	03:50	SW	S	CONC
	AD466610	A121004	TRACE2	12/10/04	11:50	SW	S	CONC
7	AD466610/L (1:5)	A121004	TRACE2	12/10/04	11:54	SW	S	CONC
8	AD466610/PS	A121004	TRACE2	12/10/04	11:59		S	CONC
9	AD466611/MS	A121004	TRACE2	12/10/04	12:03	SW	S	CONC
10	AD466612/SD	A121004	TRACE2	12/10/04	12:08	SW	S	CONC
11	AD466613	A121004	TRACE2	12/10/04	12:12	SW	S	CONC
12	AD466614	A121004	TRACE2	12/10/04	12:16	SW	S	CONC
13	AD466615	A121004	TRACE2	12/10/04	12:21	SW	S	CONC
	AD466616	A121004	TRACE2	12/10/04	12:35	SW	S	CONC
	AD466617/CLPSL	A121004	TRACE2	12/10/04	11:46		S	CONC
	AD466618/PB	A121004	TRACE2	12/10/04	11:41		S	CONC
	AD466628/(1:5)	A121004	TRACE2	12/11/04	04:44		S	CONC
	AD466629/(1:10)	A121004	TRACE2	12/11/04	04:40		S	CONC
	AD466642/(1:5)	A121004	TRACE2	12/11/04	03:54		S	CONC
	AD466643/(1:5)	A121004	TRACE2	12/11/04	03:59		S	CONC
	AD466644/(1:5)	A121004	TRACE2	12/11/04	04:03		S	CONC
	AD466647/(1:5)	A121004	TRACE2	12/11/04	04:08		S	CONC
	AD466648/(1:5)	A121004	TRACE2	12/11/04	04:12		S	CONC
	AD466649/(1:5)	A121004	TRACE2	12/11/04	04:17		S	CONC
	AD466650/(1:5)	A121004	TRACE2	12/11/04	04:21		S	CONC
	AD466651/(1:5)	A121004	TRACE2	12/11/04	04:36		S	CONC
27		A121004	TRACE2	12/10/04	14:42		S	CONC
	AD466727/L (1:5) AD466727/PS	A121004 A121004	TRACE2	12/10/04	14:46		S S	CONC
	AD466728/MS	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	14:51 14:55		S	CONC
	AD466729/SD	A121004 A121004	TRACE2	12/10/04	15:00	SW SW	S S	CONC
	AD466730	A121004 A121004	TRACE2	12/10/04	15:04		S	CONC
	AD466731	A121004	TRACE2	12/10/04	15:04		S	CONC
	AD466732	A121004	TRACE2	12/10/04	15:13		S	CONC
	AD466733	A121004	TRACE2	12/10/04	15:17		S	CONC
	AD466734	A121004	TRACE2	12/10/04	15:22		S	CONC
	AD466735	A121004	TRACE2	12/10/04	15:36		S	CONC
	AD466736	A121004	TRACE2	12/10/04	15:40		S	CONC
	AD466737	A121004	TRACE2	12/10/04	15:45		S	CONC
40	AD466738	A121004	TRACE2	12/10/04	15:49		S	CONC
41	AD466739	A121004	TRACE2	12/10/04	15:54		S	CONC
42	AD466740/FB	A121004	TRACE2	12/10/04	14:28	SW	S	CONC
43	AD466741/PB	A121004	TRACE2	12/10/04	14:23	SW	S	CONC
	AD466754	A121004	TRACE2	12/10/04	12:48	SW	S	CONC
	AD466754/L (1:5)	A121004	TRACE2	12/10/04	12:53		S	CONC
	AD466754/PS	A121004	TRACE2	12/10/04	12:57		S	CONC
	AD466755/MS	A121004	TRACE2	12/10/04	13:02		S	CONC
	AD466756/SD	A121004	TRACE2	12/10/04	13:06		S	CONC
	AD466757	A121004	TRACE2	12/10/04	13:10		S	CONC
	AD466758	A121004	TRACE2	12/10/04	13:15		S	CONC
	AD466759	A121004	TRACE2	12/10/04	13:29		S	CONC
	AD466760	A121004	TRACE2	12/10/04	13:34		S	CONC
53	AD466761	A121004	TRACE2	12/10/04	13:38	SW	S	CONC

Analysis Report Summary 12/11/04 11:19:45 AM					page 2			
#	Sample Name	File	Method	Date	Time	OpID	Туре	Mode
54	AD466762	A121004	TRACE2	12/10/04	13:42	СМ	S	CONC
	AD466763	A121004 A121004	TRACE2	12/10/04	13:47		S	CONC
	AD466764	A121004	TRACE2	12/10/04	13:51		S	CONC
57		A121001	TRACE2	12/10/04	13:56		S	CONC
	AD466766	A121004	TRACE2	12/10/04	14:19		S	CONC
	AD466767/FB	A121004	TRACE2	12/10/04	12:44		S	CONC
	AD466768/PB	A121004	TRACE2	12/10/04	12:40		S	CONC
61	AD466790	A121004	TRACE2	12/10/04	16:38		S	CONC
62	AD466790/L (1:5)	A121004	TRACE2	12/10/04	16:43	SW	S	CONC
	AD466791/MS	A121004	TRACE2	12/10/04	16:47		S	CONC
	AD466792/SD	A121004	TRACE2	12/10/04	16:51		S	CONC
	AD466793	A121004	TRACE2	12/10/04	16:56		S	CONC
	AD466794/LCS	A121004	TRACE2	12/10/04	17:00		S	CONC
	AD466795/EBLK	A121004	TRACE2	12/10/04	17:05		S	CONC
	AD466796	A121004	TRACE2	12/10/04	18:32		S	CONC
	AD466796/L (1:5)	A121004	TRACE2	12/10/04	18:37		S	CONC
	AD466797/MS AD466798/SD	A121004	TRACE2	12/10/04	18:41		S	CONC
	AD466799/FB	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	18:45 16:16		S S	CONC
	AD466800/PB	A121004 A121004	TRACE2	12/10/04	16:11		S	CONC
	AD466869	A121004	TRACE2	12/10/04	23:34		S	CONC
	AD466870	A121004	TRACE2	12/10/01	23:39		S	CONC
	AD466871	A121004	TRACE2	12/10/04	23:43		S	CONC
	AD466872	A121004	TRACE2	12/11/04	00:58		S	CONC
78	AD466873	A121004	TRACE2	12/11/04	01:02		S	CONC
79	AD466874	A121004	TRACE2	12/11/04	01:07		S	CONC
	AD466875	A121004	TRACE2	12/11/04	01:11	SW	S	CONC
	AD466876	A121004	TRACE2	12/11/04	01:16		S	CONC
	AD466877	A121004	TRACE2	12/11/04	01:20		S	CONC
	AD466878	A121004	TRACE2	12/11/04	01:24		S	CONC
	AD466879	A121004	TRACE2	12/11/04	01:29		S	CONC
	AD466879/L (1:5) AD466880/MS	A121004	TRACE2	12/11/04	01:33		S	CONC
	AD466881/SD	A121004 A121004	TRACE2 TRACE2	12/11/04 12/11/04	01:38		S	CONC
	AD466882/FB	A121004 A121004	TRACE2	12/11/04 12/10/04		SW SW	S	CONC
	AD466883/PB	A121004 A121004	TRACE2	12/10/04	23:30		S	CONC
	AD466884	A121004	TRACE2	12/11/04	02:06		S	CONC
	AD466885	A121004	TRACE2	12/11/04		SW	S	CONC
92	AD466886	A121004	TRACE2	12/11/04	02:14		S	CONC
93	AD466887	A121004	TRACE2	12/11/04	02:19		S	CONC
	AD466888	A121004	TRACE2	12/11/04		SW	S	CONC
	AD466889	A121004	TRACE2	12/11/04	02:28	SW	S	CONC
	AD466890	A121004	TRACE2	12/11/04	02:32		S	CONC
	AD466891	A121004	TRACE2	12/11/04	02:47		S	CONC
	AD466892	A121004	TRACE2	12/11/04	02:51		S	CONC
	AD466893 AD466894	A121004	TRACE2	12/11/04		SW	S	CONC
	AD466894 AD466895	A121004 A121004	TRACE2 TRACE2	12/11/04	03:00	SW	S	CONC
	AD466896	A121004 A121004	TRACE2	12/11/04 12/11/04	03:04	SW SW	S S	CONC
	AD466897	A121004 A121004	TRACE2	12/11/04	03:09	SW SW	S	CONC
	AD466898	A121004 A121004	TRACE2	12/11/04	03:13		S	CONC
	AD466898/L (1:5)	A121004	TRACE2	12/11/04	03:22	SW	S	CONC
	AD466899/MS	A121004	TRACE2	12/11/04	03:27		S	CONC
107	AD466900/SD	A121004	TRACE2	12/11/04	03:41		S	CONC

Analysis Report	Summary	12/11/04 11:19:45 AM					page
# Sample Name	File	Method	Date	Time	OpID	Туре	Mode
108 AD466901/FB	A121004	TRACE2	12/11/04	02:01	SW	S	CONC
109 AD466902/PB	A121004	TRACE2	12/11/04	01:57	SW	S	CONC
110 AD466916	A121004	TRACE2	12/10/04	21:24	SW	S	CONC
111 AD466917	A121004	TRACE2	12/10/04	21:28	SW	S	CONC
112 AD466918	A121004	TRACE2	12/10/04	21:32	SW	S	CONC
113 AD466919	A121004	TRACE2	12/10/04	21:37	SW	S	CONC
114 AD466920	A121004	TRACE2	12/10/04	21:41	SW	S	CONC
115 AD466921	A121004	TRACE2	12/10/04	21:46	SW	S	CONC
116 AD466922	A121004	TRACE2	12/10/04	21:50	SW	S	CONC
117 AD466923	A121004	TRACE2	12/10/04	21:55	SW	S	CONC
118 AD466924	A121004	TRACE2	12/10/04	22:09	SW	S	CONC
119 AD466925	A121004	TRACE2	12/10/04	22:14	SW	S	CONC
120 AD466926	A121004	TRACE2	12/10/04	22:18	SW	S	CONC
121 AD466927	A121004	TRACE2	12/10/04	22:22	SW	S	CONC
122 AD466928	A121004	TRACE2	12/10/04	22:27	SW	S	CONC
123 AD466929	A121004	TRACE2	12/10/04	22:31	SW	S	CONC
124 AD466930	A121004	TRACE2	12/10/04	22:36	SW	S	CONC
125 AD466931	A121004	TRACE2	12/10/04	22:40	SW	S	CONC
126 AD466932	A121004	TRACE2	12/10/04	22:44	SW	S	CONC
127 AD466933	A121004	TRACE2	12/10/04	22:49	SW	S	CONC
128 AD466934	A121004	TRACE2	12/10/04	23:04	SW	S	CONC
129 AD466935	A121004	TRACE2	12/10/04	23:08	SW	S	CONC
130 AD466935/L (1:	-	TRACE2	12/10/04	23:12	SW	S	CONC
131 AD466936/MS	A121004	TRACE2	12/10/04	23:17	SW	S	CONC
132 AD466937/SD 133 AD466938/FB	A121004	TRACE2	12/10/04	23:21	SW	S	CONC
134 AD466939/PB	A121004	TRACE2	12/10/04	21:19	SW	S	CONC
135 AD466940	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	21:15	SW SW	S	CONC
136 AD466941	A121004 A121004	TRACE2	12/10/04	18:59 19:03	SW SW	S S	CONC
137 AD466942	A121004 A121004	TRACE2	12/10/04	19:07	SW	S	CONC
138 AD466943	A121004	TRACE2	12/10/04	19:12	SW	S	CONC
139 AD466944	A121004	TRACE2	12/10/04	19:26		S	CONC
140 AD466945	A121004	TRACE2	12/10/04	19:31		S	CONC
141 AD466945/L (1:		TRACE2	12/10/04		SW	S	CONC
142 AD466945/PS	A121004	TRACE2	12/10/04	19:40		S	CONC
143 AD466946/MS	A121004	TRACE2	12/10/04	19:44		S	CONC
144 AD466947/SD	A121004	TRACE2	12/10/04	19:48	SW	S	CONC
145 AD466948	A121004	TRACE2	12/10/04	19:53	SW	S	CONC
146 AD466949	A121004	TRACE2	12/10/04	19:57	SW	S	CONC
147 AD466950	A121004	TRACE2	12/10/04	20:02	SW	S	CONC
148 AD466951	A121004	TRACE2	12/10/04	20:06	SW	S	CONC
149 AD466952	A121004	TRACE2	12/10/04	20:21	SW	S	CONC
150 AD466953	A121004	TRACE2	12/10/04	20:25	SW	S	CONC
151 AD466954	A121004	TRACE2	12/10/04	20:29	SW	S	CONC
152 AD466955	A121004	TRACE2	12/10/04	20:34		S	CONC
153 AD466956	A121004	TRACE2	12/10/04	20:38	SW	S	CONC
154 AD466957	A121004	TRACE2	12/10/04	20:43	SW	S	CONC
155 AD466958 156 AD466959	A121004	TRACE2	12/10/04	20:47	SW	S	CONC
156 AD466959 157 AD466960	A121004	TRACE2	12/10/04	20:51		S	CONC
157 AD466960 158 AD466961	A121004 A121004	TRACE2 TRACE2	12/10/04 12/10/04	20:56 21:00	SW SW	S S	CONC CONC
159 AD466962/FB	A121004 A121004	TRACE2	12/10/04	18:54	SW SW	S	CONC
160 AD466963/PB	A121004 A121004	TRACE2	12/10/04	18:50	SW	S	CONC
161 AD467007	A121004	TRACE2	12/11/04	04:58		S	CONC
					~··	-	

Analysis Report			Summary	12/11/04 11:19:45 AM				page	4	
	#	Sample Name	File	Method	Date	Time	OpID	Туре	Mode	
	163 164	AD467007/L (1:5) AD467007/PS AD467008/MS AD467009/SD	A121004 A121004 A121004 A121004	TRACE2 TRACE2 TRACE2 TRACE2	12/11/04 12/11/04 12/11/04 12/11/04	05:02 05:07 05:11 05:15	SW SW	S S S S	CONC CONC CONC	
	167 168	AD467010 AD467011 AD467012/CLPSL AD467013/PB	A121004 A121004 A121004 A121004	TRACE2 TRACE2 TRACE2 TRACE2	12/11/04 12/11/04 12/11/04 12/11/04	05:30 05:35 04:53 04:49	SW SW	S S S S	CONC CONC CONC	

#	Sample Name	A13082	As1890	B_2496	Ba4934	Be3130	Ca3179
1	AD466155/(1:10)	.14824	00051	00540	06060	00000	1 0044
	AD466312/(1:10)		.00051	.00549	.06069	.00002	1.8044
	AD466312/(1:10) AD466320/(1:10)	00025	.00108	.01355	.02236	.00004	40.868
	AD466323/(1:10)	.00445	.00088	.02281	.07330	.00002	29.675
	AD466323/(1:10) AD466393/(1:5)	.49401	.00602	.09382	.31696	.00023	117.40
	AD4663937 (1:5) AD466610	.00999	.00079	.00587	.04227	.00002	40.220
		88.788	.09449	.06858	1.0941	.00703	131.36
	AD466610/L (1:5)	19.872	.02263	.01588	.24312	.00159	30.598
	AD466610/PS	97.257	.27519	.24794	1.2683	.18782	138.52
	AD466611/MS	55.832	.14425	.04597	4.9221	.10175	45.870
	AD466612/SD AD466613	50.804	.14597	.04967	5.4232	.09610	41.159
	AD466614	52.012	.06574	.02857	1.3102	.00314	30.730
13	AD466615	74.420	.07005	.06041	.81986	.00406	59.885
	AD466616	58.038	.09159	.05063	.77702	.00371	52.376
	AD466617/CLPSL	58.725	.05830	.04611	.83162	.00312	24.550
	AD466618/PB	74.294	1.3449	.47107	1.4343	.64820	33.994
		00091	00147	.00028	.00005	00003	.02635
	AD466628/(1:5) AD466629/(1:10)	.00295	.00008	.05725	.00499	.00002	4.9526
	• • •	00431	00021	.00511	.00470	.00002	20.375
	AD466642/(1:5) AD466643/(1:5)	00501	.00033	1.5130	.01548	.00005	12.684
	AD466644/(1:5)	00023	.00432	.19409	.06270	.00004	37.819
	AD466647/(1:5)	00086	.00313	.18557	.06031	.00001	36.455
	AD466648/(1:5)	00455 .00047	00103	1.1700	.07123	.00002	31.477
	AD466649/(1:5)	.00047	.00191	.35555	.12031	.00003	39.052
	AD466650/(1:5)	.00182	.00047	.71936	.18337	.00001	33.337
	AD466651/(1:5)	.01632	00027 .00150	1.3138 1.2340	.04177	.00002	30.636
	AD466727	.00431	.00130	2.4740	.13819 .60388	.00002	43.017 H397.65
	AD466727/L (1:5)	.01169	.00115	.48008	.12080	.00039	88.178
	AD466727/PS	10.728	.22443	2.6126	.78583	.20284	H391.39
	AD466728/MS	2.1228	.04471	2.4122	2.5813	.04848	H387.88
	AD466729/SD	2.1068	.04427	2.3854	2.5656	.04818	H383.92
	AD466730	9.0934	.03802	.66428	.55430	.00215	H480.31
	AD466731	.01229	.00973	.73193	.63162	.00006	160.40
	AD466732	.01519	.00388	1.8187	.08675	.00009	68.106
	AD466733	.65423	.04529	.54637	5.1494	.00079	H658.04
36	AD466734	.68752	.04573	.59279	.15750	.00086	H490.35
37	AD466735	.01252	.00083	1.9606	.01401	00003	15.365
38	AD466736	.00786	.01559	.50189	.25926	.00009	149.62
39	AD466737	.13617	.01448	.38224	.02743	.00021	199.48
40	AD466738	.04413	.10050	.29986	1.1324	.00018	297.70
41	AD466739	00218	00057	.00088	.00026	00002	.12650
	AD466740/FB	10.685	.21192	.20179	.20710	.20892	10.467
	AD466741/PB	.00099	.00073	.00045	.00001	.00000	.01428
	AD466754	.16238	.00113	2.5180	.61935	.00039	H404.79
	AD466754/L (1:5)	.04570	00048	.48939	.12457	.00012	90.434
	AD466754/PS	10.746	.22065	2.6432	.79934	.19948	H399.30
	AD466755/MS	2.1200	.04263	2.1944	2.3903	.04502	H357.50
	AD466756/SD	2.2057	.04333	2.3186	2.4612	.04601	H374.62
	AD466757	10.120	.05576	.66938	.59423	.00229	H495.54
	AD466758	.10713	.00377	1.6971	.10753	.00008	55.854
	AD466759	.03364	.01142	.73015	.63282	.00004	161.94
	AD466760 AD466761	.78197	.05583	.60736	5.5172	.00084	H705.77
၁၁	WD-100 \ 0.T	.75470	.05750	.58993	.16078	.00089	H489.82

Analysis Report Averages 12/11/04 11:19:45 AM page 6 Sample Name Al3082 As1890 B 2496 Ba4934 Be3130 Ca3179 54 AD466762 .58164 .00236 2.0164 .01641 16.219 .00003 .51002 55 AD466763 .01871 .51152 .28215 149.40 .00017 56 AD466764 .33724 .45963 .03748 .00027 241.48 .01487 57 AD466765 .05690 .13202 .30413 1.1627 .00017 H313.27 58 AD466766 .00063 -.00020 .00088 -.00009 -.00002 .07992 59 AD466767/FB 10.280 .19369 .20454 .19918 .20057 10.045 .01439 .00019 60 AD466768/PB .00020 .00001 -.00108 .01077 61 AD466790 .32888 .01575 .08048 .70194 .00049 H318.51 62 AD466790/L (1:5) .07925 .00273 .01717 .14637 71.747 .00012 63 AD466791/MS .77133 8.8705 .16535 .18999 .23022 285.88 64 AD466792/SD 10.620 .27635 .92227 H334.88 .22487 .19797 65 AD466793 1.9665 .04305 .02342 .14089 .00126 152.60 66 AD466794/LCS 10.315 .21781 .24990 .21562 .20165 10.981 67 AD466795/EBLK .01979 .00257 H.05543 H.01928 .00015 H1.0351 68 AD466796 .02938 .02116 .82923 .04245 -.00001 39.564 69 AD466796/L (1:5) -.00516 .16927 .00832 .00443 -.00002 8.0575 70 AD466797/MS 10.416 1.0246 .23321 .21873 .19944 48.670 71 AD466798/SD 10.615 1.0465 .23746 .22337 .20335 49.781 72 AD466799/FB .20728 10.553 .20291 .20292 .19635 10.307 73 AD466800/PB -.00165 -.00012 .00019 -.00001 .00006 .02526 74 AD466869 .06955 .00345 .75605 .04116 -.00004 66.742 75 AD466870 .07406 .00339 .76964 .04171 -.00005 67.308 76 AD466871 .00821 .05016 .00785 .04906 60.936 .00001 77 AD466872 .01732 .00003 49.119 .02032 .02365 .05147 78 AD466873 .03541 .00132 .02898 .01022 -.00006 8.1993 79 AD466874 .02167 -.00004 .08167 .00000 .03223 43.939 80 AD466875 .01475 .00010 .00245 .00191 -.00004 4.2163 81 AD466876 .75167 .00024 .01220 .10450 .00012 9.4612 82 AD466877 -.00141 -.00005 .00705 .00205 -.00004 10.158 83 AD466878 -.00018 -.00139 .00372 -.00003 16.222 .00287 84 AD466879 .00031 .00047 .00310 .00346 -.00002 16.897 85 AD466879/L (1:5) -.00695 .00040 -.00042 .00073 .00001 3.3983 86 AD466880/MS 10.575 .20620 .19935 .20757 .20171 26.977 87 AD466881/SD 10.496 .20603 .19685 .20609 .20261 26.699 88 AD466882/FB 10.695 .20959 .19708 .20337 .20308 10.312 89 AD466883/PB -.00894 .00146 .00204 .00000 -.00005 -.00788 90 AD466884 .00415 .00043 2.2125 .22378 .00014 H358.45 91 AD466885 .00420 -.00052 2.5145 274.98 .42463 .00010 92 AD466886 .02366 .00211 .60943 .13480 .00003 126.24 93 AD466887 .10907 .00001 .16561 .00683 112.66 .00004 94 AD466888 .00084 .00573 .01534 .04526 .00001 116.84 95 AD466889 .00706 .00053 .14686 .04532 .00001 113.46 96 AD466890 -.00321 -.00042 .11566 .03978 .00001 82.160 97 AD466891 -.00574 284.59 .00151 .83693 .10660 .00012 98 AD466892 -.00346 .00079 2.0786 .12029 .00015 H369.82 99 AD466893 .05537 -.00038 .07215 .01483 21.470 -.00002 100 AD466894 -.00313 .00742 98.572 1.5964 .24005 .00000 101 AD466895 .00821 .00141 .44570 .02738 -.00001 22.613 102 AD466896 .04891 .00062 .38766 .02806 .00003 66.374 103 AD466897 .00922 .00021 .37708 .05155 -.00001 66.555 104 AD466898 .00581 103.95 .00090 .57113 .01487 .00001 105 AD466898/L (1:5) -.00654 .00303 .00066 .11221 .00000 21.461 106 AD466899/MS 10.438 .20972 .74180 .21607 .20177 108.94 107 AD466900/SD 10.320 .20607 .73958 .21435 108.978 .19825

Ana	lysis Report	Averages		12/11/04	4 11:19:45 AM		page 7
#	Sample Name	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179
108	AD466901/FB	10.074	.19980	.19010	.19454	10644	0 0413
	AD466902/PB	00547	00061	00009	00002	.19644 00003	9.8413
	AD466916	.02821	.06228	4.8818	.06498	.00003	00125 8.4386
	AD466917	.13547	.10495	7.7087	.90471	.00010	112.32
	AD466918	.34769	.00238	.01316	.00686	00010	3.5105
	AD466919	.29516	.00122	.01098	.00522	00003	9.1564
	AD466920	.09455	.00275	.01481	.00360	.00000	12.495
	AD466921	.66805	.00248	.00699	.01041	.00000	7.1108
	AD466922	.42239	.00196	.02981	.01136	00001	14.781
	AD466923	.17614	.00105	.00942	.00429	00001	
118	AD466924	.29720	.00304	.00912	.00782	00001	6.4722
119	AD466925	.14644	.03584	8.3943	.40885	.00009	211.47
120	AD466926	.00336	.00763	6.4005	.14367	.00030	H354.10
121	AD466927	.00990	.01046	8.8339	.33792	.00017	H387.20
122	AD466928	.18311	.04205	7.0860	.82141	.00005	155.20
	AD466929	.59406	.07898	10.962	1.6350	.00017	207.93
	AD466930	H548.40	.05067	7.9784	.71291	.00082	66.613-
	AD466931	00305	.00118	.01469	.00006	00006	.00583
	AD466932	00557	.00156	.01235	.04667	.00004	90.524
	AD466933	.02376	.00265	.01006	.12559	.00002	64.533៏
	AD466934	.23755	.00079	.00750	.02600	.00004	55.316
	AD466935	.02542	.00105	.00667	.01850	.00006	74.825
	AD466935/L (1:5)	00339	.00119	.00288	.00366	.00001	15.429
	AD466936/MS	10.578	.20548	.20050	.21761	.20267	83.409
	AD466937/SD	10.778	.21343	.20310	.22307	.20728	86.546
	AD466938/FB	10.467	.20463	.19916	.19894	.20263	10.130
	AD466939/PB	.02650	.00043	.00415	00004	00003	00721
	AD466940 AD466941	.01495	.02083	1.6204	.31743	00001	100.67
	AD466941 AD466942	.03684	.00227	.01453	.04765	.00017	5.6583
	AD466942 AD466943	.13832	00012	.01050	.22281	.00049	21.257
	AD466944	.20217 .38504	.00208	.03683	.04982	.00007	6.3831
	AD466945	.02493	.00247	.03364	.10137	.00102	13.747
	AD466945/L (1:5)	00408	.00206 .00318	.21225 .04259	.05264	00002	23.475
	AD466945/PS	10.586	.20853	.41249	.01070	00002	4.8096
	AD466946/MS	10.392	.20609	.40102	.25562 .24839	.20491	33.107
	AD466947/SD	10.418	.20712	.40132	.24039	.19988 .19997	32.744 32.752
	AD466948	00781	.00095	.70905	.45574	.00000	54.914
	AD466949	00580	.00159	.00078	.00008	00003	.04736
147	AD466950	.05451	.00144	.02127	.08927	.00005	146.76
148	AD466951	00829	.00072	.05138	.04653	.00005	170.43
	AD466952	2.2306	.02150	.00776	.09813	.00033	113.94
	AD466953	.17097	.00166	.07228	.18586	.00004	149.48
	AD466954	.19846	.00128	.06733	.01729		H533.33
	AD466955	.03489	.00209	.06964	.01935		H455.541
	AD466956	.20433	.02082	8.2013	.31358	.00014	37.810
	AD466957	.13975	.01903	13.150	.36573	.00009	43.579
	AD466958	.32498	.04634	9.0890	.23771	.00015	42.686
	AD466959	.48573	.02987	15.837	.23218	.00024	54.002
	AD466960	.53421	.00837	1.9235	.14346	.00000	41.716
	AD466961	.54455	.04395	3.1161	.32836	.00002	92.728
	AD466962/FB AD466963/PB	10.356	.20321	.19690	.19777	.20053	10.010
	AD466963/PB AD467007	00646 37.757	.00127	.00107	00002	00003	
		31.131	.12588	.78929	1.1159	.00586	H747.94

Analysis Report	Averages		12/11/04	11:19:45	AM	page 8
# Sample Name	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179
162 AD467007/L (1:5) 163 AD467007/PS 164 AD467008/MS 165 AD467009/SD 166 AD467010 167 AD467011 168 AD467012/CLPSL 169 AD467013/PB	7.7269 47.398 36.559 57.329 53.133 82.490 73.782 00299	.02750 .32326 .14259 .14161 .08999 .10446 1.3797	.17008 .96594 .33235 .55032 .13660 .19889 .47042	.22733 1.2989 4.7408 5.1055 .63668 .86070 1.4694 .00005	.00132 .19141 .09912 .10017 .00671 .00931 .67122	201.44 H744.75 H912.97 H931.68 139.04 H386.32 35.274
# Sample Name	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
1 AD466155/(1:10) 2 AD466312/(1:10) 3 AD466323/(1:10) 4 AD466323/(1:10) 5 AD466393/(1:5) 6 AD466610 7 AD466610/L (1:5) 8 AD466610/PS 9 AD466611/MS 10 AD466613 12 AD466613 12 AD466614 13 AD466615 14 AD466615 14 AD466616 15 AD466618/PB 17 AD466628/(1:5) 18 AD466629/(1:10) 19 AD466642/(1:5) 20 AD466643/(1:5) 21 AD466644/(1:5) 22 AD466644/(1:5) 23 AD466648/(1:5) 24 AD466649/(1:5) 25 AD466651/(1:5) 26 AD466651/(1:5) 27 AD466727 28 AD466727 28 AD466727/L (1:5) 29 AD466730 31 AD466731 34 AD466731 34 AD466734 37 AD466735 38 AD466737 40 AD466737 40 AD466739 42 AD466739 42 AD466739 42 AD466739 42 AD466739	000100000600010 L00198 .00007 L0027900073 .17143 .09151 .08859 L00379000130004800083 2.306200002 .000100017000530005300053000530005300053000530005300053000530005300017000530001700053000170001700053000170001700017000170001700017000170001800005000080000600009 L0011200006000060000600006000060000600006000060000600006	00009 .00030 .00163 .00639 00002 .10200 .02295 .28390 1.1163 1.0571 .10449 .12382 .12981 .12630 .43567 00014 00014 00071 .00071 .00023 .00100 .00132 .00004 .00107 .000132 .00001 .00	.00025 .00079 .00411 .04184 .00032 1.7382 .39511 1.8937 3.3384 2.3791 1.8443 2.0255 2.8754 3.9647 .92344 .00015 .00011 .00023 .00043 .00038 .00035 .00131 .00029 00036 .00131 .00029 00038 .00036 .00131 .00029 00036 .00036 .00045	.00043 00009 .00042 00009 00041 .30807 .06759 .49900 .80372 .77467 .24306 .51020 .50557 .75861 .67139 .00040 00087 00094 00094 00061 00070 00085 000106 00015 .22310 .26664 .26428 .00112 00011 .000001 .00001 .00001 .00001	.09131 .10060 2.0894 52.0997 178.34 40.583 175.60 178.81 179.56 181.07 173.98 133.551 .00791 1.18546 11.512 .72267 6.1291 7.2587 .06279 11.512 .72267 6.1291 7.2587 .06279 8.2481 8.39416 7.2587 8.2481 8.39416 7.2587 8.2481 8.39416 7.2587 8.24887 8.39416 8	1.2839 2.2317 1.6424 59.592 .49983 6.5190 1.4361 16.84301 16.84302 5.1618 8.4090 7.3295 7.1754 20.7377 .04410 .93771 .37466 4.3302 11.484 22.5041 13.654 11.484 22.571 14.322 11.484 22.571 14.322 11.484 22.571 14.322 11.43.23 12.6577 14.322 14.322 14.322 14.322 14.322 14.322 14.322 14.322 17.425 18.425 18.425 18.425 18.425 18.425 18.425 18.426 19.436 19.426

Ana	lysis Report	Averages		12/11/04	11:19:45	AM	page 11
#	Sample Name	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
151	AD466954	.00014	.00280	.00029	.00126	.39450	5.8695
152	AD466955	.00015	.00126	.00024	.00055	.63490	5.8110
	AD466956	.00021	.04459	.08727	.00590	4.0946	H360.14
	AD466957	.00021	.04836	.05690	.00337	5.1884	H398.39
	AD466958	.00035	.03044	.10859	.00935	2.7623	H235.50
	AD466959	.00080	.04094	.08156	.02823	3.2730	H281.97
	AD466960	00015	.01044	.01663	.00957	6.8956	H200.58
	AD466961	.00000	.01455	.18959	.00810	.96433	H220.11
	AD466962/FB	.20206	.19885	.19922	.19902	.40965	10.445
	AD466963/PB AD467007	.00012 L07693	00005			.00618	00795
	AD467007/L (1:5)	L01792	.11084 .02418	7.2971 1.6103	4.1240	H1918.2	3.1745
	AD467007/PS	.09477	.02418	7.3809	.82674 4.2642	428.03 H1898.1	.55857 14.882
	AD467008/MS	.04841	.98062	5.3885	2.7613	H1025.8	4.1345
	AD467009/SD	.03691	.98904	12.939	1.5665	H1250.9	4.2173
	AD467010	L00427	.04666	.20153	.30269	241.63	4.7721
	AD467011	L00829	.03384	.47785	.51447	248.74	6.9055
	AD467012/CLPSL	2.3764	.43891	.93789	.70553	105.75	20.261
169	AD467013/PB	00011			00089		00099
#	Sample Name	Mg2790	Mn2576	Mo2020	Na3302	Ni2316	2203/1
1	AD466155/(1:10)	.19495	.02316	.00013	H110.57	00036	.00001
2	AD466312/(1:10)	6.5656	2.6896		H144.92	.00019	.00186
3	AD466320/(1:10)	3.4361	3.2492	.00159	H136.27	.01357	00049
	AD466323/(1:10)	20.180	3.6050	00096	H209.38	.01486	.00003
	AD466393/(1:5)	10.941	.01486	.00034	30.919	.00032	00011
	AD466610	30.384	5.6870	.21117		1.5201	.48640
	AD466610/L (1:5)	6.8564	1.2986	.04772		.34840	.11215
	AD466610/PS	39.160	5.7644	.38382	10.106	1.6766	.65507
	AD466611/MS	21.527	3.5314	.28574	.80917	3.5026	.42572
	AD466612/SD AD466613	16.739	3.9437	.30264	.91369	2.4396	1.0787
	AD466614	15.547	1.0888	.26611	1.7673	1.6345	.61925
	AD466615	22.722 19.517	3.2448 5.0769	.27857	1.1183	1.7632	.52330
	AD466616	16.489	3.4512	.37510 .18954	.71282 .82247	2.3830 1.9515	.52715 .51562 ⁵
	AD466617/CLPSL	20.242	2.5341	.29139	3.8286	.69842	.74614
	AD466618/PB	.00000	.00006	00034		00007	00030
	AD466628/(1:5)	1.4631	.07985	00034		.00050	.00067
	AD466629/(1:10)	5.0044	.03651	00022	1.8014	.00044	00067
	AD466642/(1:5)	12.246	.00270	00068		00027	.00223
	AD466643/(1:5)	10.412	.19877	.00058	22.742	.00236	- 00117
	AD466644/(1:5)	10.033	.19126	.00017	21.944	.00214	00083
	AD466647/(1:5)	19.103	.06854	00026	65.692	.00006	00014
	AD466648/(1:5)	16.773	.14578	00055	55.038	.00234	00152°
	AD466649/(1:5)	28.465	.07319	00081		.00120	00009
	AD466650/(1:5)	18.421	.07686	.00000	72.482	.00034	00043
	AD466651/(1:5)	31.232	.15129	.00013	95.419	.00071	.00163
	AD466727	71.253	.47579	.00315	H3769.1	.00246	00174
	AD466727/L (1:5)	14.430	.09697	.00063	H779.35	.00046	.00117
	AD466727/PS	78.655	.66237	.21033	H3645.6	.19910	.20245
	AD466728/MS AD466729/SD	69.126	.94496	.00337	H3677.5	.48188	.01924
- J	11010129/00	68.383	.93856	.00245	H3641.3	.47967	.01688

Ana:	lysis Report	Averages		12/11/04	11:19:45	AM	page 12
#	Sample Name	Mg2790	Mn2576	Mo2020	Na3302	Ni2316	2203/1
32	AD466730	H120.13	12.548	.01373	H591.16	.08097	.00092
	AD466731	34.166	.14461	.00033	H105.30	.00128	.00077
	AD466732	12.841	.04993	.03392	H687.38	.00190	00097
35	AD466733	H139.07	H35.785	00418		.01614	.00017
36	AD466734	H208.36	6.4240	.00077	H4480.3	.01826	00029
37	AD466735	2.2801	.00659	.00877	H295.28	.00014	00033
38	AD466736	20.176	.47982	.00195	H1166.9	.00253	00041
39	AD466737	47.414	.31222	.00008	H3679.4	.00298	.00048
	AD466738	46.008	4.6485	.00006	H544.90	.01370	00021
	AD466739	.02711	.00031	00009		.00007	.00040
	AD466740/FB	10.324	.20737	.20251	10.340	.20866	.20788
	AD466741/PB	.00282	.00016	00053		.00014	.00108
	AD466754	72.480	.48864	.00309	H3836.5	.00384	.00077
	AD466754/L (1:5)	14.726	.09977	.00040	H799.08	.00114	00118
	AD466754/PS AD466755/MS	79.751	.67162	.20780	H3716.3	.19649	.20015
	AD466755/MS AD466756/SD	63.237	.87842	.00324	H3379.2	.45094	.01943
	AD466757	66.486 H125.31	.90824	.00271 .01741	H3542.4	.46075	.01903
	AD466758	13.468	12.806 .03837	.01741	H620.86 H701.71	.08585	.00129
	AD466759	34.198	.14863	.00060	H106.64	.00285 .00145	.00122 00021
	AD466760	H153.74	H38.728		H2037.4	.01838	00021
	AD466761	H208.28	6.4344	.00339	H4529.6	.02009	.00296
	AD466762	2.4636	.01161	.00907	H301.34	.00060	.00250
	AD466763	20.887	.49508	.00130	H1183.5	.00381	.001103
56	AD466764	57.496	.39859	.00050	H4319.7	.00579	.002672
57	AD466765	48.616	4.9323	.00038	H544.95	.01470	.00149
	AD466766	.01361	.00180	.00005	.25103	00016	.00148
	AD466767/FB	9.9178	.19928	.19517	10.059	.20116	.20029
	AD466768/PB	.00534	.00044	00013	02113	.00053	00027
	AD466790	7.8922	11.216		H1476.2	.02804	.00843
	AD466790/L (1:5)	1.6921	2.4055		H289.63	.00615	.00112
	AD466791/MS	14.676	9.8875	.16293		.18569	.17178 [ু]
	AD466792/SD	17.418	11.723	.19519	H1542.6	.22062	.20179
	AD466793 AD466794/LCS	3.5985	7.0271	.00030	H1671.4	.03105	7.6676
	AD466794/LCS AD466795/EBLK	9.7895 .13129	.20070	.20151	H1608.4	.20194	.20593
	AD466796	8.6861	.00240 .00437	.00010 .00049	H1641.9 23.352	.00160 .00043	.00100 .00078
	AD466796/L (1:5)	1.7502	.00457	.00009	4.4592	00013	.00128
	AD466797/MS	18.614	.20737	.19828	33.509	.20195	.202015
	AD466798/SD	18.979	.21078	.20146	34.368	.20571	.20459
	AD466799/FB	10.176	.20489	.20012	10.312	.20557	.20683
	AD466800/PB	.00279	.00044	00037	.10009	.00015	00083
74	AD466869	14.562	.30063	.00747	64.633	.01619	.00240
	AD466870	14.636	.29908	.00684	66.697	.01651	.00151
	AD466871	16.314	1.8643	.00077	23.768	.00323	00063
	AD466872	15.981	1.0975	00016	27.164	.00098	00279
	AD466873	1.6920	.11368	.00026	15.278	.00384	00098
	AD466874	7.2342	.97550	.00116	9.5755	.12005	00146
	AD466875 AD466876	.77644	.02018	00008	5.2587	.00563	.00092
	AD466876 AD466877	1.6269	.17645	00032	4.5922	.00339	.00090
	AD466878	3.1250 9.3525	.00048 .00022	00056	3.2178	00004	.00049
	AD466879	8.4113	.00022	00050 00028	5.1314 4.9822	.00019 .00004	00169 00284
	AD466879/L (1:5)	1.6711	00008		.95082	00108	.00284

