FINAL DESIGN REPORT

Former C&B Dry Cleaners (NYSDEC Site Number 907028) Jamestown, Chautauqua County, New York

NYSDEC STANDBY ENGINEERING CONTRACT Work Assignment #D007625-16

PREPARED FOR NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 BROADWAY ALBANY, NEW YORK 12233

Prepared by

One International Boulevard 10th Floor Mahwah, NJ 07495

TABLE OF CONTENTS

List of	Tables	ii
List of	Figures	ii
Append	dicesdices	ii
List of	Acronyms	iii
1.0	Introduction	1
1.1	Site Location and Description	1
1.2	Site Background and History	1
1.3	Selected Remedy	3
2.0	Site Characteristics	4
2.1	Site Geology and Hydrogeology	4
2.2	Nature and Extent of Contamination	4
2.2	.1 Nature and Extent of Soil Contamination	4
2.2	.2 Nature and Extent of Groundwater Contamination	5
3.0	Soil Remediation	5
4.0	Groundwater Remedial Design	6
4.1	Treatment of Shallow Groundwater Plume	6
4.1	.1 Reagent Selection	6
4.1	.2 Layout of Temporary Injection Points	7
4.1	.3 Reagent Volume	8
5.0	Remedial Action Scope	8
5.1	Site Preparation	8
5.2	Installation of the Temporary Points	9
5.3	ISCO Injection Events	9
5.3	.1 Baseline Sampling	9
5.3	.2 Injection Solution	10
5.3	3.3 ISCO Injection and Infield Design Modifications	10
5.4	Performance Monitoring	11
5.5	Demobilization	11

6.0	Permits, Authorizations, and Access	11
6.1	Site Access	11
6.2	Local Permits	12
6.3	Federal Permits:	12
7.0	Schedule	12
7.1	Construction Sequence	12
7.2	Preliminary Construction Schedule	12
8.0	Post Construction Plans	13
8.1	Final Engineering Report	13
8.2	Site Management Plan	13
9.0	Certification	14
10.0	References	15

LIST OF TABLES (Tables Follow Report Text)

Table 1 Groundwater Elevations

LIST OF FIGURES (Figures Follow Tables)

Figure 1	Site Location Map
Figure 2	Pre-Design Investigation Sample Locations
Figure 3	Summary of Soil Confirmatory Sample Results – Arsenic
Figure 4	Summary of Groundwater Sample Analytical Results – Selected VOCs

ii

APPENDICES

Appendix A – Oxidant Demand Calculations

Appendix B – Bench-Scale ISCO Treatability Study

ATTACHMENTS

Attachment A – Design Drawings

Attachment B - Specifications

Attachment C - Cost Estimate

LIST OF ACRONYMS

a.m. Ante Meridiem

amsl Above Mean Sea Levelbgs Below Ground SurfaceCOCs Contaminants of Concern

DCA Dichloroethane DCE Dichloroethene

DER Division of Environmental Remediation EPA Environmental Protection Agency

FER Final Engineering Report

HDR Henningson, Durham & Richardson Architecture and Engineering, P.C.

ISCO In Situ Chemical Oxidation
MFR Modified Fenton's Reagent
mg/kg Milligram Per Kilogram

NYS New York State

NYSDEC New York State Department of Environmental Conservation

OU1 Operable Unit 1
OU2 Operable Unit 2
PCE Tetrachloroethene
PDI Pre-Design Investigation

Post Meridiem p.m. RA Remedial Action RD Remedial Design RI Remedial Investigation ROD Record of Decision SCOs Soil Cleanup Objectives SMP Site Management Plan SOD Soil Oxidant Demand

TCA Trichloroethane
TCE Trichloroethene
μg/I Micrograms per Liter

UIC Underground Injection Control

VC Vinyl Chloride

VOCs Volatile Organic Compound

1.0 INTRODUCTION

Henningson, Durham & Richardson Architecture and Engineering, P. C. (HDR) was retained by the New York State Department of Environmental Conservation (NYSDEC) to prepare the final design for the for the Former C&B Dry Cleaners site (NYSDEC Site # 907028) ("site") in Chautauqua County, New York. The work is being accomplished under Contract D007625. This Final Design Report was prepared to provide the design methodologies and supporting documents for the Remedial Design (RD). The RD was prepared in accordance with the Record of Decisions (RODs) (NYSDEC, 2013) for the site, as well as applicable New York State (NYS) regulations and guidance (6 NYCRR Part 375 and Department of Environmental Remediation (DER) Guidance Document DER-10).

1.1 Site Location and Description

The site is located at 2241 Washington Street in the City of Jamestown, Chautauqua County, New York (**Figure 1**), and encompasses two tax parcels (SBL 109-3-11.2 and 109-3-12.1) (**Figure 2**). It is currently vacant and has not been occupied since at least 1999, when commercial dry cleaning operations ceased. The site consists of approximately 0.22 acres of land and the remains of a former approximate 2,170-square-foot building that was demolished in July 2003. Building remains include the concrete floors and foundation. Asphalt and gravel access roads and parking areas are located outside the limits of the former building. The main site is generally flat and features a gravel access road, parking areas, and the foundation remains of the former building.

The site is currently inactive, and is zoned C-M service and highway-commercial. Commercial development occurs along the east and west sides of Washington Street in the vicinity of the site. The site is bounded to the east by Washington Street, beyond which is a used automobile dealership and soft drink bottler; to the north by a restaurant (Pal Joey's); to the west by an unpaved parking lot associated with Pal Joey's and to the south by a commercial building (Swanson Building) that is used for the storage of automobiles, automobile parts, and service equipment.

1.2 Site Background and History

The site was utilized for commercial dry cleaning operations from approximately 1931 through 1999, when it was closed and abandoned. Chautauqua County acquired the site via tax foreclosure from James and Joann Perry in November 2001. Previous owner/operators of the dry cleaning facility also include Ronald and Janice Hodges; A.F. & A. Maruccia, R. Olson & J. O'Connell; and Carpenter and Bacot. With regard to the former structure located on the site, historical records indicated the following:

- The main portion of the former building was constructed in 1931.
- The boiler room at the rear of the former building was constructed in 1936.

• An addition on the south side of the building was constructed in 1939.

The structure formerly located at the site was demolished in July 2003.

The site has been the subject of previous environmental assessments, investigations, and remedial actions. The following paragraphs provide a summary of those investigations.

- Preliminary Environmental Site Assessment/Emergency Removal Actions: A Preliminary Environmental Site Assessment (ESA) of the site was completed in 2001. Based on this ESA, it was determined that the site was used almost exclusively for commercial dry cleaning operations until its abandonment in 1999. During the site reconnaissance, miscellaneous debris was observed outside the former building. A subsequent emergency removal action was initiated, and the materials were disposed off-site.
- Underground Storage Tank Investigation/Removal: The site reconnaissance revealed the presence of several abandoned pipes along the north side of the building and raised suspicion of the existence of Underground Storage Tanks (USTs). The Chautauqua County Department of Public Facilities (CCDPF) completed excavations that revealed two USTs on the western side of the building. A removal action for the USTs was initiated on December 19, 2001; both USTs and their associated piping were emptied, cleaned, and removed.
- Asbestos Survey: Prior to demolition of the C&B Dry Cleaners building, a predemolition asbestos survey was completed to identify and quantify asbestos-containing materials (ACMs). The demolition of the on-site structures occurred in July 2003.
- Remedial Investigation/Alternative Analysis: On behalf of the CCDPF, TVGA Consultants (TVGA) conducted a remedial investigation (RI) at the site from 2005 to 2007. TVGA submitted its Remedial Investigation/Alternatives Analysis report to the NYSDEC in December 2007. Analytical results of soil gas, subsurface soil/fill, surface water, groundwater, and air samples collected during the RI were evaluated to determine the magnitude and extent of potential contamination occurring in the media. The data evaluation conducted based on the RI findings and risk assessments identified contaminants of concerns (COCs), which included Tetrachloroethene (PCE), Trichloroethene (TCE), dichloroethylene (DCE), and arsenic. As summarized below, COCs were determined to exceed the applicable SCGs for on-site soil and groundwater, as well as to exceed the applicable New York State Department of Health (NYSDOH) indoor air guidance for soil vapor. The detailed field investigation, analytical results, and findings of the RI for other media are described in the December 2007 Draft Remedial Investigation/Alternatives Analysis Report prepared by TVGA (TVGA, 2007).
 - On-site Soil PCE was detected at concentrations that exceeded the commercial SCGs in two locations. The PCE concentrations detected in soil were 8,000 milligram per kilogram (mg/kg) and 160 mg/kg, exceeding the Protection of Groundwater Soil Cleanup Objectives (SCOs) of 1.3 ppm. Arsenic was also detected at concentrations that exceeded the SCOs in the four on-site soil

samples analyzed for TAL metals. Arsenic was detected at concentrations of 109 mg/kg and 85.7 mg/kg respectively—above the Protection of Groundwater and Commercial Use SCO of 16 mg/kg.

- On-site Groundwater Seven different Target Compound List (TCL) volatile organic compounds (VOCs) were detected in all but one of seven on-site groundwater samples at concentrations that exceeded NYSDEC Class GA Groundwater Standard or Guidance Value. PCE concentrations ranged from 7 to 1,000,000 parts per billion (ppb), with the most significantly elevated concentrations detected in a groundwater sample in the vicinity of the former USTs. The PCE concentrations in a majority of the remaining on-site locations were significantly above the SCG of 5.0 ppb, but none approached the levels near the former USTs. The other VOCs detected at concentrations above the SCGs include 1,1,2,2-tetrachloroethane; 1,1- -DCE); vinyl chloride; cis-1,2-dichloroethene; isopropylbenzene; and TCE.
- Soil Vapor and Indoor Air Contaminants from the site have adversely impacted indoor air quality at an adjacent property north of the site which was addressed by an IRM. PCE was detected in the sub-slab soil vapor and in an ambient air sample collected from the basement. The results exceeded the NYSDOH indoor air guidance value for PCE. The concentration of PCE in the sub-slab sample was 190,000 micrograms per cubic meter (µg/m³), and in the ambient air basement sample 2,200 µg/m³.

1.3 Selected Remedy

The detailed elements of the RD program as described in the ROD are as follows:

- Completion of a Pre-Design Investigation (PDI);
- Excavation and off-site disposal of on-site soils contaminated with arsenic;
- Removal and off-site disposal of VOC-contaminated subsurface soil/fill down to the top of the groundwater table; and,
- Treatment of the shallow groundwater plume (on-site and off-site) using in situ chemical oxidation (ISCO).

A PDI was completed in early 2015. The results of the PDI are documented in HDR's PDI report (HDR, 2015). PCE was not detected in soil at concentrations above the SCO during the PDI. Soil remediation for PCE contamination in the vadose zone was not, therefore, required. A soil IRM at the site was completed in October 2015 and consisted of the excavation and off-site disposal of approximately 880 cubic yards of arsenic impacted soil. A complete summary of the soil removal action can be found in the IRM Report (HDR, 2016). Since the removal and off-site disposal of soil contamination was completed recently as part of the IRM, soil RD is not included as part of this groundwater RD.

2.0 SITE CHARACTERISTICS

2.1 Site Geology and Hydrogeology

The geology of the site consists of approximately 6 to 8 feet of sand and gravel soil/fill material from an off-site source (the specific source is not known). A thin layer of peat underlain by soil/fill was observed in 2015 PDI soil boring locations in the western portion of the site near wetland area. Native gravelly sand and silt underlie the soil/fill and/or peat. The native soil underlying the fill materials consists of similar grey and brown fine to coarse silty sand with gravel soils. However, its classification varies from mostly sand to well graded gravelly sands. Below this sand and gravel soil, a moist silty gray clay stratum exists at the bottom of the soil borings at approximately 10 to 16 feet below ground surface (ft bgs). This clay unit limits the potential for downward vertical migration of the contamination from the soil and groundwater. Shallow groundwater is present from 5 and 6 ft bgs. Groundwater flow is generally to the south west/south towards the Chadakoin River.

2.2 Nature and Extent of Contamination

During early 2015, a PDI was conducted to verify arsenic soil contamination results and limits of contamination in the northwest area of the site; verify PCE soil contamination results in the vadose zone; and, determine the ISCO parameters to complete an effective RD for the existing groundwater contamination (on and off-site). The results of the PDI are documented in HDR's PDI report (HDR, 2015).

2.2.1 Nature and Extent of Soil Contamination

As part of the PDI, twenty-one (21) soil borings were advanced to verify arsenic soil contamination results and determine the limits of excavation in the northwest area of the site. As shown in **Figure 2**, soil boring locations, CBSB101, CBSB104, CBSB105 and CBSB106, were advanced in the northwest area of the site to verify the limits of arsenic soil contamination.

Barium and arsenic were the only constituents detected in soil samples at concentrations exceeding the soil SCOs. Arsenic was detected in soil samples collected from the western portion of the site at concentrations above the soil SCOs of 16 mg/kg. Arsenic values ranged between 2.5 to 217 mg/kg with a maximum concentration detected at the CBSB101 location from the depth interval 4 - 6 feet bgs. CBSB101 is located at the northwest corner of the Former C&B Dry Cleaners property boundary. The 2015 PDI assisted in delineating the horizontal and vertical limits of the arsenic impacted soils at the site. However, the northwestern portion of the soil impacts was not fully delineated. Specifically, the horizontal and vertical limits have not been delineated to the north of CBSB101 and CBSB106.

Further subsurface soil sampling was conducted by Groundwater & Environmental Services, Inc. (GES) to fully determine the extent of the vertical and horizontal contamination in this area. GES advanced twelve (12) soil borings to determine the limits of excavation in the northwest

area of the site. Arsenic values ranged between 10.5 to 210 mg/kg with a maximum concentration detected at the SB-106 location from the depth interval 4 feet bgs. SB-106 is located on the northern boundary of the site. Based on the recent sampling conducted by GES, the estimated limit of the arsenic contamination in soil was revised and shown in **Figure 3**.

2.2.2 Nature and Extent of Groundwater Contamination

PCE and other chlorinated VOCs were detected in groundwater at concentrations above their respective SCOs across the on-site and off-site areas during the PDI. In general, the footprint of the groundwater contaminant plume was similar to that identified during the RI conducted by TVGA (TVGA, 2007); however, the concentration of PCE was lower than previously detected. During the PDI, the greatest concentration [28,000 micrograms per liter (µg/l)] of PCE in groundwater was detected in the monitoring well MW-05 located within the source area (Figure-4). During the RI conducted in 2007, PCE had been detected at a concentration (1,000,000 µg/l) in this monitoring well. This may be an indication that natural degradation processes are reducing contaminant concentrations at the site. The presence of PCE breakdown products observed during the RI also indicates that some biodegradation is occurring. Further, based on the available groundwater analytical data, groundwater elevation data collected during the RI and PDI, and locations of former USTs and a wash tub, it appears that that there may have been two sources of PCE on-site, resulting in two separate plumes with PCE concentrations greater than 200 µg/l. Additionally, during the PDI, an area near the creek behind (south of) the Swanson Building was inaccessible due to heavy snowfall, preventing HDR from installing additional wells. Therefore, a data gap exists in this area.

3.0 SOIL REMEDIATION

The results of the PDI indicated that soil remediation was limited to the excavation of on-site soils impacted only by arsenic at concentrations above the Standards, Criteria, and Guidance (SCGs) for Part 375 Protection of Groundwater and Commercial Use SCO Protection of Groundwater of 16 mg/kg. PCE was not detected in soil at concentrations above the SCO of 150 mg/kg during the PDI. Soil remediation for PCE contamination in the vadose zone was not, therefore, required.

Progress was made in delineating the horizontal and vertical limits of the arsenic-impacted soils at the site. However, the northwestern portion of the soil impacts was not fully delineated. Specifically, the horizontal and vertical limits were not delineated to the north of PDI locations CBSB101 and CBSB106. The estimated excavation extent to remove the soil impacts of arsenic greater than the SCO was expanded beyond the northwestern property boundary of the site. Prior to conducting an interim remedial measure (IRM) for soil, further subsurface soil sampling was conducted to determine the extent of the vertical and horizontal contamination in this area.

A soil IRM was recently completed at the site. The IRM consisted of the excavation and off-site disposal of impacted soil to a depth ranging from 4 to 5 feet (intersecting the top of the groundwater table). A total of approximately 880 cubic yards of soil was excavated as part of the

IRM. The IRM activities were completed by October 27, 2015. A complete summary of the soil removal action can be found in the IRM Report (HDR, 2016). Since the removal and off-site disposal of soil contamination was completed recently as part of the IRM, soil RD is not included as part of this groundwater RD.

4.0 GROUNDWATER REMEDIAL DESIGN

The ROD for the C&B Dry Cleaners site requires treatment of shallow groundwater plume (on-site and off-site) using ISCO remedial technology. The extent of the ISCO treatment area was established as shown on Sheet **C-03** of the draft final design drawings. There may have been two sources (former USTs and wash tub located inside the building) of PCE on-site, resulting in the two separate plumes with PCE concentration greater than 200 μ g/l. The western plume likely contains PCE concentrations an order of magnitude larger than the eastern plume. After discussions with the NYSDEC and taking into account the small size of the site, the preliminary design ISCO treatment area shown on Sheet C-03 was established. The ISCO treatment area covers the entire downgradient portion of the two plumes where the concentration of PCE is greater than 200 μ g/l, as well as the area between these plumes. The treatment area also covers the bulk of the downgradient plume where the concentration of PCE is greater than 5 μ g/l.

4.1 Treatment of Shallow Groundwater Plume

The ROD stipulates the use of ISCO to actively treat contaminated soil and groundwater at the site. The remediation of groundwater or soil using ISCO involves injecting oxidants directly into the source zone near monitoring well, MW-05 and dissolved phase plume. The ISCO reagent reacts with the contaminants producing less toxic compounds such as carbon dioxide and water. Injections of ISCO for treatment of groundwater will be limited to areas shown on Sheet **C-03**.

4.1.1 Reagent Selection

XDD performed the bench-scale treatability testing of ISCO on soil and groundwater from the site. The bench scale tests evaluated the potential for select ISCO reagents to treat the site contaminants including TCE, cis-1,2-dichloroethylene, and PCE. The following reagents were evaluated in the treatability study:

- Sodium persulfate un-activated persulfate, iron activated persulfate, and alkaline activated persulfate at three concentrations.
- Potassium permanganate at three concentrations.
- Hydrogen peroxide stabilized and catalyzed hydrogen peroxide (CHP) at two concentrations.

The Bench-Scale In-Situ Chemical Oxidation Treatability Study Results prepared by the XDD was provided with the 2015 PDI report. The treatability testing indicated that iron activated

persulfate and potassium permanganate were the most successful at treating the site contaminants in groundwater. Of these two, potassium permanganate is likely the best choice for the following reasons:

- Stability over the test period was acceptable
- >99% destruction of COCs in groundwater
- pH would remain neutral
- Limited metals mobilization potential

The low-oxidant concentration test condition [3.5 grams per liter (g/l) potassium permanganate] would be recommended since it would result in the lowest cost and least amount of metals mobilization, yet would still achieve the COC reductions in groundwater.

The amount of potassium permanganate needed was estimated based on the direct stoichiometry of using potassium permanganate to oxidize each of the COCs. The balanced chemical equations for potassium permanganate oxidation of TCE and PCE are:

```
\frac{TCE}{2KMnO_4 + CHCl_3} \rightarrow 2CO_2 + 2MnO_2 + 2K_+ + 2Cl_- + HCl
PCE
```

 $4KMnO_4 + 3C_2CI_4 + 4H_2O \rightarrow 6CO_2 + 4MnO_2 + 4K_+ + 12CI_- + 8H_+$

The potential for metals mobilization in groundwater following an ISCO application is often a concern. However, any increases in metals concentrations following ISCO are expected to be

temporary. Additionally, some of the metals detections originate from the chemical makeup of the oxidants themselves (e.g., potassium and manganese from potassium permanganate).

There is potential for several byproducts, including carbon dioxide, MnO₂ solids, cations (e.g., potassium), and halides (when chlorinated solvents are present) to be generated and released to the groundwater. The byproducts of this reaction are not expected to pose water quality problems because most of the byproducts are either innocuous or will readily react with aquifer material and subsequently stabilize. The production of carbon dioxide is not expected to cause negative impacts as the amount of off-gassing will be very minimal.

4.1.2 Layout of Temporary Injection Points

Based on the extent of the ISCO treatment area, the layout for the temporary ISCO injection points was developed as shown on Sheet **C-04** of the design drawings. The ISCO injection system includes the installation of approximately 60 temporary injection points by direct push technology in order to treat groundwater within the proposed ISCO treatment area. Injection wells will be installed approximately 16 feet apart with adequate overlap to achieve substantial coverage.

Injections under the Swanson Building were considered, but the shallow depth to clay (15 feet bgs) and the presence of the building basement limit the available technologies to treat this small area. In addition, the Swanson Building has been condemned, and it is considered unsafe to perform directional drilling beneath it. The proposed ISCO treatment, therefore, does not include direct treatment of impacted groundwater beneath the Swanson Building; rather, it proposes treatment at the outside perimeter of the building. Although this results in an inaccessible treatment area (approximately 4,000 square feet) beneath the footprint of the building, the design includes a high density of injection points as close to the building foundation wall as possible to provide maximal coverage under the building.

4.1.3 Reagent Volume

It is difficult to estimate site behavior during the injection of ISCO reagents based solely on estimations of site hydraulic characteristics due to variability in subsurface conditions and how the subsurface might respond throughout the injection. Based on the estimated site hydraulic characteristics, the ISCO injection contractor will be required to submit an injection plan for the site, while also incorporating an intuitive sense of the site's aquifer architecture, as well as previous experience at other similar sites. The injection plan will include the estimated injection volume and rate for each location as well as the means and method for injecting reagent at each location. However, due to the tremendous amount of variability in the subsurface and the dynamic responses of an aquifer, it will be important to pay attention to the initial phase of the injection process.

For the purpose of estimating the total amount of reagent required for conducting the ISCO injections in the treatment area, a 30% pore volume was assumed. The total pore volume was calculated based on the total treatment area of 24,500 square feet minus the inaccessible area of 4,000 square feet located underneath the building, a treatment depth of 10 feet, and a porosity of 30%. Calculations for estimating the total amount of reagent required for ISCO injections in the treatment area are provided in **Appendix A**.

5.0 REMEDIAL ACTION SCOPE

The remedial action (RA) for this project includes the following:

- Site Preparation
- Installation of the temporary injection points;
- ISCO injection event; and
- Groundwater performance monitoring
- Demobilization

5.1 Site Preparation

Site preparation includes general mobilization/demobilization (setting up staging areas for injection, decontamination, and waste storage), utility clearance, site clearing, and permitting.

Equipment and chemicals will be stored at a central location in the empty lot located south of the Swanson Building. From this location, a mobile injection skid and interconnecting hosing will be used for the injection application.

All underground utilities—including, but not limited to, water, sanitary, gas, and communications—will need to be located and marked prior to any drilling and injection activities. It is necessary to conduct a field inspection prior to injection operations to be sure that the injection application area is at a sufficient distance from any underground utilities. Additionally, a field inspection is needed to locate any boreholes from previous investigations that may have improper or incomplete seals, which will then be properly re-sealed prior to injection. The application of ISCO reagents via a pressurized application may find utility or borehole conduits that will act as a preferential pathway and cause reagent to surface. The injection points will also be adjusted in the field to minimize proximity to any utilities located in the site.

5.2 Installation of the Temporary Points

The temporary injection points will be installed via direct-push drilling technology, and the reagent will be injected across the screened interval from the top of groundwater to the top of clay. Small diameter (~1.25- to 3.25-inch) hollow steel rods will be advanced downward into the target zone. Each temporary injection point will consist of a series of threaded 3- to 5-foot long stainless steel drive rods that will be advanced via a series of connected rod joints to approximately 13 to 15 feet bgs. The steel rods will include screened sections to permit the injection of oxidant within the treatment zone. It is assumed that a drilling subcontractor will install the temporary injection points and an ISCO injection subcontractor will conduct the injections.

5.3 ISCO Injection Events

5.3.1 Baseline Sampling

One month prior to performing ISCO injections one round of groundwater samples will be collected by the overseeing Engineer from 3 existing wells and 4 new monitoring wells to be installed to determine baseline conditions at the site (see Sheet **C-05**). Field parameters that will be collected include:

- Dissolved oxygen;
- Oxidation/reduction potential (ORP);
- Specific conductance;
- Turbidity;
- Temperature; and
- pH

Groundwater samples will be collected and analyzed for VOCs, metals, and sulfate using a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory. Samples will

be analyzed using a two-week turnaround time. Sample results will be tabulated and plotted on a site map and evaluated to verify that no changes to the design are needed as a result of the baseline data.

5.3.2 Injection Solution

The injection solution will consist of 5% potassium permanganate solution. The contractor can order concentrated permanganate in tankers and dilute to the delivery concentration on-site or, alternatively, order the crystalline form of potassium permanganate and dissolve on-site. Potassium permanganate can be delivered in crystalline form in 1,000- to 2,000- pound (lb) polypropylene sacks. If the contractor receives the potassium permanganate in tankers already dissolved there would be no solids to dissolve. This is a much safer approach in terms on handling. If the contractor does dissolve the solid product on-site it adds an additional step in handling to dissolve the product creating a concentration which is then diluted to delivery concentration. The contractor would draw from the concentrated tanker and a bulk water tank, blending the two to create a 5% solution by weight in a mixing unit; the solution would then be moved to a batch holding delivery tank, which will be kept constantly mixing to maintain the solution before transferring to a delivery tank which aids in tracing the delivery volume. From the delivery tank this solution will be injected at an estimated flow rate of 5 gallons per minute into each temporary injection point. A total of approximately 36,800 pounds of potassium permanganate and approximately 88,200 gallons of water are estimated to treat the entire treatment area.

5.3.3 ISCO Injection and Infield Design Modifications

As mentioned in Section 4.1.2, approximately 60 temporary injection locations are included as part of the ISCO injection. Extracted groundwater or clean water from an external source will be used to prepare the solution. A mobile injection skid and interconnecting hosing located at the central location will be used for the injection application. Based on the site geology and estimated hydraulic characteristics, an injection flow rate of 5 gallons per minute is estimated.

Based on the 6 locations per day goal, the duration for completing the ISCO injection event is estimated to be 12 days. This includes two additional field days to account for time required to implement infield design modifications, if required.

During the ISCO injection, delivery performance monitoring will be performed by the Engineer during and immediately after oxidant delivery in order to: monitor injection flow rates and volume, ensure adequate distribution of the oxidants, monitor and manage aquifer conditions that affect oxidant chemistry, and monitor migration/displacement of COCs during injection. Delivery performance monitoring will be conducted utilizing the monitoring wells located within the treatment area. Monitoring during injection will include visual inspection for oxidant color and field measurements of ORP, specific conductivity, injection pressure and flow rate, water level, and tracers (if they are used). The delivery performance monitoring will assist in determining the necessary modifications for reagent injection volumes, radius of influence, and

injection rate. Based on information gathered on aquifer response under various injection modifications tested during the monitoring, a number of alternatives or combinations of alternatives will be proposed to make the application both efficient and cost effective. The required infield modifications will be discussed and approved by the NYSDEC prior to implementation.

5.4 Performance Monitoring

As mentioned above, a data gap exists in the area near the creek behind (south of) the Swanson Building. Three additional monitoring wells will therefore be installed in this area and will be utilized as performance monitoring wells. An additional monitoring well will also be installed within the upgradient area of the treatment area to monitor upgradient groundwater conditions. Also, three of the existing monitoring wells will be used for performance monitoring for a total of seven performance monitoring wells.

Baseline groundwater samples will be collected from the seven performance monitoring wells as well as from MW-05 (located in the source area) for potential biological or abiotic degradation by-products, VOCs and metals, and general water quality parameters—such as ORP, specific conductivity, chloride, and water level measurements.

Two rounds of performance monitoring will be conducted after the injection event. The initial round of groundwater samples will be collected two weeks following the injection event. A second monitoring event will be conducted one month later. Groundwater samples will be collected from the seven performance monitoring wells for VOCs and metals analyses and general water quality parameters such as ORP, specific conductivity, chloride, and water level measurements. The results of initial monitoring will be discussed with the NYSDEC. Performance monitoring will be conducted by the overseeing Engineer. Based on the results of groundwater samples collected during the ISCO injection, additional injection events may be required.

5.5 Demobilization

Upon completion of the injections all equipment and chemicals will be removed from the site. Materials will not be permitted to be stored on-site between injection events.

6.0 PERMITS, AUTHORIZATIONS, AND ACCESS

6.1 Site Access

The NYSDEC will be responsible for obtaining site access agreements needed to complete the work. Site access will be required for the on-site and off-site areas as shown on Sheet **C-01** of the design drawings.

6.2 Local Permits

The City of Jamestown Municipal Code was reviewed to identify any permits that will be required to complete the work. Based on a reading of Chapter 198-2, noise was identified as potentially applicable to the RA activity. RA activities will not be permitted between the hours of 6:00 p.m. and 7:00 a.m. on weekdays, all day Saturday, all day Sunday, or on holidays. No permits or approvals are required.

6.3 Federal Permits:

The injection of ISCO requires notification to the Environmental Protection Agency (EPA) in accordance with the Underground Injection Control (UIC) Program. Injection wells for the purpose of aquifer remediation are classified as Class V wells under the UIC program and are authorized by rule. Though a permit is not required, the activity still requires notification to the EPA, so injection wells can be inventoried. The overseeing Engineer will be responsible for notifying EPA prior to beginning the ISCO injection for the RA.

7.0 SCHEDULE

This section provides a preliminary schedule for the activities necessary to complete the RD. The actual sequence will be determined by the contractor and will be submitted once proposed.

7.1 Construction Sequence

- Obtain Permits: The overseeing Engineer will be responsible for obtaining all permits required to complete the work.
- Underground Utility Location: The contractor will have all underground utilities located prior to any disturbances.
- Mobilization and Temporary Facilities: The contractor will mobilize equipment and set up temporary facilities.
- ISCO Injection: The contractor will install all 60 temporary injection wells. Following installation, the area will be restored to its original condition or as otherwise indicated on the construction drawings.
- Groundwater Monitoring: The four new groundwater monitoring wells (one upgradient and three downgradient) will be installed by the overseeing Engineer. Baseline groundwater monitoring will be conducted by the overseeing Engineer prior to the performance of the injection. Two rounds of groundwater monitoring will also be conducted by the overseeing Engineer after the ISCO injection.

7.2 Preliminary Construction Schedule

The duration of construction and completion of one injection and groundwater monitoring events is estimated to be approximately 12 weeks. A summary of the major construction activities is provided below.

· Procurement of Permits: 1 week

- Baseline Groundwater Monitoring: 1 week
- Mobilization & Site Preparation: 1 week
- ISCO Injection: 3 weeks
- Post-injection Groundwater Monitoring: 1 week per round for two rounds, total of 2 weeks

Final Contractor Submittals: 6 weeksNYSDEC Final Submittals: 12 weeks

8.0 POST CONSTRUCTION PLANS

8.1 Final Engineering Report

After the RA has been completed, a Final Engineering Report (FER) will be prepared by the Engineer to document the implementation of the RA. The FER will be prepared in accordance with Section 5.8 of DER-10 and will be certified by a NYS Licensed Professional Engineer. The FER will include a description of the remedy as constructed, a discussion of any problems encountered during construction along with their resolution, a description of any changes to the design, a listing of waste streams along with quantities of waste, and restoration activities. The FER will include documentation of all waste manifests or waste disposal tickets and results of all analyses.

8.2 Site Management Plan

A Site Management Plan (SMP) will be prepared by the Engineer to ensure continued safe reuse of the property and operation of the groundwater hydraulic control system after the RA has been completed. The SMP will address site management and will include information such as a description of the Engineering and institutional controls, the inspection and maintenance requirements, restrictions placed on the property that will limit the future reuse of the site, and periodic review and reporting requirements.

9.0 CERTIFICATION

I <u>Erich Zimmerman</u> certify that I am currently a NYS registered professional engineer and that this Final Design Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Signature:

Date:

Name:

Erich Zimmerman

License No.: 081831

10.0 REFERENCES

New York State Department of Environmental Conservation. Record of Decision for Former C&B Dry Cleaners, Environmental Restoration Project, Jamestown, Chautauqua County, Site No. E907028 – April 2013.

TVGA Consultants. Draft remedial investigation/alternatives analysis report – December 2007.

HDR. Pre-Design Investigation Report, Former C&B Dry Cleaners (NYSDEC Site Number 907028) - July 2015.

HDR. Final Interim Remedial Measures Report, Former C&B Dry Cleaners, Soil Remediation, (NYSDEC Site Number 907028) – January 2016.

Table 1
Groundwater Elevations (January 2015)
Former C & B Dry Cleaners Final Design
Jamestown, Chautauqua County, New York

ID	Northing	Easting	Date (mm/dd/yyyy)	Time (24-day)	Top of Inner Casing Elevation (feet amsl)	Depth to water from top of inner casing (feet bgs)	Water level elevation (feet)	Depth to bottom of well (feet bgs)	Well bottom elevation (feet)
MW5	770300.21	968283.70	1/16/2015	8:57	1327.67	7.92	1319.75	14.40	1313.27
CBPZ101	770119.30	968259.58	1/16/2015	8:21	1321.27	6.22	1315.05	15.93	1305.34
CBPZ102	770084.01	968289.79	1/16/2015	8:35	1322.75	7.78	1314.97	17.91	1304.84
CBPZ104	770059.51	968305.56	1/16/2015	8:41	1323.34	8.30	1315.04	18.10	1305.24
CBPZ105	770062.94	968345.35	1/16/2015	8:44	1324.87	7.46	1317.41	18.13	1306.74
CBPZ106	770130.78	968356.24	1/16/2015	8:17	1324.74	7.17	1317.57	15.10	1309.64
CBPZ108	770277.57	968208.82	1/16/2015	8:59	1326.35	7.69	1318.66	16.06	1310.29
CBPZ109	770288.46	968142.27	1/16/2015	9:05	1326.21	9.00	1317.21	14.00	1312.21
CBPZ110	770157.89	968295.67	1/16/2015	8:19	1323.46	5.73	1317.73	15.77	1307.69
SP24	770205.93	968320.15	1/16/2015	8:52	1327.36	9.52	1317.84	18.85	1308.51
SP26	770372.97	968330.53	1/16/2015	9:10	1327.87	7.17	1320.70	13.85	1314.02
SP22/27	770231.25	968199.74	1/16/2015	9:02	1323.85	7.56	1316.29	14.78	1309.07
SP28	770144.95	968250.44	1/16/2015	8:31	1322.34	7.26	1315.08	16.90	1305.44
SP29	770080.05	968302.50	1/16/2015	8:38	1323.56	8.55	1315.01	14.95	1308.61
SP30	770094.89	968333.59	1/16/2015	8:49	1324.52	8.36	1316.16	14.94	1309.58
SP42	770242.75	968396.02	1/16/2015	8:54	1327.84	9.40	1318.44	14.85	1312.99

Notes:

bgs - below ground surface amsl - above mean sea level

FORMER C & B DRY CLEANER
CHAUTAUQUA COUNTY, NEW YORK

SUMMARY OF SOIL CONFIRMATORY SAMPLE RESULTS - ARSENIC

ISSUE DATE

DESCRIPTION

PROJECT NUMBER

CITY OF JAMESTOWN, CHAUTAUQUA COUNTY, NEW YORK

FIGURE

APPENDIX A

Oxidant Demand Calculations

Appendix A: Calculate Volume & Mass of Total Chlorinated Volatiles

Area	Porosity	Thickness	Volume	Volume	Mass
sf		ft	cf	liters	kg
24,500	0.3	10	245,000	6,938,400	9,366,840

Mass of Chlorinated Volatiles:

	Max.	Mass of	Mass of	Oxidant Demand	Total Oxidant
	Concentration*	Compound	Compound	Oxidant Demand	Total Oxidant
	ug/L	ug	grams	gKMnO4 / g cont.	grams
PCE	28000	1.94E+11	194,275.20	1.2	240,728
TCE	220	1.53E+09	1,526.45	2.4	3,673

*maximum concentrations are from samples collected in 2015.

Chemical Oxidant Demand (COD) in gra 244,410.0

Mass of Soil treated:

Density 84.1 lb/cf Density 1.35 kg/L

Area	Depth	Volume	volume	Mass
sf	ft	cf	liter	kg
24,500	10	245000	6938400	9,366,840

Soil Oxidant Demand (SOD): 2.1 g KMnO4/Kg soil

SOD: 19,670,364 grams

Calculate Total Amount of Oxidant Needed:

Total Oxidant Demand = SOD + COD 19,914,774 grams

Convert to lbs: 454 grams / lb 43,900 lbs

Calculate Amount of Solution Needed:

% Solution = weight of KMnO4 / weight of water

 water
 8.35 lbs/gal

 KMnO4
 43,900 lbs

 Concentration
 5.00%

 Water
 878,000.00 lbs

 Water
 105,150 gallons

APPENDIX B

Bench-Scale ISCO Treatability Study

via E-Mail (amita.patel@hdrinc.com)

May 11, 2015

Ms. Amita Patel, P.E. HDR, Inc. One International Boulevard, 10th Floor Mahwah, New Jersey 07495

RE: Bench-Scale ISCO Treatability Study

Former C&B Dry Cleaners Site (Site 907028) 2241 Washington St, City of Jamestown, Chautauqua County, New York

Dear Ms. Patel,

XDD, LLC (XDD) appreciates the opportunity to provide HDR, Inc. (HDR) with this report summarizing the results of the Bench-Scale In Situ Chemical Oxidation (ISCO) Treatability Study for the above referenced site. The bench testing was performed in accordance with Attachment B ("Scope of Work – Bench-Scale ISCO Treatability Study") of the Treatability Test Task Order, dated December 29, 2014.

If you have any questions regarding the information presented in this report, please do not hesitate to call me at 603.778.1100.

Sincerely,

XDD, LLC

Laurel Crawford Senior Scientist

cc: Michael Marley/XDD

Jamel Carful

BENCH-SCALE IN SITU CHEMICAL OXIDATION TREATABILITY STUDY RESULTS

Former C&B Dry Cleaners Site (Site 907028) Jamestown, New York

Prepared For:

HDR, Inc. One International Boulevard, 10^{th} Floor Mahwah, New Jersey 07495

Prepared By:

22 Marin Way Stratham, New Hampshire 03885 Tel: (603) 778-1100 Fax: (603) 778-2121

May 11, 2014

TABLE OF CONTENTS

1.0	INTR	RODUCTI	[ON	3
	1.1	Bench	Test Objectives	3
2.0	Oxii	DATION (CHEMISTRY BACKGROUND	3
	2.1	Cataly	zed Hydrogen Peroxide	4
	2.2	Activa	tted Persulfate	4
	2.3	Perma	nganate	5
3.0	EXPI	ERIMENT	TAL PROCEDURE	6
	3.1	Sample	e Handling	6
	3.2	Experi	imental Procedures	
		3.2.1	Experimental Procedures: ISCO Phase 1	
		3.2.2	Experimental Procedures: ISCO Phase 2	9
4.0	RESU	ULTS AN	D DISCUSSION	9
	4.1	ISCO I	Phase 1 Tests	9
		4.1.1	Hydrogen Peroxide	9
		4.1.2	Sodium Persulfate Tests	10
		4.1.3	Potassium Permanganate Tests	11
	4.2	Phase 2	2 Tests: Injection Simulation	12
		4.2.1	ISCO Treatment Effectiveness	13
	4.3	Hetero	otrophic Plate Count Evaluation	16
5.0	Con	CLUSION	NS	16
6.0	REC	OMMENI	DATIONS	17

LIST OF FIGURES

Figure 1	Acid Buffering Capacity Test
Figure 2	Hydrogen Peroxide Stability Test
Figure 3	Hydrogen Peroxide Gas Evolution Test
Figure 4	Hydrogen Peroxide Heat Evolution Test
Figure 5	Base Buffering Capacity Test
Figure 6	Persulfate Stability Test
Figure 7	Permanganate Stability Test

LIST OF TABLES

Table 1	Hydrogen Peroxide Test Half Life
Table 2	Soil Oxidant Demand and Total Oxidant Demand
Table 3A	Injection Simulation Results Summary: VOCs in Groundwater
Table 3B	Injection Simulation Results Summary: VOCs in Soil
Table 4A	Injection Simulation Results Summary: COCs Reduction in Groundwater
Table 4B	Injection Simulation Results Summary: COCs Reduction in Soil
Table 5	Degradation Ratios: Treatment with Sodium Persulfate and Potassium
	Permanganate
Table 6A	Injection Simulation Results Summary: Metals in Groundwater
Table 6B	Injection Simulation Results Summary: Metals in Soil
Table 7	Injection Simulation Results Summary: TOC and pH

LIST OF APPENDICES

Appendix A Laboratory Analytical Data Reports

1.0 INTRODUCTION

XDD, LLC (XDD) was retained by HDR, Inc. (HDR) to perform a bench-scale evaluation of insitu chemical oxidation (ISCO) on soil and groundwater from the Former C&B Dry Cleaners Site (Site #907028) located in Jamestown, New York (site). The bench scale tests evaluated the potential for select ISCO reagents to treat the site contaminants of concern (COCs) in soil and groundwater. The site COCs include arsenic and volatile organic compounds (VOCs) including tetrachloroethylene (PCE), trichloroethylene (TCE), and cis-1,2-dichloroethylene (cisDCE). PCE and arsenic are considered the primary COCs, with detected concentrations in the on-site soil on the order of 8,000 milligrams per kilogram (mg/kg) and 109 mg/kg, respectively. Detected concentrations in groundwater includes PCE on the order of 9,200 micrograms per liter (μg/L), with concentrations up to 1 mg/L in the underground storage tank source area.

The following reagents were evaluated in the treatability study:

- Sodium persulfate unactivated persulfate, iron activated persulfate, and alkaline activated persulfate at three concentrations.
- Potassium permanganate at three concentrations.
- Hydrogen peroxide stabilized and catalyzed hydrogen peroxide (CHP) at two concentrations.

1.1 BENCH TEST OBJECTIVES

The objectives of the treatability study were to:

- Evaluate the efficacy of each ISCO reagent tested at various dosages.
- Recommend the most appropriate reagent, concentrations, and any buffer or catalyst necessary for successful application of the selected ISCO reagent at the site.
- Provide an evaluation of indigenous bacteria present, whether these bacteria are capable of reductively dechlorinating constituents detected in groundwater, and whether biostimulation and/or bioaugmentation shall be necessary or recommended.
- Reduce the contaminant concentrations in groundwater by at least 99%.

2.0 OXIDATION CHEMISTRY BACKGROUND

XDD has expertise in the following oxidation chemistries.

2.1 CATALYZED HYDROGEN PEROXIDE

Catalyzed hydrogen peroxide (CHP), also known as Fenton's reagent, is a commonly used ISCO process. It is based on the standard Fenton's reaction, in which the decomposition of a solution of dilute hydrogen peroxide (H_2O_2) is catalyzed by excess iron (II), resulting in near-stoichiometric generation of hydroxyl radicals (OH_{\bullet}):

$$H_2O_2 + Fe^{2+} \Rightarrow OH \bullet + OH^- + Fe^{3+}$$

With a standard reduction potential of 2.8 V, the hydroxyl radical reacts with most contaminants of concern at near diffusion-controlled rates, and readily attacks even highly chlorinated compounds (e.g., PCE) and polychlorinated biphenyls. Field application of CHP differs from the classic Fenton's reagent by using higher concentrations of H₂O₂ and varying the type of catalyst (i.e., iron (III), iron chelates or iron oxyhydroxide minerals). These modifications result in the formation of additional transient oxygen species such as superoxide anion and hydroperoxide:

$$OH \bullet + H_2O_2 \implies HO_2 \bullet + H_2O$$

$$HO_2 \bullet + Fe^{2+} \implies HO_2^- + Fe^{3+}$$

$$HO_2 \bullet \iff O_2 \bullet^- + H^+$$

Superoxide anion $(O_2^{\bullet-})$ is a reductant and a weak nucleophile that has been found to be reactive with compounds such as carbon tetrachloride and 1,1,1-trichloroethane. Hydroperoxide (HO_2^-) is a reductant and a strong nucleophile capable of degrading problematic compounds such as trinitrobenzene. The combination of hydroxyl radicals, superoxide, and hydroperoxide anions can potentially desorb sorbed contaminants and disrupt non-aqueous phase liquids (NAPLs); furthermore, they can oxidize reduced compounds and reduce oxidized compounds, increasing the likelihood of mineralization of recalcitrant contaminants. CHP reactions that generate all three transient oxygen species have the potential to provide a complete treatment matrix for ISCO.

2.2 ACTIVATED PERSULFATE

Sodium persulfate is a key component of many industrial processes and commercial products. For example, sodium persulfate has been used for decades as an oxidant in the analysis of organic carbon in aqueous samples and in water and wastewater treatment. It is only over the last several years that persulfate has been considered for in-situ remediation applications, with XDD one of the original innovators.

The persulfate anion $(S_2O_8^{2-})$ is the most powerful oxidant of the peroxygen family of compounds, and is among the strongest oxidants commonly used for water and wastewater treatment. The persulfate molecule can be activated by several methods to form the sulfate free radical $(SO_4^{-\bullet})$, a powerful oxidant (2.6 V) capable of reaction with many contaminants of concern. Persulfate activation methods include heat activation, a reaction with a reduced transition metal such as ferrous iron, and autodecomposition of the persulfate under slightly acidic or alkaline conditions.

The alkaline activation method is based on the auto-decomposition of persulfate under alkaline conditions, likely causing the persulfate molecule to break at the –O-O- bond, resulting in the formation of two sulfate radicals:

$$S_2O_8^{2-} \rightarrow 2 SO_4^{-}$$

Additional propagation reactions are possible after this initial step, including the possible formation of the hydroxyl radical or hydrogen peroxide, but current research has not yet been definitive on these reactions within the alkaline activation method.

The stoichiometric reaction between persulfate and ferrous iron is shown in the following equations:

$$Fe^{2+} + S_2O_8^{2-} \Rightarrow Fe^{3+} + SO_4^{2-} + SO_4^{-} \bullet$$

 $SO_4^{-} \bullet + Fe^{2+} \Rightarrow Fe^{3+} + SO_4^{2-}$

For a net reaction of:

$$2Fe^{2+} + S_2O_8^{2-} \Rightarrow 2Fe^{3+} + 2SO_4^{2-}$$

The field of activated persulfate oxidation is rapidly developing and several novel activation methods are currently being developed and deployed in the field. XDD has the capability to bench test each of these persulfate activation methods in house and develop the site specific parameters necessary for a successful remedial application.

2.3 PERMANGANATE

Permanganate has been used for over 50 years to oxidize organic chemicals in drinking water and wastewater treatment, including removal of iron (Fe) and manganese (Mn), phenols, and more recently chlorinated hydrocarbons related to industrial solvents. Permanganate has been applied for the in-situ destruction of chlorinated solvents in the subsurface for over 10 years. Both field and laboratory studies have demonstrated that permanganate is capable of degrading

chlorinated ethenes such as TCE and PCE as either a dissolved or non-aqueous phase. During in-situ applications, oxidants are delivered to the subsurface to contact and react with target chemicals, which are either completely oxidized to carbon dioxide or converted into innocuous compounds commonly found in nature.

Permanganate is an effective oxidizing agent (1.7 V) when it contacts chlorinated ethenes, aromatic hydrocarbons, and simple polycyclic aromatic hydrocarbons. In particular, permanganate reacts rapidly with the non-conjugated (i.e., non-aromatic) double bonds in chlorinated ethenes such as TCE, PCE, dichloroethene (DCE) isomers, and vinyl chloride (VC). It will also oxidize ketones and alcohols.

The balanced chemical equations for potassium permanganate oxidation of TCE and PCE are:

- TCE: $2KMnO_4 + C_2HCl_3 \rightarrow 2CO_2 + 2MnO_2 + 2K^+ + 3Cl^- + H^+$
- PCE: $4KMnO_4 + 3C_2Cl_4 + 4H_2O \rightarrow 6CO_2 + 4MnO_2 + 4K^+ + 12Cl^- + 8H^+$

Half-lives for dissolved phase TCE and PCE are approximately 18 minutes and 4.3 hours, respectively, in the presence of excess MnO₄-.

3.0 EXPERIMENTAL PROCEDURE

The following contains a description of the general procedures followed for the tests conducted in this bench-scale evaluation.

3.1 SAMPLE HANDLING

The soil and groundwater samples used in the ISCO bench tests were collected from sample locations CBSB120-6.0-8.0 and CBMW-05, respectively. All samples collected for treatability testing were stored at approximately 38 degrees Fahrenheit (°F) prior to use in the test reactors.

3.2 EXPERIMENTAL PROCEDURES

Unless otherwise specified, experiments were conducted at 70 °F in borosilicate-glass batch reactors. Approximately two pore volumes of reagent were applied to the soil unless otherwise noted. Aqueous phase residual oxidant concentrations for each ISCO technology were determined using iodometric titration. Geochemical parameters, such as pH, were determined using an ion selective probe.

3.2.1 EXPERIMENTAL PROCEDURES: ISCO PHASE 1

XDD evaluated the ISCO technologies in two phases to identify potential failure mechanisms via testing the site specific soil geochemistry and ISCO process chemistry. The first phase, Phase 1, evaluated the acid buffering capacity, stability, and associated gas / heat evolution of hydrogen peroxide. Phase 1 also evaluated the soil oxidant demand (SOD) of persulfate and permanganate, and the base buffering capacity of alkaline activated persulfate. Based on the Phase 1 results, the preferred oxidant concentrations and buffering, catalyst, and/or stabilization agents were selected for testing in Phase 2 (i.e., injection simulation test) to aid in the determination of field implementation design parameters. The Phase 1 test procedures are discussed below.

3.2.1.1 <u>Hydrogen Peroxide</u>

For the hydrogen peroxide tests, XDD evaluated hydrogen peroxide, hydrogen peroxide stabilized with citric acid, and CHP (i.e., Fenton's), as each method generates a unique chemistry that has been found to be advantageous under different site conditions. General procedures used for each test were as follows:

- Acid Buffering Capacity: Various concentrations of sulfuric acid were added to separate duplicate vials containing 20 grams (g) of site soil. The concentrations varied from 0.1 g/L to 20 g/L sulfuric acid. pH measurements were collected after 1, 4, 7, and 14 days of contact time between the sulfuric acid solutions and the soil. The quantity of acid required to lower and maintain the pH was assessed and calculated as grams of sulfuric acid per kilogram (Kg) of soil.
- *Hydrogen Peroxide Stability*: The rate of decomposition of 5 % and 9 % hydrogen peroxide (w/w groundwater solution) with 30 g soil was assessed over 24 hours under different stabilizing and catalyzing conditions. Test conditions included four concentrations of citric acid (5 millimolar [mM], 20, mM, 50 mM, and 100 mM citric acid) and two concentrations of chelated iron (1 mM iron and 2 mM iron). In addition, duplicate control reactors using hydrogen peroxide and distilled water only (no soil) were evaluated as part of the CHP stability test. Residual hydrogen peroxide was monitored at several time points during the 24 hour test.
- *Gas and Heat Evolution:* Using the test conditions identified in the hydrogen peroxide stability tests, the rate of evolution of gas and heat during the decomposition of hydrogen peroxide was evaluated. Gas was collected and measured in a lubricated syringe.

3.2.1.2 Sodium Persulfate

For the persulfate tests, XDD evaluated unactivated, iron-chelate, and alkaline activation methods as each method generates a unique chemistry that has been found to be advantageous under different site conditions. General procedures used for each test were as follows:

- Base Buffering Capacity: Various concentrations of sodium hydroxide were added to separate vials containing 20 grams of soil. The concentrations varied from 0.1 g/L to 40 g/L sodium hydroxide. pH measurements were collected after 1, 4, 7, and 14 days of contact time between the sodium hydroxide solutions and the soil. The quantity of base required to raise and maintain the pH above 10.5 was assessed (for alkaline activation of sodium persulfate) and calculated as g of sodium hydroxide per Kg of soil (mass loading).
- *Persulfate Stability*: The stability of unactivated, alkaline activated, and iron activated sodium persulfate was evaluated by monitoring residual persulfate in duplicate reactors of three different concentrations of sodium persulfate (50g/L, 100 g/L, and 200 g/L) dissolved into site groundwater in the presence of 30 g of soil. The decomposition of persulfate in the reactors was evaluated at time steps of 1, 7, and 14 days.
- *Total and Soil Oxidant Demands*: SOD and total oxidant demand (TOD) were calculated using the data generated in the persulfate stability test by calculating the mass as g of oxidant consumed per Kg of soil in each reactor. TOD was considered to be the oxidant consumed in comparison to the baseline while SOD was the oxidant consumed in comparison to the control reactors containing activation chemicals.

3.2.1.3 Potassium Permanganate

For the permanganate, the following procedures were performed:

- *Permanganate Stability*: The stability of permanganate was evaluated by monitoring residual persulfate in duplicate reactors of three different concentrations of potassium permanganate (5 g/L, 15 g/L, and 30 g/L) dissolved into site groundwater in the presence of 30 g of soil. The decomposition of permanganate in the reactors was evaluated at time steps of 1, 7, and 14 days.
- Total and Soil Oxidant Demands: SOD and TOD were calculated using the data generated in the permanganate stability test by calculating the mass as g of oxidant consumed per Kg of soil in each reactor. TOD was considered to be the oxidant consumed in comparison to the baseline while SOD was the oxidant consumed in comparison to the control reactors containing activation chemicals.

3.2.2 EXPERIMENTAL PROCEDURES: ISCO PHASE 2

Following the completion of Phase 1 tests, the reagents and concentrations, including necessary stability and/or catalyst agents, were selected for the injection simulation tests conducted in Phase 2.

Baseline COC conditions were evaluated by HDR in the groundwater and soil prior to developing the injection simulation test setup. In addition, a standard plate count analysis was conducted on the groundwater by BioTrax, located in Cheektowaga, NY, using Environmental Protection Agency (EPA) Method 9215B.

For the injection simulation test reactors, approximately 7.5 pore volumes of the oxidant solution was added to the reactors and was allowed to contact the soil for 17 days. After the 17 days of contact time, soil and groundwater samples were submitted to TestAmerica Laboratories Inc. in Amherst, NY for the analysis of VOCs using EPA Method 8260C, select metals using EPA Method 6010C, and total organic carbon (TOC) using EPA Method 5310C. Residual oxidant concentrations and pH were measured by XDD.

4.0 RESULTS AND DISCUSSION

The results of Phase 1 and Phase 2 bench scale tests are presented and discussed in this section.

4.1 ISCO PHASE 1 TESTS

The ISCO Phase 1 tests are intended to evaluate the effects of the site geochemistry on the ISCO process technology. XDD evaluated hydrogen peroxide, persulfate, and permanganate in the Phase 1 tests.

4.1.1 HYDROGEN PEROXIDE

4.1.1.1 Acid Buffering Capacity

Results from the acid buffering capacity are presented in Figure 1. Test results indicated that the test condition with the highest concentration of acid was required to lower the pH to the desired range of pH 3 to 4 for CHP. The highest loading of sulfuric acid, 20 g/L, or 5.5 g sulfuric acid per kg of soil, was required to result in a pH 3.5.

