
SITE CHARACTERIZATION INVESTIGATION

PennEmpire Transportation Site

Celeron, New York Site No. 907034

September 2009

Prepared by:

Division of Environmental Remediation New York State Department of Environmental Conservation The following summary report provides an overview of the site characterization investigation completed for the Penn Empire Transportation site, including general site background information, a summary of work performed, presentation of results, conclusions and redevelopment considerations.

Field work was completed by Empire GeoServices, Inc. between July 2008 and July 2009 under the oversight of the New York State Department of Environmental Conservation. Specific detailed information regarding the investigation is included in the report titled 'Subsurface Investigation and Site Activity Report' prepared by Empire GeoServices, Inc. dated July 9, 2009, which is provided on disc at the end of this report.

Prepared by:	
Chad Staniszewski, P.E. Division of Environmental Remediation, Region 9 Project Manager	
Reviewed by:	
Martin L. Doster, P.E. Division of Environmental Remediation, Region 9 Regional Hazardous Waste Remediation Engineer	

SUMMARY REPORT TABLE OF CONTENTS

1.0	Introduction1
2.0	Site Background1
3.0	Summary of Work Completed2
	Site Inspection
	Abandoned Tractor Trailer Inventory2
	Drum Removal
	10,000 Gallon Above Ground Storage Tank Inspection
	Maintenance Building Floor Drains
	Drum Disposal Area
	Subsurface Investigation
4.0	Investigation Results4
	Soil Screening4
	Analytical Data Soil5
	Analytical Data Groundwater7
5.0	Conclusions8
6.0	Redevelopment Considerations
	FIGURES SITE SURVEY DRAWING ANALYTICAL DATA SUMMARY TABLES LABORATORY DATA (Pesticide Resample @ MW-2) EMPIRE GEOSERVICE'S Subsurface Investigation / Site Activities Report (on Disc)

1.0 INTRODUCTION

The New York State Department of Environmental Conservation (hereafter referred to as the 'NYSDEC') is the recipient of an United Stated Environmental Protection Agency Targeted Site Assessment Grant. The grant provides funding for environmental investigation of brownfield sites with the goal of helping to return the sites to productive use. At the request of the Chautauqua County Department of Public Utilities, grant funds were utilized to complete a site characterization investigation at the Penn Empire Transportation site located at 100 E. Livingston Avenue in the Village of Celoron, Town of Ellicott. The investigation assessed environmental impacts associated with use of the site as a tractor trailer transportation and distribution terminal.

On January 7, 2008, the Chautauqua County Court issued an 'Order Granting Temporary Incidence of Ownership Pursuant to ECL 56-0508' to Chautauqua County. The order allowed the County to temporarily foreclose on the property due to delinquent property taxes and allowed the NYSDEC to complete this site characterization investigation utilizing EPA grant funds. Pending the results of this site characterization assessment, the County can elect to continue foreclosure proceedings or return the property to the current owner.

2.0 SITE BACKGROUND

The Penn Empire Transportation site operated as a tractor trailer transportation and distribution terminal for approximately 20 years prior to abandonment of the site in 2001. The site is located in Chautauqua County, New York at 100 East Livingston Avenue in the Village of Celoron near the south eastern tip of Chautauqua Lake. The site consists of two tax parcels (SBL# 204-1-1.1 and 204-2-1) totaling approximately 9.3 acres. The site is located in an area of mixed residential and commercial properties. The site is bordered on the north by railroad tracks, to the south/southwest by E. Livingston Ave and to the east by the Celoron Rod and Gun Club. Site topography generally slopes south to north toward chautauqua lake. The central portion of the site has been leveled with sand and gravel fill. A site location map is provided as Figure 1 at the end of this summary report.

Site features include (2) metal sided buildings (an (8) bay building formerly utilized as an office and distribution warehouse and a (2) bay truck maintenance building), 20 abandoned semi trailers, hundreds of discarded tires, (1) 10,000 gallon above ground petroleum storage tank and numerous discarded truck parts and other rubbish. Multiple empty and partially full 55-gallon drums were also discarded on the property, including numerous empty gallon and quart containers. An aerial picture of the site is included as Figure 2 at the end of this summary report.

The NYSDEC is not aware of any comprehensive environmental investigation previously completed at the site. The potential liability associated with suspected petroleum contamination, and possibly other chemical contamination, is severely limiting the sites development potential.

This brownfield site characterization investigation identifies environmental impacts associated with past operations to aide in the assessment of potential environmental liability.

3.0 SUMMARY OF WORK COMPLETED

Site Inspection

The site was visually inspected to identify potential Areas of Concern (AOC). Potential AOC identified include 20 abandoned tractor trailers (including contents), drums containing liquid waste located inside the maintenance building, a 'drum disposal area' consisting of multiple empty and partially full drums scattered on the ground behind the maintenance building, a 10,000 gallon above ground storage tank (diesel fuel) and maintenance building floor drains. Also, a 550 gallon above ground heating oil storage tank with an estimated 250 gallons of oil is located inside the maintenance building. The heating oil storage tank was in good condition with little evidence of spillage, therefore, the tank and heating oil was left in place. Finally, the eastern property boundary abuts the Celoron Rod and Gun Club which is an active shooting range. Therefore, potential lead contamination was investigated along the eastern property boundary.

Abandoned Tractor Trailer Inventory

Empire GeoServices, Inc. inventoried the contents of the 20 abandoned tractor trailers that currently exist on-site. The purpose of the inventory was to determine if the contents of the trailers posed a significant environmental threat and determine the nature of solid waste contained in the trailers. In general the trailers contained solid waste including used tires, wood (pallets, furniture, crates), paint cans and miscellaneous debris which do present an immediate environmental concern. A list of materials contained in each trailer is presented in Section VI of the Empire GeoServices Report included on disc at the end of this Summary Report.

Drum Removal

Numerous empty, partially full and full 55-gallon drums containing waste oil, antifreeze and solvents were located inside the maintenance building. Empty and partially full drums containing what appeared to be rainwater mixed with residual oil were scattered on the ground north of the maintenance building in the 'drum disposal area'. The condition of the drums ranged from poor to good.