## Sample Name	Ana:	lysis Report	Averages		12/11/04	11:19:45	AM	ੈ page 13
88 AD466881/SD	- # 	Sample Name	Mg2790	Mn2576	Mo2020	Na3302	Ni2316	2203/1
88 AD466881/SD	86	AD466880/MS	18.612	.20230	.19685	15.573	.20301	.20089
88 AD466883/FB -0.0384 -0.0020 0.0011 0.2302 -0.0050 0.0088 90 AD466884 95.577 13.117 0.0875 H509.80 1.8971 0.0103 91 AD466885 91.102 13.994 0.0352 H681.05 1.8971 0.0103 92 AD466886 38.988 10.284 0.0186 H162.55 0.5208 0.0054 93 AD466887 22.055 1.3190 0.0058 45.577 0.1045 -0.0160 94 AD466888 22.085 1.3190 0.0058 45.577 0.1045 -0.0160 95 AD466889 20.757 1.6450 0.0143 45.272 0.0741 -0.0091 96 AD466890 33.214 2.3376 -0.0075 44.266 0.0701 -0.0182 97 AD466891 65.370 13.174 0.0836 H249.65 0.08701 0.0122 98 AD466892 87.806 11.859 0.1092 H467.48 1.1552 0.0273 99 AD466893 3.7897 0.6287 0.0008 H249.65 0.08701 0.0122 90 AD466894 77.003 5.1361 0.0030 H280.89 0.0139 -0.0013 101 AD466895 8.2649 0.0652 24914 82.133 0.0041 0.0093 102 AD466896 30.198 0.0334 0.6353 63.125 0.0099 -0.0086 103 AD466898 12.33 0.00495 1.3266 75.329 0.0167 -0.0012 104 AD466898 32.343 0.0779 2.0999 H173.31 0.0097 -0.00163 105 AD466898/L (1:5) 6.4585 0.0152 0.0221 31.695 -0.0058 -0.0020 106 AD466898/K 1.159 6.4585 0.0152 0.0221 31.695 -0.0058 -0.0020 107 AD466900/SD 40.973 2.0447 3.9468 H177.22 1.9609 1.9324 108 AD466901/FB 9.6904 1.9380 1.982 9.8275 1.9604 1.9622 109 AD466918 1.0845 0.0975 0.0014 -0.0212 101 AD466916 10.845 0.0759 0.0014 -0.0212 102 AD46692 1.126 0.0020 0.0014 -0.0213 0.0009 0.00014 113 AD46691 1.921 0.4069 0.0005 4.3394 0.0059 0.00014 114 AD46691 1.921 0.4069 0.0005 4.3394 0.0059 0.00014 115 AD46692 2 2.264 0.3597 0.0004 4.3127 0.0149 0.0162 116 AD46692 1.17631 0.6639 0.0054 4.3127 0.0149 0.0162 117 AD46692 1.17631 0.6639 0.0054 4.3127 0.0149 0.0022 118 AD46692 1.17631 0.06639 0.0004 4.0813 0.0009 0.0006 119 AD46693 1.1960 1.0845 0.0000 4.4689 0.0000 4.46691 0.0000 0.0004 0.0000 4.46691 0.0000 0.0000 0.0004 0.0000 0.000	87	AD466881/SD						
89 AD466881/PB 90 AD466884 91 AD466885 91 AD466885 91 AD466885 91 AD466886 92 AD466886 93 AD466886 93 AD466886 93 AD466886 94 AD466888 95 AD466888 96 AD466888 96 AD466888 97 AD466888 97 AD466888 98 AD466888 99 AD466888 90 AD466888 90 AD466889 91 AD466888 91 AD466888 92 AD466888 93 AD466889 94 AD466888 95 AD466889 96 AD466889 97 AD466889 98 AD466890 98 AD466890 99 AD466890 90 AD466890 90 AD466890 AD46690	88	AD466882/FB						
90 AD466884 95.577 13.117 .00875 H509.80 .18971 .00103 91 AD466885 91.102 13.994 .03352 H683.05 .16246 .00965 92 AD466886 38.988 10.284 .00186 H162.55 .05208 .00054 93 AD466887 22.055 1.3190 .00058 45.577 .0104500160 94 AD466888 22.836 1.4008 .01216 35.584 .0009800059 95 AD466899 20.757 1.6450 .00143 45.272 .0074100091 96 AD466891 65.370 13.174 .00836 H249.65 .08701 .00122 97 AD466891 65.370 13.174 .00836 H249.65 .08701 .00122 98 AD466893 37.897 .06287 .00008 13.593 .00355 .00098 .000124 100 AD466934 77.003 .51361 .00030 H280.89 .04139 .00131 101 AD466945 8.2649 .00652 .24914 82.133 .00041 .00093 .00124 102 AD466896 .00.198 .00344 .06353 63.125 .00099 .00086 .0034 .006698 .00669 .0066	89	AD466883/PB	00384	00020	.00011			
92 AD466886			95.577	13.117	.00875			
93 AD466887			91.102		.03352	H683.05	.16246	
94 AD466888				10.284	.00186	H162.55	.05208	.00054
95 AD466889				1.3190	.00058	45.577	.01045	00160
96 AD466890 33.214 2.337600075 44.206 .007100182 97 AD466891 65.370 13.174 .00836 H249.65 .08701 .00122\ 98 AD466892 87.806 11.859 .01902 H467.48 .13552 .00273\ 100 AD466893 3.7897 .06287 .00008 13.593 .00355 .00098\ 101 AD466895 8.2649 .00652 .24914 82.133 .00041 .00093\ 102 AD466896 30.198 .00334 .06353 63.125 .0009900086\ 103 AD466897 16.018 .00495 .13266 75.329 .0016700212\ 104 AD466898 32.343 .00779 .20999 H173.31 .00097 .00063\ 105 AD466898 32.343 .00779 .20999 H173.31 .00097 .00063\ 105 AD466898 41.103 .20809 .39702 H176.69 .19947 .19421\ 107 AD466900/SD 40.973 .20447 .39408 H177.22 .19609 .19324\ 108 AD466901/FB 9.6904 .19380 .18892 9.8275 .19604 .19642\ 109 AD466916 10.845 .07759 .03319 H1053.0 .10849 .00234\ 111 AD466917 84.112 .77777 .05059 H1677.9 .17130 .007616\ 112 AD466918 .81407 .04069 .00005 4.3334 .00026 .00219\ 113 AD466919 1.9221 .04262 .00045 4.1453 .00026 .00219\ 114 AD466912 1.7631 .06639 .00054 4.3127 .00149 .0162\ 115 AD466922 2.8677 .28312 .00024 4.9559 .00129 .00162 116 AD466924 1.5855 .06676 .00043 4.4116 .00035 .00162 117 AD466926 H182.90 7.268900049 H130.08 .09244 .00059 .00162 118 AD466926 H182.90 7.268900049 H130.08 .09249 .00015 114 AD466921 1.7631 .06639 .00054 4.3127 .00149 .0162 115 AD466926 H182.90 7.2689 .00049 H130.08 .09249 .00015 110 AD466926 H182.90 7.2689 .00049 H130.08 .09249 .00015 111 AD466921 1.7631 .06639 .00054 4.3127 .00149 .00162 112 AD466928 H110.44 1.5580 .00049 H130.08 .09249 .00015 112 AD466928 H110.44 1.5580 .00049 H130.08 .09249 .00015 112 AD46693100133 .00020 .00022 .23921 .00024 .00126 113 AD466933 .0006 .41289 .00099 H1624.2 .31313 .000121 114 AD46693100133 .00020 .00048 .4153 .00123 .00015 115 AD466934 .5006 .5006 .0006 .						35.584	.00098	00059
97 AD466891 65.370 13.174 .00836 H249.65 .08701 .00122 .098 .00846893 .00836 .0083							.00741	
98 AD466892 87.806 11.859 .01002 H467.48 .13552 .00273 99 AD466893 3.7897 .06287 .00008 13.593 .00355 .00098 100 AD466894 77.003 .51361 .00030 H280.89 .04139 .00103 101 AD466895 8.2649 .00652 .24914 82.133 .00041 .00093 102 AD466896 30.198 .00334 .06353 63.125 .00099 .00086 103 AD466897 16.018 .00495 .13266 75.329 .00167 .00212 104 AD466898 32.343 .00779 .20999 H173.31 .00097 .00063 105 AD466898/MS 41.103 .20809 .39702 H176.69 .19947 .19421 107 AD466900/SD 40.973 .20447 .39408 H177.22 .19609 .19324 108 AD466901/FB 9.6904 .19380 .18982 9.8275 .19604 .19642 109 AD466901/FB 9.6904 .19380 .18982 9.8275 .19604 .19642 100 AD466916 10.845 .07759 .03319 H1053.0 .00849 .00234 111 AD466917 84.112 .77777 .05059 H1677.9 .17130 .007610 112 AD466919 1.9221 .04262 .00045 4.3143 .00026 .00219 113 AD466919 1.9221 .04262 .00045 4.3143 .00026 .00219 114 AD466919 1.9221 .04262 .00045 4.3143 .00026 .00219 115 AD466922 2.8677 .28312 .00022 4.9559 .00129 .00162 116 AD466922 1.8677 .28312 .00022 4.9559 .00129 .00162 117 AD466925 H114.66 .94265 .00166 H337.75 .11147 .00028 118 AD466926 H186.69 7.390200084 H188.22 .09777 .00012 .00162 119 AD466927 H186.69 7.390200084 H188.22 .09777 .00081 12 AD466928 H110.44 .15580 .00049 H730.08 .09249 .00055 12 AD466929 H154.34 .2.688 .00997 H1664.2 .31313 .00512 12 AD46692100036 H182.90 .00049 H186.49 .00049 .00036 12 AD466926 H186.90 7.268900049 H730.08 .09249 .00015 12 AD466927 H186.69 7.390200058 H418.22 .09777 .00028 12 AD466928 H110.44 .15580 .00048 H955.03 .17860 .00225 12 AD466930 H119.44 .90166 .00048 .71435 .01232 .00003 12 AD46693100133 .00048 .71435 .01232 .00003 12 AD466930 H119.44 .90166 .00048 .71435 .01232 .00003 12 AD46693100133 .00048 .71435 .01232 .00003 12 AD46693100134 .00068 .00088 .10159 .00021 .00021 13 AD46693100134 .00068 .00088 .10159 .00094 .00036 13 AD466934 .9008 .0008 .00088 .00088 .00088 .00088 .00088 .00088 13 AD466934 .9008 .0008 .00088 .00088 .00088 .00088 .00088 13 AD466							.00701	00182
99 AD466893 100 AD466894 177.003 101 AD466895 102 AD466896 103 AD466897 106 AD466897 106 AD466897 107 AD466897 108 AD466898 108 AD466898 109 AD466898 109 AD466898 109 AD466898 109 AD466898 100 AD466990/SD 100 AD466900/SD 100 AD466900/SD 100 AD466901/FB 100 AD466								
101 AD466894								
101 AD466895 102 AD466896 103 AD466897 104 AD466897 105 AD466898 105 AD466898 106 AD466898 107 AD466898 108 AD466898 109 AD466899/MS 100 AD466899/MS 100 AD466899/MS 100 AD466900/SD 100 AD466900/SD 100 AD466900/SD 100 AD466900/SD 100 AD466900/SD 100 AD466900/SD 100 AD466900/SD 100 AD466900/SD 100 AD466900/SD 100 AD466916 100 AD466916 100 AD466916 100 AD466918 100 AD466918 100 AD466918 100 AD466918 100 AD466918 100 AD466919 110 AD466910 111 AD466910 112 AD466910 113 AD466910 114 AD466910 115 AD466920 116 AD466920 117 AD466920 118 AD466920 119 AD466920 110 AD466910 110 AD46								
102 AD466896 103 AD466897 116.018 104 AD466897 116.018 105 AD466898/L 105 AD466898/L 106 AD466898/L 107 AD466899/MS 107 AD466899/MS 108 AD466899/MS 109 AD466990/SD 109 AD466900/SD 109 AD466900/SD 109 AD466900/SD 109 AD466900/SD 100 AD466900/SD 100 AD466916 100 AD466916 100 AD466917 112 AD466917 112 AD466918 113 AD466919 114 AD466919 115 AD466919 115 AD466919 116 AD466919 117 AD466910 110 AD466910 110 AD466910 110 AD466910 111 AD466910 111 AD466910 112 AD466910 113 AD466910 114 AD466910 115 AD466910 115 AD466910 116 AD466910 117 AD466910 118 AD466910 119 AD466910 110 AD466910 110 AD466910 110 AD466910 110 AD466910 111 AD466910 112 AD466910 113 AD466910 114 AD466910 115 AD466920 116 AD466920 117 AD466920 118 AD466920 119 AD466920 110 AD46								
103 AD466897								
105 AD466898								
105 AD466898 L (1:5)								
106 AD466899 MS								
107 AD466900/SD								
108 AD466901/FB								
100 AD466902/PB								
110 AD466916								
111 AD466917 84.112 .77777 .05059 H1677.9 .17130 .007610 112 AD466918 .81407 .04069 .00005 4.3394 .00059 .000979 113 AD466919 1.9221 .04262 .00045 4.1453 .00026 .002191 114 AD466920 2.2264 .03597 .00074 2.9916 .00009 .001842 115 AD466921 1.7631 .06639 .00054 4.3127 .00149 .00162 116 AD466922 2.8677 .28312 .00022 4.9559 .00129 .00196 117 AD466923 2.0770 .02833 .00043 4.4116 .00035 .00162 118 AD466924 1.5855 .06676 .00042 3.4699 .00094 .00036 119 AD466925 H114 .66 .94265 .00196 H337.75 .11147 .00028 120 AD466926 H182.90 7.2689 .00094 H730.08 .09249 .00015 121 AD466927 H186.69 7.3902 .00058 H418.22 .09777 .00021 122 AD466928 H110.44 1.5580 .00408 H955.03 .17860 .00225 .00124 .00126 123 AD466929 H154.34 2.0688 .00997 H1624.2 .31313 .005120 .000162 .000								
112 AD466918								
113 AD466919								
114 AD466920 2.2264 .03597 .00074 2.9916 .00009 .001842 115 AD466921 1.7631 .06639 .00054 4.3127 .00149 .00162 117 AD466922 2.8677 .28312 .00022 4.9559 .00129 .00196 117 AD466923 2.0770 .02833 .00043 4.4116 .00035 .00162 118 AD466924 1.5855 .06676 .00042 3.4699 .00094 .00036 119 AD466925 H114.66 .94265 .00196 H337.75 .11147 00028 120 AD466926 H182.90 7.2689 00049 H730.08 .09249 00015 121 AD466927 H186.69 7.3902 00058 H418.22 .09777 .00021 122 AD466928 H110.44 1.5580 .00408 H955.03 .17860 .00225 123 AD466929 H154.34 2.0688 .00997 H1624.2 .31313 .00512 124 AD466931 00133 .00020 .0022 .23921 00024 .00126 125 AD466932 50								
115 AD466921	114	AD466920						
116 AD466922 2.8677 .28312 .00022 4.9559 .00129 .00196 117 AD466923 2.0770 .02833 .00043 4.4116 .00035 .00162 118 AD466924 1.5855 .06676 .00042 3.4699 .00094 .00036 119 AD466925 H114.66 .94265 .00196 H337.75 .11147 00028 120 AD466926 H182.90 7.2689 00049 H730.08 .09249 00015 121 AD466927 H186.69 7.3902 00058 H418.22 .09777 00021 122 AD466928 H110.44 1.5580 .00408 H955.03 .17860 .00225 123 AD466929 H154.34 2.0688 .00997 H1624.2 .31313 .00512 124 AD466930 H119.44 .90136 .01418 H1684.9 .47047 .36569 125 AD466931 00133 .00020 .00022 .23921 00024 .00126 126 AD466932 50.932 58922 00006 4.4637 .00439 0052 127 AD466933 <td< td=""><td>115</td><td>AD466921</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	115	AD466921						
117 AD466923 118 AD466924 1			2.8677		.00022			
118 AD466924 1.5855 .06676 .00042 3.4699 .00094 .00036 119 AD466925 H114.66 .94265 .00196 H337.75 .11147 00028 120 AD466926 H182.90 7.2689 00049 H730.08 .09249 00015 121 AD466927 H186.69 7.3902 00058 H418.22 .09777 00021 122 AD466928 H110.44 1.5580 .00408 H955.03 .17860 .00225 123 AD466929 H154.34 2.0688 .00997 H1624.2 .31313 .00512 124 AD466930 H119.44 .90136 .01418 H1684.9 .47047 .36569 125 AD466931 00133 .00020 .00022 .23921 00024 .00126 126 AD466932 50.932 .58922 00006 4.4637 .00439 0052 127 AD466933 30.304 .28749 .00089 1.7366 .02376 .00066 128 AD466934 30.980 .41289 .00043 2.0872 .00110 00033 130 AD466935/L			2.0770	.02833	.00043			
120 AD466926				.06676	.00042	3.4699	.00094	
121 AD466927				.94265	.00196	H337.75	.11147	00028
122 AD466928							.09249	00015
123 AD466929							.09777	00021
124 AD466930 H119.44 .90136 .01418 H1684.9 .47047 .36569 125 AD466931 00133 .00020 .00022 .23921 00024 .00126 126 AD466932 50.932 .58922 00006 4.4637 .00439 00052 127 AD466933 30.304 .28749 .00089 1.7366 .02376 .00066 128 AD466934 30.980 .41289 .00043 2.0872 .00110 00033 129 AD466935 44.330 .01103 .00048 .71435 .01232 .00003 130 AD466936/MS 53.979 .19999 .19582 11.114 .19747 .19879 132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217								
125 AD466931 00133 .00020 .00022 .23921 00024 .00126 126 AD466932 50.932 .58922 00006 4.4637 .00439 00052 127 AD466933 30.304 .28749 .00089 1.7366 .02376 .00066 128 AD466934 30.980 .41289 .00043 2.0872 .00110 00033 129 AD466935 44.330 .01103 .00048 .71435 .01232 .00003 130 AD466935/L (1:5) 8.8106 .00202 .00008 .10159 .00221 .00111 131 AD466936/MS 53.979 .19999 .19582 11.114 .19747 .19879 132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 138 AD466943								
126 AD466932 50.932 .58922 00006 4.4637 .00439 00052 127 AD466933 30.304 .28749 .00089 1.7366 .02376 .00066 128 AD466934 30.980 .41289 .00043 2.0872 .00110 00033 129 AD466935 44.330 .01103 .00048 .71435 .01232 .00003 130 AD466935/L (1:5) 8.8106 .00202 .00008 .10159 .00221 .00111 131 AD466936/MS 53.979 .19999 .19582 11.114 .19747 .19879 132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466939/PB 00483 00023 .00018 04658 00043 .00081 135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 138 AD466942 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
127 AD466933 30.304 .28749 .00089 1.7366 .02376 .00066 128 AD466934 30.980 .41289 .00043 2.0872 .00110 00033 129 AD466935 44.330 .01103 .00048 .71435 .01232 .00003 130 AD466935/L (1:5) 8.8106 .00202 .00008 .10159 .00221 .00111 131 AD466936/MS 53.979 .19999 .19582 11.114 .19747 .19879 132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466939/PB 00483 00023 .00018 04658 00043 .00081 135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .00001 138 AD466943 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
128 AD466934 30.980 .41289 .00043 2.0872 .00110 00033 129 AD466935 44.330 .01103 .00048 .71435 .01232 .00003 130 AD466935/L (1:5) 8.8106 .00202 .00008 .10159 .00221 .00111 131 AD466936/MS 53.979 .19999 .19582 11.114 .19747 .19879 132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466939/PB 00483 00023 .00018 04658 00043 .00081 135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .00001 138 AD466943 2.8045 .06644 00028 7.3190 .01235 00096								
129 AD466935 44.330 .01103 .00048 .71435 .01232 .00003 130 AD466935/L (1:5) 8.8106 .00202 .00008 .10159 .0021 .00111 131 AD466936/MS 53.979 .19999 .19582 11.114 .19747 .19879 132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466939/PB 00483 00023 .00018 04658 00043 .00081 135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .00001 138 AD466943 2.8045 .06644 00028 7.3190 .01235 00096								
130 AD466935/L (1:5) 8.8106 .00202 .00008 .10159 .00221 .00111 .131 AD466936/MS 53.979 .19999 .19582 11.114 .19747 .19879 .132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 .133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 .134 AD466939/PB0048300023 .000180465800043 .00081 .135 AD466940 78.748 .5363900010 H285.43 .04231 .00062 .136 AD466941 2.3960 .0221600005 6.9266 .0068300018 .137 AD466942 9.7217 .1989800004 96.204 .04160 .00001 .138 AD466943 2.8045 .0664400028 7.3190 .0123500096								
131 AD466936/MS 53.979 .19999 .19582 11.114 .19747 .19879 132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466939/PB 00483 00023 .00018 04658 00043 .00081 135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .00001 138 AD466943 2.8045 .06644 00028 7.3190 .01235 00096								and the second of the second o
132 AD466937/SD 55.989 .20471 .19956 11.063 .20137 .20214 133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466939/PB 00483 00023 .00018 04658 00043 .00081 135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .00001 138 AD466943 2.8045 .06644 00028 7.3190 .01235 00096								
133 AD466938/FB 10.031 .20051 .19583 10.128 .20198 .20248 134 AD466939/PB 00483 00023 .00018 04658 00043 .00081 135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .00001 138 AD466943 2.8045 .06644 00028 7.3190 .01235 00096								the second secon
134 AD466939/PB 00483 00023 .00018 04658 00043 .00081 135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .00001 138 AD466943 2.8045 .06644 00028 7.3190 .01235 00096	133	AD466938/FB						
135 AD466940 78.748 .53639 00010 H285.43 .04231 .00062 136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .000018 138 AD466943 2.8045 .06644 00028 7.3190 .01235 00096								
136 AD466941 2.3960 .02216 00005 6.9266 .00683 00018 137 AD466942 9.7217 .19898 00004 96.204 .04160 .000018 138 AD466943 2.8045 .06644 00028 7.3190 .01235 00096								
137 AD466942 9.7217 .1989800004 96.204 .04160 .000018 138 AD466943 2.8045 .0664400028 7.3190 .0123500096				.02216				
138 AD466943 2.8045 .0664400028 7.3190 .0123500096						96.204		
8.9126 1.012600018 13.448 .02041 ₋ 00203								
	139	AD400944	8.9126	1.0126	00018	13.448	.02041	.00203

Ana	lysis Report	Averag	ges		12/11/04	4 11:19:45	AM	page 14
#	Sample Name	Mo	g2790	Mn2576	Mo2020	Na3302	Ni2316	2203/1
140	AD466045	,						į.
	AD466945		20.792	3.9462	0002		.00900	.00263
	AD466945/L (1:5) AD466945/PS		1.1869	.81086	.00023		.00167	.00112
	AD466945/PS AD466946/MS		30.737	4.0629	.1982		.21138	.20181
	AD466947/SD		30.316 30.341	4.0374	.19475		.20783	.19973
	AD466948		35.804	4.0098	.1945		.20745	.19802
	AD466949		00078	12.072	0012		.05580	.00165
	AD466950		00078 16.998	.00074 .31784	.00001			
	AD466951		32.037	.23022	.00056		.00070 .00169	00127 .00078
	AD466952		L8.606	.05004	.00070		.00189	.00570
	AD466953		19.709	.03004	.0005		.00262	.00570
	AD466954		L32.75	.17079	0002		.00103	.00144
	AD466955		91.191	.28255	0002		.00367	00023
	AD466956		L14.46	.14793	.02098		.29066	.01210
	AD466957		L64.19	.16092	.00794		.47894	.00441
	AD466958		11.656	.27407	.02822		.17968	.01846
	AD466959		71.212	.36270	.02253		.29881	.04539
	AD466960		96.296	.11835	.00209		.07698	.00680
	AD466961		L17.75	.14080	.01263		.08322	.00343
	AD466962/FB		9.9391	.19977	.19580		.20096	.20384
	AD466963/PB		00185	00012				.00073
	AD467007		205.69	H108.47	.13233		.50878	1.9707
162	AD467007/L (1:5)		13.439	H37.228	.02843		.11446	.44254
163	AD467007/PS		211.70	H108.43	.31407		.67805	2.1172
164	AD467008/MS		736.05	H64.591	.10456		1.1682	1.6944
165	AD467009/SD		247.63	H104.35	.22944		1.1120	3.1444
166	AD467010		L7.398	5.5188	.01815		.13492	3.9893
167	AD467011	2	26.326	12.793	.02207		.15805	2.3485
	AD467012/CLPSL	2	20.660	2.5322	.29784	3.8665	.72536	.74545
169	AD467013/PB	-	.00483	.00026	0000	0304878	00088	.00102
								. (3
#	Sample Name	22	203/2	PB2203	SE1960	Sb2068	1960/1	1960/2
1	AD466155/(1:10)		00031	00021	00151	00050	00101	00176
	AD466312/(1:10)		00031	.00021 .00145	.00151			.00176
	AD466320/(1:10)		00124	.00099	0013			.00135 00057
	AD466323/(1:10)		00054	.00037	.00340		.00426	.00297
	AD466393/(1:5)		.00026	00021				.00103
	AD466610		48530	.48567	.00999		.00739	.01129
	AD466610/L (1:5)		11167	.11183	.00116		.00364	00006
	AD466610/PS		65950	.65802	.19298		.18822	.19537
	AD466611/MS		42581	.42578	.10824		.10032	.11220
	AD466612/SD		.0744	1.0758	.10326		.10167	.10405
11	AD466613		61932	.61929	.00786		.00388	.00985
	AD466614		52757	.52615	.01143		.00514	.01457
	AD466615		52788	.52764	.01237		.01041	.01336
	AD466616		51913	.51796	.01085		.00750	.01253
	AD466617/CLPSL		74654	.74640	.81582		.80969	.81890
	AD466618/PB		00105	.00059	0010			.00127
	AD466628/(1:5)		.00021	.00008	.00108	00232	.00027	.00149
	AD466629/(1:10)		.00063	00064				00062
	AD466642/(1:5)		.00079	.00021	.00125			00002
20	AD466643/(1:5)	•	00064	.00004	.00347	00243	.00338	.00351

Analysis Repo	ort Avera	ges	:	12/11/04	11:19:45	MA	page 15
# Sample Na	ime 2	203/2	PB2203	SE1960	Sb2068	1960/1	1960/2
21 AD466644/ 22 AD466647/ 23 AD466648/ 24 AD466649/ 25 AD466650/	(1:5) (1:5) (1:5)	00055 .00006 .00006 .00127 00052	00064 .00000 00046 .00082 00049	.00014 .00164 .00142 .00063	00345 00045 00254 00180 00199	00032 00095 .00032 .00208	.00038 .00295 .00197 00009
26 AD466651/ 27 AD466727 28 AD466727/ 29 AD466727/ 30 AD466728/ 31 AD466729/	L (1:5) PS MS	00055 .00037 00092 .20286 .01987 .02129	.00017 00032 00022 .20273 .01966 .01982	.00119 00147 00276 .22525 .05279 .05343		.00161 .00013 00279 .22342 .05422	.00098 00227 00275 .22617 .05208 .05284
32 AD466730 33 AD466731 34 AD466732 35 AD466733 36 AD466734 37 AD466735		.00326 00041 .00001 .00605 .00290	.00248 00002 00031 .00409 .00183	.01236 .00044 .00097 .01797 .00425	.00054 .00103 .00194 00114	.02075 .00468 .00068 .03174 .00749	.00817 00167 .00111 .01109 .00264 00150
38 AD466736 39 AD466737 40 AD466738 41 AD466739 42 AD466740/ 43 AD466741/		.00087 .00031 .00135 .00031 .20882	.00044 .00036 .00082 .00034 .20851	00190 .00092 .00076 00207 .20780	00042 .00250 .00093	00263 .00816 00190 00313 .20730	00153 00268 .00210 00153 .208059 00073
44 AD466754 45 AD466754/ 46 AD466754/ 47 AD466755/ 48 AD466756/ 49 AD466757	L (1:5) PS MS	.00171 .00240 .20211 .01958 .02026	.00140 .00120 .20146 .01953 .01985	.00038 00164 .22069 .05058 .05161	.00286	.00619 00531 .21992 .05420 .05461	00251 .000197 .221085 .04877 .05011
50 AD466758 51 AD466759 52 AD466760 53 AD466761 54 AD466762 55 AD466763		.00048 .00070 .00562 .00086 00079	.00073 .00039 .00356 .00156 .00033	.00077 00103 .01676 .00586 00102 00006	.00169 .00130 00119 .00297 .00126	00033 00229 .03278 .01217 .00349	.00133 00039 .00875 .00271 00327
56 AD466764 57 AD466765 58 AD466766 59 AD466767/ 60 AD466768/ 61 AD466790 62 AD466790/	PB	.00076 .00040 .00048 .20142 .00136 .00966	.00139 .00076 .00081 .20104 .00081	00004 .00468 .00012 .20175 .00002	.00145 .00245 .00117 .20306 00064	.00319 .00895 .00186 .20105 .00461	00167 .002548 00074 .202109 00226 .004513
63 AD466791/64 AD466792/65 AD466793/67 AD466795/68 AD466796/70 AD466797/71 AD466799/72 AD466799/	MS SD LCS EBLK L (1:5) MS SD	.17285 .20398 7.7332 .20401 .00212 .00023 .00073 .20249 .20670	.00168 .17250 .20325 7.7113 .20465 .00175 .00041 .00091 .20233 .20600	.00060 .17870 .21017 .00606 .21069 .00047 00081 .00010 .20209 .20396 .20409	00012 .17445 .20803 .01399 .21325 00038 .00332 .00017 .20964 .21101 .20848	.00075 .17936 .21209 .00998 .21459 .00095 00067 00168 .19935 .20454	.00052 .17837 .20921 .00410 .20875 .00023 00088 .00099
73 AD466800/ 74 AD466869		.00122	.00053	00100 .00098		00023 .00065	.203587 00139 .001157

Ana	lysis Report	Averages	:	12/11/04	11:19:45	MA	page 16
#	Sample Name	2203/2	PB2203	SE1960	Sb2068	1960/1	1960/2
25	AD466070	00176					\(\frac{1}{2}\)
	AD466870	.00176	.00168	.00186	.00395	.00460	.00050
	AD466871 AD466872	.00001	00020	.00358	.00081	.00380	.00347
	AD466873	.00100	00025	.00407	00253	.00546	.00338
	AD466874	.00210	.00107	.00048	00135	00135	.00141
	AD466875	.00190	.00078	.00059	00406	.00108	.00035
	AD466876	00066	00013	.00017	00078	.00398	00172
	AD466877	.00040 .00035	.00057	.00130	00205	.00307	.00042
	AD466878	.00189	.00040 .00069	.00152 .00177	00232	.00368	.00045
	AD466879	.00189	00071	00008	00198 00276	.00293 00279	.00119
	AD466879/L (1:5)	00034	.00011	.00097	00309	.00279	.00127 00009
	AD466880/MS	.20454	.20332	.19964	.19538	.20078	.19908
	AD466881/SD	.20583	.20332	.20358	.19439	.20566	.20254
	AD466882/FB	.20637	.20631	.20104	.19560	.20369	.19972
	AD466883/PB	00015	.00019	.00054	.00196	.00103	.00030
	AD466884	.00213	.00176	.00753	00141	.00906	.00677
	AD466885	.01128	.01074	.00886	00175	.01299	.00679
	AD466886	.00203	.00153	.00722	00115	.00838	.00664
	AD466887	.00218	.00092	.00227	00089	.00241	.00219
94	AD466888	.00020	00006	.00161	00044	.00335	.00213
	AD466889	00072	00078	.00361	00209	.00211	.00436
. 96	AD466890	.00131	.00026	.00101	00161	.00044	.00130
97	AD466891	.00110	.00114	.00740	00170	.01049	.00586
98	AD466892	.00179	.00211	.00783	00036	.01060	.00644
99	AD466893	.00035	.00056	.00018	00198	.00551	00248
100	AD466894	.00045	00003	.00242	00066	.00465	.00130
101	AD466895	00050	00002	.00080	00046	.00337	00047
	AD466896	.00006	00024	00027		.00199	00140
	AD466897	.00108	.00001	00103	00213	00206	00051
	AD466898	.00063	.00020	00075	00220	00003	00110
	AD466898/L (1:5)	00010	00013	.00155	00178	00018	.00241
	AD466899/MS	.20106	.19878	.20113	.20788	.20201	.20070
	AD466900/SD	.19628	.19526	.19812	.20728	.19875	.19781
	AD466901/FB	.19669	.19660	.19251	.19914	.19280	.19236
	AD466902/PB	.00095	.00063	.00190	.00437	.00340	.00116
	AD466916	.00114	.00154	.00142	.01937	.00295	.00065
	AD466917	.00612	.00662	.00472	.01686	.00968	.00224
	AD466918	00089	00026	.00162	.00092	.00416	.00034
	AD466919	00141	00021	.00069	.00321	.00552	00171
	AD466920	00120	00019	.00113	.00074	.00517	00089
	AD466921	.00032	.00075	.00326	.00195	.00683	.00147
	AD466922	.00048	.00098	00052	.00165	.00249	00203
	AD466923	00024	.00038	.00086	00054	.00422	00080
	AD466924 AD466925	.00027	.00030	.00138	.00229	.00501	00042
		00003	00011	.00562	.00249	.00635	.00525
	AD466926 AD466927	.00062	.00036	.00580	.00184	.00771	.00484
	AD466927 AD466928	.00111	.00066	.00567	.00373	.00992	.00355
	AD466928 AD466929	.00049	.00108	.00103	.00625	.00453	00071
	AD466929 AD466930	.00370	.00418	.00505	.00887	.01205	.00155
	AD466931	.35093 00030	.35585 .00021	.00231	.04257	.00728	00016
	AD466932	00050	00021	00189 .00176	.00088 .00013	00075	00246
	AD466933	.00104	.00091	00059	00053	.00296 00240	.00115
	AD466934	.00100	.00056	.00027	.00074	00240	.00063
				 ·			

Analysis Report	Averages		12/11/04	11:19:45	AM	page 17
# Sample Name	2203/2	PB2203	SE1960	Sb2068	1960/1	1960/2
129 AD466935	00034			.00205	.00325	00012
130 AD466935/L (1:5	•	.00057	.00155	.00126	.00237	.00114
131 AD466936/MS	.19905	.19896	.20091	.20581	.19871	.20201
132 AD466937/SD	.20479	.20391	.20400	.20885	.20330	.20436
133 AD466938/FB	.20210	.20223	.19998	.20435	.20056	.19969
134 AD466939/PB	00074		00047	.00332	.00353	00248
135 AD466940	00077			.00089	.00331	00059
136 AD466941	00037			.00052	.00099	00045
137 AD466942	00017		.00275	.00192	.00492	.00167
138 AD466943	.00025	00015	.00010	.00268	.00044	00006
139 AD466944	.00151	.00168	.00218	.00176	.00478	.00087
140 AD466945	00087		.00184	.00069	.00377	.00088
141 AD466945/L (1:5	•	.00050	.00312	.00183	.00251	.00343
142 AD466945/PS	.20452	.20361	.20925	.20984	.21164	.20806
143 AD466946/MS	.19820	.19871	.19907	.20460	.20294	.19713
144 AD466947/SD	.19900	.19867	.20094	.20066	.20251	.20016
145 AD466948	.00150	.00155	.00780	.00337	.00831	.00755
146 AD466949	00022		.00037	.00045	.00165	00027
147 AD466950	00070		00019	.00097	.00191	00125
148 AD466951	00001		.00026	.00240	.00207	00064
149 AD466952	.00469	.00503	.00136	.00270	.00528	00059
150 AD466953 151 AD466954	.00132	.00110	00066	.00075	.00078	00138
151 AD466954 152 AD466955	.00030	.00068	.00204	.00220	.00407	.00102
153 AD466956	.00077	.00044	.00157	.00005	.00043	.00213
154 AD466957	.00999	.01069	.00129	.00572	.00692	00152
154 AD466957 155 AD466958	.00395	.00410	.00193	.00687	.00797	00109
156 AD466959	.01505 .04198	.01618	.00112	.00828	.00750	00207
150 AD400959 157 AD466960	.00579	.04312	.00271 00068	.01202	.00678	.00068
157 AD400300 158 AD466961	.00176	.00612 .00231	.00058	.00156 .01472	.00396 .00520	00300 00172
159 AD466962/FB	.20068	.20173	.19616	.20223	.19858	.19495
160 AD466963/PB	00067		.00175	.00477		
161 AD467007	2.0300	2.0102	.08552	.02647	.00585 .12150	00028 .06753
162 AD467007/L (1:5		.45147	.03408	.00490	.03427	.03399
163 AD467007/PS	2.1629	2.1476	.27235	.22569	.31180	.25262
164 AD467008/MS	1.7268	1.7160	.13510	.11279	.15502	.12514
165 AD467009/SD	3.2092	3.1876	.26215	.13314	.28699	.24974
166 AD467010	4.0424	4.0247	.01644	.00812	.01526	.01703
167 AD467011	2.3857	2.3733	.01925	.00638	.02265	.017569
168 AD467012/CLPSL		.75057	.83204	.73869		.83414 ৪
169 AD467013/PB	.00082	.00089	.00040	00134	00130	.00125
# Sample Name	Ti3372	Tl1908	V_2924	Zn2062	Sn1899	Ag3280 2
						Ý.
1 AD466155/(1:10)		00183		.00648	00119	
2 AD466312/(1:10)		00223		.00025	.00122	.00074
3 AD466320/(1:10)		00403		.00016	.00036	.00039
4 AD466323/(1:10)		.00567	.03088	.00213	.00380	.00077
5 AD466393/(1:5)	.00057	00086	.00028	.00042	00070	00033
6 AD466610	.80310	.03534	.17018	1.4993	.08003	.00120
7 AD466610/L (1:5 8 AD466610/PS		.00483	.03831	.34813	.01794	.00036
9 AD466611/MS	.97625	.21464	.34958	1.6515	.26267	.04753
> VD4000II/M9	1.1364	.12607	1.2065	2.2636	.06361	.09904

Analysis Rep	ort	Averages		12/11/04	11:19:45	AM	page 18 ³
# Sample N	ame	Ti3372	Tl1908	V_2924	Zn2062	Sn1899	Ag3280
10 AD466612	/SD	.72411	.12183	1.1575	2.7327	.10927	.09398
11 AD466613	•	.67297	.03391	.18652	1.4251	.07020	.00105
12 AD466614		1.0917	.02921	.21138	1.9133	.07701	.00105
13 AD466615		1.1199	.02807	.21768	1.7562	.14153	.00163
14 AD466616		1.0298	.02250	.20258	1.2924	.10828	.00127
15 AD466617		3.8514	1.2509	1.0439	1.2994	.62795	1.2956
16 AD466618	•	.00030	00315	.00009	.00112	H.06784	.00009
17 AD466628	/(1:5)	.00044	.00126	.00083	.05024	00037	00008
18 AD466629	/(1:10)	.00030	00154	.00014	.00045	00086	00021
19 AD466642	/(1:5)	.00023	00052	.00010	00034	00184	00025
20 AD466643		.00057	.00151	.00052	.00038	00223	00029
21 AD466644		.00035	.00148	.00045	.00029	00143	00033
22 AD466647		.00029	00056	.00015	00006	00132	00045
23 AD466648		.00057	.00035	.00059	.00007	00076	.00019
24 AD466649	, , ,	.00056	.00005	.00032	.02641	00043	00062
25 AD466650		.00067	00170	.00031	.00037	00137	00007
26 AD466651		.00110	.00037	.00059	00006	.00000	.00000
27 AD466727		00046	00185	00025		.00126	00002
28 AD466727	•	.00012	00207	00003		.00156	.00004
29 AD466727 30 AD466728		.20319	.20412	.20463	.20167	.21665	.05670
30 AD466728 31 AD466729	•	00044	.04665	.50012	.47771	.00201	.05428
32 AD466730		00082	.04547	.49734	.47539	.00131	.05367
32 AD466730 33 AD466731		.58112	.01364	.09816	.62494	.01696	.00236
34 AD466732		.01028 .00000	00301	.00329	.00076	.00000	.00036
35 AD466733		.32588	00369 .04133	.00079 .06585	.00100 .00871	.00132	.00021
36 AD466734		.86855	00655	.11647	.00196	.01076 .01153	.00420 ³
37 AD466735		00019	00174	.00000	.00130	.00032	00045
38 AD466736		.00148	00396	.00692	.00390	.00032	00025
39 AD466737		.00213	00064	.00590	.00016	.00472	.00088
40 AD466738		.02698	.00750	.01406	.00353	.00301	.00085
41 AD466739		00017	00300	00004		.00049	.00035
42 AD466740	/FB	.19904	.21383	.20801	.20361	.21062	.051082
43 AD466741		00013	00308	00007	.00017	.00043	.000087
44 AD466754		.00181	00331	.00009	.00681	.00242	00015
45 AD466754		.00063	00090	.00028	.00131	.00156	.000042
46 AD466754		.20268	.20440	.20184	.20387	.21364	.05649
47 AD466755	•	.00176	.04625	.46741	.45180	.00385	.05128
48 AD466756	/SD	.00215	.04600	.47679	.46126	.00285	.05221
49 AD466757		.65281	.01348	.10713	.71623	.02088	.00198
50 AD466758 51 AD466759		.00309	00215	.00110	.00307	.00169	.00022
51 AD466769 52 AD466760		.01198	00399	.00343	.00300	.00076	.00014
53 AD466761		.41964	.04628	.07742	.01281	.01210	.00477
54 AD466762		.99176 .01755	00881 00196	.12329	.02061	.01341	.00187
55 AD466763		.01699	00196	.00062 .00806	.00148 .00187	.00079 .00297	.00004
56 AD466764		.00644	00052	.00747	.01345	.00237	.00060 ⁹ .00056 ⁸
57 AD466765		.03242	.00555	.01609	.01345	.00370	.00036
58 AD466766		00004	00390	.00002	.00031	.00114	.00074
59 AD466767	/FB	.19043	.20583	.20029	.19564	.20293	.04885
60 AD466768		.00005	00230	.00010	00012	.00089	.00011
61 AD466790		.00374	00558	.00063	.04606	.45438	.00081
62 AD466790		.00107	00197	.00009	.00977	.09425	.000355
63 AD466791	/MS	.16086	.16840	.16629	.19982	.55483	.04380
							ý.

Ana	lysis Report	Averages	:	12/11/04	11:19:45	AM	page 19
#	Sample Name	Ti3372	Tl1908	V_2924	Zn2062	Sn1899	Ag3280
<i>c</i>	7D466B00/GD	10160		4.554	00404	44000	
	AD466792/SD	.19169	.19655	.19776	.23630	.66287	.05163
	AD466793	.00049	00569	.00220	H12.305	.92520	.00001
	AD466794/LCS	.19077	.20766	.19986	.21876	.21214	.05100
	AD466795/EBLK	.00005	00510	.00026	.01627	.00338	.00011
	AD466796	.00006	.00089	.00005	.01922	.00011	00030
	AD466796/L (1:5)	.00014	00218	00008	.00369	00037	
	AD466797/MS AD466798/SD	.19236	.20699	.20286	.21742	.20361	.04902
	AD466799/FB	.19682 .19507	.21045 .20897	.20655	.22259	.20609	.05002
	AD466799/FB AD466800/PB	00042	00339	.20416 .00006	.20145 00019	.20796	.04966
	AD466869	.00090	00339	.00008	.02388	.00085 .00019	00012 .00003
	AD466870	.00101	00277	.00084	.02566	.00019	.00020
	AD466871	.00068	.00657	00033	.02623	00026	00020
	AD466872	00003	.00369	.00025	.00145	00030	00025
	AD466873	.00024	00036	.00023	.00143	.00031	00025
	AD466874	00019	00121	.00071	.12273	00096	00033
	AD466875	00010	00106	.00016	.00630	00057	.00005
	AD466876	00010	00025	.00012	.01159	00042	00013
	AD466877	00023	00022	.00094	.00052	00109	00046
	AD466878	00037	00243	.00395	.00046	00147	00045
	AD466879	00029	00084	.00608	.00015	00133	00071
	AD466879/L (1:5)	.00023	00189	.00136	00012	00236	00022
86	AD466880/MS	.19617	.21061	.21023	.20053	.20424	.04990
87	AD466881/SD	.19682	.21009	.21087	.20103	.20446	.049537
88	AD466882/FB	.19797	.21330	.20536	.20023	.20124	.05087
89	AD466883/PB	00010	00059	00030	00045	00062	00046
90	AD466884	.00024	00210	.00073	.01822	.00125	.00072
91	AD466885	.00003	00344	.00048	.01203	.00038	.000402
	AD466886	.00132	00155	.00099	.00820	00040	.00045
	AD466887	.00547	00144	.00064	.01172	00087	00020
	AD466888	.00044	00171	.00046	.00293	00153	.00016
	AD466889	00002	.00012	.00008	.00314	00018	00058
	AD466890	00014	00277	00005	.00607	00072	00060
	AD466891	.00013	00441	.00055	.00287	.00010	.00074
	AD466892	.00004	00354	.00044	.00563	00019	.00072
	AD466893	.00146	00086	.00030	.00621	00137	00005
	AD466894	00002	00305	.00365	.00848	.00036	00030
	AD466895	.00029	00178	.00065	.00073	.00017	.000165
	AD466896	.00129	00198	.00056	.00304	00009	00010
	AD466897 AD466898	.00006	00125	.00106	.00443	00022	00011
	AD466898/L (1:5)	.00006	00057	.00053	.00633	00022	00015
	AD466899/MS	.00022	00245	00020	.00106	00207	00026
	AD466899/MS AD466900/SD	.19564	.20729	.20298	.19934	.20061	.05008
	AD466900/SD AD466901/FB	.19281 .18799	.20598 .20331	.19917 .19572	.19536 .19165	.19817	.049976
	AD466902/PB	00005	00118			.19519	.04792
	AD466916	.00898	00118	.00023 .02254	00014 .01303	00081 .00696	.00026
	AD466917	.03322	00136	.02234	.12183	.01964	.00018 .00034្
	AD466918	.00473	00136	.00029	.00581	00069	00022
	AD466919	.00473	00018	.00023	.00249	.00066	.000018
	AD466920	.00270	00345	00001	.00124	00023	.00029
	AD466921	.01443	00257	.00090	.00622	.00130	00043
	AD466922	.01066	00147	.00057	.00954	.00012	.00001
	AD466923	.00301	00143	.00036	.00199	.00042	.000103
			· · · · · ·				16

Ana	lysis Report	Averages	:	12/11/04	11:19:45	AM	page 20
#	Sample Name	Ti3372	Tl1908	V_2924	Zn2062	Sn1899	Ag3280
118	AD466924	.00380	00113	.00076	.00771	.00064	.00026
	AD466925	.00340	.00022	.00227	.02843	00016	00014
120	AD466926	.00307	.00550	.00530	.02898	.00104	.00061
121	AD466927	.00144	.00539	.00336	.00721	.00120	.00068
122	AD466928	.03672	.00252	.01856	.15981	.00817	.00014
123	AD466929	.06662	.00263	.03432	.62585	.02153	.00059
124	AD466930	.24006	.00283	.08084	H13.442	.19645	.00075
	AD466931	00023	00082	00033	.00060	00063	00015
	AD466932	00022	00146	00015	.00440	.00018	00024
	AD466933	.00008	00256	00019	.00396	00082	00031
	AD466934	.00320	00274	.00014	.00282	.00000	.00020
	AD466935	.00054	00038	.00032	.00283	00036	00025
	AD466935/L (1:5)	.00033	00130	00015	.00017	00017	00002
	AD466936/MS	.19561	.20977	.20262	.19314	.20039	.05009
	AD466937/SD	.20031	.21205	.20765	.19670	.20184	.05116
	AD466938/FB	.19260	.20700	.20156	.19829	.20123	.04884
	AD466939/PB	00023	00120	00058	.00122	00123	00012
	AD466940	.00098	.00003	.00804	.00462	.00234	.00011
	AD466941	.00018	00087	00005	.00940	.00009	.00050
	AD466942	00022	00169	00044	.06101	.00073	00010
	AD466943	.00333	00271	.00056	.01463	.00003	00020
	AD466944	.00221	00047	.00065	.04815	.00027	00023
	AD466945	.00071	00200	00030	.01091	00019	.00070
	AD466945/L (1:5)	.00047	00181	00037	.00201	00075	.00008
	AD466945/PS AD466946/MS	.20416	.20470	.20408	.21203	.20877	.05166
	AD466946/MS AD466947/SD	.19089	.20411	.19947	.20430	.19947	.049145
	AD466947/SD AD466948	.19042 .00026	.20321	.19971	.20435	.20080	.04964
	AD466949	00014	.00124 00139	.00009 00044	.00405	.00071	.001291
	AD466950	.00077	00139	.00044	.00309	00044	00001
	AD466951	.00077	00140	00032	.01108 .01482	00018 00006	00014 00005
	AD466952	.01238	.00107	.00032	.11024	.00000	00003
	AD466953	.00213	00077	00022	.17018	00186	00076
	AD466954	.00158	00122	00022	.03190	00186	.00002
	AD466955	.00028	00316	00022	.06227	00032	.00002
	AD466956	.07028	00176	.02570	.20352	.03716	.00013
	AD466957	.04478	00415	.02206	.14999	.01763	00023
155	AD466958	.07826	00327	.02435	.15744	.05837	.00000
	AD466959	.07301	00246	.03128	.66648	.03271	.00029
157	AD466960	.02289	00166	.00368	.11322	.01655	00031
158	AD466961	.04852	00185	.01377	.03154	.02403	.00061
159	AD466962/FB	.19021	.20396	.19996	.19619	.20164	.04892
160	AD466963/PB	00010	00050	00012	00005	.00074	00036
	AD467007	H22.486	.28488	2.1796	1.9720	.14075	.01744
	AD467007/L (1:5)	4.3322	.06545	.46927	.45817	.02980	.00330
	AD467007/PS	H22.086	.47151	2.3376	2.1023	.32412	.07094
	AD467008/MS	H13.529	.23910	2.5722	3.1075	.07865	.11804
	AD467009/SD	H32.246	.28155	4.5269	3.0699	.07037	.12431
	AD467010	2.2919	.04264	.13020	1.1566	.02558	.00117
	AD467011	3.1394	.03836	.30041	.93502	.02849	.00208
	AD467012/CLPSL	3.7176	1.2707	1.0453	1.3198	.57463	1.3403
169	AD467013/PB	.00056	00145	.00002	.00195	00241	00027

#	Sample Name	*Y
1	AD466155/(1:10)	4634.7
2	AD466312/(1:10)	4643.36
	AD466320/(1:10) AD466323/(1:10)	4691.89 4737.41
	AD466393/(1:10)	4641.6
6	AD466610	5164.58
	AD466610/L (1:5) AD466610/PS	E122 02
9	AD466611/MS	4863.19 4949.14
	AD466612/SD AD466613	4949.14 4966.54
	AD466614	5078.7
	AD466615	4905.98
14 15	AD466616 AD466617/CLPSL	5014.88 5358 45
16	AD466618/PB	5358.45 4733.85
	AD466628/(1:5)	4653.64 4657.46
	AD466629/(1:10) AD466642/(1:5)	4657.46 4583.51
20	AD466643/(1:5)	4594.65
21	AD466644/(1:5) AD466647/(1:5)	4636.84 4639.65
23	AD466648/(1:5)	4620.68
	AD466649/(1:5)	4596.3
	AD466650/(1:5) AD466651/(1:5)	4626.41 4601.55
27	AD466727	4056.19
28 29	AD466727/L (1:5) AD466727/PS	4440.64 4129.16
	AD466728/MS	4101.68
	AD466729/SD	4105.28
	AD466730 AD466731	4665.41 4684.69
34	AD466732	4551.86
	AD466733 AD466734	4333.16
	AD466735	4206.15 4703.93
	AD466736	4514.06
	AD466737 AD466738	4221.49 4541.62
41	AD466739	4736.25
	AD466740/FB AD466741/PB	4706.21
	AD466754	4710.64 4102.01
	AD466754/L (1:5)	4507.69
	AD466754/PS AD466755/MS	4105.35 4170.08
48	AD466756/SD	4132.61
	AD466757 AD466758	4668.98 4521.15
51	AD466759	4674.86
	AD466760	4382.29
53	AD466761	4276.28

Analy	ysis Report	Averages	12/11/04	11:19:45	AM	page	22
# 5	Sample Name	*Y					
55 <i>I</i> 56 <i>I</i>	AD466762 AD466763 AD466764 AD466765	4681.09 4443.41 4109.36 4571.96					-
59 <i>F</i> 60 <i>F</i> 61 <i>F</i> 62 <i>F</i>	AD466766 AD466767/FB AD466768/PB AD466790 AD466790/L (1:5) AD466791/MS						
64 F 65 F 66 F 67 F 68 F	AD466792/SD AD466793 AD466794/LCS AD466795/EBLK AD466796	4517.85 4456.09 4520.03 4504.2 4461.19 4759.5					
70 A 71 A 72 A 73 A	AD466796/L (1:5) AD466797/MS AD466798/SD AD466799/FB AD466800/PB AD466869	4668.79 4756.88 4779.6 4771.24 4748.51 4755					-
75 A 76 A 77 A 78 A 79 A	AD466870 AD466871 AD466872 AD466873 AD466874	4758.98 4730.48 4762.5 4776.19 4775.62					
81 A 82 A 83 A 84 A	AD466875 AD466876 AD466877 AD466878 AD466879 AD466879/L (1:5)	4767.19 4799.59 4737.86 4727.36 4724.7 4627.39					
86 A 87 A 88 A 89 A 90 A	AD466880/MS AD466881/SD AD466882/FB AD466883/PB AD466884	4740.71 4737.56 4780.76 4758.83 4519.24					
92 A 93 A 94 A 95 A	AD466885 AD466886 AD466887 AD466888 AD466889 AD466890	4538.93 4640.18 4625.81 4645.65 4657.42 4665.15					
97 A 98 A 99 A 100 A 101 A	AD466891 AD466892 AD466893 AD466894 AD466895	4575 4520.66 4693.88 4610.36 4680.45					
103 A 104 A 105 A 106 A	D466896 D466897 D466898 D466898/L (1:5) D466899/MS D466900/SD	4613.03 4663.8 4619.66 4654.99 4596.56 4618.8					

Analysis Report	Averages	12/11/04 11:19:45 AM	page 23
# Sample Name	*Y		
108 AD466901/FB	4676 50		
109 AD466902/PB	4676.59 4714.46		
110 AD466916	4545.56		
111 AD466917	4404.56		
112 AD466918	4757.59		
113 AD466919	4770.9		
114 AD466920	4770.9		
115 AD466921	4715.92		
116 AD466922	4750.12		
117 AD466923	4753.61		
118 AD466924	4755.9		
119 AD466925	4620.3		
120 AD466926	4453.5		
121 AD466927	4548.6		· ·
122 AD466928	4546.91		
123 AD466929	4384.2		
124 AD466930	4419.38		
125 AD466931	4747.73		
126 AD466932	4692.53		
127 AD466933	4676.06		
128 AD466934	4688.1		
129 AD466935	4641.67		
130 AD466935/L (1:5)	4662.64		
131 AD466936/MS	4683.19		
132 AD466937/SD	4666.31		
133 AD466938/FB	4750.69		
134 AD466939/PB	4731.53		
135 AD466940	4676.25		
136 AD466941	4734.83		
137 AD466942	4755.26		
138 AD466943	4831.88		
139 AD466944	4726.5		
140 AD466945	4753.16		
141 AD466945/L (1:5)	4728.98		
142 AD466945/PS	4720.24		
143 AD466946/MS	4728.23		
144 AD466947/SD	4765.69		
145 AD466948	4663.42		
146 AD466949	4720.35		
147 AD466950	4647.3		
148 AD466951	4663.88		
149 AD466952	4698.56		
150 AD466953	4677.38		
151 AD466954	4460.48		
152 AD466955	4509.38		
153 AD466956 154 AD466957	4404.38		
154 AD466957 155 AD466958	4404.11		
156 AD466959	4506.56 4428 15		
157 AD466960	4428.15		
157 AD466960 158 AD466961	4569.75		
150 AD466962/FB	4528.39 4721.66		
160 AD466963/PB	4721.66		
161 AD467007	4439.96		
101 11D101001	4433.30		

Analysis Report	Averages	12/11/04	11:19:45 AM	page 24
# Sample Name	*Y			
162 AD467007/L (1:5) 163 AD467007/PS 164 AD467008/MS 165 AD467009/SD 166 AD467010 167 AD467011 168 AD467012/CLPSL 169 AD467013/PB	4566.15 4390.61 4407.04 4491.26 4835.62 4815.86 5076.98 4629.83			

12/10/04 10:52:01 AM

page 1

Method: TRACE2 Standard: STD BLK

Run Time: 12/10/04 10:47:40

Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Avge	.03888	01270	.03195	.00042	.19102	.02679	01628
SDev	.00069	.00725	.00305	.00267	.00047	.00068	.00189
%RSD	1.7763	57.063	9.5503	641.20	.24741	2.5256	11.615
#1 #2	.03839	01783 00758	.02979 .03410	.00231 00147	.19069 .19136	.02727	01762 01495
Elem	Co2286	Cr2677	Cu3247	Fe271400063 .00030 47.360	K_7664	Mg2790	Mn2576
Avge	00358	.00609	.06641		03628	.00399	.00126
SDev	.00239	.00474	.00046		.02491	.00534	.00029
%RSD	66.744	77.853	.69494		68.645	133.95	23.330
#1 #2	00189 00526	.00944	.06608 .06673	00042 00084	01867 05389	.00776 .00021	.00147
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	Sb2068	1960/1
Avge	.03761	.00809	09237	.00188	01384	00852	04499
SDev	.00853	.00251	.00840	.01129	.02017	.00701	.01705
%RSD	22.671	30.987	9.0953	601.31	145.72	82.223	37.898
#1	.04363	.00986	08643	.00986	02811	00357	03294
#2	.03158		09831	00610	.00042	01347	05705
Elem	1960/2	Ti3372	Tl1908	V_2924	Zn2062	Sn1899	Ag3280
Avge	.07769	.12554	00416	.00053	.00294	07255	00033
SDev	.03303	.01797	.00662	.00015	.00059	.04149	.01085
%RSD	42.518	14.312	159.26	28.047	19.961	57.186	3301.0
#1 #2	.05433 .10105	.13824 .11284	.00052 00884	.00063	.00336	04321 10189	.00734

Standardization Rpt.