4.1.1.2 <u>Hydrogen Peroxide Stability</u>

The 5 % and 9% hydrogen peroxide stability tests are shown in Figure 2 and the resulting half-lives based on pseudo-first order kinetics are shown on Table 1. Both 5 % and 9 % hydrogen

peroxide without a stabilization agent decomposed quickly; almost no hydrogen peroxide remained after the first few minutes of contact with the soil and groundwater. The addition of a catalyst, ferrous iron, yielded similar results. The addition of citric acid as a stabilizer slightly decreased the rate of decomposition of hydrogen peroxide. As shown in Table 1, the addition of increasing amounts of citric acid had minimal effect on the half-life of hydrogen peroxide, each resulting in half-lives of less than 7 hours. Half-lives of at least 15 hours are ideal in a field application in order to give the hydrogen peroxide enough time to be distributed from the injection point. The observed minimal stability of hydrogen peroxide and high acid demand, depending upon site design parameters, could be considered a potential failure mechanism for the field application of hydrogen peroxide at this site.

4.1.1.3 Gas and Heat Evolution

The decomposition of hydrogen peroxide and degradation of organic material both have the potential to generate gases. The rate at which gases evolved from the various systems in the hydrogen peroxide stability testing was quantified and the results are presented in Figure 3. The data show that a majority of the test conditions resulted in the evolution of a significant quantity of gas within the first few minutes of the test. The addition of 50 and 100 mM citirc acid slightly decreased the rate of evolution and the quantity of gas.

Heat evolution was also monitored during the tests, as the evolution of heat is possible during the application of hydrogen peroxide. The results of the heat evolution measurements are presented in Figure 4. The data show that a significant amount of heat rapidly evolves from the hydrogen peroxide test conditions within the first several minutes of the test.

4.1.2 SODIUM PERSULFATE TESTS

4.1.2.1 Base Buffering Capacity

Results from the base buffering capacity test are presented in Figure 5. Test results indicated that after 14 days of contact between the sodium hydroxide solution and the soils, 1.9 g of sodium hydroxide per Kg of soil was required to elevate the pH to greater than pH 10.5. A field design should consider methods of upscaling these results to the field. The reaction will likely be a function of the surface area contacted by the reagents. The surface area contacted in the bench scale is likely much higher per Kg than will be observed in the field.

4.1.2.2 Persulfate Stability

The persulfate stability test evaluated the persistence of unactivated, iron activated, and alkaline activated persulfate in the presence of site soil and groundwater. The test evaluated persulfate in

reactors with initial target concentrations of 50 g/L, 100 g/L, and 200 g/L sodium persulfate dissolved in site groundwater in contact with site soil for each activation method (Figure 6). The data show that unactivated, iron activated, and alkaline activated persulfate persisted in site soil for the 14 day period tested. Given the residual concentrations at the end of 14 days, it is reasonable to expect treatment to occur for greater than 14 days. While some phases of contamination may require additional contact time, 14 days is considered to be sufficient to adequately distribute the oxidant and establish contact with readily available contamination. Also, iron activated and alkaline activated persulfate systems generally resulted in lower residual concentrations of sodium persulfate than the unactivated persulfate systems.

4.1.2.3 Total and Soil Oxidant Demand

Results from the TOD and SOD tests after 14 days of contact with 50 g/L, 100 g/L, and 200 g/L persulfate for the unactivated, iron activated, and alkaline activated systems are presented in Table 2. The data show that the SOD ranges from 5 to 20 g/Kg for the unactivated persulfate system. TOD ranges from 4 to 12 g/Kg for the iron activated system and 12 to 28 g/Kg for the alkaline activated system. It is common to have SOD and TOD increase with increasing persulfate concentrations.

TOD and SOD are intended to be an estimation of the mass of oxidant that will be consumed during the application of activated persulfate in site groundwater and soil. TOD is intended to include decomposition of oxidant based on the activator as well as SOD. TOD tends to be used most often as a design engineering parameter. SOD is intended to estimate the role of non-target reactions with natural organic material and mineralogy. As unactivated persulfate does not have oxidant demand due to an activator, TOD and SOD are theoretically the same, with any difference due to the method of calculation.

4.1.3 POTASSIUM PERMANGANATE TESTS

4.1.3.1 Permanganate Stability

The permanganate stability test evaluated the persistence of permanganate in the presence of site soil and groundwater. The test evaluated initial target concentrations of 5 g/L, 15 g/L, and 30 g/L permanganate dissolved in site groundwater in contact with site soil (Figure 7). The data show that for the 5 g/L and 15 g/L permanganate test conditions, little to no permanganate remained after one and seven days, respectively. However, the 30 g/L permanganate persisted in site soil for the 14 day period tested. Given the residual concentration for the 30 g/L test condition at the end of 14 days, it is reasonable to expect treatment to occur for greater than 14 days. While some phases of contamination may require additional contact time, 14 days is

considered to be sufficient to adequately distribute the oxidant and establish contact with readily available contamination.

4.1.3.2 Soil Oxidant Demand

Results from the SOD tests after 14 days of contact with 5 g/L, 15 g/L, and 30 g/L permanganate test conditions are presented in Table 2. The data show that the SOD ranges from 2 to 11 g/Kg for permanganate. It is common to have SOD increase with increasing permanganate concentrations. As is the case for unactivated persulfate, permanganate does not have oxidant demand due to an activator. Therefore, TOD and SOD are theoretically the same.

4.2 Phase 2 Tests: Injection Simulation

The original scope of work (SOW) proposed the testing of four oxidants: persulfate, permanganate, hydrogen peroxide, and Fenton's. However, based on the Phase 1 test results, hydrogen peroxide and Fenton's would not be considered ideal for a field application at this site due to the high acid buffering capacity of the soil, and the stability, heat, and gas evolution. After consultation with HDR, it was decided to eliminate Fenton's and test two activation schemes for persulfate instead.

The injection simulation tests were set up in glass jars with no headspace for the persulfate and permanganate test conditions. The hydrogen peroxide test reactors had some headspace in the reactors to avoid breakage due to gas evolution. Two sets up controls were set up: one set with no headspace for comparison to the persulfate and permanganate test conditions, and a second set with the same amount of headspace as the hydrogen peroxide reactors.

The injection simulation test reactors required more than two pore volumes of oxidant (an approximate 7.5 : 1 pore volume ratio of groundwater to soil) to allow for sufficient sample volume for laboratory analyses at the end of the testing. Therefore, the injection simulation tests were conducted at slightly lower oxidant concentrations than Phase 1 as follows:

- Controls (no oxidant)
 - o Controls with no headspace (for comparison to persulfate and permanganate tests)
 - o Controls with headspace (for comparison to hydrogen peroxide tests)
- Iron Activated Persulfate
 - o 35 g/L
 - o 70 g/L
 - o 140 g/L
- Alkaline Activated Persulfate

- o 35 g/L
- o 70 g/L
- o 140 g/L
- Potassium Permanganate
 - \circ 3.5 g/L
 - o 10 g/L
 - o 20 g/L
- Hydrogen Peroxide with 100 mM citric acid stabilizer
 - 0 3%
 - 0 6%

4.2.1 ISCO TREATMENT EFFECTIVENESS

The injection simulation test results are discussed below and are shown on Tables 3A through Table 7, with analytical laboratory reports attached in Appendix A.

4.2.1.1 **VOCs**

The analytical data for VOCs is presented on Tables 3A and 3B for groundwater and soil, respectively. Tables 3A and 3B list the COCs (PCE, TCE, and cisDCE) and other detected VOCs.

The percent reduction in COC concentrations compared to the control reactors are shown on Tables 4A and 4B for groundwater and soil, respectively. Percent reduction calculations were calculated by comparison to the control. The sample detection limit was used for compounds reported as non-detect. It should be noted that the percent reduction calculations can be skewed if the sample had to be diluted for the analysis, yielding higher detection limits that get factored into the calculations. The data indicate the following:

- Persulfate and Permanganate:
 - Total COCs in groundwater were reduced by 99% or greater for all test conditions except for the 35 and 70 g/L alkaline activated persulfate test conditions.
 - Total reduction of COCs in soil ranged from 0 to 99%, with the highest percent reductions achieved in the permanganate tests.
 - Table 4A also shows the residual oxidant concentrations at the end of the injection simulation test. For each test conditions, persulfate and permanganate concentrations remained in each reactor, indicating that treatment would continue beyond the 17 day time-point when the data was collected.
- Hydrogen Peroxide:

- Total COCs in groundwater were reduced by 98% and 80%, respectively, for the low and high hydrogen peroxide test conditions.
- O Total COCs in soil were reduced by 97% and 99%, respectively, for the low and high hydrogen peroxide test conditions. These percent reductions may be biased high due to the anomalously high PCE concentration (220 mg/Kg) in soil detected in the hydrogen peroxide control reactor. This PCE detection is not consistent with the PCE concentrations detected in the baseline (7.9 mg/Kg) or persulfate / permanganate control reactor (11 mg/Kg).
- There was no peroxide remaining in the reactors by the end of the test (Table 4A), which was not unexpected due to the results from the Phase 1 peroxide stability testing.

The formation of chlorinated by-products is known to occur during in-situ ISCO processes, but the mechanism is not yet completely understood. The mechanism is thought to be analogous to the formation of trihalomethanes (THMs) and other disinfection by-products that often occur during the treatment of municipal drinking water. Specifically, the conditions seem to require reduced halogen compounds (chloride, bromide, etc), organic material, and certain oxidants. While these conditions are present in most ISCO applications to some degree, XDD has observed the formation of chlorinated by-products at a limited number of sites. The persistence of the chlorinated by-products will vary given the site conditions and the specific compound. For example, chloromethane and chloroethane are both expected to volatilize and undergo hydrolysis in groundwater.

The degradation ratio is a ratio of the mass of oxidant consumed during the reaction divided by the mass of contamination degraded as compared to the control reactors. Degradation ratios were calculated for PCE and TCE only [cisDCE was not included in the calculations since it was either non-detect or detected below the laboratory reporting limit ("J qualifier)] and are shown on Table 5. Degradation ratios typically increase with increasing oxidant concentration. XDD has found that the lower end of the range is experienced during most field applications. The degradation ratios tend to be much higher than stoichiometric ratios at lower contaminant concentrations as the degradation ratio also includes non-target demand for the oxidant.

4.2.1.2 Metals Evaluation

A summary of the metals results are shown in Tables 6A and 6B for groundwater and soil, respectively. The data show the following:

• Metals in Groundwater

o Alkaline Activated Persulfate:

- Arsenic, chromium, and sodium exceeded the groundwater regulatory criteria for all three test conditions.
- Chromium and lead were detected in one of the test conditions at values estimated ("J" qualifier) below the method reporting limits.

o Iron Activated Persulfate:

Cadmium and sodium exceeded groundwater regulatory criteria in the low (35 g/L) iron activated persulfate test condition (the medium and high test conditions were destroyed during the digestion method procedure).

Potassium Permanganate:

- Iron and manganese exceeded the groundwater regulatory criteria for all three test conditions.
- For the high (20 g/L) test condition, arsenic, barium, and lead exceeded groundwater regulatory criteria, although the arsenic value was estimated ("J" qualifier) below the method reporting limit.

Hydrogen Peroxide:

- Barium, beryllium, cadmium, iron, lead, manganese, and nickel exceeded the groundwater regulatory criteria for both hydrogen peroxide test conditions.
- Chromium and thallium exceed groundwater regulatory criteria in one test condition only.

Metals in Soil

- o The injection simulation test resulted in no notable exceedances of soil cleanup objectives (SCOs) for metals except for aluminum in the high hydrogen peroxide test condition and calcium in the high permanganate test condition.
- The SCOs for iron were exceeded in all test conditions including the controls.

The potential for metals mobilization in groundwater following an ISCO application is often a concern. However, any increases in metals concentrations following ISCO are expected to be temporary. Additionally, some of the metals detections originate from the chemical makeup of the oxidants themselves (e.g., sodium from sodium persulfate and potassium and manganese from potassium permanganate).

4.2.1.3 TOC and pH Evaluation

The TOC data for groundwater and soil and pH data for groundwater are shown on Table 7. Compared to the groundwater controls, TOC increased by several orders of magnitude in all the

test conditions, likely due to dissolution of oxidized TOC on soil. TOC in soil increased slightly compared to the controls.

The pH data remained neutral in the potassium permanganate test conditions. As expected, the iron activated persulfate and hydrogen peroxide test conditions remained acidic (pH <4) throughout the test, and the pH in the alkaline activated persulfate test conditions were 12.7 or greater throughout the test.

4.3 HETEROTROPHIC PLATE COUNT EVALUATION

Baseline groundwater was submitted for heterotrophic plate count analysis and the results were as follows:

• CBMW-5: 3,370,000 colony forming units/mL (CFU/mL)

Plate counts on the order of 10⁶ CFU/mL and higher are generally considered necessary to support adequate biodegradation. While the plate count results for the site may indicate a sufficient population is present for biodegradation to occur, it doesn't indicate which type(s) of bacteria are present [i.e., *dehalococcoides* (*dhc*) are the bacteria that degrade PCE]. Also, there are many other factors that need to be considered in order for bacterial populations to thrive. Biodegradation of the COCs at the site are degraded anaerobically which would require reducing conditions [dissolved oxygen <0.5 mg/L and oxidation reduction potential of -180 millivolts (mV) or lower]. In addition, neutral pH conditions (7.0 +/-1) and certain nutrients (i.e., nitrogen and phosphate) need to be available in sufficient quantities. High concentrations of certain compounds may interfere with the activity of microorganisms. Therefore, if biodegradation is considered as a remedy in an area where ISCO may occur, it may be necessary to wait for subsurface conditions to return to pre-ISCO conditions.

5.0 CONCLUSIONS

The bench scale data support the following conclusions:

- Phase 1 ISCO Tests:
 - O Hydrogen Peroxide: The results from the Phase 1 tests for CHP indicate several parameters could present issues in a field scale application. Specifically, the stability of the hydrogen peroxide may limit the time for the reagents to be distributed within the subsurface. The evolution of heat could impact equipment and increase the rate of autodecomposition of the hydrogen peroxide. Gases that evolve at a rate greater than they can dissipate could form pockets in the subsurface preventing distribution of the reagents. Due to these potential issues, it

- was decided to test only two concentrations of hydrogen peroxide in the Phase 2 injection simulation tests.
- O Persulfate: The base buffer capacity, stability of the persulfate with each activation method, and SOD/TOD were within typical ranges for a potential field application. After consultation with HDR, it was decided to test both alkaline and iron activated persulfate in the Phase 2 injection simulation tests.
- O Permanganate: The SOD and stability of the permanganate were within typical ranges for a potential field application. In accordance with the original scope of work, permanganate was tested at three concentrations in the Phase 2 injection simulation tests.
- Phase 2 ISCO Injection Simulation Tests:
 - A 99% or greater reduction in groundwater COCs concentrations was achieved for all three loadings of the iron activated persulfate and potassium permanganate test conditions.
 - o Iron activated persulfate and potassium permanganate also resulted in less metals mobilization than alkaline activated persulfate or hydrogen peroxide.
- Heterotrophic Plate Count Test:
 - The plate count results indicate the presence of a moderate microbial population, but the type of bacteria present at the site and the ability to fully dechlorinate the COCs is unknown.
 - Many other factors such as pH, redox, and availability of nutrients need to be taken into account to understand if the bacterial community present is capable of degrading the site COCs.

6.0 **RECOMMENDATIONS**

The ISCO bench tests indicated that iron activated persulfate and potassium permanganate were the most successful at treating the site COCs in groundwater. Of the two, potassium permanganate is likely the best choice for the following reasons:

- Stability over the test period was acceptable
- >99% destruction of COCs in groundwater
- pH would remain neutral
- Limited metals mobilization potential

The low oxidant concentration test condition, 3.5 g/L potassium permanganate, would be recommended since it would result in the lowest cost and least amount of metals mobilization, yet would still achieve the COC reductions in groundwater. A field application design should

take into consideration the oxidant pore volume ratio to soil and overall injection scheme and strategy.

If biodegradation were considered as a remedial option for the site, a microcosm study would be recommended to determine if native bacteria capable of degrading site COCs are present, and if biostimulation and potentially bioaugmentation would be required.

Figures

Figure 1
Acid Buffering Capacity Test

Notes:

 $H_2SO_4 = Sulfuric Acid$

g = grams

Kg = kilograms

Figure 2
Hydrogen Peroxide Stability Test

Notes:

H₂O₂ = hydrogen peroxide mM = millimolar

% = percent

Figure 3
Hydrogen Peroxide Gas Evolution Test

Notes:

H₂O₂ = hydrogen peroxide; cc = cubic centimeters; mM = millimolar

Figure 4
Hydrogen Peroxide Heat Evolution Test

Figure 5 **Base Buffering Capacity Test**

NaOH = Sodium Hydroxide

g = grams

Kg = kilograms

Figure 6 Sodium Persulfate Stability Test

Former C&B Dry Cleaners Site Jamestown, New York

g/L = gram per liter

Figure 7
Potassium Permanganate Stability Test

g/L = grams per liter

Tables

Table 1 Hydrogen Peroxide Stability Test Half Life

Former C&B Dry Cleaners Site Jamestown, New York

Treatment	Half Life ^[a] (hours)	R ²		
5%	H2O2			
5% H2O2 only	0.1	1.00		
5% H2O2, 5 mM Citric Acid	0.1	1.00		
5% H2O2, 20 mM Citric Acid	0.1	1.00		
5% H2O2, 50 mM Citric Acid	3.6	0.733		
5% H2O2, 100 mM Citric Acid	6.2	0.992		
5% H2O2,1:1 Citric Acid : Iron	0.1	1.00		
9%	H2O2			
9% H2O2 only	NA	0.85		
9% H2O2, 5 mM Citric Acid	0.1	1.00		
9% H2O2, 50 mM Citric Acid	3.7	0.999		
9% H2O2, 100 mM Citric Acid	5.2	0.928		
9% H2O2,1:2 Citric Acid : Iron	0.1	1.00		

Notes:

[a] Based on first order model of hydrogen peroxide decomposition

R² = correlation coefficient

% = percent

 H_2O_2 = hydrogen peroxide

mM = milliMolar

Table 2 Soil Oxidant Demand and Total Oxidant Demand

Former C&B Dry Cleaners Site Jamestown, New York

Treatment	Starting Oxidant Test Concentration	Soil Oxidant Demand	Total Oxidant Demand			
	(g/L)	(grams oxidant /	Kilogram dry soil)			
	5 g/L	2.1	NA			
Potassium Permanganate	15 g/L	6.1	NA			
	30 g/L	11	NA			
	50 g/L	5.2	NA			
Unactivated Persulfate	100 g/L	3.4	NA			
	200 g/L	20	NA			
	50 g/L	0.1	0.7			
Iron Activated Persulfate	100 g/L	2.6	4.4			
	200 g/L	4.4	7.8			
	50 g/L	12	12			
Alkaline Activated Persulfate	100 g/L	22	24			
	200 g/L	4.7	28			

Notes:

g/L = grams per liter

NA = Not applicable (no activator)

Soil Oxidant Demand and Total Oxidant Demand based on Day 14 readings.

Total Oxidant Demand = Soil Oxidant Demand + Activator Demand

Iron activated persulfate was activated with iron (Fe) and citric acid (CA) at a 100: 1: 1 molar ratio (persulfate: Fe: CA).

Alkaline activated persulfate was activated with sodium hydroxide (NaOH) at a 1:2.25 molar ratio (persulfate: NaOH).

XDD recommends that a TOD of less than 2.5 g/Kg should not be used for field estimation purposes.

Table 3A Injection Simulation Results Summary: VOCs in Groundwater

Former C&B Dry Cleaners Site Jamestown, New York

Test Condition		Initial								VO (EPA Meth						
Те	st Condition	Oxidant Concen-	Sample ID	units		COCs					Oth	er Detected	VOCs			
		tration			Cis-1,2-DCE	PCE	TCE	1,2-DCA	Carbon Disulfide	Bromo- methane	Chloro- form	Chloro- methane	Methylene Chloride	Acetone	1,1,2-TCA	2-Butanone
							GROU	INDWATER								
Baseline	Baseline	N/A	CBMW-5	μg/L	< 50	28,000	220	< 50	< 50	< 50	< 50	< 50	630	< 500	< 50	< 500
Controls	Controls (Persulfate	N/A	SP-CTRL	μg/L	10	9,300	130	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	J 12	< 2.0	< 20
Controls	and Permanganate)	N/A	SP-CTRL-DUP	μg/L	9.8	9,100	130	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	J 8.5	< 2.0	< 20
	Alkaline Activated Persulfate Low	35 g/L	SP NAOH LOW	μg/L	< 40	910	< 40	< 40	< 40	< 40	< 40	< 40	< 40	620	< 40	< 400
	Alkaline Activated Persulfate Mid	70 g/L	SP NAOH MID	μg/L	< 5.0	230	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	52	< 5.0	< 50
Persulfate	Alkaline Activated Persulfate High	140 g/L	SP NAOH HIGH	μg/L	< 5.0	40	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50	< 5.0	< 50
Tersunate	Iron Activated Persulfate - Low	35 g/L	SP FECA LOW	μg/L	< 10	< 10	< 10	J 5.6	< 10	10	16	380	130	470	< 10	< 100
	Iron Activated Persulfate - Mid	70 g/L	SP FECA MID	μg/L	< 10	< 10	< 10	13	< 10	J 8.9	24	680	420	430	J 5.7	< 100
	Iron Activated Persulfate - High	140 g/L	SP FECA HIGH	μg/L	< 10	J 4.7	< 10	J 7.0	< 10	< 10	18	520	380	460	J 2.4	< 100
Potassium	Potassium Permanganate Low	3.5 g/L	KMNO4 LOW	μg/L	< 5.0	J 2.1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	820	< 5.0	110
Perman- ganate	Potassium Permanganate Mid	10 g/L	KMNO4 MID	μg/L	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	2,300	< 10	J 75
gunate	Potassium Permanganate High	20 g/L	KMNO4 HIGH	μg/L	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	3,700	< 10	J 33
	Permanganate High Hydrogen Peroxide	N/A	HP CTRL	μg/L	8.8	7,700	110	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 20	< 2.0	< 20
Hydrogen	Controls	N/A	HP CTRL DUP	μg/L	8.9	6,700	110	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 20	< 2.0	< 20
Peroxide	Hydrogen Peroxide Low	3%	HP LOW	μg/L	< 10	110	< 10	< 10	J 3.7	< 10	< 10	< 10	< 10	450,000	< 10	J 60
	Hydrogen Peroxide High	6%	HP HIGH	μg/L	< 500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	440,000	< 500	< 5,000

Notes:

COC = contaminant of concern

PCE = tetrachloroethylene; TCE = trichloroethylene; cisDCE = cis-1,2-dichloroethylene

N/A = not applicable

g/L = grams per liter

μg/L = micrograms per liter

< = less than

J = the result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

Table 3B Injection Simulation Results Summary: VOCs in Soil

Former C&B Dry Cleaners Site Jamestown, New York

		Initial								VC (EPA Meth						
Tes	st Condition	Oxidant Concen-	Sample ID	units		COCs					Oth	er Detected \	/OCs			
		tration			Cis-1,2-DCE	PCE	TCE	1,2-DCA	Carbon Disulfide	Bromo- methane	Chloro- form	Chloro- methane	Methylene Chloride	Acetone	1,1,2-TCA	2-Butanone
							:	SOIL								
Baseline	Baseline	N/A	CBSB121- 4.0-6.0	mg/Kg	< 0.0038	NR	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0038	J 0.017	< 0.0038	< 0.019
24300	buseine	N/A	CBSB121- 4.0-6.0-1	mg/Kg	< 0.048	7.9	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	J 0.014	< 0.24	< 0.048	< 0.24
Controls	Controls (Persulfate	N/A	SP-CTRL	mg/Kg	J 0.0013	11	0.35	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.021	< 0.0042	< 0.021
Controls	and Permanganate)	NA	SP-CTRL-DUP	mg/Kg	na	na	na	na	na	na	na	na	na	na	na	na
	Alkaline Activated Persulfate Low	35 g/L	SP NAOH LOW	mg/Kg	< 0.0044	8.9	J 0.0025	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	0.063	< 0.0044	< 0.022
	Alkaline Activated Persulfate Mid	70 g/L	SP NAOH MID	mg/Kg	< 0.15	4.2	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	0.19	1.1	< 0.15	2
Parculfata	Alkaline Activated Persulfate High	140 g/L	SP NAOH HIGH	mg/Kg	< 0.25	11	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.25	J 1	< 0.25	< 1.2
Persulfate High Iron Activate	Iron Activated Persulfate - Low	35 g/L	SP FECA LOW	mg/Kg	< 0.0042	5.7	< 0.0042	J 0.0009	< 0.0042	J 0.0029	J 0.0037	0.048	0.012	0.054	< 0.0042	< 0.021
	Iron Activated Persulfate - Mid	70 g/L	SP FECA MID	mg/Kg	J 0.00037	2	J 0.00083	J 0.0014	0.0035	J 0.0014	0.005	0.066	0.03	0.03	J 0.0011	0.016
	Iron Activated Persulfate - High	140 g/L	SP FECA HIGH	mg/Kg	< 0.0039	4	< 0.0039	J 0.0026	J 0.0023	J 0.0025	0.0097	0.21	0.1	0.17	J 0.0017	< 0.02
Potassium	Potassium Permanganate Low	3.5 g/L	KMNO4 LOW	mg/Kg	< 0.0045	1.8	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	0.077	< 0.0045	J 0.013
Perman- ganate	Potassium Permanganate Mid	10 g/L	KMNO4 MID	mg/Kg	< 0.0043	0.074	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	0.2	< 0.0043	J 0.012
ganate	Potassium Permanganate High	20 g/L	KMNO4 HIGH	mg/Kg	< 0.0045	0.058	< 0.0045	< 10.000	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	0.4	< 0.0045	J 0.011
	Hydrogen Peroxide	N/A	HP CTRL	mg/Kg	J 0.0064	220	0.14	< 0.034	< 0.034	< 0.034	< 0.034	< 0.034	< 0.034	1.2	< 0.034	< 0.17
Undoor	Controls	N/A	HP CTRL DUP	mg/Kg	na	na	na	na	na	na	na	na	na	na	na	na
Peroxide	Hydrogen Peroxide Low	3%	HP LOW	mg/Kg	< 0.25	5.5	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.37	65	< 0.25	< 1.3
Peroxide	Hydrogen Peroxide High	6%	HP HIGH	mg/Kg	< 0.0044	2.3	< 0.0044	< 0.0044	J 0.0035	< 0.0044	< 0.0044	< 0.0044	< 0.0044	120	< 0.0044	< 0.022

Notes:

COC = contaminant of concern

PCE = tetrachloroethylene; TCE = trichloroethylene; cisDCE = cis-1,2-dichloroethylene

N/A = not applicable

g/L = grams per liter

mg/Kg = milligrams per kilogram

< = less than

J = the result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

na = not analyzed

Table 4A Injection Simulation Results Summary: COCs Reduction in Groundwater

Former C&B Dry Cleaners Site Jamestown, New York

			Oxidant		PCE		TCI	E	cisDC	Œ	TOTAL	COCs
7	Test Condition	Initial Concentration	Residual Concentration	Percent remaining	Concentration	Percent Reduction	Concentration	Percent Reduction	Concentration	Percent Reduction	Concentration	Percent Reduction
		(g)	/L)	(%)	(μg/L)	(%)	(μg/L)	(%)	(μg/L)	(%)	(μg/L)	(%)
							GROUNDWATER					
Controls	Controls (Persulfate and Permanganate) ^[1]	0	0	N/A	9,200	N/A	130	N/A	9.9	N/A	9,340	N/A
	Alkaline Activated Persulfate Low	35	21	60	910	90	< 40	> 69	40	-304	990	89
	Alkaline Activated Persulfate Mid	70	48	68	230	98	< 5.0	> 96	< 5.0	49	240	97
Persulfate	Alkaline Activated Persulfate High	140	88	63	40	> 99	< 5.0	> 96	< 5.0	49	50	99
Persunate	Iron Activated Persulfate - Low	35	29	82	< 10	> 99	< 10	> 92	< 10	-1	< 30	> 99
	Iron Activated Persulfate - Mid	70	62	88	< 10	> 99	< 10	> 92	< 10	-1	< 30	> 99
	Iron Activated Persulfate - High	140	123	88	J 4.7	> 99	< 10	> 92	< 10	-1	J 24.7	> 99
	Potassium Permanganate Low	3.5	0.4	11	J 2.1	> 99	< 5.0	> 96	< 5.0	49	J 12.1	> 99
Potassium Perman- ganate	Potassium Permanganate Mid	10	4.9	49	< 10	> 99	< 10	> 92	< 10	-1	< 30	> 99
Barrage	Potassium Permanganate High	20	12	61	< 10	> 99	< 10	> 92	< 10	-1	1 30	> 99
	Hydrogen Peroxide Control ^[1]	0	0	N/A	7,200	N/A	110	N/A	8.9	N/A	7,319	N/A
Hydrogen Peroxide	Hydrogen Peroxide Low	3	0	0	110	98	< 10	> 91	< 10	-13	130	98
Peroxide	Hydrogen Peroxide High	6	0	0	< 500	> 93	< 500	-355	< 500	-5,550	< 1,500	80

Notes:

For the purposes of this evaluation, the sample detection limit was used as the concentration value for compounds reported as non-detect.

Reactors were submitted for laboratory analysis after 17 days of contact time.

COC = contaminant of concern

PCE = tetrachloroethylene; TCE = trichloroethylene; cisDCE = cis-1,2-dichloroethylene

μg/L = micrograms per liter

g/L = grams per liter

% = percent

N/A = not applicable

< = less than

> = greater than

ual to the method detection limit and the concentration is an approximate value.

⁽¹⁾ Groundwater control concentrations are an average concentration of the duplicate reactors for each test. The control reactors did not contain the oxidant. Percent reductions were calculated by comparison with the control.

Table 4B Injection Simulation Results Summary: COCs Reduction in Soil

Former C&B Dry Cleaners Site Jamestown, New York

		PC	E	TCI	E	cisDO	Œ	TOTAL	COCs
1	Test Condition	Concentration	Percent Reduction	Concentration	Percent Reduction	Concentration	Percent Reduction	Concentration	Percent Reduction
		(mg/Kg)	(%)	(mg/Kg)	(%)	(mg/Kg)	(%)	(mg/Kg)	(%)
						SOIL			
Controls	Controls (Persulfate and Permanganate) ^[1]	11	N/A	0.35	N/A	J 0.0013	N/A	11	N/A
	Alkaline Activated Persulfate Low	8.9	19	J 0.0025	99	< 0.0044	-238	8.9	22
	Alkaline Activated Persulfate Mid	4.2	62	< 0.15	99	< 0.15	-11,438	4.5	60
Persulfate	Alkaline Activated Persulfate High	11	0	< 0.25	99	< 0.25	-19,131	11.5	-1
reisullate	Iron Activated Persulfate - Low	5.7	48	< 0.0042	99	< 0.0042	-223	5.7	50
	Iron Activated Persulfate - Mid	2	82	J 0.00083	> 99	J 0.00037	72	2	82
	Iron Activated Persulfate - High	4	64	< 0.0039	99	< 0.0039	-200	4	65
	Potassium Permanganate Low	1.8	84	< 0.0045	99	< 0.0045	-246	1.8	84
Potassium Perman- ganate	Potassium Permanganate Mid	0.074	> 99	< 0.0043	99	< 0.0043	-231	0.083	99
gamate	Potassium Permanganate High	0.058	99	< 0.0045	99	< 0.0045	-246	0.067	99
	Hydrogen Peroxide Control ^[1]	220	N/A	0.14	N/A	J 0.0064	N/A	220	N/A
Hydrogen Peroxide	Hydrogen Peroxide Low	5.5	> 98	< 0.25	-79	< 0.25	-3,806	6	97
	Hydrogen Peroxide High	2.3	> 99	< 0.0044	97	< 0.0044	31	2.3	99

Notes:

Percent reductions were calculated by comparison with the control.

For the purposes of this evaluation, the sample detection limit was used as the concentration value for compounds reported as non-detect.

Reactors were submitted for laboratory analysis after 17 days of contact time.

COC = contaminant of concern

PCE = tetrachloroethylene; TCE = trichloroethylene; cisDCE = cis-1,2-dichloroethylene

% = percent

N/A = not applicable

mg/Kg = milligrams per kilogram

< = less than

> = greater than

J = the result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

⁽¹⁾ The control reactors did not contain the oxidant.

Table 5

Degradation Ratios: Treatment with Sodium Persulfate and Potassium Permanganate

Test Condition	Persulfate Co		Oxidant Utilized		COC Mass (μg)		Degradation Ratio ⁽¹⁾
rest condition	Initial	Residual	(g)	Initial	Final	Total Mass Degraded	(grams persulfate/ grams contaminant)
		SODII	JM PERSULFATE				
35 g/L Alkaline Activated Persulfate	35	21	2.76	3,227	1,279	1,948	1,419
70 g/L Alkaline Activated Persulfate	70	48	4.41	3,227	580	2,647	1,664
140 g/L Alkaline Activated Persulfate	140	88	10.17	3,227	1,389	1,843	5,516
35 g/L Iron Activated Persulfate	35	29	1.22	3,227	703	2,523	483
70 g/L Iron Activated Persulfate	70	62	1.64	3,227	249	2,977	552
140 g/L Iron Activated Persulfate	140	123	3.33	3,227	494	2,733	1,220
		POTASSIU	IM PERMANGAN	ATE			
3.5 g/L Potassium Permanganate	3.5	0.4	0.60	3,227	223	3,004	200
10 g/L Potassium Permanganate	10	4.9	1.01	3,227	13.5	3,213	314
20 g/L Potassium Permanganate	20	12	1.56	3,227	11.6	3,215	485

Notes:

Residual oxidant measured after 17 days of contact time.

COC = contaminant of concern (PCE and TCE)

g/L = grams per liter

μg = micrograms

 $^{^{\}mbox{\scriptsize (1)}}$ Degradation ratio calculated for total COC concentration compared to the control.

Table 6A Injection Simulation Results Summary: Metals in Groundwater

Former C&B Dry Cleaners Site Jamestown, New York

To	est Condition	Initial Oxidant	Sample ID	units							tals nod 6010C)					
i e	est Condition	Concentration	Sample ID	uiiits	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead
		•					•			GROUN	DWATER		•			
NYSDEC (Glass GA Groundwate	r Standard or G	uidance Value	mg/L		0.003	0.025	1	0.003	0.005		0.05		0.2	0.3	0.025
Baseline	Baseline	N/A	CBMW-5	mg/L	na	na	na	na	na	na						
Cambuala	Controls (Persulfate	N1/A	SP-CTRL	mg/L	< 0.2	< 0.02	< 0.015	0.011	< 0.002	< 0.002	9.1	< 0.004	< 0.004	< 0.01	< 0.05	0.01
Controls	and Permanganate)	N/A	SP-CTRL-DUP	mg/L	< 0.2	< 0.02	< 0.015	0.011	< 0.002	< 0.002	10.5	< 0.004	< 0.004	< 0.01	< 0.05	0.01
	Alkaline Activated Persulfate Low	35 g/L	SP NAOH LOW	mg/L	12.3	< 0.02	0.15	J 0.0014	< 0.002	< 0.002	0.66	0.063	< 0.004	J 0.0064	< 0.05	< 0.01
	Alkaline Activated Persulfate Mid	70 g/L	SP NAOH MID	mg/L	225	< 2	1.8	< 0.2	< 0.2	< 0.2	< 50	0.79	< 0.4	< 1	< 5	< 1
Persulfate	Alkaline Activated Persulfate High	140 g/L	SP NAOH HIGH	mg/L	291	< 2	2.2	J 0.085	< 0.2	< 0.2	< 50	1.2	< 0.4	< 1	< 5	J 0.98
reisullate	Iron Activated Persulfate - Low	35 g/L	SP FECA LOW	mg/L	3	< 0.02	J 0.0057	0.0046	J 0.0011	0.0053	63.1	J 0.0034	< 0.004	0.015	< 0.05	< 0.01
	Iron Activated Persulfate - Mid	70 g/L	SP FECA MID	mg/L	na ^[1]	na ^[1]	na ^[1]	na ^[1]	na ^[1]	na ^[1]						
	Iron Activated Persulfate - High	140 g/L	SP FECA HIGH	mg/L	na ^[1]	na ^[1]	na ^[1]	na ^[1]	na ^[1]	na ^[1]						
Potassium	Potassium Permanganate Low	3.5 g/L	KMNO4 LOW	mg/L	0.45	< 0.02	< 0.015	0.065	< 0.002	< 0.002	5.5	0.0056	J 0.0038	0.014	1.1	J 0.0036
Perman- ganate	Potassium Permanganate Mid	10 g/L	KMNO4 MID	mg/L	3.1	< 0.1	< 0.075	0.38	< 0.002	< 0.01	4.8	0.025	0.02	0.072	3.7	J 0.023
ganate	Potassium Permanganate High	20 g/L	KMNO4 HIGH	mg/L	6.6	< 0.1	J 0.033	1.2	J 0.0004	< 0.01	5	0.042	0.0041	J 0.0045	2.2	0.081
	Hydrogen Peroxide	N/A	HP CTRL	mg/L	< 0.2	< 0.02	< 0.015	0.011	< 0.002	< 0.002	9.8	< 0.004	< 0.004	< 0.01	< 0.05	< 0.01
Hydrogen	Controls	IV/A	HP CTRL DUP	mg/L	< 0.2	< 0.02	< 0.015	0.011	< 0.002	< 0.002	9.2	< 0.004	< 0.004	< 0.01	< 0.05	< 0.01
Peroxide	Hydrogen Peroxide Low	3%	HP LOW	mg/L	54.6	< 0.1	< 0.075	2.1	J 0.0059	0.019	67.8	0.037	0.14	0.13	95.6	0.073
	Hydrogen Peroxide High	6%	HP HIGH	mg/L	49.4	< 0.02	J 0.01	1.3	0.0055	0.016	61.2	0.061	0.15	0.18	76.3	0.026

Notes:

N/A = not applicable

g/L = grams per liter

mg/L = milligrams per liter

-- = no regulatory value associated with this compound

< = Less than

J = the result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

B = compound was found in the blank and sample.

na = not analyzed

[1] = sample was destroyed during digestion method procedure.

Regulatory values derived from NYS Ambient Water Quality Standards TOGS 1.1.1

(Source of Drinking Water, groundwater).

Table 6A Injection Simulation Results Summary: Metals in Groundwater

Former C&B Dry Cleaners Site Jamestown, New York

Te	est Condition	Initial Oxidant	Sample ID	units					Met (EPA Meth					
		Concentration	•		Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
									GROUNE	OWATER				
NYSDEC (Glass GA Groundwate	r Standard or G	uidance Value	mg/L	35	0.3	0.1		0.01	0.05	20	0.0005		2
Baseline	Baseline	N/A	CBMW-5	mg/L	na									
Controls	Controls (Persulfate	N/A	SP-CTRL	mg/L	1.9	JB 0.0023	< 0.01	J 0.25	< 0.025	< 0.006	8.2	< 0.02	< 0.005	< 0.01
Controls	and Permanganate)	N/A	SP-CTRL-DUP	mg/L	1.9	JB 0.0023	< 0.01	J 0.25	< 0.025	< 0.006	10.3	< 0.02	< 0.005	< 0.01
	Alkaline Activated Persulfate Low	35 g/L	SP NAOH LOW	mg/L	< 0.2	JB 0.0012	< 0.01	0.89	J 0.012	< 0.006	1,290	< 0.02	0.041	< 0.01
	Alkaline Activated Persulfate Mid	70 g/L	SP NAOH MID	mg/L	< 20	JB 0.11	< 1	J 13.7	< 2.5	< 0.6	24,000	< 2	0.6	J 0.2
Persulfate	Alkaline Activated Persulfate High	140 g/L	SP NAOH HIGH	mg/L	< 20	JB 0.12	< 1	J 37.9	< 2.5	< 0.6	45,800	< 2	0.84	J 0.6
reisuliate	Iron Activated Persulfate - Low	35 g/L	SP FECA LOW	mg/L	10.5	B 0.14	0.083	1.7	< 0.025	< 0.006	600	< 0.02	< 0.005	0.58
	Iron Activated Persulfate - Mid	70 g/L	SP FECA MID	mg/L	na ^[1]									
	Iron Activated Persulfate - High	140 g/L	SP FECA HIGH	mg/L	na ^[1]									
Potassium	Potassium Permanganate Low	3.5 g/L	KMNO4 LOW	mg/L	3.8	В 32	0.021	27.8	< 0.025	J 0.005	10	< 0.02	< 0.005	0.029
Perman- ganate	Potassium Permanganate Mid	10 g/L	KMNO4 MID	mg/L	7.9	B 188	0.084	137	< 0.13	0.031	10.4	< 0.1	0.013	0.3
gunate	Potassium Permanganate High	20 g/L	KMNO4 HIGH	mg/L	5.4	B 192	J 0.014	257	< 0.13	0.032	8.6	< 0.1	0.019	< 0.05
	Hydrogen Peroxide	N/A	HP CTRL	mg/L	1.8	JB 0.0018	< 0.01	J 0.29	< 0.025	< 0.006	10.7	< 0.02	< 0.005	< 0.01
Hydrogen	Controls	14/7	HP CTRL DUP	mg/L	1.6	JB 0.0018	< 0.01	J 0.25	< 0.025	< 0.006	10.2	< 0.02	< 0.005	< 0.01
Peroxide	Hydrogen Peroxide Low	3%	HP LOW	mg/L	8.1	B 61	0.29	J 1.4	< 0.13	0.0062	10.6	J 0.01	0.039	0.86
	Hydrogen Peroxide High	6%	HP HIGH	mg/L	10.7	В 49.2	0.31	1.2	< 0.025	0.0087	10.2	< 0.02	0.065	1.1

Notes:

N/A = not applicable

g/L = grams per liter

mg/L = milligrams per liter

- -- = no regulatory value associated with this compound
- < = Less than
- J = the result is less than the reporting limit but greater than or equal to

the method detection limit and the concentration is an approximate value.

B = compound was found in the blank and sample.

- na = not analyzed
- [1] = sample was destroyed during digestion method procedure.

Regulatory values derived from NYS Ambient Water Quality Standards TOGS 1.1.1

(Source of Drinking Water, groundwater).

Table 6B Injection Simulation Results Summary: Metals in Soil

Former C&B Dry Cleaners Site Jamestown, New York

Te	est Condition	Initial Oxidant	Sample ID	units							etals hod 6010C)					
		Concentration			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead
										S	OIL					
F	art 375 Soil Cleanup C	bjectives Comm	ercial	mg/Kg	10,000*	10,000*	16	400	590	9	10,000*	400	10,000*	270	10,000*	1,000
Baseline	Baseline	N/A	CBSB121- 4.0-6.0	mg/Kg	9,040	< 16.8	8.4	136	0.38	J 0.14	В 1,570	11.1	8.1	22.1	В 17,600	28.4
Daseille	Dasellile	N/A	CBSB121- 4.0-6.0-1	mg/Kg	10,700	< 17.6	8.5	161	0.38	J 0.16	В 1,740	13	8.9	23.1	В 20,200	59.1
Controls	Controls (Persulfate	N/A	SP-CTRL	mg/Kg	11,600	J 1.1	9.5	106	0.44	0.32	45,600	11.6	9.2	42	В 26,400	27.7
Controls	and Permanganate)	IV/A	SP-CTRL-DUP	mg/Kg	na	na	na	na	na	na	na	na	na	na	na	na
	Alkaline Activated Persulfate Low	35 g/L	SP NAOH LOW	mg/Kg	5,550	< 18.5	3.9	75.2	J 0.23	0.27	882	6.6	4.1	11	В 10,900	10.1
	Alkaline Activated Persulfate Mid	70 g/L	SP NAOH MID	mg/Kg	8,150	J 0.62	5.2	73.6	0.32	J 0.17	1,450	11.1	7.8	18.4	В 20,700	9.8
Persulfate	Alkaline Activated Persulfate High	140 g/L	SP NAOH HIGH	mg/Kg	6,430	< 17.9	6.7	112	0.3	0.25	3,660	7.6	7.1	16	В 14,400	19.5
reisuliate	Iron Activated Persulfate - Low	35 g/L	SP FECA LOW	mg/Kg	6,320	< 19.3	6.4	93.5	0.32	0.34	2,570	7.1	6.7	17.3	В 12,900	14.6
	Iron Activated Persulfate - Mid	70 g/L	SP FECA MID	mg/Kg	7,030	J 0.69	6.3	104	0.29	J 0.22	1,120	9.7	6.3	14.7	В 15,400	12.9
	Iron Activated Persulfate - High	140 g/L	SP FECA HIGH	mg/Kg	8,310	J 0.53	9.5	103	0.32	J 0.15	1,100	10.9	8	23.4	В 20,900	13.9
Potassium	Potassium Permanganate Low	3.5 g/L	KMNO4 LOW	mg/Kg	7,950	J 0.75	6.8	113	0.36	0.29	1,300	10.6	8	19.7	В 22,800	12.5
Perman- ganate	Potassium Permanganate Mid	10 g/L	KMNO4 MID	mg/Kg	8,610	J 0.52	9.2	127	0.36	0.34	1,080	9.9	7.7	21	В 19,000	17.4
ganate	Potassium Permanganate High	20 g/L	KMNO4 HIGH	mg/Kg	7,090	< 20.3	4.1	85.4	J 0.23	J 0.24	33,600	6.7	5.8	14.9	В 13,500	12.9
	Hydrogen Peroxide	N/A	HP CTRL	mg/Kg	66,400	J 5.4	57.1	943	2.9	3.5	46,700	78.7	63.2	159	В 153,000	125
l	Controls	IN/A	HP CTRL DUP	mg/Kg	na	na	na	na	na	na	na	na	na	na	na	na
Hydrogen Peroxide	Hydrogen Peroxide Low	3%	HP LOW	mg/Kg	10,700	J 0.61	5.5	67.6	0.3	J 0.15	1,410	11.7	7.6	42.2	B 22,100	11.7
	Hydrogen Peroxide High	6%	HP HIGH	mg/Kg	7,650	J 0.68	8.9	73.6	0.34	J 0.2	1,050	9.5	5.7	17.4	B 22,700	13.4

Notes:

N/A = not applicable

g/L = grams per liter

mg/Kg = milligrams per kilogram

- -- = no regulatory value associated with this compound
- < = Less than
- J = the result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.
- B = compound was found in the blank and sample.
- na = not analyzed

Part 375 Soil Cleanup Objective (SCO) source is NYSDEC 6NYCRR Part 375 Environmental Remediation Programs (Part 375). Determination of SCOs and Cleanup

- Levels for restricted commercial use (Part 375-6.8(b)) effective 12/14/06.
- st Soil SCOs for Individual Metals were capped at 10,000 unless otherwise specified.

Table 6B Injection Simulation Results Summary: Metals in Soil

Former C&B Dry Cleaners Site Jamestown, New York

Te	est Condition	Initial Oxidant	Sample ID	units						etals hod 6010C)				
		Concentration			Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
									S	OIL				
F	Part 375 Soil Cleanup C	Objectives Comm	ercial	mg/Kg	10,000*	10,000	310	10,000*	1,500	1,500	10,000*	10,000*	10,000*	10,000
Baseline	Baseline	N/A	CBSB121- 4.0-6.0	mg/Kg	В 2,580	В 752	21.1	866	< 4.5	< 0.67	BJ 120	< 6.7	13.8	B 50.1
Daseille	baseine	N/A	CBSB121- 4.0-6.0-1	mg/Kg	В 3,370	В 938	25.1	934	< 4.7	< 0.7	BJ 123	< 7	17.7	В 60.3
Controls	Controls (Persulfate	N/A	SP-CTRL	mg/Kg	4,100	В 1,590	24.6	1,720	< 4.8	< 0.72	J 69.2	< 7.2	18.2	B 91
Controls	and Permanganate)	NA	SP-CTRL-DUP	mg/Kg	na	na	na	na	na	na	na	na	na	na
	Alkaline Activated Persulfate Low	35 g/L	SP NAOH LOW	mg/Kg	1,660	В 622	11.3	696	< 4.9	< 0.74	2,520	< 7.4	8.1	В 46.6
	Alkaline Activated Persulfate Mid	70 g/L	SP NAOH MID	mg/Kg	2,970	В 559	22.9	656	< 4.8	< 0.72	3,630	< 7.2	11.3	В 88.5
Persulfate	Alkaline Activated Persulfate High	140 g/L	SP NAOH HIGH	mg/Kg	1,960	В 685	18.4	776	< 4.8	< 0.71	8,630	< 7.1	8.9	В 68.8
rersunate	Iron Activated Persulfate - Low	35 g/L	SP FECA LOW	mg/Kg	1,630	В 902	15	674	< 5.1	< 0.77	1,050	< 7.7	8.4	В 52.8
	Iron Activated Persulfate - Mid	70 g/L	SP FECA MID	mg/Kg	2,010	В 929	15.1	857	< 5.2	< 0.78	2,230	< 7.8	11.6	В 53.2
	Iron Activated Persulfate - High	140 g/L	SP FECA HIGH	mg/Kg	2,690	В 1,050	20	1,030	< 4.9	< 0.73	3,460	< 7.3	13.1	В 62.6
Potassium	Potassium Permanganate Low	3.5 g/L	KMNO4 LOW	mg/Kg	2,650	В 1,850	21.5	1,390	< 4.4	< 0.66	J 53.8	< 6.6	11.9	B 71.4
Perman- ganate	Potassium Permanganate Mid	10 g/L	KMNO4 MID	mg/Kg	2,460	В 3,220	20.1	2,310	< 4.4	J 0.25	J 48.8	< 6.5	12.3	B 81.5
ganate	Potassium Permanganate High	20 g/L	KMNO4 HIGH	mg/Kg	2,790	В 3,200	14.6	1,790	< 5.4	J 0.34	J 74.8	J 0.41	8.9	В 60.8
	Hydrogen Peroxide	N/A	HP CTRL	mg/Kg	38,100	В 7,740	164	7,140	< 44.8	< 6.7	J 593	< 67.2	103	B 712
l	Controls	IN/A	HP CTRL DUP	mg/Kg	na	na	na	na	na	na	na	na	na	na
Hydrogen Peroxide	Hydrogen Peroxide Low	3%	HP LOW	mg/Kg	5,550	B 519	20.8	743	< 4.7	< 0.71	J 62.6	< 7.1	20.9	В 66
	Hydrogen Peroxide High	6%	HP HIGH	mg/Kg	3,040	В 462	15.9	779	< 5.1	< 0.76	J 36.8	< 7.6	12.6	В 73.4

Notes:

N/A = not applicable

g/L = grams per liter

mg/Kg = milligrams per kilogram

- -- = no regulatory value associated with this compound
- < = Less than
- J = the result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.
- B = compound was found in the blank and sample.
- na = not analyzed

Part 375 Soil Cleanup Objective (SCO) source is NYSDEC 6NYCRR Part 375 Environment Remediation Programs (Part 375). Determination of SCOs and Cleanup

- Levels for restricted commercial use (Part 375-6.8(b)) effective 12/14/06.
- * Soil SCOs for Individual Metals were capped at 10,000 unless otherwise specified.

Table 7 Injection Simulation Results Summary: TOC and pH

Former C&B Dry Cleaners Site Jamestown, New York

		Initial		(GROUNDWATER	SOIL
Tes	t Condition	Oxidant Concen- tration	Sample ID	рН	TOC ^[1] (EPA Method 9060A) (mg/L)	TOC (EPA Method 9060A) (mg/Kg)
Baseline	Baseline	N/A	CBMW-5	na	2.2	na
Controls	Controls (Persulfate	N/A	SP-CTRL	7.1	4.2	В 4,870
Controls	and Permanganate)	N/A	SP-CTRL-DUP	7.2	4.9	na
	Alkaline Activated Persulfate Low	35 g/L	SP NAOH LOW	12.7	В 42,504	В 5,480
	Alkaline Activated Persulfate Mid	70 g/L	SP NAOH MID	13.6	В 40,407	В 7,030
Persulfate	Alkaline Activated Persulfate High	140 g/L	SP NAOH HIGH	14.0	B 115,440	B 4,160
rersunate	Iron Activated Persulfate - Low	35 g/L	SP FECA LOW	3.6	3.6 B 78,032	В 5,640
	Iron Activated Persulfate - Mid	70 g/L	SP FECA MID	2.9	B 85,344	В 5,850
	Iron Activated Persulfate - High	140 g/L	SP FECA HIGH	2.4	В 148,867	В 4,890
Potassium	Potassium Permanganate Low	3.5 g/L	KMNO4 LOW	6.9	712	В 4,950
Perman- ganate	Potassium Permanganate Mid	10 g/L	KMNO4 MID	6.8	3,348	В 6,490
gariate	Potassium Permanganate High	20 g/L	KMNO4 HIGH	6.9	B 11,274	В 11,200
	Hydrogen Peroxide	N/A	HP CTRL	7.1	5.7	В 8,600
Hydrogen	Controls	14/75	HP CTRL DUP	7.2	3.2	na
Peroxide	Hydrogen Peroxide Low	3%	HP LOW	3.4	7,031	В 6,670
	Hydrogen Peroxide High	6%	HP HIGH	4.1	10,164	B 7,180

Notes:

TOC = total organic carbon

g/L = grams per liter

mg/L = milligrams per liter

mg/Kg = milligrams per kilogram

N/A = not applicable

na = not analyzed

[1] Sample volume was limited so distilled water was added to the samples to bring the total volume up to fill the sample container prior to sending to the laboratory. The data shown reflects the laboratory result multiplied by the dilution factor.

B = compound was found in the blank and sample.

Appendix A

Laboratory Analytical Data Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-78472-1

Client Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

For:

New York State D.E.C. 625 Broadway 9th Floor Albany, New York 12233-7258

Attn: George Momberger

Authorized for release by: 4/29/2015 10:20:11 AM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

brian.fischer@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Logrify that this data nackage is in comp

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Joseph V. Gireonoger

Joe Giacomazza

Project Management Assistant II

4/29/2015 10:20:11 AM

4

5

6

0

9

2

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	
Client Sample Results	7
Lab Chronicle	
Certification Summary	48
Method Summary	49
Sample Summary	50
Chain of Custody	
Receipt Checklists	53

A

6

9

10

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
^	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
E	Result exceeded calibration range.

Glossary

PQL

QC

RER

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ı	Listed under the "D" column to designate that the result is reported on a dry weight basis
6R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
ER	Duplicate error ratio (normalized absolute difference)
Oil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
/IDA	Minimum detectable activity
DL	Estimated Detection Limit
MDC	Minimum detectable concentration
IDL	Method Detection Limit
ΛL	Minimum Level (Dioxin)
IC	Not Calculated
I D	Not detected at the reporting limit (or MDL or EDL if shown)

RPD Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Relative error ratio

Practical Quantitation Limit

Reporting Limit or Requested Limit (Radiochemistry)

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Job ID: 480-78472-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-78472-1

Receipt

The samples were received on 4/15/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.3° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 237835 recovered above the upper control limit for multiple analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: HP CTRL (480-78472-3) and HP CTRL DUP (480-78472-4).

Method(s) 8260C: The continuing calibration verification (CCV) analyzed in 237835 was outside the method criteria for the following analytes: 2-Butanone and/or Acetone. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 237835 recovered outside acceptance criteria, low biased, for multiple analytes. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for these analytes, the data have been reported.

Method(s) 8260C: Due to the coelution of Ethyl Acetate with 2-Butanone in the full spike solution, these analytes exceeded control limits in the laboratory control sample (LCS) associated with batch 237835.SP CTRL (480-78472-1), SP CTRL DUP (480-78472-2), HP CTRL (480-78472-3), HP CTRL DUP (480-78472-4) and HP LOW (480-78472-8)

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: SP CTRL (480-78472-1), SP CTRL DUP (480-78472-2), HP CTRL (480-78472-3), HP CTRL DUP (480-78472-4) and HP LOW (480-78472-8). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 37835 recovered above the upper control limit for 2-Butanone. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: SP CTRL (480-78472-1) and SP CTRL DUP (480-78472-2).