The presence of the drummed waste was considered to be a significant environmental concern and therefore, all drums were staged inside the maintenance building, categorized by

waste type (i.e. empty drums, waste oil, oil water mixture; oil water mixture with solvent odors and solvent), consolidated, sampled, over packed if necessary and disposed. On February 19, 2009, approximately 740 gallons of drummed liquid waste were removed from the site by Tonawanda Tank Transport. Smaller containers of chemicals located within the maintenance shop were not disposed as part of the investigation. A list of waste type contained in each drum is presented in Section VI of the Empire GeoServices report. Laboratory sheets for samples of liquid waste collected from drums is included in Attachment D of the Empire GeoServices report.

10,000 Gallon Above Ground Storage Tank Inspection

The 10,000 gallon steel above ground diesel fuel storage tank and associated secondary containment structure, pump dispenser and concrete load out pad were inspected for signs of spillage/leakage and disrepair. The tank and secondary containment structure appeared to be in good condition with no visible sign of leakage. The pump dispenser is not functional and the concrete load out pad was in good condition. The drain for the pad includes a double contained PVC pipe which flows down hill into the secondary containment structure around the tank. The drain pipe is broken and lying on the ground where it entered the secondary containment structure. No visible signs of contamination were observed in the vicinity of the tank or loadout pad. Approximately 9-inches of fluid remain in the bottom of the tank including 5-inches of an oily sludge and 4-inches of water. This fluid was NOT removed from the tank.

Maintenance Building Floor Drains

The maintenance building included (2) 10 to 15 foot long 'zipper' drains stained with oil and one circular drain, which at the time of inspection, was stuffed with rags and covered with floor sweepings. The circular drain discharges through a 4-inch PVC pipe which exists the south west corner of the building. Based on limited excavation, it is believed the pipe eventually ties into a sanitary manhole just beyond the northeast corner of the property, south of the railroad tracks. The southern most 'zipper' drain appears to tie into the northern 'zipper' drain. The discharge point for these drains was not confirmed.

Drum Disposal Area

Surface soil staining was identified in and around the 'drum disposal area' located on the ground north of the maintenance building. The staining appeared very surficial as the staining was no longer visible following minor scratching of the surface soils. Surface and subsurface soil in this area were further investigated during the subsurface investigation. All drums were removed during the drum removal work.

Subsurface Investigation

The subsurface investigation completed by Empire GeoServices included (16) direct push borings, (5) augered borings, (20) test pits and the installation of (3) groundwater monitoring wells. The location of borings and test pits were chosen based upon suspected areas of concern, as well as randomly distributed across the site. Limited subsurface investigation was completed west of the warehouse building since this area is essentially a gravel parking area with no sign of significant contamination. A survey drawing identifying the location of borings, test pits, monitoring wells and surface sampling locations is provided in the Empire GeoServices' report included on disc at the end of this Summary Report. For convenience, a hard copy of the survey drawing has been included at the end this summary report.

Subsurface soils were sampled continuously using a Photo Ionization Detector (PID) to screen for the presence of Volatile Organic Compounds (VOCs). Discrete grab soil samples were collected for laboratory analysis based upon observed areas of concern, as well as randomly distributed across the site. A total of (6) subsurface and (11) surface samples were submitted for laboratory testing. Specific contaminant analysis included (5) samples for Target Compound List (TCL) Volatile Organic Compounds (VOCs), (7) samples for TCL Semi-Volatile Organic Compounds (SVOCs), (6) samples for Total Analyte List (TAL) metals, (5) samples for Resource Conservation and Recovery Act (RCRA) eight metals, (4) samples for lead only and (3) samples for Poly Chlorinated Biphenyls (PCBs).

Five augered borings were completed at the site in an attempt to install four monitoring wells to assess groundwater quality up gradient and down gradient of the site and to determine groundwater flow direction. Two borings installed at the presumed up gradient end of the site (i.e. south end) were dry to auger refusal at 28 and 32.5 feet below ground surface (bgs). Therefore, no wells were installed in these borings. Three wells were installed in borings near the presumed down gradient location of the site, however, only MW-2 and MW-4 produced sufficient water to develop and sample the wells. No additional wells were installed due to limited soil contamination found on site and lack of water in the overburden soil.

4.0 INVESTIGATION RESULTS

Soil Screening

Subsurface conditions typically encountered at the site consisted of 0 to 18 feet of sand fill overlying native sands and gravel. The northern and eastern extent of the fill material are identified by an abrupt break in grade between the maintenance build and the northern and eastern property boundary. The fill tapers off to the west toward the distribution building and ties into the road to the south. Bedrock was believed to be encountered (as determined by auger refusal) in several borings at 28 to 32.5 feet bgs.

In general, minimal contamination was identified visually, or by odor, at the locations of the borings and test pits. A slight diesel odor was noted in TP-19 which was located at the western end of the 10,000 gallon diesel fuel storage tank. No staining or other indication of contamination was noted (VOC and SVOC analytical results @ TP-19 were well below unrestricted use soil criteria). Also, debris (wood fragments, glass, plastic bottles, wire) was encountered at 10 to 13 feet bgs in TP-5. The debris was distributed within the sand fill material and did not appear to be associate with significant dumping of solid waste. Although some debris was encountered in TP-6 and TP-7, both located immediately adjacent to TP-5, no other significant subsurface waste was encountered on-site (VOC, SVOC, metals and PCB analytical results at TP-5 (11' bgs) did not identify chemical contamination in the soil).

PID measurements collected continuously from boring samples, and randomly in each test pit, were at or slightly above background concentrations. This indicates little or no VOC contamination in screened soils.

Boring, test pit and monitoring well installation logs documenting soil lithology and PID test results are included in Attachments B and D of the Empire GeoServices' report included on disc at the end of this Summary Report.

Analytical Data - Soil

The analytical data compiled on soil samples collected from the site were compared to the site use Soil Cleanup Objectives (SCOs) contained in 6 NYCRR Part 375 regulations. This comparison was made to provide a point of reference relative to the level of contamination existing on-site. It must be understood that these SCOs apply to sites participating in a specific NYSDEC remedial program which require additional protections and controls (i.e. environmental easements, site management plans, etc) that do not apply to this site, and therefore, comparison is for reference only. The analytical data collected at the site is summarized and compared to 'unrestricted SCOs' and 'commercial use SCOs' in Tables 1 through 4 in the Appendices of the Empire GeoServices' report. For convenience, hard copies of the analytical data summary tables are also attached at the end of this Summary Report. Laboratory data sheets for soil samples are included in Attachment D of the Empire GeoServices report.