12/10/04 10:52:01 AM page 2

IntStd	1	2	3	4	5	6	7
Mode	Counts	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Y						
Wavlen	371.030						
Avge	4759						
SDev	11.77326						-
%RSD	.2474101						
#1	4767						
#2	4750					- -	

12/10/04 10:56:25 AM

page 1

Method: TRACE2 Standard: STD 1

Run Time: 12/10/04 10:52:04

ran 11m	C. 12/10/0	T 10.52.01					
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Avge	8.0731	1.0884	1.7583	4.5519	7.6833	5.7750	15.115
SDev	.0297	.0057	.0034	.0217	.0307	.0233	.069
%RSD	.36803	.52540	.19369	.47608	.39970	.40291	.45544
#1	8.0521	1.0924	1.7558	4.5365	7.6616	5.7586	15.066
#2	8.0941	1.0843	1.7607	4.5672	7.7050	5.7915	15.163
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Avge	.87420	2.1414	.85898	1.8885	5.7340	12.071	1.4957
SDev	.00381	.0139	.00496	.0071	.0148	.045	.0078
%RSD	.43553	.64936	.57797	.37419	.25775	.37621	.51821
#1	.87151	2.1316 2.1513	.85547	1.8835	5.7235	12.039	1.4902
#2	.87689		.86249	1.8935	5.7444	12.103	1.5012
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	Sb2068	1960/1
Avge	2.2439	.27895	5.9101	2.2247	2.0121	.62871	.70236
SDev	.0134	.00474	.0470	.0293	.0336	.01473	.01243
%RSD	.59589	1.6992	.79458	1.3172	1.6698	2.3437	1.7693
#1	2.2345	.28230	5.8769	2.2454	1.9883	.61829	.69357
#2	2.2534	.27560	5.9433	2.2039	2.0358	.63913	.71115
Elem	1960/2	Ti3372	Tl1908	V_2924	Zn2062	Sn1899	Ag3280
Avge	1.3990	6.2422	.72379	.30448	.36248	3.3505	1.4685
SDev	.0035	.0297	.03457	.00172	.00178	.0148	.0070
%RSD	.25160	.47546	4.7757	.56534	.49164	.44309	.47973
#1	1.4015	6.2212	.69935	.30326	.36122	3.3400	1.4635
#2	1.3965	6.2632	.74823	.30570	.36374	3.3610	1.4735

Standardization Rpt.

12/10/04 10:56:25 AM

page 2

IntStd	1	2	3	4	5	6	7
Mode	Counts	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Y						
Wavlen	371.030			- -			
Avge	4664						
SDev	17.07656						
%RSD	.3661570						
#1	4676						
#2	4652						

12/10/04 11:00:49 AM

page 1

Method: TRACE2 Standard: STD 2

Run Time: 12/10/04 10:56:28

	,,	20.00.00					
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Avge	39.222	5.3225	8.2622	22.152	36.526	27.734	72.688
SDev	.186	.0482	.0337	.081	.144	.126	.368
%RSD	.47346	.90493	.40743	.36382	.39298	.45507	.50600
#1	39.091	5.2884	8.2384	22.095	36.424	27.645	72.428
#2	39.353	5.3565	8.2860	22.209	36.627	27.823	72.948
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Avge	4.2615	10.326	3.9453	9.1556	27.370	59.095	7.2468
SDev	.0186	.035	.0138	.0363	.077	.269	.0272
%RSD	.43717	.34035	.34984	.39619	.27965	.45527	.37583
#1	4.2483	10.302	3.9356	9.1299	27.316	58.905	7.2275
#2	4.2747	10.351	3.9551	9.1812	27.424	59.285	7.2660
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	Sb2068	1960/1
Avge	10.779	1.3710	28.735	10.487	9.6869	3.1473	3.5610
SDev	.040	.0140	.176	.073	.0781	.0412	.0016
%RSD	.37157	1.0194	.61179	.69904	.80619	1.3098	.04369
#1	10.751	1.3611	28.610	10.435	9.6317	3.1182	3.5621
#2	10.807	1.3809	28.859	10.539	9.7421	3.1765	3.5599
Elem Avge SDev %RSD	1960/2 6.6151 .0122 .18421	Ti3372 29.667 .097 .32710	Tl1908 3.5704 .0076 .21264	V_2924 1.4811 .0073 .49246	Zn2062 1.7272 .0086 .49989	Sn1899 16.736 .087 .51854	Ag3280 7.1661 .0201 .28112
#1	6.6065	29.598	3.5650	1.4759	1.7211	16.674	7.1519
#2	6.6237	29.736	3.5758	1.4862	1.7333	16.797	7.1804

Standardization Rpt.

12/10/04 11:00:49 AM

page 2

IntStd	1	2	3	4	5	6	7
Mode	Counts	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Y						
Wavlen	371.030						
Avge	4718	- -		- -			
SDev	2.704476						·
%RSD	.0573245				- -		
#1	4720					- -	
#2	4716						

3

12/10/04 11:05:14 AM page 1

Method: TRACE2 Standard: STD 3

Run Time: 12/10/04 11:00:53

TCGII I III	2. 12/10/0	11.00.55					
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Avge	81.178	10.985	16.908	45.655	74.402	56.498	148.34
SDev	.780	.091	.147	.440	.731	.569	1.42
%RSD	.96116	.83168	.86771	.96472	.98266	1.0071	.95415
#1	80.626	10.920	16.804	45.343	73.885	56.096	147.34
#2	81.730	11.049	17.012	45.966	74.919	56.900	149.34
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Avge	8.6935	21.091	8.0426	18.675	54.219	122.63	14.804
SDev	.0810	.217	.0742	.185	.392	1.13	.144
%RSD	.93178	1.0284	.92238	.99250	.72340	.92042	.97174
#1	8.6362	20.938	7.9901	18.544	53.942	121.83	14.702
#2	8.7508	21.245	8.0950	18.806	54.496	123.42	14.906
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	Sb2068	1960/1
Avge	22.060	2.8977	58.602	21.284	19.745	6.5373	7.4112
SDev	.245	.0230	.533	.216	.181	.0534	.0670
%RSD	1.1111	.79474	.90990	1.0171	.91437	.81694	.90426
#1	21.887	2.8814	58.225	21.131	19.617	6.4995	7.3638
#2	22.234	2.9140	58.979	21.437	19.873	6.5750	7.4586
Elem	1960/2	Ti3372	Tl1908	V_2924	Zn2062	Sn1899	Ag3280
Avge	13.574	60.877	7.3673	3.0316	3.5080	34.438	14.765
SDev	.096	.618	.0744	.0293	.0321	.213	.140
%RSD	.70576	1.0150	1.0099	.96658	.91390	.61940	.94897
#1	13.506	60.440	7.3147	3.0109	3.4853	34.288	14.666
#2	13.641	61.314	7.4199	3.0524	3.5307	34.589	14.864

Standardization Rpt.

12/10/04 11:05:14 AM

page 2

IntStd	1	2	3	4	5	6	7
Mode	Counts	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Y						- -
Wavlen	371.030						
Avge	4629						
SDev	26.78167						
%RSD	.5785862	***					
#1	4648						
#2	4610						'

Method: TRACE2 Slope = Conc(SIR)/IR

Element Wavelen High Al3082 308.215 Multi		Slope .625616	Y-intercept024444	Date Standardized 12/10/04 11:00:53
As1890 189.042 Multi		.091806	.001159	12/10/04 11:00:53
B 2496 249.678 Multi	-	.059482	001919	12/10/04 11:00:53
Ba4934 493.409 Multi		.022145	000014	12/10/04 11:00:53
Be3130 313.042 Multi		.013529	002595	12/10/04 11:00:53
Ca3179 317.933 Multi	-	.886016	024462	12/10/04 11:00:53
Cd2265 226.502 Multi	-	.006758	.000094	12/10/04 11:00:53
Co2286 228.616 Multi	<u> </u>	.115315	.000403	12/10/04 11:00:53
Cr2677 267.716 Multi	-	.047637	000302	12/10/04 11:00:53
Cu3247 324.753 Multi		.126888	008429	12/10/04 11:00:53
Fe2714 271.441 Multi	<u> </u>	2.68513	.001140	12/10/04 11:00:53
K 7664 766.491 Multi	-	.899568	.031005	12/10/04 11:00:53
Mg2790 279.078 Multi	→	.414965	001625	12/10/04 11:00:53
Mn2576 257.610 Multi		.067818	000096	12/10/04 11:00:53
Mo2020 202.030 Multi		.045755	001727	12/10/04 11:00:53
Na3302 330.232 Multi	iple Standards	18.0143	144538	12/10/04 11:00:53
Ni2316 231.604 Multi	iple Standards	.016988	.001552	12/10/04 11:00:53
2203/1 220.351 Multi		.047598	000118	12/10/04 11:00:53
2203/2 220.352 Multi	iple Standards	.049890	.000672	12/10/04 11:00:53
PB2203 220.353 NONE	NONE	.000000	.000000	*NOT STANDARDIZED3
SE1960 196.026 NONE	NONE	.000000	.000000	*NOT STANDARDIZED3
Sb2068 206.838 Multi		.156861	.001343	12/10/04 11:00:53
1960/1 196.021 Multi	iple Standards	.135241	.006076	12/10/04 11:00:53
1960/2 196.022 Multi		.073943	005740	12/10/04 11:00:53
Ti3372 337.280 Multi	-	.016575	002091	12/10/04 11:00:53
Tl1908 190.864 Multi	*	.135084	.000562	12/10/04 11:00:53
V_2924 292.402 Multi		.332333	000182	12/10/04 11:00:53
Zn2062 206.200 Multi	-	.283988	000853	12/10/04 11:00:53
Sn1899 189.989 Multi	-	.029309	.002125	12/10/04 11:00:53
Ag3280 328.068 Multi	iple Standards	.068515	.000019	12/10/04 11:00:53
				53

70 50

ÇU.Ş

Standardization	Readback F	Report	12/10/0	4 11:05:14 AM	page 1
Method: TRACE2		•			
		Know	'n	Measured	Residual
Element Wavelength	Standard	Concentr	ation	Concentration	
Al3082 308.215	STD BLK	.0000		000122	.000122
	STD 1	5.000		5.02622	026223
	STD 2	25.00		24.5136	.486427
	STD 3	50.00		50.7617	761723
CorCoef: 0.99983	טבט ט	50.00	00	30.7017	701723
CO1COC1. 0.33383		Know	m	Measured	Residual
Element Wavelength	Standard	Concentr		Concentration	and the second s
As1890 189.042	STD BLK	.0000			
AS1090 109.042	STD BLK			000008	.00008
		.1000		.101079	001079
	STD 2	.5000		.489793	.010207
Garage 5 0 00007	STD 3	1.000	00	1.00962	009621
CorCoef: 0.99987		77		1. T	, _
77	a. 1 1	Know		Measured	Residual
Element Wavelength	Standard	Concentr		Concentration	
B_2496 249.678	STD BLK	.0000		000019	.000019
	STD 1	.1000		.102665	002665
	STD 2	.5000		.489527	.010473
_	STD 3	1.000	00	1.00378	00378200
CorCoef: 0.99990					
_		Know		Measured	Residual
Element Wavelength	Standard	Concentr	ation	Concentration	n Concentration
Ba4934 493.409	STD BLK	.0000	00	000005	.000005
	STD 1	.1000	00	.100788	000788
	STD 2	.5000	00	.490548	.009452
	STD 3	1.000	00	1.01102	011022 <u>0</u> 0
CorCoef: 0.99987					- 12年
		Know	n	Measured	Residual
Element Wavelength	Standard	Concentr	ation	Concentration	n Concentration
Be3130 313.042	STD BLK	.0000	00	000010	.000010
	STD 1	.1000	00	.101349	001349
	STD 2	.5000	00	.491546	.008454
	STD 3	1.000	00	1.00395	0039520h
CorCoef: 0.99993					
		Know	n	Measured	Residual
Element Wavelength	Standard	Concentr		Concentration	
Ca3179 317.933	STD BLK	.0000		000723	.000723 ¹ 99
	STD 1	5.000		5.09231	092315
	STD 2	25.00		24.5482	.451763
	STD 3	50.00		50.0336	033558 [°] n
CorCoef: 0.99994				33.0320	.00000
		Know	n	Measured	Residual
Element Wavelength	Standard	Concentr		Concentration	
Cd2265 226.502	STD BLK	.0000		000016	.000016
	STD 1	.1000		.102231	002231
	STD 2	.5000		.491284	.008716
	STD 3	1.000		1.00253	002531cm
CorCoef: 0.99993		1.000		1.00233	.002331
		Know	n	Measured	Residual
Element Wavelength	Standard	Concentr		Concentration	
Co2286 228.616	STD BLK	.0000		000010	· 0000101351
· · · · · · ·	STD 1	.1000		.101211	001211
	STD 2	.5000		.491816	.008184
	STD 3	1.000		1.00289	002892on
CorCoef: 0,99994	-			,	.0026522074 p.440

Standardization		Readback	Report	12/10/0	04 11:05:14 AM	page 2
Element Cr2677	Wavelength 267.716	Standard STD BLK STD 1 STD 2	Cor	Known ncentration .000000 .100000	Measured Concentration 000012 .101711 .491624	.000012 001711 .008376
CorCoef:	0.99993	STD 3		1.00000	1.00444	004442
Element Cu3247	Wavelength 324.753	Standard STD BLK STD 1 STD 2 STD 3	Cor	Known ncentration .000000 .100000 .500000	Measured Concentration 000003 .100565 .492188 1.01207	Residual on Concentration .000003000565 .007812012073
CorCoef:	0.99989			Known		No. 1
Element Fe2714	Wavelength 271.441	Standard STD BLK STD 1 STD 2 STD 3	Cor	ncentration .000000 5.00000 25.0000	Measured Concentration 000554 5.07207 24.5850 50.1455	Residual on Concentration .000554 072065 .414976 145512
CorCoef:	0.99994			Known	Measured	Residual
Element K_7664	Wavelength 766.491	Standard STD BLK STD 1 STD 2 STD 3	Cor	10000 1000000 1000000 5.00000 25.0000	Concentration001632 5.18909 24.6521 48.8048	
CorCoef:	0.99998	510 5				
Element Mg2790	Wavelength 279.078	Standard STD BLK STD 1 STD 2 STD 3	Cor	Known acentration .000000 5.00000 25.0000 50.0000	Measured Concentration .000029 5.00747 24.5207 50.8839	Residual concentration000029007470 .479319883938
CorCoef:	0.99981	515 5				. 36°.
Element Mn2576	Wavelength 257.610	Standard STD BLK STD 1 STD 2 STD 3	Cor	Known centration .000000 .100000 .500000	Measured Concentration 000010 .101339 .491362 1.00388	Residual On Concentration .000010001339 .008638003883
CorCoef:	0.99993					Section 2
Element Mo2020	Wavelength 202.030	Standard STD BLK STD 1 STD 2 STD 3	Cor	Known dentration .000000 .100000 .500000	Measured Concentration 000007 .100943 .491465 1.00764	Residual Concentration .000007000943 .008535007639
CorCoef:	0.99991	-				
Element Na3302	Wavelength 330.232	Standard STD BLK STD 1 STD 2 STD 3	Cor	Known centration .000000 5.00000 25.0000 50.0000	Measured Concentratio .001153 4.88061 24.5526 52.0551	Residual Concentration001153 .119393 .447435 -2.05514
CorCoef:	0.99956					

Standardization	Readback	Report	12/10/0	4 11:05:14 AM	page 3
Element Wavelength Ni2316 231.604	Standard STD BLK STD 1 STD 2 STD 3	Kno Concent .000 .100 .500 1.00	ration 000 000 000	Measured Concentration 000017 .101954 .489703 .997104	Residual On Concentration .000017001954 .010297 .002896
CorCoef: 0.99994					·
Element Wavelength 2203/1 220.351	Standard STD BLK STD 1 STD 2 STD 3	Kno Concent .000 .100 .500	ration 000 000 000	Measured Concentration 000029 .105771 .499036 1.01295	Residual Concentration .000029 005771 .000964 012950
CorCoef: 0.99995		Kno	wn	Measured	Residual
Element Wavelength 2203/2 220.352	Standard STD BLK STD 1 STD 2 STD 3	Concent .000 .100 .500	ration 000 000 000	Concentration000018 .101054 .483946 .985736	
CorCoef: 0.99994		Kno	wn	Measured	Residual
Element Wavelength PB2203 220.353	Standard NONE NONE	Concent .000 .000	ration 000	Concentration .000000 .000000	the contract of the contract o
Element Wavelength SE1960 196.026	Standard NONE NONE	Kno Concent .000 .000	ration 000	Measured Concentration .000000 .000000	Residual on Concentration .000000
Element Wavelength Sb2068 206.838 CorCoef: 0.99982	Standard STD BLK STD 1 STD 2 STD 3	Kno Concent .000 .100 .500	ration 000 000 000	Measured Concentration .000007 .099963 .495034 1.02678	Residual Concentration 000007 .000037 .004966 026781
		Kno	wn	Measured	Residual
Element Wavelength 1960/1 196.021	Standard STD BLK STD 1 STD 2 STD 3	Concent .000 .100 .500	000 000 000	Concentration000009 .101064 .487664	.000009 on 001064 .012336
CorCoef: 0.99984	ט ענט	1.00	000	1.00837	008372
Element Wavelength 1960/2 196.022	Standard STD BLK STD 1 STD 2 STD 3	Knor Concent: .000 .100 .500 1.00	ration 000 000 000	Measured Concentration .000005 .097705 .483401 .997935	Residual on Concentration 000005 .002295 .016599 .002065 on
CorCoef: 0.99986					00

Standardiza	tion Readb	ack Report	12/10/04	11:05:14 AM	page 4
	velength Stand 7.280 STD B STD 1 STD 2 STD 3	LK	Known centration .000000 .100000 .500000	Measured Concentration 000010 .101374 .489647	Residual Concentration .000010001374 .010353
CorCoef: 0.			1.00000	1.00696	006963
	velength Stand 0.864 STD B STD 1 STD 2 STD 3	LK	Known centration .000000 .100000 .500000 1.00000	Measured Concentration .000000 .098334 .482862 .995767	Residual Concentration 000000 .001666 .017138 .004233
CorCoef: 0.			1.0000	. , , , , , , , , , , , , , , , , , , ,	.001233 On
	velength Stand 2.402 STD B STD 1 STD 2 STD 3	LK	Known centration .000000 .100000 .500000 1.00000	000007 .101007 .492031	Residual Concentration .000007 001007
CorCoef: 0.			1.00000	1.00733	007333 ^{on}
Zn2062 200	velength Stand 5.200 STD B STD 1 STD 2 STD 3	LK	Known centration .000000 .100000 .500000	Measured Concentration 000018 .102087 .489643 .995381	Residual Concentration .000018002087 .010357 .004619
CorCoef: 0.	99995		Known	Measured	Residual
	velength Stand 9.989 STD B STD 1 STD 2 STD 3	LK	centration .000000 .100000 .500000		Concentration .000001 000324 .007364 011486
CorCoef: 0.9	99990		1.00000	1.01149	U11486 <i>Un</i>
	velength Stand 3.068 STD B STD 1 STD 2	LK	.000000 .100000 .500000	000004 .100632 .491007	Residual Concentration .000004 000632 .008993
CorCoef: 0.9	STD 3 99987		1.00000	1.01167	011670on

on

.410

on esti

Com

Analysis Report Blank Sample 12/10/04 11:09:38 AM page 1

Method: TRACE2 Sample Name: STD 3 VER

Run Time: 12/10/04 11:05:17

Comment:

1	Mode: Co.	NC COFF.	Factor: 1					
	Elem Units Avge SDev %RSD	Al3082 ppm 50.312 .196 .38944	As1890 ppm 1.0072 .0030 .29736	B_2496 ppm .98948 .00322 .32510	Ba4934 ppm 1.0067 .0035 .34370	Be3130 ppm .99535 .00296 .29743	Ca3179 ppm 49.693 .181 .36507	Cd2265 ppm .98993 .00249 .25113
	#1	50.173	1.0050	.98720	1.0043	.99326	49.564	.98817
	#2	50.450	1.0093	.99175	1.0092	.99745	49.821	.99169
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
	Low	04000	00500	00800	00300	00300	05000	00150
	Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.99452	.99285	1.0045	49.612	48.334	50.370	.99322
	SDev	.00333	.00316	.0029	.158	.219	.151	.00271
	%RSD	.33456	.31841	.28711	.31776	.45396	.30009	.27320
	#1	.99217	.99061	1.0025	49.501	48.179	50.264	.99130
	#2	.99688	.99508	1.0066	49.724	48.489	50.477	.99514
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
	Low	00300	00300	00400	04000	50000	04000	00300
	Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.99893	51.826	.99097	.98068	.99045	.98720	1.0097
	SDev	.00273	.309	.00375	.00548	.00861	.00757	.0076
	%RSD	.27327	.59535	.37812	.55855	.86955	.76668	.75419
	#1	.99700	51.608	.98832	.97680	.98436	.98185	1.0043
	#2	1.0009	52.044	.99362	.98455	.99654	.99255	1.0151
	Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
	Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	1.0104	1.0022	1.0135	1.0010	1.0107	.99969	.98880
	SDev	.0002	.0044	.0092	.0029	.0030	.00366	.00262
	%RSD	.01550	.43779	.91062	.28818	.29295	.36633	.26491
	#1	1.0102	.99912	1.0070	.99895	1.0086	.99710	.98694
	#2	1.0105	1.0053	1.0200	1.0030	1.0128	1.0023	.99065
	Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
	Elem	Sn1899	Ag3280					

Analysis	Report	Blank S	Sample	12/10,	/04 11:09:3	38 AM	page 2
Units Avge SDev %RSD	ppm 1.0018 .0030 .30072	ppm 1.0062 .0029 .28328					
#1 #2	.99969 1.0040	1.0041 1.0082					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4656 27.15283 .5832357	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4675 4636		 	 			·

Analysis Report QC Standard 12/10/04 11:14:02 AM page 1

Method: TRACE2 Sample Name: ICV Run Time: 12/10/04 11:09:41

Comment:

Mode: C	ONC Corr.	Factor: 1	_				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm 18.840 .054 .28726	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	Q19.830	.37247	.36303	.37780	.37552		.37099
SDev	.027	.00084	.00047	.00017	.00121		.00133
%RSD	.13736	.22506	.12896	.04468	.32181		.35948
#1	Q19.849	.37306	.36270	.37768	.37466	18.802	.37004
#2	Q19.810	.37188	.36336	.37792	.37637	18.878	.37193
Errors	QC Fail	QC Pass	QC Pass				
Value	18.750	.37500	.37500	.37500	.37500	18.750	.37500
Range	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.37314	.37110	.39143	18.805	19.173	18.501	.38205
SDev	.00129	.00144	.00012	.065	.027	.051	.00123
%RSD	.34500	.38901	.03127	.34322	.14150	.27339	.32148
#1	.37223	.37008	.39152	18.759	19.192	18.465	.38119
#2	.37405	.37212	.39134	18.851	19.154	18.537	.38292
Errors	QC Pass	QC Pass					
Value	.37500	.37500	.37500	18.750	18.750	18.750	.37500
Range	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.36066	18.729	.37673	.37056	.37443	.37314	.38011
SDev	.00053	.098	.00112	.00036	.00181	.00133	.00108
%RSD	.14721	.52111	.29726	.09761	.48447	.35654	.28432
#1	.36028	18.660	.37593	.37031	.37315	.37220	.37935
#2		18.798	.37752	.37082	.37571	.37408	.38088
Errors Value Range	QC Pass .37500 5.0000	QC Pass 18.750 5.0000	QC Pass .37500 5.0000	NOCHECK	NOCHECK	QC Pass .37500 5.0000	QC Pass .37500 5.0000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.38407	.37938	.38049	.36745	.38190	.37234	.36839
SDev	.00115	.00459	.00392	.00069	.00483	.00119	.00179
%RSD	.29974	1.2108	1.0297	.18900	1.2653	.31866	.48491
#1	.38488	.38262	.37772	.36695	.37848	.37150	.36713
#2	.38325	.37613	.38326	.36794	.38532	.37318	.36965
Errors Value Range	QC Pass .37500 5.0000	NOCHECK	NOCHECK	QC Pass .37500 5.0000	QC Pass .37500 5.0000	QC Pass .37500 5.0000	QC Pass .37500 5.0000
Elem	Sn1899	Ag3280					

Analysis	Report	QC Star	ndard	12/10	12/10/04 11:14:02 AM		
Units Avge SDev %RSD	ppm .38381 .00018 .04678	ppm .37103 .00030 .08220					
#1 #2	.38368 .38393	.37081 .37124					
Errors Value Range	QC Pass .37500 5.0000	QC Pass .37500 5.0000					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4714 16.28107 .3453594	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4726 4703					 	: :

Analysis Report Blank Sample 12/10/04 11:18:25 AM page 1

Method: TRACE2 Sample Name: ICB Run Time: 12/10/04 11:14:05 Operator: SW

Comment:

		raccor. r					
Elem Units Avge SDev %RSD	Al3082 ppm .01053 .00519 49.245	As1890 ppm .00016 .00260 1630.6	B_2496 ppm .00035 .00040 114.40	Ba4934 ppm .00033 .00004 12.381	Be3130 ppm .00021 .00009 40.102	Ca3179 ppm .01030 .00612 59.393	Cd2265 ppm .00021 .00014 68.458
#1 #2	.00686 .01420	.00200 00168	.00064 .00007	.00030	.00015 .00027	.00598 .01463	.00011
Errors High Low	LC Pass .20000 04000	LC Pass .01000 00500	LC Pass .05000 00500	LC Pass .00200 00300	LC Pass .00200 00300	LC Pass .50000 04000	LC Pass .00100 00200
Elem Units Avge SDev %RSD	Co2286 ppm .00043 .00014 32.259	Cr2677 ppm .00037 .00027 71.713	Cu3247 ppm .00008 .00000 2.1029	Fe2714 ppm .01642 .00631 38.441	K_7664 ppm .00503 .01272 253.05	Mg2790 ppm .01229 .00375 30.510	Mn2576 ppm .00025 .00008 31.815
#1 #2	.00033	.00018 .00056	.00007	.01196 .02088	.01402 00397	.00964 .01494	.00019
Errors High Low	LC Pass .0040000300	LC Pass .0040000300	LC Pass .0100000400	LC Pass .05000 04000	LC Pass .50000 50000	LC Pass .20000 04000	LC Pass .00300 00300
Elem Units Avge SDev %RSD	Mo2020 ppm .00052 .00051 98.674	Na3302 ppm .00984 .10589 1076.2	Ni2316 ppm .00016 .00010 61.077	2203/1 ppm .00104 .00233 223.34	2203/2 ppm .00135 .00126 92.890	PB2203 ppm .00125 .00006 4.7764	SE1960 ppm 00102 .00059 57.830
#1 #2	.00088 .00016	.08471 06503	.00023 .00009	.00270 00061	.00046	.00121 .00129	00060 00144
Errors High Low	LC Pass .01000 00300	LC Pass 1.0000 50000	LC Pass .01000 00300	NOCHECK	NOCHECK	LC Pass .00500 00300	LC Pass .01500 01000
Elem Units Avge SDev %RSD	Sb2068 ppm .00290 .00001 .45345	1960/1 ppm .00358 .00053 14.767	1960/2 ppm 00332 .00062 18.687	Ti3372 ppm .00039 .00012 30.533	Tl1908 ppm 00090 .00284 316.21	V_2924 ppm .00052 .00019 37.256	Zn2062 ppm .00011 .00009 85.307
#1 #2	.00291 .00289	.00395 .00321	00288 00376	.00047	.00111 00291	.00038	.00017
Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .00500 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .02000 00300
Elem	Sn1899	Ag3280					

Analysis	Report	Blank	Sample	12/10,	/04 11:18:2	25 AM	page 2
Units Avge SDev %RSD	ppm .00146 .00010 6.9088	ppm .00037 .00053 145.33					
#1 #2	.00153	.00075 00001			·		
Errors High Low	LC Pass .01000 00500	LC Pass .00300					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4737 30.81232 .6505068	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4715 4758		. 			 	

Analysis Report Blank Sample

12/10/04 11:22:48 AM

Operator: SW

page 1

Method: TRACE2 Sample Name: CRI

Run Time: 12/10/04 11:18:28

Comment:

Mode: CO	NC Corr.	Factor: 1	•				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm .50914 .00148 .29117	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	.20602	.00882	.05006	.00211	.00202		.00090
SDev	.00022	.00067	.00075	.00002	.00001		.00002
%RSD	.10665	7.6434	1.5068	1.1322	.23947		2.5136
#1 #2	.20618 .20587	.00930 .00834	.05059	.00209 .00213	.00202	.50809 .51019	.00088 .00091
Errors	LC Pass	LC Pass					
High	.30000	.01500	.07500	.00300	.00300	.75000	.00150
Low	.10000	.00500	.02500	.00100	.00100	.25000	.00050
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00367	.00402	.00990	.05331	.53530	.19828	.00329
SDev	.00010	.00016	.00028	.00039	.03339	.00305	.00001
%RSD	2.8146	3.8933	2.8382	.73297	6.2384	1.5385	.28133
#1 #2	.00374	.00413	.01010 .00970	.05359	.55891 .51168	.19612 .20043	.00329
Errors	LC Pass	LC Pass .00450 .00150					
High	.00600	.00600	.01500	.07500	.75000	.30000	
Low	.00200	.00200	.00500	.02500	.25000	.10000	
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00978	.82633	.00993	.00602	.00587	.00592	.01579
SDev	.00015	.04576	.00012	.00023	.00045	.00038	.00029
%RSD	1.5836	5.5380	1.2060	3.8319	7.6908	6.3833	1.8583
#1	.00989	.85869	.00984	.00586	.00555	.00565	.01559
#2	.00967	.79398	.01001	.00619	.00619	.00619	.01600
Errors High Low	LC Pass .01500 .00500	LC Pass 1.5000 .50000	LC Pass .01500 .00500	NOCHECK	NOCHECK	LC Pass .00750 .00250	LC Pass .02250 .00750
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.02115	.01298	.01720	.00528	.01789	.00509	.01988
SDev	.00330	.00118	.00103	.00000	.00122	.00015	.00005
%RSD	15.582	9.0710	5.9811	.03935	6.8401	2.9747	.24493
#1	.02348	.01381	.01647	.00528	.01876	.00498	.01985
#2	.01882	.01215	.01793	.00528	.01703	.00519	
Errors High Low	LC Pass .03000 .01000	NOCHECK	NOCHECK	LC Pass .00750 .00250	LC Pass .03000 .01000	LC Pass .00750 .00250	LC Pass .03000 .01000
Elem	Sn1899	Ag3280					

Analysis	Report	Blank	Sample	12/10/	04 11:22:4	8 AM	page 2
Units Avge SDev %RSD	ppm .00964 .00049 5.0970	ppm .00299 .00041 13.806					
#1 #2	.00929 .00998	.00270					
Errors High Low	LC Pass .01500 .00500	LC Pass .00450 .00150					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4704 1.325825 .0281857	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4705 4703						·

Analysis Report QC Standard 12/10/04 11:27:11 AM page 1

Method: TRACE2 Sample Name: ICSA Run Time: 12/10/04 11:22:51

Comment:

•	110401 00	de coll.	raccor. r					
	Elem Units Avge SDev %RSD	Al3082 ppm 503.85 1.33 .26395	As1890 ppm .00055 .00035 63.300	B_2496 ppm .00344 .00029 8.3753	Ba4934 ppm .00193 .00002 1.0444	Be3130 ppm .00093 .00001 .98467	Ca3179 ppm 418.40 .11 .02655	Cd2265 ppm 00457 .00001 .29478
	#1 #2	502.91 504.79	.00079	.00364	.00195 .00192	.00094 .00093	418.33 418.48	00458 00456
	Errors Value Range	QC Pass 500.00 100.00	NOCHECK	NOCHECK	NOCHECK	NOCHECK	QC Pass 500.00 100.00	NOCHECK
	Elem Units Avge SDev %RSD	Co2286 ppm .00053 .00015 27.407	Cr2677 ppm00020 .00063 316.74	Cu3247 ppm .00011 .00036 315.43	Fe2714 ppm 180.78 .29 .16193	K_7664 ppm 00120 .02514 2097.1	Mg2790 ppm 542.52 .41 .07519	Mn2576 ppm .00216 .00006 2.6189
	#1 #2	.00063 .00043	.00025 00064	.00036 00014	180.57 180.99	.01658 01898	542.24 542.81	.00220 .00212
	Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 200.00 40.000	NOCHECK	QC Pass 500.00 100.00	NOCHECK
	Elem Units Avge SDev %RSD	Mo2020 ppm .00554 .00041 7.4618	Na3302 ppm .13621 .24979 183.39	Ni2316 ppm .00243 .00060 24.950	2203/1 ppm .01424 .00220 15.483	2203/2 ppm 00428 .00291 68.042	PB2203 ppm .00189 .00121 64.043	SE1960 ppm 00264 .00243 91.872
	#1 #2	.00583 .00525	.31284 04042	.00285	.01579 .01268	00634 00222	.00103 .00274	00436 00093
	Errors Value Range	NOCHECK						
	Elem Units Avge SDev %RSD	Sb2068 ppm 00023 .00127 552.24	1960/1 ppm .00221 .00210 95.205	1960/2 ppm 00507 .00469 92.597	Ti3372 ppm .00165 .00020 12.149	T11908 ppm .02797 .00560 20.014	V_2924 ppm 00075 .00059 78.544	Zn2062 ppm .00377 .00002 .56791
	#1 #2	.00067 00113	.00369	00839 00175	.00180	.03193	00033 00116	.00378
	Errors Value Range	NOCHECK						
	Elem	Sn1899	Ag3280					

Analysis	Report QC Standard			12/10,	12/10/04 11:27:11 AM		
Units Avge SDev %RSD	ppm 00015 .00086 575.25	ppm .00041 .00031 76.832					
#1 #2	.00046 00076	.00063 .00019					
Errors Value Range	NOCHECK	NOCHECK					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4495 6.417132 .1427683	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4490 4499			 			

Analysis Report QC Standard 12/10/04 11:31:34 AM page 1

Method: TRACE2 Sample Name: ICSAB

Run Time: 12/10/04 11:27:15

Comment:

Mode: CO	NC Corr.	ractor: 1	•				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	515.43	.09952	.00244	.50797	.48379	425.62	.91324
SDev	.85	.00057	.00034	.00010	.00096	.86	.00231
%RSD	.16425	.57378	13.956	.02044	.19893	.20156	.25252
#1	514.83	.09911	.00268	.50790	.48311	425.02	.91161
#2	516.03	.09992		.50805	.48447	426.23	.91487
Errors	QC Pass	QC Pass	NOCHECK	QC Pass	QC Pass	QC Pass	QC Pass
Value	500.00	.10000		.50000	.50000	500.00	1.0000
Range	100.00	.02000		.10000	.10000	100.00	.20000
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.45566	.46997	.52137	92.992	00779	554.97	.49220
SDev	.00144	.00193	.00034	.284	.02456	1.65	.00117
%RSD	.31681	.41137	.06571	.30570	315.37	.29650	.23729
#1	.45464	.46860	.52162	92.791	.00958	553.80	.49138
#2	.45668	.47133	.52113	93.193	02516	556.13	.49303
Errors	QC Pass	QC Pass	QC Pass	QC Pass	NOCHECK	QC Pass	QC Pass
Value	.50000	.50000	.50000	100.00		500.00	.50000
Range	.10000	.10000	.10000	20.000		100.00	.10000
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00589	.12822	.91158	.06521	.04152	.04941	.04745
SDev	.00041	.19318	.00102	.00008	.00092	.00064	.00167
%RSD	6.9715	150.66	.11197	.11976	2.2095	1.2911	3.5237
#1	.00618	00838	.91086	.06516	.04087	.04896	.04627
#2	.00560	.26482	.91230	.06527	.04217		.04864
Errors Value Range	NOCHECK	NOCHECK	QC Pass 1.0000 .20000	NOCHECK	NOCHECK	QC Pass .05000 .01000	QC Pass .05000 .01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.60180	.05339	.04449	.00145	.10708	.48262	.89179
SDev	.00436	.00069	.00285	.00008	.00274	.00113	.00306
%RSD	.72444	1.2882	6.4108	5.3910	2.5549	.23445	.34356
#1	.60488	.05387	.04247	.00139	.10515	.48182	.88963
#2	.59871	.05290	.04651	.00150		.48342	.89396
Errors Value Range	QC Pass .60000 .12000	NOCHECK	NOCHECK	NOCHECK	QC Pass .10000 .02000	QC Pass .50000 .10000	QC Pass 1.0000 .20000
Elem	Sn1899	Ag3280					

Analysis	Report	QC Star	ndard	12/10,	/04 11:31:3	34 AM	page 2
Units Avge SDev %RSD	ppm 00104 .00028 27.309	ppm .20758 .00027 .13213					
#1 #2	00124 00084	.20777 .20738					
Errors Value Range	NOCHECK	QC Pass .20000 .04000					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4362 6.841120 .1568466	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4366 4357				 	 	

12/10/04 11:37:17 AM Analysis Report QC Standard page 1

Method: TRACE2 Sample Name: CCV Run Time: 12/10/04 11:32:57

Comment:

1,	noue: coi	NC COLL.	ractor: 1					
	Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
	Units	ppm						
	Avge	26.277	.49289	.48454	.50115	.50115	25.049	.49609
	SDev	.107	.00222	.00046	.00143	.00125	.065	.00108
	%RSD	.40776	.44986	.09471	.28488	.24922	.26143	.21807
	#1	26.201	.49132	.48422	.50014	.50026	25.003	.49533
	#2	26.353	.49445	.48487	.50216	.50203	25.095	.49686
	Errors Value Range	QC Pass 25.000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000
	Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
	Units	ppm						
	Avge	.49962	.49800	.52174	25.209	25.354	24.594	.51329
	SDev	.00099	.00121	.00118	.056	.087	.069	.00133
	%RSD	.19884	.24296	.22660	.22403	.34169	.27895	.25863
	#1	.49892	.49714	.52090	25.169	25.293	24.546	.51235
	#2	.50033	.49885	.52257	25.249	25.415	24.643	.51423
	Errors	QC Pass						
	Value	.50000	.50000	.50000	25.000	25.000	25.000	.50000
	Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
	Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
	Units	ppm						
	Avge	.48361	25.084	.50237	.49816	.49748	.49771	.50324
	SDev	.00125	.156	.00187	.00012	.00153	.00106	.00045
	%RSD	.25780	.62301	.37252	.02457	.30658	.21259	.08927
	#1	.48273	24.973	.50105	.49807	.49641	.49696	.50292
	#2	.48449	25.194	.50369	.49824	.49856	.49846	.50356
	Errors Value Range	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000
	Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
	Units	ppm						
	Avge	.50733	.50222	.50376	.48930	.50280	.49848	.49283
	SDev	.00107	.00004	.00069	.00100	.00192	.00255	.00141
	%RSD	.21150	.00810	.13780	.20335	.38261	.51203	.28656
	#1	.50657	.50225	.50327	.48860	.50144	.49667	.49183
	#2	.50808	.50219	.50425	.49001	.50416	.50028	.49382
	Errors Value Range	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000
	Elem	Sn1899	Ag3280					

Analysis	Report	QC Star	ndard	12/10/04 11:37:17 AM		17 AM	page 2
Units Avge SDev %RSD	ppm .51589 .00158 .30537	ppm .49343 .00108 .21802					
#1 #2	.51701 .51478	.49267 .49419					
Errors Value Range	QC Pass .50000 10.000	QC Pass .50000 10.000					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4679 17.97840 .3842307	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4666 4692		~-	 			

Analysis Report Blank Sample 12/10/04 11:41:41 AM page 1

Method: TRACE2 Sample Name: CCB

Run Time: 12/10/04 11:37:21

Comment:

1	Mode: Col	NC COII.	ractor: 1					
	Elem Units Avge SDev %RSD	Al3082 ppm .05945 .07831 131.71	As1890 ppm 00028 .00154 556.21	B_2496 ppm .00046 .00066 144.69	Ba4934 ppm .00012 .00017 147.60	Be3130 ppm .00013 .00017 130.78	Ca3179 ppm .06301 .07715 122.44	Cd2265 ppm .00010 .00027 278.41
	#1 #2	.00408 .11483	.00081 00136	00001 .00092	00001 .00024	.00001 .00025	.00846 .11757	00009 .00028
	Errors High Low	LC Pass .20000 04000	LC Pass .01000 00500	LC Pass .05000 00500	LC Pass .00200 00300	LC Pass .00200 00300	LC Pass .50000 04000	LC Pass .0010000200
	Elem Units Avge SDev %RSD	Co2286 ppm00018 .00007 37.834	Cr2677 ppm00010 .00049 496.89	Cu3247 ppm .00017 .00031 179.23	Fe2714 ppm .01759 .02967 168.69	K_7664 ppm 00822 .01278 155.42	Mg2790 ppm .06113 .07091 116.00	Mn2576 ppm .00010 .00021 218.06
	#1 #2	00023 00013	00044 .00025	00005 .00039	00339 .03857	.00081 01726	.01099	00005 .00025
	Errors High Low	LC Pass .00400 00300	LC Pass .00400 00300	LC Pass .01000 00400	LC Pass .05000 04000	LC Pass .50000 50000	LC Pass .20000 04000	LC Pass .00300 00300
	Elem Units Avge SDev %RSD	Mo2020 ppm .00011 .00007 65.723	Na3302 ppm .01139 .10751 944.00	Ni2316 ppm .00027 .00022 81.206	2203/1 ppm 00036 .00305 848.41	2203/2 ppm .00056 .00230 407.75	PB2203 ppm .00026 .00052 202.19	SE1960 ppm 00034 .00283 843.56
	#1 #2	.00017 .00006	.08741 06463	.00011	.00180 00252	00106 .00219	00011 .00062	00234 .00166
	Errors High Low	LC Pass .01000 00300	LC Pass 1.0000 50000	LC Pass .01000 00300	NOCHECK	NOCHECK	LC Pass .00500 00300	LC Pass .01500 01000
	Elem Units Avge SDev %RSD	Sb2068 ppm .00096 .00153 158.61	1960/1 ppm .00028 .00121 434.29	1960/2 ppm 00064 .00485 754.60	Ti3372 ppm 00006 .00009 152.30	T11908 ppm 00195 .00059 30.031	V_2924 ppm .00013 .00055 406.68	Zn2062 ppm .00014 .00030 217.83
	#1 #2	.00204 00012	.00114 00058	00407 .00279	.00000 00012	00154 00236	00025 .00052	00007 .00035
	Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .00500 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .02000 00300
	Elem	Sn1899	Ag3280					

Analysis	Report	Blank	Sample	12/10/	04 11:41:4	ll AM	page 2
Units Avge SDev %RSD	ppm .00027 .00078 295.80	ppm .00009 .00068 743.48					
#1 #2	.00082 00029	.00057 00039					
Errors High Low	LC Pass .01000 00500	LC Pass .00300 00300					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4736 2.227663 .0470373	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4738 4734		 	 		 	

12/10/04 11:46:04 AM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466618/PB