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: SP CTRL (480-78472-1), SP CTRL DUP (480-78472-2) and HP CTRL (480-78472-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: HP CTRL DUP (480-78472-4), KMN04 LOW (480-78472-5), KMN04 MID (480-78472-6), KMN04 HIGH (480-78472-7), HP HIGH (480-78472-9), SP FECA LOW (480-78472-10), SP FEC MID (480-78472-11), SP FECA HIGH (480-78472-12) and SP NAOH LOW (480-78472-13). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following volatile samples were analyzed with significant headspace in the sample vial: HP CTRL DUP (480-78472-4) and KMN04 MID (480-78472-6). Significant headspace is defined as a bubble greater than 6 mm in diameter.

Method(s) 8260C: The method blank (MB) associated with batch 238245 contained Tetrachloroethene at an amount lower than the reporting limit (RL). Due to this contamination, the following samples reported an estimated value for this analyte: KMN04 LOW (480-78472-5) and SP FECA HIGH (480-78472-12)

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 238599 recovered above the upper control limit for several analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: HP LOW (480-78472-8), HP HIGH (480-78472-9), SP NAOH MID (480-78472-14) and SP NAOH HIGH (480-78472-15).

Method(s) 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis:

4

O

7

8

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Job ID: 480-78472-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

SP NAOH HIGH (480-78472-15). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: HP LOW (480-78472-8), HP HIGH (480-78472-9) and SP NAOH MID (480-78472-14). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

0

9

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-1

Matrix: Water

Client Sample ID: SP CTRL Date Collected: 04/14/15 14:00

Date Received: 04/15/15 09:00

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			04/22/15 19:37	
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			04/22/15 19:37	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			04/22/15 19:37	
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			04/22/15 19:37	
1,1-Dichloroethane	ND		2.0	0.76	ug/L			04/22/15 19:37	
1,1-Dichloroethene	ND		2.0	0.58	ug/L			04/22/15 19:37	
1,2,4-Trichlorobenzene	ND		2.0		ug/L			04/22/15 19:37	
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			04/22/15 19:37	
1.2-Dibromoethane	ND		2.0		ug/L			04/22/15 19:37	
1,2-Dichlorobenzene	ND		2.0		ug/L			04/22/15 19:37	
1,2-Dichloroethane	ND		2.0		ug/L			04/22/15 19:37	
1,2-Dichloropropane	ND		2.0		ug/L			04/22/15 19:37	
1,3-Dichlorobenzene	ND		2.0		ug/L			04/22/15 19:37	
1,4-Dichlorobenzene	ND		2.0		ug/L			04/22/15 19:37	
2-Butanone (MEK)	ND *	*	2.0		ug/L ug/L			04/22/15 19:37	
2-Hexanone	ND		10		ug/L			04/22/15 19:37	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			04/22/15 19:37	
Acetone	12 、	J ^ 	20		ug/L			04/22/15 19:37	
Benzene	ND		2.0		ug/L			04/22/15 19:37	
Bromodichloromethane	ND		2.0		ug/L			04/22/15 19:37	
Bromoform	ND		2.0		ug/L			04/22/15 19:37	
Bromomethane	ND		2.0		ug/L			04/22/15 19:37	
Carbon disulfide	ND		2.0	0.38	ug/L			04/22/15 19:37	
Carbon tetrachloride	ND		2.0	0.54	ug/L			04/22/15 19:37	
Chlorobenzene	ND		2.0	1.5	ug/L			04/22/15 19:37	
Chloroethane	ND		2.0	0.64	ug/L			04/22/15 19:37	
Chloroform	ND		2.0	0.68	ug/L			04/22/15 19:37	
Chloromethane	ND		2.0	0.70	ug/L			04/22/15 19:37	
cis-1,2-Dichloroethene	10		2.0	1.6	ug/L			04/22/15 19:37	
cis-1,3-Dichloropropene	ND		2.0	0.72	ug/L			04/22/15 19:37	
Cyclohexane	ND		2.0	0.36	ug/L			04/22/15 19:37	
Dibromochloromethane	ND		2.0	0.64	ug/L			04/22/15 19:37	
Dichlorodifluoromethane	ND		2.0	1.4	ug/L			04/22/15 19:37	
Ethylbenzene	ND		2.0	1.5	ug/L			04/22/15 19:37	
Isopropylbenzene	ND		2.0		ug/L			04/22/15 19:37	
Methyl acetate	ND		5.0		ug/L			04/22/15 19:37	
Methyl tert-butyl ether	ND		2.0		ug/L			04/22/15 19:37	
Methylcyclohexane	ND		2.0		ug/L			04/22/15 19:37	
Methylene Chloride	ND		2.0		ug/L			04/22/15 19:37	
Styrene	ND		2.0		ug/L			04/22/15 19:37	
•		_	2.0		ug/L			04/22/15 19:37	
Tetrachloroethene	3000 E ND	E	2.0		ug/L ug/L			04/22/15 19:37	
Toluene									
trans-1,2-Dichloroethene	ND		2.0		ug/L			04/22/15 19:37	
trans-1,3-Dichloropropene	ND		2.0		ug/L			04/22/15 19:37	
Trichloroethene	130		2.0		ug/L			04/22/15 19:37	
Trichlorofluoromethane	ND		2.0		ug/L			04/22/15 19:37	
Vinyl chloride	ND		2.0	1.8	ug/L			04/22/15 19:37	
Xylenes, Total	ND		4.0	1.3	ug/L			04/22/15 19:37	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-1

TestAmerica Job ID: 480-78472-1

Matrix: Water

Client Sample ID: SP CTRL Date Collected: 04/14/15 14:00

Date Received: 04/15/15 09:00

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		66 - 137	-		04/22/15 19:37	2
4-Bromofluorobenzene (Surr)	92		73 - 120			04/22/15 19:37	2
Dibromofluoromethane (Surr)	100		60 - 140			04/22/15 19:37	2
Toluene-d8 (Surr)	94		71 - 126			04/22/15 19:37	2

- Toluerie-uo (Sull) -	94	71 - 120					04/22/15 19.57	2
Method: 8260C - Volatile Organ								
Analyte	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	100		ug/L			04/23/15 19:54	100
1,1,2,2-Tetrachloroethane	ND	100		ug/L			04/23/15 19:54	100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	100	31	ug/L			04/23/15 19:54	100
1,1,2-Trichloroethane	ND	100	23	ug/L			04/23/15 19:54	100
1,1-Dichloroethane	ND	100	38	ug/L			04/23/15 19:54	100
1,1-Dichloroethene	ND	100	29	ug/L			04/23/15 19:54	100
1,2,4-Trichlorobenzene	ND	100	41	ug/L			04/23/15 19:54	100
1,2-Dibromo-3-Chloropropane	ND	100	39	ug/L			04/23/15 19:54	100
1,2-Dibromoethane	ND	100	73	ug/L			04/23/15 19:54	100
1,2-Dichlorobenzene	ND	100	79	ug/L			04/23/15 19:54	100
1,2-Dichloroethane	ND	100	21	ug/L			04/23/15 19:54	100
1,2-Dichloropropane	ND	100	72	ug/L			04/23/15 19:54	100
1,3-Dichlorobenzene	ND	100	78	ug/L			04/23/15 19:54	100
1,4-Dichlorobenzene	ND	100	84	ug/L			04/23/15 19:54	100
2-Butanone (MEK)	ND	1000	130	ug/L			04/23/15 19:54	100
2-Hexanone	ND	500	120	ug/L			04/23/15 19:54	100
4-Methyl-2-pentanone (MIBK)	ND	500		ug/L			04/23/15 19:54	100
Acetone	ND	1000		ug/L			04/23/15 19:54	100
Benzene	ND	100		ug/L			04/23/15 19:54	100
Bromodichloromethane	ND	100		_			04/23/15 19:54	100
Bromoform	ND	100		ug/L			04/23/15 19:54	100
Bromomethane	ND	100		ug/L			04/23/15 19:54	100
Carbon disulfide	ND	100		ug/L			04/23/15 19:54	100
Carbon tetrachloride	ND	100		ug/L			04/23/15 19:54	100
Chlorobenzene	ND	100		ug/L			04/23/15 19:54	100
Chloroethane	ND	100		ug/L			04/23/15 19:54	100
Chloroform	ND	100		ug/L			04/23/15 19:54	100
Chloromethane	ND	100		ug/L			04/23/15 19:54	100
cis-1,2-Dichloroethene	ND	100		ug/L			04/23/15 19:54	100
	ND	100		-			04/23/15 19:54	100
cis-1,3-Dichloropropene				ug/L				
Cyclohexane	ND ND	100 100		ug/L			04/23/15 19:54	100
Dibromochloromethane				ug/L			04/23/15 19:54	100
Dichlorodifluoromethane	ND	100		ug/L			04/23/15 19:54	100
Ethylbenzene	ND	100		ug/L			04/23/15 19:54	100
Isopropylbenzene	ND	100		ug/L			04/23/15 19:54	100
Methyl acetate	ND	250		ug/L			04/23/15 19:54	100
Methyl tert-butyl ether	ND	100		ug/L			04/23/15 19:54	100
Methylcyclohexane	ND	100		ug/L			04/23/15 19:54	100
Methylene Chloride	ND	100		ug/L			04/23/15 19:54	100
Styrene	ND	100		ug/L			04/23/15 19:54	100
Tetrachloroethene	9300	100		ug/L			04/23/15 19:54	100
Toluene	ND	100		ug/L			04/23/15 19:54	100
trans-1,2-Dichloroethene	ND	100	90	ug/L			04/23/15 19:54	100

TestAmerica Buffalo

Page 8 of 53

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-1

TestAmerica Job ID: 480-78472-1

Matrix: Water

Client Sample ID: SP CTRL Date Collected: 04/14/15 14:00

Date Received: 04/15/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	MD		100	37	ug/L			04/23/15 19:54	100
Trichloroethene	130		100	46	ug/L			04/23/15 19:54	100
Trichlorofluoromethane	ND		100	88	ug/L			04/23/15 19:54	100
Vinyl chloride	ND		100	90	ug/L			04/23/15 19:54	100
Xylenes, Total	ND		200	66	ug/L			04/23/15 19:54	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		66 - 137			-		04/23/15 19:54	100
4-Bromofluorobenzene (Surr)	93		73 - 120					04/23/15 19:54	100
Dibromofluoromethane (Surr)	108		60 - 140					04/23/15 19:54	100
Toluene-d8 (Surr)	97		71 - 126					04/23/15 19:54	100

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-2

Matrix: Water

Client Sample ID: SP CTRL DUP

Date Collected: 04/14/15 14:35 Date Received: 04/15/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			04/22/15 20:04	
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			04/22/15 20:04	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			04/22/15 20:04	
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			04/22/15 20:04	
1,1-Dichloroethane	ND		2.0	0.76	ug/L			04/22/15 20:04	
1,1-Dichloroethene	ND		2.0	0.58	ug/L			04/22/15 20:04	
1,2,4-Trichlorobenzene	ND		2.0	0.82	ug/L			04/22/15 20:04	
1,2-Dibromo-3-Chloropropane	ND		2.0	0.78	ug/L			04/22/15 20:04	
1,2-Dibromoethane	ND		2.0	1.5	ug/L			04/22/15 20:04	
1,2-Dichlorobenzene	ND		2.0	1.6	ug/L			04/22/15 20:04	
1,2-Dichloroethane	ND		2.0	0.42	ug/L			04/22/15 20:04	
1,2-Dichloropropane	ND		2.0	1.4	ug/L			04/22/15 20:04	
1,3-Dichlorobenzene	ND		2.0	1.6	ug/L			04/22/15 20:04	
1,4-Dichlorobenzene	ND		2.0	1.7	ug/L			04/22/15 20:04	
2-Butanone (MEK)	ND	*	20	2.6	ug/L			04/22/15 20:04	
2-Hexanone	ND		10	2.5	ug/L			04/22/15 20:04	
1-Methyl-2-pentanone (MIBK)	ND		10	4.2	ug/L			04/22/15 20:04	
Acetone	8.5	J ^	20	6.0	ug/L			04/22/15 20:04	
Benzene	ND		2.0	0.82	ug/L			04/22/15 20:04	
Bromodichloromethane	ND		2.0	0.78				04/22/15 20:04	
Bromoform	ND		2.0		ug/L			04/22/15 20:04	
Bromomethane	ND		2.0		ug/L			04/22/15 20:04	
Carbon disulfide	ND		2.0	0.38	-			04/22/15 20:04	
Carbon tetrachloride	ND		2.0		ug/L			04/22/15 20:04	
Chlorobenzene	ND		2.0		ug/L			04/22/15 20:04	
Chloroethane	ND		2.0	0.64	-			04/22/15 20:04	
Chloroform	ND		2.0		ug/L			04/22/15 20:04	
Chloromethane	ND		2.0	0.70	.			04/22/15 20:04	
cis-1,2-Dichloroethene	9.8		2.0		ug/L			04/22/15 20:04	
cis-1,3-Dichloropropene	ND		2.0	0.72				04/22/15 20:04	
Cyclohexane	ND		2.0		ug/L			04/22/15 20:04	
Dibromochloromethane	ND		2.0		ug/L			04/22/15 20:04	
Dichlorodifluoromethane	ND		2.0		ug/L			04/22/15 20:04	
Ethylbenzene	ND		2.0		ug/L			04/22/15 20:04	
sopropylbenzene	ND		2.0		ug/L			04/22/15 20:04	
Methyl acetate	ND		5.0		ug/L			04/22/15 20:04	
Methyl tert-butyl ether	ND		2.0	0.32				04/22/15 20:04	
Methylcyclohexane	ND		2.0		ug/L			04/22/15 20:04	
Methylene Chloride	ND		2.0	0.88	-			04/22/15 20:04	
Styrene	ND ND		2.0		ug/L			04/22/15 20:04	
•		_	2.0		ug/L			04/22/15 20:04	
Tetrachloroethene Toluene	3000 ND	_	2.0		ug/L ug/L			04/22/15 20:04	
rans-1,2-Dichloroethene	ND		2.0					04/22/15 20:04	
					ug/L				
rans-1,3-Dichloropropene	ND		2.0		ug/L			04/22/15 20:04	
Trichloroethene	130		2.0		ug/L			04/22/15 20:04	
Trichlorofluoromethane	ND		2.0		ug/L			04/22/15 20:04	
Vinyl chloride Xylenes, Total	ND ND		2.0 4.0		ug/L ug/L			04/22/15 20:04 04/22/15 20:04	

TestAmerica Buffalo

2

4

6

Q

9

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-2

TestAmerica Job ID: 480-78472-1

Client Sample ID: SP CTRL DUP

Date Collected: 04/14/15 14:35 Date Received: 04/15/15 09:00

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		66 - 137		04/22/15 20:04	2
4-Bromofluorobenzene (Surr)	94		73 - 120		04/22/15 20:04	2
Dibromofluoromethane (Surr)	103		60 - 140		04/22/15 20:04	2
Toluene-d8 (Surr)	96		71 - 126		04/22/15 20:04	2

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	100	82	ug/L			04/23/15 20:22	100
1,1,2,2-Tetrachloroethane	ND	100	21	ug/L			04/23/15 20:22	100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	100	31	ug/L			04/23/15 20:22	100
1,1,2-Trichloroethane	ND	100	23	ug/L			04/23/15 20:22	100
1,1-Dichloroethane	ND	100	38	ug/L			04/23/15 20:22	100
1,1-Dichloroethene	ND	100	29	ug/L			04/23/15 20:22	100
1,2,4-Trichlorobenzene	ND	100	41	ug/L			04/23/15 20:22	100
1,2-Dibromo-3-Chloropropane	ND	100	39	ug/L			04/23/15 20:22	100
1,2-Dibromoethane	ND	100	73	ug/L			04/23/15 20:22	100
1,2-Dichlorobenzene	ND	100	79	ug/L			04/23/15 20:22	100
1,2-Dichloroethane	ND	100	21	ug/L			04/23/15 20:22	100
1,2-Dichloropropane	ND	100	72	ug/L			04/23/15 20:22	100
1,3-Dichlorobenzene	ND	100	78	ug/L			04/23/15 20:22	100
1,4-Dichlorobenzene	ND	100	84	ug/L			04/23/15 20:22	100
2-Butanone (MEK)	ND	1000	130	ug/L			04/23/15 20:22	100
2-Hexanone	ND	500	120	ug/L			04/23/15 20:22	100
4-Methyl-2-pentanone (MIBK)	ND	500	210	ug/L			04/23/15 20:22	100
Acetone	ND	1000	300	ug/L			04/23/15 20:22	100
Benzene	ND	100	41	ug/L			04/23/15 20:22	100
Bromodichloromethane	ND	100	39	ug/L			04/23/15 20:22	100
Bromoform	ND	100	26	ug/L			04/23/15 20:22	100
Bromomethane	ND	100	69	ug/L			04/23/15 20:22	100
Carbon disulfide	ND	100	19	ug/L			04/23/15 20:22	100
Carbon tetrachloride	ND	100	27	ug/L			04/23/15 20:22	100
Chlorobenzene	ND	100	75	ug/L			04/23/15 20:22	100
Chloroethane	ND	100	32	ug/L			04/23/15 20:22	100
Chloroform	ND	100	34	ug/L			04/23/15 20:22	100
Chloromethane	ND	100	35	ug/L			04/23/15 20:22	100
cis-1,2-Dichloroethene	ND	100	81	ug/L			04/23/15 20:22	100
cis-1,3-Dichloropropene	ND	100	36	ug/L			04/23/15 20:22	100
Cyclohexane	ND	100	18	ug/L			04/23/15 20:22	100
Dibromochloromethane	ND	100	32	ug/L			04/23/15 20:22	100
Dichlorodifluoromethane	ND	100	68	ug/L			04/23/15 20:22	100
Ethylbenzene	ND	100	74	ug/L			04/23/15 20:22	100
sopropylbenzene	ND	100	79	ug/L			04/23/15 20:22	100
Methyl acetate	ND	250	50	ug/L			04/23/15 20:22	100
Methyl tert-butyl ether	ND	100	16	ug/L			04/23/15 20:22	100
Methylcyclohexane	ND	100		ug/L			04/23/15 20:22	100
Methylene Chloride	ND	100		ug/L			04/23/15 20:22	100
Styrene	ND	100		ug/L			04/23/15 20:22	100
Tetrachloroethene	9100	100		ug/L			04/23/15 20:22	100
Toluene	ND	100		ug/L			04/23/15 20:22	100
rans-1,2-Dichloroethene	ND	100		ug/L			04/23/15 20:22	100

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP CTRL DUP

Date Collected: 04/14/15 14:35 Date Received: 04/15/15 09:00 Lab Sample ID: 480-78472-2

TestAmerica Job ID: 480-78472-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		100	37	ug/L			04/23/15 20:22	100
Trichloroethene	140		100	46	ug/L			04/23/15 20:22	100
Trichlorofluoromethane	ND		100	88	ug/L			04/23/15 20:22	100
Vinyl chloride	ND		100	90	ug/L			04/23/15 20:22	100
Xylenes, Total	ND		200	66	ug/L			04/23/15 20:22	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		66 - 137			=		04/23/15 20:22	100
4-Bromofluorobenzene (Surr)	95		73 - 120					04/23/15 20:22	100
Dibromofluoromethane (Surr)	106		60 - 140					04/23/15 20:22	100
Toluene-d8 (Surr)	97		71 - 126					04/23/15 20:22	100

8

16

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: HP CTRL

Lab Sample ID: 480-78472-3 Date Collected: 04/14/15 15:40 Matrix: Water

Date Received: 04/15/15 09:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	2.0		ug/L			04/22/15 20:31	
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			04/22/15 20:31	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			04/22/15 20:31	
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			04/22/15 20:31	
1,1-Dichloroethane	ND	2.0	0.76	ug/L			04/22/15 20:31	
1,1-Dichloroethene	ND	2.0	0.58	ug/L			04/22/15 20:31	
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			04/22/15 20:31	
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			04/22/15 20:31	
1,2-Dibromoethane	ND	2.0	1.5	ug/L			04/22/15 20:31	
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L			04/22/15 20:31	
1,2-Dichloroethane	ND	2.0	0.42	ug/L			04/22/15 20:31	
1,2-Dichloropropane	ND	2.0	1.4	ug/L			04/22/15 20:31	
1,3-Dichlorobenzene	ND	2.0	1.6	ug/L			04/22/15 20:31	
1,4-Dichlorobenzene	ND	2.0	1.7	ug/L			04/22/15 20:31	
2-Butanone (MEK)	ND *	20	2.6	ug/L			04/22/15 20:31	
2-Hexanone	ND	10	2.5	ug/L			04/22/15 20:31	
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			04/22/15 20:31	
Acetone	ND	20	6.0	ug/L			04/22/15 20:31	
Benzene	ND	2.0	0.82	ug/L			04/22/15 20:31	
Bromodichloromethane	ND	2.0	0.78	ug/L			04/22/15 20:31	
Bromoform	ND	2.0	0.52	ug/L			04/22/15 20:31	
Bromomethane	ND	2.0	1.4	ug/L			04/22/15 20:31	
Carbon disulfide	ND	2.0	0.38	ug/L			04/22/15 20:31	
Carbon tetrachloride	ND	2.0	0.54	ug/L			04/22/15 20:31	
Chlorobenzene	ND	2.0	1.5	ug/L			04/22/15 20:31	
Chloroethane	ND	2.0	0.64	ug/L			04/22/15 20:31	
Chloroform	ND	2.0	0.68	ug/L			04/22/15 20:31	
Chloromethane	ND	2.0	0.70	ug/L			04/22/15 20:31	
cis-1,2-Dichloroethene	8.8	2.0	1.6	ug/L			04/22/15 20:31	
cis-1,3-Dichloropropene	ND	2.0	0.72	ug/L			04/22/15 20:31	
Cyclohexane	ND	2.0	0.36	ug/L			04/22/15 20:31	
Dibromochloromethane	ND	2.0	0.64	ug/L			04/22/15 20:31	
Dichlorodifluoromethane	ND	2.0	1.4	ug/L			04/22/15 20:31	
Ethylbenzene	ND	2.0	1.5	ug/L			04/22/15 20:31	
sopropylbenzene	ND	2.0	1.6	ug/L			04/22/15 20:31	
Methyl acetate	ND	5.0	1.0	ug/L			04/22/15 20:31	
Methyl tert-butyl ether	ND	2.0		ug/L			04/22/15 20:31	
Methylcyclohexane	ND	2.0		ug/L			04/22/15 20:31	
Methylene Chloride	ND	2.0		ug/L			04/22/15 20:31	
Styrene	ND	2.0		ug/L			04/22/15 20:31	
Fetrachloroethene	2800 E	2.0		ug/L			04/22/15 20:31	
Toluene	ND	2.0		ug/L			04/22/15 20:31	
trans-1,2-Dichloroethene	ND	2.0		ug/L			04/22/15 20:31	
rans-1,3-Dichloropropene	ND	2.0		ug/L			04/22/15 20:31	
Frichloroethene	110	2.0		ug/L			04/22/15 20:31	
Trichlorofluoromethane	ND	2.0		ug/L			04/22/15 20:31	
Vinyl chloride	ND	2.0		ug/L			04/22/15 20:31	
Xylenes, Total	ND	4.0		ug/L			04/22/15 20:31	

Client: New York State D.E.C.

Client Sample ID: HP CTRL

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-3

TestAmerica Job ID: 480-78472-1

Date Collected: 04/14/15 15:40 Date Received: 04/15/15 09:00 Matrix: Water

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	66 - 137		04/22/15 20:31	2
4-Bromofluorobenzene (Surr)	93	73 - 120		04/22/15 20:31	2
Dibromofluoromethane (Surr)	103	60 - 140		04/22/15 20:31	2
Toluene-d8 (Surr)	95	71 - 126		04/22/15 20:31	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		100	82	ug/L			04/23/15 20:49	10
1,1,2,2-Tetrachloroethane	ND		100	21	ug/L			04/23/15 20:49	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		100	31	ug/L			04/23/15 20:49	10
1,1,2-Trichloroethane	ND		100	23	ug/L			04/23/15 20:49	10
1,1-Dichloroethane	ND		100	38	ug/L			04/23/15 20:49	10
1,1-Dichloroethene	ND		100	29	ug/L			04/23/15 20:49	10
1,2,4-Trichlorobenzene	ND		100	41	ug/L			04/23/15 20:49	10
1,2-Dibromo-3-Chloropropane	ND		100	39	ug/L			04/23/15 20:49	10
1,2-Dibromoethane	ND		100	73	ug/L			04/23/15 20:49	10
1,2-Dichlorobenzene	ND		100	79	ug/L			04/23/15 20:49	10
1,2-Dichloroethane	ND		100	21	ug/L			04/23/15 20:49	10
1,2-Dichloropropane	ND		100	72	ug/L			04/23/15 20:49	10
1,3-Dichlorobenzene	ND		100	78	ug/L			04/23/15 20:49	10
1,4-Dichlorobenzene	ND		100	84	ug/L			04/23/15 20:49	10
2-Butanone (MEK)	ND		1000	130	ug/L			04/23/15 20:49	10
2-Hexanone	ND		500	120	ug/L			04/23/15 20:49	10
4-Methyl-2-pentanone (MIBK)	ND		500	210	ug/L			04/23/15 20:49	10
Acetone	ND		1000	300	ug/L			04/23/15 20:49	10
Benzene	ND		100	41	ug/L			04/23/15 20:49	10
Bromodichloromethane	ND		100	39	ug/L			04/23/15 20:49	10
Bromoform	ND		100	26	ug/L			04/23/15 20:49	10
Bromomethane	ND		100	69	ug/L			04/23/15 20:49	10
Carbon disulfide	ND		100	19	ug/L			04/23/15 20:49	10
Carbon tetrachloride	ND		100	27	ug/L			04/23/15 20:49	10
Chlorobenzene	ND		100	75	ug/L			04/23/15 20:49	10
Chloroethane	ND		100	32	ug/L			04/23/15 20:49	10
Chloroform	ND		100	34	ug/L			04/23/15 20:49	10
Chloromethane	ND		100	35	ug/L			04/23/15 20:49	10
cis-1,2-Dichloroethene	ND		100	81	ug/L			04/23/15 20:49	10
cis-1,3-Dichloropropene	ND		100	36	ug/L			04/23/15 20:49	10
Cyclohexane	ND		100	18	ug/L			04/23/15 20:49	10
Dibromochloromethane	ND		100	32	ug/L			04/23/15 20:49	10
Dichlorodifluoromethane	ND		100	68	ug/L			04/23/15 20:49	10
Ethylbenzene	ND		100	74	ug/L			04/23/15 20:49	10
Isopropylbenzene	ND		100	79	ug/L			04/23/15 20:49	10
Methyl acetate	ND		250	50	ug/L			04/23/15 20:49	10
Methyl tert-butyl ether	ND		100	16	ug/L			04/23/15 20:49	10
Methylcyclohexane	ND		100	16	ug/L			04/23/15 20:49	10
Methylene Chloride	ND		100	44	ug/L			04/23/15 20:49	10
Styrene	ND		100	73	ug/L			04/23/15 20:49	10
Tetrachloroethene	7700		100	36	ug/L			04/23/15 20:49	10
Toluene	ND		100	51	ug/L			04/23/15 20:49	10
trans-1,2-Dichloroethene	ND		100	90	ug/L			04/23/15 20:49	10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-3

Matrix: Water

Client Sample ID: HP CTRL Date Collected: 04/14/15 15:40

Date Received: 04/15/15 09:00

Method: 8260C - Volatile Orga	•	•	•			_	_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		100	37	ug/L			04/23/15 20:49	100
Trichloroethene	100		100	46	ug/L			04/23/15 20:49	100
Trichlorofluoromethane	ND		100	88	ug/L			04/23/15 20:49	100
Vinyl chloride	ND		100	90	ug/L			04/23/15 20:49	100
Xylenes, Total	ND		200	66	ug/L			04/23/15 20:49	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137			=		04/23/15 20:49	100
4-Bromofluorobenzene (Surr)	95		73 - 120					04/23/15 20:49	100
Dibromofluoromethane (Surr)	106		60 - 140					04/23/15 20:49	100
Toluene-d8 (Surr)	98		71 - 126					04/23/15 20:49	100

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: HP CTRL DUP

Lab Sample ID: 480-78472-4 Date Collected: 04/14/15 15:55 Matrix: Water

Date Received: 04/15/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			04/22/15 20:58	
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			04/22/15 20:58	:
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			04/22/15 20:58	:
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			04/22/15 20:58	:
1,1-Dichloroethane	ND		2.0	0.76	ug/L			04/22/15 20:58	:
1,1-Dichloroethene	ND		2.0	0.58	ug/L			04/22/15 20:58	:
1,2,4-Trichlorobenzene	ND		2.0	0.82	ug/L			04/22/15 20:58	:
1,2-Dibromo-3-Chloropropane	ND		2.0	0.78	ug/L			04/22/15 20:58	:
1,2-Dibromoethane	ND		2.0	1.5	ug/L			04/22/15 20:58	:
1,2-Dichlorobenzene	ND		2.0		ug/L			04/22/15 20:58	
1,2-Dichloroethane	ND		2.0	0.42				04/22/15 20:58	:
1,2-Dichloropropane	ND		2.0		ug/L			04/22/15 20:58	:
1,3-Dichlorobenzene	ND		2.0		ug/L			04/22/15 20:58	
1,4-Dichlorobenzene	ND		2.0		ug/L			04/22/15 20:58	:
2-Butanone (MEK)	ND	*	20		ug/L			04/22/15 20:58	
2-Hexanone	ND		10		ug/L			04/22/15 20:58	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			04/22/15 20:58	
Acetone	ND		20		ug/L			04/22/15 20:58	
Benzene	ND		2.0	0.82				04/22/15 20:58	
Bromodichloromethane	ND		2.0	0.78				04/22/15 20:58	
Bromoform	ND		2.0	0.52				04/22/15 20:58	
Bromomethane	ND		2.0		ug/L			04/22/15 20:58	
Carbon disulfide	ND		2.0	0.38	•			04/22/15 20:58	
Carbon tetrachloride	ND ND		2.0	0.54				04/22/15 20:58	
Chlorobenzene	ND		2.0		ug/L ug/L			04/22/15 20:58	
	ND ND								
Chloroform			2.0	0.64				04/22/15 20:58	
Chloroform	ND		2.0		ug/L			04/22/15 20:58	
Chloromethane	ND		2.0		ug/L			04/22/15 20:58	
cis-1,2-Dichloroethene	8.9		2.0		ug/L			04/22/15 20:58	
cis-1,3-Dichloropropene	ND		2.0	0.72	.			04/22/15 20:58	
Cyclohexane	ND		2.0	0.36				04/22/15 20:58	
Dibromochloromethane	ND		2.0		ug/L 			04/22/15 20:58	
Dichlorodifluoromethane	ND		2.0		ug/L			04/22/15 20:58	
Ethylbenzene 	ND		2.0		ug/L			04/22/15 20:58	
Isopropylbenzene	ND		2.0		ug/L			04/22/15 20:58	
Methyl acetate	ND		5.0		ug/L			04/22/15 20:58	
Methyl tert-butyl ether	ND		2.0	0.32				04/22/15 20:58	
Methylcyclohexane	ND		2.0		ug/L			04/22/15 20:58	
Methylene Chloride	ND		2.0		ug/L			04/22/15 20:58	
Styrene	ND		2.0		ug/L			04/22/15 20:58	
Tetrachloroethene	2800	E	2.0		ug/L			04/22/15 20:58	
Гoluene	ND		2.0	1.0	ug/L			04/22/15 20:58	
rans-1,2-Dichloroethene	ND		2.0		ug/L			04/22/15 20:58	
rans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			04/22/15 20:58	
Trichloroethene	110		2.0	0.92	ug/L			04/22/15 20:58	
Trichlorofluoromethane	ND		2.0	1.8	ug/L			04/22/15 20:58	
Vinyl chloride	ND		2.0	1.8	ug/L			04/22/15 20:58	
Xylenes, Total	ND		4.0	1.3	ug/L			04/22/15 20:58	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-4

TestAmerica Job ID: 480-78472-1

Client Sample ID: HP CTRL DUP

Matrix: Water

Date Collected: 04/14/15 15:55 Date Received: 04/15/15 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	66 - 137		04/22/15 20:58	2
4-Bromofluorobenzene (Surr)	91	73 - 120		04/22/15 20:58	2
Dibromofluoromethane (Surr)	103	60 - 140		04/22/15 20:58	2
Toluene-d8 (Surr)	95	71 - 126		04/22/15 20:58	2

Toluene-a8 (Surr) - -	95	71 - 126					04/22/15 20:58	2
Method: 8260C - Volatile Organic Analyte	Compounds by GC/MS - D Result Qualifier) <mark>L</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	100	82	ug/L			04/24/15 04:09	100
1,1,2,2-Tetrachloroethane	ND	100	21	ug/L			04/24/15 04:09	100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	100	31	ug/L			04/24/15 04:09	100
1,1,2-Trichloroethane	ND	100	23	ug/L			04/24/15 04:09	100
1,1-Dichloroethane	ND	100	38	ug/L			04/24/15 04:09	100
1,1-Dichloroethene	ND	100	29	ug/L			04/24/15 04:09	100
1,2,4-Trichlorobenzene	ND	100	41	ug/L			04/24/15 04:09	100
1,2-Dibromo-3-Chloropropane	ND	100	39	ug/L			04/24/15 04:09	100
1,2-Dibromoethane	ND	100	73	ug/L			04/24/15 04:09	100
1,2-Dichlorobenzene	ND	100	79	ug/L			04/24/15 04:09	100
1,2-Dichloroethane	ND	100	21	ug/L			04/24/15 04:09	100
1,2-Dichloropropane	ND	100	72	ug/L			04/24/15 04:09	100
1,3-Dichlorobenzene	ND	100	78	ug/L			04/24/15 04:09	100
1,4-Dichlorobenzene	ND	100	84	ug/L			04/24/15 04:09	100
2-Butanone (MEK)	ND	1000	130	ug/L			04/24/15 04:09	100
2-Hexanone	ND	500	120	ug/L			04/24/15 04:09	100
4-Methyl-2-pentanone (MIBK)	ND	500	210	ug/L			04/24/15 04:09	100
Acetone	ND	1000	300	ug/L			04/24/15 04:09	100
Benzene	ND	100	41	ug/L			04/24/15 04:09	100
Bromodichloromethane	ND	100	39	ug/L			04/24/15 04:09	100
Bromoform	ND	100	26	ug/L			04/24/15 04:09	100
Bromomethane	ND	100	69	ug/L			04/24/15 04:09	100
Carbon disulfide	ND	100	19	ug/L			04/24/15 04:09	100
Carbon tetrachloride	ND	100	27	ug/L			04/24/15 04:09	100
Chlorobenzene	ND	100	75	ug/L			04/24/15 04:09	100
Chloroethane	ND	100	32	ug/L			04/24/15 04:09	100
Chloroform	ND	100	34	ug/L			04/24/15 04:09	100
Chloromethane	ND	100	35	ug/L			04/24/15 04:09	100
cis-1,2-Dichloroethene	ND	100	81	ug/L			04/24/15 04:09	100
cis-1,3-Dichloropropene	ND	100	36	ug/L			04/24/15 04:09	100
Cyclohexane	ND	100	18	ug/L			04/24/15 04:09	100
Dibromochloromethane	ND	100	32	ug/L			04/24/15 04:09	100
Dichlorodifluoromethane	ND	100	68	ug/L			04/24/15 04:09	100
Ethylbenzene	ND	100	74	ug/L			04/24/15 04:09	100
Isopropylbenzene	ND	100	79	ug/L			04/24/15 04:09	100
Methyl acetate	ND	250	50	ug/L			04/24/15 04:09	100
Methyl tert-butyl ether	ND	100	16	ug/L			04/24/15 04:09	100
Methylcyclohexane	ND	100	16	ug/L			04/24/15 04:09	100
Methylene Chloride	ND	100	44	ug/L			04/24/15 04:09	100
Styrene	ND	100	73	ug/L			04/24/15 04:09	100
Tetrachloroethene	6700	100	36	ug/L			04/24/15 04:09	100
Toluene	ND	100	51	ug/L			04/24/15 04:09	100

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: HP CTRL DUP

Date Collected: 04/14/15 15:55 Date Received: 04/15/15 09:00 Lab Sample ID: 480-78472-4

TestAmerica Job ID: 480-78472-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		100	37	ug/L			04/24/15 04:09	100
Trichloroethene	100		100	46	ug/L			04/24/15 04:09	100
Trichlorofluoromethane	ND		100	88	ug/L			04/24/15 04:09	100
Vinyl chloride	ND		100	90	ug/L			04/24/15 04:09	100
Xylenes, Total	ND		200	66	ug/L			04/24/15 04:09	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137			=		04/24/15 04:09	100
4-Bromofluorobenzene (Surr)	95		73 - 120					04/24/15 04:09	100
Dibromofluoromethane (Surr)	106		60 - 140					04/24/15 04:09	100
Toluene-d8 (Surr)	98		71 - 126					04/24/15 04:09	100

5

7

8

Client: New York State D.E.C.

Date Received: 04/15/15 09:00

Trichloroethene

Vinyl chloride

Xylenes, Total

Trichlorofluoromethane

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: KMN04 LOW

Date Collected: 04/14/15 14:05

Lab Sample ID: 480-78472-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.0	4.1	ug/L			04/24/15 04:36	
1,1,2,2-Tetrachloroethane	ND		5.0	1.1	ug/L			04/24/15 04:36	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.6	ug/L			04/24/15 04:36	
1,1,2-Trichloroethane	ND		5.0	1.2	ug/L			04/24/15 04:36	
1,1-Dichloroethane	ND		5.0	1.9	ug/L			04/24/15 04:36	
1,1-Dichloroethene	ND		5.0	1.5	ug/L			04/24/15 04:36	
1,2,4-Trichlorobenzene	ND		5.0	2.1	ug/L			04/24/15 04:36	
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	ug/L			04/24/15 04:36	
1,2-Dibromoethane	ND		5.0	3.7	ug/L			04/24/15 04:36	
1,2-Dichlorobenzene	ND		5.0	4.0	ug/L			04/24/15 04:36	
1,2-Dichloroethane	ND		5.0	1.1	ug/L			04/24/15 04:36	
1,2-Dichloropropane	ND		5.0	3.6	ug/L			04/24/15 04:36	
1,3-Dichlorobenzene	ND		5.0	3.9	ug/L			04/24/15 04:36	
1,4-Dichlorobenzene	ND		5.0	4.2	ug/L			04/24/15 04:36	
2-Butanone (MEK)	110		50	6.6	ug/L			04/24/15 04:36	
2-Hexanone	ND		25	6.2	ug/L			04/24/15 04:36	
4-Methyl-2-pentanone (MIBK)	ND		25	11	ug/L			04/24/15 04:36	
Acetone	820		50		ug/L			04/24/15 04:36	
Benzene	ND		5.0	2.1	ug/L			04/24/15 04:36	
Bromodichloromethane	ND		5.0		ug/L			04/24/15 04:36	
Bromoform	ND		5.0		ug/L			04/24/15 04:36	
Bromomethane	ND		5.0		ug/L			04/24/15 04:36	
Carbon disulfide	ND		5.0		ug/L			04/24/15 04:36	
Carbon tetrachloride	ND		5.0	1.4	ug/L			04/24/15 04:36	
Chlorobenzene	ND		5.0		ug/L			04/24/15 04:36	
Chloroethane	ND		5.0		ug/L			04/24/15 04:36	
Chloroform	ND		5.0		ug/L			04/24/15 04:36	
Chloromethane	ND		5.0		ug/L			04/24/15 04:36	
cis-1,2-Dichloroethene	ND		5.0		ug/L			04/24/15 04:36	
cis-1,3-Dichloropropene	ND		5.0		ug/L			04/24/15 04:36	
Cyclohexane	ND		5.0		ug/L			04/24/15 04:36	
Dibromochloromethane	ND		5.0		ug/L			04/24/15 04:36	
Dichlorodifluoromethane	ND		5.0		ug/L			04/24/15 04:36	
Ethylbenzene	ND		5.0		ug/L			04/24/15 04:36	
Isopropylbenzene	ND		5.0		ug/L			04/24/15 04:36	
Methyl acetate	ND		13		ug/L			04/24/15 04:36	
Methyl tert-butyl ether	ND		5.0		ug/L			04/24/15 04:36	
Methylcyclohexane	ND		5.0		ug/L			04/24/15 04:36	
Methylene Chloride	ND		5.0		ug/L			04/24/15 04:36	
Styrene	ND		5.0		ug/L			04/24/15 04:36	
Styrene Tetrachloroethene			5.0					04/24/15 04:36	
Tetrachioroethene Toluene	2.1 ND	J	5.0		ug/L				
					ug/L			04/24/15 04:36	
trans-1,2-Dichloroethene	ND ND		5.0		ug/L			04/24/15 04:36	
trans-1,3-Dichloropropene	ND		5.0	1.9	ug/L			04/24/15 04:36	

TestAmerica Buffalo

04/24/15 04:36

04/24/15 04:36

04/24/15 04:36

04/24/15 04:36

5

5

5

5.0

5.0

5.0

10

ND

ND

ND

ND

2.3 ug/L

4.4 ug/L

4.5 ug/L

3.3 ug/L

2

4

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: KMN04 LOW

Lab Sample ID: 480-78472-5

Matrix: Water

Date Collected: 04/14/15 14:05 Date Received: 04/15/15 09:00

Analyzed	Dil Fac
4/24/15 04:36	5
4/24/15 04:36	5
4/24/15 04:36	5
4/24/15 04:36	5
4	/24/15 04:36 //24/15 04:36 //24/15 04:36

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: KMN04 MID

Date Collected: 04/14/15 14:08 Date Received: 04/15/15 09:00 Lab Sample ID: 480-78472-6

Matrix: Water

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	10	8.2	ug/L			04/24/15 05:04	1
1,1,2,2-Tetrachloroethane	ND	10	2.1	ug/L			04/24/15 05:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	3.1	ug/L			04/24/15 05:04	1
1,1,2-Trichloroethane	ND	10	2.3	ug/L			04/24/15 05:04	1
1,1-Dichloroethane	ND	10	3.8	ug/L			04/24/15 05:04	1
1,1-Dichloroethene	ND	10	2.9	ug/L			04/24/15 05:04	1
1,2,4-Trichlorobenzene	ND	10	4.1	ug/L			04/24/15 05:04	1
1,2-Dibromo-3-Chloropropane	ND	10	3.9	ug/L			04/24/15 05:04	1
1,2-Dibromoethane	ND	10	7.3	ug/L			04/24/15 05:04	1
1,2-Dichlorobenzene	ND	10	7.9	ug/L			04/24/15 05:04	1
1,2-Dichloroethane	ND	10	2.1	ug/L			04/24/15 05:04	1
1,2-Dichloropropane	ND	10	7.2	ug/L			04/24/15 05:04	1
1,3-Dichlorobenzene	ND	10	7.8	ug/L			04/24/15 05:04	1
1,4-Dichlorobenzene	ND	10	8.4	ug/L			04/24/15 05:04	1
2-Butanone (MEK)	75 J	100		ug/L			04/24/15 05:04	1
2-Hexanone	ND	50	12	ug/L			04/24/15 05:04	 1
4-Methyl-2-pentanone (MIBK)	ND	50	21	ug/L			04/24/15 05:04	1
Acetone	2300	100	30	ug/L			04/24/15 05:04	1
Benzene	ND	10		ug/L			04/24/15 05:04	 1
Bromodichloromethane	ND	10		ug/L			04/24/15 05:04	1
Bromoform	ND	10		ug/L			04/24/15 05:04	1
Bromomethane	ND	10		ug/L			04/24/15 05:04	· · · · · · · · · · · · · · · · · · ·
Carbon disulfide	ND	10		ug/L			04/24/15 05:04	1
Carbon tetrachloride	ND	10		ug/L			04/24/15 05:04	1
Chlorobenzene	ND	10		ug/L			04/24/15 05:04	· · · · · · · · 1
Chloroethane	ND	10		ug/L			04/24/15 05:04	1
Chloroform	ND	10		ug/L			04/24/15 05:04	1
Chloromethane	ND	10		ug/L			04/24/15 05:04	
cis-1,2-Dichloroethene	ND	10		ug/L			04/24/15 05:04	1
cis-1,3-Dichloropropene	ND	10		ug/L			04/24/15 05:04	1
Cyclohexane	ND	10		ug/L			04/24/15 05:04	· · · · · · · · · · · 1
Dibromochloromethane	ND	10		ug/L			04/24/15 05:04	1
Dichlorodifluoromethane	ND	10		ug/L			04/24/15 05:04	1
Ethylbenzene	ND	10		ug/L			04/24/15 05:04	· · · · · · · · · · · · 1
Isopropylbenzene	ND	10		ug/L			04/24/15 05:04	1
Methyl acetate	ND	25		ug/L			04/24/15 05:04	1
Methyl tert-butyl ether	ND	10		ug/L			04/24/15 05:04	· · · · · · · · · 1
Methylcyclohexane	ND	10		ug/L			04/24/15 05:04	1
Methylene Chloride	ND	10		ug/L			04/24/15 05:04	1
Styrene	ND	10		ug/L			04/24/15 05:04	
Tetrachloroethene	ND	10		ug/L			04/24/15 05:04	1
Toluene	ND ND	10		ug/L ug/L			04/24/15 05:04	' 1
trans-1,2-Dichloroethene							04/24/15 05:04	
,	ND ND	10		ug/L				1
trans-1,3-Dichloropropene	ND ND	10		ug/L			04/24/15 05:04	1
Trichloroethene	ND	10		ug/L			04/24/15 05:04	
Trichlorofluoromethane	ND	10		ug/L			04/24/15 05:04	1
Vinyl chloride Xylenes, Total	ND ND	10 20	9.0	ug/L			04/24/15 05:04 04/24/15 05:04	1

TestAmerica Buffalo

4

6

8

9

1(

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: KMN04 MID

Lab Sample ID: 480-78472-6 Date Collected: 04/14/15 14:08

Matrix: Water

Date Received: 04/15/15 09:00

%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
109	66 - 137		04/24/15 05:04	10
93	73 - 120		04/24/15 05:04	10
105	60 - 140		04/24/15 05:04	10
96	71 - 126		04/24/15 05:04	10
	109 93 105	109 66 - 137 93 73 - 120 105 60 - 140	109 66 - 137 93 73 - 120 105 60 - 140	109 66 - 137 04/24/15 05:04 93 73 - 120 04/24/15 05:04 105 60 - 140 04/24/15 05:04

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: KMN04 HIGH

Lab Sample ID: 480-78472-7 Date Collected: 04/14/15 14:15 Matrix: Water

Date Received: 04/15/15 09:00

Analyte	Result Qualifier	RL		Unit	D Pr	epared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	10	8.2	ug/L			04/24/15 05:31	1
1,1,2,2-Tetrachloroethane	ND	10	2.1	ug/L			04/24/15 05:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	3.1	ug/L			04/24/15 05:31	1
1,1,2-Trichloroethane	ND	10	2.3	ug/L			04/24/15 05:31	•
1,1-Dichloroethane	ND	10	3.8	ug/L			04/24/15 05:31	1
1,1-Dichloroethene	ND	10	2.9	ug/L			04/24/15 05:31	•
1,2,4-Trichlorobenzene	ND	10	4.1	ug/L			04/24/15 05:31	
1,2-Dibromo-3-Chloropropane	ND	10	3.9	ug/L			04/24/15 05:31	1
1,2-Dibromoethane	ND	10	7.3	ug/L			04/24/15 05:31	
I,2-Dichlorobenzene	ND	10	7.9	ug/L			04/24/15 05:31	
1,2-Dichloroethane	ND	10	2.1	ug/L			04/24/15 05:31	-
,2-Dichloropropane	ND	10	7.2	ug/L			04/24/15 05:31	
,3-Dichlorobenzene	ND	10	7.8	ug/L			04/24/15 05:31	
,4-Dichlorobenzene	ND	10		ug/L			04/24/15 05:31	
P-Butanone (MEK)	33 J	100		ug/L			04/24/15 05:31	
2-Hexanone	ND	50		ug/L			04/24/15 05:31	
-Methyl-2-pentanone (MIBK)	ND	50		ug/L			04/24/15 05:31	
Acetone	3700	100		ug/L			04/24/15 05:31	
denzene	ND	10		ug/L			04/24/15 05:31	
romodichloromethane	ND	10		ug/L			04/24/15 05:31	
romoform	ND	10		ug/L			04/24/15 05:31	
romomethane	ND	10		ug/L			04/24/15 05:31	
Carbon disulfide	ND	10		ug/L			04/24/15 05:31	
carbon disullide Carbon tetrachloride	ND ND	10		_			04/24/15 05:31	
Chlorobenzene	ND ND	10		ug/L				
				ug/L			04/24/15 05:31	
Chloroethane	ND	10		ug/L			04/24/15 05:31	
Chloroform	ND	10		ug/L			04/24/15 05:31	
Chloromethane	ND	10		ug/L			04/24/15 05:31	
is-1,2-Dichloroethene	ND	10		ug/L			04/24/15 05:31	
is-1,3-Dichloropropene	ND	10		ug/L			04/24/15 05:31	
Cyclohexane	ND	10		ug/L			04/24/15 05:31	
Dibromochloromethane	ND	10		ug/L			04/24/15 05:31	
Dichlorodifluoromethane	ND	10		ug/L			04/24/15 05:31	
thylbenzene	ND	10	7.4	ug/L			04/24/15 05:31	
sopropylbenzene	ND	10		ug/L			04/24/15 05:31	
lethyl acetate	ND	25	5.0	ug/L			04/24/15 05:31	
lethyl tert-butyl ether	ND	10	1.6	ug/L			04/24/15 05:31	
lethylcyclohexane	ND	10	1.6	ug/L			04/24/15 05:31	
lethylene Chloride	ND	10	4.4	ug/L			04/24/15 05:31	
tyrene	ND	10	7.3	ug/L			04/24/15 05:31	
etrachloroethene	ND	10	3.6	ug/L			04/24/15 05:31	
oluene	ND	10	5.1	ug/L			04/24/15 05:31	
ans-1,2-Dichloroethene	ND	10	9.0	ug/L			04/24/15 05:31	
ans-1,3-Dichloropropene	ND	10		ug/L			04/24/15 05:31	
richloroethene	ND	10		ug/L			04/24/15 05:31	
richlorofluoromethane	ND	10		ug/L			04/24/15 05:31	
/inyl chloride	ND	10		ug/L			04/24/15 05:31	
ylenes, Total	ND	20		ug/L			04/24/15 05:31	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: KMN04 HIGH

Date Collected: 04/14/15 14:15 Date Received: 04/15/15 09:00 Lab Sample ID: 480-78472-7

Matrix: Water

Surro	gate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
1,2-Di	chloroethane-d4 (Surr)	108		66 - 137		04/24/15 05:31	10
4-Bron	nofluorobenzene (Surr)	93		73 - 120		04/24/15 05:31	10
Dibron	nofluoromethane (Surr)	105		60 - 140		04/24/15 05:31	10
Toluer	ne-d8 (Surr)	96		71 - 126		04/24/15 05:31	10

5

5

0

4.0

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-8

Matrix: Water

Client Sample ID: HP LOW
Date Collected: 04/14/15 16:45
Date Received: 04/15/15 09:00

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	10	8.2	ug/L			04/22/15 22:48	•
1,1,2,2-Tetrachloroethane	ND	10	2.1	ug/L			04/22/15 22:48	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	3.1	ug/L			04/22/15 22:48	•
1,1,2-Trichloroethane	ND	10	2.3	ug/L			04/22/15 22:48	
1,1-Dichloroethane	ND	10	3.8	ug/L			04/22/15 22:48	•
1,1-Dichloroethene	ND	10	2.9	ug/L			04/22/15 22:48	
1,2,4-Trichlorobenzene	ND	10	4.1	ug/L			04/22/15 22:48	
1,2-Dibromo-3-Chloropropane	ND	10	3.9	ug/L			04/22/15 22:48	
1,2-Dibromoethane	ND	10	7.3	ug/L			04/22/15 22:48	
1,2-Dichlorobenzene	ND	10	7.9	ug/L			04/22/15 22:48	
1,2-Dichloroethane	ND	10	2.1	ug/L			04/22/15 22:48	
1,2-Dichloropropane	ND	10	7.2	ug/L			04/22/15 22:48	
,3-Dichlorobenzene	ND	10	7.8	ug/L			04/22/15 22:48	
,4-Dichlorobenzene	ND	10	8.4	ug/L			04/22/15 22:48	
2-Butanone (MEK)	60 J^*	100	13	ug/L			04/22/15 22:48	
2-Hexanone	ND	50	12	ug/L			04/22/15 22:48	
I-Methyl-2-pentanone (MIBK)	ND	50		ug/L			04/22/15 22:48	
Acetone	75000 E^	100		ug/L			04/22/15 22:48	
Benzene	ND	10		ug/L			04/22/15 22:48	
Bromodichloromethane	ND	10		ug/L			04/22/15 22:48	
Bromoform	ND	10		ug/L			04/22/15 22:48	
romomethane	ND	10		ug/L			04/22/15 22:48	
Carbon disulfide	3.7 J	10		ug/L			04/22/15 22:48	
Carbon tetrachloride	ND	10		ug/L			04/22/15 22:48	
Chlorobenzene	ND	10		ug/L			04/22/15 22:48	
Chloroethane	ND	10		ug/L			04/22/15 22:48	
Chloroform	ND	10		ug/L			04/22/15 22:48	
Chloromethane	ND	10		ug/L			04/22/15 22:48	
sis-1,2-Dichloroethene	ND	10		ug/L			04/22/15 22:48	
sis-1,3-Dichloropropene	ND	10		ug/L			04/22/15 22:48	
Cyclohexane	ND	10		ug/L			04/22/15 22:48	
Dibromochloromethane	ND	10		ug/L			04/22/15 22:48	
Dichlorodifluoromethane	ND	10		-			04/22/15 22:48	
	ND ND			ug/L			04/22/15 22:48	
Ethylbenzene	ND ND	10 10		ug/L			04/22/15 22:48	
sopropylbenzene				ug/L				
Methyl acetate	ND	25		ug/L			04/22/15 22:48	
Nethyl tert-butyl ether	ND	10		ug/L			04/22/15 22:48	
Methylcyclohexane	ND	10		ug/L			04/22/15 22:48	
Methylene Chloride	ND	10		ug/L			04/22/15 22:48	
Styrene	ND	10		ug/L 			04/22/15 22:48	
etrachloroethene	110	10		ug/L			04/22/15 22:48	
oluene	ND	10		ug/L			04/22/15 22:48	
rans-1,2-Dichloroethene	ND	10		ug/L			04/22/15 22:48	
rans-1,3-Dichloropropene	ND	10		ug/L			04/22/15 22:48	
richloroethene	ND	10		ug/L			04/22/15 22:48	
richlorofluoromethane	ND	10		ug/L			04/22/15 22:48	
/inyl chloride	ND	10	9.0	ug/L			04/22/15 22:48	

TestAmerica Buffalo

_

J

5

7

9

1(

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-8

TestAmerica Job ID: 480-78472-1

Matrix: Water

Client Sample ID: HP LOW

Date Collected: 04/14/15 16:45 Date Received: 04/15/15 09:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		66 - 137		04/22/15 22:48	10
4-Bromofluorobenzene (Surr)	94		73 - 120		04/22/15 22:48	10
Dibromofluoromethane (Surr)	102		60 - 140		04/22/15 22:48	10
Toluene-d8 (Surr)	98		71 - 126		04/22/15 22:48	10