VOCs were analyzed on (5) subsurface samples collected on-site in the location of the debris encountered at TP-5 (TP-5 and B-16), below the 'drum disposal' area (TP-12), the soil with diesel fuel odor adjacent to the storage tank (TP-19) and in an area of slightly varying sand fill characteristics (TP-11). 2-Butanone (also known as methyl ethyl ketone), acetone and methylene chloride were the only VOCs detected. No VOC exceeded commercial use SCOs. Acetone slightly exceeded the unrestricted use SCO of 50 ppb at TP-5 (60 ppb) and B-16 (67 ppb). No other VOC compound exceeded the unrestricted use SCOs.

SVOCs were analyzed on (5) subsurface samples and (2) surface samples. The locations of the (5) subsurface samples corresponded to the location of the debris encountered at TP-5 (TP-5 and B-16), soil with diesel fuel odor adjacent to storage tank (TP-19) and in two areas of slightly varying sand fill characteristics (TP-11, TP-8). Surface samples were collected from the 'drum disposal' area (SS-4(TP-12)) and randomly from SS-1(TP-5). SVOCs were detected at TP-5, B-16 and SS-4(TP-12), however, all concentrations were below the unrestricted use SCOs. TP-11 was the only sample which had compounds that exceeded the unrestricted SCOs for the following compounds: benzo(a)pyrene (SCO 1,000 ppb; Estimated Concentration 1,500 ppb), benzo(a)pyrene (SCO 1,000 ppb, Est. Conc. 1,600 ppb), Benzo(b)fluoranthene (SCO 1,000 ppb; Est. Conc. 1,800 ppb), Chrysene (SCO1,000 ppb; Est. Conc. 1,400 ppb) and Indeno(1,2,3-cd)pyrene (SCO 500 ppb; Est. Conc. 1,000 ppb). Benzo(a)pyrene was the only compound to also exceed the commercial use SCO at TP-11 (SCO 1,000 ppb; Est. Conc. 1,600 ppb).

PCBs were analyzed on (2) subsurface samples and (1) surface sample. Both subsurface samples were collected from the debris area encountered at TP-5 (TP-5 and B-16). The surface sample was collected from the 'drum disposal' area (SS-4(TP-12)). No PCBs were detected in TP-5 or SS-4(TP-12). PCBs detected at B-16 include Aroclor 1248 (5.8 ppb) and Aroclor 1254 (12 ppb) which fall below the unrestricted SCO of 100 ppb for total PCBs. It should be noted that no PCB compounds were detected in any of the liquid waste samples collected from drums.

Total Analyte List (TAL) metals were analyzed on (4) subsurface samples collected from the location of the debris encountered at TP-5 (TP-5 and B-16) and from two areas of slightly varying sand fill characteristics (TP-11, TP-8). Metals exceeding the unrestricted use SCOs were detected at TP-11 only, including arsenic (SCO 13 ppm; Conc. 14.2 ppm), lead (SCO 63 ppm; Conc. 293 ppm) and zinc (SCO 109 ppm; Conc. 243 ppm). No subsurface metal samples exceeded the commercial use SCOs.

TAL metals were analyzed in (2) surface samples including the 'drum disposal' area (SS-4(TP-12)) and randomly from SS-1(TP-5). Mercury is the only contaminant that slightly exceeded the unrestricted use SCO of 0.18 ppm at SS-1(TP-5) (Conc. 0.20 ppm). No metals exceeded the unrestricted use SCOs at SS-4(TP-12).

RCRA (8) metals were analyzed in (5) surface samples collected from SS-4, SS-5, SS-6, SS-7 and SS-8. Lead only was analyzed in (4) surface sample locations including SS-2, SS-3, SS-9 and SS-10. All (9) of these surface samples were located at or near the eastern property boundary to assess potential metals contamination due to the proximity of the adjacent shooting range. SS-4 was collected as a background sample east of the sand fill grade break but slightly west of eastern property boundary near the road where impacts from the shoot range were expected to be minimal. SS-4 was the only sample in the proximity of the eastern property boundary that did not exceed unrestricted use SCOs for lead. The unrestricted SCO for lead (63 ppm) was exceeded at SS-6 (939 ppm), SS-7 (707 ppm), SS-8 (105 ppm) and SS-10 (770 ppm). SS-6 also slightly exceeded the unrestricted SCO for arsenic (SCO 13 ppm, Conc. 13.1 ppm). The commercial SCO for lead (1,000 ppm) was exceeded at SS-2 (3,140 ppm), SS-3 (9,260 ppm), SS-5 (2,230 ppm) and SS-9 (3,100 ppm). SS-5 also exceed the commercial SCOs for

arsenic (SCO 16 ppm, Conc. 17 ppm), Barium (SCO 400 ppm, Conc. 547 ppm) and the unrestricted SCO for mercury (SCO 0.18 ppm, Conc. 1.5 ppm).

Analytical Data - Groundwater

Two groundwater monitoring wells (MW-2 and MW-4) were sampled on January 27, 2009 as part of the investigation. As previously discussed, additional attempts were made to install and sample overburden wells, however, insufficient water was encountered. On June 1, 2009, the Department resampled MW-2 for pesticides after it was determined the original analysis was not performed in accordance with accepted protocols. Laboratory data sheets for groundwater samples collected at the site are provided in Attachment D of the Empire GeoServices' report. Laboratory data sheets for the pesticide resample at MW-2 is included at the end of this summary report. The resampling was completed by the Department outside the scope of Empire Geoservices' work at the site.

MW-2 and MW-4 are located in the northeast portion of the site, presumably hydraulically down gradient (based upon site topography) of the drum disposal area and abandoned tractor trailer area. MW-2 was positioned as close to the eastern property boundary as access would allow in an attempt to intercept groundwater down gradient of the neighboring shooting range and lead contaminated soil.