Run Time: 12/10/04 11:41:44

Comment:

Mode: C	ONC COII.	ractor: .	L				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00092	00148	.00029	.00005	00004	.02635	00003
SDev	.00173	.00073	.00024	.00007	.00001	.00025	.00006
%RSD	188.28	49.677	85.652	142.60	34.299	.95805	209.31
#1	00214	00200	.00011	00000	00004	.02617	00007
#2	.00030	00096		.00010	00003	.02653	.00001
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.20000	.01000	.05000	.00200	.00200	.50000	.00100
Low	04000	00500	00800	00300	00310	05000	00150
Elem	Co2286 ppm00035 .00024 67.970	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.00013	.00040	.00795	.04411	00000	.00007
SDev		.00014	.00012	.00483	.00991	.00081	.00001
%RSD		108.27	28.709	60.675	22.474	28705.	15.265
#1 #2	00052 00018	.00003	.00032 .00049	.00454 .01136	.05111 .03710	00058 .00057	.00006
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.00200	.01000	.05000	.50000	.20000	.00300
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00035	.02115	00007	00030	.00105	.00060	00104
SDev	.00050	.12687	.00023	.00097	.00061	.00008	.00124
%RSD	143.70	599.76	319.66	320.72	57.984	13.738	120.03
#1	00070	06856	00024	00099	.00148	.00066	00192
#2	.00001	.11086	.00009	.00038	.00062	.00054	00016
Errors High Low	LC Pass .01000 00500	LC Pass 1.0000 50000	LC Pass .10000 00300	NOCHECK	NOCHECK	LC Pass .00600 00400	LC Pass .01500 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00083	00566	.00128	.00030	00316	.00010	.00113
SDev	.00203	.00458	.00042	.00018	.00092	.00040	.00009
%RSD	245.98	80.880	33.163	58.413	29.167	400.19	7.9532
#1	00226	00890	.00157	.00018	00381	00018	.00106
#2	.00061	00242	.00098		00251	.00038	.00119
Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .01000 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .0200000300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 11:46:	04 AM	page 2
Units ppm Avge H.06784 SDev .00094 %RSD 1.3809	ppm .00009 .00004 45.153					
#1 H.06718 #2 H.06850	.00006 .00012					
Errors LC High High .01000 Low01000	LC Pass .00300 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4734 SDev 11.34893 %RSD .2397399	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4742 #2 4726			 		 	

page 1

Method: TRACE2 Sample Name: AD466617/CLPSL Operator: SW

Run Time: 12/10/04 11:46:07

Comment:

	0011	. 140001.	-				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	74.294	1.3449	.47107	1.4343	.64821	33.994	2.3062
SDev	.109	.0027	.00059	.0021	.00100	.058	.0037
%RSD	.14611	.19909	.12439	.14435	.15397	.17173	.16159
#1	74.217	1.3468	.47066	1.4328	.64750	33.953	2.3035
#2	74.370	1.3430	.47149	1.4358	.64891	34.036	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	97.100	1.6400	.82900	1.6900	.78800	41.800	2.9100
Low	39.500	1.0800	.23900	1.1200	.54800	26.800	2.0100
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.43568	.92345	.67140	112.51	20.737	20.242	2.5341
SDev	.00125	.00179	.00012	.25	.031	.033	.0034
%RSD	.28606	.19415	.01765	.22599	.14775	.16399	.13557
#1	.43480	.92218	.67148	112.33	20.716	20.219	2.5317
#2	.43656	.92471	.67131	112.69	20.759		2.5365
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.53100	1.1600	.81400	172.00	25.400	25.200	3.0700
Low	.36200	.75000	.51200	69.200	14.000	15.600	1.9700
Elem Units Avge SDev %RSD	Mo2020 ppm .29139 .00009 .03110	Na3302 ppm 3.8286 .1529 3.9945	Ni2316 ppm .69842 .00022 .03104	2203/1 ppm .74615 .00006 .00813	2203/2 ppm .74654 .00679 .90935	PB2203 ppm .74641 .00451 .60394	SE1960 ppm .81583 .00809
#1	.29133	3.9368	.69857	.74619	.74174	.74322	.81011
#2	.29146	3.7205	.69827	.74611	.75134	.74960	.82155
Errors High Low	LC Pass .37700 .23000	LC Pass 5.7900 2.2100	LC Pass .86100 .59300	NOCHECK	NOCHECK	LC Pass .88600 .59800	LC Pass 1.0000 .60700
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.77110	.80969	.81890	3.8514	1.2509	1.0439	1.2994
SDev	.00108	.00539	.00944	.0006	.0045	.0008	.0037
%RSD	.13999	.66514	1.1531	.01587	.35864	.07969	.28324
#1	.77033	.80589	.81223	3.8519	1.2477	1.0433	1.2968
#2	.77186	.81350	.82558	3.8510	1.2541		1.3020
Errors High Low	LC Pass 1.6800 .00000	NOCHECK	NOCHECK	LC Pass 5.2600 1.3000	LC Pass 1.4900 .90700	LC Pass 1.3400 .80000	LC Pass 1.6600 1.0700
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 11:50:2	28 AM	page 2
Units ppm Avge .62796 SDev .00201 %RSD .32049	ppm 1.2956 .0014 .11142					
#1 .62653 #2 .62938	1.2946 1.2966					
Errors LC Pass High .78200 Low .40100	LC Pass 1.7600 .77800					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 5358 SDev 5.409643 %RSD .1009554	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 5362 #2 5355		 				

12/10/04 11:54:51 AM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466610 Run Time: 12/10/04 11:50:31

Comment:

I	Mode: CO	NC Corr.	Factor: 1					
	Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
	Units	ppm						
	Avge	88.788	.09449	.06859	1.0941	.00703	131.36	L00279
	SDev	.229	.00114	.00018	.0021	.00003	.51	.00009
	%RSD	.25819	1.2098	.25656	.19260	.47725	.38810	3.2504
	#1 #2	88.626 88.951	.09368	.06871 .06847	1.0926 1.0956	.00701 .00705	131.00 131.72	L00273 L00286
	Errors	LC Pass	LC Low					
	High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
	Low	04000	00500	00800	00300	00300	05000	00150
	Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
	Units	ppm						
	Avge	.10201	1.7382	.30807	178.34	6.5191	30.384	5.6870
	SDev	.00081	.0072	.00020	.73	.0202	.116	.0188
	%RSD	.79406	.41481	.06374	.41156	.31020	.38320	.33022
	#1	.10143	1.7331	.30793	177.82	6.5048	30.302	5.6738
	#2	.10258	1.7433	.30821	178.86	6.5334	30.467	5.7003
	Errors	LC Pass						
	High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
	Low	00300	00300	00400	04000	50000	04000	00300
	Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
	Units	ppm						
	Avge	.21118	1.0277	1.5202	.48640	.48531	.48567	.00999
	SDev	.00096	.0083	.0063	.00069	.00402	.00291	.00309
	%RSD	.45452	.81002	.41562	.14104	.82822	.59904	30.942
	#1 #2	.21050 .21186	1.0219 1.0336	1.5157 1.5246	.48592 .48689	.48247 .48815	.48362 .48773	.01218
	Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
	Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
	Units	ppm						
	Avge	.00909	.00740	.01129	.80311	.03534	.17018	1.4993
	SDev	.00135	.00659	.00135	.00054	.00196	.00063	.0070
	%RSD	14.882	89.057	11.910	.06692	5.5333	.36766	.46825
	#1 #2	.01005 .00814	.01205 .00274	.01224	.80349 .80273	.03673 .03396	.16974 .17063	1.4943 1.5043
	Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
	Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 11:54:	51 AM	page 2
Units ppm Avge .08003 SDev .00149 %RSD 1.8575	ppm .00121 .00003 2.2547					
#1 .08108 #2 .07898	.00123 .00119					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 5165 SDev 4.136299 %RSD .0800898	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 5168 #2 5162	 	 	 			

Method: TRACE2 Sample Name: AD466610/L (1:5) Operator: SW

Run Time: 12/10/04 11:54:54

Comment:

Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	19.872	.02264	.01589	.24313	.00159	30.598	00074
SDev	.066	.00116	.00097	.00083	.00000	.088	.00003
%RSD	.33372	5.1113	6.1180	.34084	.06491	.28857	4.1053
#1	19.825	.02346	.01658	.24254	.00159	30.536	00072
#2	19.919	.02182	.01520	.24371	.00159	30.661	00076
Errors	LC Pass						
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.02296	.39511	.06759	40.583	1.4361	6.8564	1.2986
SDev	.00029	.00181	.00017	.132	.0218	.0196	.0031
%RSD	1.2658	.45911	.25602	.32464	1.5158	.28567	.23640
#1 #2	.02316 .02275	.39383 .39640	.06747 .06771	40.490 40.676	1.4514 1.4207	6.8425 6.8702	1.2965
Errors	LC Pass						
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.04772	.14829	.34841	.11215	.11168	.11184	.00117
SDev	.00005	.02436	.00099	.00025	.00014	.00001	.00176
%RSD	.11299	16.429	.28520	.22278	.12788	.01077	150.61
#1	.04768	.16551	.34770	.11233	.11158	.11183	.00241
#2	.04776	.13106	.34911	.11198	.11178	.11184	00008
Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.00066	.00364	00007	.18531	.00483	.03832	.34814
SDev	.00281	.00258	.00135	.00122	.00136	.00047	.00090
%RSD	429.13	70.730	1954.8	.65787	28.132	1.2306	.25890
#1 #2	.00265 00133	.00547 .00182	.00089 00102	.18617 .18445	.00580 .00387	.03798 .03865	.34750
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report		12/10/04 11:59:14 AM pa				
Units Avge SDev %RSD	ppm .01794 .00115 6.3978	ppm .00037 .00013 35.766					
#1 #2	.01713 .01876	.00046					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4802 7.848954 .1634458	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4797 4808					 	

12/10/04 12:03:37 PM page 1

Operator: SW

Method: TRACE2 Sample Name: AD466610/PS

Run Time: 12/10/04 11:59:17

Comment:

NC Corr.	Factor: 1					
Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
ppm	ppm	ppm	ppm	ppm	ppm	ppm
97.257	.27520	.24794	1.2683	.18783	138.52	.17144
1.228	.00316	.00175	.0152	.00212	1.49	.00178
1.2631	1.1485	.70406	1.1973	1.1268	1.0737	1.0385
96.388 98.125	.27296 .27743	.24671	1.2575 1.2790	.18633 .18932	137.47 139.57	.17018
LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
500.00	20.000	50.000	10.000	5.0000	300.00	30.000
04000	00500	00800	00300	00300	05000	00150
Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
ppm	ppm	ppm	ppm	ppm	ppm	ppm
.28391	1.8937	.49900	175.60	16.018	39.160	5.7644
.00247	.0217	.00571	2.04	.143	.410	.0638
.86992	1.1435	1.1441	1.1593	.89408	1.0459	1.1072
.28216	1.8784	.49496	174.16	15.917	38.870	5.7192
.28565	1.9090	.50304	177.04	16.120	39.449	5.8095
LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
40.000	40.000	25.000	500.00	100.00	100.00	20.000
00300	00300	00400	04000	50000	04000	00300
Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
ppm	ppm	ppm	ppm	ppm	ppm	ppm
.38382	10.106	1.6766	.65507	.65951	.65803	.19299
.00453	.032	.0188	.00460	.00967	.00798	.00208
1.1807	.31947	1.1237	.70237	1.4661	1.2130	1.0753
.38062	10.083	1.6633	.65182	.65267	.65239	.19152
.38703	10.129	1.6899	.65833	.66634	.66367	.19446
LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
ppm	ppm	ppm	ppm	ppm	ppm	ppm
.18776	.18823	.19537	.97625	.21465	.34959	1.6515
.00062	.00298	.00460	.00821	.00247	.00412	.0177
.33163	1.5816	2.3552	.84088	1.1517	1.1777	1.0708
.18820	.19033	.19212	.97045	.21290	.34668	1.6390
.18732	.18612	.19863	.98206	.21639	.35250	1.6640
LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Sn1899	Ag3280					
	Al3082 ppm 97.257 1.228 1.2631 96.388 98.125 LC Pass 500.0004000 Co2286 ppm .28391 .00247 .86992 .28216 .28565 LC Pass 40.00000300 Mo2020 ppm .38382 .00453 1.1807 .38062 .38703 LC Pass 10.00000500 Sb2068 ppm .18776 .00062 .33163 .18820 .18732 LC Pass 50.00001000	Al3082 As1890 ppm ppm 97.257 .27520 1.228 .00316 1.2631 1.1485 96.388 .27296 98.125 .27743 LC Pass LC Pass 500.00	Al3082	Al3082 As1890 B_2496 Ba4934 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Al3082 As1890 B_2496 Ba4934 Be3130 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Al3082 As1890 B_2496 Ba4934 Be3130 Ca3179 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp

Analysis	Report
----------	--------

12/10/04 12:03:37 PM page 2

Units Avge SDev %RSD	ppm .26267 .00135 .51347	ppm .04753 .00049 1.0327					
#1 #2	.26172 .26363	.04719 .04788					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 5133 39.77476 .7748945	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED :
#1 #2	5161 5105	·					

12/10/04 12:08:00 PM page 1

Operator: SW

Method: TRACE2 Sample Name: AD466611/MS Run Time: 12/10/04 12:03:40

Comment:

IVC COII.	ractor. I	•				
Al3082 ppm 55.832 .180 .32312	As1890 ppm .14425 .00001 .00327	B_2496 ppm .04598 .00179 3.8972	Ba4934 ppm 4.9221 .0047	Be3130 ppm .10176 .00007 .06559	Ca3179 ppm 45.870 .023 .05100	Cd2265 ppm .09151 .00030 .32574
55.704	.14426	.04724	4.9188	.10171	45.853	.09130
55.960	.14425	.04471	4.9254		45.886	.09173
LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
500.00	20.000	50.000	10.000	5.0000	300.00	30.000
04000	00500	00800	00300	00300	05000	00150
Co2286 ppm 1.1163 .0011 .09809	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
	ppm	ppm	ppm	ppm	ppm	ppm
	3.3384	.80373	178.81	6.8430	21.527	3.5314
	.0047	.00141	.24	.0131	.009	.0046
	.14002	.17533	.13248	.19146	.04403	.13036
1.1155	3.3351	.80273	178.64	6.8523	21.521	3.5281
1.1171	3.3417	.80472	178.98	6.8337	21.534	3.5346
LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
40.000	40.000	25.000	500.00	100.00	100.00	20.000
00300	00300	00400	04000	50000	04000	00300
Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
ppm	ppm	ppm	ppm	ppm	ppm	ppm
.28575	.80917	3.5026	.42572	.42581	.42578	.10825
.00043	.09591	.0004	.00079	.00032	.00048	.00027
.15137	11.852	.01079	.18638	.07572	.11256	.25049
.28544	.87699	3.5023	.42516	.42558	.42544	.10844
.28605	.74136	3.5029	.42628	.42604		.10806
LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
ppm	ppm	ppm	ppm	ppm	ppm	ppm
.13147	.10033	.11221	1.1364	.12607	1.2065	2.2636
.00141	.00161	.00040	.0000	.00380	.0006	.0010
1.0726	1.6095	.35708	.00420	3.0155	.05222	.04640
.13048	.10147	.11193 .11249	1.1364 1.1364	.12876 .12339	1.2060 1.2069	2.2643
LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Sn1899	Ag3280					
	Al3082 ppm 55.832 .180 .32312 55.704 55.960 LC Pass 500.0004000 Co2286 ppm 1.1163 .0011 .09809 1.1155 1.1171 LC Pass 40.00000300 Mo2020 ppm .28575 .00043 .15137 .28544 .28605 LC Pass 10.00000500 Sb2068 ppm .13147 .00141 1.0726 .13048 .13247 LC Pass 50.00001000	Al3082 As1890 ppm ppm 55.832 .14425 .180 .00001 .32312 .00327 55.704 .14426 55.960 .14425 LC Pass LC Pass 500.00	Al3082	Al3082 As1890 B_2496 Ba4934 ppm ppm ppm ppm ppm ppm ppm ppm 55.832 .14425 .04598 4.9221 .180 .00001 .00179 .0047 .32312 .00327 3.8972 .09479 55.704 .14426 .04724 4.9188 .55.960 .14425 .04471 4.9254 LC Pass LC Pass LC Pass LC Pass 500.00 20.000 50.000 10.00004000005000080000300 Co2286 Cr2677 Cu3247 Fe2714 ppm ppm ppm ppm ppm 1.1163 3.3384 .80373 178.81 .0011 .0047 .00141 .24 .09809 .14002 .17533 .13248 1.155 3.3351 .80273 178.64 1.1171 3.3417 .80472 178.98 LC Pass LC Pass LC Pass LC Pass 40.00000300003000040004000 Mo2020 Na3302 Ni2316 2203/1 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Al3082 As1890 B_2496 Ba4934 Be3130 Ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Al3082 As1890 B_2496 Ba4934 Be3130 Ca3179 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp

Analysis Report			12/10,	/04 12:08:0	OO PM	page 2
Units ppm Avge .06362 SDev .00034 %RSD .53120	ppm .09904 .00032 .32205					
#1 .06338 #2 .06385	.09927 .09881					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4863 SDev 8.326114 %RSD .1712069	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4857 #2 4869		 		 		

page 1

Method: TRACE2 Sample Name: AD466612/SD Run Time: 12/10/04 12:08:03 Operator: SW

Comment:

Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm 41.159 .246 .59809	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	50.804	.14598	.04967	5.4232	.09611		.08860
SDev	.333	.00174	.00127	.0323	.00058		.00056
%RSD	.65496	1.1918	2.5595	.59577	.60009		.63810
#1	50.569	.14475	.04877	5.4003	.09570	40.985	.08820
#2	51.039	.14721	.05057	5.4460	.09651	41.333	.08900
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677 ppm 2.3791 .0136 .57016	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm		ppm	ppm	ppm	ppm	ppm
Avge	1.0571		.77468	179.56	6.3122	16.739	3.9437
SDev	.0066		.00472	1.16	.0198	.092	.0245
%RSD	.62725		.60917	.64586	.31403	.55073	.62022
#1	1.0524	2.3695	.77134	178.74	6.2982	16.673	3.9264
#2	1.0618	2.3887	.77802	180.38	6.3262	16.804	3.9610
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem Units Avge SDev %RSD	Mo2020 ppm .30264 .00178 .58843	Na3302 ppm .91369 .00686 .75067	Ni2316 ppm 2.4396 .0148 .60508	2203/1 ppm 1.0787 .0057 .52501	2203/2 ppm 1.0744 .0108 1.0094	PB2203 ppm 1.0758 .0053 .49711	SE1960 ppm .10326 .00055
#1	.30139	.91854	2.4292	1.0827	1.0668	1.0721	.10287
#2	.30390	.90884	2.4500	1.0747	1.0821	1.0796	.10365
Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.11462	.10168	.10405	.72412	.12183	1.1575	2.7327
SDev	.00022	.00023	.00071	.00367	.00052	.0070	.0171
%RSD	.18848	.22703	.68563	.50623	.42351	.60166	.62471
#1	.11447	.10151	.10355	.72152	.12220	1.1525	2.7207
#2		.10184	.10456	.72671	.12147	1.1624	2.7448
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280		•			

Analysis Report			12/10	/04 12:12:2	23 PM	page 2
Units ppm Avge .10928 SDev .00021 %RSD .19538	ppm .09398 .00003 .02612					
#1 .10943 #2 .10913	.09397					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4949 SDev 3.871133 %RSD .0782183	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4952 #2 4946						

Analysis Report

12/10/04 12:16:46 PM page 1

Operator: SW

Method: TRACE2 Sample Name: AD466613 Run Time: 12/10/04 12:12:26

Comment:

		raccor.	•				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm 30.730 .265 .86310	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	52.012	.06574	.02857	1.3102	.00314		L00379
SDev	.328	.00057	.00043	.0083	.00005		.00005
%RSD	.63005	.87493	1.5146	.63341	1.4569		1.2547
#1	51.780	.06615	.02827	1.3043	.00311	30.542	L00382
#2	52.244	.06534	.02888	1.3161	.00318	30.917	L00376
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Low
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286 ppm .10450 .00120 1.1517	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		1.8443	.24306	181.07	5.1618	15.547	1.0888
SDev		.0156	.00185	1.44	.0040	.126	.0082
%RSD		.84352	.76059	.79291	.07659	.80839	.75257
#1	.10365	1.8333	.24175	180.06	5.1591	15.458	1.0830
#2	.10535	1.8553	.24437	182.09	5.1646	15.636	1.0946
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.26611	1.7673	1.6345	.61925	.61932	.61930	.00786
SDev	.00158	.0224	.0151	.00454	.00746	.00649	.00081
%RSD	.59169	1.2664	.92439	.73242	1.2051	1.0477	10.251
#1	.26500	1.7515	1.6238	.61604	.61405	.61471	.00729
#2	.26723	1.7831	1.6452	.62246	.62460	.62389	.00843
Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00858	.00388	.00985	.67297	.03392	.18652	1.4251
SDev	.00145	.00263	.00253	.00516	.00053	.00147	.0117
%RSD	16.872	67.887	25.634	.76642	1.5671	.78768	.82059
#1	.00756	.00574	.00807	.66932	.03429	.18548	1.4168
#2	.00961		.01164	.67662	.03354	.18756	1.4333
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10/04 12:16:46 PM page 2			
Units ppm Avge .07021 SDev .00056 %RSD .80481	ppm .00105 .00009 8.9051					
#1 .06981 #2 .07061	.00112 .00099					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4967 SDev 18.08439 %RSD .3641248	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4979 #2 4954			 		-,- 	

12/10/04 12:21:09 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466614

Run Time: 12/10/04 12:16:49

Comment:

Mode. Co	WC COII.	ractor: 1	•				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	74.420	.07005	.06042	.81987	.00406	59.885	00014
SDev	.216	.00237	.00090	.00234	.00001	.187	.00012
%RSD	.29086	3.3881	1.4955	.28529	.29375	.31281	88.614
#1	74.266	.06837	.05978	.81821	.00405	59.752	00005
#2	74.573	.07173	.06105	.82152	.00407	60.017	00022
Errors	LC Pass						
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.12382	2.0255	.51020	170.90	8.4090	22.722	3.2448
SDev	.00062	.0053	.00146	.57	.0222	.061	.0100
%RSD	.50370	.25945	.28605	.33537	.26385	.26633	.30853
#1	.12338	2.0218	.50917	170.49	8.3933	22.679	3.2377
#2	.12427	2.0293	.51124	171.30	8.4247	22.765	3.2519
Errors	LC Pass						
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.27857	1.1183	1.7632	.52330	.52758	.52615	.01143
SDev	.00047	.2456	.0049	.00262	.00201	.00221	.00119
%RSD	.16701	21.960	.27956	.50056	.38044	.42022	10.398
#1	.27824	.94462	1.7597	.52145	.52616	.52459	.01059
#2	.27890	1.2919	1.7667	.52515	.52899	.52772	.01227
Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.00958	.00514	.01458	1.0917	.02922	.21139	1.9133
SDev	.00175	.00605	.00124	.0031	.00130	.00051	.0049
%RSD	18.212	117.75	8.5296	.27974	4.4593	.24294	.25475
#1	.00835	.00086	.01546	1.0895	.02830	.21102	1.9099
#2	.01081	.00942	.01370	1.0939	.03014	.21175	1.9168
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 12:21:0	9 PM	page 2
Units ppm Avge .07702 SDev .00045 %RSD .58302	ppm .00116 .00003 2.6467					
#1 .07734 #2 .07670	.00114 .00118					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 5079 SDev 9.121954 %RSD .1796120	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 5085 #2 5072					·	

12/10/04 12:25:32 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466615 Run Time: 12/10/04 12:21:12

Comment:

Mode: Co	NC COII.	ractor: 1	=				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm 52.376 .209 .39828	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	58.038	.09160	.05064	.77703	.00372		00048
SDev	.151	.00029	.00024	.00247	.00001		.00018
%RSD	.25964	.31428	.46755	.31756	.29174		38.186
#1	57.932	.09180	.05047	.77528	.00371	52.229	00035
#2	58.145	.09140	.05081	.77877		52.524	00061
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem Units Avge SDev %RSD	Co2286 ppm .12981 .00062 .47583	Cr2677 ppm 2.8754 .0127 .44250	Cu3247 ppm .50557 .00178 .35124	Fe2714 ppm 173.98 .83 .47525	K_7664 ppm 7.3295 .0176 .24009	Mg2790 ppm 19.517 .073	Mn2576 ppm 5.0769 .0232 .45714
#1	.12938	2.8664	.50432	173.40	7.3170	19.466	5.0605
#2	.13025	2.8844	.50683	174.57	7.3419	19.568	5.0933
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.37511	.71283	2.3830	.52715	.52789	.52764	.01238
SDev	.00158	.17392	.0109	.00381	.00604	.00530	.00048
%RSD	.42238	24.399	.45691	.72227	1.1449	1.0043	3.9014
#1 #2	.37399	.58985 .83581	2.3753 2.3907	.52446 .52984	.52361 .53216	.52389 .53139	.01204
Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.01657	.01041	.01336	1.1199	.02808	.21768	1.7562
SDev	.00238	.00124	.00135	.0048	.00269	.00093	.0081
%RSD	14.395	11.924	10.069	.42709	9.5828	.42575	.46020
#1	.01825	.01129	.01241	1.1165	.02998	.21703	1.7504
#2	.01488	.00954	.01431	1.1232	.02618	.21834	1.7619
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 12:25:	32 PM	page 2
Units ppm Avge .14153 SDev .00097 %RSD .68275	ppm .00164 .00018 11.139					
#1 .14085 #2 .14221	.00151 .00177					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4906 SDev 14.53091 %RSD .2961879	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4916 #2 4896				 	 	 -,-

Analysis Report QC Standard

12/10/04 12:31:15 PM page 1

Operator: SW

Method: TRACE2 Sample Name: CCV Run Time: 12/10/04 12:26:55

Comment:

Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	25.989	.48717	.47641	.49914	.49512	24.794	.48815
SDev	.169	.00453	.00362	.00263	.00350	.186	.00337
%RSD	.65062	.93087	.75890	.52733	.70691	.75113	.68955
#1	25.869	.48396	.47386	.49728	.49264	24.663	.48577
#2	26.108	.49037	.47897	.50100	.49759	24.926	.49053
Errors	QC Pass						
Value	25.000	.50000	.50000	.50000	.50000	25.000	.50000
Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.49242	.48921	.51495	24.914	25.034	24.423	.50508
SDev	.00407	.00430	.00315	.176	.091	.184	.00357
%RSD	.82678	.87890	.61151	.70499	.36457	.75172	.70635
#1	.48954	.48617	.51273	24.790	24.969	24.293	.50256
#2	.49530	.49225	.51718	25.038	25.098	24.552	.50760
Errors	QC Pass						
Value	.50000	.50000	.50000	25.000	25.000	25.000	.50000
Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.47667	24.749	.49640	.49156	.49242	.49214	.49635
SDev	.00354	.160	.00379	.00208	.00674	.00519	.00588
%RSD	.74210	.64503	.76388	.42287	1.3695	1.0546	1.1848
#1 #2	.47417 .47917	24.636 24.862	.49371 .49908	.49009	.48766 .49719	.48847 .49581	.49220 .50051
Errors Value Range	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.50365	.48956	.49976	.48241	.50146	.49240	.48398
SDev	.00051	.00235	.00764	.00321	.00163	.00395	.00314
%RSD	.10091	.48081	1.5296	.66652	.32600	.80173	.64937
#1	.50329	.48790	.49435	.48014	.50030	.48961	.48176
#2	.50401	.49123	.50516	.48468	.50262	.49519	.48620
Errors Value Range	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sn1899	Ag3280					

Analysis	alysis Report QC Standard		ndard	12/10/04 12:31:15 PM			page 2	
Units Avge SDev %RSD	ppm .50864 .00438 .86181	ppm .48996 .00417 .85051						
#1 #2	.50554 .51174	.48702 .49291						
Errors Value Range	QC Pass .50000 10.000	QC Pass .50000 10.000	•					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4670 20.73604 .4440136	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	
#1 #2	4685 4655				·		 	

Analysis Report Blank Sample 12/10/04 12:35:38 PM page 1

Method: TRACE2 Sample Name: CCB

Run Time: 12/10/04 12:31:18

Comment:

Mode: CC	INC Corr.	Factor:	L				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm .03003 .00386 12.846	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	.03182	.00202	00017	.00016	.00009		.00003
SDev	.00353	.00130	.00068	.00006	.00006		.00002
%RSD	11.088	64.509	409.61	36.241	64.778		59.558
#1 #2	.02933	.00295 .00110	00065 .00032	.00012 .00021	.00005	.02730 .03276	.00002
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.20000	.01000	.05000	.00200	.00200	.50000	.00100
Low	04000	00500	00500	00300	00300	04000	00200
Elem	Co2286	Cr2677 ppm00015 .00002 14.235	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm		ppm	ppm	ppm	ppm	ppm
Avge	00018		00005	.02327	01948	.02899	.00041
SDev	.00021		.00027	.00718	.00379	.00316	.00014
%RSD	113.88		563.08	30.844	19.482	10.909	34.716
#1	00033	00016	00024	.01819	01680	.02675	.00031
#2	00004	00013	.00014	.02835	02216	.03122	.00051
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00400	.00400	.01000	.05000	.50000	.20000	.00300
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00023	11019	.00003	.00123	.00003	.00043	00143
SDev	.00030	.07547	.00014	.00062	.00056	.00017	.00262
%RSD	131.33	68.489	389.36	50.723	2157.4	39.828	183.13
#1 #2	.00002	05682 16355	.00013 00006	.00079 .00166	.00043 00037	.00055	00329 .00042
Errors High Low	LC Pass .01000 00300	LC Pass 1.0000 50000	LC Pass .01000 00300	NOCHECK	NOCHECK	LC Pass .00500 00300	LC Pass .01500 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908 ppm00368 .00180 48.877	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	00141	00017	00206	.00018		00004	.00005
SDev	.00169	.00129	.00329	.00014		.00010	.00017
%RSD	120.17	751.68	159.53	79.730		238.92	349.46
#1	00261	00108	00439	.00008	00495	00011	00007
#2	00021	.00074	.00026		00241	.00003	.00017
Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .00500 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .02000 00300
Elem	Sn1899	Ag3280					

Analysis	Report	Blank	Sample	12/10/	04 12:35:3	38 PM	page 2
Units Avge SDev %RSD	ppm .00039 .00049 124.72	ppm .00024 .00014 60.631					
#1 #2	.00005 .00074	.00013 .00034					
Errors High Low	LC Pass .01000 00500	LC Pass .00300					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4731 9.811107 .2073972	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4724 4738						

Method: TRACE2 Sample Name: AD466616 Run Time: 12/10/04 12:35:42

Comment:

Mode. co	THE COLL.	ractor.	L.				
Elem Units Avge SDev %RSD	Al3082 ppm 58.725 .025	As1890 ppm .05830 .00076 1.3084	B_2496 ppm .04611 .00085 1.8464	Ba4934 ppm .83163 .00133 .16038	Be3130 ppm .00312 .00002 .49629	Ca3179 ppm 24.550 .035 .14168	Cd2265 ppm 00084 .00001 1.0828
#1	58.708	.05884	.04551	.83068	.00311	24.526	00084
#2	58.743	.05776	.04671	.83257		24.575	00083
Errors	LC Pass LC Pass						
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem Units Avge SDev %RSD	Co2286 ppm .12630 .00001 .00808	Cr2677 ppm 3.9647 .0048 .12077	Cu3247 ppm .75861 .00127 .16733	Fe2714 ppm 133.55 .19 .13946	K_7664 ppm 7.1754 .0144 .20075	Mg2790 ppm 16.489 .009	Mn2576 ppm 3.4512 .0043 .12585
#1	.12629	3.9613	.75771	133.42	7.1856	16.482	3.4481
#2	.12631	3.9681	.75951	133.68	7.1652	16.495	3.4542
Errors	LC Pass LC Pass						
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.18954	.82247	1.9515	.51562	.51914	.51797	.01086
SDev	.00025	.09518	.0026	.00162	.00377	.00198	.00097
%RSD	.13357	11.573	.13171	.31506	.72706	.38161	8.9616
#1	.18972	.88978	1.9497	.51677	.51647	.51657	.01155
#2	.18936	.75517	1.9533	.51448	.52181	.51937	.01017
Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908 ppm .02250 .00058 2.5696	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	.01619	.00750	.01253	1.0298		.20258	1.2924
SDev	.00139	.00299	.00004	.0024		.00028	.0005
%RSD	8.6016	39.866	.29054	.22876		.13744	.03540
#1	.01717	.00962	.01251	1.0282	.02291	.20239	1.2921
#2	.01520	.00539	.01256	1.0315		.20278	1.2928
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 12:40:0	02 PM	page 2
Units ppm Avge .10828 SDev .00100 %RSD .92622	ppm .00128 .00048 37.743					
#1 .10899 #2 .10757	.00162 .00093					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 5015 SDev 6.894291 %RSD .1374768	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 5020 #2 5010	 	 	 	 	<u>-</u> -	

page 1

Method: TRACE2 Sample Name: AD466768/PB Run Time: 12/10/04 12:40:05

Comment:

ľ	Mode: Co.	NC COII.	ractor: 1					
	Elem Units Avge SDev %RSD	Al3082 ppm .01440 .00730 50.717	As1890 ppm 00109 .00031 28.512	B_2496 ppm .00019 .00023 117.47	Ba4934 ppm .00021 .00001 3.1648	Be3130 ppm .00001 .00005 379.07	Ca3179 ppm .01077 .00146 13.550	Cd2265 ppm 00004 .00011 241.92
	#1 #2	.00923 .01956	00087 00131	.00003	.00020	.00005 00002	.00974 .01180	.00003 00012
	Errors High Low	LC Pass .20000 04000	LC Pass .01000 00500	LC Pass .05000 00800	LC Pass .00200 00300	LC Pass .00200 00310	LC Pass .50000 05000	LC Pass .0010000150
	Elem Units Avge SDev %RSD	Co2286 ppm .00011 .00017 152.97	Cr2677 ppm .00013 .00001 5.1203	Cu3247 ppm 00003 .00016 610.65	Fe2714 ppm .02186 .00976 44.649	K_7664 ppm 00898 .03908 435.27	Mg2790 ppm .00534 .00147 27.608	Mn2576 ppm .00045 .00017 38.900
	#1 #2	.00023 00001	.00014	.00009 00014	.01496 .02877	.01866 03661	.00639	.00033
	Errors High Low	LC Pass .00500 00300	LC Pass .0020000300	LC Pass .01000 00400	LC Pass .05000 04000	LC Pass .50000 50000	LC Pass .20000 04000	LC Pass .00300 00300
	Elem Units Avge SDev %RSD	Mo2020 ppm 00013 .00055 416.78	Na3302 ppm 02114 .14242 673.78	Ni2316 ppm .00054 .00014 26.469	2203/1 ppm 00028 .00094 337.27	2203/2 ppm .00136 .00129 94.786	PB2203 ppm .00082 .00055 67.103	SE1960 ppm .00003 .00131 4571.0
	#1 #2	.00025 00052	.07957 12184	.00044 .00064	.00039	.00045	.00043	.00095
	Errors High Low	LC Pass .01000 00500	LC Pass 1.0000 50000	LC Pass .10000 00300	NOCHECK	NOCHECK	LC Pass .00600 00400	LC Pass .01500 01000
	Elem Units Avge SDev %RSD	Sb2068 ppm 00065 .00077 118.75	1960/1 ppm .00461 .00347 75.218	1960/2 ppm 00226 .00023 10.002	Ti3372 ppm .00006 .00006 106.55	Tl1908 ppm 00231 .00208 90.114	V_2924 ppm .00010 .00010 103.57	Zn2062 ppm 00013 .00001 7.9424
	#1 #2	00010 00120	.00706 .00216	00210 00242	.00010	00084 00378	.00017	00012 00014
	Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .01000 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .02000
	Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 12:44:2	25 PM	page 2
Units ppm Avge .00090 SDev .00167 %RSD 186.03	ppm .00012 .00046 397.93					
#100028 #2 .00208	.00044 ~.00021					
Errors LC Pass High .01000 Low01000	LC Pass .00300 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4712 SDev 71.01141 %RSD 1.506893	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4662 #2 4763						

336/481

Operator: SW

Method: TRACE2 Sample Name: AD466767/FB Run Time: 12/10/04 12:44:29

Comment:

Elem Units Avge SDev %RSD	Al3082 ppm 10.280 .015 .14582	As1890 ppm .20454 .00037 .18239	B_2496 ppm .19369 .00032 .16675	Ba4934 ppm .19918 .00013 .06355	Be3130 ppm .20058 .00018 .09156	Ca3179 ppm 10.045 .011 .10935	Cd2265 ppm .20083 .00001 .00409
#1 #2	10.270 10.291	.20481	.19347 .19392	.19909 .19927	.20045 .20071	10.037 10.053	.20084
Errors High Low	LC Pass 11.500 8.5000	LC Pass .23000 .17000	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass 11.500 8.5000	LC Pass .23000 .17000
Elem Units Avge SDev %RSD	Co2286 ppm .19950 .00030 .15013	Cr2677 ppm .19807 .00073 .36653	Cu3247 ppm .19925 .00018 .08921	Fe2714 ppm .42185 .00112 .26656	K_7664 ppm 10.413 .006	Mg2790 ppm 9.9178 .0138 .13903	Mn2576 ppm .19929 .00026 .13265
#1 #2	.19929 .19972	.19756 .19858	.19938 .19912	.42264 .42105	10.418 10.409	9.9081 9.9276	.19910 .19947
Errors High Low	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .46000 .34000	LC Pass 11.500 8.5000	LC Pass 11.500 8.5000	LC Pass .23000 .17000
Elem Units Avge SDev %RSD	Mo2020 ppm .19518 .00057 .29412	Na3302 ppm 10.059 .055 .54932	Ni2316 ppm .20116 .00021 .10590	2203/1 ppm .20029 .00136 .68102	2203/2 ppm .20143 .00031 .15463	PB2203 ppm .20105 .00025 .12259	SE1960 ppm .20175 .00227 1.1235
#1 #2	.19477 .19558	10.098 10.020	.20131 .20101	.19933 .20126	.20165 .20121	.20087	.20015
Errors High Low	LC Pass .23000 .17000	LC Pass 11.500 8.5000	LC Pass .23000 .17000	NOCHECK	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000
Elem Units Avge SDev %RSD	Sb2068 ppm .20306 .00001 .00265	1960/1 ppm .20106 .00033 .16286	1960/2 ppm .20210 .00324 1.6014	Ti3372 ppm .19044 .00016 .08458	Tl1908 ppm .20583 .00203 .98489	V_2924 ppm .20030 .00076 .38207	Zn2062 ppm .19565 .00018 .09287
#1 #2	.20307 .20306	.20082 .20129	.19982 .20439	.19032 .19055	.20440 .20726	.19976 .20084	.19552 .19577
Errors High Low	LC Pass .23000 .17000	NOCHECK	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000
Elem	Sn1899	Ag3280					

Analysis Repo	rt		12/10,	/04 12:48:4	19 PM	page 2
Units ppm Avge .202 SDev .000 %RSD .152	31 .00016					
#1 .202 #2 .203						
Errors LC P High .230 Low .170	00 .05750					
IntStd 1 Mode Coun Elem Y Wavlen 371. Avge 4756 SDev 17.0 %RSD .357	 030 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4744 #2 4768					 	

338/481

Analysis Report

12/10/04 12:53:12 PM

Operator: SW

pag'e 1

Method: TRACE2 Sample Name: AD466754 Run Time: 12/10/04 12:48:52

Comment:

Elem Unit Avge SDev %RSD	s ppm .16238 .00071	As1890 ppm .00114 .00120 105.86	B_2496 ppm 2.5180 .0009 .03752	Ba4934 ppm .61936 .00037 .05939	Be3130 ppm .00040 .00000 .26700	Ca3179 ppm H404.79 .74 .18223	Cd2265 ppm 00006 .00000 4.3247
#1 #2	.16289 .16188	.00029 .00199	2.5173 2.5187	.61910 .61962	.00040	H404.27 H405.31	00007 00006
Erro High Low		LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC High 300.00 05000	LC Pass 30.000 00150
Elem Unit Avge SDev %RSD	s ppm .00092 .00006	Cr2677 ppm .00241 .00008 3.3773	Cu3247 ppm .00173 .00009 5.2684	Fe2714 ppm 2.2817 .0091 .40009	K_7664 ppm 83.808 .094 .11257	Mg2790 ppm 72.480 .143 .19721	Mn2576 ppm .48865 .00058 .11820
#1 #2	.00088 .00097	.00236 .00247	.00179 .00166	2.2882 2.2753	83.741 83.875	72.379 72.581	.48824 .48905
Erro High Low		LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
Elem Unit Avge SDev %RSD	s ppm .00309 .00033	Na3302 ppm H3836.5 4.5 .11620	Ni2316 ppm .00384 .00009 2.4567	2203/1 ppm .00078 .00042 53.605	2203/2 ppm .00171 .00142 83.001	PB2203 ppm .00140 .00081 57.676	SE1960 ppm .00039 .00135 347.06
#1 #2	.00286 .00332	H3833.3 H3839.6	.00391 .00378	.00107	.00071	.00083 .00197	00056 .00134
Erro: High Low		LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Unit: Avge SDev %RSD	s ppm .00287 .00154	1960/1 ppm .00620 .00443 71.446	1960/2 ppm 00252 .00020 7.7600	Ti3372 ppm .00181 .00023 12.710	Tl1908 ppm 00331 .00096 29.095	V_2924 ppm .00010 .00012 115.84	Zn2062 ppm .00681 .00000 .04794
#1 #2	.00396 .00178	.00307	00238 00266	.00165 .00197	00400 00263	.00002 .00018	.00681 .00681
Erro: High Low		NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Units ppm ppm Avge	Analysis	Report		12/10/	/04 12:53:	l2 PM	page 2
#2 .0020000038 Errors LC Pass LC Pass High 5.0000 2.0000 Low0100000400 IntStd 1 2 3 4 5 6 7 NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Elem Y	Avge SDev	.00242	00016 .00032				
High Low01000 2.0000 Low0100000400 IntStd 1 2 3 4 5 6 7 Mode Counts NOTUSED							
Mode Counts NOTUSED NO	High	5.0000	2.0000				
	Mode Elem Wavlen Avge SDev	Counts Y 371.030 4102 1.432167	NOTUSED 			NOTUSED	•
				 	 		

page 1

Method: TRACE2 Sample Name: AD466754/L (1:5) Operator: SW

Run Time: 12/10/04 12:53:16

Comment:

			-				
Elem Units Avge SDev %RSD	Al3082 ppm .04571 .00033 .72034	As1890 ppm 00049 .00135 275.82	B_2496 ppm .48939 .00050 .10248	Ba4934 ppm .12458 .00004 .03251	Be3130 ppm .00013 .00002 13.215	Ca3179 ppm 90.434 .110 .12209	Cd2265 ppm 00000 .00012 22712.
#1 #2	.04594	00144 .00047	.48904 .48975	.12455 .12461	.00012 .00014	90.356 90.512	00009
Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Pass 30.000 00150
Elem Units Avge SDev %RSD	Co2286 ppm .00022 .00014 64.444	Cr2677 ppm .00091 .00032 34.783	Cu3247 ppm .00053 .00028 52.583	Fe2714 ppm .47888 .00703 1.4687	K_7664 ppm 14.310 .015 .10682	Mg2790 ppm 14.726 .021 .14293	Mn2576 ppm .09977 .00022 .21774
#1 #2	.00012	.00069 .00113	.00033	.47390 .48385	14.321 14.299	14.711 14.740	.09962
Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
Elem Units Avge SDev %RSD	Mo2020 ppm .00041 .00023 56.668	Na3302 ppm H799.08 .19 .02386	Ni2316 ppm .00114 .00057 50.311	2203/1 ppm 00119 .00141 119.05	2203/2 ppm .00240 .00211 87.715	PB2203 ppm .00121 .00094 77.457	SE1960 ppm 00164 .00117 71.150
#1 #2	.00057 .00025	H798.94 H799.21	.00074 .00155	00019 00219	.00091 .00390	.00055 .00187	00247 00082
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm 00017 .00197 1145.6	1960/1 ppm 00532 .00152 28.608	1960/2 ppm .00020 .00099 501.31	Ti3372 ppm .00063 .00003 3.9103	Tl1908 ppm 00091 .00196 216.27	V_2924 ppm .00029 .00037 126.62	Zn2062 ppm .00131 .00009 7.1840
#1 #2	.00122 00157	00640 00424	00050 .00090	.00061	.00048 00229	.00003	.00125
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report			12/10,	/04 12:57:	36 PM	page 2
Units Avge SDev %RSD	ppm .00156 .00007 4.3274	ppm .00004 .00003 77.767					
#1 #2	.00151 .00161	.00006					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4508 10.76577 .2388313	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1	4515			_ ~			

#2

4500

12/10/04 01:01:59 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466754/PS

Run Time: 12/10/04 12:57:39

Comment:

•	Mode. co.	NC COLL	. ractor. 1	•				
	Elem Units Avge SDev %RSD	Al3082 ppm 10.746 .014 .12736	As1890 ppm .22066 .00049 .22067	B_2496 ppm 2.6432 .0040 .14948	Ba4934 ppm .79934 .00106 .13309	Be3130 ppm .19949 .00040 .20063	Ca3179 ppm H399.30 .93	Cd2265 ppm .19484 .00041 .21248
	#1 #2	10.737 10.756	.22100 .22031	2.6404 2.6460	.79859 .80010	.19920 .19977	H398.64 H399.96	.19455 .19513
	Errors High Low	LC Pass 500.00	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC High 300.00 05000	LC Pass 30.000 00150
	Elem Units Avge SDev %RSD	Co2286 ppm .20198 .00077 .38072	Cr2677 ppm .20106 .00116 .57873	Cu3247 ppm .22215 .00054 .24221	Fe2714 ppm 2.5937 .0158 .61097	K_7664 ppm 93.928 .207 .22083	Mg2790 ppm 79.751 .190 .23794	Mn2576 ppm .67163 .00108 .16100
	#1 #2	.20143 .20252	.20024 .20188	.22177 .22253	2.5825 2.6049	93.781 94.075	79.617 79.885	.67086 .67239
	Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
	Elem Units Avge SDev %RSD	Mo2020 ppm .20781 .00078 .37758	Na3302 ppm H3716.3 3.7 .09954	Ni2316 ppm .19649 .00087 .44191	2203/1 ppm .20015 .00160 .79865	2203/2 ppm .20212 .00197 .97538	PB2203 ppm .20146 .00078 .38847	SE1960 ppm .22070 .00160 .72683
	#1 #2	.20725 .20836	H3713.7 H3718.9	.19588 .19711	.20128 .19902	.20072 .20351	.20091 .20202	.22183 .21956
	Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
	Elem Units Avge SDev %RSD	Sb2068 ppm .22452 .00302 1.3443	1960/1 ppm .21992 .00627 2.8509	1960/2 ppm .22109 .00073 .32962	Ti3372 ppm .20269 .00002 .00949	T11908 ppm .20440 .00682 3.3365	V_2924 ppm .20184 .00043 .21398	Zn2062 ppm .20388 .00085 .41867
	#1 #2	.22238 .22665	.22436 .21549	.22057 .22160	.20267	.19958 .20923	.20154	.20327 .20448
	Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
	Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 01:01:	59 PM	page 2
Units ppm Avge .21364 SDev .00157 %RSD .73626	ppm .05650 .00004 .07064					
#1 .21253 #2 .21476	.05647 .05652					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4105 SDev .5303301 %RSD .0129180	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4105 #2 4106	 		 			