Tolderie-do (Sull)	90	71 - 120					04/22/13 22.46	10
Method: 8260C - Volatile Organ	-							
Analyte	Result Quali		MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	2000	1600	ug/L			04/25/15 14:46	2000
1,1,2,2-Tetrachloroethane	ND	2000	420	•			04/25/15 14:46	2000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2000	620	ug/L			04/25/15 14:46	2000
1,1,2-Trichloroethane	ND	2000	460	ug/L			04/25/15 14:46	2000
1,1-Dichloroethane	ND	2000	760	ug/L			04/25/15 14:46	2000
1,1-Dichloroethene	ND	2000	580	ug/L			04/25/15 14:46	2000
1,2,4-Trichlorobenzene	ND	2000	820	ug/L			04/25/15 14:46	2000
1,2-Dibromo-3-Chloropropane	ND	2000	780	ug/L			04/25/15 14:46	2000
1,2-Dibromoethane	ND	2000	1500	ug/L			04/25/15 14:46	2000
1,2-Dichlorobenzene	ND	2000	1600	ug/L			04/25/15 14:46	2000
1,2-Dichloroethane	ND	2000	420	ug/L			04/25/15 14:46	2000
1,2-Dichloropropane	ND	2000	1400	ug/L			04/25/15 14:46	2000
1,3-Dichlorobenzene	ND	2000	1600	ug/L			04/25/15 14:46	2000
1,4-Dichlorobenzene	ND	2000	1700	ug/L			04/25/15 14:46	2000
2-Butanone (MEK)	ND	20000	2600	ug/L			04/25/15 14:46	2000
2-Hexanone	ND	10000	2500	ug/L			04/25/15 14:46	2000
4-Methyl-2-pentanone (MIBK)	ND	10000	4200	ug/L			04/25/15 14:46	2000
Acetone	450000	20000	6000				04/25/15 14:46	2000
Benzene	ND	2000		ug/L			04/25/15 14:46	2000
Bromodichloromethane	ND	2000		ug/L			04/25/15 14:46	2000
Bromoform	ND	2000	520	ug/L			04/25/15 14:46	2000
Bromomethane	ND	2000	1400				04/25/15 14:46	2000
Carbon disulfide	ND	2000					04/25/15 14:46	2000
Carbon tetrachloride	ND	2000	540	ug/L			04/25/15 14:46	2000
Chlorobenzene	ND	2000	1500				04/25/15 14:46	2000
Chloroethane	ND	2000	640	ug/L			04/25/15 14:46	2000
Chloroform	ND	2000	680	ug/L			04/25/15 14:46	2000
Chloromethane	ND	2000	700	ug/L			04/25/15 14:46	2000
cis-1,2-Dichloroethene	ND	2000	1600	ug/L			04/25/15 14:46	2000
cis-1,3-Dichloropropene	ND	2000	720				04/25/15 14:46	2000
				ug/L				
Cyclohexane	ND	2000	360	ug/L			04/25/15 14:46	2000
Dibromochloromethane	ND	2000	640	ug/L			04/25/15 14:46	2000
Dichlorodifluoromethane	ND	2000	1400				04/25/15 14:46	2000
Ethylbenzene	ND	2000	1500	ug/L			04/25/15 14:46	2000
Isopropylbenzene	ND	2000	1600				04/25/15 14:46	2000
Methyl acetate	ND	5000	1000				04/25/15 14:46	2000
Methyl tert-butyl ether	ND	2000		ug/L			04/25/15 14:46	2000
Methylcyclohexane	ND	2000		ug/L			04/25/15 14:46	2000
Methylene Chloride	ND	2000		ug/L			04/25/15 14:46	2000
Styrene	ND	2000	1500				04/25/15 14:46	2000
Tetrachloroethene	ND	2000		ug/L			04/25/15 14:46	2000
Toluene	ND	2000	1000				04/25/15 14:46	2000
trans-1,2-Dichloroethene	ND	2000	1800	ug/L			04/25/15 14:46	2000

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: HP LOW

Date Received: 04/15/15 09:00

Lab Sample ID: 480-78472-8 Date Collected: 04/14/15 16:45

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		2000	740	ug/L			04/25/15 14:46	2000
Trichloroethene	ND		2000	920	ug/L			04/25/15 14:46	2000
Trichlorofluoromethane	ND		2000	1800	ug/L			04/25/15 14:46	2000
Vinyl chloride	ND		2000	1800	ug/L			04/25/15 14:46	2000
Xylenes, Total	ND		4000	1300	ug/L			04/25/15 14:46	2000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	-	66 - 137			=		04/25/15 14:46	2000
4-Bromofluorobenzene (Surr)	97		73 - 120					04/25/15 14:46	2000
Dibromofluoromethane (Surr)	101		60 - 140					04/25/15 14:46	2000
Toluene-d8 (Surr)	95		71 - 126					04/25/15 14:46	2000

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-9

Matrix: Water

Client Sample ID: HP HIGH Date Collected: 04/14/15 16:55

Date Received: 04/15/15 09:00

__ |

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	500	410	ug/L			04/24/15 06:26	50
1,1,2,2-Tetrachloroethane	ND	500	110	ug/L			04/24/15 06:26	50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	500	160	ug/L			04/24/15 06:26	50
1,1,2-Trichloroethane	ND	500	120	ug/L			04/24/15 06:26	50
1,1-Dichloroethane	ND	500	190	ug/L			04/24/15 06:26	50
1,1-Dichloroethene	ND	500	150	ug/L			04/24/15 06:26	50
1,2,4-Trichlorobenzene	ND	500	210	ug/L			04/24/15 06:26	50
1,2-Dibromo-3-Chloropropane	ND	500	200	ug/L			04/24/15 06:26	50
1,2-Dibromoethane	ND	500	370	ug/L			04/24/15 06:26	50
1,2-Dichlorobenzene	ND	500	400	ug/L			04/24/15 06:26	50
1,2-Dichloroethane	ND	500	110	ug/L			04/24/15 06:26	50
1,2-Dichloropropane	ND	500	360	ug/L			04/24/15 06:26	50
1,3-Dichlorobenzene	ND	500	390	ug/L			04/24/15 06:26	50
1,4-Dichlorobenzene	ND	500	420	ug/L			04/24/15 06:26	50
2-Butanone (MEK)	ND	5000	660	ug/L			04/24/15 06:26	50
2-Hexanone	ND	2500	620	ug/L			04/24/15 06:26	50
4-Methyl-2-pentanone (MIBK)	ND	2500	1100	ug/L			04/24/15 06:26	50
Acetone	540000 E	5000	1500	ug/L			04/24/15 06:26	50
Benzene	ND	500	210	ug/L			04/24/15 06:26	50
Bromodichloromethane	ND	500	200	ug/L			04/24/15 06:26	50
Bromoform	ND	500	130	ug/L			04/24/15 06:26	50
Bromomethane	ND	500	350	ug/L			04/24/15 06:26	50
Carbon disulfide	ND	500	95	ug/L			04/24/15 06:26	50
Carbon tetrachloride	ND	500	140	ug/L			04/24/15 06:26	50
Chlorobenzene	ND	500	380	ug/L			04/24/15 06:26	50
Chloroethane	ND	500	160	ug/L			04/24/15 06:26	50
Chloroform	ND	500	170	ug/L			04/24/15 06:26	50
Chloromethane	ND	500	180	ug/L			04/24/15 06:26	50
cis-1,2-Dichloroethene	ND	500		ug/L			04/24/15 06:26	50
cis-1,3-Dichloropropene	ND	500	180	ug/L			04/24/15 06:26	50
Cyclohexane	ND	500	90	ug/L			04/24/15 06:26	50
Dibromochloromethane	ND	500	160	ug/L			04/24/15 06:26	50
Dichlorodifluoromethane	ND	500	340	ug/L			04/24/15 06:26	50
Ethylbenzene	ND	500	370	ug/L			04/24/15 06:26	50
Isopropylbenzene	ND	500		ug/L			04/24/15 06:26	50
Methyl acetate	ND	1300		ug/L			04/24/15 06:26	50
Methyl tert-butyl ether	ND	500		ug/L			04/24/15 06:26	50
Methylcyclohexane	ND	500					04/24/15 06:26	50
Methylene Chloride	ND	500		ug/L			04/24/15 06:26	50
Styrene	ND	500		ug/L			04/24/15 06:26	50
Tetrachloroethene	ND	500		ug/L			04/24/15 06:26	50
Toluene	ND	500		ug/L			04/24/15 06:26	50
trans-1,2-Dichloroethene	ND	500		ug/L			04/24/15 06:26	50
trans-1,3-Dichloropropene	ND	500		ug/L			04/24/15 06:26	50
Trichloroethene	ND	500		ug/L			04/24/15 06:26	50
Trichlorofluoromethane	ND	500					04/24/15 06:26	50
	ND ND	500		ug/L ug/L				
Vinyl chloride Xylenes, Total	ND ND	1000		ug/L ug/L			04/24/15 06:26 04/24/15 06:26	50 50

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-9

TestAmerica Job ID: 480-78472-1

Client Sample ID: HP HIGH

Date Collected: 04/14/15 16:55 Date Received: 04/15/15 09:00

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137		04/24/15 06:26	500
4-Bromofluorobenzene (Surr)	95		73 - 120		04/24/15 06:26	500
Dibromofluoromethane (Surr)	106		60 - 140		04/24/15 06:26	500
Toluene-d8 (Surr)	98		71 - 126		04/24/15 06:26	500

								500
Method: 8260C - Volatile Organic Analyte	Result Qualifier	DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	2000	1600	ug/L			04/25/15 15:09	2000
1,1,2,2-Tetrachloroethane	ND	2000	420	ug/L			04/25/15 15:09	2000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2000	620	ug/L			04/25/15 15:09	2000
1,1,2-Trichloroethane	ND	2000	460	ug/L			04/25/15 15:09	2000
1,1-Dichloroethane	ND	2000	760	ug/L			04/25/15 15:09	2000
1,1-Dichloroethene	ND	2000	580	ug/L			04/25/15 15:09	2000
1,2,4-Trichlorobenzene	ND	2000	820	ug/L			04/25/15 15:09	2000
1,2-Dibromo-3-Chloropropane	ND	2000	780	ug/L			04/25/15 15:09	2000
1,2-Dibromoethane	ND	2000	1500	ug/L			04/25/15 15:09	2000
1,2-Dichlorobenzene	ND	2000	1600	ug/L			04/25/15 15:09	2000
1,2-Dichloroethane	ND	2000	420	ug/L			04/25/15 15:09	2000
1,2-Dichloropropane	ND	2000	1400	ug/L			04/25/15 15:09	2000
1,3-Dichlorobenzene	ND	2000	1600	ug/L			04/25/15 15:09	2000
1,4-Dichlorobenzene	ND	2000	1700	ug/L			04/25/15 15:09	2000
2-Butanone (MEK)	ND	20000	2600	ug/L			04/25/15 15:09	2000
2-Hexanone	ND	10000	2500	ug/L			04/25/15 15:09	2000
4-Methyl-2-pentanone (MIBK)	ND	10000	4200	ug/L			04/25/15 15:09	2000
Acetone	440000	20000	6000	ug/L			04/25/15 15:09	2000
Benzene	ND	2000	820	ug/L			04/25/15 15:09	2000
Bromodichloromethane	ND	2000	780	ug/L			04/25/15 15:09	2000
Bromoform	ND	2000	520	ug/L			04/25/15 15:09	2000
Bromomethane	ND	2000	1400	ug/L			04/25/15 15:09	2000
Carbon disulfide	ND	2000	380	ug/L			04/25/15 15:09	2000
Carbon tetrachloride	ND	2000	540	ug/L			04/25/15 15:09	2000
Chlorobenzene	ND	2000	1500	ug/L			04/25/15 15:09	2000
Chloroethane	ND	2000	640	ug/L			04/25/15 15:09	2000
Chloroform	ND	2000	680	ug/L			04/25/15 15:09	2000
Chloromethane	ND	2000	700	ug/L			04/25/15 15:09	2000
cis-1,2-Dichloroethene	ND	2000	1600	ug/L			04/25/15 15:09	2000
cis-1,3-Dichloropropene	ND	2000	720	ug/L			04/25/15 15:09	2000
Cyclohexane	ND	2000	360	ug/L			04/25/15 15:09	2000
Dibromochloromethane	ND	2000	640	ug/L			04/25/15 15:09	2000
Dichlorodifluoromethane	ND	2000	1400	ug/L			04/25/15 15:09	2000
Ethylbenzene	ND	2000	1500	ug/L			04/25/15 15:09	2000
Isopropylbenzene	ND	2000	1600	ug/L			04/25/15 15:09	2000
Methyl acetate	ND	5000	1000	ug/L			04/25/15 15:09	2000
Methyl tert-butyl ether	ND	2000	320	ug/L			04/25/15 15:09	2000
Methylcyclohexane	ND	2000	320	ug/L			04/25/15 15:09	2000
Methylene Chloride	ND	2000	880	ug/L			04/25/15 15:09	2000
Styrene	ND	2000	1500	ug/L			04/25/15 15:09	2000
Tetrachloroethene	ND	2000	720	ug/L			04/25/15 15:09	2000
Toluene	ND	2000	1000	ug/L			04/25/15 15:09	2000

Client: New York State D.E.C.

Client Sample ID: HP HIGH

Date Collected: 04/14/15 16:55

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-9

ab campic ib. 400-70472-5

04/25/15 15:09

04/25/15 15:09

Matrix: Water

Date Received: 04/15/15 09:00
Method: 8260C - Volatile Organic Compounds by GC/MS - DL (Continued)

103

97

Method: 8260C - Volatile Orga	inic Compounds	by GC/MS -	DL (Continued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		2000	740	ug/L			04/25/15 15:09	2000
Trichloroethene	ND		2000	920	ug/L			04/25/15 15:09	2000
Trichlorofluoromethane	ND		2000	1800	ug/L			04/25/15 15:09	2000
Vinyl chloride	ND		2000	1800	ug/L			04/25/15 15:09	2000
Xylenes, Total	ND		4000	1300	ug/L			04/25/15 15:09	2000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		66 - 137			-		04/25/15 15:09	2000
4-Bromofluorobenzene (Surr)	99		73 120					04/25/15 15:09	2000

60 - 140

71 - 126

6

7

0

10

10

2000

Client: New York State D.E.C.

Date Collected: 04/14/15 15:00

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-10

Matrix: Water

Client Sample ID: SP FECA LOW

Method: 8260C - Volatile Organic	Compounds b	y GC/MS							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		10	8.2	ug/L			04/24/15 06:54	1
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			04/24/15 06:54	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			04/24/15 06:54	1
1,1,2-Trichloroethane	ND		10	2.3	ug/L			04/24/15 06:54	1
1,1-Dichloroethane	ND		10	3.8	ug/L			04/24/15 06:54	1
1,1-Dichloroethene	ND		10	2.9	ug/L			04/24/15 06:54	1
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			04/24/15 06:54	1
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			04/24/15 06:54	1
1,2-Dibromoethane	ND		10	7.3	ug/L			04/24/15 06:54	1
1,2-Dichlorobenzene	ND		10	7.9	ug/L			04/24/15 06:54	1
1,2-Dichloroethane	5.6	J	10	2.1	ug/L			04/24/15 06:54	1
1,2-Dichloropropane	ND		10	7.2	ug/L			04/24/15 06:54	1
1,3-Dichlorobenzene	ND		10	7.8	ug/L			04/24/15 06:54	1
1,4-Dichlorobenzene	ND		10	8.4	ug/L			04/24/15 06:54	1
2-Butanone (MEK)	ND		100	13	ug/L			04/24/15 06:54	1
2-Hexanone	ND		50	12	ug/L			04/24/15 06:54	1
4-Methyl-2-pentanone (MIBK)	ND		50	21	ug/L			04/24/15 06:54	1
Acetone	470		100	30	ug/L			04/24/15 06:54	1
Benzene	ND		10	4.1	ug/L			04/24/15 06:54	1
Bromodichloromethane	ND		10	3.9	ug/L			04/24/15 06:54	1
Bromoform	ND		10	2.6	ug/L			04/24/15 06:54	1

1.1.2.2 Fethors 1.2 Pethochemene ND 10 1.1.2 Tethors 1.2 Pethochemene ND 10 1.2 Supt. 1.1.2 Declaronemene ND 10 1.2 Supt. 1.1.2 Declaronemene ND 10 10 1.2 Supt. 10 11.2 Pethochemene ND 10 10 11.2 Tethors 1.2 Supt. 10 11.2 Pethochemene ND 10 10 11.2 Supt. 10 11.2 Pethochemene ND 10 11.2 Supt. 10 11.2 Pethochemene ND 10 10 11.2 Supt. 10 11.2 Pethochemene ND 10 10 11.2 Supt. 10 11.2 Pethochemene ND 10 10 11.2 Supt.						
1.1.2-Trichioroethane	1,1,2,2-Tetrachloroethane	ND	10	2.1 ug/L	04/24/15 06:54 10	
1.1-Dichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	3.1 ug/L	04/24/15 06:54 10	
1.1-Dicklorochemen ND 10 2,9 ugil. 0424/15 0854 10 1.2-Dicknoro-Schloropropane ND 10 3.1 ugil. 0424/15 0854 10 1.2-Dicknorochemen ND 10 3.9 ugil. 0424/15 0854 10 1.2-Dicknorochemen ND 10 7.3 ugil. 0424/15 0854 10 1.2-Dicknorochemen ND 10 7.9 ugil. 0424/15 0854 10 1.2-Dicknorochemen ND 10 7.9 ugil. 0424/15 0854 10 1.2-Dicknoropropane ND 10 7.9 ugil. 0424/15 0854 10 1.2-Dicknoropropane ND 10 7.9 ugil. 0424/15 0854 10 1.2-Dicknoropropane ND 10 7.8 ugil. 0424/15 0854 10 1.1-Dicknoropropane ND 10 7.8 ugil. 0424/15 0854 10 1.1-Dicknoromemen ND 10 10 84 ugil. 0424/15 0854 10 10 10 10 10 10 10 10 10 10 10 10 10	1,1,2-Trichloroethane	ND	10	2.3 ug/L	04/24/15 06:54 10	
1.2.4-Trichlorobenzene	1,1-Dichloroethane	ND	10	3.8 ug/L	04/24/15 06:54 10	
1.2-Dibromo-S-Chicopropane	1,1-Dichloroethene	ND	10	2.9 ug/L	04/24/15 06:54 10	
1.2-Dichlorochtane ND 10 7.3 ugL 0424/15 0654 10 1.2-Dichlorochtane 6.6 J 10 2.7 ugL 0424/15 0654 10 1.2-Dichlorochtane 6.6 J 10 2.7 ugL 0424/15 0654 10 1.2-Dichlorochtane ND 10 7.2 ugL 0424/15 0654 10 1.4-Dichlorochane ND 10 8.4 ugL 0424/15 0654 10 1.4-Dichlorochane ND 10 8.4 ugL 0424/15 0654 10 2-Bulanone (MEK) ND 50 12 ugL 0424/15 0654 10 4-Methyl-Zeparlanone (MIBK) ND 50 21 ugL 0424/15 0654 10 4-Methyl-Zeparlanone (MIBK) ND 50 21 ugL 0424/15 0654 10 8-monder ND 10 6.9 ugL 0424/15 0654 10 Bromach ND 10 6.9 ugL 0424/	1,2,4-Trichlorobenzene	ND	10	4.1 ug/L	04/24/15 06:54 10	
1,2-Dichlorobenzane 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	1,2-Dibromo-3-Chloropropane	ND	10	3.9 ug/L	04/24/15 06:54 10	
1,2-Dichloroethane 5.6 J 10 2.1 UgL 04/24/15 06:54 10 1,2-Dichloropropane ND 10 7.2 UgL 04/24/15 06:54 10 1,2-Dichlorobernae ND 10 7.8 UgL 04/24/15 06:54 10 1,4-Dichlorobernae ND 10 8.4 UgL 04/24/15 06:54 10 2-Hatanne (MEK) ND 50 12 UgL 04/24/15 06:54 10 2-Hatannee (MIBK) ND 50 21 UgL 04/24/15 06:54 10 4-Methyl-2-pentanone (MIBK) ND 50 21 UgL 04/24/15 06:54 10 8-rexene ND 10 4.1 UgL 04/24/15 06:54 10 8-rexene ND 10 4.1 UgL 04/24/15 06:54 10 8-romoform ND 10 6.9 UgL 04/24/15 06:54 10 8-romoform ND 10 6.9 UgL 04/24/15 06:54 10 8-romoform ND 10 6.9 UgL 04/24/15 06:54 10 <	1,2-Dibromoethane	ND	10	7.3 ug/L	04/24/15 06:54 10	
1.2-Dichloropropane ND 10 7.2 ugl. 04/24/15 06:54 10 1.3-Dichlorobenzene ND 10 7.8 ugl. 04/24/15 06:54 10 1.3-Dichlorobenzene ND 10 8.4 ugl. 04/24/15 06:54 10 28-bt. 05 10 8.4 ugl. 04/24/15 06:54 10 28-bt. 05 10 8.4 ugl. 04/24/15 06:54 10 28-bt. 05 10 10 8.4 ugl. 04/24/15 06:54 10 28-bt. 05 10 10 10 13 ugl. 04/24/15 06:54 10 28-bt. 05 10 10 10 13 ugl. 04/24/15 06:54 10 28-bt. 05 12 ugl.	1,2-Dichlorobenzene	ND	10	7.9 ug/L	04/24/15 06:54 10	
1,3-Dichlorobenzene ND 10 7.8 ugl. 04/24/15 06:54 10 1,4-Dichlorobenzene ND 10 8.4 ugl. 04/24/15 06:54 10 2-Blatanone (MEK) ND 100 13 ugl. 04/24/15 06:54 10 2-Hexanone ND 50 21 ugl. 04/24/15 06:54 10 4-Methyl-2-pentanone (MBK) ND 50 21 ugl. 04/24/15 06:54 10 Benzane ND 10 4.1 ugl. 04/24/15 06:54 10 Bernane ND 10 4.1 ugl. 04/24/15 06:54 10 Bromoform ND 10 6.9 ugl. 04/24/15 06:54 10 Bromofethane 10 10 6.9 ugl. 04/24/15 06:54 10 Carbon disulfide ND 10 2.7 ugl. 04/24/15 06:54 10 Carbon disulfide ND 10 2.7 ugl. 04/24/15 06:54 10 Chlorobenzene ND 10 2.7 ugl. 04/24/15 06:54 10 <td>1,2-Dichloroethane</td> <td>5.6 J</td> <td>10</td> <td>2.1 ug/L</td> <td>04/24/15 06:54 10</td> <td></td>	1,2-Dichloroethane	5.6 J	10	2.1 ug/L	04/24/15 06:54 10	
1,4-Dichlorobenzene ND 10 8.4 ugL CM24/15 06:54 10 2-Butanone (MEK) ND 100 13 ugL CM24/15 06:54 10 2-Hexanone ND 50 12 ugL CM24/15 06:54 10 4-Methyl-2-pentanone (MIBK) ND 50 21 ugL CM24/15 06:54 10 Acetone 470 100 30 ugL CM24/15 06:54 10 Bromacillations ND 10 39 ugL CM24/15 06:54 10 Bromoderiane ND 10 2.8 ugL CM24/15 06:54 10 Bromoderiane 10 10 2.9 ugL CM24/15 06:54 10 Bromoderiane 10 10 1.9 ugL CM24/15 06:54 10 Carbon fearchloride ND 10 1.9 ugL CM24/15 06:54 10 Chlorobenzene ND 10 3.2 ugL CM24/15 06:54 10	1,2-Dichloropropane	ND	10	7.2 ug/L	04/24/15 06:54 10	
2-Butanone (MEK) ND 100 13 ug/L 04/24/15 06:54 10 2-Hexanone ND 60 12 ug/L 04/24/15 06:54 10 4-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 04/24/15 06:54 10 Acetone 470 100 30 ug/L 04/24/15 06:54 10 Benzane ND 10 4.1 ug/L 04/24/15 06:54 10 Bromodichoromethane ND 10 2.8 ug/L 04/24/15 06:54 10 Bromodichoromethane 10 10 6.9 ug/L 04/24/15 06:54 10 Bromodichoromethane 10 10 6.9 ug/L 04/24/15 06:54 10 Bromodichoromethane 10 10 6.9 ug/L 04/24/15 06:54 10 Carbon disulfde ND 10 7.5 ug/L 04/24/15 06:54 10 Chloromethane ND 10 7.5 ug/L 04/24/15 06:54 <td< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td>10</td><td>7.8 ug/L</td><td>04/24/15 06:54 10</td><td></td></td<>	1,3-Dichlorobenzene	ND	10	7.8 ug/L	04/24/15 06:54 10	
2-Hexanone	1,4-Dichlorobenzene	ND	10	8.4 ug/L	04/24/15 06:54 10	
4-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 04/24/15 06:54 10 Acctone 470 100 30 ug/L 04/24/15 06:54 10 Bernane ND 10 4.1 ug/L 04/24/15 06:54 10 Bromodichloromethane ND 10 2.5 ug/L 04/24/15 06:54 10 Bromodichloromethane 10 10 6.9 ug/L 04/24/15 06:54 10 Bromodichloromethane 10 10 6.9 ug/L 04/24/15 06:54 10 Bromodichloromethane 10 10 6.9 ug/L 04/24/15 06:54 10 Carbon Idulfide ND 10 2.7 ug/L 04/24/15 06:54 10 Carbon Idulfide ND 10 2.7 ug/L 04/24/15 06:54 10 Carbon Idulfide ND 10 2.7 ug/L 04/24/15 06:54 10 Chloroform 16 10 3.8 ug/L 04/24/15 06:54	2-Butanone (MEK)	ND	100	13 ug/L	04/24/15 06:54 10	
Acetone 470 100 30 ug/L 04/24/15 06:54 10 Benzene ND 10 4.1 ug/L 04/24/15 06:54 10 Bromodichloromethane ND 10 3.9 ug/L 04/24/15 06:54 10 Bromodiform ND 10 6.9 ug/L 04/24/15 06:54 10 Bromodifulatifide ND 10 6.9 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 1.9 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 1.9 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 2.7 ug/L 04/24/15 06:54 10 Chicroform ND 10 3.2 ug/L 04/24/15 06:54 10 Chlorodentane 80 10 3.5 ug/L 04/24/15 06:54 10 Chlorodentane 16 10 3.4 ug/L 04/24/15 06:54 10 <	2-Hexanone	ND	50	12 ug/L	04/24/15 06:54 10	
Benzene ND 10 4.1 ug/L 04/24/15 06:54 10 Bromodichloromethane ND 10 3.9 ug/L 04/24/15 06:54 10 Bromoform ND 10 2.6 ug/L 04/24/15 06:54 10 Bromomethane 10 10 6.9 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 1.9 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 2.7 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 2.7 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 2.7 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 3.2 ug/L 04/24/15 06:54 10 Chlorode 10 10 3.2 ug/L 04/24/15 06:54 10 Chloroderbane ND 10 3.6 ug/L 04/24/15 06:54 10	4-Methyl-2-pentanone (MIBK)	ND	50	21 ug/L	04/24/15 06:54 10	
Bromodichloromethane ND 10 3.9 ug/L 04/24/15 06:54 10 Bromoform ND 10 2.6 ug/L 04/24/15 06:54 10 Bromomethane 10 10 6.9 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 1.9 ug/L 04/24/15 06:54 10 Carbon detrachloride ND 10 2.7 ug/L 04/24/15 06:54 10 Chloroform ND 10 3.2 ug/L 04/24/15 06:54 10 Chloroform 16 10 3.4 ug/L 04/24/15 06:54 10 Chloromethane ND 10 3.5 ug/L 04/24/15 06:54 10 Chloromethane ND 10 8.1 ug/L 04/24/15 06:54 10 Chloromethane ND 10 8.1 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 1.8 ug/L 04/24/15 06:54 10 <	Acetone	470	100	30 ug/L	04/24/15 06:54 10	
Bromoform ND 10 2.6 lg/L 04/24/15 06:54 10 Bromomethane 10 10 6.9 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 1.9 ug/L 04/24/15 06:54 10 Carbon tetrachloride ND 10 2.7 ug/L 04/24/15 06:54 10 Chlorobenzene ND 10 3.5 ug/L 04/24/15 06:54 10 Chlorobethane ND 10 3.2 ug/L 04/24/15 06:54 10 Chloromethane 380 10 3.5 ug/L 04/24/15 06:54 10 Chloromethane 380 10 3.5 ug/L 04/24/15 06:54 10 Chloromethane ND 10 8.1 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 8.1 ug/L 04/24/15 06:54 10 Dibromochloromethane ND 10 6.8 ug/L 04/24/15 06:54 10 <td>Benzene</td> <td>ND</td> <td>10</td> <td>4.1 ug/L</td> <td>04/24/15 06:54 10</td> <td></td>	Benzene	ND	10	4.1 ug/L	04/24/15 06:54 10	
Bromomethane 10 6.9 ug/L 04/24/15 06:54 10 Carbon disulfide ND 10 1.9 ug/L 04/24/15 06:54 10 Carbon tetrachloride ND 10 1.9 ug/L 04/24/15 06:54 10 Chloroene ND 10 7.5 ug/L 04/24/15 06:54 10 Chloroethane ND 10 3.2 ug/L 04/24/15 06:54 10 Chloroform 16 10 3.4 ug/L 04/24/15 06:54 10 Chloroethane ND 10 8.1 ug/L 04/24/15 06:54 10 cis-1,3-Dichloropropene ND 10 1.8 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 6.8 ug/L 04/24/15 06:54 10 Dibromochloromethane </td <td>Bromodichloromethane</td> <td>ND</td> <td>10</td> <td>3.9 ug/L</td> <td>04/24/15 06:54 10</td> <td></td>	Bromodichloromethane	ND	10	3.9 ug/L	04/24/15 06:54 10	
Carbon disulfide ND 10 1.9 ug/L 04/24/15 06:54 10 Carbon tetrachloride ND 10 2.7 ug/L 04/24/15 06:54 10 Chlorobenzene ND 10 7.5 ug/L 04/24/15 06:54 10 Chloroform 16 10 3.2 ug/L 04/24/15 06:54 10 Chloromethane 380 10 3.5 ug/L 04/24/15 06:54 10 Chloromethane 380 10 3.5 ug/L 04/24/15 06:54 10 Cis-1,2-Dichloroptene ND 10 8.1 ug/L 04/24/15 06:54 10 cis-1,2-Dichloroptene ND 10 8.1 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 8.2 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 6.8 ug/L 04/24/15 06:54 10	Bromoform	ND	10	2.6 ug/L	04/24/15 06:54 10	
Carbon tetrachloride ND 10 2.7 ug/L 04/24/15 06:54 10 Chlorobenzene ND 10 7.5 ug/L 04/24/15 06:54 10 Chloroethane ND 10 3.2 ug/L 04/24/15 06:54 10 Chloroform 16 10 3.4 ug/L 04/24/15 06:54 10 Chloromethane 380 10 3.5 ug/L 04/24/15 06:54 10 cis-1,2-Dichloroethene ND 10 8.1 ug/L 04/24/15 06:54 10 cis-1,2-Dichloropropene ND 10 3.6 ug/L 04/24/15 06:54 10 Cyclo-baxne ND 10 3.6 ug/L 04/24/15 06:54 10 Dichlorodifluoromethane ND 10 8.2 ug/L 04/24/15 06:54 10 Dichlorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.4 ug/L 04/24/15 06:54 10 Rethylacetale ND 10 7.9 ug/L 04/24/15 06:54 10 <td>Bromomethane</td> <td>10</td> <td>10</td> <td>6.9 ug/L</td> <td>04/24/15 06:54 10</td> <td></td>	Bromomethane	10	10	6.9 ug/L	04/24/15 06:54 10	
Chlorobenzene ND 10 7.5 kg/L 04/24/15 06:54 10 Chloroethane ND 10 3.2 kg/L 04/24/15 06:54 10 Chloroform 16 10 3.4 kg/L 04/24/15 06:54 10 Chloromethane 380 10 3.5 kg/L 04/24/15 06:54 10 cis-1,3-Dichloropthene ND 10 8.1 kg/L 04/24/15 06:54 10 cis-1,3-Dichloroptopene ND 10 3.6 kg/L 04/24/15 06:54 10 Cyclohexane ND 10 1.8 kg/L 04/24/15 06:54 10 Cyclohexane ND 10 8.8 kg/L 04/24/15 06:54 10 Dibromochloromethane ND 10 6.8 kg/L 04/24/15 06:54 10 Dichlorodifluoromethane ND 10 7.9 kg/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.9 kg/L 04/24/15 06:54 10 Methyl kert-butyl ether ND 10 1.6 kg/L 04/24/15 06:54 10	Carbon disulfide	ND	10	1.9 ug/L	04/24/15 06:54 10	
Chloroethane ND 10 3.2 ug/L 04/24/15 06:54 10 Chloroform 16 10 3.4 ug/L 04/24/15 06:54 10 Chloromethane 380 10 3.5 ug/L 04/24/15 06:54 10 cis-1,2-Dichloropthene ND 10 8.1 ug/L 04/24/15 06:54 10 cis-1,3-Dichloroptopene ND 10 8.6 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 1.8 ug/L 04/24/15 06:54 10 Dichlorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl certabutyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methylocyclohexane ND 10 1.6 ug/L 04/24/15 06:54	Carbon tetrachloride	ND	10	2.7 ug/L	04/24/15 06:54 10	
Chloroform 16 10 3.4 ug/L 04/24/15 06:54 10 Chloromethane 380 10 3.5 ug/L 04/24/15 06:54 10 Cis-1,3-Dichloroethene ND 10 8.1 ug/L 04/24/15 06:54 10 cis-1,3-Dichloropropene ND 10 3.6 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 3.8 ug/L 04/24/15 06:54 10 Dibromochloromethane ND 10 3.2 ug/L 04/24/15 06:54 10 Dichlorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.4 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl acetate ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl acetate ND 10 1.6 ug/L 04/24/15 06:54	Chlorobenzene	ND	10	7.5 ug/L	04/24/15 06:54 10	
Chloromethane 380 10 3.5 ug/L 04/24/15 06:54 10 cis-1,2-Dichloroethene ND 10 8.1 ug/L 04/24/15 06:54 10 cis-1,3-Dichloropropene ND 10 3.6 ug/L 04/24/15 06:54 10 Cycloexane ND 10 1.8 ug/L 04/24/15 06:54 10 Dibromochloromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.4 ug/L 04/24/15 06:54 10 Isopropylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl acetate ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl per butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methylocylohexane ND 10 4.4 ug/L 04/24/15 06:54	Chloroethane	ND	10	3.2 ug/L	04/24/15 06:54 10	
cis-1,2-Dichloroethene ND 10 8.1 ug/L 04/24/15 06:54 10 cis-1,3-Dichloropropene ND 10 3.6 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 1.8 ug/L 04/24/15 06:54 10 Dichorochloromethane ND 10 3.2 ug/L 04/24/15 06:54 10 Dichorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Dichorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl scetate ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl scetate ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl scetate ND 10 1.6 ug/L 04/24/15 06:54 </td <td>Chloroform</td> <td>16</td> <td>10</td> <td>3.4 ug/L</td> <td>04/24/15 06:54 10</td> <td></td>	Chloroform	16	10	3.4 ug/L	04/24/15 06:54 10	
cis-1,3-Dichloropropene ND 10 3.6 ug/L 04/24/15 06:54 10 Cyclohexane ND 10 1.8 ug/L 04/24/15 06:54 10 Dibromochloromethane ND 10 3.2 ug/L 04/24/15 06:54 10 Dichlorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.4 ug/L 04/24/15 06:54 10 Isopropylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl acetate ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl cyclohexane ND 10 1.6 ug/L	Chloromethane	380	10	3.5 ug/L	04/24/15 06:54 10	
Cyclohexane ND 10 1.8 ug/L 04/24/15 06:54 10 Dibromochloromethane ND 10 3.2 ug/L 04/24/15 06:54 10 Dichlorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.4 ug/L 04/24/15 06:54 10 Isopropylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl acetate ND 25 5.0 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L	cis-1,2-Dichloroethene	ND	10	8.1 ug/L	04/24/15 06:54 10	
Dibromochloromethane ND 10 3.2 ug/L 04/24/15 06:54 10 Dichlorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.4 ug/L 04/24/15 06:54 10 Isopropylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl acetate ND 10 1.6 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 1.6 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 4.4 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 7.3 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 7.3 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 7.3 ug/L 04/24/15	cis-1,3-Dichloropropene	ND	10	3.6 ug/L	04/24/15 06:54 10	
Dichlorodifluoromethane ND 10 6.8 ug/L 04/24/15 06:54 10 Ethylbenzene ND 10 7.4 ug/L 04/24/15 06:54 10 Isopropylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl acetate ND 25 5.0 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 1.6 ug/L 04/24/15 06:54 10 Methylene Chloride 130 10 4.4 ug/L 04/24/15 06:54 10 Styrene ND 10 7.3 ug/L 04/24/15 06:54 10 Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Trans-1,2-Dichloroethene ND 10 5.1 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 3.7 ug/L 04/24/15 06:54<	Cyclohexane	ND	10	1.8 ug/L	04/24/15 06:54 10	
Ethylbenzene ND 10 7.4 ug/L 04/24/15 06:54 10 Isopropylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl acetate ND 25 5.0 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 1.6 ug/L 04/24/15 06:54 10 Methylene Chloride 130 10 4.4 ug/L 04/24/15 06:54 10 Styrene ND 10 7.3 ug/L 04/24/15 06:54 10 Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 <td< td=""><td>Dibromochloromethane</td><td>ND</td><td>10</td><td>3.2 ug/L</td><td>04/24/15 06:54 10</td><td></td></td<>	Dibromochloromethane	ND	10	3.2 ug/L	04/24/15 06:54 10	
Sopropylbenzene ND 10 7.9 ug/L 04/24/15 06:54 10 Methyl acetate ND 25 5.0 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 1.6 ug/L 04/24/15 06:54 10 Methylene Chloride 130 10 4.4 ug/L 04/24/15 06:54 10 Methylene Chloride ND 10 7.3 ug/L 04/24/15 06:54 10 Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 Trans-1,2-Dichloroethene ND 10 5.1 ug/L 04/24/15 06:54 10 Trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 8.8 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 10 10 10 10 10 10 1	Dichlorodifluoromethane	ND	10	6.8 ug/L	04/24/15 06:54 10	
Methyl acetate ND 25 5.0 ug/L 04/24/15 06:54 10 Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 1.6 ug/L 04/24/15 06:54 10 Methylene Chloride 130 10 4.4 ug/L 04/24/15 06:54 10 Styrene ND 10 7.3 ug/L 04/24/15 06:54 10 Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 <t< td=""><td>Ethylbenzene</td><td>ND</td><td>10</td><td>7.4 ug/L</td><td>04/24/15 06:54 10</td><td></td></t<>	Ethylbenzene	ND	10	7.4 ug/L	04/24/15 06:54 10	
Methyl tert-butyl ether ND 10 1.6 ug/L 04/24/15 06:54 10 Methylcyclohexane ND 10 1.6 ug/L 04/24/15 06:54 10 Methylene Chloride 130 10 4.4 ug/L 04/24/15 06:54 10 Styrene ND 10 7.3 ug/L 04/24/15 06:54 10 Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Isopropylbenzene	ND	10	7.9 ug/L	04/24/15 06:54 10	
Methylcyclohexane ND 10 1.6 ug/L 04/24/15 06:54 10 Methylene Chloride 130 10 4.4 ug/L 04/24/15 06:54 10 Styrene ND 10 7.3 ug/L 04/24/15 06:54 10 Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Methyl acetate	ND	25	5.0 ug/L	04/24/15 06:54 10	
Methylene Chloride 130 10 4.4 ug/L 04/24/15 06:54 10 Styrene ND 10 7.3 ug/L 04/24/15 06:54 10 Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Methyl tert-butyl ether	ND	10	1.6 ug/L	04/24/15 06:54 10	
Styrene ND 10 7.3 ug/L 04/24/15 06:54 10 Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Methylcyclohexane	ND	10	1.6 ug/L	04/24/15 06:54 10	
Tetrachloroethene ND 10 3.6 ug/L 04/24/15 06:54 10 Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Methylene Chloride	130	10	4.4 ug/L	04/24/15 06:54 10	
Toluene ND 10 5.1 ug/L 04/24/15 06:54 10 trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Styrene	ND	10	7.3 ug/L	04/24/15 06:54 10	
trans-1,2-Dichloroethene ND 10 9.0 ug/L 04/24/15 06:54 10 trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Tetrachloroethene	ND	10	3.6 ug/L	04/24/15 06:54 10	
trans-1,3-Dichloropropene ND 10 3.7 ug/L 04/24/15 06:54 10 Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Toluene	ND	10	5.1 ug/L	04/24/15 06:54 10	
Trichloroethene ND 10 4.6 ug/L 04/24/15 06:54 10 Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	trans-1,2-Dichloroethene	ND	10	9.0 ug/L	04/24/15 06:54 10	
Trichlorofluoromethane ND 10 8.8 ug/L 04/24/15 06:54 10 Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	trans-1,3-Dichloropropene	ND	10	3.7 ug/L	04/24/15 06:54 10	
Vinyl chloride ND 10 9.0 ug/L 04/24/15 06:54 10	Trichloroethene	ND	10	4.6 ug/L	04/24/15 06:54 10	
·	Trichlorofluoromethane	ND	10	8.8 ug/L	04/24/15 06:54 10	
Xylenes, Total ND 20 6.6 ug/L 04/24/15 06:54 10	Vinyl chloride	ND	10	9.0 ug/L	04/24/15 06:54 10	
	Xylenes, Total	ND	20	6.6 ug/L	04/24/15 06:54 10	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-10

ab campio ibi 400 70412 10

TestAmerica Job ID: 480-78472-1

Matrix: Water

Client Sample ID: SP FECA LOW Date Collected: 04/14/15 15:00

Date Received: 04/15/15 09:00

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110	66 - 137		4/24/15 06:54	10
4-Bromofluorobenzene (Surr)	95	73 - 120	0	4/24/15 06:54	10
Dibromofluoromethane (Surr)	106	60 - 140	0	4/24/15 06:54	10
Toluene-d8 (Surr)	99	71 - 126	o	4/24/15 06:54	10

6

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: SP FEC MID

Lab Sample ID: 480-78472-11 Date Collected: 04/14/15 15:05

Matrix: Water

Date Received: 04/15/15 09:00

Analyte	Result Qualifier	RL	MDL	Unit	D Prepa	red Analyzed	Dil Fa
1,1,1-Trichloroethane	ND -	10	8.2	ug/L		04/24/15 07:21	
1,1,2,2-Tetrachloroethane	ND	10	2.1	ug/L		04/24/15 07:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	3.1	ug/L		04/24/15 07:21	1
1,1,2-Trichloroethane	5.7 J	10	2.3	ug/L		04/24/15 07:21	
1,1-Dichloroethane	ND	10	3.8	ug/L		04/24/15 07:21	•
1,1-Dichloroethene	ND	10	2.9	ug/L		04/24/15 07:21	•
1,2,4-Trichlorobenzene	ND	10	4.1	ug/L		04/24/15 07:21	
1,2-Dibromo-3-Chloropropane	ND	10	3.9	ug/L		04/24/15 07:21	
1,2-Dibromoethane	ND	10	7.3	ug/L		04/24/15 07:21	
,2-Dichlorobenzene	ND	10	7.9	ug/L		04/24/15 07:21	
,2-Dichloroethane	13	10	2.1	ug/L		04/24/15 07:21	
,2-Dichloropropane	ND	10		ug/L		04/24/15 07:21	
,3-Dichlorobenzene	ND	10		ug/L		04/24/15 07:21	
,4-Dichlorobenzene	ND	10		ug/L		04/24/15 07:21	
-Butanone (MEK)	ND	100		ug/L		04/24/15 07:21	
-Hexanone	ND	50		ug/L		04/24/15 07:21	
-Methyl-2-pentanone (MIBK)	ND	50		ug/L		04/24/15 07:21	
Acetone	430	100		ug/L		04/24/15 07:21	
Benzene	ND	10		ug/L		04/24/15 07:21	
Bromodichloromethane	ND	10		ug/L		04/24/15 07:21	
romoform	ND	10		ug/L		04/24/15 07:21	
		10		ug/L		04/24/15 07:21	
Bromomethane Carbon disulfide	8.9 J ND	10				04/24/15 07:21	
	ND ND			ug/L			
Carbon tetrachloride		10		ug/L		04/24/15 07:21	
Chlorobenzene	ND	10		ug/L		04/24/15 07:21	
Chloroethane	ND	10		ug/L		04/24/15 07:21	
Chloroform	24	10		ug/L		04/24/15 07:21	
Chloromethane	680	10		ug/L		04/24/15 07:21	
is-1,2-Dichloroethene	ND	10	8.1	•		04/24/15 07:21	
is-1,3-Dichloropropene	ND	10		ug/L		04/24/15 07:21	
Cyclohexane	ND	10		ug/L		04/24/15 07:21	
Dibromochloromethane	ND	10		ug/L		04/24/15 07:21	
Dichlorodifluoromethane	ND	10		ug/L		04/24/15 07:21	
thylbenzene	ND	10	7.4	ug/L		04/24/15 07:21	
sopropylbenzene	ND	10		ug/L		04/24/15 07:21	
Methyl acetate	ND	25	5.0	ug/L		04/24/15 07:21	
lethyl tert-butyl ether	ND	10	1.6	ug/L		04/24/15 07:21	
lethylcyclohexane	ND	10	1.6	ug/L		04/24/15 07:21	
lethylene Chloride	420	10	4.4	ug/L		04/24/15 07:21	
tyrene	ND	10	7.3	ug/L		04/24/15 07:21	
etrachloroethene	ND	10	3.6	ug/L		04/24/15 07:21	
oluene	ND	10	5.1	ug/L		04/24/15 07:21	
ans-1,2-Dichloroethene	ND	10	9.0	ug/L		04/24/15 07:21	
rans-1,3-Dichloropropene	ND	10	3.7	ug/L		04/24/15 07:21	
richloroethene	ND	10		ug/L		04/24/15 07:21	
richlorofluoromethane	ND	10	8.8	ug/L		04/24/15 07:21	
/inyl chloride	ND	10		ug/L		04/24/15 07:21	
(ylenes, Total	ND	20		ug/L		04/24/15 07:21	

Client: New York State D.E.C.

Date Received: 04/15/15 09:00

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: SP FEC MID

Lab Sample ID: 480-78472-11 Date Collected: 04/14/15 15:05

Matrix: Water

Surrogate	%Recovery	Qualifier Limit	s	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	66 - 1	37		04/24/15 07:21	10
4-Bromofluorobenzene (Surr)	95	73 - 1	20		04/24/15 07:21	10
Dibromofluoromethane (Surr)	106	60 - 1	40		04/24/15 07:21	10
Toluene-d8 (Surr)	99	71 - 1	26		04/24/15 07:21	10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-12

Matrix: Water

Client Sample ID: SP FECA HIGH

Date Collected: 04/14/15 15:10 Date Received: 04/15/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		10	8.2	ug/L			04/24/15 07:49	1
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			04/24/15 07:49	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			04/24/15 07:49	1
I,1,2-Trichloroethane	2.4	J	10	2.3	ug/L			04/24/15 07:49	1
I,1-Dichloroethane	ND		10	3.8	ug/L			04/24/15 07:49	1
1,1-Dichloroethene	ND		10	2.9	ug/L			04/24/15 07:49	1
I,2,4-Trichlorobenzene	ND		10	4.1	ug/L			04/24/15 07:49	1
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			04/24/15 07:49	
,2-Dibromoethane	ND		10	7.3	ug/L			04/24/15 07:49	
,2-Dichlorobenzene	ND		10	7.9	ug/L			04/24/15 07:49	
I,2-Dichloroethane	7.0	J	10		ug/L			04/24/15 07:49	
,2-Dichloropropane	ND		10		ug/L			04/24/15 07:49	
,3-Dichlorobenzene	ND		10		ug/L			04/24/15 07:49	
,4-Dichlorobenzene	ND		10		ug/L			04/24/15 07:49	
P-Butanone (MEK)	ND		100		ug/L			04/24/15 07:49	
2-Hexanone	ND		50		ug/L			04/24/15 07:49	
-Methyl-2-pentanone (MIBK)	ND		50		ug/L			04/24/15 07:49	
Acetone	460		100		ug/L			04/24/15 07:49	
Benzene	ND		10		ug/L			04/24/15 07:49	
Bromodichloromethane	ND		10		ug/L			04/24/15 07:49	
Bromoform	ND		10		ug/L			04/24/15 07:49	
Bromomethane	ND		10		ug/L			04/24/15 07:49	
Carbon disulfide	ND		10		ug/L			04/24/15 07:49	
Carbon tetrachloride	ND		10		ug/L			04/24/15 07:49	
Chlorobenzene	ND		10		ug/L			04/24/15 07:49	
Chloroethane	ND		10		ug/L			04/24/15 07:49	
Chloroform	18		10		ug/L			04/24/15 07:49	
			10		ug/L			04/24/15 07:49	
Chloromethane	520 ND		10	8.1					
is-1,2-Dichloroethene	ND ND		10		ug/L ug/L			04/24/15 07:49 04/24/15 07:49	
sis-1,3-Dichloropropene									
Cyclohexane	ND		10		ug/L			04/24/15 07:49	
Dibromochloromethane	ND		10		ug/L			04/24/15 07:49	
Dichlorodifluoromethane	ND		10		ug/L			04/24/15 07:49	
Ethylbenzene	ND		10		ug/L			04/24/15 07:49	
sopropylbenzene	ND		10		ug/L			04/24/15 07:49	
Methyl acetate	ND		25		ug/L			04/24/15 07:49	
Methyl tert-butyl ether	ND		10		ug/L			04/24/15 07:49	
Methylcyclohexane	ND		10		ug/L			04/24/15 07:49	
Methylene Chloride	380		10		ug/L			04/24/15 07:49	
Styrene	ND		10		ug/L			04/24/15 07:49	
etrachloroethene	4.7	J	10		ug/L			04/24/15 07:49	
oluene	ND		10		ug/L			04/24/15 07:49	
rans-1,2-Dichloroethene	ND		10		ug/L			04/24/15 07:49	
rans-1,3-Dichloropropene	ND		10		ug/L			04/24/15 07:49	
richloroethene	ND		10		ug/L			04/24/15 07:49	
richlorofluoromethane	ND		10		ug/L			04/24/15 07:49	
/inyl chloride	ND		10	9.0	ug/L			04/24/15 07:49	

TestAmerica Buffalo

4

6

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78472-12

TestAmerica Job ID: 480-78472-1

Client Sample ID: SP FECA HIGH Lab Sam

Matrix: Water

Date Collected: 04/14/15 15:10 Date Received: 04/15/15 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	66 - 137		04/24/15 07:49	10
4-Bromofluorobenzene (Surr)	92	73 - 120		04/24/15 07:49	10
Dibromofluoromethane (Surr)	105	60 - 140		04/24/15 07:49	10
Toluene-d8 (Surr)	97	71 - 126		04/24/15 07:49	10

5

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-13

Matrix: Water

Client Sample ID: SP NAOH LOW

Date Collected: 04/14/15 15:15 Date Received: 04/15/15 09:00

,1,1-Trichloroethane ,1,2,2-Tetrachloroethane ,1,2-Trichloro-1,2,2-trifluoroethane		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,2,2-Tetrachloroethane	ND			- //			04/04/45 00 40	
	ND	40	33	•			04/24/15 08:16	4
,1,2-1ricnioro-1,2,2-trifluoroetnane	ND ND	40		ug/L			04/24/15 08:16	4
4.0 T.2.61	ND ND	40		ug/L			04/24/15 08:16	4
,1,2-Trichloroethane	ND	40		ug/L			04/24/15 08:16	4
,1-Dichloroethane	ND	40		ug/L			04/24/15 08:16	4
,1-Dichloroethene	ND	40		ug/L			04/24/15 08:16	4
,2,4-Trichlorobenzene	ND	40		ug/L			04/24/15 08:16	4
,2-Dibromo-3-Chloropropane	ND	40		ug/L			04/24/15 08:16	4
,2-Dibromoethane	ND	40		ug/L			04/24/15 08:16	
,2-Dichlorobenzene	ND	40	32	ug/L			04/24/15 08:16	4
,2-Dichloroethane	ND	40	8.4	ug/L			04/24/15 08:16	4
,2-Dichloropropane	ND	40	29	ug/L			04/24/15 08:16	
,3-Dichlorobenzene	ND	40	31	ug/L			04/24/15 08:16	4
,4-Dichlorobenzene	ND	40	34	ug/L			04/24/15 08:16	4
-Butanone (MEK)	ND	400	53	ug/L			04/24/15 08:16	4
-Hexanone	ND	200	50	ug/L			04/24/15 08:16	4
-Methyl-2-pentanone (MIBK)	ND	200	84	ug/L			04/24/15 08:16	4
Acetone	620	400	120	ug/L			04/24/15 08:16	4
Benzene	ND	40	16	ug/L			04/24/15 08:16	
romodichloromethane	ND	40	16	ug/L			04/24/15 08:16	
romoform	ND	40	10	ug/L			04/24/15 08:16	
romomethane	ND	40	28	ug/L			04/24/15 08:16	
Carbon disulfide	ND	40	7.6	ug/L			04/24/15 08:16	
Carbon tetrachloride	ND	40	11	ug/L			04/24/15 08:16	4
Chlorobenzene	ND	40	30	ug/L			04/24/15 08:16	
Chloroethane	ND	40	13	ug/L			04/24/15 08:16	
Chloroform	ND	40		ug/L			04/24/15 08:16	
Chloromethane	ND	40		ug/L			04/24/15 08:16	
is-1,2-Dichloroethene	ND	40		ug/L			04/24/15 08:16	
is-1,3-Dichloropropene	ND	40		ug/L			04/24/15 08:16	
Cyclohexane	ND	40		ug/L			04/24/15 08:16	
Dibromochloromethane	ND	40		ug/L			04/24/15 08:16	
Dichlorodifluoromethane	ND	40		ug/L			04/24/15 08:16	
Ethylbenzene	ND	40		ug/L			04/24/15 08:16	
sopropylbenzene	ND	40		ug/L			04/24/15 08:16	
Methyl acetate	ND	100		•			04/24/15 08:16	
lethyl tert-butyl ether	ND	40		ug/L ug/L			04/24/15 08:16	
	ND							
Methylcyclohexane		40		ug/L			04/24/15 08:16	
lethylene Chloride	ND	40		ug/L			04/24/15 08:16	
Styrene	ND	40		ug/L			04/24/15 08:16	
etrachloroethene	910 ND	40		ug/L			04/24/15 08:16	•
oluene	ND	40		ug/L			04/24/15 08:16	
rans-1,2-Dichloroethene	ND	40		ug/L			04/24/15 08:16	
rans-1,3-Dichloropropene	ND	40		ug/L			04/24/15 08:16	
richloroethene	ND	40		ug/L			04/24/15 08:16	
richlorofluoromethane	ND	40		ug/L			04/24/15 08:16	
'inyl chloride	ND	40	36	ug/L			04/24/15 08:16	

TestAmerica Buffalo

_

4

Ω

9

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: SP NAOH LOW

Date Collected: 04/14/15 15:15 Date Received: 04/15/15 09:00 Lab Sample ID: 480-78472-13

Matrix: Water

%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
110	66 - 137		04/24/15 08:16	40
93	73 _ 120		04/24/15 08:16	40
106	60 - 140		04/24/15 08:16	40
97	71 - 126		04/24/15 08:16	40
	110 93 106	110 66 - 137 93 73 - 120 106 60 - 140	110 66 - 137 93 73 - 120 106 60 - 140	110 66 - 137 04/24/15 08:16 93 73 - 120 04/24/15 08:16 106 60 - 140 04/24/15 08:16

5

5

ŏ

Client: New York State D.E.C.