MW-2 and MW-4 were sampled for VOCs, SVOCs, metals, PCBs and pesticides/herbicides. Groundwater concentrations were compared to the NYSDEC Division of Technical and Operational Guidance Series (1.1.1) 'Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations' for groundwater used as a drinking water supply. It should be noted that a municipal water supply provides potable water to the area.

All VOC, herbicide and PCB compounds were non-detect in both MW-2 and MW-4. Bis(2-ethylhexyl) phthalate was the only SVOC detected in MW-2 (5.8 ppb) and MW-4 (9.9 ppb). These concentrations slightly exceed the water quality standard of 5 ppb. Pesticides were non detect in MW-4. Heptachlor epoxide was the only pesticide detected in the MW-2 pesticide resample at a concentration (0.027 ppb) less than the state drinking water standard (0.03 ppb).

Multiple metals were detected in both wells, as is typical for groundwater. Sodium is the only metal which exceeded the water quality standard of 20 ppm in MW-2 (42 ppm) and MW-4 (70.3 ppm).

5.0 CONCLUSIONS

The following conclusions were drawn from the site characterization investigation completed at the Penn Empire Transportation Site.

- ♦ The site is currently inactive. Substantial solid waste has been abandoned outside of the buildings including approximately 20 abandoned tractor trailers and their contents, numerous tires, railroad ties, truck parts, etc. These materials must be managed according to local and state laws.
- ♦ Bulk quantities of liquid waste contained in drums, including waste oil, solvents, antifreeze, etc, have been removed from the site. Smaller containers of chemicals commonly used in automotive maintenance remain inside the maintenance building. Additional solid waste exists in the maintenance building.
- ♦ An estimated 250 gallons of heating oil remains in an above ground tank located in the maintenance building. Approximately 9-inches of sludge and water remains inside the 10,000 gallon above ground storage tank located near the south end of the site. Both tanks appear to be in good condition.
- ♦ A circular floor drain and two 'zipper drains' inside the maintenance building appear to be tied into a sanitary manhole just off the north east corner of the property. This connection must be verified to be in conformance with municipal and state laws.
- ♦ Buried debris (wood fragments, glass, plastic bottles, wire, etc) was encountered in TP-5, 10 to 13 feet bgs. The debris was scattered within the sand fill material and localized to a small area. The limited quantity of this material is not expected to be an environmental concern. No significant chemical contamination was documented in soil samples collected from this area.
- No grossly contaminated soil was observed during the subsurface investigation. Minor surface staining is visible on the ground in discrete locations especially were drums were placed outside. Surface soil samples in these areas did not identify significant chemical contamination.
- ♦ Analytical data identified limited chemical contamination of surface and subsurface soils in the central and western portions of the site, west of the sand fill grade break. Elevated concentrations of several SVOCs and slightly elevated concentrations of arsenic and lead were detected at TP-11, 5 feet bgs. These elevated compounds may be present due to slightly vary fill at this location including the presence of trace concrete and brick fragments, as well as some organic material. Low concentrations of acetone were detected in TP-5 and B-16 which are located in very close proximity to each other. No PCBs were detected.

- Analytical data identified significant lead contamination in surface soils near the eastern property boundary, east of the sand fill grade break. The maximum concentration of lead in surface soils was 9,260 ppm. It is possible the elevated lead in this area may be associated with the neighboring rod and gun club shooting range.
- ♦ Limited groundwater sampling occurred on-site due to the lack of overburden groundwater and limited soil contamination. Two wells were sampled at the north eastern portion of the site. The pesticide, heptachlor epoxide was9 detected in MW-2 below drinking water standards. Bis(2-ethylhexyl) phthalate was the only SVOC detected and concentrations slightly exceeded drinking water standards in both wells. Sodium is the only metal that exceeded the drink water standard in both MW-2 and MW-4.

6.0 REDEVELOPMENT CONSIDERATIONS

The United Stated Environmental Protection Agency Targeted Site Assessment Grant is available to aide in assessment of potential environmental liability on brownfield sites, with the goal of promoting redevelopment of the property. The following provides a discussion of existing environmental impacts on the Penn Empire Transportation site and how these impacts relate to redevelopment of the property.

The most obvious environmental concern on the property is the quantity of solid waste that has been discarding outside of the two existing buildings. Approximately 20 tractor trailers filled with tires, office furniture, wood and general trash have been abandoned on the property. In addition, piles of tires, railroad ties and truck parts are scattered on the ground. The current condition of the site is in violation of solid waste regulations and this debris must be properly reused, recycled or disposed in accordance with local and state laws.

Minimal chemical contamination of surface and/or subsurface soil on the central and western portion of the site was identified during the investigation. Although several discrete areas of soil containing elevated concentrations of contaminants were identified in the central and western portion of the site, these concentrations were typically low. The elevated concentrations in these areas appear to have originated from variability within the sand fill material (presence of organic material, concrete/brick fragments, subsurface debris) previously brought on-site rather than contamination from use of the site as a truck maintenance and distribution terminal.

Elevated concentrations of lead in surface soils were detected along the eastern property boundary adjacent to the abutting shooting range property. It would be prudent to delineate the extent of lead contamination on the property and either remove or adequately cover the impacted soils. Measures to prevent recontamination of the property should be implemented.

Redevelopment of the property for commercial use may be reasonable and readily achievable provided existing solid waste is properly managed and lead contaminated soils along the eastern property boundary are properly remediated. In addition, it is recommend that the floor drain connection from the maintenance building to the manhole northeast of the property is verified to be in conformance with local and state laws.