12/10/04 01:06:22 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466755/MS Run Time: 12/10/04 13:02:02

Comment:

			-				
Elem Units Avge SDev %RSD	Al3082 ppm 2.1200 .0010 .04644	As1890 ppm .04263 .00209 4.8915	B_2496 ppm 2.1944 .0030 .13474	Ba4934 ppm 2.3903 .0043 .18014	Be3130 ppm .04502 .00011 .23829	Ca3179 ppm H357.50 .95	Cd2265 ppm .04400 .00036 .81962
#1 #2	2.1193 2.1207	.04411	2.1923 2.1965	2.3873 2.3934	.04495 .04510	H356.83 H358.18	.04375 .04426
Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC High 300.00 05000	LC Pass 30.000 00150
Elem Units Avge SDev %RSD	Co2286 ppm .45687 .00142 .31170	Cr2677 ppm .17793 .00095 .53531	Cu3247 ppm .24845 .00007 .02691	Fe2714 ppm 2.9114 .0136 .46687	K_7664 ppm 73.462 .134 .18217	Mg2790 ppm 63.237 .178 .28182	Mn2576 ppm .87843 .00216 .24650
#1 #2	.45586 .45788	.17726 .17860	.24840 .24850	2.9018 2.9210	73.367 73.556	63.111 63.363	.87690 .87996
Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
Elem Units Avge SDev %RSD	Mo2020 ppm .00324 .00007 2.2755	Na3302 ppm H3379.2 1.6 .04684	Ni2316 ppm .45095 .00260 .57654	2203/1 ppm .01944 .00110 5.6565	2203/2 ppm .01959 .00082 4.1743	PB2203 ppm .01954 .00018 .91742	SE1960 ppm .05058 .00068 1.3479
#1 #2	.00330	H3378.1 H3380.3	.44911 .45278	.02021 .01866	.01901 .02016	.01941 .01966	.05010 .05106
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm .10151 .00171 1.6859	1960/1 ppm .05420 .00033 .60856	1960/2 ppm .04877 .00119 2.4351	Ti3372 ppm .00176 .00005 2.5589	Tl1908 ppm .04625 .00157 3.4026	V_2924 ppm .46741 .00126 .26918	Zn2062 ppm .45180 .00208 .46011
#1 #2	.10272 .10030	.05444	.04793 .04961	.00173 .00179	.04514	.46652 .46830	.45033 .45327
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 01:06:2	22 PM	page 2
Units ppm Avge .00385 SDev .00001 %RSD .29214	ppm .05128 .00032 .62000					
#1 .00385 #2 .00386	.05106 .05151					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4170 SDev 3.181981 %RSD .0763051	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4172 #2 4168						

page 1

Method: TRACE2 Sample Name: AD466756/SD Run Time: 12/10/04 13:06:25

Comment:

			_				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	2.2057	.04333	2.3186	2.4612	.04602	H374.62	.04529
SDev	.0061	.00190	.0077	.0082	.00008	.73	.00003
%RSD	.27457	4.3798	.33141	.33288	.17904	.19372	.07057
#1	2.2015	.04468	2.3132	2.4554	.04596	H374.11	.04532
#2	2.2100		2.3240	2.4670	.04608	H375.14	.04527
Errors	LC Pass	LC High	LC Pass				
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.46655	.18201	.25532	3.0553	77.345	66.486	.90825
SDev	.00114	.00042	.00125	.0007	.164	.126	.00128
%RSD	.24504	.23217	.49097	.02351	.21260	.18883	.14151
#1	.46574	.18171	.25444	3.0558	77.229	66.397	.90734
#2	.46736	.18231	.25621	3.0548	77.461	66.574	.90916
Errors	LC Pass						
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.00272	H3542.4	.46075	.01903	.02027	.01986	.05162
SDev	.00018	13.0	.00116	.00115	.00142	.00057	.00038
%RSD	6.7363	.36817	.25185	6.0332	7.0154	2.8507	.72743
#1	.00285	H3533.2	.45993	.01984	.01926	.01946	.05188
#2	.00259	H3551.7	.46157	.01822	.02127	.02026	.05135
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.10680	.05461	.05012	.00215	.04600	.47679	.46127
SDev	.00118	.00184	.00036	.00032	.00213	.00127	.00095
%RSD	1.1011	3.3657	.70998	14.773	4.6379	.26587	.20566
#1	.10763	.05591	.04987	.00238	.04751	.47590	.46060
#2	.10597	.05331	.05037		.04449	.47769	.46194
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Repo	ort		12/10	/04 01:10:	45 PM	page 2
Units ppm Avge .002 SDev .001 %RSD 39.3	.12 .00060					
#1 .003 #2 .002						
Errors LC P High 5.00 Low01	00 2.0000					
	030	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4131 #2 4135						

348/481

Analysis Report

12/10/04 01:15:08 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466757

Run Time: 12/10/04 13:10:48

Comment:

nouc. co	THE COLL	. ractor. I	L				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	10.120	.05576	.66938	.59424	.00230	H495.54	L00554
SDev	.008	.00201	.00022	.00045	.00001	.96	.00008
%RSD	.08382	3.6044	.03269	.07586	.19802	.19397	1.3758
#1	10.114	.05434	.66954	.59392	.00230	H494.86	L00548
#2	10.126	.05719	.66923	.59456		H496.22	L00559
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Low
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem Units Avge SDev %RSD	Co2286 ppm .03008 .00015 .50548	Cr2677 ppm .17957 .00039 .21721	Cu3247 ppm .01818 .00046 2.5418	Fe2714 ppm 158.76 .29 .18453	K_7664 ppm H373.18 .43 .11442	Mg2790 ppm H125.31 .23	Mn2576 ppm 12.806 .021 .16587
#1	.02997	.17930	.01785	158.56	H372.88	H125.15	12.791
#2	.03018	.17985	.01850	158.97	H373.48	H125.47	12.821
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC High	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.01741	H620.86	.08586	.00129	.00692	.00505	.01037
SDev	.00001	.84	.00006	.00074	.00039	.00051	.00017
%RSD	.07866	.13552	.06744	57.171	5.6178	10.007	1.6705
#1 #2	.01742 .01740	H620.27 H621.46	.08581 .08590	.00181	.00720	.00540	.01025 .01049
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00099	.01706	.00703	.65281	.01348	.10713	.71624
SDev	.00000	.00010	.00031	.00088	.00203	.00008	.00199
%RSD	.05942	.59261	4.4171	.13418	15.088	.07846	.27799
#1	.00098	.01713	.00681	.65220	.01492	.10707	.71483
#2		.01699	.00725	.65343	.01204	.10719	.71765
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10/04 01:15:08 PM pa				page 2
Units Avge SDev %RSD	ppm .02088 .00056 2.6734	ppm .00199 .00011 5.4431					
#1 #2	.02128 .02049	.00191 .00206					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4669 10.18227 .2180836	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4676 4662					 	1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —

350/481

page 1

Analysis Report

12/10/04 01:19:31 PM

•

Operator: SW

Method: TRACE2 Sample Name: AD466758

Run Time: 12/10/04 13:15:11

Comment:

Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.10713	.00378	1.6971	.10754	.00008	55.854	00007
SDev	.00049	.00017	.0019	.00002	.00000	.002	.00013
%RSD	.45244	4.4013	.11008	.02128	.27605	.00321	172.42
#1	.10747	.00390	1.6957	.10756	.00009	55.855	00017
#2	.10679	.00366	1.6984	.10752		55.853	.00002
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286 ppm .00028 .00000 .06130	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.00203	.00277	.84922	52.646	13.468	.03838
SDev		.00030	.00009	.00225	.027	.012	.00000
%RSD		14.960	3.0840	.26530	.05099	.08826	.00938
#1 #2	.00028	.00181 .00224	.00271 .00283	.85081 .84762	52.627 52.665	13.460 13.476	.03838
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.03317	H701.71	.00285	.00122	.00048	.00073	.00078
SDev	.00004	.65	.00001	.00148	.00049	.00082	.00266
%RSD	.11243	.09303	.19787	121.24	101.31	112.43	342.00
#1	.03314	H701.25	.00285	.00017	.00014	.00015	.00266
#2	.03319	H702.17	.00285	.00227		.00131	00110
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00170	00034	.00134	.00310	00216	.00110	.00308
SDev	.00098	.00059	.00370	.00017	.00160	.00026	.00017
%RSD	57.868	173.80	276.88	5.4081	74.222	23.796	5.4966
#1	.00239	.00008	.00395	.00298	00103	.00092	.00320
#2		00075	00128	.00322	00329	.00129	.00296
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			page 2			
Units ppm Avge .00169 SDev .00024 %RSD 14.282	ppm .00022 .00027 120.06					
#1 .00152 #2 .00187	.00003					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4521 SDev 10.39426 %RSD .2299031	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4528 #2 4514			 	 	 - -	

12/10/04 01:25:14 PM Analysis Report QC Standard page 1

Method: TRACE2 Sample Name: CCV Run Time: 12/10/04 13:20:54 Comment:

•	Mode: Co.	NC COII.	ractor: I					
	Elem Units Avge SDev %RSD	Al3082 ppm 26.610 .076 .28376	As1890 ppm .49828 .00316 .63349	B_2496 ppm .48587 .00000	Ba4934 ppm .50887 .00088 .17219	Be3130 ppm .50298 .00047 .09380	Ca3179 ppm 25.257 .052 .20420	Cd2265 ppm .49630 .00080 .16171
	#1	26.557	.50052	.48587	.50825	.50265	25.220	.49573
	#2	26.664	.49605	.48588	.50948	.50332	25.293	.49686
	Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
	Value	25.000	.50000	.50000	.50000	.50000	25.000	.50000
	Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
	Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.50074	.49732	.52633	25.295	25.533	24.841	.51213
	SDev	.00026	.00010	.00156	.023	.039	.033	.00036
	%RSD	.05119	.01927	.29681	.09062	.15179	.13094	.06998
	#1	.50056	.49725	.52522	25.279	25.505	24.818	.51188
	#2	.50092	.49739	.52743	25.311	25.560	24.864	.51239
	Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
	Value	.50000	.50000	.50000	25.000	25.000	25.000	.50000
	Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
	Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.48357	25.408	.50494	.50040	.49978	.49998	.50516
	SDev	.00056	.175	.00059	.00191	.00439	.00356	.00361
	%RSD	.11485	.68787	.11742	.38079	.87792	.71224	.71434
	#1 #2	.48317 .48396	25.284 25.531	.50452 .50536	.49905 .50175	.49668 .50288	.49747 .50250	.50261
	Errors Value Range	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000
	Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.51650	.50230	.50660	.49490	.50799	.50019	.49259
	SDev	.00231	.00374	.00355	.00068	.00063	.00034	.00108
	%RSD	.44684	.74351	.69987	.13731	.12367	.06868	.21956
	#1	.51813	.49966	.50410	.49442	.50843	.49995	.49182
	#2	.51487	.50494	.50911	.49538	.50754	.50044	.49335
	Errors Value Range	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000
	Elem	Sn1899	Ag3280					

Analysis	Report QC Standard			12/10/04 01:25:14 PM			page 2	
Units Avge SDev %RSD	ppm .51623 .00199 .38647	ppm .49915 .00179 .35865						
#1 #2	.51482 .51764	.49788 .50042		·				
Errors Value Range	QC Pass .50000 10.000	QC Pass .50000 10.000						
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4656 8.538452 .1833963	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	
#1 #2	4650 4662			 	 			

Analysis Report Blank Sample

12/10/04 01:29:37 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: CCB Run Time: 12/10/04 13:25:17

Comment:

Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units Avge	ppm .02576	ppm .00027	ppm .00117	ppm .00017	ppm .00009	ppm .03906	ppm .00014
SDev %RSD	.00015 .58133	.00016 61.379	.00052 44.114	.00000 1.9773	.00000 4.4828	.00071 1.8209	.00007 50.539
#1	.02565	.00038	.00154	.00018		4	
#2	.02587	.00038	.00154	.00018	.00010 .00009	.03956 .03856	.00009 .00019
Errors High	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
Low	04000	00500	00500	00300	00300	04000	00200
Elem Units	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Avge	ppm .00007	ppm .00017	ppm 00012	ppm .02241	ppm .00062	ppm .02738	ppm .00033
SDev %RSD	.00019 255.88	.00004 25.355	.00035 285.90	.00443 19.753	.02792 4515.2	.00139 5.0641	.00002 5.9632
#1	.00021	.00020	.00012	.02553	.02036	.02836	.00032
#2	00006	.00014	00037	.01928	01912	.02640	.00032
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High Low	.00400 00300	.00400 00300	.01000 00400	.05000 04000	.50000 50000	.20000 04000	.00300 00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units Avge	ppm .00007	ppm 01133	ppm .00036	ppm 00101	ppm .00075	ppm .00016	ppm .00070
SDev %RSD	.00062 953.27	.10772 950.41	.00020	.00051	.00037	.00041	.00180
			55.543	50.385	49.025	258.82	257.77
#1 #2	.00051 00038	.06484 08750	.00050 .00022	00065 00138	.00101 .00049	.00045 00013	.00197 00057
Errors	LC Pass	LC Pass	LC Pass	NOCHECK	NOCHECK	LC Pass	LC Pass
High Low	.01000 00300	1.0000 50000	.01000 00300	27.0 000	3.40	.00500	.01500
						00300	01000
Elem Units	Sb2068 ppm	1960/1 ppm	1960/2 ppm	Ti3372 ppm	Tl1908 ppm	V_2924 ppm	Zn2062 ppm
Avge SDev	00046 .00063	00006 .00525	.00108 .00007	.00003 .00028	.00084	.00024	.00011
%RSD	136.39	8442.3	6.8267	1038.7	404.86	83.201	.00000 .78175
#1	00091	.00365	.00113	.00022	.00323	.00038	.00011
#2	00002	00377	.00103	00017	00156	.00010	.00011
Errors High	LC Pass .02000	NOCHECK	NOCHECK	LC Pass	LC Pass	LC Pass	LC Pass
Low	01000			00200	01000	00300	00300
Elem	Sn1899	Ag3280					

Analysis	Report	Blank	Sample	12/10,	/04 01:29:	37 PM	page 2
Units Avge SDev %RSD	ppm .00029 .00030 103.31	ppm .00001 .00005 449.82					
#1 #2	.00050	00002 .00005					
Errors High Low	LC Pass .01000 00500	LC Pass .00300 00300					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4735 3.818308 .0806418	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4732 4738		- <i>-</i> 	 	 		

Analysis Report

12/10/04 01:34:00 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466759

Run Time: 12/10/04 13:29:40

Comment:

I A S	Elem Jnits Avge SDev KRSD	Al3082 ppm .03364 .00090 2.6754	As1890 ppm .01142 .00038 3.3072	B_2496 ppm .73016 .00363 .49709	Ba4934 ppm .63282 .00303 .47892	Be3130 ppm .00004 .00002 33.992	Ca3179 ppm 161.94 .87 .53435	Cd2265 ppm 00005 .00001 17.201
	‡1 ‡2	.03301	.01169 .01115	.73272 .72759	.63496 .63068	.00005	162.55 161.33	00006 00004
Η	Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Pass 30.000 00150
U A S	Elem Jnits Avge BDev KRSD	Co2286 ppm .00022 .00009 39.247	Cr2677 ppm .00342 .00029 8.4396	Cu3247 ppm .00003 .00011 313.15	Fe2714 ppm .65933 .00032 .04863	K_7664 ppm 26.869 .049 .18282	Mg2790 ppm 34.198 .192 .56250	Mn2576 ppm .14864 .00077 .52041
	‡1 ‡2	.00028 .00016	.00322 .00362	00004 .00011	.65911 .65956	26.904 26.834	34.334 34.062	.14918 .14809
Н	Errors Ligh Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
U A S	Elem Units Lvge EDev ERSD	Mo2020 ppm .00060 .00014 23.109	Na3302 ppm H106.64 .18 .16934	Ni2316 ppm .00146 .00012 7.9504	2203/1 ppm 00021 .00086 407.42	2203/2 ppm .00070 .00032 45.004	PB2203 ppm .00040 .00008 19.133	SE1960 ppm 00103 .00088 85.338
	1 2	.00050	H106.51 H106.76	.00138 .00154	.00040 00082	.00048	.00045	00165 00041
H	rrors ligh ow	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
U A S	lem Inits Vge Dev RSD	Sb2068 ppm .00131 .00204 155.99	1960/1 ppm 00230 .00104 45.083	1960/2 ppm 00040 .00184 461.87	Ti3372 ppm .01199 .00020 1.6716	Tl1908 ppm 00400 .00122 30.569	V_2924 ppm .00343 .00002 .59870	Zn2062 ppm .00300 .00015 4.9849
	:1 :2	.00275 00013	00157 00303	00170 .00090	.01213 .01184	00486 00314	.00345	.00290 .00311
Η	rrors igh ow	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
E	lem	Sn1899	Ag3280					

Analysis Repor	t		12/10	/04 01:34:	00 PM	page 2
Units ppm Avge .0007 SDev .0015 %RSD 199.7	4 .00001) · · · · · · · · · · · · · · · · · · ·	
#1000 #2 .0018						
Errors LC Pa High 5.000 Low010	0 2.0000					
IntStd 1 Mode Count Elem Y Wavlen 371.0 Avge 4675 SDev 26.56 %RSD .5683	30 968	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4656 #2 4694	 					

12/10/04 01:38:23 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466760 Run Time: 12/10/04 13:34:03

Comment:

Mode: CC	one corr	. Factor:	L				
Elem Units Avge SDev %RSD	A13082 ppm .78197 .00344 .43965	As1890 ppm .05584 .00170 3.0379	B_2496 ppm .60736 .00154 .25315	Ba4934 ppm 5.5172 .0081 .14739	Be3130 ppm .00084 .00001 1.3927	Ca3179 ppm H705.77 .37	Cd2265 ppm L01258 .00011 .85176
#1 #2	.77954 .78440	.05464	.60628 .60845	5.5115 5.5230	.00085	H706.03 H705.51	L01250 L01265
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Low
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.01315	.06660	.00225	372.16	H158.06	H153.74	H38.728
SDev	.00007	.00007	.00027	.03	.18	.06	.015
%RSD	.56880	.11207	11.833	.00927	.11244	.04215	.03976
#1	.01320	.06666	.00206	372.19	H157.93	H153.79	H38.739
#2	.01310	.06655	.00244	372.14	H158.18	H153.69	H38.717
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC High	LC High
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00478	H2037.4	.01839	00055	.00562	.00357	.01676
SDev	.00034	3.1	.00054	.00233	.00014	.00087	.00134
%RSD	7.0159	.15201	2.9492	420.17	2.5263	24.419	7.9815
#1 #2	00454 L00501	H2035.3 H2039.6	.01800 .01877	.00109 00220	.00573	.00418	.01582 .01771
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908 ppm .04628 .00181 3.9017	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	00119	.03278	.00875	.41965		.07742	.01281
SDev	.00295	.00246	.00324	.00030		.00020	.00005
%RSD	247.83	7.5133	36.995	.07155		.25294	.41407
#1	00328	.03452	.00646	.41944	.04756	.07728	.01278
#2	.00090	.03104	.01104	.41986	.04501	.07756	.01285
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 01:38:2	23 PM	page 2
Units ppm Avge .01210 SDev .00196 %RSD 16.212	ppm .00477 .00003 .61166					
#1 .01071 #2 .01349	.00479 .00475					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4382 SDev 6.523129 %RSD .1488521	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4378 #2 4387					 	

12/10/04 01:42:47 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466761

Run Time: 12/10/04 13:38:27

Comment:

Mode: Co	INC COLL	. Factor: 1	L				
Elem Units Avge SDev %RSD	Al3082 ppm .75470 .00345 .45693	As1890 ppm .05750 .00076 1.3305	B_2496 ppm .58994 .00199 .33725	Ba4934 ppm .16079 .00048 .29574	Be3130 ppm .00089 .00004 4.3437	Ca3179 ppm H489.82 3.38 .68985	Cd2265 ppm 00054 .00000
#1	.75226	.05696	.58853	.16045	.00086	H487.43	00054
#2	.75714	.05805	.59134	.16112	.00092	H492.21	00054
Errors	LC Pass	LC High	LC Pass				
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem Units Avge SDev %RSD	Co2286 ppm .00355 .00019 5.2500	Cr2677 ppm .08973 .00091 1.0181	Cu3247 ppm .00246 .00034 13.998	Fe2714 ppm 6.9806 .0429 .61503	K_7664 ppm H227.82 .82	Mg2790 ppm H208.28 1.59 .76294	Mn2576 ppm 6.4344 .0377 .58643
#1	.00342	.08908	.00222	6.9502	H227.24	H207.16	6.4078
#2	.00369	.09038	.00271	7.0109	H228.40	H209.41	6.4611
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC High	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00339	H4529.6	.02009	.00297	.00086	.00156	.00587
SDev	.00030	8.6	.00020	.00150	.00111	.00024	.00314
%RSD	8.8845	.19049	.97895	50.444	129.07	15.598	53.567
#1 #2	.00360	H4523.5 H4535.7	.01995 .02023	.00403 .00191	.00008	.00139 .00174	.00364 .00809
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00298	.01218	.00271	.99176	00881	.12329	.02062
SDev	.00015	.00218	.00363	.00404	.00164	.00041	.00038
%RSD	5.1060	17.866	133.77	.40787	18.639	.33547	1.8555
#1	.00308	.01064	.00015	.98890	00998	.12300	.02035
#2	.00287	.01372	.00527	.99463	00765	.12358	
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 01:42:	47 PM	page 2
Units ppm Avge .01341 SDev .00022 %RSD 1.6289	ppm .00188 .00042 22.180					
#1 .01357 #2 .01326	.00158 .00217					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4276 SDev 20.04655 %RSD .4687852	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4290 #2 4262		 				

Analysis Report

12/10/04 01:47:11 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466762

Run Time: 12/10/04 13:42:50

Comment:

Mode. Co	DINC COLL	ractor					
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.58165	.00236	2.0164	.01642	.00003	16.219	00014
SDev	.00535	.00029	.0025	.00000	.00001	.028	.00008
%RSD	.92023	12.106	.12264	.00859	33.607	.17215	56.802
#1	.57786	.00257	2.0147	.01641	.00002	16.199	00020
#2	.58543	.00216	2.0182		.00004	16.239	00009
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286 ppm00005 .00033 627.46	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.00066	.00005	.75027	13.532	2.4636	.01162
SDev		.00008	.00000	.00013	.028	.0027	.00000
%RSD		12.573	6.5427	.01758	.20774	.10819	.02169
#1	.00018	.00071	.00005	.75036	13.552	2.4617	.01162
#2	00029	.00060		.75018	13.513	2.4655	.01162
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00907	H301.34	.00060	.00262	00080	.00034	00102
SDev	.00004	.51	.00009	.00127	.00010	.00036	.00132
%RSD	.41916	.16945	14.388	48.436	12.435	105.01	128.88
#1	.00910	H300.98	.00066	.00352	00087	.00059	00195
#2	.00905	H301.70	.00054	.00172	00073	.00009	00009
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00127	.00350	00328	.01755	00197	.00062	.00149
SDev	.00076	.00254	.00070	.00056	.00042	.00015	.00010
%RSD	59.759	72.725	21.388	3.2010	21.152	24.639	6.4099
#1	.00180	.00170	00377	.01795	00226	.00052	.00142
#2	.00073	.00529	00278	.01715	00168	.00073	.00156
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report			12/10/	04 01:47:	L1 PM	page 2
Units Avge SDev %RSD	ppm .00079 .00159 200.24	ppm .00005 .00029 612.39					
#1 #2	.00192 00033	.00025 00016					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4681 19.46305 .4157804	2 NOTUSED 	3 NOTUSED	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4695 4667			 			· .

page 1

12/10/04 01:51:34 PM

Method: TRACE2 Sample Name: AD466763 Operator: SW

Run Time: 12/10/04 13:47:14

Comment:

Mode: CO	NC Corr	. Factor: 1	•				
Elem Units Avge SDev %RSD	Al3082 ppm .51002 .00032 .06246	As1890 ppm .01871 .00131 6.9974	B_2496 ppm .51153 .00006 .01243	Ba4934 ppm .28216 .00005 .01862	Be3130 ppm .00018 .00000	Ca3179 ppm 149.40 .08 .05304	Cd2265 ppm 00014 .00003 22.113
#1 #2	.51025 .50980	.01778 .01964	.51157 .51148	.28219 .28212	.00018	149.34 149.46	00016 00012
Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Pass 30.000 00150
Elem Units Avge SDev %RSD	Co2286 ppm .00052 .00016 31.707	Cr2677 ppm .00357 .00016 4.6168	Cu3247 ppm .00049 .00006 11.523	Fe2714 ppm .98876 .00163 .16451	K_7664 ppm 67.172 .077	Mg2790 ppm 20.887 .010 .04984	Mn2576 ppm .49508 .00015 .02953
#1 #2	.00040	.00369	.00053 .00045	.98991 .98761	67.226 67.117	20.894 20.879	.49498 .49518
Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
Elem Units Avge SDev %RSD	Mo2020 ppm .00131 .00024 18.529	Na3302 ppm H1183.5 .0	Ni2316 ppm .00382 .00028 7.4702	2203/1 ppm .00110 .00109 98.960	2203/2 ppm 00131 .00203 155.10	PB2203 ppm 00051 .00099 195.74	SE1960 ppm 00006 .00130 2044.2
#1 #2	.00113	H1183.5 H1183.5	.00362 .00402	.00033 .00188	.00013	.00019 00121	00098 .00086
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm .00142 .00007 5.1348	1960/1 ppm .00283 .00103 36.461	1960/2 ppm 00151 .00144 95.186	Ti3372 ppm .01700 .00131 7.7167	Tl1908 ppm 00283 .00164 58.006	V_2924 ppm .00806 .00026 3.2246	Zn2062 ppm .00188 .00009 4.8833
#1 #2	.00147 .00137	.00210 .00356	00253 00049	.01793 .01607	00399 00167	.00825 .00788	.00181 .00194
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 01:51:3	34 PM	page 2
Units ppm Avge .00298 SDev .00058 %RSD 19.448	ppm .00060 .00009 14.477					
#1 .00257 #2 .00339	.00054 .00067					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4443 SDev 2.280489 %RSD .0513229	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4445 #2 4442			 		 	

12/10/04 01:55:58 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466764

Run Time: 12/10/04 13:51:37

Comment:

Mode. co	inc coll	. ractor.	L				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	.33724	.01487	.45964	.03749	.00027	241.48	00013
SDev	.00348	.00090	.00114	.00002	.00002	.01	.00008
%RSD	1.0306	6.0556	.24717	.04593	5.9907	.00361	66.736
#1	.33970	.01424	.45884	.03750	.00029	241.49	00007
#2	.33478	.01551	.46044	.03748	.00026	241.47	00019
Errors	LC Pass						
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.00109	.00576	.00436	3.4184	H110.30	57.496	.39860
SDev	.00002	.00025	.00029	.0067	.12	.021	.00027
%RSD	2.1880	4.2840	6.6956	.19564	.11138	.03571	.06672
#1	.00111	.00594	.00456	3.4232	H110.22	57.481	.39841
#2	.00108	.00559	.00415	3.4137	H110.39	57.510	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.00050	H4319.7	.00580	.00267	.00076	.00140	00005
SDev	.00023	6.3	.00012	.00133	.00017	.00056	.00207
%RSD	46.638	.14478	1.9986	49.624	22.335	39.705	4200.0
#1 #2	.00067 .00034	H4315.3 H4324.1	.00572 .00588	.00174 .00361	.00064	.00101	.00141 00151
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.00145	.00319	00167	.00644	00052	.00747	.01345
SDev	.00011	.00296	.00162	.00003	.00255	.00010	.00006
%RSD	7.4542	92.749	97.083	.47867	489.23	1.3582	.48585
#1	.00153	.00529	00052	.00642	.00128	.00755	.01341
#2	.00137	.00110	00282	.00647	00232	.00740	.01350
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Re	eport			12/10/0	04 01:55:58	B PM	page 2
Avge .(SDev .(00371 00024	ppm .00056 .00001 1.5483					
	00387 00354	.00055 .00057					
High 5.	.0000	LC Pass 2.0000 00400					
Elem Y Wavlen 37 Avge 41 SDev 23		2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
	093 126			 			

12/10/04 02:00:21 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466765

Run Time: 12/10/04 13:56:01

Comment:

Mode: CONC Corr. Factor: 1

Elem Sn1899. Ag3280

Mode: Co	one corr	. Factor:	L				
Elem Units Avge SDev %RSD	Al3082 ppm .05691 .00071 1.2514	As1890 ppm .13203 .00141 1.0646	B_2496 ppm .30414 .00073 .24089	Ba4934 ppm 1.1627 .0014 .11661	Be3130 ppm .00018 .00002 10.609	Ca3179 ppm H313.27 .43	Cd2265 ppm L00246 .00015 6.0440
#1	.05741	.13103	.30362	1.1618	.00019	H313.58	L00236
#2	.05640	.13302	.30465	1.1637	.00016	H312.97	L00257
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Low
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem Units Avge SDev %RSD	Co2286 ppm .00616 .00024 3.9609	Cr2677 ppm .01401 .00004 .26233	Cu3247 ppm .00223 .00027 12.243	Fe2714 ppm 63.036 .111 .17626	K_7664 ppm H100.83 .09	Mg2790 ppm 48.616 .060	Mn2576 ppm 4.9323 .0056 .11381
#1	.00633	.01403	.00242	63.115	H100.90	48.659	4.9362
#2	.00599	.01398		62.958	H100.77	48.574	4.9283
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00038	H544.95	.01471	.00149	.00041	.00077	.00468
SDev	.00029	.60	.00018	.00049	.00097	.00081	.00030
%RSD	74.641	.11094	1.2003	32.611	237.68	105.14	6.3740
#1	.00018	H545.38	.01483	.00115	00028	.00020	.00447
#2	.00059	H544.52	.01458	.00183	.00109	.00134	
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00246	.00895	.00255	.03242	.00555	.01610	.01397
SDev	.00088	.00126	.00108	.00008	.00085	.00019	.00002
%RSD	35.969	14.085	42.337	.26001	15.400	1.1911	.15812
#1	.00308	.00985	.00178	.03236	.00615	.01623	.01395
#2	.00183	.00806	.00331	.03248	.00495	.01596	
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300

Analysis Report			12/10/04 02:00:21 PM				
Units ppm Avge .00348 SDev .00012 %RSD 3.3136	ppm .00075 .00003 3.7572					•.	
#1 .00340 #2 .00356	.00073 .00077						
Errors LC Pass High 5.0000 Low01000	2.0000						
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4572 SDev 23.8120 %RSD .520827)3	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	
#1 4555 #2 4589	 						

12/10/04 02:23:37 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466766 Run Time: 12/10/04 14:19:17

Comment:

Elem Units Avge SDev %RSD	Al3082 ppm 00020 .00269 1317.5	As1890 ppm .00089 .00200 225.79	B_2496 ppm 00010 .00037 384.46	Ba4934 ppm .00063 .00006 9.8360	Be3130 ppm 00002 .00001 49.464	Ca3179 ppm .07992 .01499 18.762	Cd2265 ppm 00007 .00009 127.51
#1 #2	00211 .00170	00053 .00230	.00017 00036	.00059	00001 00003	.06932	00001 00013
Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Pass 30.000 00150
Elem Units Avge SDev %RSD	Co2286 ppm 00019 .00009 44.735	Cr2677 ppm .00041 .00028 68.787	Cu3247 ppm 00067 .00003 3.7986	Fe2714 ppm .01560 .00362 23.193	K_7664 ppm .00499 .02362 473.22	Mg2790 ppm .01362 .00309 22.652	Mn2576 ppm .00181 .00014 7.7493
#1 #2	00026 00013	.00021 .00061	00065 00069	.01816 .01304	.02169 01171	.01144 .01580	.00171 .00191
Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
Elem Units Avge SDev %RSD	Mo2020 ppm .00006 .00036 655.41	Na3302 ppm .25104 .08036 32.012	Ni2316 ppm 00016 .00003 21.467	2203/1 ppm .00149 .00094 63.124	2203/2 ppm .00048 .00049 102.23	PB2203 ppm .00082 .00002 1.9169	SE1960 ppm .00012 .00027 220.20
#1 #2	00020 .00031	.19421 .30786	00019 00014	.00215 .00082	.00013	.00081	00007 .00032
Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm .00118 .00155 131.58	1960/1 ppm .00186 .00249 133.49	1960/2 ppm 00075 .00083 111.83	Ti3372 ppm 00004 .00003 78.363	Tl1908 ppm 00390 .00005 1.2302	V_2924 ppm .00003 .00020 688.63	Zn2062 ppm .00032 .00004 13.886
#1 #2	.00227	.00010 .00362	00016 00133	00002 00006	00387 00394	.00017	.00035
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 02:23:3	37 PM	page 2
Units ppm Avge .00115 SDev .00004 %RSD 3.1236	ppm .00019 .00020 106.46					•
#1 .00112 #2 .00117	.00034					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4736 SDev 3.977476 %RSD .0839894	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4733 #2 4738		 	 	 	 	

12/10/04 02:28:01 PM page 1

Operator: SW

Method: TRACE2 Sample Name: AD466741/PB

Run Time: 12/10/04 14:23:40

Comment:

		140001. 1	-				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00099	.00074	.00046	.00001	00000	.01428	.00003
SDev	.00086	.00128	.00044	.00006	.00001	.00051	.00012
%RSD	87.085	173.40	97.746	552.27	483.43	3.5534	432.90
#1	.00038	.00165	.00077	00003	00001	.01464	00006
#2	.00160	00017	.00014	.00006	.00000		.00011
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.20000	.01000	.05000	.00200	.00200	.50000	.00100
Low	04000	00500	00800	00300	00310	05000	00150
Elem Units Avge SDev %RSD	Co2286 ppm00026 .00010 40.024	Cr2677 ppm00021 .00001 3.4840	Cu3247 ppm 00063 .00029 46.089	Fe2714 ppm .00200 .00121 60.620	K_7664 ppm 00586 .01461 249.44	Mg2790 ppm .00282 .00206 72.896	Mn2576 ppm .00016 .00000 .10183
#1	00033	00021	00084	.00114	.00447	.00137	.00016
#2	00019	00020	00043	.00285	01618	.00428	.00016
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.00200	.01000	.05000	.50000	.20000	.00300
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00053	00113	.00014	.00109	.00034	.00059	.00094
SDev	.00008	.02443	.00012	.00125	.00189	.00084	.00135
%RSD	15.616	2171.1	82.833	114.86	550.16	142.41	142.77
#1	00059	01840	.00006	.00020	.00168	.00119	.00190
#2	00047	.01615	.00023	.00197	00099	00000	00001
Errors High Low	LC Pass .01000 00500	LC Pass 1.0000 50000	LC Pass .10000 00300	NOCHECK	NOCHECK	LC Pass .00600 00400	LC Pass .01500 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00105	.00430	00073	00013	00309	00008	.00017
SDev	.00009	.00292	.00348	.00002	.00099	.00005	.00000
%RSD	8.7984	68.008	474.80	17.782	31.917	65.515	.40616
#1 #2	00112 00099	.00223 .00636	.00173	00015 00012	00239 00378	00004 00011	.00017
Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .01000 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .02000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 02:28:0	O1 PM	page 2
Units ppm Avge .00044 SDev .00154 %RSD 353.75	ppm .00008 .00009 110.07					
#100065 #2 .00153	.00015					
Errors LC Pass High .01000 Low01000	LC Pass .00300 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4711 SDev 3.023158 %RSD .0641773	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4713 #2 4708			 ,		 	

Method: TRACE2 Sample Name: AD466740/FB Run Time: 12/10/04 14:28:04

Comment:

•			raccor. r					
	Elem Units Avge SDev %RSD	Al3082 ppm 10.685 .002 .02195	As1890 ppm .21192 .00116 .54646	B_2496 ppm .20180 .00076 .37773	Ba4934 ppm .20710 .00013 .06150	Be3130 ppm .20892 .00015 .07130	Ca3179 ppm 10.467 .004 .04211	Cd2265 ppm .20891 .00009 .04213
	#1 #2	10.686 10.683	.21110 .21274	.20234 .20126	.20719 .20701	.20903	10.470 10.463	.20885 .20898
	Errors High Low	LC Pass 11.500 8.5000	LC Pass .23000 .17000	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass 11.500 8.5000	LC Pass .23000 .17000
	Elem Units Avge SDev %RSD	Co2286 ppm .20718 .00034 .16644	Cr2677 ppm .20627 .00005 .02556	Cu3247 ppm .20701 .00017 .08361	Fe2714 ppm .42883 .00275 .64108	K_7664 ppm 10.756 .026 .24197	Mg2790 ppm 10.324 .001 .01230	Mn2576 ppm .20738 .00023 .11305
	#1 #2	.20742 .20693	.20624 .20631	.20714 .20689	.43077 .42688	10.774 10.737	10.325 10.323	.20754 .20721
	Errors High Low	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .46000 .34000	LC Pass 11.500 8.5000	LC Pass 11.500 8.5000	LC Pass .23000 .17000
	Elem Units Avge SDev %RSD	Mo2020 ppm .20251 .00005 .02292	Na3302 ppm 10.340 .131 1.2695	Ni2316 ppm .20866 .00011 .05096	2203/1 ppm .20789 .00145 .69817	2203/2 ppm .20882 .00003 .01495	PB2203 ppm .20851 .00046 .22181	SE1960 ppm .20780 .00003 .01218
	#1 #2	.20248	10.433 10.248	.20859 .20874	.20891	.20880 .20884	.20884	.20782 .20779
	Errors High Low	LC Pass .23000 .17000	LC Pass 11.500 8.5000	LC Pass .23000 .17000	NOCHECK	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000
	Elem Units Avge SDev %RSD	Sb2068 ppm .21216 .00074 .34883	1960/1 ppm .20730 .00421 2.0314	1960/2 ppm .20806 .00214 1.0303	Ti3372 ppm .19905 .00009 .04248	Tl1908 ppm .21383 .00097 .45571	V_2924 ppm .20802 .00014 .06796	Zn2062 ppm .20361 .00016 .07714
	#1 #2	.21164 .21269	.20433 .21028	.20957 .20654	.19911 .19899	.21314 .21452	.20812 .20792	.20373
	Errors High Low	LC Pass .23000 .17000	NOCHECK	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000
	Elem	Sn1899	Ag3280					

Analysis 1	Report			12/10/6	04 02:32:2	4 PM	page 2
Avge SDev	ppm .21063 .00057 .27190	ppm .05108 .00007 .13272					
	.21022 .21103	.05103					
High	LC Pass .23000 .17000	LC Pass .05750 .04250					
Mode Elem Wavlen Avge SDev	1 Counts Y 371.030 4706 21.26603 .4518714	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
**	4691 4721	 	 			 	

Analysis Report QC Standard 12/10/04 02:38:07 PM page 1

Method: TRACE2 Sample Name: CCV Run Time: 12/10/04 14:33:47

Comment:

Mode: CC	MC COII.	ractor: .	L				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm 25.544 .079 .30939	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	26.754	.50342	.48738	.51265	.50753		.50037
SDev	.044	.00382	.00221	.00199	.00167		.00178
%RSD	.16511	.75965	.45391	.38840	.32816		.35480
#1	26.722	.50071	.48581	.51124	.50636	25.489	.49912
#2	26.785	.50612	.48894	.51406	.50871	25.600	.50163
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	25.000	.50000	.50000	.50000	.50000	25.000	.50000
Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.50432	.50095	.52926	25.482	25.501	25.139	.51752
SDev	.00184	.00161	.00115	.061	.032	.057	.00167
%RSD	.36511	.32121	.21661	.24133	.12403	.22592	.32163
#1	.50301	.49981	.52845	25.438	25.478	25.099	.51634
#2	.50562	.50209	.53007	25.525	25.523	25.179	.51870
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	.50000	.50000	.50000	25.000	25.000	25.000	.50000
Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Elem Units Avge SDev %RSD	Mo2020 ppm .48688 .00039 .08035	Na3302 ppm 25.383 .055 .21821	Ni2316 ppm .50916 .00211 .41475	2203/1 ppm .50094 .00101 .20154	2203/2 ppm .50663 .00418	PB2203 ppm .50473 .00313 .61913	SE1960 ppm .51213 .00198 .38750
#1	.48660	25.344	.50767	.50023	.50367	.50252	.51353
#2	.48716	25.422	.51066	.50165	.50958	.50694	.51073
Errors Value Range	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.52290	.51141	.51250	.50029	.51898	.50350	.49745
SDev	.00019	.00370	.00113	.00164	.00352	.00187	.00149
%RSD	.03570	.72279	.22021	.32826	.67786	.37228	.29938
#1	.52303	.51402	.51330	.49913	.51649	.50217	.49640
#2	.52277	.50880	.51170	.50145	.52147	.50482	.49851
Errors Value Range	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sn1899	Ag3280					

Analysis	Report	QC Star	ndard	12/10,	/04 02:38:0	07 PM	page 2
Units Avge SDev %RSD	ppm .52092 .00281 .53891	ppm .50342 .00061 .12163					
#1 #2	.51894 .52291	.50298 .50385					
Errors Value Range	QC Pass .50000 10.000	QC Pass .50000 10.000					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4633 13.04591 .2815791	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4642 4624	 			 	 ,	· · · · · · · · · · · · · · · · · ·

Analysis Report Blank Sample 12/10/04 02:42:30 PM page 1

Method: TRACE2 Sample Name: CCB Run Time: 12/10/04 14:38:10

Comment:

1	Mode. co	NC COII.	ractor: 1					
	Elem Units Avge SDev %RSD	A13082 ppm .02515 .00015 .57452	As1890 ppm .00148 .00085 57.203	B_2496 ppm .00096 .00089 92.112	Ba4934 ppm .00022 .00001 6.1200	Be3130 ppm .00016 .00000 1.0208	Ca3179 ppm .03733 .00019 .50702	Cd2265 ppm .00013 .00006 46.285
	#1 #2	.02505 .02526	.00088	.00159 .00034	.00023 .00021	.00016 .00016	.03747	.00017
	Errors High Low	LC Pass .20000 04000	LC Pass .01000 00500	LC Pass .05000 00500	LC Pass .00200 00300	LC Pass .00200 00300	LC Pass .50000 04000	LC Pass .00100 00200
	Elem Units Avge SDev %RSD	Co2286 ppm .00019 .00009 45.273	Cr2677 ppm .00004 .00004 91.742	Cu3247 ppm .00015 .00009 59.121	Fe2714 ppm .01955 .00327 16.735	K_7664 ppm .00432 .02819 652.76	Mg2790 ppm .02705 .00160 5.9070	Mn2576 ppm .00049 .00001 1.9768
	#1 #2	.00025 .00013	.00001	.00009	.02186 .01724	.02425 01562	.02818	.00049 .00050
	Errors High Low	LC Pass .0040000300	LC Pass .00400 00300	LC Pass .01000 00400	LC Pass .05000 04000	LC Pass .50000 50000	LC Pass .20000 04000	LC Pass .00300
	Elem Units Avge SDev %RSD	Mo2020 ppm 00022 .00044 197.23	Na3302 ppm .14308 .03575 24.985	Ni2316 ppm .00049 .00001 2.2597	2203/1 ppm .00010 .00061 578.48	2203/2 ppm .00055 .00009 16.564	PB2203 ppm .00040 .00014 35.138	SE1960 ppm 00200 .00196 98.019
	#1 #2	.00009 00053	.16835 .11780	.00049	00032 .00053	.00061 .00048	.00030	00339 00062
	Errors High Low	LC Pass .0100000300	LC Pass 1.0000 50000	LC Pass .0100000300	NOCHECK	NOCHECK	LC Pass .00500 00300	LC Pass .01500 01000
	Elem Units Avge SDev %RSD	Sb2068 ppm .00089 .00173 195.46	1960/1 ppm 00253 .00070 27.831	1960/2 ppm 00174 .00259 149.05	Ti3372 ppm .00017 .00004 21.707	Tl1908 ppm 00203 .00202 99.348	V_2924 ppm .00039 .00000 .17291	Zn2062 ppm .00006 .00009 143.97
	#1 #2	00034 .00211	00303 00203	00358 .00009	.00020 .00015	00060 00345	.00039	.00012
	Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .00500 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .02000
	Elem	Sn1899	Ag3280					

Analysis	Report	Blank S	Sample	12/10	/04 02:42:3	30 PM	page 2
Units Avge SDev %RSD	ppm .00213 .00011 5.0013	ppm .00044 .00003 7.0391					
#1 #2	.00221	.00042					
Errors High Low	LC Pass .01000 00500	LC Pass .00300 00300					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4666 4.242641 .0909170	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4664 4670						

12/10/04 02:46:54 PM page 1

Operator: SW

Method: TRACE2 Sample Name: AD466727 Run Time: 12/10/04 14:42:33

Comment:

			-				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00170	.00013	2.4740	.60389	.00039	H397.65	00003
SDev	.00076	.00040	.0044	.00012	.00001	.29	.00007
%RSD	44.833	310.09	.17836	.01985	1.3978	.07190	238.11
#1 #2	.00116	00015 .00041	2.4709 2.4772	.60397 .60380	.00039	H397.44 H397.85	.00002 00008
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286 ppm .00107 .00002 1.8632	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.00030	.00063	1.8818	82.577	71.253	.47579
SDev		.00011	.00017	.0043	.110	.045	.00063
%RSD		35.942	27.850	.22617	.13379	.06269	.13182
#1	.00109	.00038	.00075	1.8788	82.499	71.221	.47535
#2	.00106		.00050	1.8848	82.655	71.285	.47624
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00315	H3769.1	.00247	00175	.00038	00033	00147
SDev	.00014	2.2	.00030	.00205	.00018	.00056	.00096
%RSD	4.3454	.05737	12.237	117.39	48.172	170.74	65.354
#1 #2	.00305	H3767.5 H3770.6	.00268 .00225	00030 00320	.00025 .00051	.00007	00079 00215
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm .00006 .00076 1188.0	1960/1 ppm .00013 .00059 442.62	1960/2 ppm 00228 .00174 76.364	Ti3372 ppm 00046 .00007 15.018	Tl1908 ppm 00186 .00152 81.807	V_2924 ppm 00026 .00041 157.21	Zn2062 ppm .00100 .00000
#1	.00061	00028	00105	00051	00078	00054	.00100
#2	00048	.00055	00350	00042	00293	.00003	.00100
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report			12/10,	/04 02:46:	54 PM	page 2
Units Avge SDev %RSD	ppm .00127 .00027 21.363	ppm 00002 .00006 253.11					
#1 #2	.00146	00007 .00002					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4056 1.113659 .0274558	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4057 4055			 		·	

Method: TRACE2 Sample Name: AD466727/L (1:5) Operator: SW

Run Time: 12/10/04 14:46:57

Comment:

			-				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	.01169	.00115	.48008	.12081	.00016	88.178	00005
SDev	.00101	.00197	.00299	.00028	.00001	.176	.00002
%RSD	8.6026	171.48	.62255	.23014	5.6769	.20012	44.194
#1	.01098	.00255	.47797	.12061	.00017	88.053	00006
#2	.01240	00024	.48220	.12101	.00015	88.302	00003
Errors	LC Pass						
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.00001	00004	.00015	.39417	14.041	14.430	.09697
SDev	.00004	.00015	.00012	.00584	.016	.046	.00016
%RSD	289.76	403.26	77.633	1.4823	.11345	.32028	.16855
#1	00001	00014	.00007	.39004	14.030	14.397	.09686
#2	.00004	.00007	.00024	.39830	14.052	14.463	
Errors	LC Pass						
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.00063	H779.35	.00047	.00117	00093	00023	00277
SDev	.00005	.92	.00025	.00016	.00058	.00034	.00152
%RSD	7.8643	.11769	54.060	13.304	63.040	148.06	54.787
#1	.00067	H778.70	.00029	.00128	00134	00047	00170
#2	.00060	H780.00	.00064	.00106	00051	.00001	00384
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.00132	00280	00275	.00013	00208	00004	.00019
SDev	.00018	.00433	.00011	.00001	.00007	.00011	.00009
%RSD	13.359	154.77	4.0302	4.3536	3.5417	271.61	46.222
#1 #2	.00144	.00026 00586	00268 00283	.00013 .00013	00213 00202	.00004	.00013 .00025
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280				•	

Analysis Report		12/10,	/04 02:51:3	17 PM	page 2	
Units ppm Avge .00157 SDev .00015 %RSD 9.3229	ppm .00004 .00038 903.72					
#1 .00146 #2 .00167	.00031 00023					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4441 SDev 11.29575 %RSD .2543724	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4433 #2 4449			· 		 	

12/10/04 02:55:40 PM page 1

Method: TRACE2 Sample Name: AD466727/PS Operator: SW

Run Time: 12/10/04 14:51:20

Comment:

,	Mode: CO	NC Corr	. Factor: 1					
	Elem Units Avge SDev %RSD	Al3082 ppm 10.728 .012 .11480	As1890 ppm .22444 .00024 .10918	B_2496 ppm 2.6126 .0053 .20249	Ba4934 ppm .78583 .00095 .12130	Be3130 ppm .20285 .00030 .14665	Ca3179 ppm H391.39 .67 .17143	Cd2265 ppm .19801 .00001 .00372
	#1 #2	10.737 10.719	.22461	2.6088 2.6163	.78516 .78651	.20264	H390.91 H391.86	.19800 .19801
	Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC High 300.00 05000	LC Pass 30.000 00150
	Elem Units Avge SDev %RSD	Co2286 ppm .20447 .00030 .14627	Cr2677 ppm .20188 .00027 .13380	Cu3247 ppm .22310 .00001 .00528	Fe2714 ppm 2.2187 .0001 .00574	K_7664 ppm 93.322 .008	Mg2790 ppm 78.655 .112 .14185	Mn2576 ppm .66238 .00061 .09196
	#1 #2	.20468 .20426	.20169 .20207	.22309 .22311	2.2188 2.2186	93.317 93.328	78.576 78.734	.66195 .66281
	Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
	Elem Units Avge SDev %RSD	Mo2020 ppm .21033 .00090 .42846	Na3302 ppm H3645.6 2.4 .06662	Ni2316 ppm .19911 .00026 .12892	2203/1 ppm .20246 .00060 .29853	2203/2 ppm .20287 .00084 .41627	PB2203 ppm .20273 .00036 .17857	SE1960 ppm .22526 .00159 .70359
	#1 #2	.20969 .21097	H3647.3 H3643.9	.19929 .19893	.20203	.20346	.20299	.22414 .22638
	Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
	Elem Units Avge SDev %RSD	Sb2068 ppm .22640 .00324 1.4304	1960/1 ppm .22342 .00481 2.1529	1960/2 ppm .22618 .00003 .01222	Ti3372 ppm .20319 .00043 .21081	Tl1908 ppm .20413 .00134 .65395	V_2924 ppm .20463 .00007 .03283	Zn2062 ppm .20168 .00065 .32067
	#1 #2	.22411 .22869	.22002 .22682	.22620 .22616	.20289 .20350	.20318 .20507	.20468 .20458	.20122 .20213
	Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
	Elem	Sn1899	Ag3280					

Analysis	Report			12/10/	04 02:55:4	O PM	page 2
Units Avge SDev %RSD	ppm .21666 .00025 .11611	ppm .05670 .00023 .40804					
#1 #2	.21648 .21684	.05654 .05686					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4129 3.659139 .0886170	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4127 4132				 , ,	 	

12/10/04 03:00:04 PM page 1

Operator: SW

Method: TRACE2 Sample Name: AD466728/MS

Run Time: 12/10/04 14:55:43

Comment:

Mode: CC	INC COLL	. Factor:	<u>L</u>				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	2.1228	.04471	2.4122	2.5813	.04848	H387.88	.04727
SDev	.0042	.00155	.0028	.0009	.00005	.46	.00013
%RSD	.19565	3.4640	.11706	.03348	.10112	.11956	.28100
#1	2.1198	.04581	2.4142	2.5819	.04845	H387.56	.04718
#2	2.1257	.04362	2.4102	2.5807	.04852	H388.21	.04737
Errors	LC Pass	LC High	LC Pass				
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem Units Avge SDev %RSD	Co2286 ppm .48978 .00034 .06942	Cr2677 ppm .18850 .00052 .27372	Cu3247 ppm .26664 .00028 .10465	Fe2714 ppm 2.7898 .0114 .40957	K_7664 ppm 80.514 .036	Mg2790 ppm 69.126 .099 .14288	Mn2576 ppm .94497 .00079 .08377
#1	.48953	.18813	.26644	2.7817	80.540	69.056	.94441
#2	.49002	.18886	.26684	2.7978	80.489	69.196	.94553
Errors	LC Pass						
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem Units Avge SDev %RSD	Mo2020 ppm .00337 .00028 8.3079	Na3302 ppm H3677.5 .7	Ni2316 ppm .48189 .00061 .12715	2203/1 ppm .01925 .00183 9.5239	2203/2 ppm .01987 .00093 4.7058	PB2203 ppm .01966 .00001 .06803	SE1960 ppm .05280 .00102 1.9348
#1	.00357	H3678.0	.48145	.02054	.01921	.01965	.05208
#2	.00317	H3677.0	.48232	.01795	.02053	.01967	.05352
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm .11126 .00073 .65704	1960/1 ppm .05422 .00022 .40342	1960/2 ppm .05209 .00164 3.1518	Ti3372 ppm 00044 .00000	Tl1908 ppm .04666 .00124 2.6539	V_2924 ppm .50013 .00001 .00265	Zn2062 ppm .47772 .00179 .37496
#1	.11074	.05438	.05093	00044	.04578	.50014	.47645
#2	.11178	.05407	.05325	00044	.04754	.50012	
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 03:00:	04 PM	page 2
Units ppm Avge .00201 SDev .00077 %RSD 38.371	ppm .05428 .00002 .03125					
#1 .00147 #2 .00256	.05429					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4102 SDev 3.181981 %RSD .0775776	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED :
#1 4104 #2 4099	 			 		

12/10/04 03:04:27 PM page 1

Operator: SW

Method: TRACE2 Sample Name: AD466729/SD

Run Time: 12/10/04 15:00:07

Comment:

Mode: Co	NC COLI	. ractor: 3	L				
Elem Units Avge SDev %RSD	Al3082 ppm 2.1068 .0055 .25903	As1890 ppm .04427 .00197 4.4575	B_2496 ppm 2.3854 .0042 .17452	Ba4934 ppm 2.5656 .0012 .04616	Be3130 ppm .04818 .00006 .12357	Ca3179 ppm H383.92 .29	Cd2265 ppm .04684 .00005 .11556
#1 #2	2.1030 2.1107	.04567	2.3825 2.3884	2.5648 2.5664	.04814 .04822	H383.72 H384.12	.04680 .04688
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.48753	.18802	.26428	2.7687	79.839	68.383	.93857
SDev	.00027	.00007	.00099	.0044	.188	.062	.00125
%RSD	.05610	.03883	.37611	.16071	.23507	.09085	.13354
#1	.48734	.18807	.26358	2.7656	79.706	68.339	.93768
#2	.48773	.18797	.26499	2.7719	79.971	68.427	.93945
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00246	H3641.3	.47967	.01688	.02129	.01982	.05343
SDev	.00005	6.9	.00008	.00026	.00114	.00085	.00067
%RSD	2.1699	.18819	.01574	1.5375	5.3744	4.2863	1.2617
#1 #2	.00250	H3636.4 H3646.1	.47962 .47973	.01670 .01707	.02048 .02210	.01922	.05296 .05391
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.10866	.05461	.05285	00083	.04548	.49734	.47539
SDev	.00009	.00200	.00201	.00008	.00199	.00051	.00031
%RSD	.08025	3.6720	3.8106	9.3608	4.3685	.10148	.06466
#1	.10872	.05603	.05142	00088	.04407	.49698	.47518
#2	.10860	.05319	.05427	00077	.04688	.49770	.47561
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

-	Report			12,10	/04 03:04:	27 111	page	_
Units Avge SDev %RSD	ppm .00131 .00122 92.498	ppm .05368 .00076 1.4071						
#1 #2	.00045 .00217	.05314 .05421						
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400						
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4105 1.803330 .0439271	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	3
#1 #2	4107 4104		 				 	

390/481

Analysis Report

12/10/04 03:08:51 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466730

Run Time: 12/10/04 15:04:30

Comment:

ľ	node: Coi	NC Corr	. Factor: 1	•				
	Elem Units Avge SDev %RSD	Al3082 ppm 9.0934 .0152 .16665	As1890 ppm .03803 .00041 1.0685	B_2496 ppm .66428 .00013 .01970	Ba4934 ppm .55430 .00001 .00124	Be3130 ppm .00215 .00001 .46983	Ca3179 ppm H480.31 .42 .08737	Cd2265 ppm L00524 .00002 .31318
	#1 #2	9.0827 9.1041	.03774	.66419 .66438	.55430 .55431	.00215 .00216	H480.01 H480.61	L00523 L00525
	Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC High 300.00 05000	LC Low 30.000 00150
	Elem Units Avge SDev %RSD	Co2286 ppm .02851 .00032 1.1245	Cr2677 ppm .16903 .00053 .31314	Cu3247 ppm .00112 .00010 9.2363	Fe2714 ppm 151.58 .16 .10634	K_7664 ppm H360.51 1.01 .28096	Mg2790 ppm H120.13 .14 .11723	Mn2576 ppm 12.548 .008 .06766
	#1 #2	.02829 .02874	.16866 .16941	.00105	151.46 151.69	H359.80 H361.23	H120.03 H120.23	12.542 12.554
	Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC High 100.00 50000	LC High 100.00 04000	LC Pass 20.000 00300
	Elem Units Avge SDev %RSD	Mo2020 ppm .01374 .00025 1.8096	Na3302 ppm H591.16 1.85 .31347	Ni2316 ppm .08098 .00037 .45706	2203/1 ppm .00092 .00114 124.36	2203/2 ppm .00326 .00031 9.5745	PB2203 ppm .00248 .00017 6.9475	SE1960 ppm .01237 .00321 25.991
	#1 #2	.01356 .01391	H589.85 H592.47	.08072 .08124	.00173 .00011	.00304	.00261 .00236	.01464 .01010
	Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
	Elem Units Avge SDev %RSD	Sb2068 ppm .00054 .00332 614.51	1960/1 ppm .02076 .00259 12.475	1960/2 ppm .00818 .00353 43.149	Ti3372 ppm .58113 .00007 .01139	Tl1908 ppm .01365 .00015 1.0944	V_2924 ppm .09817 .00007 .07138	Zn2062 ppm .62495 .00082 .13154
	#1 #2	00181 .00289	.02259 .01893	.01067 .00568	.58117 .58108	.01375 .01354	.09822	.62437 .62553
	Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
	Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 03:08:	51 PM	page 2
Units ppm Avge .01696 SDev .00049 %RSD 2.8871	ppm .00236 .00049 20.753					
#1 .01731 #2 .01661	.00201 .00271					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4665 SDev 3.871479 %RSD .0829826	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4668 #2 4663			- - 		 	·

12/10/04 03:13:14 PM

page 1

Operator: SW

Method: TRACE2 Sample Name: AD466731 Run Time: 12/10/04 15:08:54

Comment:

Mode: CO	NC Corr	r. Factor: 1	_				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm 160.40 .44 .27491	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	.01229	.00973	.73193	.63163	.00007		00007
SDev	.00100	.00092	.00328	.00173	.00000		.00009
%RSD	8.1423	9.4612	.44770	.27465	5.5951		120.64
#1	.01158	.00908	.72962	.63040	.00006	160.09	00014
#2	.01300	.01038	.73425	.63286		160.71	00001
Errors	LC Pass	LC Pass					
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00021	.00319	00012	.22463	26.627	34.166	.14461
SDev	.00000	.00013	.00018	.00790	.027	.093	.00034
%RSD	.11575	3.9589	158.96	3.5179	.10139	.27152	.23612
#1	.00021	.00310	00025	.21905	26.607	34.101	.14437
#2	.00021	.00328	.00001	.23022	26.646	34.232	.14485
Errors	LC Pass	LC Pass					
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00034	H105.30	.00128	.00077	00042	00002	.00045
SDev	.00023	.12	.00052	.00353	.00021	.00132	.00079
%RSD	66.846	.11022	40.472	456.26	50.264	6281.8	176.96
#1	.00018	H105.38	.00091	.00327	00027	.00091	00011
#2		H105.22	.00165	00172	00057	00095	.00101
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00103	.00469	00167	.01028	00301	.00329	.00076
SDev	.00348	.00296	.00267	.00025	.00003	.00030	.00004
%RSD	337.17	63.132	159.52	2.4196	.87609	9.0519	5.4718
#1	.00349	.00678	00356	.01046	00303	.00308	.00073
#2	00143	.00259	.00021	.01010	00299		.00079
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 03:13:3	14 PM	page 2
Units ppm Avge .00000 SDev .00024 %RSD 22957.	ppm .00036 .00082 225.34					
#1 .00017 #200017	.00094 00022					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4685 SDev 4.189815 %RSD .0894364	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4682 #2 4688				 		

394/481

Analysis Report

12/10/04 03:17:38 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466732

Run Time: 12/10/04 15:13:18

Comment:

			_				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm 68.106 .144 .21139	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	.01520	.00388	1.8187	.08676	.00009		.00001
SDev	.00065	.00115	.0002	.00002	.00002		.00012
%RSD	4.2782	29.674	.01176	.02089	26.036		1062.2
#1	.01474	.00307	1.8188	.08675	.00008	68.004	00007
#2	.01566	.00470	1.8185	.08677		68.208	.00010
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286 ppm .00044 .00002 4.1108	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.00045	.00100	1.0966	42.572	12.841	.04994
SDev		.00030	.00024	.0097	.013	.035	.00021
%RSD		66.328	23.657	.88099	.03166	.26968	.42608
#1	.00043	.00024	.00083	1.0898	42.581	12.816	.04978
#2	.00046		.00117	1.1034	42.562	12.865	.05009
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.03393	H687.38	.00190	00097	.00002	00031	.00097
SDev	.00012	1.06	.00039	.00066	.00049	.00010	.00142
%RSD	.36310	.15357	20.349	68.072	2719.5	33.096	145.73
#1	.03384	H688.13	.00163	00050	00033	00039	00003
#2	.03401	H686.64	.00217	00144	.00036	00024	.00197
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00195	.00069	.00111	.00000	00370	.00080	.00101
SDev	.00176	.00145	.00140	.00005	.00146	.00026	.00027
%RSD	90.083	211.20	125.57	5516.3	39.619	32.780	27.070
#1 #2	.00071	00034 .00171	.00012 .00210	00004 .00004	00266 00473	.00061 .00099	.00081
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report			12/10,	/04 03:17:	38 PM	page 2
Units Avge SDev %RSD	ppm .00132 .00007 5.4191	ppm .00021 .00026 119.28					
#1 #2	.00137 .00127	.00003					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4552 19.35705 .4252555	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED

#1 #2 4566 4538

Method: TRACE2 Sample Name: AD466733 Run Time: 12/10/04 15:17:41

Comment:

iouc. co.	INC COLL	· ractor. I					
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.65424	.04529	.54638	5.1494	.00079	H658.04	L01113
SDev	.00222	.00055	.00192	.0089	.00001	.68	.00019
%RSD	.33983	1.2170	.35214	.17208	1.0223	.10278	1.7181
#1	.65581	.04568	.54774	5.1556	.00078	H657.57	L01126
#2	.65267	.04490	.54502	5.1431		H658.52	L01099
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Low
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem Units Avge SDev %RSD	Co2286 ppm .01140 .00004 .38942	Cr2677 ppm .05955 .00021 .35181	Cu3247 ppm .00026 .00020 74.932	Fe2714 ppm 338.61 .07	K_7664 ppm H143.23 .46 .32074	Mg2790 ppm H139.07 .01	Mn2576 ppm H35.785 .012 .03253
#1 #2	.01143 .01137	.05940	.00012	338.57 338.66	H143.55 H142.90	H139.06 H139.08	H35.777 H35.793
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC High	LC High
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00419	H1830.4	.01615	.00018	.00606	.00410	.01798
SDev	.00009	8.9	.00021	.00187	.00073	.00014	.00058
%RSD	2.0756	.48835	1.2997	1064.5	12.050	3.3503	3.2120
#1	00425	H1836.7	.01600	.00150	.00554	.00420	.01757
#2	00413	H1824.1	.01630	00115	.00657		.01839
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00114	.03174	.01110	.32589	.04133	.06585	.00871
SDev	.00105	.00124	.00149	.00043	.00070	.00019	.00001
%RSD	91.656	3.9125	13.404	.13274	1.6875	.28297	.06448
#1	00040	.03262	.01004	.32619	.04084	.06572	.00872
#2	00188	.03087	.01215	.32558	.04182	.06598	.00871
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					
	Elem Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge %RSD #1 #2 Errors High Low Elem Units SDev %RSD #1 #2 Errors How Elem Units Avge %RSD #1 #2 Errors High Low Elem Units SDev %RSD #1 #2 Errors High Low Elem Units Avge %RSD #1 #2 Errors High Low Elem Units Avge %RSD #1 #2 Errors High Low Elem Units Avge %RSD #1 #2 Errors High Low Units Avge %RSD	Elem Al3082 Units ppm Avge .65424 SDev .00222 %RSD .33983 #1 .65581 #2 .65267 Errors LC Pass High 500.00 Low04000 Elem Co2286 Units ppm Avge .01140 SDev .00004 %RSD .38942 #1 .01143 #2 .01137 Errors LC Pass High 40.000 Low00300 Elem Mo2020 Units ppm Avge .00419 SDev .00009 %RSD 2.0756 #100425 #200413 Errors LC Pass High 10.000 Low00500 Elem Sb2068 Units ppm Avge00114 SDev .00105 %RSD 91.656 #10004000105 %RSD 91.656 #100040001000 Errors LC Pass High 10.000 Low00500	Elem Al3082 As1890 Units ppm ppm Avge .65424 .04529 SDev .00222 .00055 %RSD .33983 1.2170 #1 .65581 .04568 #2 .65267 .04490 Errors LC Pass LC Pass High 500.00 20.000 Low0400000500 Elem Co2286 Cr2677 Units ppm ppm Avge .01140 .05955 SDev .00004 .00021 %RSD .38942 .35181 #1 .01143 .05940 #2 .01137 .05969 Errors LC Pass LC Pass High 40.000 40.000 Low0030000300 Elem Mo2020 Na3302 Units ppm ppm Avge00419 H1830.4 SDev .00009 8.9 %RSD 2.0756 .48835 #100425 H1836.7 #200413 H1824.1 Errors LC Pass LC High High 10.000 100.00 Low0050050000 Elem Sb2068 1960/1 Units ppm ppm Avge00114 .03174 SDev .00105 .00124 %RSD 91.656 3.9125 #100040 .03262 #200188 .03087 Errors LC Pass High 50.000 Low01000	Elem Al3082 As1890 B_2496 ppm ppm ppm Avge .65424 .04529 .54638 SDev .00222 .00055 .00192 %RSD .33983 1.2170 .35214 #1 .65581 .04568 .54774 #2 .65267 .04490 .54502 Errors LC Pass LC Pass LC Pass High 500.00 20.000 50.000 Low040000050000800 Elem Co2286 Cr2677 Cu3247 ppm ppm ppm Avge .01140 .05955 .00026 %RSD .38942 .35181 74.932 #1 .01143 .05940 .00012 %RSD .38942 .35181 74.932 #1 .01143 .05969 .00040 Elem Mo2020 Na3302 Ni2316 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Elem Al3082 As1890 B_2496 Ba4934 Units ppm ppm ppm ppm ppm ppm Avge .65424 .04529 .54638 5.1494 SDev .00222 .00055 .00192 .0089 %RSD .33983 1.2170 .35214 .17208 #1 .65581 .04568 .54774 5.1556 #2 .65267 .04490 .54502 5.1431 Errors LC Pass	Elem Al3082 As1890 B_2496 Ba4934 Be3130 Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Elem

Analysis	Report			12/10,	/04 03:22:0	02 PM	page 2
Units Avge SDev %RSD	ppm .01077 .00022 2.0895	ppm .00420 .00012 2.8193					
#1 #2	.01092 .01061	.00428 .00412					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4333 4.719799 .1089227	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED

#1

#2

4336

4330

398/481

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466734

Run Time: 12/10/04 15:22:05

Comment:

			_				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.68752	.04573	.59280	.15751	.00087	H490.35	00033
SDev	.00366	.00114	.00285	.00014	.00003	2.59	.00019
%RSD	.53309	2.5003	.48159	.09084	2.9332	.52806	58.568
#1 #2	.68493 .69011	.04492 .04654	.59078 .59482	.15741	.00085	H488.52 H492.18	00047 00019
Errors	LC Pass	LC High	LC Pass				
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00356	.08852	.00114	4.4339	H225.98	H208.36	6.4240
SDev	.00044	.00053	.00043	.0151	.34	1.26	.0309
%RSD	12.219	.59438	37.772	.34075	.15105	.60628	.48063
#1	.00326	.08815	.00084	4.4233	H225.74	H207.46	6.4022
#2	.00387	.08889	.00145	4.4446	H226.22	H209.25	6.4458
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC High	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00077	H4480.3	.01826	00030	.00291	.00184	.00426
SDev	.00025	8.3	.00077	.00039	.00092	.00074	.00135
%RSD	32.668	.18594	4.2160	130.72	31.694	40.488	31.793
#1 #2	.00060 .00095	H4486.2 H4474.5	.01772 .01881	00058 00002	.00225	.00131	.00330
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908 ppm00655 .00184 28.043	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	.00264	.00749	.00264	.86855		.11647	.00196
SDev	.00354	.00180	.00113	.00236		.00094	.00004
%RSD	133.99	24.024	42.808	.27160		.80805	2.0386
#1 #2	.00014	.00622 .00877	.00184 .00344	.86689 .87022	00785 00525	.11581	.00199 .00194
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10/	04 03:26:2	25 PM	page 2
Units ppm Avge .01153 SDev .00081 %RSD 7.0639	ppm .00210 .00024 11.226					
#1 .01096 #2 .01211	.00194 .00227					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4206 SDev 11.77326 %RSD .2799058	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4214 #2 4198						

Analysis Report QC Standard 12/10/04 03:32:08 PM page 1

Method: TRACE2 Sample Name: CCV

Run Time: 12/10/04 15:27:48

Comment:

Mode: CO	NC COFF.	Factor: 1					
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	26.271	.49252	.48081	.50094	.49750	24.956	.49259
SDev	.285	.00356	.00206	.00357	.00262	.163	.00250
%RSD	1.0833	.72240	.42910	.71324	.52694	.65152	.50709
#1	26.070	.49001	.47936	.49842	.49564	24.841	.49082
#2	26.472	.49504	.48227	.50347	.49935	25.071	.49436
Errors	QC Pass						
Value	25.000	.50000	.50000	.50000	.50000	25.000	.50000
Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.49677	.49317	.51887	25.074	25.297	24.529	.50888
SDev	.00253	.00187	.00380	.142	.169	.142	.00284
%RSD	.50854	.37860	.73341	.56754	.66650	.58069	.55781
#1	.49498	.49185	.51618	24.974	25.178	24.429	.50687
#2	.49855	.49449	.52156	25.175	25.416	24.630	.51088
Errors	QC Pass						
Value	.50000	.50000	.50000	25.000	25.000	25.000	.50000
Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.47934	24.932	.50030	.49525	.49529	.49527	.50492
SDev	.00212	.069	.00213	.00174	.00232	.00097	.00288
%RSD	.44305	.27549	.42596	.35181	.46908	.19574	.56956
#1	.47784	24.884	.49879	.49648	.49364	.49459	.50289
#2	.48084	24.981	.50181	.49402	.49693	.49596	.50696
Errors Value Range	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.50923	.50478	.50501	.48677	.50374	.49391	.48719
SDev	.00343	.00323	.00593	.00319	.00314	.00328	.00262
%RSD	.67320	.63908	1.1736	.65619	.62361	.66356	.53679
#1	.50681	.50706	.50082	.48451	.50152	.49159	.48535
#2	.51166	.50250	.50920	.48902	.50596	.49622	.48904
Errors Value Range	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sn1899	Ag3280					

Analysis	Report	QC Star	ndard	12/10,	/04 03:32:0	08 PM	page 2
Units Avge SDev %RSD	ppm .51337 .00025 .04822	ppm .49170 .00363 .73751					
#1 #2	.51355 .51320	.48914 .49426					
Errors Value Range	QC Pass .50000 10.000	QC Pass .50000 10.000					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4731 10.92494 .2309187	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4723 4739		 	 	 		

Analysis Report Blank Sample 12/10/04 03:36:32 PM page 1

Method: TRACE2 Sample Name: CCB Run Time: 12/10/04 15:32:11

Comment:

Units ppm	Mode: Col	C COII.	ractor: 1					
#2	Units Avge SDev	ppm .02566 .00032	ppm .00065 .00119	ppm .00074 .00020	ppm .00028 .00001	ppm .00013 .00001	Ca3179 ppm .07149 .00258 3.6091	Cd2265 ppm .00020 .00006 32.052
High							.07331 .06966	.00015 .00024
Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	High	.20000	.01000	.05000	.00200	.00200	LC Pass .50000 04000	LC Pass .00100 00200
#2 .00004 .0001000029 .01922 .01473 .03 Errors LC Pass LC Pass LC Pass LC Pass LC Pass LC High .00400 .00400 .01000 .05000 .50000 .20 Low00300003000040004000500000 Elem Mo2020 Na3302 Ni2316 2203/1 2203/2 PB2 Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Units Avge SDev	ppm .00007 .00005	ppm .00011 .00002	ppm 00030 .00001	ppm .02036 .00161	ppm .02372 .01271	Mg2790 ppm .03510 .00157 4.4803	Mn2576 ppm .00107 .00006 5.7202
High							.03622	.00112
Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	High	.00400	.00400	.01000	.05000	.50000	LC Pass .20000 04000	LC Pass .00300 00300
#2 .00045 .09801 .0005100104 .00107 .000 Errors LC Pass LC Pass LC Pass NOCHECK NOCHECK LC High .01000 1.0000 .01000 .000 Low003005000000300	Units Avge SDev	ppm .00058 .00019	ppm .19869 .14238	ppm .00037 .00020	ppm .00020 .00175	ppm .00034 .00103	PB2203 ppm .00029 .00010 34.253	SE1960 ppm .00036 .00123 345.48
High .01000 1.0000 .01000 .0000 Low003005000000300 .000 Elem Sb2068 1960/1 1960/2 Ti3372 Tl1908 V_2 Units ppm ppm ppm ppm ppm ppm ppm Avge .00024 .0017700035 .0003200230 .000 SDev .00404 .00545 .00088 .00025 .00030 .000 %RSD 1691.7 308.72 252.05 78.581 13.024 37.							.00022	.00123 00052
Units ppm ppm ppm ppm ppm ppm ppm ppm ppm Street ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	High	.01000	1.0000	.01000	NOCHECK	NOCHECK	LC Pass .00500 00300	LC Pass .01500 01000
	Units Avge SDev	ppm .00024 .00404	ppm .00177 .00545	ppm 00035 .00088	ppm .00032 .00025	ppm 00230 .00030	V_2924 ppm .00013 .00005 37.371	Zn2062 ppm 00008 .00009 112.81
							.00017	00002 00014
High .02000 .00500 .02000 .00	High	.02000	NOCHECK	NOCHECK	.00500	.02000	LC Pass .00500 00300	LC Pass .02000 00300
Elem Sn1899 Ag3280	Elem	Sn1899	Ag3280					

Analysis	Report	Blank S	Sample	12/10,	/04 03:36:3	32 PM	page 2
Units Avge SDev %RSD	ppm .00068 .00028 40.326	ppm .00050 .00019 38.685					
#1 #2	.00049	.00064					
Errors High Low	LC Pass .01000 00500	LC Pass .00300 00300					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4751 3.712311 .0781420	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4748 4753						

12/10/04 03:40:55 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466735

Run Time: 12/10/04 15:36:35

Comment:

U A S	Clem Units Lvge Dev RSD	Al3082 ppm .01253 .00161 12.873	As1890 ppm .00083 .00184 219.96	B_2496 ppm 1.9606 .0004 .02087	Ba4934 ppm .01401 .00006 .42373	Be3130 ppm 00004 .00000 8.5505	Ca3179 ppm 15.365 .035 .22998	Cd2265 ppm 00008 .00008 104.97
	1	.01139	00046 .00213	1.9603 1.9609	.01405 .01397	00004 00004	15.390 15.340	00014 00002
H	rrors ligh low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Pass 30.000 00150
U A S	lem Inits Lyge Dev RSD	Co2286 ppm 00014 .00007 51.706	Cr2677 ppm .00013 .00007 56.353	Cu3247 ppm .00010 .00000 1.3205	Fe2714 ppm .14698 .00252 1.7130	K_7664 ppm 12.926 .030 .23431	Mg2790 ppm 2.2801 .0029 .12504	Mn2576 ppm .00659 .00006 .83118
	:1 :2	00019 00009	.00008 .00018	.00010	.14520 .14876	12.947 12.904	2.2821 2.2780	.00663 .00656
Η	rrors ligh low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
U A S	lem Inits Vge Dev RSD	Mo2020 ppm .00878 .00079 9.0262	Na3302 ppm H295.28 .66 .22488	Ni2316 ppm .00015 .00029 192.54	2203/1 ppm 00033 .00034 103.84	2203/2 ppm .00155 .00028 18.234	PB2203 ppm .00092 .00007 8.0012	SE1960 ppm 00016 .00096 581.12
	:1 :2	.00934 .00822	H294.81 H295.75	00005 .00035	00009 00057	.00135 .00175	.00087 .00098	00084 .00051
Η	rrors ligh low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
U A S	lem Inits Vge Dev RSD	Sb2068 ppm 00011 .00033 306.69	1960/1 ppm .00251 .00249 98.958	1960/2 ppm 00150 .00019 12.785	Ti3372 ppm 00019 .00003 16.212	Tl1908 ppm 00174 .00044 25.299	V_2924 ppm 00000 .00015 4139.6	Zn2062 ppm .00111 .00004 3.4822
	1 2	.00013 00034	.00075 .00427	00164 00137	00017 00022	00143 00205	00011 .00010	.00109 .00114
Η	rrors igh ow	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
E	lem	Sn1899	Ag3280					

Analysis Report			12/10	/04 03:40:	55 PM	page	2
Units ppm Avge .00033 SDev .00001 %RSD 2.8857	ppm 00045 .00001 2.0466						
#1 .00033 #2 .00032	00045 00046						
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400						
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4704 SDev 9.864278 %RSD .2097031	2 NOTUSED	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	;
#1 4697 #2 4711			- -		 	- -	

page 1

Method: TRACE2 Sample Name: AD466736

Run Time: 12/10/04 15:40:58

Comment:

mode. co	NC COLL	. Factor:	L				
Elem Units Avge SDev %RSD	Al3082 ppm .00787 .00001 .07070	As1890 ppm .01560 .00055 3.5219	B_2496 ppm .50190 .00171 .34018	Ba4934 ppm .25926 .00004 .01616	Be3130 ppm .00010 .00001 4.8392	Ca3179 ppm 149.62 .29 .19196	Cd2265 ppm 00007 .00007 95.232
#1 #2	.00786 .00787	.01521 .01599	.50310 .50069	.25929 .25923	.00010 .00010	149.42 149.82	00011 00002
Errors High Low	LC Pass 500.00	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Pass 30.000 00150
Elem Units Avge SDev %RSD	Co2286 ppm .00040 .00015 35.841	Cr2677 ppm .00162 .00008 5.1001	Cu3247 ppm 00001 .00002 182.26	Fe2714 ppm .11497 .00381 3.3119	K_7664 ppm 65.722 .000	Mg2790 ppm 20.176 .032 .16012	Mn2576 ppm .47983 .00060 .12403
#1 #2	.00030	.00156 .00168	00003	.11228 .11766	65.722 65.721	20.153 20.198	.47941 .48025
Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
Elem Units Avge SDev %RSD	Mo2020 ppm .00195 .00043 22.068	Na3302 ppm H1166.9 .9	Ni2316 ppm .00254 .00004 1.4826	2203/1 ppm 00042 .00040 94.569	2203/2 ppm .00087 .00102 116.37	PB2203 ppm .00044 .00055 123.22	SE1960 ppm 00190 .00185 97.395
#1 #2	.00165 .00226	H1167.6 H1166.3	.00251 .00257	00014 00070	.00015 .00159	.00006	00059 00321
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm 00042 .00150 356.26	1960/1 ppm 00264 .00093 35.395	1960/2 ppm 00154 .00231 150.62	Ti3372 ppm .00149 .00014 9.3014	Tl1908 ppm00396 .00023 5.8677	V_2924 ppm .00692 .00005 .77460	Zn2062 ppm .00390 .00013 3.4467
#1 #2	.00064	00198 00330	.00010 00317	.00139 .00158	00380 00413	.00688 .00696	.00381
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report			12/10,	/04 03:45:	19 PM	page 2
Units Avge SDev %RSD	ppm .00085 .00067 79.206	ppm 00025 .00032 126.47					
#1 #2	.00037	00048 00003					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4514 .9014921 .0199707	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4515 4513	~-	 		 		

12/10/04 03:49:42 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466737

Run Time: 12/10/04 15:45:22

Comment:

Mode: Co.	NC COLL	. ractor: 1					
Elem Units Avge SDev %RSD	Al3082 ppm .13618 .00009 .06891	As1890 ppm .01448 .00213 14.691	B_2496 ppm .38224 .00010 .02513	Ba4934 ppm .02743 .00004 .15250	Be3130 ppm .00022 .00003 12.161	Ca3179 ppm 199.48 .71 .35535	Cd2265 ppm 00010 .00003 25.521
#1 #2	.13611 .13624	.01298 .01599	.38218	.02746 .02740	.00020	198.98 199.98	00012 00008
Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Pass 30.000 00150
Elem Units Avge SDev %RSD	Co2286 ppm .00053 .00021 40.432	Cr2677 ppm .00258 .00022 8.4739	Cu3247 ppm .00007 .00052 728.58	Fe2714 ppm 2.6786 .0153 .57256	K_7664 ppm 90.786 .208 .22953	Mg2790 ppm 47.414 .144 .30332	Mn2576 ppm .31222 .00017 .05358
#1 #2	.00038	.00242	00030 .00044	2.6678 2.6894	90.933 90.638	47.313 47.516	.31210 .31234
Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
Elem Units Avge SDev %RSD	Mo2020 ppm .00009 .00038 430.91	Na3302 ppm H3679.4 1.6 .04352	Ni2316 ppm .00299 .00001 .18558	2203/1 ppm .00048 .00001 1.1645	2203/2 ppm .00031 .00008 24.470	PB2203 ppm .00037 .00005 14.298	SE1960 ppm .00093 .00042 45.576
#1 #2	00018 .00036	H3678.3 H3680.5	.00299 .00298	.00049	.00037 .00026	.00041	.00063 .00123
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm .00250 .00202 80.746	1960/1 ppm .00817 .00208 25.423	1960/2 ppm 00269 .00167 62.260	Ti3372 ppm .00213 .00011 5.3270	Tl1908 ppm 00064 .00238 372.40	V_2924 ppm .00591 .00036 6.0560	Zn2062 ppm .00016 .00010 61.635
#1 #2	.00393 .00107	.00963 .00670	00387 00150	.00205 .00221	00233 .00105	.00565 .00616	.00009
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report			12/10,	/04 03:49:4	12 PM	page 2
Units Avge SDev %RSD	ppm .00473 .00023 4.8887	ppm .00089 .00018 19.782					
#1 #2	.00456	.00076 .00101					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4221 16.38706 .3881821	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED

#1

#2

4233

4210

12/10/04 03:54:06 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466738

Run Time: 12/10/04 15:49:45

Comment:

			•				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	.04414	.10051	.29986	1.1324	.00019	297.70	L00227
SDev	.00217	.00087	.00338	.0147	.00005	4.18	.00006
%RSD	4.9248	.86574	1.1263	1.2951	24.366	1.4043	2.5004
#1	.04260	.09989	.29748	1.1220	.00015	294.75	L00231
#2	.04567	.10112		1.1428	.00022	H300.66	L00223
Errors	LC Pass	LC Low					
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.00574	.01261	.00065	58.876	96.027	46.008	4.6485
SDev	.00007	.00036	.00004	.850	1.173	.681	.0648
%RSD	1.2722	2.8350	6.2213	1.4432	1.2212	1.4793	1.3937
#1	.00579	.01235	.00062	58.275	95.198	45.527	4.6027
#2	.00569	.01286		59.477	96.857	46.490	4.6943
Errors	LC Pass						
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.00006	H544.90	.01370	00021	.00135	.00083	.00077
SDev	.00001	6.98	.00008	.00116	.00019	.00052	.00177
%RSD	19.728	1.2810	.57216	542.21	14.347	62.007	230.46
#1	.00007	H539.96	.01365	00103	.00121	.00047	00048
#2		H549.83	.01376	.00060	.00149	.00119	.00201
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.00093	00191	.00210	.02699	.00750	.01406	.00354
SDev	.00304	.00181	.00174	.00054	.00423	.00014	.00002
%RSD	326.34	95.149	82.860	1.9981	56.361	.96092	.49265
#1 #2	00122 .00309	00319 00062	.00087	.02660 .02737	.00451 .01049	.01397 .01416	.00352
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 03:54:	06 PM	page 2
Units ppm Avge .00301 SDev .00063 %RSD 20.825	ppm .00085 .00019 22.422					
#1 .00345 #2 .00257	.00099 .00072					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4542 SDev 60.03330 %RSD 1.321846	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4584 #2 4499			 			

page 1

Method: TRACE2 Sample Name: AD466739

Run Time: 12/10/04 15:54:09

Comment:

Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	00219	00058	.00088	.00026	00003	.12650	00007
SDev	.00177	.00114	.00037	.00008	.00001	.00053	.00004
%RSD	80.763	197.46	42.319	31.334	24.610	.42082	54.857
#1	00343	00138	.00062	.00021	00002	.12688	00004
#2	00094	.00023	.00115	.00032	00003		00009
Errors	LC Pass						
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	00021	.00006	00016	.00483	.01258	.02711	.00032
SDev	.00034	.00003	.00009	.00041	.00591	.00173	.00002
%RSD	167.07	47.426	57.806	8.4328	46.965	6.4005	6.3364
#1 #2	00045 .00004	.00008	00010 00023	.00511 .00454	.01676	.02834	.00031
Errors	LC Pass						
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	00009	.15403	.00008	.00041	.00031	.00035	00207
SDev	.00019	.05111	.00026	.00126	.00089	.00018	.00010
%RSD	201.84	33.180	343.99	307.00	285.20	51.254	5.0489
#1	.00004	.19017	00011	.00130	00032	.00022	00214
#2	00023	.11790	.00026	00048	.00095		00200
Errors High Low	LC Pass 10.000 00500	LC Pass 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm						
Avge	.00080	00313	00154	00017	00300	00004	.00056
SDev	.00030	.00208	.00088	.00014	.00214	.00050	.00013
%RSD	38.270	66.389	57.395	79.345	71.220	1200.2	22.888
#1	.00101	00460	00091	00008	00451	00039	.00047
#2	.00058	00166	00216	00027	00149	.00031	
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report			12/10/	/04 03:58:2	29 PM	page	2
Units Avge SDev %RSD	ppm .00049 .00123 248.70	ppm .00036 .00019 54.202						
#1 #2	.00136 00038	.00050						
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400						
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4736 .1059970 .0022380	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSE: 	D
#1 #2	4736 4736	 						

page 1

12/10/04 04:02:53 PM

Method: TRACE2 Sample Name: AD466312/(1:10) Operator: SW

Run Time: 12/10/04 15:58:33

Comment:

			-				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00026	.00109	.01355	.02237	.00004	40.868	00006
SDev	.00075	.00169	.00038	.00006	.00001	.067	.00002
%RSD	288.61	155.70	2.8235	.27867	15.736	.16472	36.458
#1 #2	.00027 00079	00011 .00228	.01328	.02233 .02241	.00005	40.821 40.916	00005 00008
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286 ppm .00030 .00007 23.020	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.00079	00009	.10060	2.2317	6.5656	2.6896
SDev		.00008	.00018	.00034	.0046	.0074	.0036
%RSD		10.257	192.79	.33414	.20559	.11307	.13231
#1 #2	.00035 .00025	.00074	.00003 00022	.10084	2.2350 2.2285	6.5604 6.5709	2.6870 2.6921
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00036	H144.92	.00020	.00187	.00124	.00145	.00069
SDev	.00049	1.05	.00028	.00039	.00022	.00002	.00020
%RSD	134.15	.72430	140.34	20.901	17.490	1.0317	29.155
#1 #2	00002 00071	H144.18 H145.66	.00000	.00215 .00159	.00109	.00144 .00146	.00055
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00007	00063	.00135	.00046	00224	.00003	.00025
SDev	.00040	.00165	.00112	.00012	.00198	.00010	.00008
%RSD	605.40	260.82	83.272	26.803	88.528	327.42	32.857
#1	.00022	.00053	.00056	.00054	00084	.00010	.00019
#2	00035	00179	.00215		00364	00004	.00031
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	Report			12/10	/04 04:02:	53 PM	page 2
Units Avge SDev %RSD	ppm .00122 .00066 54.245	ppm .00074 .00013 17.208					
#1 #2	.00169 .00075	.00083					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4643 15.75073 .3392097	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4632 4654				 		

Method: TRACE2 Sample Name: AD466320/(1:10) Operator: SW Run Time: 12/10/04 16:02:56

Comment:

nouc. co	NC COLL	ractor	L				
Elem Units Avge SDev %RSD	Al3082 ppm .00446 .00111 24.885	As1890 ppm .00088 .00053 59.395	B_2496 ppm .02281 .00043 1.9007	Ba4934 ppm .07330 .00011 .15552	Be3130 ppm .00002 .00001 35.516	Ca3179 ppm 29.675 .060 .20258	Cd2265 ppm00010 .00008 77.336
#1 #2	.00524	.00051 .00126	.02312 .02250	.07322 .07338	.00002	29.633 29.718	00005 00016
Errors	LC Pass	LC Pass	LC Pass				
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00163	.00411	.00042	2.0894	1.6424	3.4361	3.2492
SDev	.00000	.00014	.00038	.0077	.0003	.0031	.0057
%RSD	.04742	3.4213	88.958	.36993	.01553	.09087	.17503
#1	.00163	.00401	.00069	2.0839 2.0949	1.6426	3.4339	3.2452
#2	.00163	.00421	.00016		1.6422	3.4383	3.2533
Errors	LC Pass	LC Pass	LC Pass				
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00160	H136.27	.01357	00050	.00174	.00100	00139
SDev	.00030	.42	.00022	.00065	.00056	.00059	.00095
%RSD	18.863	.30502	1.5880	129.89	31.954	58.841	68.384
#1	.00181	H135.98	.01373	00095	.00135	.00058	00206
#2	.00138	H136.56	.01342	00004	.00213	.00141	00072
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00206	00302	00057	.00115	00403	.00197	.00016
SDev	.00300	.00156	.00064	.00006	.00002	.00030	.00009
%RSD	145.77	51.780	112.37	4.9395	.55749	15.174	52.662
#1	00418	00413	00102	.00111	00402	.00219	.00022
#2	.00006	00191	00012	.00119	00405	.00176	
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis	s Report			12/10	/04 04:07:	16 PM	page 2
Units Avge SDev %RSD	ppm .00037 .00007 18.366	ppm .00040 .00008 20.795					
#1 #2	.00041	.00034					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4692 2.810473 .0599007	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4694 4690	 		 			

Analysis Report

12/10/04 04:11:40 PM

page 1

Method: TRACE2 Sample Name: AD466323/(1:10) Operator: SW

Run Time: 12/10/04 16:07:20

Comment:

Mode. C	ONC COLL	. Factor:	L				
Elem Units Avge SDev %RSD	Al3082 ppm .49402 .00131 .26579	As1890 ppm .00602 .00081 13.538	B_2496 ppm .09382 .00080 .84771	Ba4934 ppm .31697 .00057 .17867	Be3130 ppm .00023 .00001 4.3743	Ca3179 ppm 117.40 .15 .13182	Cd2265 ppm L00198 .00004 2.0363
#1 #2	.49495 .49309	.00660 .00545	.09438	.31656 .31737	.00022	117.29 117.51	L00195 L00201
Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Low 30.000 00150
Elem Units Avge SDev %RSD	Co2286 ppm .00639 .00018 2.8293	Cr2677 ppm .04185 .00020 .48507	Cu3247 ppm 00009 .00014 151.33	Fe2714 ppm 52.095 .096 .18448	K_7664 ppm 59.592 .056 .09456	Mg2790 ppm 20.180 .022 .11026	Mn2576 ppm 3.6050 .0053 .14835
#1 #2	.00652 .00627	.04199 .04170	.00001 00019	52.027 52.163	59.552 59.632	20.165 20.196	3.6012 3.6088
Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
Elem Units Avge SDev %RSD	Mo2020 ppm 00097 .00020 20.319	Na3302 ppm H209.38 .87 .41708	Ni2316 ppm .01487 .00011 .71011	2203/1 ppm .00004 .00215 5719.9	2203/2 ppm .00055 .00010 18.787	PB2203 ppm .00038 .00078 207.95	SE1960 ppm .00340 .00047 13.761
#1 #2	00083 00111	H208.76 H210.00	.01494 .01479	00148 .00155	.00047	00018 .00093	.00373
Errors High Low	10.000	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem Units Avge SDev %RSD	Sb2068 ppm .00143 .00044 31.155	1960/1 ppm .00426 .00151 35.473	1960/2 ppm .00297 .00146 49.070	Ti3372 ppm .09209 .00011 .12056	Tl1908 ppm .00568 .00342 60.261	V_2924 ppm .03089 .00020 .66174	Zn2062 ppm .00214 .00021 9.6487
#1 #2	.00174 .00111	.00319	.00400 .00194	.09217 .09202	.00810 .00326	.03103	.00228 .00199
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 04:11:	40 PM	page 2
Units ppm Avge .00380 SDev .00091 %RSD 23.973	ppm .00077 .00014 18.714					
#1 .00445 #2 .00316	.00067 .00087					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4737 SDev 6.735123 %RSD .1421688	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4742 #2 4733			 	 	 	'

page 1

Method: TRACE2 Sample Name: AD466800/PB

Run Time: 12/10/04 16:11:44

Comment:

		_						
T Z	Elem Units Avge SDev &RSD	Al3082 ppm 00165 .00156 94.350	As1890 ppm 00013 .00144 1114.4	B_2496 ppm .00020 .00016 82.727	Ba4934 ppm .00006 .00007 110.97	Be3130 ppm 00002 .00001 72.959	Ca3179 ppm .02526 .00186 7.3824	Cd2265 ppm 00004 .00003 71.694
	#1 #2	00055 00275	00115 .00089	.00032	.00011	00001 00002	.02658 .02395	00006 00002
I	Errors High Low	LC Pass .20000 04000	LC Pass .01000 00500	LC Pass .05000 00800	LC Pass .00200 00300	LC Pass .00200 00310	LC Pass .50000 05000	LC Pass .0010000150
\ 2 S	Elem Jnits Avge SDev &RSD	Co2286 ppm 00009 .00022 233.79	Cr2677 ppm .00013 .00022 164.06	Cu3247 ppm 00002 .00012 482.58	Fe2714 ppm .00680 .00161 23.757	K_7664 ppm .00452 .02162 478.78	Mg2790 ppm .00279 .00205 73.548	Mn2576 ppm .00045 .00006 13.923
	#1 #2	.00006 00025	.00029 00002	.00006 00011	.00794 .00565	.01980 01077	.00424	.00049
F	Errors High Low	LC Pass .00500 00300	LC Pass .00200 00300	LC Pass .0100000400	LC Pass .05000 04000	LC Pass .50000 50000	LC Pass .20000 04000	LC Pass .00300 00300
[] [Elem Units Avge SDev &RSD	Mo2020 ppm 00038 .00009 22.692	Na3302 ppm .10010 .03413 34.097	Ni2316 ppm .00016 .00011 67.876	2203/1 ppm 00084 .00038 45.263	2203/2 ppm .00122 .00021 17.439	PB2203 ppm .00054 .00002 2.9268	SE1960 ppm 00101 .00197 195.57
	‡1 ‡2	00032 00044	.07596 .12423	.00008	00057 00111	.00107	.00052 .00055	.00039
F	Errors High Low	LC Pass .01000 00500	LC Pass 1.0000 50000	LC Pass .10000 00300	NOCHECK	NOCHECK	LC Pass .00600 00400	LC Pass .01500 01000
1	Elem Jnits Avge SDev kRSD	Sb2068 ppm 00022 .00245 1092.3	1960/1 ppm 00023 .00008 34.180	1960/2 ppm 00140 .00300 214.70	Ti3372 ppm 00043 .00022 50.618	Tl1908 ppm 00339 .00338 99.587	V_2924 ppm .00006 .00015 235.58	Zn2062 ppm 00020 .00000 .94592
	‡1 ‡2	.00151 00195	00029 00018	.00072 00352	00028 00058	00100 00578	.00017	00019 00020
F	Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .01000 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .02000 00300
E	Elem	Sn1899	Ag3280					

Analysis .	Report			page 2			
Avge SDev	ppm .00086 .00029 33.673	ppm 00013 .00049 387.79					
	.00106 .00065	00047 .00022					
High	LC Pass .01000 01000	LC Pass .00300 00400					
Mode Elem Wavlen Avge SDev	1 Counts Y 371.030 4749 14.37208	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
	4738 4759	 	 	 	 		

page 1

Analysis Report

12/10/04 04:20:28 PM

Method: TRACE2 Sample Name: AD466799/FB Operator: SW

Run Time: 12/10/04 16:16:07

Comment:

noue. co	THE COLL.	140001. 1	•				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	10.553	.20728	.19635	.20292	.20292	10.307	.20750
SDev	.025	.00173	.00150	.00009	.00020	.014	.00025
%RSD	.23299	.83350	.76317	.04603	.09883	.13430	.12187
#1	10.536	.20606	.19529	.20285	.20278	10.297	.20732
#2	10.571	.20850	.19741	.20298	.20307	10.317	.20767
Errors	LC Pass	LC Pass	NOCHECK	LC Pass	LC Pass	LC Pass	LC Pass
High	11.500	.23000		.23000	.23000	11.500	.23000
Low	8.5000	.17000		.17000	.17000	8.5000	.17000
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.20518	.20421	.20186	.42807	H11.563	10.176	.20490
SDev	.00003	.00015	.00026	.00346	.014	.020	.00038
%RSD	.01468	.07389	.12748	.80920	.11976	.19350	.18514
#1	.20516	.20410	.20167	.42562	H11.572	10.162	.20463
#2	.20520	.20431	.20204	.43052	H11.553	10.190	.20516
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	.23000	.23000	.23000	.46000	11.500	11.500	.23000
Low	.17000	.17000	.17000	.34000	8.5000	8.5000	.17000
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.20012	10.312	.20558	.20684	.20596	.20626	.20409
SDev	.00070	.041	.00022	.00061	.00182	.00142	.00308
%RSD	.35103	.39726	.10749	.29332	.88431	.68695	1.5067
#1	.19962	10.283	.20542	.20641	.20468	.20525	.20192
#2	.20062	10.341	.20573	.20727	.20725	.20726	.20627
Errors High Low	LC Pass .23000 .17000	LC Pass 11.500 8.5000	LC Pass .23000 .17000	NOCHECK	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.20848	.20511	.20359	.19508	.20897	.20417	.20145
SDev	.00085	.00345	.00289	.00050	.00203	.00040	.00047
%RSD	.40564	1.6827	1.4180	.25631	.97055	.19476	.23555
#1 #2	.20788 .20908	.20267	.20155 .20563	.19472 .19543	.21040 .20754	.20389 .20445	.20112
Errors High Low	LC Pass .23000 .17000	NOCHECK	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 04:20:2	28 PM	page 2
Units ppm Avge .20797 SDev .00227 %RSD 1.0916	ppm .04967 .00017 .35133					
#1 .20636 #2 .20957	.04955 .04979					
Errors LC Pass High .23000 Low .17000	LC Pass .05750 .04250					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4771 SDev 5.674463 %RSD .1189306	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4767 #2 4775		 	 			

Analysis Report QC Standard 12/10/04 04:26:12 PM page 1

Method: TRACE2 Sample Name: CCV Run Time: 12/10/04 16:21:51

Comment:

Mode. CC	NC COII.	ractor: 1	<u> </u>				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm						
Avge	26.836	.50386	.49199	.51155	.51070	25.617	.50570
SDev	.060	.00319	.00025	.00102	.00157	.103	.00178
%RSD	.22349	.63251	.05106	.19949	.30803	.40115	.35220
#1	26.793	.50161	.49217	.51083	.50959	25.545	.50444
#2	26.878	.50611	.49181	.51227	.51181	25.690	.50696
Errors	QC Pass						
Value	25.000	.50000	.50000	.50000	.50000	25.000	.50000
Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm						
Avge	.50951	.50663	.53041	25.735	25.659	25.292	.52178
SDev	.00168	.00213	.00106	.099	.049	.088	.00183
%RSD	.32874	.42034	.20028	.38455	.19232	.34612	.35074
#1	.50833	.50512	.52965	25.666	25.624	25.231	.52048
#2	.51070	.50813	.53116	25.805	25.694	25.354	.52307
Errors	QC Pass						
Value	.50000	.50000	.50000	25.000	25.000	25.000	.50000
Range	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm						
Avge	.49123	25.262	.51245	.50761	.50938	.50879	.51879
SDev	.00223	.157	.00183	.00230	.00347	.00308	.00626
%RSD	.45441	.62232	.35768	.45314	.68123	.60544	1.2077
#1	.48965	25.150	.51116	.50598	.50692	.50661	.51436
#2	.49280	25.373	.51375	.50923	.51183	.51097	.52322
Errors Value Range	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm						
Avge	.52209	.51617	.52010	.50043	.51932	.50637	.50173
SDev	.00519	.00273	.00803	.00119	.00082	.00171	.00165
%RSD	.99424	.52945	1.5443	.23670	.15770	.33813	.32944
#1	.51842	.51424	.51442	.49959	.51989	.50516	.50056
#2	.52576	.51810	.52578	.50127	.51874	.50758	.50290
Errors Value Range	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sn1899	Ag3280					

Analysis	Report	QC Star	ndard	12/10/	04 04:26:3	L2 PM	page 2
Units Avge SDev %RSD	ppm .52459 .00263 .50188	ppm .50297 .00077 .15407					
#1 #2	.52273 .52645	.50242 .50351					
Errors Value Range	QC Pass .50000 10.000	QC Pass .50000 10.000					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4639 9.651938 .2080619	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4646 4632		 	 .	 	 	

Analysis Report Blank Sample 12/10/04 04:30:36 PM page 1

Method: TRACE2 Sample Name: CCB Run Time: 12/10/04 16:26:15

Comment:

Mode:	CONC COIT.	ractor: 1	L				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00301	.00009	.00047	.00003	.00001	.00918	.00000
SDev	.00010	.00061	.00058	.00000	.00001	.00028	.00004
%RSD	3.2989	692.37	122.74	10.965	91.573	2.9968	819.71
#1 #2	00294 00308	00034 .00052	.00088	.00003	.00002	.00937	.00003 00002
Error:	s LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.20000	.01000	.05000	.00200	.00200	.50000	.00100
Low	04000	00500	00500	00300	00300	04000	00200
Elem	Co2286	Cr2677 ppm00017 .00012 73.356	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm		ppm	ppm	ppm	ppm	ppm
Avge	00017		00003	.00513	00658	.00190	.00023
SDev	.00002		.00034	.00161	.01969	.00199	.00001
%RSD	10.129		1102.0	31.404	299.06	105.11	4.5009
#1 #2	00018 00016	00025 00008	.00021 00027	.00399 .00627	.00734 02051	.00330	.00024
Error	s LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00400	.00400	.01000	.05000	.50000	.20000	.00300
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00001	.05607	.00015	00012	.00094	.00059	00171
SDev	.00069	.01886	.00003	.00047	.00093	.00046	.00023
%RSD	6875.8	33.633	16.805	402.15	99.012	78.790	13.246
#1	.00050	.04274	.00014	.00022	.00028	.00026	00155
#2	00048	.06941	.00017	00045	.00159		00187
Error High Low	.01000	LC Pass 1.0000 50000	LC Pass .01000 00300	NOCHECK	NOCHECK	LC Pass .00500 00300	LC Pass .01500 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00011	00381	00066	00007	00204	.00003	00016
SDev	.00155	.00039	.00053	.00024	.00027	.00000	.00004
%RSD	1373.1	10.193	81.231	327.94	13.367	1.4273	26.615
#1	.00121	00408	00028	.00010	00184	.00003	00013
#2	00099	00353	00103	00024	00223		00019
Error High Low	s LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .00500 00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .0200000300
Elem	Sn1899	Ag3280					

Analysis	Report	Blank	Sample	12/10/	04 04:30:3	36 PM	page 2
Units Avge SDev %RSD	ppm 00005 .00046 852.84	ppm 00000 .00005 1617.7					
#1 #2	00038 .00027	00004 .00003					
Errors High Low	LC Pass .01000 00500	LC Pass .00300 00300					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4714 1.219828 .0258754	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4713 4715			 			<u>,</u>

12/10/04 04:43:03 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466790 Run Time: 12/10/04 16:38:42

Comment:

ī	Mode: Co.	NC COLL	. ractor: 1					
	Elem Units Avge SDev %RSD	Al3082 ppm .32889 .00250 .76079	As1890 ppm .01576 .00056 3.5392	B_2496 ppm .08048 .00126 1.5593	Ba4934 ppm .70195 .00161 .22984	Be3130 ppm .00049 .00002 4.2474	Ca3179 ppm H318.51 1.74 .54502	Cd2265 ppm .00078 .00001 .64497
	#1 #2	.32712 .33066	.01536	.07960 .08137	.70081 .70309	.00048	H317.28 H319.74	.00078
	Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC High 300.00 05000	LC Pass 30.000 00150
	Elem Units Avge SDev %RSD	Co2286 ppm .03573 .00073 2.0361	Cr2677 ppm .00309 .00015 5.0028	Cu3247 ppm .00541 .00014 2.5160	Fe2714 ppm 1.7532 .0139 .79373	K_7664 ppm 2.2147 .0030 .13418	Mg2790 ppm 7.8922 .0321 .40709	Mn2576 ppm 11.216 .039 .34611
	#1 #2	.03522 .03625	.00299 .00320	.00531 .00550	1.7434 1.7631	2.2168 2.2126	7.8695 7.9150	11.188 11.243
	Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
	Elem Units Avge SDev %RSD	Mo2020 ppm 00177 .00052 29.588	Na3302 ppm H1476.2 1.7 .11748	Ni2316 ppm .02805 .00030 1.0713	2203/1 ppm .00844 .00303 35.886	2203/2 ppm .00967 .00083 8.6023	PB2203 ppm .00926 .00045 4.9009	SE1960 ppm .00558 .00033 5.9123
	#1 #2	00214 00140	H1477.4 H1475.0	.02784 .02826	.01058 .00630	.00908 .01025	.00958 .00894	.00535
	Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
	Elem Units Avge SDev %RSD	Sb2068 ppm 00036 .00098 271.47	1960/1 ppm .00771 .00107	1960/2 ppm .00452 .00004 .85409	Ti3372 ppm .00374 .00009 2.3619	Tl1908 ppm 00559 .00178 31.800	V_2924 ppm .00063 .00037 58.127	Zn2062 ppm .04607 .00053 1.1417
	#1 #2	00105 .00033	.00695 .00846	.00454	.00368	00433 00685	.00037	.04570 .04644
	Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
	Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 04:43:0	O3 PM	page 2
Units ppm Avge .45438 SDev .00325 %RSD .71557	ppm .00082 .00027 33.149					
#1 .45208 #2 .45668	.00063 .00101					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4503 SDev 11.93243 %RSD .2650127	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4511 #2 4494			 ·		——·	

12/10/04 04:47:26 PM

page 1

Method: TRACE2 Sample Name: AD466790/L (1:5) Operator: SW

Run Time: 12/10/04 16:43:06

Comment:

_				•				
	Elem Units Avge SDev %RSD	Al3082 ppm .07925 .00011 .14049	As1890 ppm .00273 .00063 22.855	B_2496 ppm .01717 .00019 1.1143	Ba4934 ppm .14637 .00014 .09604	Be3130 ppm .00013 .00002 18.231	Ca3179 ppm 71.747 .138 .19188	Cd2265 ppm .00020 .00006 30.725
	#1 #2	.07933 .07917	.00229 .00318	.01731 .01704	.14647 .14627	.00014 .00011	71.845 71.650	.00024 .00016
	Errors High Low	LC Pass 500.00 04000	LC Pass 20.000 00500	LC Pass 50.000 00800	LC Pass 10.000 00300	LC Pass 5.0000 00300	LC Pass 300.00 05000	LC Pass 30.000 00150
	Elem Units Avge SDev %RSD	Co2286 ppm .00741 .00026 3.4567	Cr2677 ppm .00075 .00044 59.670	Cu3247 ppm .00100 .00027 27.017	Fe2714 ppm .37227 .00307 .82585	K_7664 ppm .34223 .04997 14.602	Mg2790 ppm 1.6921 .0071 .42119	Mn2576 ppm 2.4055 .0023 .09395
	#1 #2	.00759 .00723	.00106	.00119 .00081	.37445 .37010	.37757 .30689	1.6971 1.6871	2.4071 2.4039
	Errors High Low	LC Pass 40.000 00300	LC Pass 40.000 00300	LC Pass 25.000 00400	LC Pass 500.00 04000	LC Pass 100.00 50000	LC Pass 100.00 04000	LC Pass 20.000 00300
	Elem Units Avge SDev %RSD	Mo2020 ppm 00096 .00021 21.389	Na3302 ppm H289.63 .17 .05910	Ni2316 ppm .00616 .00002 .25335	2203/1 ppm .00113 .00081 71.634	2203/2 ppm .00196 .00116 59.242	PB2203 ppm .00169 .00051 30.042	SE1960 ppm .00060 .00028 47.167
	#1 #2	00082 00111	H289.51 H289.75	.00615	.00056	.00279 .00114	.00204	.00080
	Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
	Elem Units Avge SDev %RSD	Sb2068 ppm 00013 .00124 969.69	1960/1 ppm .00076 .00083 108.97	1960/2 ppm .00052 .00084 160.50	Ti3372 ppm .00108 .00020 18.997	Tl1908 ppm 00197 .00040 20.079	V_2924 ppm .00010 .00020 208.00	Zn2062 ppm .00978 .00039 3.9657
	#1 #2	.00075 00100	.00017 .00134	.00111 00007	.00122	00169 00225	.00024	.01005 .00950
	Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
	Elem	Sn1899	Ag3280					

Analysis	Report			12/10,	/04 04:47:2	26 PM	page 2
Units Avge SDev %RSD	ppm .09425 .00027 .28342	ppm .00035 .00022 62.790					
#1 #2	.09444	.00051					
Errors High Low	LC Pass 5.0000 01000	LC Pass 2.0000 00400					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4630 17.92523 .3871184	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4618 4643	 			- -	 	.

page 1

Method: TRACE2 Sample Name: AD466791/MS

Run Time: 12/10/04 16:47:30

Comment:

Mode: CC	NC Corr	. Factor:	L				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	8.8705	.19000	.23022	.77134	.16536	285.88	.16600
SDev	.0016	.00099	.00020	.00064	.00024	.28	.00040
%RSD	.01802	.51875	.08526	.08339	.14757	.09916	.24280
#1	8.8716	.18930	.23036	.77088	.16518	285.68	.16571
#2	8.8693	.19070	.23008	.77179	.16553	286.08	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.19276	.16216	.17419	1.8145	14.277	14.676	9.8875
SDev	.00005	.00026	.00039	.0103	.018	.014	.0147
%RSD	.02805	.16013	.22577	.56851	.12328	.09367	.14901
#1	.19280	.16197	.17391	1.8072	14.289	14.666	9.8771
#2	.19273	.16234	.17447	1.8218	14.265	14.685	9.8979
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem Units Avge SDev %RSD	Mo2020 ppm .16294 .00064 .39136	Na3302 ppm H1292.7 .7	Ni2316 ppm .18569 .00052 .27922	2203/1 ppm .17179 .00102 .59519	2203/2 ppm .17286 .00187 1.0808	PB2203 ppm .17250 .00159 .91975	SE1960 ppm .17870 .00082 .45778
#1	.16248	H1293.2	.18533	.17251	.17418	.17362	.17812
#2	.16339	H1292.2	.18606	.17106	.17154	.17138	
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.17446	.17936	.17837	.16087	.16841	.16629	.19983
SDev	.00378	.00327	.00286	.00001	.00222	.00069	.00024
%RSD	2.1673	1.8244	1.6052	.00420	1.3158	.41286	.12142
#1	.17713	.18167	.17635	.16086	.16684	.16581	.19965
#2	.17178	.17705	.18040	.16087	.16997	.16678	.20000
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 04:51:5	50 PM	page 2
Units ppm Avge .55484 SDev .00151 %RSD .27292	ppm .04380 .00019 .43332					
#1 .55377 #2 .55591	.04367 .04394				•	
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4518 SDev 2.545654 %RSD .0563466	2 NOTUSED 	3 NOTUSED	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4516 #2 4520					 	

12/10/04 04:56:14 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466792/SD

Run Time: 12/10/04 16:51:54

Comment:

Mode: CC	NC Corr	. Factor:	L				
Elem Units Avge SDev %RSD	Al3082 ppm 10.620 .028 .26795	As1890 ppm .22487 .00224 .99390	B_2496 ppm .27636 .00121 .43962	Ba4934 ppm .92227 .00348 .37761	Be3130 ppm .19798 .00084 .42435	Ca3179 ppm H334.88 1.10	Cd2265 ppm .19577 .00058 .29629
#1	10.600	.22329	.27550	.91981	.19738	H334.11	.19536
#2	10.641	.22645	.27722	.92473	.19857	H335.66	.19618
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.22943	.19324	.20986	2.1749	17.383	17.418	11.723
SDev	.00085	.00089	.00073	.0015	.031	.059	.046
%RSD	.37093	.45901	.34870	.06959	.17610	.33587	.39279
#1	.22883	.19261	.20934	2.1760	17.362	17.377	11.691
#2	.23004	.19386	.21038	2.1739	17.405	17.460	11.756
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.19519	H1542.6	.22062	.20180	.20399	.20326	.21018
SDev	.00096	1.7	.00115	.00301	.00167	.00011	.00105
%RSD	.49248	.11250	.51988	1.4899	.81785	.05490	.50029
#1	.19451	H1541.4	.21981	.19967	.20517	.20334	.20943
#2	.19587	H1543.8	.22144	.20392	.20281		.21092
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.20804	.21209	.20922	.19170	.19656	.19777	.23631
SDev	.00106	.00413	.00049	.00097	.00393	.00061	.00097
%RSD	.50866	1.9478	.23343	.50627	1.9999	.30812	.41090
#1 #2	.20729 .20879	.20917 .21501	.20957	.19101 .19238	.19378 .19934	.19734 .19820	.23562
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC Pass 5.0000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10	/04 04:56:	14 PM	page 2
Units ppm Avge .66287 SDev .00024 %RSD .03604	ppm .05164 .00084 1.6259					
#1 .66271 #2 .66304	.05104					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4456 SDev 3.022812 %RSD .0678356	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4458 #2 4454		 	 			

12/10/04 05:00:38 PM

Operator: SW

page 1

Method: TRACE2 Sample Name: AD466793 Run Time: 12/10/04 16:56:18

Comment:

			_				
Elem	A13082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm 152.60 .33 .21700	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	1.9665	.02342	.04306	.14089	.00126		.01462
SDev	.0066	.00137	.00069	.00035	.00002		.00007
%RSD	.33623	5.8490	1.6106	.24894	1.1746		.47711
#1 #2	1.9619 1.9712	.02439 .02245	.04355	.14064 .14114	.00125	152.36 152.83	.01467 .01457
Errors	LC Pass	LC Pass					
High	500.00	20.000	50.000	10.000	5.0000	300.00	30.000
Low	04000	00500	00800	00300	00300	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.64429	.03647	.00629	4.0914	3.6845	3.5985	7.0271
SDev	.00127	.00017	.00009	.0125	.0109	.0106	.0154
%RSD	.19633	.46747	1.4607	.30536	.29659	.29581	.21885
#1	.64339	.03635	.00635	4.0826	3.6922	3.5910	7.0162
#2	.64518	.03659	.00622	4.1003	3.6768	3.6060	7.0380
Errors	LC Pass	LC Pass					
High	40.000	40.000	25.000	500.00	100.00	100.00	20.000
Low	00300	00300	00400	04000	50000	04000	00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00030	H1671.4	.03106	7.6676	7.7332	7.7113	.00607
SDev	.00010	1.8	.00017	.0116	.0297	.0159	.00010
%RSD	34.077	.10818	.54685	.15169	.38394	.20659	1.6760
#1 #2	.00023	H1670.1 H1672.7	.03118	7.6758 7.6594	7.7122 7.7542	7.7001 7.7226	.00599 .00614
Errors High Low	LC Pass 10.000 00500	LC High 100.00 50000	LC Pass 25.000 00300	NOCHECK	NOCHECK	LC Pass 40.000 00400	LC Pass 40.000 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.01399	.00998	.00411	.00049	00570	.00220	H12.305
SDev	.00170	.00061	.00015	.00006	.00071	.00025	.024
%RSD	12.136	6.0673	3.6587	11.636	12.450	11.558	.19120
#1 #2	.01519 .01279	.00955	.00421	.00053 .00045	00519 00620	.00202	H12.288 H12.322
Errors High Low	LC Pass 50.000 01000	NOCHECK	NOCHECK	LC Pass 5.0000 00200	LC Pass 50.000 01000	LC Pass 50.000 00300	LC High 5.000000300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 05:00:3	38 PM	page 2
Units ppm Avge .92521 SDev .00304 %RSD .32889	ppm .00002 .00041 2135.3					
#1 .92306 #2 .92736	.00031					
Errors LC Pass High 5.0000 Low01000	LC Pass 2.0000 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4520 SDev 9.863933 %RSD .2182274	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4513 #2 4527	 		 		 	·

page 1

Method: TRACE2 Sample Name: AD466794/LCS Run Time: 12/10/04 17:00:42 Operator: SW

Comment:

		40001	-				
Elem Units Avge SDev %RSD	Al3082 ppm 10.315 .019 .18450	As1890 ppm .21782 .00219 1.0044	B_2496 ppm .24990 .00146 .58315	Ba4934 ppm .21562 .00070 .32589	Be3130 ppm .20165 .00085 .42119	Ca3179 ppm 10.981 .064 .58345	Cd2265 ppm .20628 .00095 .46231
#1 #2	10.302 10.328	.21627 .21936	.24887	.21513 .21612	.20105 .20225	10.935 11.026	.20560 .20695
Errors High Low	LC Pass 11.500 8.5000	LC Pass .23000 .17000	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass 11.500 8.5000	LC Pass .23000 .17000
Elem Units Avge SDev %RSD	Co2286 ppm .20024 .00120 .59664	Cr2677 ppm .19673 .00127 .64333	Cu3247 ppm .20534 .00063 .30602	Fe2714 ppm .42589 .01085 2.5476	K_7664 ppm H16.696 .028 .16682	Mg2790 ppm 9.7895 .0487 .49699	Mn2576 ppm .20071 .00083 .41284
#1 #2	.19939 .20108	.19583 .19762	.20490 .20579	.41821 .43356	H16.716 H16.677	9.7551 9.8239	.20012 .20129
Errors High Low	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .46000 .34000	LC High 11.500 8.5000	LC Pass 11.500 8.5000	LC Pass .23000 .17000
Elem Units Avge SDev %RSD	Mo2020 ppm .20152 .00048 .23976	Na3302 ppm H1608.4 2.2 .13483	Ni2316 ppm .20195 .00153 .75805	2203/1 ppm .20593 .00166 .80422	2203/2 ppm .20402 .00323 1.5828	PB2203 ppm .20465 .00160 .78295	SE1960 ppm .21070 .00565 2.6812
#1 #2	.20118	H1606.9 H1609.9	.20086 .20303	.20710 .20476	.20173 .20630	.20352 .20579	.20670 .21469
Errors High Low	LC Pass .23000 .17000	LC High 11.500 8.5000	LC Pass .23000 .17000	NOCHECK	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000
Elem Units Avge SDev %RSD	Sb2068 ppm .21326 .00045 .21236	1960/1 ppm .21459 .00313 1.4571	1960/2 ppm .20876 .00691 3.3104	Ti3372 ppm .19078 .00074 .38747	Tl1908 ppm .20766 .00243 1.1709	V_2924 ppm .19986 .00115 .57561	Zn2062 ppm .21877 .00135 .61557
#1 #2	.21294 .21358	.21238 .21680	.20387 .21364	.19025 .19130	.20594 .20938	.19905 .20068	.21781 .21972
Errors High Low	LC Pass .23000 .17000	NOCHECK	NOCHECK	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000	LC Pass .23000 .17000
Elem	Sn1899	Ag3280					

Analysis	Report			12/10/	04 05:05:0)2 PM	page 2
Units Avge SDev %RSD	ppm .21214 .00123 .57916	ppm .05100 .00032 .61842					
#1 #2	.21301 .21128	.05078 .05122					
Errors High Low	LC Pass .23000 .17000	LC Pass .05750 .04250					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4504 21.21320 .4709649	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4519 4489						 :

12/10/04 05:09:26 PM

page 1

Method: TRACE2 Sample Name: AD466795/EBLK Run Time: 12/10/04 17:05:06 Operator: SW

Comment:

Mode: Co	NC COLL	. ractor:	1				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.01980	.00258	H.05543	H.01929	.00016	H1.0351	.00007
SDev	.00015	.00064	.00042	.00000	.00001	.0009	.00007
%RSD	.78299	24.899	.76216	.01117	3.0935	.08296	103.66
#1 #2	.01969 .01991	.00212	H.05573 H.05513	H.01929 H.01928	.00016	H1.0345 H1.0357	.00002 .00012
Errors	LC Pass	LC Pass	LC High	LC High	LC Pass	LC High	LC Pass
High	.20000	.01000	.05000	.00200	.00200	.50000	.00100
Low	04000	00500	00800	00300	00310	05000	00150
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00013	.00069	.00291	.01408	H1.4657	.13130	.00240
SDev	.00016	.00012	.00052	.00810	.0149	.00268	.00001
%RSD	129.08	16.705	17.826	57.524	1.0164	2.0396	.30730
#1	00024	.00060	.00254	.00835	H1.4762	.12940	.00241
#2	00001	.00077	.00327	.01981	H1.4552	.13319	
Errors High Low	LC Pass .0050000300	LC Pass .0020000300	LC Pass .0100000400	LC Pass .05000 04000	LC High .50000 50000	LC Pass .20000 04000	LC Pass .00300 00300
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00011	H1641.9	.00161	.00101	.00212	.00175	.00047
SDev	.00000	.6	.00046	.00224	.00021	.00089	.00049
%RSD	2.2742	.03870	28.859	222.25	9.9686	50.610	103.43
#1 #2	.00011	H1641.5 H1642.4	.00128 .00193	.00259 00058	.00227 .00198	.00238 .00113	.00082
Errors High Low	LC Pass .0100000500	LC High 1.0000 50000	LC Pass .10000 00300	NOCHECK	NOCHECK	LC Pass .00600 00400	LC Pass .0150001000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908 ppm00510 .00039 7.6718	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	00038	.00095	.00023	.00006		.00027	.01627
SDev	.00040	.00172	.00013	.00005		.00021	.00011
%RSD	104.32	180.83	55.304	80.816		79.567	.69664
#1	00010	.00217	.00014	.00009	00538	.00012	.01619
#2	00067	00027	.00032		00483	.00041	.01635
Errors High Low	LC Pass .02000 ~.01000	NOCHECK	NOCHECK	LC Pass .01000 00200	LC Pass .0200001000	LC Pass .00500 00300	LC Pass .02000 00300
Elem	Sn1899	Ag3280					

Analysis Report			12/10,	/04 05:09:2	26 PM	page 2
Units ppm Avge .00339 SDev .00068 %RSD 19.981	ppm .00011 .00026 235.02					
#1 .00386 #2 .00291	00007 .00030					
Errors LC Pass High .01000 Low01000	LC Pass .00300 00400					
IntStd 1 Mode Counts Elem Y Wavlen 371.030 Avge 4461 SDev 5.992799 %RSD .1343319	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 4465 #2 4457	···		 			

Analysis Report Blank Sample 12/10/04 05:15:09 PM page 1

Method: TRACE2 Sample Name: CRI Run Time: 12/10/04 17:10:49 Operator: SW

Comment:

Mode: Co	NC COII.	ractor: 1					
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179 ppm .50402 .00173 .34347	Cd2265
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	.20145	.01146	.04824	.00206	.00199		.00098
SDev	.00111	.00146	.00115	.00003	.00001		.00007
%RSD	.54975	12.781	2.3902	1.3984	.70312		7.5592
#1 #2	.20066 .20223	.01250 .01043	.04742 .04906	.00204 .00209	.00198	.50280 .50525	.00093
Errors	LC Pass	LC Pass					
High	.30000	.01500	.07500	.00300	.00300	.75000	.00150
Low	.10000	.00500	.02500	.00100	.00100	.25000	.00050
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00376	.00410	.00991	.05263	.51988	.19682	.00334
SDev	.00004	.00028	.00009	.00279	.02116	.00147	.00002
%RSD	.96871	6.8475	.86919	5.3077	4.0701	.74578	.55775
#1 #2	.00378 .00373	.00430	.00985 .00998	.05066 .05461	.53485 .50492	.19785 .19578	.00333
Errors	LC Pass	LC Pass					
High	.00600	.00600	.01500	.07500	.75000	.30000	.00450
Low	.00200	.00200	.00500	.02500	.25000	.10000	.00150
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00990	.95626	.00983	.00545	.00559	.00554	.01516
SDev	.00034	.04919	.00002	.00036	.00131	.00076	.00002
%RSD	3.3855	5.1441	.24291	6.6155	23.494	13.630	.14216
#1 #2	.01014 .00967	.99104 .92147	.00982 .00985	.00520 .00571	.00651 .00466	.00608	.01514
Errors High Low	LC Pass .01500 .00500	LC Pass 1.5000 .50000	LC Pass .01500 .00500	NOCHECK	NOCHECK	LC Pass .00750 .00250	LC Pass .02250 .00750
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.02046	.01341	.01603	.00527	.01935	.00508	.01984
SDev	.00199	.00189	.00098	.00001	.00153	.00005	.00003
%RSD	9.7362	14.098	6.0968	.11971	7.9150	.92676	.16554
#1	.01905	.01475	.01534	.00526	.01827	.00504	.01982
#2	.02186	.01207	.01672	.00527	.02044		.01986
Errors High Low	LC Pass .03000 .01000	NOCHECK	NOCHECK	LC Pass .00750 .00250	LC Pass .03000 .01000	LC Pass .00750 .00250	LC Pass .03000 .01000
Elem	Sn1899	Ag3280					

Analysis	Report	Blank S	Sample	12/10/	04 05:15:0	9 PM	page 2
Units Avge SDev %RSD	ppm .01015 .00009 .86225	ppm .00357 .00005 1.4877					
#1 #2	.01021 .01009	.00361					
Errors High Low	LC Pass .01500 .00500	LC Pass .00450 .00150					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4713 2.333660 .0495114	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4712 4715		 				 _.

Analysis Report QC Standard 12/10/04 05:19:32 PM page 1

Method: TRACE2 Sample Name: ICSA Run Time: 12/10/04 17:15:12 Operator: SW

Comment:

I	Mode: CO	NC Corr.	ractor: 1					
	Elem Units Avge SDev %RSD	Al3082 ppm 521.32 .67 .12935	As1890 ppm .00152 .00039 25.458	B_2496 ppm .00351 .00004 1.0938	Ba4934 ppm .00200 .00010 5.1773	Be3130 ppm .00107 .00000 .41540	Ca3179 ppm 433.97 .21 .04801	Cd2265 ppm 00493 .00011 2.3050
	#1 #2	521.79 520.84	.00179 .00124	.00354	.00193 .00207	.00107 .00107	433.82 434.12	00485 00501
	Errors Value Range	QC Pass 500.00 100.00	NOCHECK	NOCHECK	NOCHECK	NOCHECK	QC Pass 500.00 100.00	NOCHECK
	Elem Units Avge SDev %RSD	Co2286 ppm .00059 .00011 18.990	Cr2677 ppm 00019 .00020 106.68	Cu3247 ppm .00019 .00045 237.81	Fe2714 ppm 188.35 .04	K_7664 ppm .01120 .00185 16.531	Mg2790 ppm 564.07 .45 .07891	Mn2576 ppm .00240 .00006 2.4601
	#1 #2	.00051 .00067	00032 00005	00013 .00051	188.38 188.32	.01251 .00989	564.38 563.75	.00244
	Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 200.00 40.000	NOCHECK	QC Pass 500.00 100.00	NOCHECK
	Elem Units Avge SDev %RSD	Mo2020 ppm .00508 .00121 23.894	Na3302 ppm .07945 .03739 47.058	Ni2316 ppm .00240 .00006 2.4506	2203/1 ppm .01465 .00049 3.3191	2203/2 ppm 00290 .00111 38.387	PB2203 ppm .00294 .00058 19.696	SE1960 ppm 00037 .00082 218.14
	#1 #2	.00422 .00594	.05301 .10588	.00245 .00236	.01430	00211 00368	.00335	.00020 00095
	Errors Value Range	NOCHECK						
	Elem Units Avge SDev %RSD	Sb2068 ppm 00130 .00268 206.83	1960/1 ppm 00285 .00083 29.265	1960/2 ppm .00086 .00164 190.17	Ti3372 ppm .00171 .00000 .23387	Tl1908 ppm .02741 .00010 .38062	V_2924 ppm 00052 .00006 11.297	Zn2062 ppm .00417 .00013 3.1445
	#1 #2	00319 .00060	00344 00226	.00203	.00170 .00171	.02748 .02733	00047 00056	.00426 .00408
	Errors Value Range	NOCHECK						
	Elem	Sn1899	Ag3280					

Analysis	Report	QC Stan	dard	12/10/	04 05:19:3	32 PM	page 2
Units Avge SDev %RSD	ppm .00245 .00060 24.727	ppm .00059 .00021 35.485					
#1 #2	.00202	.00044					
Errors Value Range	NOCHECK	NOCHECK					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4383 7.742612 .1766510	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4378 4388				~ -	<u> </u>	

12/10/04 05:23:55 PM Analysis Report QC Standard page 1

Method: TRACE2 Sample Name: ICSAB Run Time: 12/10/04 17:19:35 Method: TRACE2

Comment:

		140001. 1	•				
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	511.10	.10066	.00214	.50744	.48176	425.53	.90681
SDev	.77	.00014	.00003	.00068	.00015	.09	.00000
%RSD	.15066	.13695	1.5400	.13353	.03165	.02186	.00042
#1	510.55	.10076	.00216	.50696	.48165	425.46	.90680
#2	511.64	.10056	.00212	.50792	.48186	425.59	.90681
Errors	QC Pass	QC Pass	NOCHECK	QC Pass	QC Pass	QC Pass	QC Pass
Value	500.00	.10000		.50000	.50000	500.00	1.0000
Range	100.00	.02000		.10000	.10000	100.00	.20000
Elem	Co2286	Cr2677	Cu3247	Fe2714	K_7664	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.45285	.46560	.51783	92.232	01769	551.86	.48797
SDev	.00044	.00042	.00024	.080	.03165	.64	.00040
%RSD	.09672	.09043	.04669	.08704	178.91	.11535	.08106
#1	.45254	.46530	.51766	92.175	.00469	551.41	.48769
#2	.45316	.46590	.51800	92.289	04007	552.31	.48824
Errors	QC Pass	QC Pass	QC Pass	QC Pass	NOCHECK	QC Pass	QC Pass
Value	.50000	.50000	.50000	100.00		500.00	.50000
Range	.10000	.10000	.10000	20.000		100.00	.10000
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00620	01592	.90808	.06349	.04402	.05050	.04694
SDev	.00070	.05500	.00088	.00470	.00419	.00123	.00063
%RSD	11.266	345.49	.09673	7.3963	9.5202	2.4379	1.3400
#1	.00670	.02297	.90870	.06681	.04105	.04963	.04738
#2	.00571	05481	.90746	.06017	.04698		.04649
Errors Value Range	NOCHECK	NOCHECK	QC Pass 1.0000 .20000	NOCHECK	NOCHECK	QC Pass .05000 .01000	QC Pass .05000 .01000
Elem	Sb2068	1960/1	1960/2	Ti3372	Tl1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.60167	.05096	.04493	.00137	.10569	.47826	.88475
SDev	.00083	.00828	.00320	.00021	.00497	.00026	.00032
%RSD	.13813	16.250	7.1168	15.200	4.7044	.05345	.03660
#1	.60226	.05682	.04267	.00152	.10218	.47808	.88453
#2	.60109	.04511	.04719	.00123	.10921	.47844	.88498
Errors Value Range	QC Pass .60000 .12000	NOCHECK	NOCHECK	NOCHECK	QC Pass .10000 .02000	QC Pass .50000 .10000	QC Pass 1.0000 .20000
Elem	Sn1899	Ag3280					

Analysis	Report	QC Standard		12/10,	/04 05:23:5	55 PM	page 2
Units Avge SDev %RSD	ppm .00151 .00197 130.65	ppm .20691 .00039 .18925					
#1 #2	.00290 .00011	.20664 .20719					
Errors Value Range	NOCHECK	QC Pass .20000 .04000					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4414 5.462469 .1237655	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4410 4417		<u> </u>	 	 		

Analysis Report QC Standard 12/10/04 05:28:19 PM page 1

Method: TRACE2 Sample Name: CCV Run Time: 12/10/04 17:23:59 Operator: SW

Comment:

Elem Units Avge SDev %RSD	Al3082 ppm 26.034 .035 .13582	As1890 ppm .49485 .00054 .10907	B_2496 ppm .47869 .00252 .52681	Ba4934 ppm .50245 .00086 .17081	Be3130 ppm .49892 .00151 .30208	Ca3179 ppm 25.065 .089 .35606	Cd2265 ppm .49208 .00177 .35993
#1 #2	26.009 26.059	.49447 .49523	.47690 .48047	.50185 .50306	.49785 .49998	25.002 25.128	.49083 .49333
Errors Value Range	QC Pass 25.000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000
Elem Units Avge SDev %RSD	Co2286 ppm .49623 .00153 .30845	Cr2677 ppm .49332 .00207 .42006	Cu3247 ppm .51882 .00103 .19840	Fe2714 ppm 24.996 .090 .35827	K_7664 ppm 25.076 .050	Mg2790 ppm 24.409 .105 .42952	Mn2576 ppm .50873 .00184 .36092
#1 #2	.49514 .49731	.49185 .49479	.51809 .51955	24.933 25.060	25.040 25.111	24.335 24.483	.50743 .51003
Errors Value Range	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass 25.000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000
Elem Units Avge SDev %RSD	Mo2020 ppm .47879 .00132 .27652	Na3302 ppm 24.894 .181 .72763	Ni2316 ppm .50074 .00093 .18626	2203/1 ppm .49342 .00100 .20155	2203/2 ppm .49775 .00306 .61435	PB2203 ppm .49631 .00171 .34423	SE1960 ppm .50319 .00025 .04923
#1 #2	.47786 .47973	25.023 24.766	.50008 .50140	.49413 .49272	.49559 .49991	.49510 .49752	.50337
Errors Value Range	QC Pass .50000 10.000	QC Pass 25.000 10.000	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem Units Avge SDev %RSD	Sb2068 ppm .51046 .00353 .69096	1960/1 ppm .49981 .00040 .07972	1960/2 ppm .50489 .00017 .03413	Ti3372 ppm .49140 .00094 .19195	Tl1908 ppm .50827 .00121 .23799	V_2924 ppm .49499 .00146 .29482	Zn2062 ppm .48781 .00195 .39920
#1 #2	.50797 .51296	.50009 .49952	.50501 .50477	.49073 .49207	.50742 .50913	.49395 .49602	.48644 .48919
Errors Value Range	QC Pass .50000 10.000	NOCHECK	NOCHECK	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000	QC Pass .50000 10.000
Elem	Sn1899	Ag3280					

Analysis	Report	QC Star	ndard	12/10	12/10/04 05:28:19 PM					
Units Avge SDev %RSD	ppm .51147 .00303 .59185	ppm .49390 .00023 .04756								
#1 #2	.50933 .51361	.49374 .49407								
Errors Value Range	QC Pass .50000 10.000	QC Pass .50000 10.000								
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4670 9.970275 .2135191	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 			
#1 #2	4677 4662			 	 	 				

Analysis Report Blank Sample 12/10/04 05:32:44 PM page 1

Method: TRACE2 Sample Name: CCB Run Time: 12/10/04 17:28:23

Comment:

nouc. co	inc coll.	ractor. I					
Elem	Al3082	As1890	B_2496	Ba4934	Be3130	Ca3179	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.06594	00030	.00050	.00022	.00013	.06946	.00007
SDev	.07128	.00014	.00007	.00016	.00009	.06070	.00028
%RSD	108.10	46.693	14.822	70.745	71.492	87.393	393.70
#1 #2	.01554 .11634	00040 00020	.00055	.00011	.00006 .00019	.02654 .11238	00013 .00027
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.20000	.01000	.05000	.00200	.00200	.50000	.00100
Low	04000	00500	00500	00300	00300	04000	00200
Elem Units Avge SDev %RSD	Co2286 ppm .00027 .00043 160.79	Cr2677 ppm00012 .00010 87.779	Cu3247 ppm00021 .00031 152.75	Fe2714 ppm .01902 .01323 69.565	K_7664 ppm .00190 .00400 210.44	Mg2790 ppm .06257 .06595 105.40	Mn2576 ppm .00049 .00008 16.355
#1	00004	00019	00043	.00966	.00473	.01594	.00044
#2	.00057	00004	.00002	.02837	00093	.10921	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass .0030000300
High	.00400	.00400	.01000	.05000	.50000	.20000	
Low	00300	00300	00400	-,04000	50000	04000	
Elem	Mo2020	Na3302	Ni2316	2203/1	2203/2	PB2203	SE1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00018	.01739	.00027	.00003	.00140	.00094	00154
SDev	.00045	.05136	.00039	.00257	.00144	.00010	.00049
%RSD	253.55	295.34	147.58	8108.8	102.92	11.020	31.979
#1	.00050	.05370	00001	.00185	.00038	.00087	00188
#2	00014	01893	.00054	00179		.00102	00119
Errors High Low	LC Pass .01000 00300	LC Pass 1.0000 50000	LC Pass .0100000300	NOCHECK	NOCHECK	LC Pass .00500 00300	LC Pass .01500 01000
Elem	Sb2068	1960/1	1960/2	Ti3372	T11908 ppm .00019 .00202 1058.5	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	00016	00057	00202	.00007		.00027	00004
SDev	.00260	.00326	.00089	.00009		.00015	.00021
%RSD	1588.2	568.15	44.305	127.35		53.871	507.37
#1 #2	.00168 00201	00288 .00173	00139 00265	.00013	.00162	.00017	00019 .00011
Errors High Low	LC Pass .02000 01000	NOCHECK	NOCHECK	LC Pass .00500 /00200	LC Pass .02000 01000	LC Pass .00500 00300	LC Pass .02000 00300
Elem	Sn1899	Ag3280					N.