Date Received: 04/15/15 09:00

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-14

Matrix: Water

Client Sample ID: SP NAOH MID Date Collected: 04/14/15 15:20

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
,1,1-Trichloroethane	ND	5.0	4.1	ug/L			04/25/15 15:34	
,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/L			04/25/15 15:34	
,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.6	ug/L			04/25/15 15:34	
,1,2-Trichloroethane	ND	5.0	1.2	ug/L			04/25/15 15:34	
,1-Dichloroethane	ND	5.0	1.9	ug/L			04/25/15 15:34	
,1-Dichloroethene	ND	5.0	1.5	ug/L			04/25/15 15:34	
,2,4-Trichlorobenzene	ND	5.0	2.1	ug/L			04/25/15 15:34	
,2-Dibromo-3-Chloropropane	ND	5.0	2.0	ug/L			04/25/15 15:34	
,2-Dibromoethane	ND	5.0	3.7	ug/L			04/25/15 15:34	
,2-Dichlorobenzene	ND	5.0	4.0	ug/L			04/25/15 15:34	
,2-Dichloroethane	ND	5.0	1.1	ug/L			04/25/15 15:34	
,2-Dichloropropane	ND	5.0		ug/L			04/25/15 15:34	
,3-Dichlorobenzene	ND	5.0		ug/L			04/25/15 15:34	
,4-Dichlorobenzene	ND	5.0		ug/L			04/25/15 15:34	
P-Butanone (MEK)	ND	50		ug/L			04/25/15 15:34	
-Hexanone	ND	25		ug/L			04/25/15 15:34	
-Methyl-2-pentanone (MIBK)	ND	25		ug/L			04/25/15 15:34	
cetone	52	50		ug/L			04/25/15 15:34	
enzene	ND	5.0		ug/L			04/25/15 15:34	
romodichloromethane	ND	5.0		ug/L			04/25/15 15:34	
romoform	ND	5.0		ug/L			04/25/15 15:34	
romomethane	ND	5.0		ug/L			04/25/15 15:34	
Carbon disulfide	ND	5.0		ug/L			04/25/15 15:34	
Carbon tetrachloride	ND	5.0		ug/L			04/25/15 15:34	
hlorobenzene	ND	5.0		ug/L			04/25/15 15:34	
chloroethane	ND	5.0		ug/L			04/25/15 15:34	
chloroform	ND	5.0		ug/L			04/25/15 15:34	
chloromethane							04/25/15 15:34	
	ND	5.0		ug/L				
is-1,2-Dichloroethene	ND	5.0		ug/L			04/25/15 15:34	
is-1,3-Dichloropropene	ND	5.0		ug/L			04/25/15 15:34	
cyclohexane	ND	5.0		ug/L			04/25/15 15:34	
bibromochloromethane	ND	5.0		ug/L			04/25/15 15:34	
Dichlorodifluoromethane	ND	5.0		ug/L			04/25/15 15:34	
thylbenzene 	ND	5.0		ug/L			04/25/15 15:34	
copropylbenzene	ND	5.0		ug/L			04/25/15 15:34	
lethyl acetate	ND	13		ug/L			04/25/15 15:34	
lethyl tert-butyl ether	ND	5.0		ug/L			04/25/15 15:34	
lethylcyclohexane	ND	5.0		ug/L			04/25/15 15:34	
lethylene Chloride	ND	5.0		ug/L			04/25/15 15:34	
tyrene	ND	5.0		ug/L			04/25/15 15:34	
etrachloroethene	230	5.0		ug/L			04/25/15 15:34	
oluene	ND	5.0	2.6	ug/L			04/25/15 15:34	
ans-1,2-Dichloroethene	ND	5.0		ug/L			04/25/15 15:34	
ans-1,3-Dichloropropene	ND	5.0	1.9	ug/L			04/25/15 15:34	
richloroethene	ND	5.0	2.3	ug/L			04/25/15 15:34	
richlorofluoromethane	ND	5.0	4.4	ug/L			04/25/15 15:34	
'inyl chloride	ND	5.0	4.5	ug/L			04/25/15 15:34	
(ylenes, Total	ND	10	3.3	ug/L			04/25/15 15:34	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: SP NAOH MID

Lab Sample ID: 480-78472-14 Date Collected: 04/14/15 15:20

Matrix: Water

Date Received: 04/15/15 09:00

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	66 - 137	-		04/25/15 15:34	5
4-Bromofluorobenzene (Surr)	101	73 - 120			04/25/15 15:34	5
Dibromofluoromethane (Surr)	103	60 - 140			04/25/15 15:34	5
Toluene-d8 (Surr)	96	71 - 126			04/25/15 15:34	5

Client: New York State D.E.C.

Date Received: 04/15/15 09:00

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: SP NAOH HIGH

Lab Sample ID: 480-78472-15 Date Collected: 04/14/15 15:25 Matrix: Water

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND						
1,1,2,2-Tetrachloroethane	ND	5.0	4.1	ug/L		04/25/15 15:58	
	ND	5.0	1.1	ug/L		04/25/15 15:58	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.6	ug/L		04/25/15 15:58	
1,1,2-Trichloroethane	ND	5.0	1.2	ug/L		04/25/15 15:58	
1,1-Dichloroethane	ND	5.0	1.9	ug/L		04/25/15 15:58	
1,1-Dichloroethene	ND	5.0	1.5	ug/L		04/25/15 15:58	
1,2,4-Trichlorobenzene	ND	5.0	2.1	ug/L		04/25/15 15:58	
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L		04/25/15 15:58	
1,2-Dibromoethane	ND	5.0		ug/L		04/25/15 15:58	
1,2-Dichlorobenzene	ND	5.0		ug/L		04/25/15 15:58	
1,2-Dichloroethane	ND	5.0		ug/L		04/25/15 15:58	
1,2-Dichloropropane	ND	5.0		ug/L		04/25/15 15:58	
1,3-Dichlorobenzene	ND	5.0		ug/L		04/25/15 15:58	
1,4-Dichlorobenzene	ND	5.0		ug/L		04/25/15 15:58	
2-Butanone (MEK)	ND	50		ug/L		04/25/15 15:58	
2-Hexanone	ND	25		ug/L ug/L		04/25/15 15:58	
4-Methyl-2-pentanone (MIBK)	ND ND	25 25		ug/L ug/L		04/25/15 15:58	
Acetone	ND ND	50		-		04/25/15 15:58	
				ug/L			
Benzene	ND	5.0		ug/L		04/25/15 15:58	
Bromodichloromethane	ND	5.0		ug/L		04/25/15 15:58	
Bromoform	ND	5.0		ug/L		04/25/15 15:58	
Bromomethane	ND	5.0		ug/L		04/25/15 15:58	
Carbon disulfide	ND	5.0	0.95			04/25/15 15:58	
Carbon tetrachloride	ND	5.0	1.4	ug/L		04/25/15 15:58	
Chlorobenzene	ND	5.0	3.8	ug/L		04/25/15 15:58	
Chloroethane	ND	5.0	1.6	ug/L		04/25/15 15:58	
Chloroform	ND	5.0	1.7	ug/L		04/25/15 15:58	
Chloromethane	ND	5.0	1.8	ug/L		04/25/15 15:58	
cis-1,2-Dichloroethene	ND	5.0	4.1	ug/L		04/25/15 15:58	
cis-1,3-Dichloropropene	ND	5.0	1.8	ug/L		04/25/15 15:58	
Cyclohexane	ND	5.0	0.90	ug/L		04/25/15 15:58	
Dibromochloromethane	ND	5.0	1.6	ug/L		04/25/15 15:58	
Dichlorodifluoromethane	ND	5.0	3.4	ug/L		04/25/15 15:58	
Ethylbenzene	ND	5.0	3.7	ug/L		04/25/15 15:58	
Isopropylbenzene	ND	5.0	4.0	ug/L		04/25/15 15:58	
Methyl acetate	ND	13	2.5	ug/L		04/25/15 15:58	
Methyl tert-butyl ether	ND	5.0		ug/L		04/25/15 15:58	
Methylcyclohexane	ND	5.0		ug/L		04/25/15 15:58	
Methylene Chloride	ND	5.0		ug/L		04/25/15 15:58	
Styrene	ND	5.0		ug/L		04/25/15 15:58	
Tetrachloroethene	40	5.0		ug/L		04/25/15 15:58	
Toluene	ND	5.0		ug/L ug/L		04/25/15 15:58	
trans-1,2-Dichloroethene	ND	5.0		ug/L ug/L		04/25/15 15:58	
				_			
trans-1,3-Dichloropropene	ND	5.0		ug/L		04/25/15 15:58	
Trichlorefluorene	ND ND	5.0		ug/L		04/25/15 15:58	
Trichlorofluoromethane	ND ND	5.0		ug/L		04/25/15 15:58	
Vinyl chloride	NID.	5.0	4.5	ug/L		04/25/15 15:58	

TestAmerica Buffalo

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Client Sample ID: SP NAOH HIGH

Date Collected: 04/14/15 15:25 Date Received: 04/15/15 09:00 Lab Sample ID: 480-78472-15

Matrix: Water

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	66 - 137	_		04/25/15 15:58	5
4-Bromofluorobenzene (Surr)	101	73 - 120			04/25/15 15:58	5
Dibromofluoromethane (Surr)	102	60 - 140			04/25/15 15:58	5
Toluene-d8 (Surr)	95	71 - 126			04/25/15 15:58	5

J

Q

10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-16

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 04/14/15 17:00 Date Received: 04/15/15 09:00

Method: 8260C - Volatile Organic (Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82			· ·	04/24/15 03:41	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21				04/24/15 03:41	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/24/15 03:41	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/24/15 03:41	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/24/15 03:41	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/24/15 03:41	
1,2,4-Trichlorobenzene	ND	1.0	0.41				04/24/15 03:41	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/24/15 03:41	
1,2-Dibromoethane	ND	1.0	0.73	ug/L			04/24/15 03:41	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/24/15 03:41	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/24/15 03:41	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/24/15 03:41	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/24/15 03:41	
1,4-Dichlorobenzene	ND	1.0	0.84	-			04/24/15 03:41	
2-Butanone (MEK)	ND	10		ug/L			04/24/15 03:41	
2-Hexanone	ND	5.0	1.2	ug/L			04/24/15 03:41	
1-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/24/15 03:41	
Acetone	ND	10	3.0	ug/L			04/24/15 03:41	
Benzene	ND	1.0	0.41	ug/L			04/24/15 03:41	
Bromodichloromethane	ND	1.0	0.39	ug/L			04/24/15 03:41	
Bromoform	ND	1.0	0.26	ug/L			04/24/15 03:41	
Bromomethane	ND	1.0	0.69	ug/L			04/24/15 03:41	
Carbon disulfide	ND	1.0	0.19	ug/L			04/24/15 03:41	
Carbon tetrachloride	ND	1.0	0.27	ug/L			04/24/15 03:41	
Chlorobenzene	ND	1.0	0.75	ug/L			04/24/15 03:41	
Chloroethane	ND	1.0	0.32	ug/L			04/24/15 03:41	
Chloroform	ND	1.0	0.34	ug/L			04/24/15 03:41	
Chloromethane	ND	1.0	0.35	ug/L			04/24/15 03:41	
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			04/24/15 03:41	
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			04/24/15 03:41	
Cyclohexane	ND	1.0	0.18	ug/L			04/24/15 03:41	
Dibromochloromethane	ND	1.0	0.32	ug/L			04/24/15 03:41	
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			04/24/15 03:41	
Ethylbenzene	ND	1.0	0.74	ug/L			04/24/15 03:41	
sopropylbenzene	ND	1.0	0.79	ug/L			04/24/15 03:41	
Methyl acetate	ND	2.5	0.50	ug/L			04/24/15 03:41	
Methyl tert-butyl ether	ND	1.0	0.16				04/24/15 03:41	
Methylcyclohexane	ND	1.0	0.16	ug/L			04/24/15 03:41	
Methylene Chloride	ND	1.0	0.44	ug/L			04/24/15 03:41	
Styrene	ND	1.0	0.73	ug/L			04/24/15 03:41	
Fetrachloroethene	ND	1.0	0.36	ug/L			04/24/15 03:41	
Foluene	ND	1.0	0.51	-			04/24/15 03:41	
rans-1,2-Dichloroethene	ND	1.0	0.90				04/24/15 03:41	
rans-1,3-Dichloropropene	ND	1.0	0.37				04/24/15 03:41	
Frichloroethene	ND	1.0	0.46	_			04/24/15 03:41	
Frichlorofluoromethane	ND	1.0	0.88				04/24/15 03:41	
/inyl chloride	ND	1.0	0.90				04/24/15 03:41	
Kylenes, Total	ND	2.0	0.66	-			04/24/15 03:41	

TestAmerica Buffalo

0

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID: 480-78472-16 **Client Sample ID: TRIP BLANK**

Date Collected: 04/14/15 17:00 Matrix: Water

Date Received: 04/15/15 09:00

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137	_		04/24/15 03:41	1
4-Bromofluorobenzene (Surr)	94		73 - 120			04/24/15 03:41	1
Dibromofluoromethane (Surr)	105		60 - 140			04/24/15 03:41	1
Toluene-d8 (Surr)	97		71 - 126			04/24/15 03:41	1

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP CTRL

Date Collected: 04/14/15 14:00 Date Received: 04/15/15 09:00 Lab Sample ID: 480-78472-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	237835	04/22/15 19:37	EDB	TAL BUF
Total/NA	Analysis	8260C	DL	100	238033	04/23/15 19:54	NMD1	TAL BUF

Client Sample ID: SP CTRL DUP

Date Collected: 04/14/15 14:35

Date Received: 04/15/15 09:00

Lab Sample ID: 480-78472-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			237835	04/22/15 20:04	EDB	TAL BUF
Total/NA	Analysis	8260C	DL	100	238033	04/23/15 20:22	NMD1	TAL BUF

Client Sample ID: HP CTRL

Date Collected: 04/14/15 15:40

Date Received: 04/15/15 09:00

Lab Sample ID: 480-78472-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			237835	04/22/15 20:31	EDB	TAL BUF
Total/NA	Analysis	8260C	DL	100	238033	04/23/15 20:49	NMD1	TAL BUF

Client Sample ID: HP CTRL DUP

Date Collected: 04/14/15 15:55

Date Received: 04/15/15 09:00

ab	Sample	ID: 480-78472-4
		Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	237835	04/22/15 20:58	EDB	TAL BUF
Total/NA	Analysis	8260C	DL	100	238245	04/24/15 04:09	EDB	TAL BUF

Client Sample ID: KMN04 LOW

Date Collected: 04/14/15 14:05

Date Received: 04/15/15 09:00

- 1-	0	- 1	ın.	400	704	70 F
_ap	Samp	ie i	IU:	48U-	7 ö4	/ Z-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		5	238245	04/24/15 04:36	EDB	TAL BUF

Client Sample ID: KMN04 MID

Date Collected: 04/14/15 14:08

Date Received: 04/15/15 09:00

EDB	TAL BUF

Matrix: Water

Lab Sample ID: 480-78472-6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		10	238245	04/24/15 05:04	EDB	TAL BUF

TestAmerica Buffalo

Matrix: Water

Matrix: Water

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: KMN04 HIGH Lab Sample ID: 480-78472-7

Date Collected: 04/14/15 14:15 **Matrix: Water**

Date Received: 04/15/15 09:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 10 238245 04/24/15 05:31 EDB TAL BUF

Client Sample ID: HP LOW Lab Sample ID: 480-78472-8

Date Collected: 04/14/15 16:45 Matrix: Water

Date Received: 04/15/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		10	237835	04/22/15 22:48	EDB	TAL BUF
Total/NA	Analysis	8260C	DL	2000	238599	04/25/15 14:46	SWO	TAL BUF

Client Sample ID: HP HIGH Lab Sample ID: 480-78472-9

Date Collected: 04/14/15 16:55 Date Received: 04/15/15 09:00

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 500 238245 04/24/15 06:26 EDB TAL BUF 2000 Total/NA Analysis 8260C DΙ 238599 04/25/15 15:09 SWO TAI BUF

Client Sample ID: SP FECA LOW Lab Sample ID: 480-78472-10

Date Collected: 04/14/15 15:00 **Matrix: Water**

Date Received: 04/15/15 09:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Analysis 8260C 10 238245 04/24/15 06:54 EDB TAL BUF Total/NA

Client Sample ID: SP FEC MID Lab Sample ID: 480-78472-11

Date Collected: 04/14/15 15:05

Date Received: 04/15/15 09:00

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab EDB TAL BUF Total/NA Analysis 8260C 10 238245 04/24/15 07:21

Client Sample ID: SP FECA HIGH Lab Sample ID: 480-78472-12

Date Collected: 04/14/15 15:10 **Matrix: Water**

Date Received: 04/15/15 09:00

Dilution Batch Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 10 238245 04/24/15 07:49 EDB TAL BUF

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP NAOH LOW

Lab Sample ID: 480-78472-13

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 04/14/15 15:15 Date Received: 04/15/15 09:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 40 238245 04/24/15 08:16 EDB TAL BUF

Lab Sample ID: 480-78472-14

Client Sample ID: SP NAOH MID Date Collected: 04/14/15 15:20 Matrix: Water

Date Received: 04/15/15 09:00

Batch Batch Dilution Batch Prepared Method Factor Number Prep Type Туре Run or Analyzed Analyst Lab TAL BUF Total/NA Analysis 8260C 5 238599 04/25/15 15:34 SWO

Client Sample ID: SP NAOH HIGH Lab Sample ID: 480-78472-15

Date Collected: 04/14/15 15:25

Date Received: 04/15/15 09:00

Batch Dilution Batch Prepared Batch Prep Type Method Factor Number or Analyzed Туре Run Analyst Lab Total/NA Analysis 8260C 5 238599 04/25/15 15:58 SWO TAL BUF

Client Sample ID: TRIP BLANK Lab Sample ID: 480-78472-16

Date Collected: 04/14/15 17:00

Date Received: 04/15/15 09:00

Dilution Batch Batch Batch Prepared Method Number **Prep Type** Type Run Factor or Analyzed Analyst Lab Total/NA Analysis 8260C 238245 04/24/15 03:41 EDB TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

_

4

5

7

0

40

Method Summary

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

8

9

10

Sample Summary

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78472-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-78472-1	SP CTRL	Water	04/14/15 14:00	04/15/15 09:00
480-78472-2	SP CTRL DUP	Water	04/14/15 14:35	04/15/15 09:00
480-78472-3	HP CTRL	Water	04/14/15 15:40	04/15/15 09:00
480-78472-4	HP CTRL DUP	Water	04/14/15 15:55	04/15/15 09:00
480-78472-5	KMN04 LOW	Water	04/14/15 14:05	04/15/15 09:00
480-78472-6	KMN04 MID	Water	04/14/15 14:08	04/15/15 09:00
480-78472-7	KMN04 HIGH	Water	04/14/15 14:15	04/15/15 09:00
480-78472-8	HP LOW	Water	04/14/15 16:45	04/15/15 09:00
480-78472-9	HP HIGH	Water	04/14/15 16:55	04/15/15 09:00
480-78472-10	SP FECA LOW	Water	04/14/15 15:00	04/15/15 09:00
480-78472-11	SP FEC MID	Water	04/14/15 15:05	04/15/15 09:00
480-78472-12	SP FECA HIGH	Water	04/14/15 15:10	04/15/15 09:00
480-78472-13	SP NAOH LOW	Water	04/14/15 15:15	04/15/15 09:00
480-78472-14	SP NAOH MID	Water	04/14/15 15:20	04/15/15 09:00
480-78472-15	SP NAOH HIGH	Water	04/14/15 15:25	04/15/15 09:00
480-78472-16	TRIP BLANK	Water	04/14/15 17:00	04/15/15 09:00

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes□ Not

ESTAM THE LEADER IN ENVIRC

480-78472 Chain of Custody

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) 78U 100 ó Page more space is needed) Analysis (Attach list if Lab Mumbe Months - Archive For _ N NN 3 (201) 335 9419 Lab Contact Brich Fischer VOANZ HOBN Disposal By Lab Containers & Preservatives HOBN Amite Date 1 IOH EONH DOSZH səıdur Return To Client Standone Date Sámple Disposal 1105 Carrier/Waybill Number Matrix 'pes Project Manager snoanb_l Site Contact 46 r. Cleares, Janeshoun Unknown 15/20 15051 165 1415 1408 5/5 1405 1735 SA PA 540 Bluck 10th floor Stylo00 State In Coole NS 074495 Time (3) 841 JUNE ☐ Poison B Date はかからが (Containers for each sample may be combined on one line) Skin Irritant Sample I.D. No. and Description Possible Hazard Identification So Red md 3 TeC\$ 50 7 HO CH OF KMWOY MYD KMND4 190 LAKTONIOSA - Flammable Former C4B ContractPurchase Order/Quote No. Project Name and Location (State, g Mahwah KMADY HO CH ておるい てら HOR 2 7 \$ 0 Non-Hazard TAL-4124 (1007) Client

Page 51 of 53

* exclusing waren, and cyclother Please enail results to LCTawtorda Xold-LLC Com DISTRIBUTION: WHITE-Returned to Client with Report, CAVARY-Stays with the Sample; PINK-Field Copy

10

出

2,3

(2000)

7/12/12

の京

4

OC Requirements (Specify,

1. Received By

の 大 し

Hi4

🗌 21 Days

☐ 14 Days

☐ 7 Days

24 Hours | 48 Hours

1. Relinquished By

Tum Around Time Required

Time

Date

7 Selinquished By Comments

2. Relinquished By

Time

Date

Chain of Custody Record

Temperature on Receipt __

TestAmerica

Stock 10th Flow 51e 800 Transporter Number 10th Flow 51e 10th Flow	TAL-4124 (1007)	Drinking Water? Yes□	Now	THE LEADER IN ENVIRONMENTAL TESTING	
Datisonal 6140, 10th 10cx 514 Per 514 Per 10cx 10cx 10cx 10cx 10cx 10cx 10cx 10cx		Project Manager	7 20 00	Date 4/14/15	Chain of Custody Number 280763
Control Cont	612	Ste 1000 (Zo)	el/Fax Number	Lab Number	Page 2 of 7
	State	Site Cohect	0 70	Analysis (Attach list if more space is needed)	
Comparisons Comparisons Commissions		Or other series			Consist Instantions/
Cold	Sirt	57028 N.Y.	VOC.		Conditions of Receipt
160H (20,0) 4 4 5 1525 X X 2 X 2 X 2 X 2 X 2 X X	Sample I.D. No. and Description ners for each sample may be combined on one line)	Date Time Air	19 VI VI VI VI VI VI VI V		-
2004 Wigh	1005	ALL STANK			
B Cack High F 1740 X X Z X X Z	Na OH		χ 2		
B (CMK) "HIPLY 17 1740 X X Z Z HIPLY 15 1740 X X Z Z HIPLY 15 1740 X X X Z Z HIPLY 15 1740 X X X X X Z Z HIPLY 15 1740 X X X X X X X X X X X X X X X X X X X		X 15251 X	X 3		
The state of the s	Tro Blank!	1121	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Committention Familiar Fasion B Unknown Sample Dayoest Sample					
Gentification Skin Instant Poison B Unknown Sample Disposal Sample Disposal Sample Disposal Sample Disposal Skin Instant Poison B Unknown Poison B Poison					
Contilication Sample Disposal Scin Intrant Proison B Unknown Sample Disposal By Lab Archive For Months (origer than 1 month)					
Conflication Continuation Conti					
Sample Disposal Sample Dis					
Contilication Sample Disposal Standing Sample Disposal Standing Sample Disposal Standing Sample Disposal Standing Sample Disposal State Standing Specify					
- Required 17 Days 14 Days 21 Days 21 Days 21 Days 17 Date 1. Received By 1.	таріе	S: Unknown	Disposal By Lab	-1	essed if samples are retained th)
EMOST RESULTS 40 STATE S	irs 7 Days	21 Days X Other	(X)		
email result to the Law ford Date Time 3. Agenced By email result to the Caw ford Dixellogy Action of the Samples with the Samples PiNK - Field Copy Action and Date Time The Company of the Date Time The Company of the Date Time The Copy of the Date Time Time The Date Time Time Time Time Time Time Time Tim	quished By	1	1. Received By G. K. P.		15/15
email results to the ford Dixelaction of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the solvest of the sample; Pink Field Copy of the sample; Pink Field Cop	quished By		2. Received By		
email results to a Craw ford DXdol CCCON * Extent to the WHITE- Returned to Client with Report, CANARY- Stays with the Sample; PINK- Field Copy of 100000000000000000000000000000000000	tuished By		3. Røbeived By		
WHITE - Returned to Client with Report, CAWARY - Stays with the Sample, PINIK - Field Copy	18 8	Com	WGJ 7/7 700X	* CALLED *	[]
	WHITE - Returned to Client with Report;	- Stays with the Sample; 1	1 NOO	711 1 1	7 2

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-78472-1

Login Number: 78472 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wallace, Cameron

Contact Thinks, Sufficient		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time.	True	
ample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	NEW YORK DEC
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

A

5

6

8

46

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-78558-1

Client Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

For:

New York State D.E.C. 625 Broadway 9th Floor Albany, New York 12233-7258

Attn: George Momberger

Authorized for release by: 5/6/2015 2:54:42 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

brian.fischer@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Joe Giacomazza Project Management Assistant II 5/6/2015 2:54:42 PM

ΓestAmerica	Buffalo
5/6/2	015

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	
Client Sample Results	7
Lab Chronicle	
Certification Summary	66
Method Summary	67
Sample Summary	68
Chain of Custody	69
Receipt Checklists	75

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description						
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.						
E	Result exceeded calibration range.						
*	LCS or LCSD is outside acceptance limits.						

Metals

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

General Chemistry

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.

Glossary Abbreviation

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Job ID: 480-78558-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-78558-1

Receipt

The samples were received on 4/16/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.9° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 237173 recovered above the upper control limit for Chlorodibromomethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: KMNO4 LOW (480-78558-16), KMNO4 MID (480-78558-17) and KMNO4 HIGH (480-78558-18).

Method(s) 8260C: The laboratory control sample (LCS) for batch 237173 recovered outside control limits for the following analyte: Cyclohexane. This was not a requested spike compound; therefore, the data have been qualified and reported.KMNO4 LOW (480-78558-16), KMNO4 MID (480-78558-17) and KMNO4 HIGH (480-78558-18)

Method(s) 8260C: The following samples were analyzed using medium level soil analysis to bring the concentration of target analytes within the calibration range: SP CTRL (480-78558-15), KMNO4 LOW (480-78558-16), SP FECA LOW (480-78558-19), SP FECA MID (480-78558-20), SP FECA HIGH (480-78558-21), SP NAOH MID (480-78558-23), SP NAOH HIGH (480-78558-24), HP LOW (480-78558-25), HP HIGH (480-78558-26) and HP CTRL (480-78558-29). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 238941 recovered above the upper control limit for several analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SP NAOH LOW (480-78558-22) and (480-78972-B-6-D).

Method(s) 8260C: The following sample was analyzed using medium soil analysis to bring the concentration of target analytes within the calibration range: SP NAOH LOW (480-78558-22). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The analyte Methylene Chloride was detected in the dilution analysis of samples KMNO4 LOW (480-78558-16), SP FECA LOW (480-78558-19), HP HIGH (480-78558-26) and HP CTRL (480-78558-29). Additional manipulation of the samples was required to analyze the samples at a dilution, therefore, the sample detection for Methylene Chloride in the analysis may potentially be due to laboratory contamination and should be evaluated accordingly.

Method(s) 8260C: The recovery of Acetone and Methyl Acetate in the Medium Level Extraction analysis is inconsistent with that in the base sample analysis. This is due to the non-homogenous matrix of the sample and the recovery efficiency of the methanol extraction process.KMNO4 LOW (480-78558-16), SP FECA LOW (480-78558-19), SP FECA MID (480-78558-20), SP FECA HIGH (480-78558-21) and HP HIGH (480-78558-26)

Method(s) 8260C: The recovery of Methylene Chloride in the Medium Level Extraction analysis is inconsistent with that in the base sample analysis. This is due to the non-homogenous matrix of the sample and the recovery efficiency of the methanol extraction process.SP FECA MID (480-78558-20) and SP FECA HIGH (480-78558-21)

Method(s) 8260C: The analytes Acetone and Methylene Chloride were detected in the dilution analysis of sample SP CTRL (480-78558-15). Additional manipulation of the sample is required to analyze a sample at a dilution, therefore, the sample detections for Acetone and Methylene Chloride in the analysis may potentially be due to laboratory contamination and should be evaluated accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 3005A: The following samples were not able to be digested by method 3005A due to matrix: SP FECA MID (480-78558-7), SP FECA HIGH (480-78558-8), SP NAOH MID (480-78558-10) and SP NAOH HIGH (480-78558-11). A pre-prep dilution of 1:10 was performed and the samples bubbled over on the digestion block losing volume in the process and contaminating other samples in the batch.

0

റ

9

10

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Job ID: 480-78558-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Method(s) 6010C: The interference check standard solution (ICSA 480-239467/9) associated with the following samples showed results for strontium at a level greater than 2 times the limit of detection (LOD). It is believed that the solution contains trace impurities of this element and the results are not due to matrix interference. These results are consistent with those found by the manufacturer of the ICSA solution. (ICVL 480-239467/7)

Method(s) 6010C: The following samples were diluted for total arsenic, cadmium, nickel, lead, antimony, and zinc due to the nature of the sample matrix: KMNO4 MID (480-78558-4) and KMNO4 HIGH (480-78558-5). Elevated reporting limits (RLs) are provided.

Method(s) 6010C: The following samples were diluted due to the presence of total manganese which interferes with silver, aluminum, chromium, magnesium, selenium, and thallium: KMNO4 MID (480-78558-4) and KMNO4 HIGH (480-78558-5). Elevated reporting limits (RLs) are provided.

Method(s) 6010C: Due to sample matrix effect on the internal standard (ISTD), a dilution for total aluminum, arsenic, barium, beryllium, calcium, cadmium, iron, potassium, manganese, sodium, antimony, and selenium was required for the following sample: HP LOW (480-78558-12).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 9060A: The result for the following sample exceeded the instrument calibration range of 100mg/L. The %RSD was 24 percent which exceeds the 20% criteria. Insufficient volume remains for reanalysis so results have been reported. SP NAOH MID (480-78558-10). Result may be biased low.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

a

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP CTRL

Lab Sample ID: 480-78558-1

Date Collected: 04/15/15 10:00 Matrix: Water
Date Received: 04/16/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		04/28/15 16:23	04/29/15 14:39	1
Antimony	ND		0.020	0.0068	mg/L		04/28/15 16:23	04/29/15 14:39	1
Arsenic	ND		0.015	0.0056	mg/L		04/28/15 16:23	04/29/15 14:39	1
Barium	0.011		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 14:39	1
Beryllium	ND		0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 14:39	1
Cadmium	ND		0.0020	0.00050	mg/L		04/28/15 16:23	04/29/15 14:39	1
Calcium	9.1		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:39	1
Chromium	ND		0.0040	0.0010	mg/L		04/28/15 16:23	04/29/15 14:39	1
Cobalt	ND		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 14:39	1
Copper	ND		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 14:39	1
Iron	ND		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 14:39	1
Lead	ND		0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 14:39	1
Magnesium	1.9		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 14:39	1
Manganese	0.0023	JB	0.0030	0.00040	mg/L		04/28/15 16:23	04/29/15 14:39	1
Nickel	ND		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 14:39	1
Potassium	0.25	J	0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:39	1
Selenium	ND		0.025	0.0087	mg/L		04/28/15 16:23	04/29/15 14:39	1
Silver	ND		0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 14:39	1
Sodium	8.2		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 14:39	1
Thallium	ND		0.020	0.010	mg/L		04/28/15 16:23	04/29/15 14:39	1
Vanadium	ND		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 14:39	1
Zinc -	ND		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 14:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2.9		1.0	0.43	mg/L			04/19/15 17:10	1

А

<u>ی</u>

9

10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP CTRL DUP

Lab Sample ID: 480-78558-2 Date Collected: 04/15/15 10:05 Matrix: Water

Date Received: 04/16/15 09:00

Method: 6010C - Metals (ICP)	- "	0 115				_			D.: E
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Aluminum	ND		0.20		3		04/28/15 16:23	04/29/15 14:41	•
Antimony	ND		0.020		mg/L		04/28/15 16:23	04/29/15 14:41	•
Arsenic	ND		0.015	0.0056	mg/L		04/28/15 16:23	04/29/15 14:41	
Barium	0.011		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 14:41	•
Beryllium	ND		0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 14:41	•
Cadmium	ND		0.0020	0.00050	mg/L		04/28/15 16:23	04/29/15 14:41	•
Calcium	10.5		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:41	
Chromium	ND		0.0040	0.0010	mg/L		04/28/15 16:23	04/29/15 14:41	•
Cobalt	ND		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 14:41	•
Copper	ND		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 14:41	•
Iron	ND		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 14:41	•
Lead	ND		0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 14:41	•
Magnesium	1.9		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 14:41	
Manganese	0.0023	JB	0.0030	0.00040	mg/L		04/28/15 16:23	04/29/15 14:41	•
Nickel	ND		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 14:41	•
Potassium	0.25	J	0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:41	
Selenium	ND		0.025	0.0087	mg/L		04/28/15 16:23	04/29/15 14:41	•
Silver	ND		0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 14:41	•
Sodium	10.3		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 14:41	· · · · · · · · · · ·
Thallium	ND		0.020	0.010	mg/L		04/28/15 16:23	04/29/15 14:41	•
Vanadium	ND		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 14:41	
Zinc -	ND		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 14:41	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	4.1		1.0	0.43	mg/L			04/20/15 16:51	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: KMNO4 LOW

Date Collected: 04/15/15 10:10 Date Received: 04/16/15 09:00

Total Organic Carbon

Lab Sample ID: 480-78558-3

04/23/15 09:19

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.45		0.20	0.060	mg/L		04/28/15 16:23	04/29/15 14:50	1
Antimony	ND		0.020	0.0068	mg/L		04/28/15 16:23	04/29/15 14:50	1
Arsenic	ND		0.015	0.0056	mg/L		04/28/15 16:23	04/29/15 14:50	1
Barium	0.065		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 14:50	1
Beryllium	ND		0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 14:50	1
Cadmium	ND		0.0020	0.00050	mg/L		04/28/15 16:23	04/29/15 14:50	1
Calcium	5.5		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:50	1
Chromium	0.0056		0.0040	0.0010	mg/L		04/28/15 16:23	04/29/15 14:50	1
Cobalt	0.0038	J	0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 14:50	1
Copper	0.014		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 14:50	1
Iron	1.1		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 14:50	1
Lead	0.0036	J	0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 14:50	1
Magnesium	3.8		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 14:50	1
Manganese	32.0	В	0.0030	0.00040	mg/L		04/28/15 16:23	04/29/15 14:50	1
Nickel	0.021		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 14:50	1
Potassium	27.8		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:50	1
Selenium	ND		0.025	0.0087	mg/L		04/28/15 16:23	04/29/15 14:50	1
Silver	0.0050	J	0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 14:50	1
Sodium	10		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 14:50	1
Thallium	ND		0.020	0.010	mg/L		04/28/15 16:23	04/29/15 14:50	1
Vanadium	ND		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 14:50	1
Zinc	0.029		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 14:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

10.0

4.3 mg/L

339

TestAmerica Buffalo

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: KMNO4 MID

Date Collected: 04/15/15 10:15 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-4

Matrix: Water

	Dil Fac	5
22	5	
22	5	
22	5	
53	1	
53	1	
22	5	8
53	1	
22	5	Q
53	1	

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	3.1		1.0	0.30	mg/L		04/28/15 16:23	04/29/15 15:22	5
Antimony	ND		0.10	0.034	mg/L		04/28/15 16:23	04/29/15 15:22	5
Arsenic	ND		0.075	0.028	mg/L		04/28/15 16:23	04/29/15 15:22	5
Barium	0.38		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 14:53	1
Beryllium	ND		0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 14:53	1
Cadmium	ND		0.010	0.0025	mg/L		04/28/15 16:23	04/29/15 15:22	5
Calcium	4.8		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:53	1
Chromium	0.025		0.020	0.0050	mg/L		04/28/15 16:23	04/29/15 15:22	5
Cobalt	0.020		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 14:53	1
Copper	0.072		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 14:53	1
Iron	3.7		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 14:53	1
Lead	0.023	J	0.050	0.015	mg/L		04/28/15 16:23	04/29/15 15:22	5
Magnesium	7.9		1.0	0.22	mg/L		04/28/15 16:23	04/29/15 15:22	5
Manganese	188	В	0.015	0.0020	mg/L		04/28/15 16:23	04/29/15 15:22	5
Nickel	0.084		0.050	0.0063	mg/L		04/28/15 16:23	04/29/15 15:22	5
Potassium	137		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:53	1
Selenium	ND		0.13	0.044	mg/L		04/28/15 16:23	04/29/15 15:22	5
Silver	0.031		0.030	0.0085	mg/L		04/28/15 16:23	04/29/15 15:22	5
Sodium	10.4		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 14:53	1
Thallium	ND		0.10	0.051	mg/L		04/28/15 16:23	04/29/15 15:22	5
Vanadium	0.013		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 14:53	1
Zinc	0.30		0.050	0.0075	mg/L		04/28/15 16:23	04/29/15 15:22	5
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2790		100	43.4	mg/L			04/23/15 10:15	100

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: KMNO4 HIGH

Date Collected: 04/15/15 10:20 Date Received: 04/16/15 09:00

General Chemistry

Total Organic Carbon

Analyte

Lab Sample ID: 480-78558-5

Matrix: Water

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6.6		1.0	0.30	mg/L		04/28/15 16:23	04/29/15 15:25	5
Antimony	ND		0.10	0.034	mg/L		04/28/15 16:23	04/29/15 15:25	5
Arsenic	0.033	J	0.075	0.028	mg/L		04/28/15 16:23	04/29/15 15:25	5
Barium	1.2		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 14:56	1
Beryllium	0.00040	J	0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 14:56	1
Cadmium	ND		0.010	0.0025	mg/L		04/28/15 16:23	04/29/15 15:25	5
Calcium	5.0		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:56	1
Chromium	0.042		0.020	0.0050	mg/L		04/28/15 16:23	04/29/15 15:25	5
Cobalt	0.0041		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 14:56	1
Copper	0.0045	J	0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 14:56	1
Iron	2.2		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 14:56	1
Lead	0.081		0.050	0.015	mg/L		04/28/15 16:23	04/29/15 15:25	5
Magnesium	5.4		1.0	0.22	mg/L		04/28/15 16:23	04/29/15 15:25	5
Manganese	192	В	0.015	0.0020	mg/L		04/28/15 16:23	04/29/15 15:25	5
Nickel	0.014	J	0.050	0.0063	mg/L		04/28/15 16:23	04/29/15 15:25	5
Potassium	257		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:56	1
Selenium	ND		0.13	0.044	mg/L		04/28/15 16:23	04/29/15 15:25	5
Silver	0.032		0.030	0.0085	mg/L		04/28/15 16:23	04/29/15 15:25	5
Sodium	8.6		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 14:56	1
Thallium	ND		0.10	0.051	mg/L		04/28/15 16:23	04/29/15 15:25	5
Vanadium	0.019		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 14:56	1
Zinc	ND		0.050	0.0075	mg/L		04/28/15 16:23	04/29/15 15:25	5

RL

400

MDL Unit

174 mg/L

Prepared

Analyzed

05/01/15 19:37

Dil Fac

400

Result Qualifier

8590 B

TestAmerica Buffalo

4

5

9

10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-6

Matrix: Water

Client Sample ID: SP FECA LOW

Date Collected: 04/15/15 10:25 Date Received: 04/16/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	3.0		0.20	0.060	mg/L		04/28/15 16:23	04/29/15 15:08	1
Antimony	ND		0.020	0.0068	mg/L		04/28/15 16:23	04/29/15 15:08	1
Arsenic	0.0057	J	0.015	0.0056	mg/L		04/28/15 16:23	04/29/15 15:08	1
Barium	0.0046		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 15:08	1
Beryllium	0.0011	J	0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 15:08	1
Cadmium	0.0053		0.0020	0.00050	mg/L		04/28/15 16:23	04/29/15 15:08	1
Calcium	63.1		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 15:08	1
Chromium	0.0034	J	0.0040	0.0010	mg/L		04/28/15 16:23	04/29/15 15:08	1
Cobalt	ND		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 15:08	1
Copper	0.015		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 15:08	1
Iron	ND		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 15:08	1
Lead	ND		0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 15:08	1
Magnesium	10.5		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 15:08	1
Manganese	0.14	В	0.0030	0.00040	mg/L		04/28/15 16:23	04/29/15 15:08	1
Nickel	0.083		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 15:08	1
Potassium	1.7		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 15:08	1
Selenium	ND		0.025	0.0087	mg/L		04/28/15 16:23	04/29/15 15:08	1
Silver	ND		0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 15:08	1
Sodium	600		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 15:08	1
Thallium	ND		0.020	0.010	mg/L		04/28/15 16:23	04/29/15 15:08	1
Vanadium	ND		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 15:08	1
Zinc	0.58		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 15:08	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	35300	В	800	347	mg/L			05/01/15 20:04	800

TestAmerica Buffalo

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP FECA MID

Lab Sample ID: 480-78558-7 Date Collected: 04/15/15 10:30

Matrix: Water

Date Received: 04/16/15 09:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	50800	В	800	347	mg/L			05/01/15 22:21	800

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP FECA HIGH

Lab Sample ID: 480-78558-8 Date Collected: 04/15/15 10:35

Matrix: Water

Date Received: 04/16/15 09:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	95700	В	1000	434	mg/L			05/01/15 22:47	1000

Client: New York State D.E.C.

General Chemistry

Total Organic Carbon

Analyte

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP NAOH LOW

Date Collected: 04/15/15 10:40
Date Received: 04/16/15 09:00

Result Qualifier

25300 B

Lab Sample ID: 480-78558-9 Matrix: Water

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	12.3		0.20	0.060	mg/L		04/28/15 16:23	04/29/15 15:10	1
Antimony	ND		0.020	0.0068	mg/L		04/28/15 16:23	04/29/15 15:10	1
Arsenic	0.15		0.015	0.0056	mg/L		04/28/15 16:23	04/29/15 15:10	1
Barium	0.0014	J	0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 15:10	1
Beryllium	ND		0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 15:10	1
Cadmium	ND		0.0020	0.00050	mg/L		04/28/15 16:23	04/29/15 15:10	1
Calcium	0.66		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 15:10	1
Chromium	0.063		0.0040	0.0010	mg/L		04/28/15 16:23	04/29/15 15:10	1
Cobalt	ND		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 15:10	1
Copper	0.0064	J	0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 15:10	1
Iron	ND		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 15:10	1
Lead	ND		0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 15:10	1
Magnesium	ND		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 15:10	1
Manganese	0.0012	JB	0.0030	0.00040	mg/L		04/28/15 16:23	04/29/15 15:10	1
Nickel	ND		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 15:10	1
Potassium	0.89		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 15:10	1
Selenium	0.012	J	0.025	0.0087	mg/L		04/28/15 16:23	04/29/15 15:10	1
Silver	ND		0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 15:10	1
Sodium	1290		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 15:10	1
Thallium	ND		0.020	0.010	mg/L		04/28/15 16:23	04/29/15 15:10	1
Vanadium	0.041		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 15:10	1
Zinc	ND		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 15:10	1

RL

400

MDL Unit

174 mg/L

Prepared

Analyzed

05/01/15 23:14

Dil Fac

400

1

Client: New York State D.E.C.

Analyte

Total Organic Carbon

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-10

Client Sample ID: SP NAOH MID

Date Collected: 04/15/15 10:45
Date Received: 04/16/15 09:00

Result Qualifier

27900

Matrix: Water

_ 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	225		20.0	6.0	mg/L		05/01/15 11:58	05/04/15 10:22	1
Antimony	ND		2.0	0.68	mg/L		05/01/15 11:58	05/04/15 10:22	1
Arsenic	1.8		1.5	0.56	mg/L		05/01/15 11:58	05/04/15 10:22	1
Barium	ND		0.20	0.070	mg/L		05/01/15 11:58	05/04/15 10:22	1
Beryllium	ND		0.20	0.030	mg/L		05/01/15 11:58	05/04/15 10:22	1
Cadmium	ND		0.20	0.050	mg/L		05/01/15 11:58	05/04/15 10:22	1
Calcium	ND		50.0	10.0	mg/L		05/01/15 11:58	05/04/15 10:22	1
Chromium	0.79		0.40	0.10	mg/L		05/01/15 11:58	05/04/15 10:22	1
Cobalt	ND		0.40	0.063	mg/L		05/01/15 11:58	05/04/15 10:22	1
Copper	ND		1.0	0.16	mg/L		05/01/15 11:58	05/04/15 10:22	1
Iron	ND	^	5.0	1.9	mg/L		05/01/15 11:58	05/04/15 10:22	1
Lead	ND		1.0	0.30	mg/L		05/01/15 11:58	05/04/15 10:22	1
Magnesium	ND		20.0	4.3	mg/L		05/01/15 11:58	05/04/15 10:22	1
Manganese	0.11	JB	0.30	0.040	mg/L		05/01/15 11:58	05/04/15 10:22	1
Nickel	ND		1.0	0.13	mg/L		05/01/15 11:58	05/04/15 10:22	1
Potassium	13.7	J	50.0	10.0	mg/L		05/01/15 11:58	05/04/15 10:22	1
Selenium	ND		2.5	0.87	mg/L		05/01/15 11:58	05/04/15 10:22	1
Silver	ND		0.60	0.17	mg/L		05/01/15 11:58	05/04/15 10:22	1
Sodium	24000		100	32.4	mg/L		05/01/15 11:58	05/04/15 10:22	1
Thallium	ND		2.0	1.0	mg/L		05/01/15 11:58	05/04/15 10:22	1
Vanadium	0.60		0.50	0.15	mg/L		05/01/15 11:58	05/04/15 10:22	1
Zinc	0.20	J	1.0	0.15	mg/L		05/01/15 11:58	05/04/15 10:22	1

RL

40.0

MDL Unit

17.4 mg/L

Prepared

Analyzed

04/22/15 15:20

Dil Fac

40

7

9

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP NAOH HIGH

Lab Sample ID: 480-78558-11 Date Collected: 04/15/15 10:50 **Matrix: Water**

Date Received: 04/16/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	291		20.0	6.0	mg/L		05/01/15 11:58	05/04/15 10:25	1
Antimony	ND		2.0	0.68	mg/L		05/01/15 11:58	05/04/15 10:25	1
Arsenic	2.2		1.5	0.56	mg/L		05/01/15 11:58	05/04/15 10:25	1
Barium	0.085	J	0.20	0.070	mg/L		05/01/15 11:58	05/04/15 10:25	1
Beryllium	ND		0.20	0.030	mg/L		05/01/15 11:58	05/04/15 10:25	1
Cadmium	ND		0.20	0.050	mg/L		05/01/15 11:58	05/04/15 10:25	1
Calcium	ND		50.0	10.0	mg/L		05/01/15 11:58	05/04/15 10:25	1
Chromium	1.2		0.40	0.10	mg/L		05/01/15 11:58	05/04/15 10:25	1
Cobalt	ND		0.40	0.063	mg/L		05/01/15 11:58	05/04/15 10:25	1
Copper	ND		1.0	0.16	mg/L		05/01/15 11:58	05/04/15 10:25	1
Iron	ND	^	5.0	1.9	mg/L		05/01/15 11:58	05/04/15 10:25	1
Lead	0.98	J	1.0	0.30	mg/L		05/01/15 11:58	05/04/15 10:25	1
Magnesium	ND		20.0	4.3	mg/L		05/01/15 11:58	05/04/15 10:25	1
Manganese	0.12	JB	0.30	0.040	mg/L		05/01/15 11:58	05/04/15 10:25	1
Nickel	ND		1.0	0.13	mg/L		05/01/15 11:58	05/04/15 10:25	1
Potassium	37.9	J	50.0	10.0	mg/L		05/01/15 11:58	05/04/15 10:25	1
Selenium	ND		2.5	0.87	mg/L		05/01/15 11:58	05/04/15 10:25	1
Silver	ND		0.60	0.17	mg/L		05/01/15 11:58	05/04/15 10:25	1
Sodium	45800		100	32.4	mg/L		05/01/15 11:58	05/04/15 10:25	1
Thallium	ND		2.0	1.0	mg/L		05/01/15 11:58	05/04/15 10:25	1
Vanadium	0.84		0.50	0.15	mg/L		05/01/15 11:58	05/04/15 10:25	1
Zinc	0.60	J	1.0	0.15	mg/L		05/01/15 11:58	05/04/15 10:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	96200	В	1000	434	mg/L			05/01/15 23:40	1000

TestAmerica Buffalo

RL

1.0

0.10

0.075

0.010

0.010

0.010

0.0040

2.5

Result Qualifier

54.6

ND

ND

2.1

0.0059

0.019

67.8

0.037

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners: Site# 907028

Lab Sample ID: 480-78558-12 **Client Sample ID: HP LOW**

MDL Unit

0.30 mg/L

0.034 mg/L

0.028 mg/L

0.0035 mg/L

0.0015 mg/L

0.0025 mg/L

0.0010 mg/L

0.50 mg/L

D

Prepared

04/28/15 16:23

04/28/15 16:23

04/28/15 16:23

04/28/15 16:23

04/28/15 16:23

04/28/15 16:23

04/28/15 16:23

04/28/15 16:23

Date Collected: 04/15/15 11:00 Date Received: 04/16/15 09:00

Analyte

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Calcium

Method: 6010C - Metals (ICP)

Lab Sa	umpie וטו	: 48U- <i>l</i>	8558-12
		Mat	rix: Water

Analyzed

04/30/15 08:16

04/30/15 08:16

04/30/15 08:16

04/30/15 08:16

04/30/15 08:16

04/30/15 08:16

04/30/15 08:16

04/29/15 14:44

TestAmerica Job ID: 480-78558-1

Dil Fac

5

5

Total Organic Carbon	4520		200	86.8	mg/L			04/22/15 16:16	200
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
General Chemistry									
Zinc	0.86		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 14:44	1
Vanadium	0.039		0.0050	0.0015			04/28/15 16:23	04/29/15 14:44	1
Thallium	0.010	J	0.020	0.010	mg/L		04/28/15 16:23	04/29/15 14:44	1
Sodium	10.6		5.0	1.6	mg/L		04/28/15 16:23	04/30/15 08:16	5
Silver	0.0062		0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 14:44	1
Selenium	ND		0.13	0.044	mg/L		04/28/15 16:23	04/30/15 08:16	5
Potassium	1.4	J	2.5	0.50	mg/L		04/28/15 16:23	04/30/15 08:16	5
Nickel	0.29		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 14:44	1
Manganese	61.0	В	0.015	0.0020	mg/L		04/28/15 16:23	04/30/15 08:16	5
Magnesium	8.1		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 14:44	1
Lead	0.073		0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 14:44	1
Iron	95.6		0.25	0.097	mg/L		04/28/15 16:23	04/30/15 08:16	5
Copper	0.13		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 14:44	1
Cobalt	0.14		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 14:44	1

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-13

Matrix: Water

Client Sample ID: HP HIGH Date Collected: 04/15/15 11:10

Date Received: 04/16/15 09:00

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	49.4		0.20	0.060	mg/L		04/28/15 16:23	04/29/15 14:47	1
Antimony	ND		0.020	0.0068	mg/L		04/28/15 16:23	04/29/15 14:47	1
Arsenic	0.010	J	0.015	0.0056	mg/L		04/28/15 16:23	04/29/15 14:47	1
Barium	1.3		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 14:47	1
Beryllium	0.0055		0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 14:47	1
Cadmium	0.016		0.0020	0.00050	mg/L		04/28/15 16:23	04/29/15 14:47	1
Calcium	61.2		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:47	1
Chromium	0.061		0.0040	0.0010	mg/L		04/28/15 16:23	04/29/15 14:47	1
Cobalt	0.15		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 14:47	1
Copper	0.18		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 14:47	1
Iron	76.3		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 14:47	1
Lead	0.026		0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 14:47	1
Magnesium	10.7		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 14:47	1
Manganese	49.2	В	0.0030	0.00040	mg/L		04/28/15 16:23	04/29/15 14:47	1
Nickel	0.31		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 14:47	1
Potassium	1.2		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 14:47	1
Selenium	ND		0.025	0.0087	mg/L		04/28/15 16:23	04/29/15 14:47	1
Silver	0.0087		0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 14:47	1
Sodium	10.2		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 14:47	1
Thallium	ND		0.020	0.010	mg/L		04/28/15 16:23	04/29/15 14:47	1
Vanadium	0.065		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 14:47	1
Zinc	1.1		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 14:47	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	6050		100	43.4	mg/L			04/22/15 16:43	100

4

5

7

9

10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: HP CTRL

General Chemistry

Total Organic Carbon

Analyte

Lab Sample ID: 480-78558-14 Date Collected: 04/15/15 09:00 Date Received: 04/16/15 09:00

Matrix: Water

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		04/28/15 16:23	04/29/15 15:13	1
Antimony	ND		0.020	0.0068	mg/L		04/28/15 16:23	04/29/15 15:13	1
Arsenic	ND		0.015	0.0056	mg/L		04/28/15 16:23	04/29/15 15:13	1
Barium	0.011		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 15:13	1
Beryllium	ND		0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 15:13	1
Cadmium	ND		0.0020	0.00050	mg/L		04/28/15 16:23	04/29/15 15:13	1
Calcium	9.8		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 15:13	1
Chromium	ND		0.0040	0.0010	mg/L		04/28/15 16:23	04/29/15 15:13	1
Cobalt	ND		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 15:13	1
Copper	ND		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 15:13	1
Iron	ND		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 15:13	1
Lead	ND		0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 15:13	1
Magnesium	1.8		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 15:13	1
Manganese	0.0018	JB	0.0030	0.00040	mg/L		04/28/15 16:23	04/29/15 15:13	1
Nickel	ND		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 15:13	1
Potassium	0.29	J	0.50	0.10	mg/L		04/28/15 16:23	04/29/15 15:13	1
Selenium	ND		0.025	0.0087	mg/L		04/28/15 16:23	04/29/15 15:13	1
Silver	ND		0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 15:13	1
Sodium	10.7		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 15:13	1
Thallium	ND		0.020	0.010	mg/L		04/28/15 16:23	04/29/15 15:13	1
Vanadium	ND		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 15:13	1
Zinc	ND		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 15:13	1

RL

1.0

MDL Unit

0.43 mg/L

Prepared

Analyzed

04/22/15 00:24

Dil Fac

Result Qualifier

5.2

Client: New York State D.E.C.