FIGURES

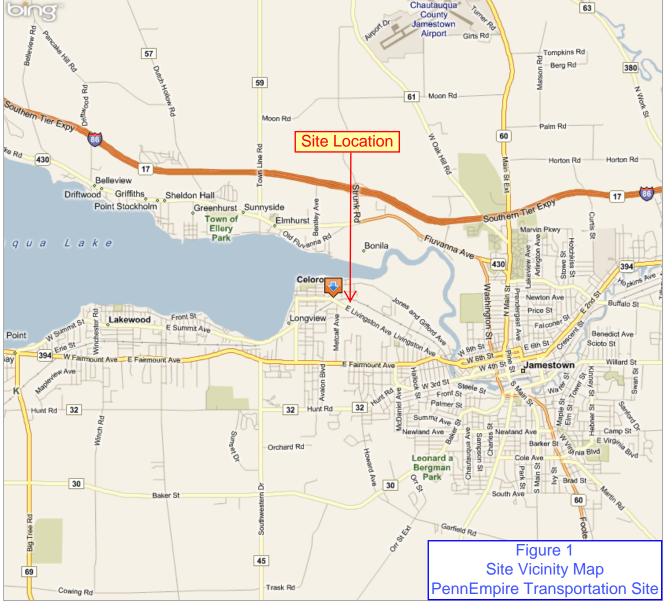
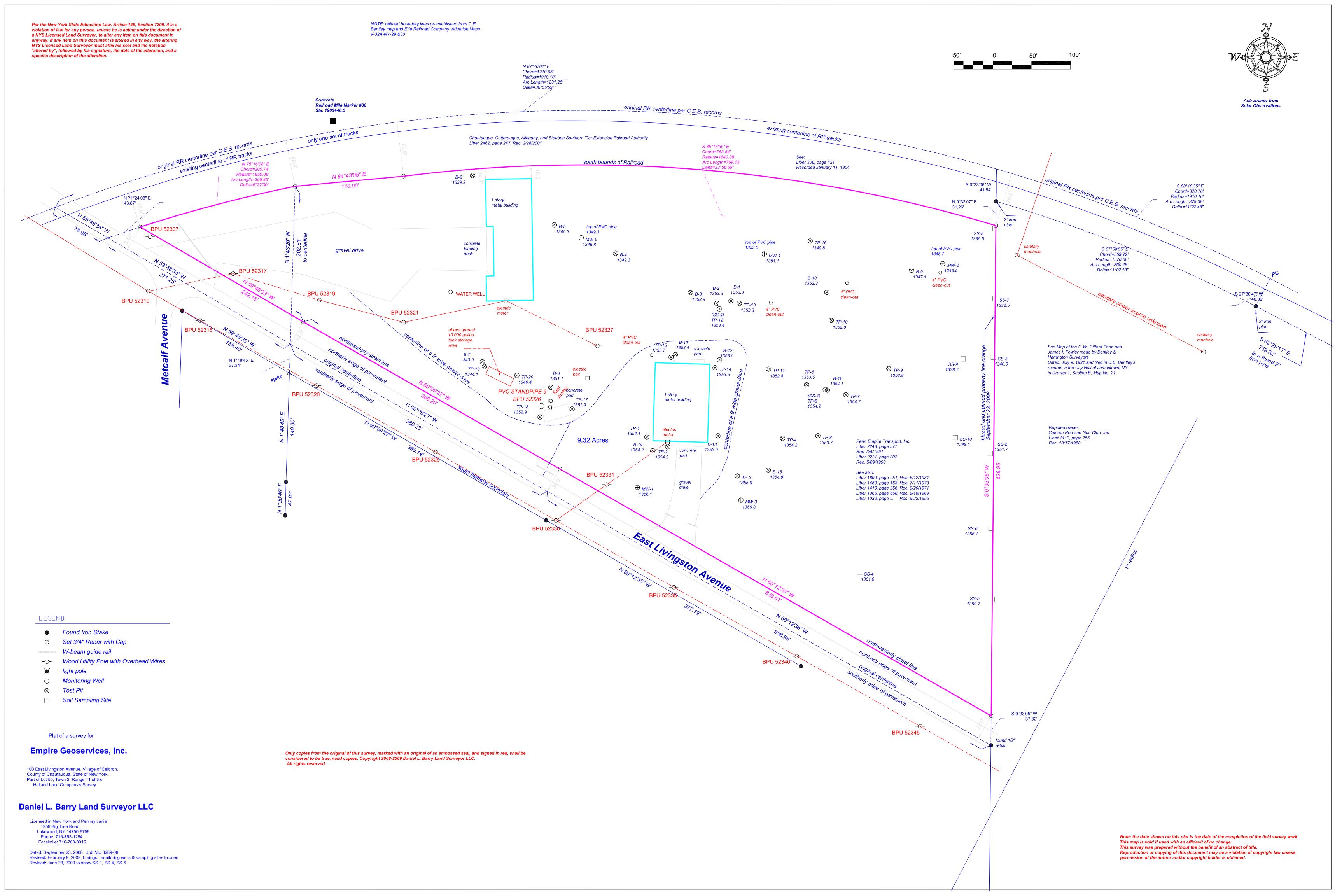


Figure 2: PennTransportation Aerial Map

Copyright 2002 Chautauqua County GIS 3 N. Erie St. Mayville, NY 14757



DISCLAIMER: This is a product of the Chautauqua County GIS Department. The data depicted here have been developed with extensive cooperation from other county departments, as well as other federal, state and local governments agencies. Chautauqua County expressly disclaims responsibility for damages or liability that may arise from the use of this map.

PROPRIETARY INFORMATION: Any resale of this information is prohibited, except in accordance with a licensing agreement.

×

Site Survey Drawing

Analytical Data Summary Tables

TABLE 1 PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRR	PART 375	LOCATIONS					
		Unrestricted	Commercial						
Analyte	Units	Use SCOs	RUSCOs	TP-5 @ 11'	TP-11 @ 5'	TP-12 @ 4'	TP-19 @ 3.5'	B-16	
2-Butanone	ug/kg	120	500,000	13 (J)	ND	ND	ND	10 (J)	
Acetone	ug/kg	50	500,000	60	20 (J)	ND	5 (J)	67 (B)	
Methylene Chloride	ug/kg	50	500,000	4 (J)	19	2 (J)	6	14 (B)	

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

NE- Not established.

(J)- Estimated value.

(B)- Analyte found in associated blank.