Analysis	Report	Blank :	Sample	12/10,	/04 05:32:4	14 PM	page 2
Units Avge SDev %RSD	ppm .00151 .00100 66.316	ppm 00031 .00003 9.8847					
#1 #2	.00221	00029 00033					
Errors High Low	LC Pass .01000 00500	LC Pass .00300 00300					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 4729 5.144133 .1087799	2 NOTUSED 	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	4725 4733					 	

Date: 12/09/2004 Time: 09:05:48 STL Buffalo

A4B20611 - 12/09/04 ASP00/6010 SOIL 3050 (Closed) METALS DIGESTION LOG

Rept: AN0764

Page:

SOLIDS

Clarity :ore/After	IOUDY CLDY/F	LOUDY CLDY/F	TOUDY CLUY/F	TOUDY CLDY/F	TOUDY CLDY/F	CLR/FI
Clarity Before/After				CLOUDY	CLOUDY	CLEAR
Color Before/After	BROWN	BROWN	BROWN	BROWN	BROWN	50.00 COLORLES COLORLES CLEAR CLR/FI
Co. Before	50.00 BROWN 50.00 BROWN	50.00 BROWN	50.00 BROWN	50.00 BROWN	50.00 BROWN	COLORLES
Final (ml)	50.00		50.00	50.00	50.00	50.00
Initial Wgt (g)	0.5024	0.4838	0.5605	0.4606	0.5005	0.5000
Analysis Initial Final V1 Type Wgt (g) (ml)	MI M		MI MI	WIL	ΣĮ	Æ.
VI	444	44	4 4	Ø	ď	K
Sample Digest Type ID	AD466610 A TM AD466611 A TM	AD466613 A	AD466614 A AD466615 A	AD466616 A	AD466617 A	AD466618 A
Sample Type	SE SE	당 당	찬 전	FS	CLPSL	MBLK
Bot	A A A	₹ Æ 1	4 4	A	Ą	Ø
Bot Sample ID ID	12/09/04 08:00 JLG A04-C233 A4C23301 12/09/04 08:00 JLG A04-C233 A4C23301MS	12/09/04 08:00 JLG A04-C233 A4C23302	A4C23303 A4C23304	A4C23305	A4B2061101	A4B2061102
Dig Time Emp Jobno	12/09/04 08:00 JLG A04-C233 A4C23301 12/09/04 08:00 JLG A04-C233 A4C23301	12/09/04 08:00 JLG A04-C233 A4C23302	12/09/04 08:00 JLG A04-C233 A4C23303 12/09/04 08:00 JLG A04-C233 A4C23304	12/09/04 08:00 JLG A04-C233 A4C23305		
Dig Emp	JIG JIG	71.G	71G	JIG	JIG	JIG
Time	08:00	00:80	00:80	08:00	00:80	00:80
Date	12/09/04	12/09/04	12/09/04 12/09/04	12/09/04	12/09/04 08:00 JLG	12/09/04 08:00 JIG

TOPSOI

TOPSOI TOPSOI IOSGOI

TOPSOI

NONE

TOPSOI

Textur

TOPSOI TOPSOI

Comments: EPPENDORF'S USED IN PARENTHESIS:

4.) MD-03A-2602E .200ml SN 510517

QUALITY CONTROL ADDITIVES:

(*) USED FOR SPIKING SPIKES ADDED / EPPENDORF

.20 ml PER 50ML FIN VOL

.20 ml PER 50ML FIN VOL

(1) .20 ml PER 50ML FIN VOL (1) .20 ml PER 50ML FIN VOL CLLP #1 -987- 8-MDL-3 CLLP #2 -988- 8-MDL-5 CLLP #3 -989- 8-MDL-4

.5 gr PER SOML FIN VOL SOIL SPIKE 9-MDL-18 LOTD039-540

10-MDL-06 CONC. NITRIC ACID 든

11-MDL-10 MSL5311 NITRIC ACID

ANALYSIS W/O Sn 10-MDL-2, Sn ANALYSIS- 9-MDL-21 Hydrogen Peroxide CONC. Hel ACID

HOT BLOCK TEMPERATURE

119 SAMPLE TEMPERATURE

1200 BATCH ENDED

11130760-3 A405LS149 2 micron FILTERMATE DIGESTIVE CUP LOT

Colorless Yellow Violet Red Green Gray Black Blue Color:

White

Orange

Opaque Cloudy Clear Clarity:

Fine Texture:

(powdery) Medium (sand)

(large crystals or rocks) Coarse

> Brown * Redigestion

Dry Weight Log Book NYS DEC

Page: 1 Rept: AN0510

Decanted	Z	Z	Z	Z	Z	Z	Z
% Dry	75.90	75.90	75.90	80.90	61.40	70.20	46.30
Dry Weight	3.53	3.53	3.53	4.16	2.40	4.69	2.63
Wet	4.65	4.65	4.65	5.14	3.91	6.68	5.68
Dry + Dish	4.74	4.74	4.74	5.38	3.63	5.88	3.87
Wet + Dish	5.86	5.86	5.86	6.36	5.14	7.87	6.92
Dish Weight (g)	1.21	1.21	1.21	1.22	1.23	1.19	1.24
Product Test Abreviation	T NI	T NI	T NI	T NI	T NI	T NI	T NI
Analyst							
Analysis Date	12/09/2004	12/09/2004	12/09/2004	12/09/2004	12/09/2004	12/09/2004	12/09/2004
Vial Number							-
Sample I.D.	A4C23301	A4C23301MS	A4C23301SD	A4C23302	A4C23303	A4C23304	A4C23305
Job Number	A04-C233	A04-C233	A04-C233	A04-C233	A04-C233	A04-C233	A04-C233

Date: 01/04/2005 Time: 09:56:25 WET CHEMISTRY DATA

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Client Sample No.

						Ţ,	D088A		
Lab Name: <u>STL Buffalo</u>		Contract	: C004154	Ľ					
Lab Code: <u>RECNY</u>	Case No.: <u>SH904</u>	SAS No.: SDG No.: 1208							
Matrix (soil/water): <u>SO</u>	<u>IL</u>	Lab Sample ID: A4C23301							
₹ Solids:		Date Sar	πp/	'Recv:	<u>12</u>	/08/2004 <u>12</u>	/08/2004		
Paramet	er Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date	
Leachable pH	s.u.	7.30				9045	12/10/2004		
Comments:									

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Client Sample No.

D088AA		
12000111		

Lab Name: <u>STL Buffalo</u>

Contract: C004154

Lab Code: <u>RECNY</u> Case No.: <u>SH904</u>

SAS No.: ____

SDG No.: 1208

Matrix (soil/water): SOIL

Lab Sample ID: A4C23302

% Solids:

0.0

Date Samp/Recv: <u>12/08/2004</u> <u>12/08/2004</u>

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Leachable pH	s.u.	8.18				9045	12/10/2004

Com	ments:									
		 				•	٠			
					 	 ·	······································	 	 	

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Wet Chemistry Analysis
Client Sample No.

	_		D088B	
Lab Name: <u>STL Buff</u>	<u>alo</u>	Contract: C004154		
Lab Code: <u>RECNY</u>	Case No.: <u>SH904</u>	SAS No.:	SDG No.	.: 1208

Matrix (soil/water): SOIL

Lab Sample ID: A4C23303

% Solids: <u>0.0</u>

Date Samp/Recv: 12/08/2004 12/08/2004

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Leachable pH	s.u.	7.31				9045	12/10/2004

Comment	s:					
			,	 		
					,	

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Client Sample No.

Lab	Name:	STL Buffalo		Contract: <u>C004154</u>	D088C	
Lab	Code:	RECNY	Case No.: <u>SH904</u>	SAS No.:	SDG No.: 1208_	

Matrix (soil/water): SOIL Lab Sample ID: A4C23304

% Solids: 0.0 Date Samp/Recv: 12/08/2004 12/08/2004

Parameter Name	Units of Measure		С	Q	М	Method Number	Analyzed Date
Leachable pH	s.u.	7.40				9045	12/10/2004

Comm	ents:						
_		 	 	 	-	•	
_	-						
_		 	 **	 	·	 	

NYS DEC NYS DEC ASP Contract #C004154 - Region 9

Wet Chemistry Analysis

Client	Sample	No.	,
D088D			

Lab Name: STL Buffalo

Contract: C004154

Lab Code: <u>RECNY</u> Case No.: <u>SH904</u>

SAS No.: ____

SDG No.: 1208

Matrix (soil/water): SOIL

Lab Sample ID: A4C23305

% Solids:

0.0

Date Samp/Recv: <u>12/08/2004</u> <u>12/08/2004</u>

Parameter Name	Units of Measure	Result	С	Q	M	Method Number	Analyzed Date
Leachable pH	s.u.	6.63				9045	12/10/2004

Com	ments:				

Page: 1 Rept: AN1368	MDL X T	* Y 00000.0	
	101	0.00	
	CDI		
Task 1 to Lab MDL \SP00	T Test M UM	STA00900 S S.U.	
Compare Client DL for PROJECT NY1A8770.9 and Task 1 to Lab MDL For METHOD: 9045 PROTOCOL: ASPOO	TDL Type Protcl Method	CRQL ASPOO 9045	
Compare Client DL for PROJEC For METHOD: 9045	Parameter		
	Tsk No	NY1A8770.9 1 Leachable pH	
	Tsk Project No No	NY1A8770.9	
Date: 01/06/2005 Time: 09:02:46	Laboratory: A Project Manager: BJF Client Name	<u>Fraction:</u> WC NYS DEC	

NYS DEC NYS DEC ASP Contract #C004154 - Region 9 Wet Chemistry Analysis

Client Sample No.

Lab Name: <u>STL Buffa</u>	<u>lo</u>	Contract	: <u>C004154</u>				LCS	
Lab Code: <u>RECNY</u>	Case No.: <u>SH904</u>	SAS No.	:				SDG No.: <u>12</u>	208
Matrix (soil/water)	: SOIL		Lab Samp	ple	ID:	<u>A4</u>	B2079301	
R Solids:	100.0		Date San	np/	Recv	:	· .	aagaanaa aa aa aa aa aa aa aa aa aa aa aa a
Para	ameter Name	Units of Measure	Result	С	Q	M	Method Number	Analyzed Date
Leachable pH		s.u.	7.03				9045	12/10/200
Comments:				•				

WET CHEMISTRY RAW DATA

	·			·	,																
220	COMMENTS					-															
000022	TIME		30 16	2019	2020	3027	2025	7070	2012	2026	2026	2018	2030	2081	2031	20.32	2032	3039	78.84		
BATCH Augaa79	Hď		7.03	7.45	7.08	717	7.18	7.55	アナス	7.76	7.83	7-9-7	7.0 H	. 1	7.8	7.76	7.30	8.18	7.31		
47CH	SAMPLE TEMP		21.5	4.16	30.6	20.5	30.2	0 L								3° €	7.61		18.7		
	SPL WT. (g) /VOL.(ml)	,	20/20	+	_		<u>. </u>						_				-)	20	ı
STL BUFFALO I LOG – SOILS Method 9045C Logbook# A04-10-10	SAMPLE I.D.		0	3	700	٦ 2	2 8	0 0	40	076pc	Ü	92		~0	70	95	0	70	<u>ئ</u> ئ	mo o i	72-1
STL B OG – SOJ Logbook	•		w.	-						4	K080	4000	700		7027	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,000	- 1	.	ر ار ار ار
pH L/	# gop #	37	70,	5.22	-	1				>	6703		3 (F -				\\ 	nH Meter Model # 74.		SKM 7:00 = WCR_
	BUFFER TEMP °C		<u>ي</u> <u>2</u> :								<u>ال</u> الح الح	2	7	.ā			3	25/5/	oH Me		SKM 7:0
		WCR-	2,7																		
	<u>m</u>		0,												,						
	7:00	WCK- A -732	7.04							,											
The second of th	ANAL		3															₩	teviewed By		
	MA	3	י	ļ											1		L.	1	tevie	Jate	1

				·	,				73p					_			:,			-				
000023	COMMENTS					- Altania	:						-											
00	TIME				7036	30 4 D	1000	3041	3041	2042	2043	2047	3044	3045	3000	3046	70H7	8400	3049	7051	3053			••
	Hd	•		1	70	6.63	7.77	7.87	7.02	7.59	7.58	7.70	69 £	7.69	7.70	7.58	8.15	8.41	7.95	797	7.01			
	SAMPLE	. °C	,	3	0.01	18.7	70.7	30.5	≥1.1	20.8	40,04	20.6	20.7				40.7	20.8	21.0	20.8	٦١, ١			
od 9045C 10	SPL	WT. (g) /V:OL.(ml)		1,500	~				:-				_								->		1 33	
STL BUFFALO LOG – SOILS Method 9045C Logbook # A04-10-10	SAMPLE I.D.	,		7 0		0.71	90		7.00	ж 0	60	0/	11	۲)	13	61	7.	9	+1	× (0 D X		SEE P46	
S pH LOG	H GOF		T. A. S.	18 C	1.23	(02)		1030	200	7057										>	5 27		- Model #	WCR
	BUFFER	ڕؙ۫		Ţ	plos)ey				\$.		-		-					TI BALL	parimeter Model #	SKM /:00 = WCR
	10.00	7	WCR-																					
	BUFFERS 4:00		× C.K.	-	,																			
	7:00	C/XX	W C.F									-												
•	ANAL.			W.C.			-									1				 		eviewed By		
	ZI,			3/83	-											1				2		eview	ate	

CASE FILE PURGE

MISCELLANEOUS DATA

GC INJECTION LOG BOOK

Company of the second

467/481 Clesty Clark Y y Z COMMENTS SEQUENCE_ CLEHW A CLORY 8 ナメか Cut Cuty つな として PROCESS Y/N TA Suppose COLUMN ID'S A 20 35 SOLVENT LOT # 2/2 805 1 FILE ID 4 20 B 230 220 138 7.38 200 235 225 님 VIAL ID œ 19811 msx2 14812 SAX2 AWYOOLSOT) MALK 14809 X100 (480) NOO 14805 mALK 0-51 70861 14808 150 ASYOO/YFW MSB 14810 x2 000 Ó 25040 50 2305 M5 ICM SYRA 63 Н 2542 25063 15061 INSTRUMENT ID THE SASS-14 25058 A4 400 25044 ICM 6650 AW400250C5 TOW 30F ICX 3 GF Hermo Harrod Hoymme HOYAWA VIAL ID PRIMA CV3 2016 10B# ÿ TOUK 6577 CCV C233 CCU 263 SYRINGE LOT # DATE & INIT.

THE

SHIPPING/RECEIVING DATA

Chain of Custody Record

SEVERN STL
Severn Trent Laboratories, Inc.

469/481 Special Instructions/ Conditions of Receipt Chain of Custody Number Page_ Date SP-B-Ado Analysis (Attach list if more space is needed) Date ☐ Archive For 5820 OC Requirements (Specify) Disposal By Lab MOORE Containers & Preservatives HŌ₽N 551-7330 3. Received By ЮH EONH Telephone Number (Area Code)/Fax Num tOSZI-MAURICE Return To Client DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy Oliver STPANDARD Sample Disposal !!OS Matrix Carrier/Waybill Number pəş 140x 01 Project Manager Site Contact ήΑ Unknown 11.35 1130 1900 1105 Time 13/08/1100 21 Days 14,203 Poison B Date アス ☐ 14 Days Den York Sma- DEC Sample I.D. No. and Description (Containers for each sample may be combined on one line) HUTCH - DUNKINK Contract/Purchase Order/Quote No. Skin Irritant ☐ 7 Days 870 Michigan | Flammable Project Name and Location (State) 48 Hours City Dotty to Possible Hazard Identification DUSS AA D0887 Turn Around Time Required DOS8 C DOSS A DO88 B 3. Relinquished By hed By 1. Relinquished B Non-Hazard STL-4124 (0901) 24 Hours Comments 2. Relindui

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)					,			
 Lab personnel are expected to use when handling this sample since it materials(s) 								
CHECK THE BOX PRECEDING THE REQUESTED ANALYSIS								
PRIORITY POLLUTANTS (Water Part 13	6)—SPDES							
☐ 2. 13PP Metals	□ 3. Volatile	s-(USEPA 624 GC/MS	6) 🗆 6	. Pesticides/PCBs	(USEPA 608-GC)			
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	□ 5. Cyanide	e	□ 9	. BOD				
☐ 7. Halogenated Volatiles (USEPA 601 GC)	□ 8. Aromat	tic Volatiles USEPA 602	GC) 🗆 🗆 1	2. TSS				
□ 10. pH	□ 11. COD		□ 1	5. Ammonia				
☐ 13. Settleable Solids	☐ 14. TKN		□ 1	8. Reactive Phosp	horus			
☐ 16. Nitrate/Nitrite	□ 17. Total	Phosphorus	□ 2	1. Total Phenois				
☐ 19. Oil/Grease)	□ 20. TOC		□ 6	0. PCBs congener	method (ASP 91-11)			
□ 22. Other	_ 🗆 59. PCBs	at 0.065 ug/l	□ 6	4. Total Solids				
	□ 62. CBOD)	□ 6	5. Volatiles (USEP)	A 524.2 GC/MS)			
CONTRACT LABORATORY PROTOCOL	.S	<u> </u>						
☐ 23 (ALL)—Water—Includes 24-28		☐ 29. (ALL)—Soil/S	Sediments—Inclu	ides 30-34				
☐ 24 Base/Neutral/Acid (B/N/A)—Water—GC/MS ((ASP #95-2)	□ 30. (B/N/A)—Soil	/Sediments—G0	C/MS (ASP #95-2)				
☐ 25 Volatile Organic Analysis VOA—Water—GC/M	MS (ASP #95-1)	☐ 31. VOA—Soil/Se	diments—GC/M	S (ASP #95-1)				
☐ 26 Pesticides/PCBs—Water—GC/MS (ASP #95	i-3)	☐ 32. Pesticides/PC	BsSoil/Sedime	ents-GC (ASP #9	95-3)			
□ 27 Metals—23 in Water		☐ 33. Metals—23 in	n Soil/Sediments)				
□ 28 Cyanide—Water		☐ 34. Cyanide—So	l/Sediments)		*			
☐ 66 Dioxin-Water (ASP #91-7)		☐ 67. Dioxin-Soil/Se	ediments (ASP #	91-7)				
♥ 35 Other <u>PC3.<</u>	+ Di	ckel						
HAZARDOUS WASTES/RCRA ANALYSI	S SW-846							
☐ 36. EP Toxicity	☐ 37. EP To	xicity (Metals Only)	□ 3	8. Ignitability				
☐ 39. Corrosivity	□ 40. VOA-	—(USEPA 8260 GC/MS)	□ 4	1. BNA—(USEPA	8270 GC/MS)			
☐ 42. Pesticides/PCBs (USEPA 8081)	☐ 43. TCLP		□ 4	4. TCLP (Metals 0	nly)			
☐ 45. Reactivity	☐ 46. Dioxir	ı (USEPA 8280)	□ 4	7. Appendix IX				
☐ 48. Other	_ 🗆 63 Percer	nt Solids	□ 6	8. Metals—17 Ha:	zardous			
MUNICIPAL SLUDGE		***************************************						
□ 56. RS-01 □ 57. RS-02 □ 58.	Other				<i>€</i>			
COLLECTED BY:		TELEPHONE NU	IMBER:		REGION NO.:			
M. Moore		714 85	7- 7220	3 .	9			
CONTRACT LABORATORY:	COUN		SAMPLING D	ATE:	MILITARY TIME:			
S T	Ch	aut.	12/08	104	1160			
SAMPLE MATRIX:								
☐ Air ☐ Soil/Sediment ☐ Groundwate	r 🗆 Surfac	ce Water 🔲 Was	tewater [Other				
CASE NO. SDG NO. SAMPLE	NO. CI	HECK FOR MS/MI	TYPE O	F SAMPLE				
<u> </u>		☐ This sample	I	☐ Composite	☐ Termhours			
☐ Check if there will be more samples with this SD		endar week.		gory B, unless che				
SAMPLING POINT:		1	<u> </u>	ıplicate □ Outfall				
			Check if sampli	ng is part of inspec	ction 🗆			
		ļ	FLOW:	GPD	MGD			
			SPDES NUM	MBER/REGIST	RY NUMBER			
			1					

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

	•		Part 3
CAUTION (check if applicable)			
☐ Lab personnel are expected to use of when handling this sample since it is materials(s)			
<u> </u>	OX PRECEDING THE REQU	ESTED ANALYSIS	
PRIORITY POLLUTANTS (Water Part 136	S)—SPDES		
□ 2. 13PP Metals	☐ 3. Volatiles—(USEPA 624 GC/MS) \(\square 6. \text{ Pesticides/PCBs (l}	USEPA 608-GC)
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	☐ 5. Cyanide	9. BOD	,
□ 7. Halogenated Volatiles (USEPA 601 GC)	☐ 8. Aromatic Volatiles USEPA 602		
□ 10. pH	□ 11. COD	☐ 15. Ammonia	
☐ 13. Settleable Solids	□ 14. TKN	☐ 18. Reactive Phospho	orus
☐ 16. Nitrate/Nitrite	☐ 17. Total Phosphorus	☐ 21. Total Phenols	
□ 19. Oil/Grease)	□ 20. TOC	☐ 60. PCBs congener r	nethod (ASP 91-11)
□ 22. Other	☐ 59. PCBs at 0.065 ug/l	☐ 64. Total Solids	, ,
	□ 62. CBOD	☐ 65. Volatiles (USEPA	524.2 GC/MS)
CONTRACT LABORATORY PROTOCOLS	5		<u> </u>
☐ 23 (ALL)—Water—Includes 24-28		ediments-Includes 30-34	
☐ 24 Base/Neutral/Acid (B/N/A)—Water—GC/MS (A	` '	/Sediments—GC/MS (ASP #95-2)	
☐ 25 Volatile Organic Analysis VOA—Water—GC/M	, , ,	·	
☐ 26 Pesticides/PCBs—Water—GC/MS (ASP #95-		BsSoil/SedimentsGC (ASP #95	5-3)
☐ 27 Metals—23 in Water	☐ 33. Metals—23 in	Soil/Sediments)	
☐ 28 Cyanide—Water	☐ 34. Cyanide—Soil	l/Sediments)	
☐ 66 Dioxin-Water (ASP #91-7)	□ 67. Dioxin-Soil/Se	diments (ASP #91-7)	
## Other ## PCB'S -	DICKEL		
HAZARDOUS WASTES/RCRA ANALYSIS	S SW-846		
☐ 36. EP Toxicity	☐ 37. EP Toxicity (Metals Only)	☐ 38. Ignitability	
☐ 39. Corrosivity	☐ 40. VOA—(USEPA 8260 GC/MS)	☐ 41. BNA—(USEPA 8	270 GC/MS)
☐ 42. Pesticides/PCBs (USEPA 8081)	☐ 43. TCLP	☐ 44. TCLP (Metals On	ıly)
☐ 45. Reactivity	☐ 46. Dioxin (USEPA 8280)	☐ 47. Appendix IX	
☐ 48. Other	☐ 63 Percent Solids	☐ 68. Metals—17 Haza	ardous
MUNICIPAL SLUDGE			
□ 56. RS-01 □ 57. RS-02 □ 58. (Other		
COLLECTED BY:	TELEPHONE NU	MBER:	REGION NO.:
M. MooRE	7/6 851	- 7220	9
CONTRACT LABORATORY:		SAMPLING DATE:	MILITARY TIME:
ンプ	Chartergra	12/08/04	1105
SAMPLE MATRIX:	,	/	
☐ Air ☐ Soll/Sediment ☐ Groundwater	☐ Surface Water ☐ Wast	ewater	
CASE NO. SDG NO. SAMPLE	NO. CHECK FOR MS/ME	TYPE OF SAMPLE	
5141910141120181 DIU181	8 14 1A □ This sample	Grab □ Composite (□ Termhours
☐ Check if there will be more samples with this SDG	sent in this calendar week.	Report via Category B, unless chec	
SAMPLING POINT:	<u> </u>	Check if field duplicate □ Outfall N	lumber
	-	Check if sampling is part of inspect	ion 🗆
	1-	FLOW: GPD	MGD
		SPDES NUMBER/REGISTE	RY NUMBER

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)				•
☐ Lab personnel are expected to use of when handling this sample since it is materials(s)				
CHECK THE B	OX PRE	CEDING THE REQ	UESTED ANALYSIS	
PRIORITY POLLUTANTS (Water Part 136)—SPDE	S		
☐ 2. 13PP Metals	□ 3. Voi	atiles—(USEPA 624 GC/N	(AS) □ 6. Pesticides/PCBs	(USEPA 608-GC)
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	□ 5. Cy	anide	□ 9. BOD	
☐ 7. Halogenated Volatiles (USEPA 601 GC)	□ 8. Arc	omatic Volatiles USEPA 60	2 GC) 🔲 12. TSS	
□ 10. pH	□ 11. C	OD	☐ 15. Ammonia	
□ 13. Settleable Solids	□ 14. T	KN	☐ 18. Reactive Phosp	horus
☐ 16. Nitrate/Nitrite	□ 17. To	otal Phosphorus	☐ 21. Total Phenols	
□ 19. Oil/Grease)	□ 20. T		☐ 60. PCBs congener	method (ASP 91-11)
□ 22. Other	□ 59. P	CBs at 0.065 ug/l	☐ 64. Total Solids	
	□ 62. C	BOD	☐ 65. Volatiles (USEP	A 524.2 GC/MS)
CONTRACT LABORATORY PROTOCOLS	3			
☐ 23 (ALL)—Water—Includes 24-28		☐ 29. (ALL)—Soil	/Sediments—Includes 30-34	
☐ 24 Base/Neutral/Acid (B/N/A)—Water—GC/MS (A	SP #95-2)	☐ 30. (B/N/A)—S	oil/Sediments—GC/MS (ASP #95-2)	
☐ 25 Volatile Organic Analysis VOAWaterGC/MS	S (ASP #95	5-1) 🗆 31. VOA—Soil/S	Sediments—GC/MS (ASP #95-1)	
□ 26 Pesticides/PCBs—Water—GC/MS (ASP #95-3	3)	☐ 32. Pesticides/F	PCBs—Soil/Sediments—GC (ASP #	95-3)
□ 27 Metals—23 in Water		☐ 33. Metals—23	in Soil/Sediments)	
☐ 28 Cyanide—Water		☐ 34. Cyanide—S	oil/Sediments)	
☐ 66 Dioxin-Water (ASP #91-7)		☐ 67. Dioxin-Soil/	Sediments (ASP #91-7)	
12-35 Other PCB 5	5 + x	rickel_		
HAZARDOUS WASTES/RCRA ANALYSIS	SW-846		•	
☐ 36. EP Toxicity	□ 37. E	P Toxicity (Metals Only)	☐ 38. Ignitability	
☐ 39. Corrosivity	□ 40. V	oa(usepa 8260 gc/ms	S) 🗆 41. BNA—(USEPA	8270 GC/MS)
☐ 42. Pesticides/PCBs (USEPA 8081)	□ 43. T	CLP	☐ 44. TCLP (Metals C	Only)
☐ 45. Reactivity	□ 46. D	ioxin (USEPA 8280)	☐ 47. Appendix IX	
☐ 48. Other	□ 63 Pe	rcent Solids	☐ 68. Metals—17 Ha	zardous
MUNICIPAL SLUDGE				
□ 56. RS-01 □ 57. RS-02 □ 58. 0	ther		<u></u>	
COLLECTED BY:		TELEPHONE N		REGION NO.:
M. MOORE		714	85-1-7220	9
CONTRACT LABORATORY:	CO	UNTY:	SAMPLING DATE;	MILITARY TIME:
5-72	C	harbargia	12/01/04	1120
SAMPLE MATRIX:		1	/	
☐ Air ☐ Soil/Sediment ☐ Groundwater	□ St	ırface Water 🔲 Wa	istewater 🗆 Other	·
CASE NO. SDG NO. SAMPLE I	- ·	CHECK FOR MS/N	TYPE OF SAMPLE	
<u> 5141910141/1210181 DIO181</u>	8131	☐ This sample	<u> </u>	☐ Termhours
☐ Check if there will be more samples with this SDG	sent in this	calendar week.	Report via Category B, unless che	ecked 🗆
SAMPLING POINT:			Check if field duplicate □ Outfall	Number
			Check if sampling is part of inspec	ction 🗆
			FLOW: GPD	MGD
			SPDES NUMBER/REGIST	RY NUMBER
				1 1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)							
☐ Lab personnel are expected to use when handling this sample since it i materials(s)		_	•			•	
	OX PRE	CEDING THE REQ	UESTE	D ANALYS	SIS		
PRIORITY POLLUTANTS (Water Part 136	S)—SPDE	S					F
☐ 2. 13PP Metals	•	atiles—(USEPA 624 GC/N	1S)	☐ 6. Pes	sticides/PCBs ((USEPA 608-GC))
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	□ 5. Cy	•	,	□ 9. B0[`	
☐ 7. Halogenated Volatiles (USEPA 601 GC)	·=·	omatic Volatiles USEPA 60	2 GC)	□ 12. TS	SS		
□ 10. pH	□ 11. C	OD		□ 15. Ar	mmonia		
□ 13. Settleable Solids	□ 14. T	KN		□ 18. Re	eactive Phosph	norus	
☐ 16. Nitrate/Nitrite	□ 17. Te	otal Phosphorus		□ 21. To	tal Phenols		
☐ 19. Oil/Grease)	□ 20. T	OC		□ 60. P0	CBs congener	method (ASP 91	-11)
□ 22. Other	□ 59. P	CBs at 0.065 ug/l		□ 64. To	otal Solids		
	□ 62. C	BOD		□ 65. Va	olatiles (USEPA	524.2 GC/MS)	
CONTRACT LABORATORY PROTOCOLS	S						
☐ 23 (ALL)—Water—Includes 24-28		□ 29. (ALL)—Soil,	/Sedimer	nts—Includes 3	30-34		
☐ 24 Base/Neutral/Acid (B/N/A)—Water—GC/MS (A	ASP #95-2)	□ 30. (B/N/A)—Sc	oil/Sedim	ents—GC/MS	(ASP #95-2)		
☐ 25 Volatile Organic Analysis VOA—Water—GC/M	S (ASP #95	5-1) 🗆 31. VOA—Soil/3	Sediment	s—GC/MS (AS	SP #95-1)		
☐ 26 Pesticides/PCBs—Water—GC/MS (ASP #95-	3)	☐ 32. Pesticides/P	CBs—So	oil/Sediments-	-GC (ASP #9	5-3)	
□ 27 Metals—23 in Water		☐ 33. Metals—23	in Soil/S	ediments)			
☐ 28 Cyanide—Water		☐ 34. Cyanide—S	oil/Sedim	nents)			
□ 66 Dioxin-Water (ASP #91-7)	*	☐ 67. Dioxin-Soil/S	Sediment	s (ASP #91-7)		
□ 35 Other <u>PCB '5 </u>	ncke						
HAZARDOUS WASTES/RCRA ANALYSIS	SW-846		-				
☐ 36. EP Toxicity	□ 37. E	P Toxicity (Metals Only)		□ 38. lgi	nitability		
☐ 39. Corrosivity	□ 40. V	oa—(usepa 8260 gc/ms	S)	□ 41. BN	NA—(USEPA 8	3270 GC/MS)	
☐ 42. Pesticides/PCBs (USEPA 8081)	□ 43. T	CLP		□ 44. TC	CLP (Metals O	nly)	
☐ 45. Reactivity	□ 46. D	ioxin (USEPA 8280)		□ 47. Ap	opendix IX		
☐ 48. Other	□ 63 Pe	rcent Solids		□ 68. M	etals—17 Haz	ardous	
MUNICIPAL SLUDGE				· ·			
□ 56. RS-01 □ 57. RS-02 □ 58. (Other	,4					
COLLECTED BY:	, proportion	TELEPHONE N	UMBE	R:		REGION	NO.:
In Moore	T	716 8	51-	1220		1	
CONTRACT LABORATORY:	CO	UNTY:	SAMP	LING DATE	: :	MILITARY 1	ГІМЕ:
STZ	C	harbarsia	12	108/09	4	1125	- ,
SAMPLE MATRIX:				, ,			
☐ Air ☐ Soit/Sediment ☐ Groundwater	□ Si	ırface Water □ Wa	stewater	□ Oth	er		
CASE NO. SDG NO. SAMPLE	NO.	CHECK FOR MS/M	ID T	TYPE OF SA	AMPLE		
5 14 1910 4 1/12 P181 1810 181	81 <u>C1</u>	☐ This sample		🗖 Grab 🗆	Composite	□ Term	hours
☐ Check if there will be more samples with this SDG	sent in this	calendar week.		t via Category			
SAMPLING POINT:				if field duplica			
				if sampling is	` 		
			FLOW:		iPD	MGD	
			SPDE	ES NUMBE	R/REGISTI	RY NUMBER	í
			1	1 1			1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

CAUTION (check if applicable)				2
☐ Lab personnel are expected to use of when handling this sample since it is materials(s)			•	•
CHECK THE B	OX PRECE	DING THE REQ	UESTED ANALYSIS	
PRIORITY POLLUTANTS (Water Part 136	-SPDES			
☐ 2. 13PP Metals	☐ 3. Volatile	es(USEPA 624 GC/ľ	MS) 6. Pesticides/PCBs	(USEPA 608-GC)
☐ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	☐ 5. Cyanio	ie	□ 9. BOD	
☐ 7. Halogenated Volatiles (USEPA 601 GC)	□ 8. Aroma	tic Volatiles USEPA 60	02 GC) 🔲 12. TSS	
□ 10. pH	□ 11. COD		☐ 15. Ammonia	
□ 13. Settleable Solids	☐ 14. TKN		□ 18. Reactive Phospl	horus
☐ 16. Nitrate/Nitrite	☐ 17. Total	Phosphorus	☐ 21. Total Phenois	
□ 19. Oil/Grease)	□ 20. TOC		☐ 60. PCBs congener	method (ASP 91-11)
☐ 22. Other	☐ 59. PCBs	at 0.065 ug/l	☐ 64. Total Solids	
	☐ 62. CB0I)	☐ 65. Volatiles (USEP/	A 524.2 GC/MS)
CONTRACT LABORATORY PROTOCOLS				
☐ 23 (ALL)—Water—Includes 24-28		☐ 29. (ALL)—Soi	il/SedimentsIncludes 30-34	
□ 24 Base/Neutral/Acid (B/N/A)WaterGC/MS (A	SP #95-2)	• •	ioil/SedimentsGC/MS (ASP #95-2)	
☐ 25 Volatile Organic Analysis VOA—Water—GC/MS	•	, ,		
☐ 26 Pesticides/PCBs—Water—GC/MS (ASP #95-3	•		PCBs—Soil/Sediments—GC (ASP #9	5-3)
□ 27 Metals—23 in Water	•	□ 33. Metals—23	· ·	•
☐ 28 Cyanide—Water		☐ 34. Cyanide—S	•	
☐ 66 Dioxin-Water (ASP #91-7)		· ·	Sediments (ASP #91-7)	
7.35_Other PCB'S	+ NI	ckel	,	
HAZARDOUS WASTES/RCRA ANALYSIS	SW-846			
☐ 36. EP Toxicity	□ 37. EP To	oxicity (Metals Only)	☐ 38. Ignitability	
☐ 39. Corrosivity	□ 40. VOA-	—(USEPA 8260 GC/M	S) 41. BNA—(USEPA 8	3270 GC/MS)
☐ 42. Pesticides/PCBs (USEPA 8081)	☐ 43. TCLF	•	☐ 44. TCLP (Metals 0	1 t 1
☐ 45. Reactivity	☐ 46. Dioxi	n (USEPA 8280)	☐ 47. Appendix IX	
☐ 48. Other _	□ 63 Perce	` '	□ 68. Metals—17 Haz	ardous
MUNICIPAL SLUDGE				<u> </u>
□ 56. RS-01 □ 57. RS-02 □ 58. 0	ther			
COLLECTED BY:		TELEPHONE N	NUMBER:	REGION NO.:
M. Moore		716	851-7220	7
CONTRACT LABORATORY:	COUN	ITY:	SAMPLING DATE:	MILITARY TIME:
STZ		nhuga	12/08/04	1200
SAMPLE MATRIX:	- 1/2-	7	1	
☐ Air ☐ Soil/Sediment ☐ Groundwater	□ Surfa	ce Water □ Wa	astewater Other	
CASE NO. SDG NO. SAMPLE I		HECK FOR MS/N		
SIH91014 DIVI8181 DIVI818		☐ This sample	Grab □ Composite	☐ Term hours
☐ Check if there will be more samples with this SDG		endar week.	Report via Category B, unless che	cked 🗆
SAMPLING POINT:			Check if field duplicate □ Outfall I	Number
·			Check if sampling is part of inspec	tion 🗆
			FLOW: GPD	MGD
			SPDES NUMBER/REGISTI	RY NUMBER
				1 1

Page: 1 of Rept: ANO455	Log in Date: 12/08/2004	Airbill	HENT, ECT. MATRIX	7108	7108	7108	7108	NOS
	: SH904 : 1208	Does information on custody records, traffic reports and sample tags agree? Yes/No Sample Condition: Intact/Broken/Leaking Reviewed By:	REMARKS CONDITION OF SAMPLE SHIPMENT, ECT.					
FORM DC -1 SAMPLE LOG-IN SHEET	Case NumberSAS NumberSAS Number		CORRESPONDING ASSIGNED LAB#	A4C23301	A4C23302	A4C23303	A4C23304	A4C23305
FO SAMPLE		Chain of Custody Records: Present Traffic Reports or Packing List: Present/Absent Date Received at Lab	CO SAMPLE TAG #					
Date: 01/06/2005 Time: 08:51:20	Lab NamesTL Buffalo Received By (Print Name): Received By (Signature).:	Custody Seal(s): Absent Custody Seal No(s): Sample Tags: Absent Sample Tag Numbers: Absent SAMPLE TRANSFER: Fraction: VOAS : Extract. Area #: Suite 106 : Wales Ave.	EPA SAMPLE #	D088A	DOBBAA	D088B	D088C	D088D

Date: 01/06/2005 Time: 08:51:34

Sample Delivery Group Summary

476/481

Page: Report: AN0385

SDG No: 1208 Quote No: NY00-096

Client: NYS DEC Protocol: ASP00

Project: NY1A8770.9

Case: SH904

T 1 NT 1		~			_			
<u>Job Number</u>		<u>Sample ID's</u>	<u>Clier</u>	nt Sampld ID	<u>Type</u>	VSTR		<u>Matrix</u>
A04-C233		A4B2061101	LCS CLI	P Soils	CLPSL			SOIL
		A4B2061102	Method	Blank	MBLK			SOIL
		A4B2063801	Matrix	Spike Blank	MSB			SOIL
		A4B2063802	Method	Blank	MBLK			SOIL
		A4B2079301	LCS		LCS			SOIL
	(1)	A4C23301	D088A		FS	12/08/2004	14:30	SOIL
		A4C23301MS	D088A		MS	12/08/2004	14:30	SOIL
		A4C23301SD	D088A		SD	12/08/2004	14:30	SOIL
	(2)	A4C23302	D088AA		FS	12/08/2004	14:30	SOIL
	(3)	A4C23303	D088B		FS	12/08/2004		SOIL
	(4)	A4C23304	D088C		FS	12/08/2004	14:30	SOIL
	(5)	A4C23305	D088D		FS	12/08/2004	14:30	SOIL
		A4C23305MS	D088D		MS	12/08/2004	14:30	SOIL
		A4C23305SD	D088D		SD	12/08/2004	14:30	SOIL
		A4C23306	LCS		LCS			SOIL
		A4C23307	Method	Blank	MBLK			SOIL

Date SDG Closed: / /20

Date Due to Report Department:

Date Report Due to Client: 01/07/2005

SAMPLE DELIVERY GROUP (SDG) COVER SHEET CONTRACT LAB SAMPLE INFORMATION (CLSIS)

Lab Name: Severn Trent Laboratories,	Inc. Contract Number: C003783
Lab Code: STL Buffalo	Case Number: _St19C4
SDG No./First Sample in SDG: QCS (Lowest DEC sample number in shipment of samples received under the shipment of samples received under the shipment of samples received under the shipment of samples received under the shipment of samples received under the shipment of samples received under the shipment of samples are shipment of samples and shipment of samples are shipment of samples and shipment of samples are shipment of samples ar	first (MM/DD/YY
Last Sample in SDG: DC 450 (Highest DEC sample number in shipment received under this SDG)	
DEC sample numbers in this SDG (list i	n alphanumeric order):
1. DO88A	11
2. <u>DOSSAA</u>	12
3. <u>DO88B</u>	13
4. <u>DOT8C.</u>	14
5. DOBBD	15
6	16
7	17
8	18
9	19
10	20
Note: There are a maximum of 20 field s	amples in an SDG.
Gard Can	1/6/05
Sample Custodian	Date

Date

Date: 01/06/2005 Time: 09:03:09

STL Buffalo Analytical Services Request Form 478/481

Page: Rept: AN0090

Job No : A04-C233

Project/Task: NY1A8770.9 1 SDG No/Case : 1208 SH904

Sample Mgmt:

Status/Prior: O N

QA Revw Reqd:

Turn Around: 30 C Cooler Temp: 4.6 °C No. Samples: 1

Collected by: CLIENT

CCC: YES ARRF : NO ASRF Date : 12/08/2004

TCLP Prep Dt: 12/12/2004 Prep Date : 12/13/2004 Lab Date : 12/21/2004

ME DP Date : 12/24/2004 DP Date : 12/26/2004

Client Date : 01/07/2005

NYS DEC CASE SH904

NYS DEC ASP Contract #C004154 - Region 9

Mr. Larry Bailey

NYSDEC

625 Broadway - 4th Floor NY 12233 Albany

Phone: (518)402-8287 Ext:

Fax: (518) 402-9029 Quote: NY00-096

Email: PO No:

Project Mgr: BJF Copy 1 Sales Rep : CUS 4 Level

Report Group:

Login Complete Date: 12/08/04

ASRF Comments:

<u>Frac</u> GE	<u>No</u> 9	<u>TAT</u> 30	Test CTA12950	Test Description NYSDEC - ASP00 8082 - PCBS - S		VOA TIC HT D N	Anal ates
ME	9 .	30	CTA13465	NYSDEC - ASP00/6010 - NICKEL - TOTAL - S		N	
WC	6	30	STA00900	LEACHABLE PH - S		N	
Samp	le Cust	codian	:		/	/20	
Anal	ytical	Servi	ces Coordi	nator:	/	/20	

Date: 01/06/05 Time: 09:03:09 STL Buffalo ASRF Comments **479/481**

Page: 1 Rept: AN0430

Job No

: A04-C233

Proj/Task : NY1A8770.9

NYS DEC

Project Comments

REPORT WRITING:

PLEASE INCLUDE APPROPIATE DEC FORMS IN FINAL REPORT AND NYSDEC FORMATTED EDD, INCLUDE CASE #, SDG #, AND MONTH/YEAR ON THE DISK LABEL.

Case File Purge must include:

- *Miscellaneous Section
- for Organics COPIES OF ALL log book pages and all other misc lab printouts that are in each fraction folder (MV,GV,MB,GE)
 - for inorganics (only) a copy of the original ASRF (ME, WC)

Shipping records

- a copy of the COC and CLSIS forms (green sheets)
- AN0455 and AN0385
- SDG Cover sheet signed by sample control (no copies allowed)
- copy of the ASRF (if not alrady included above)

COPY TO CONTACT PERSON ON CHAIN OF CUSTODY AND/OR GREEN SHEETS! MAKE SURE CONTACT NAME IS CORRECT IN TASK SET-UP BEFORE PRINTING COVER LETTER! (GO TO PROG. MGT. (3) AND THE CORRECT TASK (3), THEN SELECT THE CORRECT CC BY PRESSING F10)

(Disk Errors: Client ID must be less than 8 characters (TRIP BLANK must always say TBLANK). If you cannot decide how to truncate, see the PM. In most cases, there is a case and sdg number in front of the true sample name (ex. PA0902-00902-501 should be 501) Also, there must be an sdg and case number entered.)

SAMPLE CONTROL:

ALL JOBS FOR SOILS THAT REQUIRE SEMIVOLTILES (8270, EPA SVOA, ETC.), PESTICIDES, AND/OR PCBS (8081, 8082, EPA PEST, ETC.) ALSO REQUIRE THE ANALYSIS OF LEACHABLE pH!!! PLEASE LOG-IN STA00900.

*** SAMPLE ID'S MUST BE TAKEN FROM THE CLSIS FORMS (GREEN SHEETS). THE NYSDEC EDD FORMAT DOES NOT RECOGNIZE ANY ID'S OVER 8 CHARACTERS, WHICH IS THE EXACT AMOUNT OF CHARACTERS THAT CAN BE ENTERED ON THESE SHEETS.

Task Comments

ate: 01/06/2005 ime: 09:03:10	005 0						ASRF Sampl	ASRF Sample Test Assignment	ignment				Page: 1 Rept: AN0390	390
Job #: A04-C233 Proj/Task: NY1A8770.9 SDG No: 1208 Lient Due: 01/07/2005	Job #: A04-C233 NYS DEC Proj/Task: NY1A8770.9 NYS DEC ASP Contract #C004154 - Region 9 SDG No: 1208 Lient Due: 01/07/2005	Contract	: #c0041	154 - Regi	6 uo		CTA12950 ASP00 8082 GE SOIL	CTA13465 ASP00 6010 ME SOIL	STA00900 ASP00 9045 WC SOIL					
Lab ID	Client Sample ID	Matrix	Туре	Sample		Received	ASP00	IN L	ГРН					T
4482061101 4482061102 4482063801 4482053802 4482079301 44C23301 44C23303 44C23304 44C23305 84C23305 84C23306 84C23306 84C23306 84C23306	LCS CLP Soils Method Blank Matrix Spike Blank Method Blank LCS D088A D088A D088C D088B D088C D088C D088C D088C Method Blank	110S 110S 110S 110S 110S 110S 110S 110S	CLPSL MBLK MSB MBLK LCS LCS SD FS FS FS FS FS MS MS MS MS MS MS MS MS MS MS MS MS MS	12/08 11:00 12/08 14:30 12/08 11:00 12/08 14:30 12/08 11:00 12/08 14:30 12/08 11:00 12/08 14:30 12/08 11:20 12/08 12:00 12/08	11:00 12/08 11:00 12/08 11:00 12/08 11:05 12/08 11:25 12/08 11:25 12/08 12:06 12/08 12:06 12/08 12:06 12/08	2/08 11:00 12/08 14:30 2/08 11:00 12/08 14:30 2/08 11:00 12/08 14:30 2/08 11:05 12/08 14:30 2/08 11:20 12/08 14:30 2/08 12:00 12/08 14:30 2/08 12:06 12/08 14:30 2/08 12:06 12/08 14:30	30C 30C 30C 30C 30C 30C 30C 30C 30C 30C	30C 30C 30C 30C 30C 30C 30C 30C 30C	30C 30C 30C 30C 30C 30C					

Dat Tim

Date: U1/U6/20U5 Time: 09:03:10					do	S. Inorg	STL Buffalo organic Test	STL Buttalo Job Inorganic Test Profiles	files						Page: 1 Rept: AN0214	1 1NO214
Job No: A04-C233 Project/Task: NY1A8770.9 1																
						Holdir		- Prep	Unit	- Dete	— Holding —— Prep Unit - Detect Limit —			- Spikes		
Test No. Description	Prot	Method	Mtx	TCLP	Type 1	clp E)	ctr Ana	l Type	Measure	Type	Prot Method Mtx TCLP Type Tclp Extr Anal Type Measure Type Value		Code Amount	Conc	QC Limits RPD	RPD
TME TOTAL METALS																
CTA13465 NYSDEC - ASP00/6010 - NICKEL - TO ASP00 6010	- TO ASP00	6010	Soil	z	œ	~ 0	30 18(0 180 180 D MG/KG	MG/KG	CROL	4.0000	0 A00066	4.00000 A00066 1.00 ML		10.00 UG/ML (80-120) 20.0	20.02
						Holdir	9	- Prep	Unit	- Dete	- Holding Prep Unit - Detect limit			- Snikes		
Test No. Description	Prot	Method	Mtx	TCLP	Type T	clp E	tr Ana	l Type	Measure	Type	Prot Method Mtx ICLP Type Iclp Extr Anal Type Measure Type Value Code Amount	Code	Amount	Conc	QC Limits RPD	RPD
WC WET CHEMISTRY						 										
STA00900 LEACHABLE PH - S	ASP00 9045	9045	Soil	z	~	0	0 180	z	N S.U.	CRQL	0.00000 NONE	O NONE				