Client Sample ID: SP CTRL

Date Collected: 04/15/15 10:00

Date Received: 04/16/15 09:00

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-15

Matrix: Solid Percent Solids: 80.0

a	
n	
•	4

Method: 8260C - Volatile Organic	Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.2	0.30	ug/Kg		04/16/15 14:00	04/17/15 13:42	
1,1,2,2-Tetrachloroethane	ND	4.2	0.67	ug/Kg	₩	04/16/15 14:00	04/17/15 13:42	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.2	0.95	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
1,1,2-Trichloroethane	ND	4.2	0.54	ug/Kg	ф.	04/16/15 14:00	04/17/15 13:42	
1,1-Dichloroethane	ND	4.2	0.51	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
1,1-Dichloroethene	ND	4.2	0.51	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
1,2,4-Trichlorobenzene	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 13:42	
1,2-Dibromo-3-Chloropropane	ND	4.2	2.1	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
1,2-Dibromoethane	ND	4.2	0.53	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
1,2-Dichlorobenzene	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 13:42	
1,2-Dichloroethane	ND	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
1,2-Dichloropropane	ND	4.2	2.1	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
1,3-Dichlorobenzene	ND	4.2	0.21	ug/Kg		04/16/15 14:00	04/17/15 13:42	
1,4-Dichlorobenzene	ND	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
2-Butanone (MEK)	ND ND	21	1.5	ug/Kg ug/Kg	₩	04/16/15 14:00	04/17/15 13:42	
2-Hexanone (WEK)	ND	21	2.1	ug/Kg ug/Kg		04/16/15 14:00	04/17/15 13:42	
	ND ND	21			т Ф	04/16/15 14:00	04/17/15 13:42	
4-Methyl-2-pentanone (MIBK)				ug/Kg	~ \$			
Acetone	ND	21		ug/Kg		04/16/15 14:00	04/17/15 13:42	
Benzene	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 13:42	
Bromodichloromethane	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 13:42	
Bromoform	ND	4.2	2.1	ug/Kg	T	04/16/15 14:00	04/17/15 13:42	
Bromomethane	ND	4.2		ug/Kg	*	04/16/15 14:00	04/17/15 13:42	
Carbon disulfide	ND	4.2	2.1	ug/Kg		04/16/15 14:00	04/17/15 13:42	
Carbon tetrachloride	ND	4.2	0.40	ug/Kg		04/16/15 14:00	04/17/15 13:42	
Chlorobenzene	ND	4.2	0.55	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Chloroethane	ND	4.2	0.94	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Chloroform	ND	4.2	0.26	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Chloromethane	ND	4.2	0.25	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
cis-1,2-Dichloroethene	1.3 J	4.2	0.53	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
cis-1,3-Dichloropropene	ND	4.2	0.60	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Cyclohexane	ND	4.2	0.58	ug/Kg		04/16/15 14:00	04/17/15 13:42	
Dibromochloromethane	ND	4.2	0.53	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Dichlorodifluoromethane	ND	4.2	0.34	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Ethylbenzene	ND	4.2	0.29	ug/Kg		04/16/15 14:00	04/17/15 13:42	
sopropylbenzene	ND	4.2	0.63	ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Methyl acetate	ND	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Methyl tert-butyl ether	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 13:42	
Methylcyclohexane	ND	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Methylene Chloride	ND	4.2		ug/Kg ug/Kg	₽	04/16/15 14:00	04/17/15 13:42	
Styrene	ND	4.2	0.21	ug/Kg ug/Kg		04/16/15 14:00	04/17/15 13:42	
•		4.2		ug/Kg ug/Kg	т Ф	04/16/15 14:00	04/17/15 13:42	
Tetrachloroethene Foluene	2000 E ND	4.2		ug/Kg ug/Kg	т Ф	04/16/15 14:00	04/17/15 13:42	
rans-1,2-Dichloroethene	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 13:42	
rans-1,3-Dichloropropene	ND	4.2		ug/Kg	Ÿ ×	04/16/15 14:00	04/17/15 13:42	
Trichloroethene	35	4.2	0.91	ug/Kg		04/16/15 14:00	04/17/15 13:42	
Trichlorofluoromethane	ND	4.2		ug/Kg	\$	04/16/15 14:00	04/17/15 13:42	
Vinyl chloride	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 13:42	
Xylenes, Total	ND	8.3	0.70	ug/Kg	₩	04/16/15 14:00	04/17/15 13:42	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-15

TestAmerica Job ID: 480-78558-1

Matrix: Solid Percent Solids: 80.0

Client Sample ID: SP CTRL Date Collected: 04/15/15 10:00 Date Received: 04/16/15 09:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		64 - 126	04/16/15 14:00	04/17/15 13:42	1
4-Bromofluorobenzene (Surr)	98		72 - 126	04/16/15 14:00	04/17/15 13:42	1
Dibromofluoromethane (Surr)	92		60 - 140	04/16/15 14:00	04/17/15 13:42	1
Toluene-d8 (Surr)	95		71 - 125	04/16/15 14:00	04/17/15 13:42	1

Toluene-uo (Sull)	95	71 - 125				04/10/13 14.00	04/17/13 13.42	
Method: 8260C - Volatile Organ					_			5.1.5
Analyte	Result Qua	alifier RL 240	MDL 67		D <u>₩</u>	Prepared 04/16/15 14:00	Analyzed 04/24/15 04:20	Dil Fa
1,1,1-Trichloroethane	ND ND			ug/Kg	₩			4
1,1,2,2-Tetrachloroethane		240	39	ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	240	120	ug/Kg		04/16/15 14:00	04/24/15 04:20	
1,1,2-Trichloroethane	ND	240		ug/Kg		04/16/15 14:00	04/24/15 04:20	4
1,1-Dichloroethane	ND	240		ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
1,1-Dichloroethene	ND	240		ug/Kg		04/16/15 14:00	04/24/15 04:20	
1,2,4-Trichlorobenzene	ND	240		ug/Kg	*	04/16/15 14:00	04/24/15 04:20	4
1,2-Dibromo-3-Chloropropane	ND	240		ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	4
1,2-Dibromoethane	ND	240		ug/Kg	<u></u>	04/16/15 14:00	04/24/15 04:20	
1,2-Dichlorobenzene	ND	240		ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
1,2-Dichloroethane	ND	240		ug/Kg	#	04/16/15 14:00	04/24/15 04:20	4
1,2-Dichloropropane	ND	240		ug/Kg		04/16/15 14:00	04/24/15 04:20	
1,3-Dichlorobenzene	ND	240		ug/Kg	₩.	04/16/15 14:00	04/24/15 04:20	4
1,4-Dichlorobenzene	ND	240	34	ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	4
2-Butanone (MEK)	ND	1200	720	ug/Kg	*	04/16/15 14:00	04/24/15 04:20	4
2-Hexanone	ND	1200	500	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
4-Methyl-2-pentanone (MIBK)	ND	1200	77	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
Acetone	1000 J	1200	990	ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	4
Benzene	ND	240	46	ug/Kg	*	04/16/15 14:00	04/24/15 04:20	
Bromodichloromethane	ND	240	48	ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	4
Bromoform	ND	240	120	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
3romomethane	ND	240	53	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	
Carbon disulfide	ND	240	110	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
Carbon tetrachloride	ND	240	62	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
Chlorobenzene	ND	240	32	ug/Kg		04/16/15 14:00	04/24/15 04:20	
Chloroethane	ND	240	50	ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	
Chloroform	ND	240	170	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	
Chloromethane	ND	240	58	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	
cis-1,2-Dichloroethene	ND	240	67	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
cis-1,3-Dichloropropene	ND	240	58	ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	
Cyclohexane	ND	240	54	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/16/15 14:00	04/24/15 04:20	
Dibromochloromethane	ND	240	120	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	
Dichlorodifluoromethane	ND	240		ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	
Ethylbenzene	ND	240		ug/Kg		04/16/15 14:00	04/24/15 04:20	
Isopropylbenzene	ND	240		ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	
Methyl acetate	ND	240		ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
Methyl tert-butyl ether	ND	240		ug/Kg		04/16/15 14:00	04/24/15 04:20	
Methylcyclohexane	ND	240		ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	
Methylene Chloride	250	240		ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	
Styrene	ND	240		ug/Kg		04/16/15 14:00	04/24/15 04:20	
•		240		ug/Kg ug/Kg		04/16/15 14:00	04/24/15 04:20	•
Tetrachloroethene Toluene	11000 ND	240		ug/Kg ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	•
i Oluci iC	שאו	240	UO	ug/r\g	~~	U+/ IU/ IU 14.UU	U4/44/10 U4.4U	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-15

TestAmerica Job ID: 480-78558-1

Matrix: Solid

Percent Solids: 80.0

C	lient	Sam	ple l	ID:	SP	CTR	L
---	-------	-----	-------	-----	----	-----	---

Date Collected: 04/15/15 10:00 Date Received: 04/16/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		240	24	ug/Kg	₩	04/16/15 14:00	04/24/15 04:20	4
Trichloroethene	67	J	240	67	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
Trichlorofluoromethane	ND		240	110	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
Vinyl chloride	ND		240	81	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
Xylenes, Total	ND		480	130	ug/Kg	₽	04/16/15 14:00	04/24/15 04:20	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		53 - 146				04/16/15 14:00	04/24/15 04:20	4
4-Bromofluorobenzene (Surr)	100		49 - 148				04/16/15 14:00	04/24/15 04:20	4
Dibromofluoromethane (Surr)	95		60 - 140				04/16/15 14:00	04/24/15 04:20	4
Toluene-d8 (Surr)	99		50 - 149				04/16/15 14:00	04/24/15 04:20	4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	11600		12.0	5.3	mg/Kg	☼	04/17/15 14:13	04/21/15 09:09	1
Antimony	1.1	J	18.0	0.48	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Arsenic	9.5		2.4	0.48	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Barium	106		0.60	0.13	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Beryllium	0.44		0.24	0.034	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Cadmium	0.32		0.24	0.036	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Calcium	45600		59.9	4.0	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Chromium	11.6		0.60	0.24	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Cobalt	9.2		0.60	0.060	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Copper	42.0		1.2	0.25	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Iron	26400	В	12.0	1.3	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Lead	27.7		1.2	0.29	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Magnesium	4100		24.0	1.1	mg/Kg	φ.	04/17/15 14:13	04/21/15 09:09	1
Manganese	1590	В	0.24	0.038	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Nickel	24.6		6.0	0.28	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Potassium	1720		36.0	24.0	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Selenium	ND		4.8	0.48	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Silver	ND		0.72	0.24	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Sodium	69.2	J	168	15.6	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Thallium	ND		7.2	0.36	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Vanadium	18.2		0.60	0.13	mg/Kg	₽	04/17/15 14:13	04/21/15 09:09	1
Zinc	91.0	В	2.4	0.18	mg/Kg		04/17/15 14:13	04/21/15 09:09	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	4870	В	1000	120	mg/Kg			04/22/15 18:31	1

4

8

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: KMNO4 LOW

Date Collected: 04/15/15 10:10 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-16

Matrix: Solid
Percent Solids: 84.2

70114101 0 11 <u>2</u>	
	5

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.5	0.33	ug/Kg	*	04/16/15 14:00	04/20/15 02:13	
1,1,2,2-Tetrachloroethane	ND	4.5	0.73	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	1.0	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
1,1,2-Trichloroethane	ND	4.5	0.59	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
1,1-Dichloroethane	ND	4.5	0.55	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
1,1-Dichloroethene	ND	4.5	0.55	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
1,2,4-Trichlorobenzene	ND	4.5	0.27	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
1,2-Dibromo-3-Chloropropane	ND	4.5	2.3	ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
1,2-Dibromoethane	ND	4.5	0.58	ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
1,2-Dichlorobenzene	ND	4.5	0.35	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
1,2-Dichloroethane	ND	4.5	0.23	ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
1,2-Dichloropropane	ND	4.5	2.3	ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
1,3-Dichlorobenzene	ND	4.5	0.23	ug/Kg	*	04/16/15 14:00	04/20/15 02:13	
1,4-Dichlorobenzene	ND	4.5	0.63	ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
2-Butanone (MEK)	13 J	23	1.6	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
2-Hexanone	ND	23	2.3	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
4-Methyl-2-pentanone (MIBK)	ND	23	1.5	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Acetone	77	23	3.8	ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
Benzene	ND	4.5	0.22	ug/Kg		04/16/15 14:00	04/20/15 02:13	
Bromodichloromethane	ND	4.5	0.60	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Bromoform	ND	4.5	2.3	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Bromomethane	ND	4.5	0.41	ug/Kg		04/16/15 14:00	04/20/15 02:13	
Carbon disulfide	ND	4.5	2.3	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Carbon tetrachloride	ND	4.5	0.44	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Chlorobenzene	ND	4.5	0.59	ug/Kg		04/16/15 14:00	04/20/15 02:13	
Chloroethane	ND	4.5	1.0	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Chloroform	ND	4.5	0.28	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Chloromethane	ND	4.5	0.27	ug/Kg		04/16/15 14:00	04/20/15 02:13	
cis-1,2-Dichloroethene	ND	4.5	0.58	ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
cis-1,3-Dichloropropene	ND	4.5	0.65	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Cyclohexane	ND *	4.5	0.63	ug/Kg		04/16/15 14:00	04/20/15 02:13	
Dibromochloromethane	ND	4.5	0.58	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Dichlorodifluoromethane	ND	4.5	0.37	ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Ethylbenzene	ND	4.5	0.31	ug/Kg		04/16/15 14:00	04/20/15 02:13	
Isopropylbenzene	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Methyl acetate	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Methyl tert-butyl ether	ND	4.5		ug/Kg		04/16/15 14:00	04/20/15 02:13	
Methylcyclohexane	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Methylene Chloride	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Styrene	ND	4.5		ug/Kg		04/16/15 14:00	04/20/15 02:13	
Tetrachloroethene	220 E	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Toluene	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
trans-1,2-Dichloroethene	ND	4.5		ug/Kg		04/16/15 14:00	04/20/15 02:13	
trans-1,3-Dichloropropene	ND	4.5		ug/Kg ug/Kg	₽	04/16/15 14:00	04/20/15 02:13	
Trichloroethene	ND ND	4.5		ug/Kg ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
Trichlorofluoromethane	ND			ug/Kg ug/Kg		04/16/15 14:00	04/20/15 02:13	
Vinyl chloride	ND ND	4.5 4.5		ug/Kg ug/Kg	₩	04/16/15 14:00	04/20/15 02:13	
Xylenes, Total	ND ND	9.0		ug/Kg ug/Kg	.,.	U-7/10/10 14.00	04/20/15 02:13	

TestAmerica Buffalo

3

5

7

9

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-16

TestAmerica Job ID: 480-78558-1

Client Sample ID: KMNO4 LOW

Date Collected: 04/15/15 10:10 Matrix: Solid Date Received: 04/16/15 09:00

Percent Solids: 84.2

Surrogate	%Recovery Qua	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88	64 - 126	04/16/15 14:00	04/20/15 02:13	1
4-Bromofluorobenzene (Surr)	97	72 - 126	04/16/15 14:00	04/20/15 02:13	1
Dibromofluoromethane (Surr)	97	60 - 140	04/16/15 14:00	04/20/15 02:13	1
Toluene-d8 (Surr)	103	71 - 125	04/16/15 14:00	04/20/15 02:13	1

						04/20/15 02:13	1
				_			D.: E
							Dil Fac
							1
							1
							1
							1
							1
							1
							1
	51	9.0	ug/Kg		04/16/15 14:00	04/24/15 04:43	1
ND	51	13	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	51	21	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	51	8.3	ug/Kg		04/16/15 14:00	04/24/15 04:43	1
ND	51	14	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	51	7.2	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	260	150	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	260	110	ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
ND	260	16	ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
340	260	210	ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
ND	51	9.8	ug/Kg	\$	04/16/15 14:00	04/24/15 04:43	1
ND	51	10	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	51	26	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	51	11	ug/Kg		04/16/15 14:00	04/24/15 04:43	1
ND	51	23	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	51	13	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	51	6.8	ug/Kg	ф.	04/16/15 14:00	04/24/15 04:43	1
ND	51	11	ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
ND	51	35	ug/Kg	₩	04/16/15 14:00	04/24/15 04:43	1
ND	51	12	ug/Kg		04/16/15 14:00	04/24/15 04:43	1
ND	51			₩	04/16/15 14:00	04/24/15 04:43	1
ND	51			₩	04/16/15 14:00	04/24/15 04:43	1
ND	51						1
				₽		04/24/15 04:43	1
				₽		04/24/15 04:43	1
							1
				₩			1
				₩			. 1
							1
				*			1
							1
							1
1800 ND	51 51		ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
•	Result Qualifier	ND 51 ND 260 ND 260 ND 260 ND 51 ND 51 </td <td>Result Qualifier RL MDL ND 51 14 ND 51 8.3 ND 51 26 ND 51 11 ND 51 16 ND 51 18 ND 51 19 ND 51 26 ND 51 26 ND 51 9.0 ND 51 14 ND 51 14 ND 51 10 ND 51 10 ND 51 13 ND 51 11 ND<td>Result Qualifier RL MDL Unit ND 51 14 ug/Kg ND 51 8.3 ug/Kg ND 51 26 ug/Kg ND 51 11 ug/Kg ND 51 16 ug/Kg ND 51 18 ug/Kg ND 51 19 ug/Kg ND 51 26 ug/Kg ND 51 19 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 14 ug/Kg ND 51 7.2 ug/Kg ND 51 7.2 ug/Kg ND 260 150 ug/Kg ND 51 9.8 ug/Kg ND 51 9.8</td><td>Result Qualifier RL MDL Unit D ND 51 14 ug/Kg 3 ND 51 8.3 ug/Kg 3 ND 51 26 ug/Kg 3 ND 51 11 ug/Kg 3 ND 51 16 ug/Kg 3 ND 51 18 ug/Kg 3 ND 51 19 ug/Kg 3 ND 51 26 ug/Kg 3 ND 51 9.0 ug/Kg 3 ND 51 3 ug/Kg 3 ND 51 13 ug/Kg 3 ND 51 13 ug/Kg 3 ND 51 14 ug/Kg 3 ND 51 7.2 ug/Kg 3 ND 260 110 ug/Kg 3 ND 51 9.8</td><td> No</td><td> ND</td></td>	Result Qualifier RL MDL ND 51 14 ND 51 8.3 ND 51 26 ND 51 11 ND 51 16 ND 51 18 ND 51 19 ND 51 26 ND 51 26 ND 51 9.0 ND 51 14 ND 51 14 ND 51 10 ND 51 10 ND 51 13 ND 51 11 ND <td>Result Qualifier RL MDL Unit ND 51 14 ug/Kg ND 51 8.3 ug/Kg ND 51 26 ug/Kg ND 51 11 ug/Kg ND 51 16 ug/Kg ND 51 18 ug/Kg ND 51 19 ug/Kg ND 51 26 ug/Kg ND 51 19 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 14 ug/Kg ND 51 7.2 ug/Kg ND 51 7.2 ug/Kg ND 260 150 ug/Kg ND 51 9.8 ug/Kg ND 51 9.8</td> <td>Result Qualifier RL MDL Unit D ND 51 14 ug/Kg 3 ND 51 8.3 ug/Kg 3 ND 51 26 ug/Kg 3 ND 51 11 ug/Kg 3 ND 51 16 ug/Kg 3 ND 51 18 ug/Kg 3 ND 51 19 ug/Kg 3 ND 51 26 ug/Kg 3 ND 51 9.0 ug/Kg 3 ND 51 3 ug/Kg 3 ND 51 13 ug/Kg 3 ND 51 13 ug/Kg 3 ND 51 14 ug/Kg 3 ND 51 7.2 ug/Kg 3 ND 260 110 ug/Kg 3 ND 51 9.8</td> <td> No</td> <td> ND</td>	Result Qualifier RL MDL Unit ND 51 14 ug/Kg ND 51 8.3 ug/Kg ND 51 26 ug/Kg ND 51 11 ug/Kg ND 51 16 ug/Kg ND 51 18 ug/Kg ND 51 19 ug/Kg ND 51 26 ug/Kg ND 51 19 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 13 ug/Kg ND 51 14 ug/Kg ND 51 7.2 ug/Kg ND 51 7.2 ug/Kg ND 260 150 ug/Kg ND 51 9.8 ug/Kg ND 51 9.8	Result Qualifier RL MDL Unit D ND 51 14 ug/Kg 3 ND 51 8.3 ug/Kg 3 ND 51 26 ug/Kg 3 ND 51 11 ug/Kg 3 ND 51 16 ug/Kg 3 ND 51 18 ug/Kg 3 ND 51 19 ug/Kg 3 ND 51 26 ug/Kg 3 ND 51 9.0 ug/Kg 3 ND 51 3 ug/Kg 3 ND 51 13 ug/Kg 3 ND 51 13 ug/Kg 3 ND 51 14 ug/Kg 3 ND 51 7.2 ug/Kg 3 ND 260 110 ug/Kg 3 ND 51 9.8	No	ND

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: KMNO4 LOW

Date Collected: 04/15/15 10:10 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-16

Matrix: Solid

Percent Solids: 84.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		51	5.1	ug/Kg	<u></u>	04/16/15 14:00	04/24/15 04:43	1
Trichloroethene	ND		51	14	ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
Trichlorofluoromethane	ND		51	24	ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
Vinyl chloride	ND		51	17	ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
Xylenes, Total	ND		100	28	ug/Kg	₽	04/16/15 14:00	04/24/15 04:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		53 - 146				04/16/15 14:00	04/24/15 04:43	1
4-Bromofluorobenzene (Surr)	100		49 - 148				04/16/15 14:00	04/24/15 04:43	1
Dibromofluoromethane (Surr)	91		60 - 140				04/16/15 14:00	04/24/15 04:43	1
Toluene-d8 (Surr)	99		50 - 149				04/16/15 14:00	04/24/15 04:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7950		11.0	4.8	mg/Kg	<u></u>	04/17/15 14:13	04/21/15 09:12	1
Antimony	0.75	J	16.5	0.44	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Arsenic	6.8		2.2	0.44	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Barium	113		0.55	0.12	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Beryllium	0.36		0.22	0.031	mg/Kg	☼	04/17/15 14:13	04/21/15 09:12	1
Cadmium	0.29		0.22	0.033	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Calcium	1300		55.0	3.6	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Chromium	10.6		0.55	0.22	mg/Kg	☼	04/17/15 14:13	04/21/15 09:12	1
Cobalt	8.0		0.55	0.055	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Copper	19.7		1.1	0.23	mg/Kg	φ.	04/17/15 14:13	04/21/15 09:12	1
Iron	22800	В	11.0	1.2	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Lead	12.5		1.1	0.26	mg/Kg	☼	04/17/15 14:13	04/21/15 09:12	1
Magnesium	2650		22.0	1.0	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Manganese	1850	В	0.22	0.035	mg/Kg	☼	04/17/15 14:13	04/21/15 09:12	1
Nickel	21.5		5.5	0.25	mg/Kg	☼	04/17/15 14:13	04/21/15 09:12	1
Potassium	1390		33.0	22.0	mg/Kg	₩	04/17/15 14:13	04/21/15 09:12	1
Selenium	ND		4.4	0.44	mg/Kg	☼	04/17/15 14:13	04/21/15 09:12	1
Silver	ND		0.66	0.22	mg/Kg	☼	04/17/15 14:13	04/21/15 09:12	1
Sodium	53.8	J	154	14.3	mg/Kg	₩	04/17/15 14:13	04/21/15 09:12	1
Thallium	ND		6.6	0.33	mg/Kg	☼	04/17/15 14:13	04/21/15 09:12	1
Vanadium	11.9		0.55	0.12	mg/Kg	₽	04/17/15 14:13	04/21/15 09:12	1
Zinc	71.4	В	2.2	0.17	mg/Kg		04/17/15 14:13	04/21/15 09:12	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	n	Prepared	Analvzed	Dil Fac
Total Organic Carbon	4950		1000		mg/Kg		Tropulou	04/22/15 18:37	1

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: KMNO4 MID

Date Collected: 04/15/15 10:15 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-17

Matrix: Solid
Percent Solids: 86.1

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.3	0.32	ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	•
1,1,2,2-Tetrachloroethane	ND	4.3	0.70	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.3	0.99	ug/Kg		04/16/15 14:00	04/20/15 03:04	
1,1,2-Trichloroethane	ND	4.3	0.56	ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	•
1,1-Dichloroethane	ND	4.3	0.53	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	•
1,1-Dichloroethene	ND	4.3	0.53	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	•
1,2,4-Trichlorobenzene	ND	4.3	0.26	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
1,2-Dibromo-3-Chloropropane	ND	4.3	2.2	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
1,2-Dibromoethane	ND	4.3	0.56	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
1,2-Dichlorobenzene	ND	4.3	0.34	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	•
1,2-Dichloroethane	ND	4.3	0.22	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	•
1,2-Dichloropropane	ND	4.3	2.2	ug/Kg	☼	04/16/15 14:00	04/20/15 03:04	
1,3-Dichlorobenzene	ND	4.3	0.22	ug/Kg		04/16/15 14:00	04/20/15 03:04	
1,4-Dichlorobenzene	ND	4.3	0.61		₩	04/16/15 14:00	04/20/15 03:04	1
2-Butanone (MEK)	12 J	22	1.6	ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	
2-Hexanone	ND	22	2.2	ug/Kg		04/16/15 14:00	04/20/15 03:04	
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
Acetone	200	22		ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
Benzene	ND	4.3	0.21	ug/Kg		04/16/15 14:00	04/20/15 03:04	
Bromodichloromethane	ND	4.3	0.58	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
Bromoform	ND	4.3		ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	
Bromomethane	ND	4.3	0.39	ug/Kg		04/16/15 14:00	04/20/15 03:04	
Carbon disulfide	ND	4.3		ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	,
Carbon tetrachloride	ND	4.3		ug/Kg ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	1
Chlorobenzene	ND	4.3		ug/Kg		04/16/15 14:00	04/20/15 03:04	· · · · · · .
Chloroethane	ND	4.3	0.98	ug/Kg ug/Kg		04/16/15 14:00	04/20/15 03:04	
Chloroform	ND	4.3	0.98			04/16/15 14:00	04/20/15 03:04	
Chloromethane	ND	4.3		ug/Kg	~ ⇔	04/16/15 14:00	04/20/15 03:04	
cis-1,2-Dichloroethene	ND	4.3		ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	
cis-1,3-Dichloropropene	ND	4.3	0.63	ug/Kg		04/16/15 14:00	04/20/15 03:04	
Cyclohexane	ND *	4.3	0.61	ug/Kg	\$	04/16/15 14:00	04/20/15 03:04	
Dibromochloromethane	ND	4.3	0.56	ug/Kg	₩.	04/16/15 14:00	04/20/15 03:04	•
Dichlorodifluoromethane	ND	4.3	0.36	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/16/15 14:00	04/20/15 03:04	
Ethylbenzene	ND	4.3	0.30	ug/Kg	*	04/16/15 14:00	04/20/15 03:04	•
Isopropylbenzene	ND	4.3		ug/Kg	₩.	04/16/15 14:00	04/20/15 03:04	•
Methyl acetate	ND	4.3		ug/Kg		04/16/15 14:00	04/20/15 03:04	
Methyl tert-butyl ether	ND	4.3		ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
Methylcyclohexane	ND	4.3	0.66	ug/Kg	☼	04/16/15 14:00	04/20/15 03:04	
Methylene Chloride	ND	4.3	2.0	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	•
Styrene	ND	4.3	0.22	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
Tetrachloroethene	74	4.3	0.58	ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	
Toluene	ND	4.3	0.33	ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	
trans-1,2-Dichloroethene	ND	4.3	0.45	ug/Kg	\$	04/16/15 14:00	04/20/15 03:04	
trans-1,3-Dichloropropene	ND	4.3	1.9	ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	
Trichloroethene	ND	4.3	0.96	ug/Kg	₩	04/16/15 14:00	04/20/15 03:04	
Trichlorofluoromethane	ND	4.3	0.41	ug/Kg	φ.	04/16/15 14:00	04/20/15 03:04	· · · · · · · · · ·
Vinyl chloride	ND	4.3	0.53	ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	
Xylenes, Total	ND	8.7		ug/Kg	₽	04/16/15 14:00	04/20/15 03:04	1

TestAmerica Buffalo

4

6

8

J

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-17 Matrix: Solid

Percent Solids: 86.1

Client Sample ID: KMNO4 MID

Date Collected: 04/15/15 10:15 Date Received: 04/16/15 09:00

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	64 - 126	04/16/15 14:00	04/20/15 03:04	
4-Bromofluorobenzene (Surr)	99	72 - 126	04/16/15 14:00	04/20/15 03:04	1
Dibromofluoromethane (Surr)	99	60 - 140	04/16/15 14:00	04/20/15 03:04	1
Toluene-d8 (Surr)	105	71 - 125	04/16/15 14:00	04/20/15 03:04	1

105		71 - 125				04/16/15 14:00	04/20/15 03:04	
Posult	Qualifier	DI	MDI	Unit	n	Propared	Analyzad	Dil Fa
	Quanner				— ¤	<u> </u>		
	1				æ			
	•							
								ĺ
	В							•
17.4								
2460								•
3220	В	0.22	0.035	mg/Kg	₽	04/17/15 14:13	04/21/15 09:16	•
20.1		5.5	0.25	mg/Kg	₩	04/17/15 14:13	04/21/15 09:16	
2310		32.7	21.8	mg/Kg	₽	04/17/15 14:13	04/21/15 09:16	•
ND		4.4	0.44	mg/Kg	₩	04/17/15 14:13	04/21/15 09:16	•
0.25	J	0.65	0.22	mg/Kg	₩	04/17/15 14:13	04/21/15 09:16	
48.8	J	153	14.2	mg/Kg	\$	04/17/15 14:13	04/21/15 09:16	
ND		6.5	0.33	mg/Kg	₩	04/17/15 14:13	04/21/15 09:16	
12.3		0.55	0.12	mg/Kg	₽	04/17/15 14:13	04/21/15 09:16	
81.5	В	2.2	0.17	mg/Kg	\$	04/17/15 14:13	04/21/15 09:16	
					_			
Result	Qualifier	RL	MDL	Unit	0	Prepared	Analyzed	Dil Fa
	Result 8610 0.52 9.2 127 0.36 0.34 1080 9.9 7.7 21.0 19000 17.4 2460 3220 20.1 2310 ND 0.25 48.8 ND 12.3 81.5	Result Qualifier 8610 0.52 J 9.2 127 0.36 0.34 1080 9.9 7.7 21.0 19000 B 17.4 2460 3220 B 20.1 2310 ND 0.25 J 48.8 J ND	Result 8610 Qualifier RL 0.52 J 16.4 9.2 2.2 127 0.55 0.36 0.22 0.34 0.22 1080 54.5 9.9 0.55 7.7 0.55 21.0 1.1 19000 B 10.9 17.4 1.1 2460 21.8 3220 B 0.22 20.1 5.5 2310 32.7 ND 4.4 0.25 J 0.65 48.8 J 153 ND 6.5 12.3 0.55 81.5 B 2.2	Result 8610 Qualifier RL 10.9 MDL 4.8 0.52 J 16.4 0.44 0.44 9.2 2.2 0.44 127 0.55 0.12 0.36 0.22 0.031 0.34 0.22 0.033 0.22 0.033 1080 54.5 3.6 9.9 0.55 0.22 7.7 0.55 0.055 0.22 21.0 1.1 0.23 1.1 0.23 19000 B 10.9 1.2 1.1 0.26 1.1 0.26 2460 21.8 1.0 2.2 0.035 2.18 1.0 3220 B 0.22 0.035 0.25 0.25 2310 32.7 21.8 1.0 0.25 0.25 0.25 48.8 J 153 14.2 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.25 J 0.65 0.22 0.33 12.3 0.55 0.12 0.12 0.55 0.12 81.5 B 2.2 0.17 Result Qualifier RL MDL	Result 8610 Qualifier RL MDL 10.9 Unit mg/Kg 0.52 J 16.4 0.44 mg/Kg 9.2 2.2 0.44 mg/Kg 127 0.55 0.12 mg/Kg 0.36 0.22 0.031 mg/Kg 0.34 0.22 0.033 mg/Kg 1080 54.5 3.6 mg/Kg 9.9 0.55 0.22 mg/Kg 7.7 0.55 0.055 mg/Kg 19000 B 10.9 1.2 mg/Kg 17.4 1.1 0.26 mg/Kg 2460 21.8 1.0 mg/Kg 3220 B 0.22 0.035 mg/Kg 2310 32.7 21.8 mg/Kg ND 4.4 0.44 mg/Kg 0.25 J 0.65 0.22 mg/Kg 12.3 0.55 0.12 mg/Kg 81.5 B 2.2 0.17 mg/Kg Result Qualifier RL MDL Unit	Result Qualifier RL MDL Unit D 8610 10.9 4.8 mg/Kg 20 0.52 J 16.4 0.44 mg/Kg 20 9.2 2.2 0.44 mg/Kg 20 127 0.55 0.12 mg/Kg 20 0.36 0.22 0.031 mg/Kg 20 0.34 0.22 0.033 mg/Kg 20 1080 54.5 3.6 mg/Kg 20 7.7 0.55 0.022 mg/Kg 20 21.0 1.1 0.23 mg/Kg 20 19000 B 10.9 1.2 mg/Kg 20 17.4 1.1 0.26 mg/Kg 20 17.4 1.1 0.26 mg/Kg 20 2460 21.8 1.0 mg/Kg 20 3220 B 0.22 0.035 mg/Kg 20 2310 32.7 21.8 mg/Kg 20 ND 4.4 0.44 mg/Kg 20 48.8 J 153 <td>Result 8610 Qualifier RL MDL Unit D Prepared 8610 10.9 4.8 mg/Kg 0.04/17/15 14:13 0.52 J 16.4 0.44 mg/Kg 0.04/17/15 14:13 9.2 2.2 0.44 mg/Kg 0.04/17/15 14:13 127 0.55 0.12 mg/Kg 0.04/17/15 14:13 0.36 0.22 0.031 mg/Kg 0.04/17/15 14:13 0.34 0.22 0.033 mg/Kg 0.04/17/15 14:13 1080 54.5 3.6 mg/Kg 0.04/17/15 14:13 7.7 0.55 0.22 mg/Kg 0.04/17/15 14:13 7.7 0.55 0.055 mg/Kg 0.04/17/15 14:13 19000 B 10.9 1.2 mg/Kg 0.04/17/15 14:13 17.4 1.1 0.26 mg/Kg 0.04/17/15 14:13 2460 21.8 1.0 mg/Kg 0.04/17/15 14:13 3220 B 0.22 0.035 mg/Kg 0.04/17/15 14:13 20.1 5.5 0.25 mg/Kg 0.04/17/15 14:13 20.5 J 0.05 0.02</td> <td> Result Qualifier RL MDL Unit D Prepared Analyzed </td>	Result 8610 Qualifier RL MDL Unit D Prepared 8610 10.9 4.8 mg/Kg 0.04/17/15 14:13 0.52 J 16.4 0.44 mg/Kg 0.04/17/15 14:13 9.2 2.2 0.44 mg/Kg 0.04/17/15 14:13 127 0.55 0.12 mg/Kg 0.04/17/15 14:13 0.36 0.22 0.031 mg/Kg 0.04/17/15 14:13 0.34 0.22 0.033 mg/Kg 0.04/17/15 14:13 1080 54.5 3.6 mg/Kg 0.04/17/15 14:13 7.7 0.55 0.22 mg/Kg 0.04/17/15 14:13 7.7 0.55 0.055 mg/Kg 0.04/17/15 14:13 19000 B 10.9 1.2 mg/Kg 0.04/17/15 14:13 17.4 1.1 0.26 mg/Kg 0.04/17/15 14:13 2460 21.8 1.0 mg/Kg 0.04/17/15 14:13 3220 B 0.22 0.035 mg/Kg 0.04/17/15 14:13 20.1 5.5 0.25 mg/Kg 0.04/17/15 14:13 20.5 J 0.05 0.02	Result Qualifier RL MDL Unit D Prepared Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	6490	В	1000	120	mg/Kg			04/22/15 18:44	1

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: KMNO4 HIGH

Date Collected: 04/15/15 10:20 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-18

Matrix: Solid
Percent Solids: 80.6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	4.5	0.33	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,1,2,2-Tetrachloroethane	ND	4.5	0.73	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	1.0	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,1,2-Trichloroethane	ND	4.5	0.58	ug/Kg		04/16/15 14:00	04/20/15 03:30	1
1,1-Dichloroethane	ND	4.5	0.55	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,1-Dichloroethene	ND	4.5	0.55	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,2,4-Trichlorobenzene	ND	4.5	0.27	ug/Kg		04/16/15 14:00	04/20/15 03:30	1
1,2-Dibromo-3-Chloropropane	ND	4.5	2.2	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,2-Dibromoethane	ND	4.5	0.58	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,2-Dichlorobenzene	ND	4.5	0.35	ug/Kg		04/16/15 14:00	04/20/15 03:30	1
1,2-Dichloroethane	ND	4.5	0.22	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,2-Dichloropropane	ND	4.5	2.2	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
1,3-Dichlorobenzene	ND	4.5	0.23	ug/Kg		04/16/15 14:00	04/20/15 03:30	1
1,4-Dichlorobenzene	ND	4.5	0.63	ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
2-Butanone (MEK)	11 J	22	1.6	ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
2-Hexanone	ND	22	2.2	ug/Kg	ф.	04/16/15 14:00	04/20/15 03:30	1
4-Methyl-2-pentanone (MIBK)	ND	22	1.5	ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Acetone	400	22		ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
Benzene	ND	4.5	0.22	ug/Kg		04/16/15 14:00	04/20/15 03:30	1
Bromodichloromethane	ND	4.5			₽	04/16/15 14:00	04/20/15 03:30	1
Bromoform	ND	4.5	2.2	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
Bromomethane	ND	4.5	0.40			04/16/15 14:00	04/20/15 03:30	1
Carbon disulfide	ND	4.5	2.2	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
Carbon tetrachloride	ND	4.5	0.43	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
Chlorobenzene	ND	4.5	0.59	ug/Kg		04/16/15 14:00	04/20/15 03:30	1
Chloroethane	ND	4.5	1.0	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
Chloroform	ND	4.5	0.28	ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Chloromethane	ND	4.5	0.27	ug/Kg		04/16/15 14:00	04/20/15 03:30	1
cis-1,2-Dichloroethene	ND	4.5	0.57	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
cis-1,3-Dichloropropene	ND	4.5	0.65	ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Cyclohexane	ND *	4.5	0.63	ug/Kg		04/16/15 14:00	04/20/15 03:30	1
Dibromochloromethane	ND	4.5	0.57	ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
Dichlorodifluoromethane	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Ethylbenzene	ND	4.5	0.31			04/16/15 14:00	04/20/15 03:30	1
Isopropylbenzene	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Methyl acetate	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Methyl tert-butyl ether	ND	4.5		ug/Kg	-	04/16/15 14:00	04/20/15 03:30	1
Methylcyclohexane	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Methylene Chloride	ND	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Styrene	ND	4.5		ug/Kg	- -	04/16/15 14:00	04/20/15 03:30	1
Tetrachloroethene	58	4.5		ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Toluene	ND	4.5		ug/Kg	₩	04/16/15 14:00	04/20/15 03:30	1
trans-1,2-Dichloroethene	ND	4.5		ug/Kg		04/16/15 14:00	04/20/15 03:30	· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND	4.5		ug/Kg ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Trichloroethene	ND	4.5		ug/Kg ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Trichlorofluoromethane	ND	4.5		ug/Kg		04/16/15 14:00	04/20/15 03:30	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	ND	4.5		ug/Kg ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1
Xylenes, Total	ND	9.0		ug/Kg ug/Kg	₽	04/16/15 14:00	04/20/15 03:30	1

TestAmerica Buffalo

_

6

8

10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-18 Matrix: Solid

Percent Solids: 80.6

Client Sample ID: KMNO4 HIGH

Date Collected: 04/15/15 10:20 Date Received: 04/16/15 09:00

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87	64 - 126	04/16/15 14:00	04/20/15 03:30	1
4-Bromofluorobenzene (Surr)	99	72 - 126	04/16/15 14:00	04/20/15 03:30	1
Dibromofluoromethane (Surr)	98	60 - 140	04/16/15 14:00	04/20/15 03:30	1
Toluene-d8 (Surr)	105	71 - 125	04/16/15 14:00	04/20/15 03:30	1

Dibromotiuorometnane (Surr)	98		60 - 140				04/16/15 14:00	04/20/15 03:30	7
Toluene-d8 (Surr)	105		71 - 125				04/16/15 14:00	04/20/15 03:30	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7090		13.5	6.0	mg/Kg		04/17/15 14:13	04/21/15 09:19	1
Antimony	ND		20.3	0.54	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Arsenic	4.1		2.7	0.54	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Barium	85.4		0.68	0.15	mg/Kg	ф.	04/17/15 14:13	04/21/15 09:19	1
Beryllium	0.23	J	0.27	0.038	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Cadmium	0.24	J	0.27	0.041	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Calcium	33600		67.6	4.5	mg/Kg		04/17/15 14:13	04/21/15 09:19	1
Chromium	6.7		0.68	0.27	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Cobalt	5.8		0.68	0.068	mg/Kg	₽	04/17/15 14:13	04/21/15 09:19	1
Copper	14.9		1.4	0.28	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Iron	13500	В	13.5	1.5	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Lead	12.9		1.4	0.32	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Magnesium	2790		27.1	1.3	mg/Kg	₽	04/17/15 14:13	04/21/15 09:19	1
Manganese	3200	В	0.27	0.043	mg/Kg	₽	04/17/15 14:13	04/21/15 09:19	1
Nickel	14.6		6.8	0.31	mg/Kg	₽	04/17/15 14:13	04/21/15 09:19	1
Potassium	1790		40.6	27.1	mg/Kg	\$	04/17/15 14:13	04/21/15 09:19	1
Selenium	ND		5.4	0.54	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Silver	0.34	J	0.81	0.27	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Sodium	74.8	J	189	17.6	mg/Kg	\$	04/17/15 14:13	04/21/15 09:19	1
Thallium	0.41	J	8.1	0.41	mg/Kg	₩	04/17/15 14:13	04/21/15 09:19	1
Vanadium	8.9		0.68	0.15	mg/Kg	₽	04/17/15 14:13	04/21/15 09:19	1
Zinc	60.8	В	2.7	0.21	mg/Kg	\$	04/17/15 14:13	04/21/15 09:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	11200	В	1000	120	mg/Kg			04/22/15 18:51	1

ı	General Chemistry									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
L	Total Organic Carbon	11200	В	1000	120	mg/Kg			04/22/15 18:51	1

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP FECA LOW

Date Collected: 04/15/15 10:25 Date Received: 04/16/15 09:00

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Lab Sample ID: 480-78558-19

Matrix: Solid
Percent Solids: 79.5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND -	4.2	0.30	ug/Kg	<u> </u>	04/16/15 14:00	04/17/15 15:25	
1,1,2,2-Tetrachloroethane	ND	4.2	0.67	ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.2	0.95	ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
1,1,2-Trichloroethane	ND	4.2	0.54	ug/Kg	\$	04/16/15 14:00	04/17/15 15:25	
1,1-Dichloroethane	ND	4.2	0.51	ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
1,1-Dichloroethene	ND	4.2	0.51	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
1,2,4-Trichlorobenzene	ND	4.2	0.25	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
1,2-Dibromo-3-Chloropropane	ND	4.2	2.1	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
1,2-Dibromoethane	ND	4.2	0.53	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
1,2-Dichlorobenzene	ND	4.2	0.33	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
1,2-Dichloroethane	0.90 J	4.2	0.21	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
1,2-Dichloropropane	ND	4.2	2.1	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
1,3-Dichlorobenzene	ND	4.2	0.21	ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
1,4-Dichlorobenzene	ND	4.2	0.58	ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
2-Butanone (MEK)	ND	21	1.5	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
2-Hexanone	ND	21	2.1	ug/Kg		04/16/15 14:00	04/17/15 15:25	
4-Methyl-2-pentanone (MIBK)	ND	21	1.4	ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
Acetone	54	21	3.5	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Benzene	0.43 J	4.2	0.20	ug/Kg		04/16/15 14:00	04/17/15 15:25	
Bromodichloromethane	ND	4.2	0.56	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Bromoform	ND	4.2	2.1	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Bromomethane	2.9 J	4.2	0.37	ug/Kg		04/16/15 14:00	04/17/15 15:25	
Carbon disulfide	ND	4.2	2.1	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Carbon tetrachloride	ND	4.2	0.40	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Chlorobenzene	ND	4.2	0.55	ug/Kg	φ.	04/16/15 14:00	04/17/15 15:25	
Chloroethane	ND	4.2	0.94	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Chloroform	3.7 J	4.2	0.26	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Chloromethane	48	4.2	0.25	ug/Kg	ф.	04/16/15 14:00	04/17/15 15:25	
cis-1,2-Dichloroethene	ND	4.2	0.53	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
cis-1,3-Dichloropropene	ND	4.2	0.60	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Cyclohexane	ND	4.2	0.58	ug/Kg		04/16/15 14:00	04/17/15 15:25	
Dibromochloromethane	ND	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Dichlorodifluoromethane	ND	4.2	0.34	ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Ethylbenzene	ND	4.2	0.29	ug/Kg		04/16/15 14:00	04/17/15 15:25	
Isopropylbenzene	ND	4.2		ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
Methyl acetate	ND	4.2		ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
Methyl tert-butyl ether	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 15:25	
Methylcyclohexane	ND	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Methylene Chloride	12	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Styrene	ND	4.2		ug/Kg		04/16/15 14:00	04/17/15 15:25	
Tetrachloroethene	830 E	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	
Toluene	ND	4.2		ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
trans-1,2-Dichloroethene	ND	4.2		ug/Kg	 ☆	04/16/15 14:00	04/17/15 15:25	
trans-1,3-Dichloropropene	ND	4.2		ug/Kg	₩	04/16/15 14:00	04/17/15 15:25	
Trichloroethene	ND	4.2		ug/Kg	₽	04/16/15 14:00	04/17/15 15:25	

TestAmerica Buffalo

04/17/15 15:25

04/17/15 15:25

04/17/15 15:25

04/16/15 14:00

04/16/15 14:00

04/16/15 14:00

4.2

4.2

8.3

0.39 ug/Kg

0.51 ug/Kg

0.70 ug/Kg

ND

ND

ND

2

6

8

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-19

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP FECA LOW

Date Collected: 04/15/15 10:25

Date Received: 04/16/15 09:00

Matrix: Solid
Percent Solids: 79.5

	Percent Sol	ids: 79.5
ed	Analyzed	Dil Fac

Surrogate	%Recovery Qualif	ier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	64 - 126	04/16/15 14:00	04/17/15 15:25	1
4-Bromofluorobenzene (Surr)	94	72 - 126	04/16/15 14:00	04/17/15 15:25	1
Dibromofluoromethane (Surr)	98	60 - 140	04/16/15 14:00	04/17/15 15:25	1
Toluene-d8 (Surr)	96	71 - 125	04/16/15 14:00	04/17/15 15:25	1

Toluene-ue (Sun)	90	71 - 125				04/10/13 14.00	04/11/15 15.25	,
Method: 8260C - Volatile Organi	•				_	_		
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	59	16	ug/Kg	*	04/16/15 14:00	04/24/15 05:07	1
1,1,2,2-Tetrachloroethane	ND	59			₽.	04/16/15 14:00	04/24/15 05:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	59	30	ug/Kg		04/16/15 14:00	04/24/15 05:07	1
1,1,2-Trichloroethane	ND	59	12	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
1,1-Dichloroethane	ND	59	18	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
1,1-Dichloroethene	ND	59	20	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
1,2,4-Trichlorobenzene	ND	59	22	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
1,2-Dibromo-3-Chloropropane	ND	59	30	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
1,2-Dibromoethane	ND	59	10	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
1,2-Dichlorobenzene	ND	59	15	ug/Kg	*	04/16/15 14:00	04/24/15 05:07	1
1,2-Dichloroethane	ND	59	24	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
1,2-Dichloropropane	ND	59	9.6	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
1,3-Dichlorobenzene	ND	59	16	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
1,4-Dichlorobenzene	ND	59	8.3	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
2-Butanone (MEK)	ND	300	180	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
2-Hexanone	ND	300	120	ug/Kg		04/16/15 14:00	04/24/15 05:07	1
4-Methyl-2-pentanone (MIBK)	ND	300	19	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Acetone	470	300	240	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Benzene	ND	59	11	ug/Kg	-	04/16/15 14:00	04/24/15 05:07	1
Bromodichloromethane	ND	59		ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
Bromoform	ND	59		0 0	₽	04/16/15 14:00	04/24/15 05:07	1
Bromomethane	ND	59		ug/Kg		04/16/15 14:00	04/24/15 05:07	
Carbon disulfide	ND	59		ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Carbon tetrachloride	ND	59		ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Chlorobenzene	ND ND	59		ug/Kg		04/16/15 14:00	04/24/15 05:07	
Chloroethane	ND ND	59 59		ug/Kg ug/Kg		04/16/15 14:00	04/24/15 05:07	1
		59 59						1
Chloroform	ND			ug/Kg		04/16/15 14:00	04/24/15 05:07	
Chloromethane	95	59		ug/Kg		04/16/15 14:00	04/24/15 05:07	1
cis-1,2-Dichloroethene	ND	59		0 0		04/16/15 14:00	04/24/15 05:07	1
cis-1,3-Dichloropropene	ND	59		ug/Kg	<u></u>	04/16/15 14:00	04/24/15 05:07	
Cyclohexane	ND	59		ug/Kg	₩.	04/16/15 14:00	04/24/15 05:07	1
Dibromochloromethane	ND	59	29	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
Dichlorodifluoromethane	ND	59				04/16/15 14:00	04/24/15 05:07	1
Ethylbenzene	ND	59	17	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Isopropylbenzene	ND	59	8.9	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
Methyl acetate	210	59	28	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
Methyl tert-butyl ether	ND	59	22	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Methylcyclohexane	ND	59	28	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Methylene Chloride	96	59	12	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
Styrene	ND	59	14	ug/Kg	*	04/16/15 14:00	04/24/15 05:07	1
Tetrachloroethene	5700	59	7.9	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Toluene	ND	59	16	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
trans-1,2-Dichloroethene	ND	59	14	ug/Kg		04/16/15 14:00	04/24/15 05:07	1

TestAmerica Buffalo

Page 32 of 76

5/6/2015

3

4

e

Я

1.0

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-19

TestAmerica Job ID: 480-78558-1

Matrix: Solid

Matrix: Solid Percent Solids: 79.5

Client Sample ID: SP FECA LOW

Date Collected: 04/15/15 10:25 Date Received: 04/16/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		59	5.8	ug/Kg	₩	04/16/15 14:00	04/24/15 05:07	1
Trichloroethene	ND		59	16	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Trichlorofluoromethane	ND		59	28	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Vinyl chloride	ND		59	20	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Xylenes, Total	ND		120	33	ug/Kg	₽	04/16/15 14:00	04/24/15 05:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		53 - 146				04/16/15 14:00	04/24/15 05:07	1
4-Bromofluorobenzene (Surr)	99		49 - 148				04/16/15 14:00	04/24/15 05:07	1
Dibromofluoromethane (Surr)	92		60 - 140				04/16/15 14:00	04/24/15 05:07	1
Toluene-d8 (Surr)	99		50 - 149				04/16/15 14:00	04/24/15 05:07	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6230		12.9	5.7	mg/Kg	₩	04/17/15 14:13	04/21/15 09:22	1
Antimony	ND		19.3	0.51	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Arsenic	6.4		2.6	0.51	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Barium	93.5		0.64	0.14	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Beryllium	0.32		0.26	0.036	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Cadmium	0.34		0.26	0.039	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Calcium	2570		64.3	4.2	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Chromium	7.1		0.64	0.26	mg/Kg	₩	04/17/15 14:13	04/21/15 09:22	1
Cobalt	6.7		0.64	0.064	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Copper	17.3		1.3	0.27	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Iron	12900	В	12.9	1.4	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Lead	14.6		1.3	0.31	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Magnesium	1630		25.7	1.2	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Manganese	902	В	0.26	0.041	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Nickel	15.0		6.4	0.30	mg/Kg	₩	04/17/15 14:13	04/21/15 09:22	1
Potassium	674		38.6	25.7	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Selenium	ND		5.1	0.51	mg/Kg	₩	04/17/15 14:13	04/21/15 09:22	1
Silver	ND		0.77	0.26	mg/Kg	₩	04/17/15 14:13	04/21/15 09:22	1
Sodium	1050		180	16.7	mg/Kg	₩	04/17/15 14:13	04/21/15 09:22	1
Thallium	ND		7.7	0.39	mg/Kg	₩	04/17/15 14:13	04/21/15 09:22	1
Vanadium	8.4		0.64	0.14	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1
Zinc	52.8	В	2.6	0.20	mg/Kg	₽	04/17/15 14:13	04/21/15 09:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	5640	В	1000	120	mg/Kg			04/22/15 18:58	1

TestAmerica Buffalo

2

4

7

8

10

Client: New York State D.E.C.