ND- Analyte analyzed for, but not detected in sample.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 2 PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRI	R PART 375		LOCATIONS						
		Unrestricted	Commerical								
Analyte	Units	Use	RUSCOs	TP-5 @ 11'	TP-11 @ 5'	TP-8 @ 2'	TP-19 @ 3.5'	B-16	SS-1 (TP-5)	SS-4 (TP-12)	
Anthracene	ug/kg	100,000	500,000	ND	380 (J)	ND	ND	49 (J)	ND	ND	
Benzo(a)anthracene	ug/kg	1,000	5,600	550 (J)	1,500 (J)	ND	ND	220 (J)	ND	360 (J)	
Benzo(a)pyrene	ug/kg	1,000	1,000	320 (J)	1,600 (J)	ND	ND	180 (J)	ND	260 (J)	
Benzo(b)fluoranthene	ug/kg	1,000	5,600	380 (J)	1,800 (J)	ND	ND	210 (J)	ND	240 (J)	
Benzo(ghi)perylene	ug/kg	100,000	500,000	ND	1,200 (J)	ND	ND	120 (J)	ND	ND	
Benzo(k)fluoranthene	ug/kg	800	56,000	190 (J)	770 (J)	ND	ND	110 (J)	ND	190 (J)	
Chrysene	ug/kg	1,000	56,000	350 (J)	1,400 (J)	ND	ND	190 (J)	ND	230 (J)	
Fluoranthene	ug/kg	100,000	500,000	1,000 (J)	2,600 (J)	ND	ND	520 (J)	ND	ND	
Indeno(1,2,3-cd)pyrene	ug/kg	500	5,600	ND	1,000 (J)	ND	ND	98 (J)	ND	ND	
Phenanthrene	ug/kg	100,000	500,000	890 (J)	2,000 (J)	ND	ND	330 (J)	ND	ND	
Pyrene	ug/kg	100,000	500,000	790 (J)	2,000 (J)	ND	ND	360 (J)	ND	280 (J)	

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

(J)- Estimated value.

ND- Analyte analyzed for, but not detected in sample.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 3A PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF METAL/INORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRI	R PART 375	LOCATIONS					
Analyte	Units	Unrestricted Use	Commerical RUSCOs	TP-5 @ 11'	TP-8 @ 2'	TP-11 @ 5'	B-16		
Aluminum - Total	mg/kg	NE	NE	12,100	11,700	8,340	11,200		
Arsenic - Total	mg/kg	13	16	10	8.7	14.2	8.0		
Barium - Total	mg/kg	350	400	288	68.4	129	192		
Beryllium - Total	mg/kg	7.2	590	0.81	0.38	0.37	0.47		
Cadmium - Total	mg/kg	2.5	9.3	0.58	0.26	1.0	0.4		
Calcium - Total	mg/kg	NE	NE	8,570	2,370	6,430	3,120		
Chromium - Total	mg/kg	30*	1,500*	16.7	11.4	14.2	13.5		
Cobalt - Total	mg/kg	NE	NE	8.0	7.0	6.4	5.7		
Copper - Total	mg/kg	50	270	36.0	16.8	42.2	17.4		
Iron - Total	mg/kg	NE	NE	21,200	18,500	25,200	18,900		
Lead - Total	mg/kg	63	1,000	45.0	15.6	293	46.0		
Magnesium - Total	mg/kg	NE	NE	2,830	2,620	2,420	2,100		
Manganese - Total	mg/kg	1,600	10,000	931	493	622	836		
Mercury - Total	mg/kg	0.18	2.8	0.085	0.037	0.086	0.12		
Nickel - Total	mg/kg	30	310	17.4	14.6	14.5	12.7		
Potassium - Total	mg/kg	NE	NE	1,310	714	958	598		
Vanadium - Total	mg/kg	NE	NE	21.2	17.3	12.8	19.9		
Zinc - Total	mg/kg	109	10,000	98.8	56.7	243	77.9		

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

*- Cleanup objective not established for chromium, total. Therefore, chromium, trivalent cleanup objective referenced.

ND- Analyte analyzed for, but not detected in sample.

ANP- Analysis not performed.

NE- Not established.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 3B PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF METAL/INORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRE	R PART 375	LOCATIONS					
Analyte	Units	Unrestricted Use	Commerical RUSCOs	SS-1 (TP-5)	SS-4 (TP-12)	SS-2	SS-3	SS-4	
Aluminum - Total	mg/kg	NE	NE	8,730	7,780	ANP	ANP	ANP	
Arsenic - Total	mg/kg	13	16	8.9	9.0	ANP	ANP	13.0	
Barium - Total	mg/kg	350	400	90.4	65.6	ANP	ANP	50.2	
Beryllium - Total	mg/kg	7.2	590	0.34	0.34	ANP	ANP	ANP	
Cadmium - Total	mg/kg	2.5	9.3	0.40	0.34	ANP	ANP	ND	
Calcium - Total	mg/kg	NE	NE	4,900	11,200	ANP	ANP	ANP	
Chromium - Total	mg/kg	30*	1,500*	10.4	9.4	ANP	ANP	12.7	
Cobalt - Total	mg/kg	NE	NE	5.9	6.6	ANP	ANP	ANP	
Copper - Total	mg/kg	50	270	19.6	20.8	ANP	ANP	ANP	
Iron - Total	mg/kg	NE	NE	16,700	17,100	ANP	ANP	ANP	
Lead - Total	mg/kg	63	1,000	29.5	24.8	3140	9,260	55.1	
Magnesium - Total	mg/kg	NE	NE	2,620	5,870	ANP	ANP	ANP	
Manganese - Total	mg/kg	1,600	10,000	571	487	ANP	ANP	ANP	
Mercury - Total	mg/kg	0.18	2.8	0.20	ND	ANP	ANP	0.12	
Nickel - Total	mg/kg	30	310	14.0	15.3	ANP	ANP	ANP	
Potassium - Total	mg/kg	NE	NE	542	707	ANP	ANP	ANP	
Silver - Total	mg/kg	2	1,500	ND	ND	ANP	ANP	ND	
Vanadium - Total	mg/kg	NE	NE	13.9	11.1	ANP	ANP	ANP	
Zinc - Total	mg/kg	109	10,000	75.6	59.5	ANP	ANP	ANP	

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

*- Cleanup objective not established for chromium, total. Therefore, chromium, trivalent cleanup objective referenced.

ND- Analyte analyzed for, but not detected in sample.

ANP- Analysis not performed.

NE- Not established.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 3B PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF METAL/INORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

6 NYCRR PART 375					LOCATIONS						
Analyte	Units	Unrestricted Use	Commerical RUSCOs	SS-5	SS-6	SS-7	SS-8	SS-9	SS-10		
Aluminum - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP		
Arsenic - Total	mg/kg	13	16	17.0	13.1	9.8	9.4	ANP	ANP		
Barium - Total	mg/kg	350	400	547	152	184	107	ANP	ANP		
Beryllium - Total	mg/kg	7.2	590	ANP	ANP	ANP	ANP	ANP	ANP		
Cadmium - Total	mg/kg	2.5	9.3	7.3	0.33	0.34	0.37	ANP	ANP		
Calcium - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP		
Chromium - Total	mg/kg	30*	1,500*	27.7	13.4	11.0	10.1	ANP	ANP		
Cobalt - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP		
Copper - Total	mg/kg	50	270	ANP	ANP	ANP	ANP	ANP	ANP		
Iron - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP		
Lead - Total	mg/kg	63	1,000	2,230	939	707	105	3,100	770		
Magnesium - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP		
Manganese - Total	mg/kg	1,600	10,000	ANP	ANP	ANP	ANP	ANP	ANP		
Mercury - Total	mg/kg	0.18	2.8	1.5	0.10	0.085	0.13	ANP	ANP		
Nickel - Total	mg/kg	30	310	ANP	ANP	ANP	ANP	ANP	ANP		
Potassium - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP		
Silver - Total	mg/kg	2	1,500	1.4	ND	ND	ND	ANP	ANP		
Vanadium - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP		
Zinc - Total	mg/kg	109	10,000	ANP	ANP	ANP	ANP	ANP	ANP		

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

*- Cleanup objective not established for chromium, total. Therefore, chromium, trivalent cleanup objective referenced.

ND- Analyte analyzed for, but not detected in sample.

ANP- Analysis not performed.

NE- Not established.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 4 PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF METAL/INORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

			LOCA	TIONS
Analyte	Units	Groundwater Quality Standards	MW-2	MW-4
Aluminum	mg/l	0.1*	3.40	5.85
Arsenic	mg/l	0.25	ND	0.00796 (J)
Barium	mg/l	1	0.545	0.386
Calcium	mg/l	NS	134	161
Chromium	mg/l	0.5	0.00381 (J)	0.00716
Cobalt	mg/l	NS	0.00189 (J)	0,00512
Copper	mg/l	0.2	0.0331	0.0268
Iron	mg/l	0.3	4.13 (B1)	8.92 (B1)
Lead	mg/l	0.25	0.00501	0.00882
Magnesium	mg/l	NS	22.1	33.7
Manganese	mg/l	0.3	0.186	0.370
Nickel	mg/l	0.1	0.00558 (J)	0.00930 (J)
Potassium	mg/l	NS	2.77	6.14
Sodium	mg/l	20	42.0	70.3
Vanadium	mg/l	NS	0.00536	0.00848
Zinc	mg/l	NS	0.0753	0.0562

Notes

Groundwater quality standards presented in New York State Department of Environmental Conservation Part 703 Regulations: Surface Water and Groundwater Effluent Limitations.

ND- Analyte analyzed for, but not detected in sample.

NS- No standard provided.

- J- Concentrations are estimated.
- B1- Analyte was detected in associated laboratory method blank.

Bold concentration equals or exceeds groundwater quality standards.

^{*-} Ionic aluminum groundwater quality standard.

Laboratory Data Pesticide Resample @ MW-2

Analytical Report

Work Order: RSF0026

Project Description

NYSDEC Spills - Penn Empire Site: Site #907034

For:

Chad Staniszewski

New York State D.E.C. - Buffalo, NY

270 Michigan Avenue Buffalo, NY 14203

8---

Brian Fischer

Project Manager

Brian.Fischer@testamericainc.com

Thursday, June 11, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSF0026

Received:

06/01/09

Reported:

06/11/09 15:19

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP, SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA, CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Work Order: RSF0026

Received:

06/01/09

Reported:

06/11/09 15:19

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

NR

Work Order: RSF0026

Received:

06/01/09

Reported:

06/11/09 15:19

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

DATA QUALIFIERS AND DEFINITIONS

J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

Any inclusion of NR indicates that the project specific requirements do not require reporting to method detection limit (MDL)

Work Order: RSF0026

Received:

06/01/09

Reported: 06/11/09 15:19

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Executive	Summary -	Detections
-----------	-----------	------------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSF0026-0	1 (MW-2 - Wate	or)			Samı	pled: 06/	01/09 11:45	Recv	/d: 06/01/09	14:00
Organochlorine Pestic	cides by EPA N	lethod 8081A								
Heptachlor epoxide	0.027	J	0.047	0.0050	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A

Work Order: RSF0026

Received:

06/01/09

Reported:

06/11/09 15:19

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Sample Summary

Sample Identification	100	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
MW-2	1	RSF0026-01	Water	06/01/09 11:45	06/01/09 14:00	

Work Order: RSF0026

Received:

06/01/09

Reported:

06/11/09 15:19

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Analy	ytical	Re	port

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RSF0026-01 (MW-2 - Water)					Samı	oled: 06	/01/09 11:45		vd: 06/01/0		
Organochlorine Pesticie	des by EPA N	Method 8081/	An and		in ilouwy)						
4.4'-DDD	ND		0.047	0.016	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
4.4'-DDE	ND		0.047	0.011	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
4,4'-DDT	ND		0.047	0.010	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Aldrin	ND		0.047	0.0063	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
alpha-BHC	ND		0.047	0.0063	ug/L.	1.00	06/03/09 14:31	DGB	9F01122	8081A	
alpha-Chlordane	ND		0.047	0.014	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
beta-BHC	ND		0.047	0.024	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
delta-BHC	ND		0.047	0.0096	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Dieldrin	ND		0.047	0.018	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Endosulfan I	ND		0.047	0.010	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Endosulfan II	ND		0.047	0.011	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Endosulfan sulfate	ND	410	0.047	0.015	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Endrin	ND		0.047	0.013	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Endrin aldehyde	ND		0.047	0.015	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Endrin ketone	ND		0.047	0.011	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
gamma-BHC (Lindane)	ND		0.047	0.0057	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
gamma-Chlordane	ND		0.047	0.010	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Heptachlor	ND		0.047	0.0081	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Heptachlor epoxide	0.027	J	0.047	0.0050	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Methoxychlor	ND		0.047	0.013	ug/L	1.00	06/03/09 14:31	DGB	9F01122	8081A	
Toxaphene	ND		0.47	0.11	ug/L	1.00	06/03/09 14:31	DGB	9F01122 ·	8081A	
Decachlorobiphenyl	46 %		Surr Limits:	(15-139%)			06/03/09 14:31	DGB	9F01122	8081A	
Tetrachloro-m-xylene	51 %		Surr Limits:	(30-139%)			06/03/09 14:31	DGB	9F01122	8081A	