Date Collected: 04/15/15 10:30

Date Received: 04/16/15 09:00

Xylenes, Total

Client Sample ID: SP FECA MID

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-20

Matrix: Solid Percent Solids: 81.6

Method: 8260C - Volatile Organic (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND		2.8	0.20	ug/Kg	<u>~</u>	04/16/15 14:00	04/17/15 15:51	
1,1,2,2-Tetrachloroethane	ND		2.8	0.45	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.8	0.63	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
1,1,2-Trichloroethane	1.1		2.8		ug/Kg	. .	04/16/15 14:00	04/17/15 15:51	
1,1-Dichloroethane	ND		2.8	0.34	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
1,1-Dichloroethene	ND		2.8	0.34		₽	04/16/15 14:00	04/17/15 15:51	
1,2,4-Trichlorobenzene	ND		2.8		ug/Kg	. .	04/16/15 14:00	04/17/15 15:51	
1,2-Dibromo-3-Chloropropane	ND		2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
1,2-Dibromoethane	ND		2.8	0.36	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
1,2-Dichlorobenzene	ND		2.8	0.22	ug/Kg	 ф	04/16/15 14:00	04/17/15 15:51	
1,2-Dichloroethane	1.4	a .	2.8	0.14	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
1,2-Dichloropropane	ND		2.8	1.4		₽	04/16/15 14:00	04/17/15 15:51	
1,3-Dichlorobenzene	ND		2.8	0.14		 ф	04/16/15 14:00	04/17/15 15:51	
1,4-Dichlorobenzene	ND		2.8	0.39	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
2-Butanone (MEK)	16		14	1.0	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
2-Hexanone	ND		14	1.4	ug/Kg	 \$	04/16/15 14:00	04/17/15 15:51	
4-Methyl-2-pentanone (MIBK)	ND		14	0.91	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Acetone	30		14		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Benzene	0.19		2.8		ug/Kg	 \$	04/16/15 14:00	04/17/15 15:51	
Bromodichloromethane	ND		2.8	0.37	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Bromoform	ND		2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Bromomethane	1.4		2.8		ug/Kg	 \$	04/16/15 14:00	04/17/15 15:51	
Carbon disulfide	3.5		2.8	1.4		₽	04/16/15 14:00	04/17/15 15:51	
Carbon tetrachloride	ND		2.8	0.27	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Chlorobenzene	ND		2.8	0.37		 ф	04/16/15 14:00	04/17/15 15:51	
Chloroethane	ND		2.8	0.63	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Chloroform	5.0		2.8	0.17		₽	04/16/15 14:00	04/17/15 15:51	
Chloromethane	66		2.8	0.17	ug/Kg		04/16/15 14:00	04/17/15 15:51	
cis-1,2-Dichloroethene	0.37	J	2.8	0.36	ug/Kg	₩	04/16/15 14:00	04/17/15 15:51	
cis-1,3-Dichloropropene	ND		2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Cyclohexane	ND		2.8		ug/Kg		04/16/15 14:00	04/17/15 15:51	
Dibromochloromethane	ND		2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Dichlorodifluoromethane	ND		2.8		ug/Kg	₩	04/16/15 14:00	04/17/15 15:51	
Ethylbenzene	ND		2.8		ug/Kg		04/16/15 14:00	04/17/15 15:51	
Isopropylbenzene	ND		2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Methyl acetate	ND		2.8		ug/Kg	₩	04/16/15 14:00	04/17/15 15:51	
Methyl tert-butyl ether	ND		2.8		ug/Kg		04/16/15 14:00	04/17/15 15:51	
Methylcyclohexane	ND		2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Methylene Chloride	30		2.8	1.3	ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Styrene	ND		2.8		ug/Kg		04/16/15 14:00	04/17/15 15:51	
Tetrachloroethene	490	E	2.8	0.37		₽	04/16/15 14:00	04/17/15 15:51	
Toluene	ND		2.8	0.21		₽	04/16/15 14:00	04/17/15 15:51	
rans-1,2-Dichloroethene	ND		2.8		ug/Kg		04/16/15 14:00	04/17/15 15:51	
rans-1,3-Dichloropropene	ND		2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Trichloroethene	0.83	J	2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
Trichlorofluoromethane	ND		2.8		ug/Kg	 ф	04/16/15 14:00	04/17/15 15:51	,
Vinyl chloride	ND		2.8		ug/Kg	₽	04/16/15 14:00	04/17/15 15:51	
V In the Table	ND			0.47		244	04/40/45 44.00	04/47/45 45:54	

TestAmerica Buffalo

04/17/15 15:51

04/16/15 14:00

5.6

0.47 ug/Kg

ND

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP FECA MID

Date Collected: 04/15/15 10:30 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-20

TestAmerica Job ID: 480-78558-1

Matrix: Solid Percent Solids: 81.6

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88	64 - 126	04/16/15 14:00	04/17/15 15:51	1
4-Bromofluorobenzene (Surr)	94	72 - 126	04/16/15 14:00	04/17/15 15:51	1
Dibromofluoromethane (Surr)	97	60 - 140	04/16/15 14:00	04/17/15 15:51	1
Toluene-d8 (Surr)	92	71 - 125	04/16/15 14:00	04/17/15 15:51	1

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	42	12	ug/Kg	<u> </u>	04/16/15 14:00	04/24/15 05:31	
1,1,2,2-Tetrachloroethane	ND	42	6.9	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	42	21	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
1,1,2-Trichloroethane	ND	42	8.9	ug/Kg		04/16/15 14:00	04/24/15 05:31	
1,1-Dichloroethane	ND	42	13	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
1,1-Dichloroethene	ND	42	15	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
1,2,4-Trichlorobenzene	ND	42	16	ug/Kg		04/16/15 14:00	04/24/15 05:31	
1,2-Dibromo-3-Chloropropane	ND	42	21	ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
1,2-Dibromoethane	ND	42	7.4	ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
1,2-Dichlorobenzene	ND	42	11	ug/Kg		04/16/15 14:00	04/24/15 05:31	
1,2-Dichloroethane	ND	42	17	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
1,2-Dichloropropane	ND	42	6.9	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
1,3-Dichlorobenzene	ND	42	11	ug/Kg		04/16/15 14:00	04/24/15 05:31	
1,4-Dichlorobenzene	ND	42	5.9	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
2-Butanone (MEK)	4800	210	130	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
2-Hexanone	ND	210	87	ug/Kg		04/16/15 14:00	04/24/15 05:31	
4-Methyl-2-pentanone (MIBK)	ND	210	14	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
Acetone	1300	210	170	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
Benzene	ND	42	8.1	ug/Kg		04/16/15 14:00	04/24/15 05:31	
Bromodichloromethane	ND	42	8.5	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
Bromoform	ND	42	21	ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
Bromomethane	ND	42	9.3	ug/Kg		04/16/15 14:00	04/24/15 05:31	
Carbon disulfide	ND	42	19	ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
Carbon tetrachloride	ND	42		ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
Chlorobenzene	ND	42		ug/Kg		04/16/15 14:00	04/24/15 05:31	
Chloroethane	ND	42		ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
Chloroform	ND	42		ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
Chloromethane	77	42		ug/Kg		04/16/15 14:00	04/24/15 05:31	
cis-1,2-Dichloroethene	ND	42		ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
cis-1,3-Dichloropropene	ND	42	10	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
Cyclohexane	ND	42		ug/Kg		04/16/15 14:00	04/24/15 05:31	
Dibromochloromethane	ND	42	21	ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
Dichlorodifluoromethane	ND	42		ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
Ethylbenzene	ND	42		ug/Kg		04/16/15 14:00	04/24/15 05:31	
sopropylbenzene	ND	42		ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
Methyl acetate	340	42		ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	
Methyl tert-butyl ether	ND	42		ug/Kg		04/16/15 14:00	04/24/15 05:31	
Methylcyclohexane	ND	42		ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
Methylene Chloride	120	42		ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	
Styrene	ND	42		ug/Kg		04/16/15 14:00	04/24/15 05:31	
•		42		ug/Kg ug/Kg	т Ф	04/16/15 14:00	04/24/15 05:31	
Tetrachloroethene	2000			ug/Kg ug/Kg	т Ф	04/16/15 14:00	04/24/15 05:31	
Toluene rans-1,2-Dichloroethene	26 J	42		ug/Kg		04/16/15 14:00	04/24/15 05:31	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP FECA MID

Date Collected: 04/15/15 10:30 Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-20

Matrix: Solid

Percent Solids: 81.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		42	4.2	ug/Kg	₩	04/16/15 14:00	04/24/15 05:31	1
Trichloroethene	ND		42	12	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	1
Trichlorofluoromethane	ND		42	20	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	1
Vinyl chloride	ND		42	14	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	1
Xylenes, Total	ND		85	23	ug/Kg	₽	04/16/15 14:00	04/24/15 05:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		53 - 146				04/16/15 14:00	04/24/15 05:31	1
4-Bromofluorobenzene (Surr)	100		49 - 148				04/16/15 14:00	04/24/15 05:31	1
Dibromofluoromethane (Surr)	92		60 - 140				04/16/15 14:00	04/24/15 05:31	1
Toluene-d8 (Surr)	99		50 - 149				04/16/15 14:00	04/24/15 05:31	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7030		13.1	5.8	mg/Kg	\	04/17/15 14:13	04/21/15 09:25	1
Antimony	0.69	J	19.6	0.52	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Arsenic	6.3		2.6	0.52	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Barium	104		0.65	0.14	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Beryllium	0.29		0.26	0.037	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Cadmium	0.22	J	0.26	0.039	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Calcium	1120		65.4	4.3	mg/Kg	\$	04/17/15 14:13	04/21/15 09:25	1
Chromium	9.7		0.65	0.26	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Cobalt	6.3		0.65	0.065	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Copper	14.7		1.3	0.27	mg/Kg		04/17/15 14:13	04/21/15 09:25	1
Iron	15400	В	13.1	1.4	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Lead	12.9		1.3	0.31	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Magnesium	2010		26.2	1.2	mg/Kg	*	04/17/15 14:13	04/21/15 09:25	1
Manganese	929	В	0.26	0.042	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Nickel	15.1		6.5	0.30	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Potassium	857		39.2	26.2	mg/Kg	\$	04/17/15 14:13	04/21/15 09:25	1
Selenium	ND		5.2	0.52	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Silver	ND		0.78	0.26	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Sodium	2230		183	17.0	mg/Kg	\$	04/17/15 14:13	04/21/15 09:25	1
Thallium	ND		7.8	0.39	mg/Kg	₽	04/17/15 14:13	04/21/15 09:25	1
Vanadium	11.6		0.65	0.14	mg/Kg	☼	04/17/15 14:13	04/21/15 09:25	1
Zinc	53.2	В	2.6	0.20	mg/Kg		04/17/15 14:13	04/21/15 09:25	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	5850	В	1000	120	mg/Kg			04/22/15 19:05	1

Client: New York State D.E.C.

Date Collected: 04/15/15 10:35

Date Received: 04/16/15 09:00

Client Sample ID: SP FECA HIGH

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-21

Matrix: Solid
Percent Solids: 90.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND		3.9	0.29	ug/Kg		04/16/15 14:00	04/17/15 16:17	
I,1,2,2-Tetrachloroethane	0.69	J	3.9	0.64	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		3.9	0.90	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
I,1,2-Trichloroethane	1.7	J	3.9	0.51	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,1-Dichloroethane	ND		3.9	0.48	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,1-Dichloroethene	ND		3.9	0.48	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,2,4-Trichlorobenzene	ND		3.9	0.24	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,2-Dibromo-3-Chloropropane	ND		3.9	2.0	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,2-Dibromoethane	ND		3.9	0.51	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,2-Dichlorobenzene	ND		3.9	0.31	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
I,2-Dichloroethane	2.6	J	3.9	0.20	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,2-Dichloropropane	ND		3.9	2.0	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
1,3-Dichlorobenzene	ND		3.9	0.20	ug/Kg		04/16/15 14:00	04/17/15 16:17	
I,4-Dichlorobenzene	ND		3.9	0.55	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
2-Butanone (MEK)	ND		20	1.4	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
2-Hexanone	ND		20		ug/Kg	₽	04/16/15 14:00	04/17/15 16:17	
I-Methyl-2-pentanone (MIBK)	ND		20	1.3	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
Acetone	170		20	3.3	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
Benzene	ND		3.9	0.19	ug/Kg		04/16/15 14:00	04/17/15 16:17	
Bromodichloromethane	ND		3.9		ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
Bromoform	ND		3.9		ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
Bromomethane	2.5	J	3.9		ug/Kg		04/16/15 14:00	04/17/15 16:17	
Carbon disulfide	2.3		3.9		ug/Kg	₽	04/16/15 14:00	04/17/15 16:17	
Carbon tetrachloride	ND		3.9		ug/Kg	₽	04/16/15 14:00	04/17/15 16:17	
Chlorobenzene	ND		3.9		ug/Kg		04/16/15 14:00	04/17/15 16:17	
Chloroethane	ND		3.9	0.89	ug/Kg	₽	04/16/15 14:00	04/17/15 16:17	
Chloroform	9.7		3.9		ug/Kg	₽	04/16/15 14:00	04/17/15 16:17	
Chloromethane	200	F	3.9		ug/Kg		04/16/15 14:00	04/17/15 16:17	
cis-1,2-Dichloroethene	ND	_	3.9	0.51	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
cis-1,3-Dichloropropene	ND		3.9	0.57	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
Cyclohexane	ND		3.9		ug/Kg		04/16/15 14:00	04/17/15 16:17	
Dibromochloromethane	ND		3.9	0.51	ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
Dichlorodifluoromethane	ND		3.9		ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
Ethylbenzene	ND		3.9		ug/Kg		04/16/15 14:00	04/17/15 16:17	
sopropylbenzene	ND		3.9		ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
Methyl acetate	ND		3.9		ug/Kg	₽	04/16/15 14:00	04/17/15 16:17	
Methyl tert-butyl ether	ND		3.9		ug/Kg		04/16/15 14:00	04/17/15 16:17	
Methylcyclohexane	ND		3.9		ug/Kg ug/Kg	₽	04/16/15 14:00	04/17/15 16:17	
• •			3.9		ug/Kg ug/Kg	₽	04/16/15 14:00		
Methylene Chloride	100 ND						04/16/15 14:00	04/17/15 16:17	
Styrene		_	3.9		ug/Kg ug/Kg	₩		04/17/15 16:17	
Fetrachloroethene Foluene	300 ND	=	3.9		ug/Kg ug/Kg	₩	04/16/15 14:00	04/17/15 16:17	
			3.9				04/16/15 14:00	04/17/15 16:17	
rans-1,2-Dichloroethene	ND		3.9		ug/Kg		04/16/15 14:00	04/17/15 16:17	
rans-1,3-Dichloropropene	ND		3.9		ug/Kg	Ψ.	04/16/15 14:00	04/17/15 16:17	
Frichloroethene	ND		3.9		ug/Kg	X	04/16/15 14:00	04/17/15 16:17	
Frichlorofluoromethane	ND		3.9		ug/Kg	ψ.	04/16/15 14:00	04/17/15 16:17	
/inyl chloride Kylenes, Total	ND ND		3.9 7.9	0.48	ug/Kg	₩.	04/16/15 14:00 04/16/15 14:00	04/17/15 16:17 04/17/15 16:17	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP FECA HIGH Lab Sample ID: 480-78558-21 Date Collected: 04/15/15 10:35

Matrix: Solid Percent Solids: 90.5

Date Received: 04/16/15 09:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126	04/16/15 14:	00 04/17/15 16:17	1
4-Bromofluorobenzene (Surr)	90		72 - 126	04/16/15 14:	00 04/17/15 16:17	1
Dibromofluoromethane (Surr)	111		60 - 140	04/16/15 14:	00 04/17/15 16:17	1
Toluene-d8 (Surr)	83		71 - 125	04/16/15 14:	00 04/17/15 16:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		51	14	ug/Kg		04/16/15 14:00	04/24/15 05:54	1
1,1,2,2-Tetrachloroethane	ND		51	8.2	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		51	25	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,1,2-Trichloroethane	ND		51	11	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,1-Dichloroethane	ND		51	16	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,1-Dichloroethene	ND		51	18	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,2,4-Trichlorobenzene	ND		51	19	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,2-Dibromo-3-Chloropropane	ND		51	25	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,2-Dibromoethane	ND		51	8.9	ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
1,2-Dichlorobenzene	ND		51	13	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,2-Dichloroethane	ND		51	21	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,2-Dichloropropane	ND		51	8.2	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,3-Dichlorobenzene	ND		51	14	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
1,4-Dichlorobenzene	ND		51	7.1	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
2-Butanone (MEK)	ND		250	150	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
2-Hexanone	ND		250	100	ug/Kg		04/16/15 14:00	04/24/15 05:54	1
4-Methyl-2-pentanone (MIBK)	ND		250	16	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Acetone	910		250	210	ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
Benzene	ND		51	9.6	ug/Kg		04/16/15 14:00	04/24/15 05:54	1
Bromodichloromethane	ND		51	10	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Bromoform	ND		51	25	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Bromomethane	ND		51	11	ug/Kg		04/16/15 14:00	04/24/15 05:54	1
Carbon disulfide	ND		51	23	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Carbon tetrachloride	ND		51		ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
Chlorobenzene	ND		51		ug/Kg		04/16/15 14:00	04/24/15 05:54	1
Chloroethane	ND		51		ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Chloroform	ND		51		ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Chloromethane	210		51		ug/Kg	∴	04/16/15 14:00	04/24/15 05:54	1
cis-1,2-Dichloroethene	ND		51		ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
cis-1,3-Dichloropropene	ND		51		ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
Cyclohexane	ND		51		ug/Kg		04/16/15 14:00	04/24/15 05:54	1
Dibromochloromethane	ND		51		ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
Dichlorodifluoromethane	ND		51		ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
Ethylbenzene	ND		51		ug/Kg		04/16/15 14:00	04/24/15 05:54	1
Isopropylbenzene	ND		51		ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Methyl acetate	910		51		ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	
Methyl tert-butyl ether	ND		51		ug/Kg	∴	04/16/15 14:00	04/24/15 05:54	
Methylcyclohexane	ND		51		ug/Kg ug/Kg	\$	04/16/15 14:00	04/24/15 05:54	1
Methylene Chloride	230		51		ug/Kg ug/Kg	\$	04/16/15 14:00	04/24/15 05:54	1
Styrene	ND		51		ug/Kg		04/16/15 14:00	04/24/15 05:54	·
Tetrachloroethene	4000		51		ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
Tetracmoroethene Toluene	4000 ND		51		ug/Kg ug/Kg		04/16/15 14:00	04/24/15 05:54	1
trans-1,2-Dichloroethene	ND		51		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/16/15 14:00	04/24/15 05:54	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-21

TestAmerica Job ID: 480-78558-1

Matrix: Solid

Percent Solids: 90.5

Client Sample ID: SP FECA HIGH

Date Collected: 04/15/15 10:35 Date Received: 04/16/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		51	5.0	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Trichloroethene	ND		51	14	ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
Trichlorofluoromethane	ND		51	24	ug/Kg	\$	04/16/15 14:00	04/24/15 05:54	1
Vinyl chloride	ND		51	17	ug/Kg	₽	04/16/15 14:00	04/24/15 05:54	1
Xylenes, Total	ND		100	28	ug/Kg	₩	04/16/15 14:00	04/24/15 05:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		53 - 146				04/16/15 14:00	04/24/15 05:54	1
4-Bromofluorobenzene (Surr)	100		49 - 148				04/16/15 14:00	04/24/15 05:54	1
Dibromofluoromethane (Surr)	92		60 - 140				04/16/15 14:00	04/24/15 05:54	1
Toluene-d8 (Surr)	99		50 - 149				04/16/15 14:00	04/24/15 05:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	8310		12.2	5.4	mg/Kg	<u></u>	04/17/15 14:13	04/21/15 09:28	
Antimony	0.53	J	18.4	0.49	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Arsenic	9.5		2.4	0.49	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Barium	103		0.61	0.13	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	
Beryllium	0.32		0.24	0.034	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Cadmium	0.15	J	0.24	0.037	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Calcium	1100		61.2	4.0	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	
Chromium	10.9		0.61	0.24	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Cobalt	8.0		0.61	0.061	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Copper	23.4		1.2	0.26	mg/Kg	φ.	04/17/15 14:13	04/21/15 09:28	
Iron	20900	В	12.2	1.3	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	
Lead	13.9		1.2	0.29	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Magnesium	2690		24.5	1.1	mg/Kg	\$	04/17/15 14:13	04/21/15 09:28	•
Manganese	1050	В	0.24	0.039	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Nickel	20.0		6.1	0.28	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Potassium	1030		36.7	24.5	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	
Selenium	ND		4.9	0.49	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Silver	ND		0.73	0.24	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	•
Sodium	3460		171	15.9	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	
Thallium	ND		7.3	0.37	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	
Vanadium	13.1		0.61	0.13	mg/Kg	₽	04/17/15 14:13	04/21/15 09:28	
Zinc	62.6	В	2.4	0.19	mg/Kg		04/17/15 14:13	04/21/15 09:28	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	4890	В	1000	120	mg/Kg			04/22/15 19:13	1

2

4

0

8

4.0

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP NAOH LOW

Date Collected: 04/15/15 10:40 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-22

Matrix: Solid Percent Solids: 79.8

Analyte	Result Qualifier	RL	MDL		— _	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.4		ug/Kg	\$	04/16/15 14:00	04/17/15 16:42	1
1,1,2,2-Tetrachloroethane	ND	4.4		ug/Kg	*	04/16/15 14:00	04/17/15 16:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.4		ug/Kg		04/16/15 14:00	04/17/15 16:42	1
1,1,2-Trichloroethane	ND	4.4	0.58	ug/Kg	₩.	04/16/15 14:00	04/17/15 16:42	1
1,1-Dichloroethane	ND	4.4	0.54	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
1,1-Dichloroethene	ND	4.4	0.54	ug/Kg	₩	04/16/15 14:00	04/17/15 16:42	1
1,2,4-Trichlorobenzene	ND	4.4		ug/Kg	₩	04/16/15 14:00	04/17/15 16:42	1
1,2-Dibromo-3-Chloropropane	ND	4.4	2.2	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
1,2-Dibromoethane	ND	4.4	0.57	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
1,2-Dichlorobenzene	ND	4.4	0.35	ug/Kg	*	04/16/15 14:00	04/17/15 16:42	1
1,2-Dichloroethane	ND	4.4	0.22	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
1,2-Dichloropropane	ND	4.4	2.2	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
1,3-Dichlorobenzene	ND	4.4	0.23	ug/Kg		04/16/15 14:00	04/17/15 16:42	1
1,4-Dichlorobenzene	ND	4.4	0.62	ug/Kg	☼	04/16/15 14:00	04/17/15 16:42	1
2-Butanone (MEK)	ND	22	1.6	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
2-Hexanone	ND	22	2.2	ug/Kg	ф.	04/16/15 14:00	04/17/15 16:42	1
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Acetone	63	22		ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Benzene	0.93 J	4.4				04/16/15 14:00	04/17/15 16:42	1
Bromodichloromethane	ND	4.4	0.59	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Bromoform	ND	4.4		ug/Kg	₩	04/16/15 14:00	04/17/15 16:42	1
Bromomethane	ND	4.4		ug/Kg		04/16/15 14:00	04/17/15 16:42	
Carbon disulfide	ND	4.4		ug/Kg	₩	04/16/15 14:00	04/17/15 16:42	1
Carbon tetrachloride	ND	4.4		ug/Kg ug/Kg	₩	04/16/15 14:00	04/17/15 16:42	1
Chlorobenzene	ND	4.4		ug/Kg		04/16/15 14:00	04/17/15 16:42	
	ND						04/17/15 16:42	1
Chloroform	ND ND	4.4		ug/Kg		04/16/15 14:00		
Chloroform		4.4		ug/Kg		04/16/15 14:00	04/17/15 16:42	1
Chloromethane	ND	4.4		ug/Kg	₩ *	04/16/15 14:00	04/17/15 16:42	1
cis-1,2-Dichloroethene	ND	4.4		ug/Kg	\$	04/16/15 14:00	04/17/15 16:42	1
cis-1,3-Dichloropropene	ND	4.4		ug/Kg	T.	04/16/15 14:00	04/17/15 16:42	1
Cyclohexane	ND	4.4		ug/Kg	₩.	04/16/15 14:00	04/17/15 16:42	1
Dibromochloromethane	ND	4.4		ug/Kg		04/16/15 14:00	04/17/15 16:42	1
Dichlorodifluoromethane	ND	4.4	0.37	ug/Kg		04/16/15 14:00	04/17/15 16:42	1
Ethylbenzene	ND	4.4	0.31	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Isopropylbenzene	ND	4.4	0.67	ug/Kg	₩	04/16/15 14:00	04/17/15 16:42	1
Methyl acetate	ND	4.4	2.7	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Methyl tert-butyl ether	ND	4.4	0.44	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Methylcyclohexane	ND	4.4	0.67	ug/Kg	☼	04/16/15 14:00	04/17/15 16:42	1
Methylene Chloride	ND	4.4	2.0	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Styrene	ND	4.4	0.22	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Tetrachloroethene	1400 E	4.4	0.59	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Toluene	ND	4.4	0.33	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
trans-1,2-Dichloroethene	ND	4.4	0.46	ug/Kg	φ.	04/16/15 14:00	04/17/15 16:42	1
trans-1,3-Dichloropropene	ND	4.4	1.9	ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Trichloroethene	2.5 J	4.4	0.97	ug/Kg	₩	04/16/15 14:00	04/17/15 16:42	
Trichlorofluoromethane	ND	4.4		ug/Kg		04/16/15 14:00	04/17/15 16:42	1
Vinyl chloride	ND	4.4		ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1
Xylenes, Total	ND	8.9		ug/Kg	₽	04/16/15 14:00	04/17/15 16:42	1

TestAmerica Buffalo

4

6

8

10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP NAOH LOW

Date Collected: 04/15/15 10:40
Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-22

Matrix: Solid Percent Solids: 79.8

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		64 - 126	04/16/15 14:00	04/17/15 16:42	1
4-Bromofluorobenzene (Surr)	97		72 - 126	04/16/15 14:00	04/17/15 16:42	1
Dibromofluoromethane (Surr)	60		60 - 140	04/16/15 14:00	04/17/15 16:42	1
Toluene-d8 (Surr)	95		71 - 125	04/16/15 14:00	04/17/15 16:42	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		250	69	ug/Kg	<u> </u>	04/16/15 14:00	04/28/15 04:44	
1,1,2,2-Tetrachloroethane	ND		250	40	ug/Kg	₩	04/16/15 14:00	04/28/15 04:44	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		250	120	ug/Kg	☼	04/16/15 14:00	04/28/15 04:44	2
1,1,2-Trichloroethane	ND		250	52	ug/Kg	\$	04/16/15 14:00	04/28/15 04:44	
1,1-Dichloroethane	ND		250	77	ug/Kg	☼	04/16/15 14:00	04/28/15 04:44	4
1,1-Dichloroethene	ND		250	86	ug/Kg	☼	04/16/15 14:00	04/28/15 04:44	4
1,2,4-Trichlorobenzene	ND		250	94	ug/Kg		04/16/15 14:00	04/28/15 04:44	
1,2-Dibromo-3-Chloropropane	ND		250	120	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	4
1,2-Dibromoethane	ND		250	43	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	4
1,2-Dichlorobenzene	ND		250	63	ug/Kg		04/16/15 14:00	04/28/15 04:44	
1,2-Dichloroethane	ND		250	100	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
1,2-Dichloropropane	ND		250	40	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
1,3-Dichlorobenzene	ND		250	66	ug/Kg		04/16/15 14:00	04/28/15 04:44	
1,4-Dichlorobenzene	ND		250	35	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
2-Butanone (MEK)	ND		1200	740	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
2-Hexanone	ND		1200	510	ug/Kg		04/16/15 14:00	04/28/15 04:44	
4-Methyl-2-pentanone (MIBK)	ND		1200	79	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
Acetone	ND		1200	1000	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	4
Benzene	ND		250	47	ug/Kg		04/16/15 14:00	04/28/15 04:44	
Bromodichloromethane	ND		250	50	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	4
Bromoform	ND		250		ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	4
Bromomethane	ND		250		ug/Kg		04/16/15 14:00	04/28/15 04:44	
Carbon disulfide	ND		250		ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	4
Carbon tetrachloride	ND		250		ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
Chlorobenzene	ND		250		ug/Kg		04/16/15 14:00	04/28/15 04:44	
Chloroethane	ND		250		ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
Chloroform	ND		250		ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
Chloromethane	ND		250	59	ug/Kg		04/16/15 14:00	04/28/15 04:44	
cis-1,2-Dichloroethene	ND		250		ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
cis-1,3-Dichloropropene	ND		250		ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	2
Cyclohexane	ND		250		ug/Kg		04/16/15 14:00	04/28/15 04:44	
Dibromochloromethane	ND		250	120	ug/Kg	\$	04/16/15 14:00	04/28/15 04:44	2
Dichlorodifluoromethane	ND		250		ug/Kg	\$	04/16/15 14:00	04/28/15 04:44	4
Ethylbenzene	ND		250		ug/Kg	· · · · · · · · · · · · · · · ·	04/16/15 14:00	04/28/15 04:44	<u>.</u> 2
sopropylbenzene	ND		250		ug/Kg	\$	04/16/15 14:00	04/28/15 04:44	
Methyl acetate	ND		250		ug/Kg ug/Kg	₩	04/16/15 14:00	04/28/15 04:44	2
Methyl tert-butyl ether	ND ND		250		ug/Kg ug/Kg		04/16/15 14:00		
•	ND ND		250		ug/Kg ug/Kg	т Ф	04/16/15 14:00	04/28/15 04:44 04/28/15 04:44	2
Methylopo Chlorido						₩			2
Methylene Chloride	ND		250		ug/Kg		04/16/15 14:00	04/28/15 04:44	۷
Styrene	ND		250		ug/Kg	‡	04/16/15 14:00	04/28/15 04:44	4
Tetrachloroethene	8900		250		ug/Kg	‡	04/16/15 14:00	04/28/15 04:44	2
Toluene	ND		250		ug/Kg		04/16/15 14:00	04/28/15 04:44	
trans-1,2-Dichloroethene	ND		250	59	ug/Kg	₽	04/16/15 14:00	04/28/15 04:44	

TestAmerica Buffalo

3

6

9

IU

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-22

TestAmerica Job ID: 480-78558-1

Matrix: Solid

Percent Solids: 79.8

Client Sample ID: SP NAOH LOW

Date Collected: 04/15/15 10:40 Date Received: 04/16/15 09:00

Method: 8260C - Volatile Organic Compounds by GC/MS - DL (Continued) Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac $\overline{\varphi}$ trans-1,3-Dichloropropene ND 250 24 ug/Kg 04/16/15 14:00 04/28/15 04:44 Trichloroethene ND 250 04/16/15 14:00 04/28/15 04:44 69 ug/Kg ₽ Trichlorofluoromethane ND 250 120 ug/Kg 04/16/15 14:00 04/28/15 04:44 Vinyl chloride ND 250 83 ug/Kg 04/16/15 14:00 04/28/15 04:44 4 04/16/15 14:00 04/28/15 04:44 Xylenes, Total ND 500 140 ug/Kg Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 1,2-Dichloroethane-d4 (Surr) 100 53 - 146 04/16/15 14:00 04/28/15 04:44 4-Bromofluorobenzene (Surr) 104 49 - 148 04/16/15 14:00 04/28/15 04:44 Dibromofluoromethane (Surr) 98 60 - 140 04/16/15 14:00 04/28/15 04:44 Toluene-d8 (Surr) 101 50 - 149 04/16/15 14:00 04/28/15 04:44

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	5550	12.3	5.4	mg/Kg	₩	04/17/15 14:13	04/21/15 09:39	1
Antimony	ND	18.5	0.49	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Arsenic	3.9	2.5	0.49	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Barium	75.2	0.62	0.14	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Beryllium	0.23 J	0.25	0.035	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Cadmium	0.27	0.25	0.037	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Calcium	882	61.6	4.1	mg/Kg	₩	04/17/15 14:13	04/21/15 09:39	1
Chromium	6.6	0.62	0.25	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Cobalt	4.1	0.62	0.062	mg/Kg	₩	04/17/15 14:13	04/21/15 09:39	1
Copper	11.0	1.2	0.26	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Iron	10900 E	12.3	1.4	mg/Kg	☼	04/17/15 14:13	04/21/15 09:39	1
Lead	10.1	1.2	0.30	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Magnesium	1660	24.7	1.1	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Manganese	622 E	0.25	0.039	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Nickel	11.3	6.2	0.28	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Potassium	696	37.0	24.7	mg/Kg	₩	04/17/15 14:13	04/21/15 09:39	1
Selenium	ND	4.9	0.49	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Silver	ND	0.74	0.25	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Sodium	2520	173	16.0	mg/Kg	₩	04/17/15 14:13	04/21/15 09:39	1
Thallium	ND	7.4	0.37	mg/Kg	₩	04/17/15 14:13	04/21/15 09:39	1
Vanadium	8.1	0.62	0.14	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1
Zinc	46.6 E	3 2.5	0.19	mg/Kg	₽	04/17/15 14:13	04/21/15 09:39	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	5480	В	1000	120	mg/Kg			04/22/15 19:20	1

5/6/2015

8

Client: New York State D.E.C.

Date Collected: 04/15/15 10:45 Date Received: 04/16/15 09:00

Client Sample ID: SP NAOH MID

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-23

Matrix: Solid	
Percent Solids: 82.8	Δ

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	150	41	ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
1,1,2,2-Tetrachloroethane	ND	150		ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	150	74	ug/Kg	*	04/16/15 14:00	04/24/15 06:18	4
1,1,2-Trichloroethane	ND	150	31	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	2
1,1-Dichloroethane	ND	150	46	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
1,1-Dichloroethene	ND	150	51	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
1,2,4-Trichlorobenzene	ND	150	56	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
1,2-Dibromo-3-Chloropropane	ND	150	74	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
1,2-Dibromoethane	ND	150	26	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
1,2-Dichlorobenzene	ND	150	38	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
1,2-Dichloroethane	ND	150	60	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
1,2-Dichloropropane	ND	150	24	ug/Kg	☼	04/16/15 14:00	04/24/15 06:18	4
1,3-Dichlorobenzene	ND	150	39	ug/Kg		04/16/15 14:00	04/24/15 06:18	4
1,4-Dichlorobenzene	ND	150	21	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
2-Butanone (MEK)	2000	740	440	ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	2
2-Hexanone	ND	740	300	ug/Kg		04/16/15 14:00	04/24/15 06:18	
4-Methyl-2-pentanone (MIBK)	ND	740		ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
Acetone	1100	740	610	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
Benzene	ND	150		ug/Kg		04/16/15 14:00	04/24/15 06:18	4
Bromodichloromethane	ND	150	29	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
Bromoform	ND	150		ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
Bromomethane	ND	150		ug/Kg		04/16/15 14:00	04/24/15 06:18	4
Carbon disulfide	ND	150		ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
Carbon tetrachloride	ND	150		ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
Chlorobenzene	ND	150		ug/Kg		04/16/15 14:00	04/24/15 06:18	4
Chloroethane	ND	150	31	ug/Kg ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
Chloroform	ND	150		ug/Kg ug/Kg		04/16/15 14:00	04/24/15 06:18	
Chloromethane						04/16/15 14:00	04/24/15 06:18	
	ND ND	150 150		ug/Kg				2
cis-1,2-Dichloroethene	ND ND		41	ug/Kg	~ ⇔	04/16/15 14:00	04/24/15 06:18	4
cis-1,3-Dichloropropene		150		ug/Kg		04/16/15 14:00	04/24/15 06:18	
Cyclohexane	ND	150		ug/Kg		04/16/15 14:00	04/24/15 06:18	4
Dibromochloromethane	ND	150	71	ug/Kg	.	04/16/15 14:00	04/24/15 06:18	4
Dichlorodifluoromethane	ND	150		ug/Kg	J	04/16/15 14:00	04/24/15 06:18	4
Ethylbenzene 	ND	150		ug/Kg	*	04/16/15 14:00	04/24/15 06:18	2
Isopropylbenzene	ND	150		ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	2
Methyl acetate	ND	150		ug/Kg	<u>.</u>	04/16/15 14:00	04/24/15 06:18	
Methyl tert-butyl ether	ND	150		ug/Kg	₩.	04/16/15 14:00	04/24/15 06:18	2
Methylcyclohexane	ND	150		ug/Kg	₩.	04/16/15 14:00	04/24/15 06:18	2
Methylene Chloride	190	150	29	ug/Kg		04/16/15 14:00	04/24/15 06:18	
Styrene	ND	150	36	ug/Kg	☼	04/16/15 14:00	04/24/15 06:18	4
Tetrachloroethene	4200	150	20	ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
Toluene	ND	150	40	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
trans-1,2-Dichloroethene	ND	150	35	ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
trans-1,3-Dichloropropene	ND	150	14	ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
Trichloroethene	ND	150	41	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4
Trichlorofluoromethane	ND	150	69	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	
Vinyl chloride	ND	150	49	ug/Kg	₩	04/16/15 14:00	04/24/15 06:18	4
Xylenes, Total	ND	290	82	ug/Kg	₽	04/16/15 14:00	04/24/15 06:18	4

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: SP NAOH MID

Date Collected: 04/15/15 10:45 Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-23

Matrix: Solid

Percent Solids: 82.8

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		53 - 146	04/16/15 14:00	04/24/15 06:18	4
4-Bromofluorobenzene (Surr)	102		49 - 148	04/16/15 14:00	04/24/15 06:18	4
Dibromofluoromethane (Surr)	93		60 - 140	04/16/15 14:00	04/24/15 06:18	4
Toluene-d8 (Surr)	101		50 - 149	04/16/15 14:00	04/24/15 06:18	4

-	701		00 - 7.10					0 11 2 11 10 00.10	•
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	8150		12.0	5.3	mg/Kg	<u></u>	04/17/15 14:13	04/21/15 09:42	1
Antimony	0.62	J	18.1	0.48	mg/Kg	₩	04/17/15 14:13	04/21/15 09:42	1
Arsenic	5.2		2.4	0.48	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Barium	73.6		0.60		mg/Kg		04/17/15 14:13	04/21/15 09:42	1
Beryllium	0.32		0.24	0.034	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Cadmium	0.17	J	0.24		mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Calcium	1450		60.2	4.0	mg/Kg	\$	04/17/15 14:13	04/21/15 09:42	1
Chromium	11.1		0.60	0.24	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Cobalt	7.8		0.60	0.060	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Copper	18.4		1.2	0.25	mg/Kg	\$	04/17/15 14:13	04/21/15 09:42	1
Iron	20700	В	12.0	1.3	mg/Kg	₩	04/17/15 14:13	04/21/15 09:42	1
Lead	9.8		1.2	0.29	mg/Kg	₩	04/17/15 14:13	04/21/15 09:42	1
Magnesium	2970		24.1	1.1	mg/Kg	₩.	04/17/15 14:13	04/21/15 09:42	1
Manganese	559	В	0.24	0.039	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Nickel	22.9		6.0	0.28	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Potassium	656		36.1	24.1	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Selenium	ND		4.8	0.48	mg/Kg	₩	04/17/15 14:13	04/21/15 09:42	1
Silver	ND		0.72	0.24	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Sodium	3630		168	15.6	mg/Kg	\$	04/17/15 14:13	04/21/15 09:42	1
Thallium	ND		7.2	0.36	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Vanadium	11.3		0.60	0.13	mg/Kg	₽	04/17/15 14:13	04/21/15 09:42	1
Zinc	88.5	В	2.4	0.18	mg/Kg		04/17/15 14:13	04/21/15 09:42	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	7030	В	1000	120	mg/Kg			04/22/15 19:27	1

Client: New York State D.E.C.

Date Collected: 04/15/15 10:50

Date Received: 04/16/15 09:00

Client Sample ID: SP NAOH HIGH

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-24

Matrix: Solid
Percent Solids: 80.8

3	

Analyte	•	by GC/MS Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	ND		250	68	ug/Kg	— -	04/16/15 14:00	04/24/15 06:41	
1,1,2,2-Tetrachloroethane	ND		250	40	ug/Kg	₩	04/16/15 14:00	04/24/15 06:41	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		250	120	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
1,1,2-Trichloroethane	ND		250		ug/Kg		04/16/15 14:00	04/24/15 06:41	
I,1-Dichloroethane	ND		250		ug/Kg ug/Kg	.⇔	04/16/15 14:00	04/24/15 06:41	
I,1-Dichloroethene	ND		250	85	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
1,2,4-Trichlorobenzene	ND		250		ug/Kg		04/16/15 14:00	04/24/15 06:41	
I,2-Dibromo-3-Chloropropane	ND		250	120	ug/Kg ug/Kg		04/16/15 14:00	04/24/15 06:41	
I,2-Dibromoethane	ND		250	43	ug/Kg ug/Kg	₩	04/16/15 14:00	04/24/15 06:41	
I,2-Dichlorobenzene	ND		250		ug/Kg ug/Kg		04/16/15 14:00	04/24/15 06:41	
I,2-Dichloroethane	ND		250		ug/Kg ug/Kg		04/16/15 14:00	04/24/15 06:41	
•	ND ND			100					
I,2-Dichloropropane			250	40	ug/Kg		04/16/15 14:00	04/24/15 06:41	
I,3-Dichlorobenzene	ND		250	66	ug/Kg		04/16/15 14:00	04/24/15 06:41	
I,4-Dichlorobenzene	ND		250	35	ug/Kg	*	04/16/15 14:00	04/24/15 06:41	
2-Butanone (MEK)	ND		1200	730	ug/Kg	<u>.</u> .	04/16/15 14:00	04/24/15 06:41	
2-Hexanone	ND		1200	510	ug/Kg	Ψ.	04/16/15 14:00	04/24/15 06:41	
I-Methyl-2-pentanone (MIBK)	ND		1200	79	ug/Kg	*	04/16/15 14:00	04/24/15 06:41	
Acetone	1000	J	1200	1000	ug/Kg		04/16/15 14:00	04/24/15 06:41	
Benzene	ND		250	47	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Bromodichloromethane	ND		250	49	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Bromoform	ND		250	120	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Bromomethane	ND		250	54	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Carbon disulfide	ND		250	110	ug/Kg	₩	04/16/15 14:00	04/24/15 06:41	
Carbon tetrachloride	ND		250	63	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Chlorobenzene	ND		250	33	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Chloroethane	ND		250	51	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Chloroform	ND		250	170	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Chloromethane	ND		250	59	ug/Kg	\$	04/16/15 14:00	04/24/15 06:41	
cis-1,2-Dichloroethene	ND		250	68	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
cis-1,3-Dichloropropene	ND		250	59	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Cyclohexane	ND		250	55	ug/Kg		04/16/15 14:00	04/24/15 06:41	
Dibromochloromethane	ND		250	120	ug/Kg	₩	04/16/15 14:00	04/24/15 06:41	
Dichlorodifluoromethane	ND		250	110	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Ethylbenzene	ND		250		ug/Kg		04/16/15 14:00	04/24/15 06:41	
sopropylbenzene	ND		250		ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Methyl acetate	ND		250	120	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Methyl tert-butyl ether	ND		250		ug/Kg		04/16/15 14:00	04/24/15 06:41	
Methylcyclohexane	ND		250	120	ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Methylene Chloride			250	49	ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 06:41	
Styrene	250 ND		250	60	ug/Kg ug/Kg		04/16/15 14:00	04/24/15 06:41	
•						т Ф			
Tetrachloroethene	11000		250 250	33	ug/Kg	₩	04/16/15 14:00 04/16/15 14:00	04/24/15 06:41	
Foluene	ND		250	66	ug/Kg			04/24/15 06:41	
rans-1,2-Dichloroethene	ND		250		ug/Kg	‡	04/16/15 14:00	04/24/15 06:41	
rans-1,3-Dichloropropene	ND		250		ug/Kg	*	04/16/15 14:00	04/24/15 06:41	
Frichloroethene	ND		250	69	ug/Kg	<u></u> .	04/16/15 14:00	04/24/15 06:41	
Frichlorofluoromethane	ND		250		ug/Kg	₩.	04/16/15 14:00	04/24/15 06:41	
/inyl chloride	ND		250	83	ug/Kg	**	04/16/15 14:00	04/24/15 06:41	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-24

Matrix: Solid Percent Solids: 80.8

Client Sample ID: SP NAOH HIGH

Date Collected: 04/15/15 10:50 Date Received: 04/16/15 09:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		53 - 146	04/16/15 14:0	04/24/15 06:41	4
4-Bromofluorobenzene (Surr)	101		49 - 148	04/16/15 14:0	0 04/24/15 06:41	4
Dibromofluoromethane (Surr)	93		60 - 140	04/16/15 14:0	0 04/24/15 06:41	4
Toluene-d8 (Surr)	100		50 - 149	04/16/15 14:0	0 04/24/15 06:41	4

Toluene-d8 (Surr)	100		50 - 149				04/16/15 14:00	04/24/15 06:41	•
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	6430		11.9		mg/Kg	<u></u>	04/17/15 14:13	04/21/15 09:45	
Antimony	ND		17.9		mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Arsenic	6.7		2.4	0.48	mg/Kg	₩	04/17/15 14:13	04/21/15 09:45	
Barium	112		0.60		mg/Kg		04/17/15 14:13	04/21/15 09:45	
Beryllium	0.30		0.24		mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Cadmium	0.25		0.24	0.036	mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Calcium	3660		59.6	3.9	mg/Kg		04/17/15 14:13	04/21/15 09:45	
Chromium	7.6		0.60	0.24	mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Cobalt	7.1		0.60	0.060	mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Copper	16.0		1.2	0.25	mg/Kg		04/17/15 14:13	04/21/15 09:45	
Iron	14400	В	11.9	1.3	mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Lead	19.5		1.2	0.29	mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Magnesium	1960		23.8	1.1	mg/Kg		04/17/15 14:13	04/21/15 09:45	
Manganese	685	В	0.24	0.038	mg/Kg	₩	04/17/15 14:13	04/21/15 09:45	
Nickel	18.4		6.0	0.27	mg/Kg	₩	04/17/15 14:13	04/21/15 09:45	
Potassium	776		35.7	23.8	mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Selenium	ND		4.8	0.48	mg/Kg	₩	04/17/15 14:13	04/21/15 09:45	
Silver	ND		0.71	0.24	mg/Kg	₩	04/17/15 14:13	04/21/15 09:45	
Sodium	8630		167	15.5	mg/Kg	\$	04/17/15 14:13	04/21/15 09:45	
Thallium	ND		7.1	0.36	mg/Kg	₩	04/17/15 14:13	04/21/15 09:45	
Vanadium	8.9		0.60	0.13	mg/Kg	₽	04/17/15 14:13	04/21/15 09:45	
Zinc	68.8	В	2.4	0.18	mg/Kg	\$	04/17/15 14:13	04/21/15 09:45	
General Chemistry Analyte	Racult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	- INCOURT	Quanner		100			Tropareu	Allalyzeu	- Dill a

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	4160	В	1000	120	mg/Kg			04/22/15 19:34	1

Client: New York State D.E.C.

Client Sample ID: HP LOW Date Collected: 04/15/15 11:00 Date Received: 04/16/15 09:00

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-25

-ab Sample ID. 400-70330-23
Matrix: Solid
Percent Solids: 88.1

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	250	70	ug/Kg	<u> </u>	04/16/15 14:00	04/24/15 07:05	
1,1,2,2-Tetrachloroethane	ND	250	41	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	250	130	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,1,2-Trichloroethane	ND	250	53	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,1-Dichloroethane	ND	250	78	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,1-Dichloroethene	ND	250	88	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,2,4-Trichlorobenzene	ND	250	96	ug/Kg	\$	04/16/15 14:00	04/24/15 07:05	
1,2-Dibromo-3-Chloropropane	ND	250	130	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,2-Dibromoethane	ND	250	44	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,2-Dichlorobenzene	ND	250	65	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,2-Dichloroethane	ND	250	100	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,2-Dichloropropane	ND	250	41	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
1,3-Dichlorobenzene	ND	250	68	ug/Kg		04/16/15 14:00	04/24/15 07:05	
1,4-Dichlorobenzene	ND	250	36	ug/Kg	☼	04/16/15 14:00	04/24/15 07:05	
2-Butanone (MEK)	ND	1300	750	ug/Kg	₩	04/16/15 14:00	04/24/15 07:05	
2-Hexanone	ND	1300	520	ug/Kg		04/16/15 14:00	04/24/15 07:05	
1-Methyl-2-pentanone (MIBK)	ND	1300	81	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Acetone	65000	1300	1000	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Benzene	ND	250	48	ug/Kg		04/16/15 14:00	04/24/15 07:05	
Bromodichloromethane	ND	250	51		₽	04/16/15 14:00	04/24/15 07:05	
Bromoform	ND	250	130	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Bromomethane	ND	250		ug/Kg		04/16/15 14:00	04/24/15 07:05	
Carbon disulfide	ND	250		ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Carbon tetrachloride	ND	250		ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Chlorobenzene	ND	250		ug/Kg		04/16/15 14:00	04/24/15 07:05	
Chloroethane	ND	250	53		₽	04/16/15 14:00	04/24/15 07:05	
Chloroform	ND	250		ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Chloromethane	ND	250		ug/Kg		04/16/15 14:00	04/24/15 07:05	
cis-1,2-Dichloroethene	ND	250		ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
cis-1,3-Dichloropropene	ND	250	61	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Cyclohexane	ND	250		ug/Kg	-	04/16/15 14:00	04/24/15 07:05	
Dibromochloromethane	ND	250		ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Dichlorodifluoromethane	ND	250		ug/Kg	₩	04/16/15 14:00	04/24/15 07:05	
Ethylbenzene	ND	250		ug/Kg		04/16/15 14:00	04/24/15 07:05	
sopropylbenzene	ND	250		ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Methyl acetate	330	250		ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Methyl tert-butyl ether	ND	250		ug/Kg		04/16/15 14:00	04/24/15 07:05	
Methylcyclohexane	ND	250		ug/Kg ug/Kg	₩	04/16/15 14:00	04/24/15 07:05	
Methylene Chloride	370	250		ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	
Styrene	ND	250		ug/Kg		04/16/15 14:00	04/24/15 07:05	
	5500	250		ug/Kg ug/Kg		04/16/15 14:00	04/24/15 07:05	
Tetrachloroethene Toluene	ND	250		ug/Kg ug/Kg		04/16/15 14:00	04/24/15 07:05	
rans-1,2-Dichloroethene	ND ND	250 250		ug/Kg ug/Kg	₩	04/16/15 14:00	04/24/15 07:05 04/24/15 07:05	
rans-1,3-Dichloropropene	ND ND				₩	04/16/15 14:00 04/16/15 14:00		
Frichloroethene	ND	250		ug/Kg			04/24/15 07:05	
Frichlorofluoromethane	ND ND	250		ug/Kg	Ţ.	04/16/15 14:00	04/24/15 07:05	
/inyl chloride	ND	250	85	ug/Kg	₽	04/16/15 14:00	04/24/15 07:05	

TestAmerica Buffalo

2

5

7

9

1(

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-25

TestAmerica Job ID: 480-78558-1

Matrix: Solid

Percent Solids: 88.1

Client Sample ID: HP LOW

Date Collected: 04/15/15 11:00 Date Received: 04/16/15 09:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		53 - 146				04/16/15 14:00	04/24/15 07:05	5
4-Bromofluorobenzene (Surr)	98		49 - 148				04/16/15 14:00	04/24/15 07:05	5
Dibromofluoromethane (Surr)	96		60 - 140				04/16/15 14:00	04/24/15 07:05	5
Toluene-d8 (Surr)	98		50 - 149				04/16/15 14:00	04/24/15 07:05	5
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	10700		11.8	5.2	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
		_	4	o 4=		· ·	0444=44=4440	04/04/45 00 40	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	10700		11.8	5.2	mg/Kg	<u></u>	04/17/15 14:13	04/21/15 09:48	1
Antimony	0.61	J	17.7	0.47	mg/Kg	₽	04/17/15 14:13	04/21/15 09:48	1
Arsenic	5.5		2.4	0.47	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Barium	67.6		0.59	0.13	mg/Kg		04/17/15 14:13	04/21/15 09:48	1
Beryllium	0.30		0.24	0.033	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Cadmium	0.15	J	0.24	0.035	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Calcium	1410		59.0	3.9	mg/Kg	\$	04/17/15 14:13	04/21/15 09:48	1
Chromium	11.7		0.59	0.24	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Cobalt	7.6		0.59	0.059	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Copper	42.2		1.2	0.25	mg/Kg	\$	04/17/15 14:13	04/21/15 09:48	1
Iron	22100	В	11.8	1.3	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Lead	11.7		1.2	0.28	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Magnesium	5550		23.6	1.1	mg/Kg		04/17/15 14:13	04/21/15 09:48	1
Manganese	519	В	0.24	0.038	mg/Kg	₽	04/17/15 14:13	04/21/15 09:48	1
Nickel	20.8		5.9	0.27	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Potassium	743		35.4	23.6	mg/Kg		04/17/15 14:13	04/21/15 09:48	1
Selenium	ND		4.7	0.47	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Silver	ND		0.71	0.24	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Sodium	62.6	J	165	15.3	mg/Kg		04/17/15 14:13	04/21/15 09:48	1
Thallium	ND		7.1	0.35	mg/Kg	₽	04/17/15 14:13	04/21/15 09:48	1
Vanadium	20.9		0.59	0.13	mg/Kg	₩	04/17/15 14:13	04/21/15 09:48	1
Zinc	66.0		2.4	0.18	mg/Kg		04/17/15 14:13	04/21/15 09:48	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	6670	В	1000	120	mg/Kg			04/22/15 19:42	1

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Percent Solids: 85.5

Client Sample ID: HP HIGH Lab Sample ID: 480-78558-26 Date Collected: 04/15/15 11:10 Matrix: Solid Date Received: 04/16/15 09:00

Method: 8260C - Volatile Organic Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		4.4	0.32	ug/Kg	— -	04/16/15 14:00	04/17/15 18:25	
1,1,2,2-Tetrachloroethane	ND		4.4	0.71	ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.4	0.99	ug/Kg	₩.	04/16/15 14:00	04/17/15 18:25	
1,1,2-Trichloroethane	ND		4.4	0.57	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/16/15 14:00	04/17/15 18:25	
1,1-Dichloroethane	ND		4.4		ug/Kg	*	04/16/15 14:00	04/17/15 18:25	
1.1-Dichloroethene	ND		4.4		ug/Kg ug/Kg		04/16/15 14:00	04/17/15 18:25	
1,2,4-Trichlorobenzene	ND		4.4		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/16/15 14:00	04/17/15 18:25	
1,2-Dibromo-3-Chloropropane	ND		4.4		ug/Kg ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
1,2-Dibromoethane	ND		4.4		ug/Kg ug/Kg		04/16/15 14:00	04/17/15 18:25	
1,2-Dibromoethane 1,2-Dichlorobenzene	ND		4.4		ug/Kg ug/Kg		04/16/15 14:00	04/17/15 18:25	
						₩			
1,2-Dichloroethane	ND		4.4		ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
1,2-Dichloropropane	ND		4.4		ug/Kg		04/16/15 14:00	04/17/15 18:25	
1,3-Dichlorobenzene	ND		4.4		ug/Kg	\$	04/16/15 14:00	04/17/15 18:25	
1,4-Dichlorobenzene	ND		4.4	0.61	ug/Kg	*	04/16/15 14:00	04/17/15 18:25	
2-Butanone (MEK)	ND		22		ug/Kg	T.	04/16/15 14:00	04/17/15 18:25	
2-Hexanone	ND		22		ug/Kg	*	04/16/15 14:00	04/17/15 18:25	
4-Methyl-2-pentanone (MIBK)	ND		22		ug/Kg	*	04/16/15 14:00	04/17/15 18:25	
Acetone	23000	E	22		ug/Kg		04/16/15 14:00	04/17/15 18:25	
Benzene	ND		4.4		ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Bromodichloromethane	ND		4.4		ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
Bromoform	ND		4.4	2.2	ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
Bromomethane	ND		4.4	0.39	ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Carbon disulfide	3.5	J	4.4	2.2	ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Carbon tetrachloride	ND		4.4	0.42	ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
Chlorobenzene	ND		4.4	0.58	ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Chloroethane	ND		4.4	0.98	ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Chloroform	ND		4.4	0.27	ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Chloromethane	ND		4.4	0.26	ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
cis-1,2-Dichloroethene	ND		4.4	0.56	ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
cis-1,3-Dichloropropene	ND		4.4	0.63	ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
Cyclohexane	ND		4.4	0.61	ug/Kg		04/16/15 14:00	04/17/15 18:25	
Dibromochloromethane	ND		4.4	0.56	ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Dichlorodifluoromethane	ND		4.4	0.36	ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
Ethylbenzene	ND		4.4		ug/Kg		04/16/15 14:00	04/17/15 18:25	
Isopropylbenzene	ND		4.4		ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Methyl acetate	ND		4.4		ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Methyl tert-butyl ether	ND		4.4		ug/Kg		04/16/15 14:00	04/17/15 18:25	
Methylcyclohexane	ND		4.4		ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Methylene Chloride	ND		4.4		ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Styrene	ND		4.4		ug/Kg		04/16/15 14:00	04/17/15 18:25	
•		_	4.4		ug/Kg ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
Tetrachloroethene Toluene	280 ND	_	4.4		ug/Kg ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	
trans-1,2-Dichloroethene									
<i>'</i>	ND		4.4		ug/Kg ug/Kg	₩	04/16/15 14:00	04/17/15 18:25	
trans-1,3-Dichloropropene	ND		4.4				04/16/15 14:00	04/17/15 18:25	
Trichlorefluorene	ND		4.4		ug/Kg	X .	04/16/15 14:00	04/17/15 18:25	
Trichlorofluoromethane	ND		4.4		ug/Kg	Ÿ n	04/16/15 14:00	04/17/15 18:25	
Vinyl chloride	ND		4.4	0.53	ug/Kg	₽	04/16/15 14:00	04/17/15 18:25	

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-26

TestAmerica Job ID: 480-78558-1

Matrix: Solid

Percent Solids: 85.5

Client Sample ID: HP HIGH Date Collected: 04/15/15 11:10

Date Received: 04/16/15 09:00

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		64 - 126
4-Bromofluorobenzene (Surr)	104		72 - 126
Dibromofluoromethane (Surr)	96		60 - 140
Toluene d8 (Surr)	101		71 125

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	64 - 126	04/16/15 14:00	04/17/15 18:25	1
4-Bromofluorobenzene (Surr)	104	72 - 126	04/16/15 14:00	04/17/15 18:25	1
Dibromofluoromethane (Surr)	96	60 - 140	04/16/15 14:00	04/17/15 18:25	1
Toluene-d8 (Surr)	101	71 - 125	04/16/15 14:00	04/17/15 18:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		420	120	ug/Kg		04/16/15 14:00	04/24/15 07:29	8
1,1,2,2-Tetrachloroethane	ND		420	68	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		420	210	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
1,1,2-Trichloroethane	ND		420	88	ug/Kg	ф.	04/16/15 14:00	04/24/15 07:29	8
1,1-Dichloroethane	ND		420	130	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
1,1-Dichloroethene	ND		420	140	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
1,2,4-Trichlorobenzene	ND		420	160	ug/Kg		04/16/15 14:00	04/24/15 07:29	8
1,2-Dibromo-3-Chloropropane	ND		420	210	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
1,2-Dibromoethane	ND		420	73	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
1,2-Dichlorobenzene	ND		420	110	ug/Kg		04/16/15 14:00	04/24/15 07:29	8
1,2-Dichloroethane	ND		420	170	ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
1,2-Dichloropropane	ND		420	68	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
1,3-Dichlorobenzene	ND		420	110	ug/Kg	ф.	04/16/15 14:00	04/24/15 07:29	8
1,4-Dichlorobenzene	ND		420	59	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
2-Butanone (MEK)	ND		2100	1200	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
2-Hexanone	ND		2100	860	ug/Kg		04/16/15 14:00	04/24/15 07:29	8
4-Methyl-2-pentanone (MIBK)	ND		2100	130	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Acetone	120000		2100	1700	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Benzene	ND		420		ug/Kg		04/16/15 14:00	04/24/15 07:29	8
Bromodichloromethane	ND		420	84	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Bromoform	ND		420	210	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Bromomethane	ND		420		ug/Kg		04/16/15 14:00	04/24/15 07:29	8
Carbon disulfide	ND		420	190	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Carbon tetrachloride	ND		420	110	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Chlorobenzene	ND		420		ug/Kg		04/16/15 14:00	04/24/15 07:29	8
Chloroethane	ND		420	87	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Chloroform	ND		420	290	ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
Chloromethane	ND		420	99	ug/Kg	₋	04/16/15 14:00	04/24/15 07:29	8
cis-1,2-Dichloroethene	ND		420	120	ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
cis-1,3-Dichloropropene	ND		420	100	ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
Cyclohexane	ND		420		ug/Kg		04/16/15 14:00	04/24/15 07:29	8
Dibromochloromethane	ND		420	200	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Dichlorodifluoromethane	ND		420	180	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Ethylbenzene	ND		420		ug/Kg		04/16/15 14:00	04/24/15 07:29	8
Isopropylbenzene	ND		420		ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Methyl acetate	610		420		ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Methyl tert-butyl ether	ND		420		ug/Kg		04/16/15 14:00	04/24/15 07:29	8
Methylcyclohexane	ND		420		ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
Methylene Chloride	920		420		ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
Styrene Chloride	ND		420		ug/Kg		04/16/15 14:00	04/24/15 07:29	8
Tetrachloroethene	2300		420	56	ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
Tetrachioroethene Toluene	2300 ND		420	110	ug/Kg ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
i oluene	ND		420	110	ug/itg	Α4.	0-1/10/10 14:00	04/24/10 07.29	0

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: HP HIGH

Date Collected: 04/15/15 11:10 Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-26

Matrix: Solid

Percent Solids: 85.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		420	41	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Trichloroethene	ND		420	120	ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
Trichlorofluoromethane	ND		420	200	ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
Vinyl chloride	ND		420	140	ug/Kg	₽	04/16/15 14:00	04/24/15 07:29	8
Xylenes, Total	ND		840	230	ug/Kg	₩	04/16/15 14:00	04/24/15 07:29	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		53 - 146				04/16/15 14:00	04/24/15 07:29	8
4-Bromofluorobenzene (Surr)	99		49 - 148				04/16/15 14:00	04/24/15 07:29	8
Dibromofluoromethane (Surr)	95		60 - 140				04/16/15 14:00	04/24/15 07:29	8
Toluene-d8 (Surr)	98		50 - 149				04/16/15 14:00	04/24/15 07:29	8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7650		12.7	5.6	mg/Kg	<u></u>	04/17/15 14:13	04/21/15 09:51	1
Antimony	0.68	J	19.1	0.51	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Arsenic	8.9		2.5	0.51	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Barium	73.6		0.64	0.14	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Beryllium	0.34		0.25	0.036	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Cadmium	0.20	J	0.25	0.038	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Calcium	1050		63.7	4.2	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Chromium	9.5		0.64	0.25	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Cobalt	5.7		0.64	0.064	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Copper	17.4		1.3	0.27	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Iron	22700	В	12.7	1.4	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Lead	13.4		1.3	0.31	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Magnesium	3040		25.5	1.2	mg/Kg	φ.	04/17/15 14:13	04/21/15 09:51	1
Manganese	462	В	0.25	0.041	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Nickel	15.9		6.4	0.29	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Potassium	779		38.2	25.5	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Selenium	ND		5.1	0.51	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Silver	ND		0.76	0.25	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Sodium	36.8	J	178	16.6	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Thallium	ND		7.6	0.38	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Vanadium	12.6		0.64	0.14	mg/Kg	₽	04/17/15 14:13	04/21/15 09:51	1
Zinc	73.4	В	2.5	0.19	mg/Kg	₩.	04/17/15 14:13	04/21/15 09:51	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	7180	В	1000	120	mg/Kg			04/22/15 19:49	1

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-27

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 04/15/15 16:00 Date Received: 04/16/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/25/15 12:44	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/25/15 12:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/25/15 12:44	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/25/15 12:44	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/25/15 12:44	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/25/15 12:44	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/25/15 12:44	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/25/15 12:44	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/25/15 12:44	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/25/15 12:44	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/25/15 12:44	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/25/15 12:44	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/25/15 12:44	1
1,4-Dichlorobenzene	ND		1.0		ug/L			04/25/15 12:44	1
2-Butanone (MEK)	ND		10		ug/L			04/25/15 12:44	1
2-Hexanone	ND		5.0		ug/L			04/25/15 12:44	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/25/15 12:44	1
Acetone	ND		10		ug/L			04/25/15 12:44	1
Benzene	ND		1.0		ug/L			04/25/15 12:44	1
Bromodichloromethane	ND		1.0		ug/L			04/25/15 12:44	1
Bromoform	ND		1.0		ug/L			04/25/15 12:44	1
Bromomethane	ND		1.0		ug/L			04/25/15 12:44	
Carbon disulfide	ND		1.0		ug/L			04/25/15 12:44	1
Carbon tetrachloride	ND		1.0		ug/L			04/25/15 12:44	1
Chlorobenzene	ND		1.0		ug/L			04/25/15 12:44	1
Chloroethane	ND		1.0		ug/L			04/25/15 12:44	1
Chloroform	ND		1.0		ug/L			04/25/15 12:44	1
Chloromethane	ND		1.0		ug/L			04/25/15 12:44	1
cis-1,2-Dichloroethene	ND		1.0	0.81	-			04/25/15 12:44	1
cis-1,3-Dichloropropene	ND		1.0	0.36	_			04/25/15 12:44	1
Cyclohexane	ND		1.0		ug/L			04/25/15 12:44	1
Dibromochloromethane	ND		1.0		ug/L			04/25/15 12:44	1
Dichlorodifluoromethane	ND		1.0	0.68	-			04/25/15 12:44	1
Ethylbenzene	ND		1.0		ug/L			04/25/15 12:44	
Isopropylbenzene	ND		1.0		ug/L			04/25/15 12:44	1
Methyl acetate	ND		2.5		ug/L			04/25/15 12:44	
Methyl tert-butyl ether	ND		1.0		ug/L			04/25/15 12:44	
Methylcyclohexane	ND		1.0		ug/L			04/25/15 12:44	,
Methylene Chloride	ND		1.0		ug/L			04/25/15 12:44	1
Styrene	ND		1.0		ug/L			04/25/15 12:44	1
Tetrachloroethene	ND		1.0		ug/L			04/25/15 12:44	1
Toluene	ND		1.0		ug/L			04/25/15 12:44	,
trans-1,2-Dichloroethene	ND ND		1.0 1.0		ug/L ug/L			04/25/15 12:44 04/25/15 12:44	1
trans-1,3-Dichloropropene Trichloroethene	ND		1.0					04/25/15 12:44	1
Trichlorofluoromethane					ug/L				
	ND		1.0		ug/L			04/25/15 12:44	1
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			04/25/15 12:44 04/25/15 12:44	1

TestAmerica Buffalo

4

6

R

9

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: TRIP BLANK

Date Collected: 04/15/15 16:00 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-27

Matrix: Water

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	66 - 137	-		04/25/15 12:44	1
4-Bromofluorobenzene (Surr)	104	73 - 120			04/25/15 12:44	1
Dibromofluoromethane (Surr)	106	60 - 140			04/25/15 12:44	1
Toluene-d8 (Surr)	100	71 - 126			04/25/15 12:44	1

5

<u>ر</u>

2

9

10

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-28

Matrix: Water

Client Sample ID: HP CTRL DUP

Date Collected: 04/15/15 09:08 Date Received: 04/16/15 09:00

Analyte

Total Organic Carbon

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		04/28/15 16:23	04/29/15 15:16	1
Antimony	ND		0.020	0.0068	mg/L		04/28/15 16:23	04/29/15 15:16	1
Arsenic	ND		0.015	0.0056	mg/L		04/28/15 16:23	04/29/15 15:16	1
Barium	0.011		0.0020	0.00070	mg/L		04/28/15 16:23	04/29/15 15:16	1
Beryllium	ND		0.0020	0.00030	mg/L		04/28/15 16:23	04/29/15 15:16	1
Cadmium	ND		0.0020	0.00050	mg/L		04/28/15 16:23	04/29/15 15:16	1
Calcium	9.2		0.50	0.10	mg/L		04/28/15 16:23	04/29/15 15:16	1
Chromium	ND		0.0040	0.0010	mg/L		04/28/15 16:23	04/29/15 15:16	1
Cobalt	ND		0.0040	0.00063	mg/L		04/28/15 16:23	04/29/15 15:16	1
Copper	ND		0.010	0.0016	mg/L		04/28/15 16:23	04/29/15 15:16	1
Iron	ND		0.050	0.019	mg/L		04/28/15 16:23	04/29/15 15:16	1
Lead	ND		0.010	0.0030	mg/L		04/28/15 16:23	04/29/15 15:16	1
Magnesium	1.6		0.20	0.043	mg/L		04/28/15 16:23	04/29/15 15:16	1
Manganese	0.0018	JB	0.0030	0.00040	mg/L		04/28/15 16:23	04/29/15 15:16	1
Nickel	ND		0.010	0.0013	mg/L		04/28/15 16:23	04/29/15 15:16	1
Potassium	0.25	J	0.50	0.10	mg/L		04/28/15 16:23	04/29/15 15:16	1
Selenium	ND		0.025	0.0087	mg/L		04/28/15 16:23	04/29/15 15:16	1
Silver	ND		0.0060	0.0017	mg/L		04/28/15 16:23	04/29/15 15:16	1
Sodium	10.2		1.0	0.32	mg/L		04/28/15 16:23	04/29/15 15:16	1
Thallium	ND		0.020	0.010	mg/L		04/28/15 16:23	04/29/15 15:16	1
Vanadium	ND		0.0050	0.0015	mg/L		04/28/15 16:23	04/29/15 15:16	1
Zinc	ND		0.010	0.0015	mg/L		04/28/15 16:23	04/29/15 15:16	1

RL

1.0

MDL Unit

0.43 mg/L

Prepared

Analyzed

04/20/15 04:37

Dil Fac

Result Qualifier

5.0

TestAmerica Buffalo

5

6

ا

9

1(

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Lab Sample ID: 480-78558-29

Matrix: Solid Percent Solids: 9.3

Client Sample ID: HP CTRL Date Collected: 04/15/15 09:00

Date Received: 04/16/15 09:00

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND		34	2.5	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
1,1,2,2-Tetrachloroethane	ND		34	5.6	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		34	7.8	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,1,2-Trichloroethane	ND		34	4.5	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,1-Dichloroethane	ND		34	4.2	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,1-Dichloroethene	ND		34	4.2	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,2,4-Trichlorobenzene	ND		34	2.1	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,2-Dibromo-3-Chloropropane	ND		34	17	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,2-Dibromoethane	ND		34	4.4	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,2-Dichlorobenzene	ND		34	2.7	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,2-Dichloroethane	ND		34	1.7	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,2-Dichloropropane	ND		34	17	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
1,3-Dichlorobenzene	ND		34	1.8	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
1,4-Dichlorobenzene	ND		34	4.8	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
2-Butanone (MEK)	ND		170	13	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
2-Hexanone	ND		170	17	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
4-Methyl-2-pentanone (MIBK)	ND		170	11	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Acetone	1200		170	29	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Benzene	ND		34	1.7	ug/Kg	\$	04/16/15 14:00	04/17/15 18:51	
Bromodichloromethane	ND		34	4.6	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Bromoform	ND		34	17	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
Bromomethane	ND		34	3.1	ug/Kg		04/16/15 14:00	04/17/15 18:51	
Carbon disulfide	ND		34	17	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Carbon tetrachloride	ND		34	3.3	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
Chlorobenzene	ND		34	4.5	ug/Kg	\$	04/16/15 14:00	04/17/15 18:51	
Chloroethane	ND		34	7.8	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
Chloroform	ND		34	2.1	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
Chloromethane	ND		34	2.1	ug/Kg		04/16/15 14:00	04/17/15 18:51	
cis-1,2-Dichloroethene	6.4	J	34	4.4	ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
cis-1,3-Dichloropropene	ND		34	4.9	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Cyclohexane	ND		34	4.8	ug/Kg	\$	04/16/15 14:00	04/17/15 18:51	
Dibromochloromethane	ND		34	4.4	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Dichlorodifluoromethane	ND		34	2.8	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Ethylbenzene	ND		34	2.4	ug/Kg	ф.	04/16/15 14:00	04/17/15 18:51	
Isopropylbenzene	ND		34	5.2	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Methyl acetate	ND		34	21	ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Methyl tert-butyl ether	ND		34		ug/Kg		04/16/15 14:00	04/17/15 18:51	
Methylcyclohexane	ND		34		ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
Methylene Chloride	ND		34		ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Styrene	ND		34		ug/Kg		04/16/15 14:00	04/17/15 18:51	
Tetrachloroethene	13000	E	34		ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Toluene	ND		34		ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
trans-1,2-Dichloroethene	ND		34		ug/Kg		04/16/15 14:00	04/17/15 18:51	
trans-1,3-Dichloropropene	ND		34		ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
Trichloroethene	140		34		ug/Kg	₩	04/16/15 14:00	04/17/15 18:51	
Trichlorofluoromethane	ND		34		ug/Kg	 ☆	04/16/15 14:00	04/17/15 18:51	
Vinyl chloride	ND		34		ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	
Xylenes, Total	ND		69		ug/Kg ug/Kg	₽	04/16/15 14:00	04/17/15 18:51	

TestAmerica Buffalo

2

5

6

8

40

Client: New York State D.E.C.

trans-1,2-Dichloroethene

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Lab Sample ID: 480-78558-29

TestAmerica Job ID: 480-78558-1

Client Sample ID: HP CTRL

Date Collected: 04/15/15 09:00

Date Received: 04/16/15 09:00

Matrix: Solid Percent Solids: 9.3

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86	64 - 126	04/16/15 14:00	04/17/15 18:51	1
4-Bromofluorobenzene (Surr)	101	72 - 126	04/16/15 14:00	04/17/15 18:51	1
Dibromofluoromethane (Surr)	94	60 - 140	04/16/15 14:00	04/17/15 18:51	1
Toluene-d8 (Surr)	96	71 - 125	04/16/15 14:00	04/17/15 18:51	1

Method: 8260C - Volatile Organic Compounds by GC/MS - DL RLMDL Unit D Dil Fac Analyte Result Qualifier Prepared Analyzed ₩ 1,1,1-Trichloroethane ND 7000 1900 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 ND 7000 04/16/15 14:00 04/24/15 07:53 8 1.1.2.2-Tetrachloroethane 1100 ug/Kg ₩ 1,1,2-Trichloro-1,2,2-trifluoroethane ND 7000 3500 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 ₽ 1,1,2-Trichloroethane ND 7000 1500 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 1,1-Dichloroethane ND 7000 2200 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 ₩ 1,1-Dichloroethene ND 7000 2400 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 φ ND 8 1,2,4-Trichlorobenzene 7000 2600 ug/Kg 04/16/15 14:00 04/24/15 07:53 1,2-Dibromo-3-Chloropropane ND 7000 3500 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 ND 7000 1200 04/16/15 14:00 04/24/15 07:53 8 1.2-Dibromoethane ug/Kg ġ 04/16/15 14:00 1,2-Dichlorobenzene ND 7000 1800 ug/Kg 04/24/15 07:53 8 1.2-Dichloroethane NΠ 7000 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 2900 ND 7000 1100 04/16/15 14:00 04/24/15 07:53 8 1,2-Dichloropropane ug/Kg φ 1.3-Dichlorobenzene ND 7000 1900 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 1,4-Dichlorobenzene ND 7000 980 04/16/15 14:00 04/24/15 07:53 8 ug/Kg ug/Kg # 2-Butanone (MEK) ND 35000 21000 04/16/15 14:00 04/24/15 07:53 8 ġ 2-Hexanone ND 35000 14000 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 4-Methyl-2-pentanone (MIBK) ND 35000 2200 04/16/15 14:00 04/24/15 07:53 8 ug/Kg \$ 30000 35000 29000 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 Acetone Benzene ND 7000 1300 ug/Kg ₫ 04/16/15 14:00 04/24/15 07:53 8 ä Bromodichloromethane ND 7000 1400 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 Bromoform ND 7000 3500 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 ND 7000 ug/Kg 04/16/15 14:00 8 Bromomethane 1500 04/24/15 07:53 ď Carbon disulfide ND 7000 3200 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 \$ Carbon tetrachloride ND 8 7000 1800 ug/Kg 04/16/15 14:00 04/24/15 07:53 Chlorobenzene ND 7000 920 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 Chloroethane ND 7000 1500 04/16/15 14:00 04/24/15 07:53 8 ug/Kg ug/Kg ä Chloroform ND 7000 4800 04/16/15 14:00 04/24/15 07:53 8 φ Chloromethane ND 7000 04/16/15 14:00 04/24/15 07:53 8 1700 ug/Kg ₽ cis-1,2-Dichloroethene ND 7000 1900 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 cis-1,3-Dichloropropene ND 7000 04/16/15 14:00 04/24/15 07:53 8 1700 ua/Ka Cyclohexane ND 7000 1600 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 \$ Dibromochloromethane ND 7000 3400 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 ₩ Dichlorodifluoromethane ND 7000 a 3000 ug/Kg 04/16/15 14:00 04/24/15 07:53 04/16/15 14:00 Ethylbenzene ND 7000 2000 ug/Kg 04/24/15 07:53 8 ND 04/16/15 14:00 8 Isopropylbenzene 7000 1000 ug/Kg 04/24/15 07:53 ND 7000 ä 04/16/15 14:00 8 Methyl acetate 3300 ug/Kg 04/24/15 07:53 ġ 8 Methyl tert-butyl ether ND 7000 2600 04/16/15 14:00 04/24/15 07:53 ug/Kg Methylcyclohexane 7000 04/16/15 14:00 04/24/15 07:53 8 ND 3300 ug/Kg 7000 04/16/15 14:00 8 **Methylene Chloride** 7400 1400 ug/Kg 04/24/15 07:53 ġ ND 7000 1700 ug/Kg 04/16/15 14:00 04/24/15 07:53 8 Styrene # 7000 04/16/15 14:00 8 220000 940 ug/Kg 04/24/15 07:53 Tetrachloroethene ₩ Toluene ND 7000 1900 ug/Kg 04/16/15 14:00 04/24/15 07:53 8

TestAmerica Buffalo

04/24/15 07:53

04/16/15 14:00

7000

1700

ug/Kg

ND

2

3

5

7

0

10

Client Sample Results

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: HP CTRL

Lab Sample ID: 480-78558-29 Matrix: Solid

Date Collected: 04/15/15 09:00 Date Received: 04/16/15 09:00

Percent Solids: 9.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		7000	690	ug/Kg	<u></u>	04/16/15 14:00	04/24/15 07:53	8
Trichloroethene	ND		7000	1900	ug/Kg	₽	04/16/15 14:00	04/24/15 07:53	8
Trichlorofluoromethane	ND		7000	3300	ug/Kg	₽	04/16/15 14:00	04/24/15 07:53	8
Vinyl chloride	ND		7000	2300	ug/Kg	₽	04/16/15 14:00	04/24/15 07:53	8
Xylenes, Total	ND		14000	3900	ug/Kg	₽	04/16/15 14:00	04/24/15 07:53	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		53 - 146				04/16/15 14:00	04/24/15 07:53	8
4-Bromofluorobenzene (Surr)	101		49 - 148				04/16/15 14:00	04/24/15 07:53	8
Dibromofluoromethane (Surr)	96		60 - 140				04/16/15 14:00	04/24/15 07:53	8
Toluene-d8 (Surr)	99		50 - 149				04/16/15 14:00	04/24/15 07:53	8
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	66400		112	49.3	mg/Kg	\	04/17/15 14:13	04/21/15 09:54	1
Antimony	5.4	J	168	4.5	mg/Kg	≎	04/17/15 14:13	04/21/15 09:54	1
Arsenic	57.1		22.4	4.5	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Barium	943		5.6	1.2	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Beryllium	2.9		2.2	0.31	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Cadmium	3.5		2.2	0.34	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Calcium	46700		560	37.0	mg/Kg		04/17/15 14:13	04/21/15 09:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	66400		112	49.3	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Antimony	5.4	J	168	4.5	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Arsenic	57.1		22.4	4.5	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Barium	943		5.6	1.2	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Beryllium	2.9		2.2	0.31	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Cadmium	3.5		2.2	0.34	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Calcium	46700		560	37.0	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Chromium	78.7		5.6	2.2	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Cobalt	63.2		5.6	0.56	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Copper	159		11.2	2.4	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Iron	153000	В	112	12.3	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Lead	125		11.2	2.7	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Magnesium	38100		224	10.4	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Manganese	7740	В	2.2	0.36	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Nickel	164		56.0	2.6	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Potassium	7140		336	224	mg/Kg	*	04/17/15 14:13	04/21/15 09:54	1
Selenium	ND		44.8	4.5	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Silver	ND		6.7	2.2	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Sodium	593	J	1570	146	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Thallium	ND		67.2	3.4	mg/Kg	₩	04/17/15 14:13	04/21/15 09:54	1
Vanadium	103		5.6	1.2	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1
Zinc	712	В	22.4	1.7	mg/Kg	₽	04/17/15 14:13	04/21/15 09:54	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	8600	В	1000	120	mg/Kg			04/22/15 19:57	1

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP CTRL

Lab Sample ID: 480-78558-1

Matrix: Water

Date Collected: 04/15/15 10:00 Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 14:39	LMH	TAL BUF
Total/NA	Analysis	9060A		1	237465	04/19/15 17:10	NDB	TAL BUF

Lab Sample ID: 480-78558-2

Matrix: Water

Date Collected: 04/15/15 10:05 Date Received: 04/16/15 09:00

Client Sample ID: SP CTRL DUP

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 14:41	LMH	TAL BUF
Total/NA	Analysis	9060A		1	237465	04/20/15 16:51	NDB	TAL BUF

Client Sample ID: KMNO4 LOW Lab Sample ID: 480-78558-3 Matrix: Water

Date Collected: 04/15/15 10:10

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 14:50	LMH	TAL BUF
Total/NA	Analysis	9060A		10	238131	04/23/15 09:19	FKB	TAL BUF

Client Sample ID: KMNO4 MID Lab Sample ID: 480-78558-4

Date Collected: 04/15/15 10:15

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 14:53	LMH	TAL BUF
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		5	239467	04/29/15 15:22	LMH	TAL BUF
Total/NA	Analysis	9060A		100	238131	04/23/15 10:15	EKB	TAL BUF

Client Sample ID: KMNO4 HIGH Lab Sample ID: 480-78558-5

Date Collected: 04/15/15 10:20

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 14:56	LMH	TAL BUF
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		5	239467	04/29/15 15:25	LMH	TAL BUF

TestAmerica Buffalo

Page 58 of 76

Matrix: Water

Matrix: Water

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: KMNO4 HIGH

Date Collected: 04/15/15 10:20 Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-5

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 9060A 400 240187 05/01/15 19:37 NCH TAL BUF

Client Sample ID: SP FECA LOW

Date Collected: 04/15/15 10:25

Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 15:08	LMH	TAL BUF
Total/NA	Analysis	9060A		800	240187	05/01/15 20:04	NCH	TAL BUF

Client Sample ID: SP FECA MID

Date Collected: 04/15/15 10:30

Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060A		800	240187	05/01/15 22:21	NCH	TAL BUF

Client Sample ID: SP FECA HIGH

Date Collected: 04/15/15 10:35

Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060A		1000	240187	05/01/15 22:47	NCH	TAL BUF

Client Sample ID: SP NAOH LOW

Date Collected: 04/15/15 10:40

Date Received: 04/16/15 09:00

Lab Sample	ID: 480-78558-9
------------	-----------------

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 15:10	LMH	TAL BUF
Total/NA	Analysis	9060A		400	240187	05/01/15 23:14	NCH	TAL BUF

Client Sample ID: SP NAOH MID	Lab Sample ID: 480-78558-10
Date Collected: 04/15/15 10:45	Matrix: Water
Date Received: 04/16/15 09:00	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			240009	05/01/15 11:58	TAS	TAL BUF
Total/NA	Analysis	6010C		1	240397	05/04/15 10:22	AMH	TAL BUF
Total/NA	Analysis	9060A		40	238131	04/22/15 15:20	EKB	TAL BUF

TestAmerica Buffalo

Page 59 of 76

Lab Sample ID: 480-78558-11

TestAmerica Job ID: 480-78558-1

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP NAOH HIGH

Date Collected: 04/15/15 10:50 Matrix: Water

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			240009	05/01/15 11:58	TAS	TAL BUF
Total/NA	Analysis	6010C		1	240397	05/04/15 10:25	AMH	TAL BUF
Total/NA	Analysis	9060A		1000	240187	05/01/15 23:40	NCH	TAL BUF

Client Sample ID: HP LOW Lab Sample ID: 480-78558-12

Matrix: Water Date Collected: 04/15/15 11:00

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 14:44	LMH	TAL BUF
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		5	239707	04/30/15 08:16	AMH	TAL BUF
Total/NA	Analysis	9060A		200	238131	04/22/15 16:16	EKB	TAL BUF

Client Sample ID: HP HIGH Lab Sample ID: 480-78558-13

Date Collected: 04/15/15 11:10 **Matrix: Water**

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 14:47	LMH	TAL BUF
Total/NA	Analysis	9060A		100	238131	04/22/15 16:43	EKB	TAL BUF

Lab Sample ID: 480-78558-14 **Client Sample ID: HP CTRL**

Date Collected: 04/15/15 09:00 Matrix: Water

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 15:13	LMH	TAL BUF
Total/NA	Analysis	9060A		1	238131	04/22/15 00:24	EKB	TAL BUF

Client Sample ID: SP CTRL Lab Sample ID: 480-78558-15

Date Collected: 04/15/15 10:00 **Matrix: Solid**

Date Received: 04/16/15 09:00 Percent Solids: 80.0

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			236804	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		1	236777	04/17/15 13:42	CDC	TAL BUF
Total/NA	Prep	5035A	DL		237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C	DL	4	238262	04/24/15 04:20	JWG	TAL BUF

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP CTRL

Lab Sample ID: 480-78558-15

Date Collected: 04/15/15 10:00 Date Received: 04/16/15 09:00

Matrix: Solid Percent Solids: 80.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:09	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 18:31	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: KMNO4 LOW Lab Sample ID: 480-78558-16

Date Collected: 04/15/15 10:10 **Matrix: Solid** Date Received: 04/16/15 09:00 Percent Solids: 84.2

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			237172	04/16/15 14:00	CDC	TAL BUF
Total/NA	Analysis	8260C		1	237173	04/20/15 02:13	RAS	TAL BUF
Total/NA	Prep	5035A	DL		237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C	DL	1	238262	04/24/15 04:43	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:12	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 18:37	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: KMNO4 MID

Date Collected: 04/15/15 10:15 **Matrix: Solid** Date Received: 04/16/15 09:00 Percent Solids: 86.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			237172	04/16/15 14:00	CDC	TAL BUF
Total/NA	Analysis	8260C		1	237173	04/20/15 03:04	RAS	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:16	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 18:44	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: KMNO4 HIGH

Date Collected: 04/15/15 10:20 **Matrix: Solid** Date Received: 04/16/15 09:00 Percent Solids: 80.6

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			237172	04/16/15 14:00	CDC	TAL BUF
Total/NA	Analysis	8260C		1	237173	04/20/15 03:30	RAS	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:19	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 18:51	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

TestAmerica Buffalo

Lab Sample ID: 480-78558-17

Lab Sample ID: 480-78558-18

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP FECA LOW

Date Collected: 04/15/15 10:25 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-19

Matrix: Solid
Percent Solids: 79.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A	 -		236804	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		1	236777	04/17/15 15:25	CDC	TAL BUF
Total/NA	Prep	5035A	DL		237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C	DL	1	238262	04/24/15 05:07	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:22	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 18:58	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: SP FECA MID

Date Collected: 04/15/15 10:30 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-20

Matrix: Solid Percent Solids: 81.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			236804	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		1	236777	04/17/15 15:51	CDC	TAL BUF
Total/NA	Prep	5035A	DL		237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C	DL	1	238262	04/24/15 05:31	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:25	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 19:05	MDK	TAL BUF
Γotal/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: SP FECA HIGH

Date Collected: 04/15/15 10:35 Date Received: 04/16/15 09:00 Lab Sample ID: 480-78558-21

Matrix: Solid

Percent Solids: 90.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			236804	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		1	236777	04/17/15 16:17	CDC	TAL BUF
Total/NA	Prep	5035A	DL		237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C	DL	1	238262	04/24/15 05:54	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:28	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 19:13	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: SP NAOH LOW

Date Collected: 04/15/15 10:40 Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-22

Matrix: Solid Percent Solids: 79.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A		· <u></u>	236804	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		1	236777	04/17/15 16:42	CDC	TAL BUF
Total/NA	Prep	5035A	DL		238930	04/16/15 14:00	GTG	TAL BUF
Total/NA	Analysis	8260C	DL	4	238941	04/28/15 04:44	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:39	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 19:20	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: SP NAOH MID

Date Collected: 04/15/15 10:45 Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-23 **Matrix: Solid**

Percent Solids: 82.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		4	238262	04/24/15 06:18	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:42	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 19:27	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: SP NAOH HIGH

Date Collected: 04/15/15 10:50 Date Received: 04/16/15 09:00

Matrix: Solid Percent Solids: 80.8

Lab Sample ID: 480-78558-24

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		4	238262	04/24/15 06:41	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:45	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 19:34	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: HP LOW

Date Collected: 04/15/15 11:00

Date Received: 04/16/15 09:00

Lab Sample ID: 480-78558-25 **Matrix: Solid**

Percent Solids: 88.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		5	238262	04/24/15 07:05	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:48	LMH	TAL BUF

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

Client Sample ID: HP LOW

Lab Sample ID: 480-78558-25

Matrix: Solid

Date Collected: 04/15/15 11:00 Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 19:42	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: HP HIGH Lab Sample ID: 480-78558-26

Date Collected: 04/15/15 11:10 Matrix: Solid

Date Received: 04/16/15 09:00 Percent Solids: 85.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			236804	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C		1	236777	04/17/15 18:25	CDC	TAL BUF
Total/NA	Prep	5035A	DL		237369	04/16/15 14:00	RAS	TAL BUF
Total/NA	Analysis	8260C	DL	8	238262	04/24/15 07:29	JWG	TAL BUF
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:51	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 19:49	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Client Sample ID: TRIP BLANK Lab Sample ID: 480-78558-27

Date Collected: 04/15/15 16:00 Matrix: Water

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	238629	04/25/15 12:44	CDC	TAL BUF

Client Sample ID: HP CTRL DUP Lab Sample ID: 480-78558-28

Date Collected: 04/15/15 09:08 **Matrix: Water**

Date Received: 04/16/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			239213	04/28/15 16:23	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	239467	04/29/15 15:16	LMH	TAL BUF
Total/NA	Analysis	9060A		1	237465	04/20/15 04:37	NDB	TAL BUF

Client Sample ID: HP CTRL Lab Sample ID: 480-78558-29

Date Collected: 04/15/15 09:00 **Matrix: Solid**

Date Received: 04/16/15 09:00 Percent Solids: 9.3

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Prep	5035A			236804	04/16/15 14:00	RAS	TAL BUF
Analysis	8260C		1	236777	04/17/15 18:51	CDC	TAL BUF
Prep	5035A	DL		237369	04/16/15 14:00	RAS	TAL BUF
Analysis	8260C	DL	8	238262	04/24/15 07:53	JWG	TAL BUF
	Type Prep Analysis Prep	Type Method Prep 5035A Analysis 8260C Prep 5035A	Type Method Run Prep 5035A Analysis 8260C Prep 5035A DL	Type Method Run Factor Prep 5035A 5035A 1 Prep 5035A DL 1	Type Method Run Factor Number Prep 5035A 236804 Analysis 8260C 1 236777 Prep 5035A DL 237369	Type Method Run Factor Number or Analyzed Prep 5035A 236804 04/16/15 14:00 Analysis 8260C 1 236777 04/17/15 18:51 Prep 5035A DL 237369 04/16/15 14:00	Type Method Run Factor Number or Analyzed Analyst Prep 5035A 236804 04/16/15 14:00 RAS Analysis 8260C 1 236777 04/17/15 18:51 CDC Prep 5035A DL 237369 04/16/15 14:00 RAS

Lab Chronicle

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Client Sample ID: HP CTRL

Lab Sample ID: 480-78558-29

Date Collected: 04/15/15 09:00 Matrix: Solid
Date Received: 04/16/15 09:00 Percent Solids: 9.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			236914	04/17/15 14:13	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237558	04/21/15 09:54	LMH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	87262	04/22/15 19:57	MDK	TAL BUR
Total/NA	Analysis	Moisture		1	236729	04/16/15 22:39	CMK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

1

5

6

8

a

10

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	are included in this report, but	it cortification is not offere	d by the governing o	outh ority:	
,	•		, ,	Š	
Analysis Method	Prep Method	Matrix	Analyt	Š	
,	•		Analyt	Š	

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Connecticut	State Program	1	PH-0751	09-30-15
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-16
Florida	NELAP	4	E87467	06-30-15 *
L-A-B	DoD ELAP		L2336	02-26-17
Maine	State Program	1	VT00008	04-17-17
Minnesota	NELAP	5	050-999-436	12-31-15
New Hampshire	NELAP	1	2006	12-18-15
New Jersey	NELAP	2	VT972	06-30-15
New York	NELAP	2	10391	03-31-16
Pennsylvania	NELAP	3	68-00489	04-30-16
Rhode Island	State Program	1	LAO00298	12-30-15
US Fish & Wildlife	Federal		LE-058448-0	02-28-16
USDA	Federal		P330-11-00093	10-28-16
Vermont	State Program	1	VT-4000	12-31-15
Virginia	NELAP	3	460209	12-14-15

7

8

10

10

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: New York State D.E.C.

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

TestAmerica Job ID: 480-78558-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
9060A	Organic Carbon, Total (TOC)	SW846	TAL BUF
Lloyd Kahn	Organic Carbon, Total (TOC)	EPA	TAL BUR
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TestAmerica Buffalo

2

6

Ω

1 በ

10

Sample Summary

Client: New York State D.E.C.

480-78558-25

480-78558-26

480-78558-27

480-78558-28

480-78558-29

Project/Site: NYSDEC-C&B Dry Cleaners:Site# 907028

HP LOW

HP HIGH

HP CTRL

TRIP BLANK

HP CTRL DUP

TestAmerica Job ID: 480-78558-1

04/15/15 11:00

04/15/15 11:10

04/15/15 16:00

04/15/15 09:08

04/15/15 09:00

04/16/15 09:00

04/16/15 09:00

04/16/15 09:00

04/16/15 09:00

04/16/15 09:00

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-78558-1	SP CTRL	Water	04/15/15 10:00	04/16/15 09:00
480-78558-2	SP CTRL DUP	Water	04/15/15 10:05	04/16/15 09:00
480-78558-3	KMNO4 LOW	Water	04/15/15 10:10	04/16/15 09:00
480-78558-4	KMNO4 MID	Water	04/15/15 10:15	04/16/15 09:00
480-78558-5	KMNO4 HIGH	Water	04/15/15 10:20	04/16/15 09:00
480-78558-6	SP FECA LOW	Water	04/15/15 10:25	04/16/15 09:00
480-78558-7	SP FECA MID	Water	04/15/15 10:30	04/16/15 09:00
480-78558-8	SP FECA HIGH	Water	04/15/15 10:35	04/16/15 09:00
480-78558-9	SP NAOH LOW	Water	04/15/15 10:40	04/16/15 09:00
480-78558-10	SP NAOH MID	Water	04/15/15 10:45	04/16/15 09:00
480-78558-11	SP NAOH HIGH	Water	04/15/15 10:50	04/16/15 09:00
480-78558-12	HP LOW	Water	04/15/15 11:00	04/16/15 09:00
480-78558-13	HP HIGH	Water	04/15/15 11:10	04/16/15 09:00
480-78558-14	HP CTRL	Water	04/15/15 09:00	04/16/15 09:00
480-78558-15	SP CTRL	Solid	04/15/15 10:00	04/16/15 09:00
480-78558-16	KMNO4 LOW	Solid	04/15/15 10:10	04/16/15 09:00
480-78558-17	KMNO4 MID	Solid	04/15/15 10:15	04/16/15 09:00
480-78558-18	KMNO4 HIGH	Solid	04/15/15 10:20	04/16/15 09:00
480-78558-19	SP FECA LOW	Solid	04/15/15 10:25	04/16/15 09:00
480-78558-20	SP FECA MID	Solid	04/15/15 10:30	04/16/15 09:00
480-78558-21	SP FECA HIGH	Solid	04/15/15 10:35	04/16/15 09:00
480-78558-22	SP NAOH LOW	Solid	04/15/15 10:40	04/16/15 09:00
480-78558-23	SP NAOH MID	Solid	04/15/15 10:45	04/16/15 09:00
480-78558-24	SP NAOH HIGH	Solid	04/15/15 10:50	04/16/15 09:00

Solid

Solid

Water

Water

Solid

-6

-

F

6

8

9

40

10

4 -

Chain of	Temperature on Receipt	[estAme
Custody Record		THE LEADER IN ENVIRONMEN 480-78558 Chain of Custody
Client	Project Manager Am Ho Patel	4/15/15 280762
Tatonational Bird, 10th	Telephone Number (Area Code)/Fa	Pag
State Zip Coo	Site Contact Lab	Analysis (Attach list if more space is needed)
30-CB C	Carrier/Waybill Number	*5b
	Matrix Containers & Preservatives	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	HOBN /OVUZ HOBN IOH EONH FOSTH Seldun IIOS TOBS Snoenby IIV	7V4 201 701
SP CX-1 4/15/15	5/coo X	
SP ctrd dwo	, , , , , , , , , , , , , , , , , , ,	7 1
KMND4 L	0001	
	1015	
l	920/	
d S	1025	in a company of the c
S	1030	
Sp Fech High	1035	
SP NaOly Low	030/	
	10%	
SP NaOH High	0,000	
Worth Hard Hantingin	1 Samile Dienced	
2/e	☐ Unknown ☐ Return To Client ▶	(A fee may be assessed if samples are retained longer than 1 month)
Required CHACO-O	3,	specify)
$ \circlearrowleft$	1. Reddied By (170) 1. Reddied By (170) 1. Reddied By	& Alas TA BUR 14/6/15/19
44.		Date
3. Relinquished By	Date Time 3. Received By	Date Time
of comments confered axed-LCCOM * excles	-LC.COM & excluding mereny	ny and example #1 29
DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - St.	tays with the Sample; PiNK - Field Copy	1 2 3 4 5 6 7 8 9

Chain of Custody Record

Temperature on Receipt ___

TestAmerica Drinking Water? Yes□ No□

	_
	TESTIN
	5
ı	y,
	۳
	_
ı	_
	4
ŀ	-
	z
	ũ
	₹
	4
	Z
	С
	œ
	Ξ
	>
	Z
	ш
ł	_
ŀ	4
ł	_
	œ
ŀ	ш
ŀ	
•	⋖
	THE LEADER IN ENVIRONMENTAL 1
ŀ	_
	쁘
	Ţ
	-

TAL-4124 (1007)))			
Client HSA	Projec	Project Manager		Date Yest	Chain of Custody Number 280761
Address	Teleph	Telephone Number (Area Code)/Fax Number	Fax Number	Lab Number	Page 2 of 3
Gity State Zip o	Zip Code Site Contact		Lab Contact	Analysis (Attach list if more space is needed)	
Project Name and Location (State)	Carrier	Carrier/Waybill Number	9729	TSC (A) SA	Special Instructions/
SE		Matrix	Containers & Containers & S	·nu·	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Time	Air suceuph Sed. iio2	Medi Nacoh Hoi Huos Huos Huos Huos Huos Huos Huos Huos	A) 1	
HP-MB-	14.4 mos			-	
HP Hah	415/15 140	X	-		
HO CH	7co			1	
	\$08				
ても	9001	×	22 IIX		
3-8	5001				
KMAOd	0191	-	22	XX	
` _	1015	X	22 I X	メメ	
KMnog High	0201	.×.	X) 27	メメ	
4	1025	X	X 1 27	メン	
SP ECA MD	/1030	×	文.I 27	アン	
SP Red Han	1035		2/2	(X	
Possible Hazard Identification Non-Hazard	Poison B ☐ Unknown	Sample Disposal	Disposal By Lab	Months	(A fee may be assessed if samples are retained longer than 1 month)
W 0	010/18	ተ ኤ'	OC Requirements (Specify)		
1. Reimquished By		The 170	1. Received By	The TA BUSE	10 pare 16/15/15 1900
2. Refinaushed By	Date	Time	2. Referred By		Date
9. 3. Relinquished By	Date	Тіте	8. Péceived El		Date Time 2,9
ý	awford@xd	7- P	*	excluding Hg + Ca	rende
DISTRIBUTION: WHITE - Returned to Client with Report, C	CANARY - Stays with the Sam,	ple; PINK - Field Copy	· ·	Lage out of Toll Pro	50% ort of 202

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number 280765Тіте # Page Date Cyan do Date Date * excluding He + Cyanida Soil your metals and TOC **TestAmerica** THE LEADER IN ENVIRONMENTAL TESTING DUG. Analysis (Attach list if more space is needed) Lab Number Months X Date 4000PC Archive For _ Medi OC'Requirements (Specify) HOPN HOPN K Disposal By Lab Containers & Preservatives 1. Receiped By 8. Received By IOH Telephone Number (Area Code)/Fax Number EONH HOGOW Lab Contact **№** AL. 161 Lerawhard & Kold-LLCon Drinking Water? Yes□ Temperature on Receipt 000 Hetum To Client PLOS EMAIL RESULTS to LCAWARY SAYS with the Sample; PINK-Field Copy Sample Disposal 1105 Time Carrier/Waybill Number Matrix 005 Project Manager Site Contact 41 Steel day 10 50 ☐ Unknown 10% 1640 96 03 415/15 908 Date Time 9 415115 91/2/16 ☐ Paisan B Date Zip Code 14 Days (Containers for each sample may be combined on one line) Skin Irritant State Sample I.D. No. and Description ☐ 7 Days SP NaOH LOW 5.k 90708 of Lite | Flammable Contract/Purchase Order/Quote No. Project Name and Location (State) **Custody Record** SP Nach HIR SP NaOH ☐ 48 Hours Possible Hazard Identification Tum Around Time Required the sta 2/9/5/2 *Selinquished By* Comments 1. Relinquished By 2. Relinduished By ☐ Non-Hazard Chain of TAL-4124 (1007) Cilent 24 Hours Address ĊţĹ Page 71 of 76

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	• 0	hain c	of Cus	Chain of Custody Record	ecord	_						A PHELEY	STAL See Meroy	TestAmerica
Client Information (Sub Contract Lab)	Sampler:			Lab PM: Fische	Lab PM: Fischer, Brian				Carrier Tracking No(s).	cking No(s		COC No: 480-23601.1	01.1	
Client Contact: Shipping/Receiving	Phone:			E-Mail: brian.	E-Mail: brian.fischer@testamericainc.com	estameric	ainc.com					Page: Page 1 of 2	of 2	
: perica Laboratories, Inc.							Anal	Analysis Requested	luested	_		Job #: 480-78558-1	58-1	
sss: Sommunity Drive, Suite 11,	Due Date Requested: 4/28/2015	ij										Preserva	용	.;s
	TAT Requested (da	ys):										A - HCL B - NaOH		M - Hexane N - None
State, Zip: VT, 05403	T											C - Zn Aog D - Nitric / E - NaHSo		U - AsnaO2 P - Na2O4S Q - Na2SO3
Phone: 802-660-1990(Tel) 802-660-1919(Fax)	PO #:											F - MeOH G - Amchlor		R - Na2S2SO3 S - H2SO4 T TSP S - 1
Email:					(0)									r - For Douecallydrate U - Acetone V - MCAA
Project Name: NYSDEC-C&B Dry Cleaners:Site# 907028	Project #: 48010966				A no se							kainers K-EDTA L-EDA		W - ph 4-5 Z - other (specify)
Site:	SSOW#:				sp (v							of con		
		o de la companya de l	Sample Type	Matrix (w=water, S=solid,	d Filtered : M\&M mno d_Kahn\ Ro					***************************************		TedmuM I		
Sample Identification - Client ID (Lab ID)	Sample Date	Time		O=waste/oil, BT=Tissue, A=Air)	Per								pecial Inst	Special Instructions/Note:
	\langle	\langle	Preserva	Preservation Code:	X								Λ	
SP CTRL (480-78558-15)	4/15/15	10:00 Eastern		Solid	×							įtį		
KMNO4 LOW (480-78558-16)	4/15/15	10:10 Eastern	,	Solid	×							Υ.		
KMNO4 MID (480-78558-17)	4/15/15	10:15 Eastern		Solid	×							37		
KMNO4 HIGH (480-7858-18)	4/15/15	10:20 Eastern		Solid	×									
SP FECA LOW (480-78558-19)	4/15/15	10:25 Eastern		Solid	×							1		
SP FECA MID (480-78558-20)	4/15/15	10:30 Eastern		Solid	×							Į.		
SP FECA HIGH (480-78558-21)	4/15/15	10:35 Eastern		Solid	×							-		
SP NAOH LOW (480-78558-22)	4/15/15	10:40 Eastern		Solid	×									
SP NAOH MID (480-78558-23)	4/15/15	10:45 Eastern		Solid	×							-		
SP NAOH HIGH (480-78558-24)	4/15/15	10:50 Eastern		Solid	×							x		
HP LOW (480-78558-25)	4/15/15	11:00 Fastern		Solid	×									
Possible Hazard Identification Unconfirmed					Samp	le Disposal (A t	al (A fee	may be a	ssessed	if samp	les are re	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	r than 1 n	nonth)
Deliverable Requested: I, II, III, IV, Other (specify)					Specia	Special Instructions/QC Requirements	ons/QC F	equireme	Disposar by Lab ents:	oy Latt		Archive For		Months
Empty Kit Relinquished by:		Date:			Time:				Meth	Method of Shipment:	nent:			
Rejinguished by: Relinguished by:	Date/Time:	15 1700		Company	Rec	Received by:	1	9		L Dat	Date/Time: V / J & //	F 093	Ď	Company
ער איריי אירי אירי אירי אירי אירי אירי א	Date/11me.			Company	Xec	Received by:				Dat	Date/Time:			Company
	Date/Time:			Company	Rec	Received by:				Dar	Date/Time:			Company
Custody Seals Intact: Custody Seal No.: A Yes A No					Ö	Cooler Temperature(s) °C and Other Remarks:	ıture(s) °C	and Other Re	marks:					

lestAmerica Burraio										-	✓ + 5 €		7
Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991		Shain of Custody Record	Custo	ody Re	cord	•					C C C C C C C C C C C C C C C C C C C	TOTAL INCOMMENTAL TESTING	7 1 9
Client Information (Sub Contract Lab)	Sampler:			Lab PM: Fische	Lab PM: Fischer, Brian J			Carrier Tr	Carrier Tracking No(s):	CO 48	COC No: 480-23601.2		
Client Contact Shipping/Receiving	Phone:			E-Mail: brian.f	E-Mail: brian.fischer@testamericainc.com	tamericai	nc.com			Page: Page	Page: Page 2 of 2		
Company: TestAmerica Laboratories, Inc.							Analysis	Analysis Requested		Job 48	Job #: 480-78558-1		
Address: 30 Community Drive, Suite 11,	Due Date Requested: 4/28/2015						\			Pre	Preservation Codes:	des:	
City. South Burlington	TAT Requested (days):									<u> Α</u> ω υ	A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2	
State, Zip: VT, 05403) Ó Ш́	- Nitric Acid - NaHSO4	Q - Na2O4S Q - Na2SO3	
Phone: 802-660-1990(Tel) 802-660-1919(Fax)	PO #:									ட்	F - MeOH G - Amchlor H Assorbio Asid	R - Na2S2SO3 S - H2SO4 T TSP Podes Hade	
Етаі!:	WO#:			J. J. G.	(0)						I - Ice J - DI Water	U - Acetone V - MCAA	<u>p</u>
Project Name: NYSDEC-C&B Dry Cleaners:Site# 907028	Project #: 48010966			30,7,0	1 10 se						K - EDTA L - EDA	W - ph 4-5 Z - other (specify)	
Site:	SSOW#:			Jumes	A) as						Other:		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample (C	Sample Type (C=comp, c	Matrix (W=water, S=solid, O=waste/oil, id-	M/SM mrofie loyd_Kahn/ Ro					otal Number			
	<u> </u>	1	- 100	1	X					<u>.</u> ×	opecial I	special instructions/Note:	
HP HIGH (480-78558-26)	4/15/15 F	11:10 -astern		Solid	×					-			
HP CTRL (480-78558-29)	4/15/15	09:00 Factorn		Solid	×					-			
										10 K			
										2 44 W			
Donaith Unesed the six - 42													
rossinie nazara identification Unconfirmed					Sample	le Disposal (A 1 Retum To Client	′A fee ma _{ient}	/ be assessed if sam	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	re retained long	longer than	month)	
Deliverable Requested: I, II, III, IV, Other (specify)					Special II	nstruction	Special Instructions/QC Requirements:	rements:	and for		5	SIRION	
Empty Kit Relinquished by:	Date:	te:			Time:			Mel	Method of Shipment:				
Rejective by Plan Wall	Date/Time: 7-15	Q27		Company	Receiv	Received by:	73 M	R	Date/Time:	18 A S A S A S A S A S A S A S A S A S A	Whisher	Company	\@
Relinquished by:	Date/Time:		Col	Compahy	Receiv	Received by:			Date/Time:	ioi		Company	
	Date/Time:		Co	Сотрапу	Receiv	Received by:			Date/Time	ii.		Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					Cooler	. Temperatu	e(s) °C and C	Cooler Temperature(s) °C and Other Remarks:					

SHIP DATE: 17APR15 ACTWGT: 35:3 LB CAD: 84665 4/CAFE2807 DIMS: 26×155×14 IN

BILL RECIPITENT

TO MARK PHILLIPS TA BURLINGTON **30 COMMUNITY DRIVE** SUITE 11

SOUTH BURLINGTON VT 05403
(802) 660 – 1990
DEPT: SAMPLE CONTROL

FedEx Express

3 of 5 MPS# 5657 0118 2216 Mstr# 5657 0118 2190

SATURDAY 12:00P PRIORITY OVERNIGHT

0201

BTVA

05403 s BTV VT – ÚS

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-78558-1

Login Number: 78558 List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl M

Question Answer Com	mment
Radioactivity either was not measured or, if measured, is at or below background	
The cooler's custody seal, if present, is intact.	
The cooler or samples do not appear to have been compromised or tampered with.	
Samples were received on ice.	
Cooler Temperature is acceptable. True	
Cooler Temperature is recorded.	
COC is present. True	
COC is filled out in ink and legible.	
COC is filled out with all pertinent information.	
Is the Field Sampler's name present on COC?	
There are no discrepancies between the sample IDs on the containers and the COC.	
Samples are received within Holding Time. True 4/16	6/15 1400
Sample containers have legible labels. True	
Containers are not broken or leaking.	
Sample collection date/times are provided. True	
Appropriate sample containers are used. True	
Sample bottles are completely filled. True	
Sample Preservation Verified True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter.	
If necessary, staff have been informed of any short hold time or quick TAT True needs	
Multiphasic samples are not present. True	
Samples do not require splitting or compositing.	
Sampling Company provided. True HDF	R
Samples received within 48 hours of sampling.	
Samples requiring field filtration have been filtered in the field. N/A	
Chlorine Residual checked. N/A	

2

4

R

9

10

11

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-78558-1

List Source: TestAmerica Burlington
List Number: 2
List Creation: 04/18/15 11:07 AM

Creator: Young, Joseph W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>Lab does not accept radioactive samples.</td>	True	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	234077
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.6°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

2

Λ

5

6

ŏ

10

1.

Certificate of Analysis

Name / Address
HDR, Inc 1 International Boulevard, 10th Floor Suite 1000 Mahwah, NJ 07495-0027 USA

Report Date	3/13/2015	
Report Number	14897	
Customer Fax		
Total Pages	1	
Analysis Date	3/12/2015	Analyst
Analysis Time	1330	
Project ID		

Laboratory Analysis Report Trade Secret

Test ID	Analytical Method & Analysis	Results / Units	Verified Date & Time
SPC	Standard Plate Count Potable/Non-Potable Water Method- SM 18 9215B MDL (<1 to >100,000 CFU/ ml) Location	3,370,000 CFU / ml	3-14-2015 1330

This report is issued under the authority of the analysts listed above. This report only relates to the samples which was tested. Interpretation of these results is the sole responsibility of the client. This report shall not be reproduced except in full, without the written approval of the laboratory

NYSDOH and NELAC ID 11660

Phone #	716-651-0146		Form CC-01		
Fax #	716-242-3010		www.biotrax.net		
E-mail			edward@biotrax.net		' F

Edward J. Lukecoget

Reviewed By

ATTACHMENT A

Design Drawings

ATTACHMENT B

Specifications

ATTACHMENT C

Cost Estimate

CONSTRUCTION COST ESTIMATE

Site: Former C&B Dry Cleaners - Soil Remediation

Location: Jamestown, Chautauqua County, New York

Phase: Final Design Base Year: 2016

Date: August 31, 2016

Item	Quantity	Unit	Unit Cost	Estimated Cost	Subtotal	Note
1. Site Preparation						
						setting up staging areas for injection,
General Mobilization/Demobilization	1	LS	\$10,000	\$10,000		decontamination, and waste storage
NY One Call Notification	1	LS	\$250			
Site Clearing	1	day	\$1,250			
Utility Clearance	2	day	\$2,500	\$5,000		Local utility clearance near Swanson Building
Sub-total					\$16,500	
2 Y22 Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
2. ISCO Injection ISCO Locations	60	1.0	#2.000.00	#2.000		
Mobilization And Demobilization for Drilling Activity	1	LS	\$2,000.00	\$2,000		
DPT Drilling for Temporary Injections (Probe/Drill Rig Daily Rental W/ Operator)	12	Day	\$1,750.00	\$21,000		6 locations per day for ~ 60 locations ~ 10 days for 8 hr/day, plus 2 days for standby time
IDW	12	LS	\$1,730.00			o in / day, plus 2 days for standby time
Surface Repair	1	LS	\$10,000.00	\$1,000		
Decontamination Equipment (Water and Steam Cleaner Rental)	10	Per Day	\$1,000.00			
Decontamination of Drilling Equipment	20	Per Hour	\$110			two hours per day
Mobilization And Demobilization for Injection Activity	1	LS	\$5,000			two flours per day
Potassium Permanganate - groundwater (One-time Injection)	25,500	lbs	\$2.25	\$57,375		
External Water Source	2	load	\$375.00	\$750		Each load is ~6000 gallons
Injection Labor and Equipment	12	Per Day	\$8,000.00			Assumes 10 days + 2 days for implemention of infield design modifications
Well Abandoment	1	LS	\$3,400.00			for 60 locations
					\$201,000	
Sub-total						
Sub-Total Items 1-2 \$218,000 Contingency: 25% \$55,000						
Contingency: 25% \$55,000 **Total Items 1-2 \$273,000						
Construction Management: 8% \$27,000						
		Construction	i management:	Total Costs	\$22,000 \$295,000	

August 2016 1 of 1