Work Order: RSF0026

Received:

06/01/09

Reported: 06/11/09 15:19

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

SAMPLE EXTRACTION DATA

			Wt/Vol		Extract			Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
Organochlorine Pesticides	by EPA Method 8	081A	11.	12000		= +/4		HETT	
8081A	9F01122	RSF0026-01	1,055.00	mL	10.00	mL	06/02/09 08:00	KB	3510C GC
	EN								
ř	12.05					101			
	15.34								
	17 04								
		TO LOUIS TO F							
		ENGINE SOIT							
			- Elga						
				•					
	OF " 10 16.4"				1				

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901) Client		Project	Man	anor	_						Щ.	_		ti.	_	Da	te	_	_		-	Chai	n of Custody Number
NYSDEC.			Chad Staniszer									6/1/09						297639					
Address	7/15/1			Chad Staniszew. e Number (Area Code)/Fax Number					<i>U</i> 3.	0.0			A 200	Lab Number .						, ,			
and Michigan Ave			(716) 85					1-7220														Pag	re of
City State Zip	Code	Site Co	ontact			Lab Contact						Analysis (Attach list if more space is needed)											
	4203	C.51	C.Sto niszewski.					Brian Fischer					3	T	T					П			1
Project Name and Location (State)	T. T	Carner	way	DIII NUI	nper						-3			ľ						FI.	Special Instructions/		
Penn Empire Transpo Contract/Purchase Order Buote No.	rigitor				-		-						1						=			1	Conditions of Receipt
			. 0		trix		Containers & Preservatives				3			Н									
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	*	Aqueous	Sod		Unpres.	H2SO4	ED H	NaOH	ZnAc/		8081 (Bastine										
- MW-2	6/1/09.	1145		X			P						X										
												1	1.			,						: 1	
						П																	
									1		1	Ė						1					The same
		2			+		-	+	+	-	+		++	+		H	+	+	·		+	+	
			Н		+	Н		+	-	1	-	1		+	+		+	+				+	
		-																					
															M.	1							
	I HAVE			11-11				1		T										1			
	11-11-11	127			+		1	+	+	+		+					1	+	+			1	The Market State
91 - 2 - 12 - 12 - 1		7-1		-	+	+	-	-	+	+	-	-		+	+		-	+	+			-	FC
	_==	-17			1			1	1	+			1						-		-	1	
	10.1															1							
	A COLUMN			V	Ų.	П							6		T	1			T				
Possible Hazard Identification			S	ample	Dispo:	sal	-		_	_		-	100	T B		-	•	. 14	foor	nav h	928	esse	d if samples are retained
	Poison B	Unknow	, [Retu	rn To	Client		Dis	A Large Services				Archive	For	-		Month:	s lo	nger l	han I	mon	th) .	
Turn Around Time Required :		(0)		11-	1.		1	OC R	equir	emer	nts (S	pecif	y)		,								
24 Hours 48 Hours 7 Days 14 Da	ays 21 Day	Dale	her_I	UU	Timo		-	1. Red	coive	de	1		1	-	1-1		-	-	-				Date / / Time
Thord Steers Cu		6	111	191	2:1	no.		,, ,,,,,,,	/	1/	11.		1	Ti	K	77	-B	15	67	97	1		06/01/09 1400
2. Relinquished By		Date		41	Time	V ge	721	2. Red	ceive	dy,				39	0	-6		act.	41	y	بل		Date Time
3. Relinquished By		Date	Ī		Time			3. Re	ceive	d By		T						-				10	Date Time
Comments			-	-	-	-					-			,	116	-	-	_			_		1
													6	1. (10			SAY	ne	0	m	1.	w/lot
DISTRIBUTION: WHITE - Returned to Client with Report:	CANARY - Stays	with the Sam	iple:	PINK -	Field	Сору		14			100							- FUEL	10	-	-		

Empire GeoService's

Subsurface Investigation and Site Activities Report

dated July 9, 2009

(On Disc)

A SUBSIDIARY OF SJB SERVICES, INC.

July 9, 2009

New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203-2999

Attention:

Mr. Chad Staniszewski, Environmental Engineer II

Reference:

Subsurface Investigation and Site Activity Report

Former Penn Empire Transportation Facility

100 East Livingston Avenue

Celoron, New York

NYSDEC Site Number: 907034

Dear Mr. Staniszewski:

As per the request and authorization of the New York State Department of Environmental Conservation (NYSDEC), Empire GeoServices, Inc. (Empire) recently completed a subsurface investigation and performed additional site activities at the former Penn Empire Transportation facility located at 100 East Livingston Avenue in the Village of Celoron, New York. Field work for the project was initiated in July 2008 and was finalized in July 2009. The following report summarizes the work completed; subsurface conditions encountered and associated observations; analytical data; and recommendations, if warranted.

I. INTRODUCTION

The project site is located at the former Penn Empire Transportation facility at 100 East Livingston Avenue in the Village of Celoron. A site location map is presented as Figure No. 1 in Attachment A. The facility is currently vacant.

The purpose of the investigation was to assess impacts to site soil and groundwater quality, if any, from previous use as a commercial trucking facility. In addition, NYSDEC directed Empire to inspect the abandoned tractor trailers' contents and to consolidate and arrange offsite disposal of drummed waste.

II. SUBSURFACE INVESTIGATION

Empire's subsurface investigation included the advancement of 16 direct push borings, five augered test borings and the installation of three monitoring wells, and the excavation of 20 test pits. All subsurface activities were completed by Empire's affiliate, SJB Services, Inc., under the direction of an Empire environmental geologist or an environmental engineer. At each location, the onsite geologist/engineer visually classified the subsurface soils, screened the soils with a photoionization detector (PID) for the presence of volatile organic compounds (VOCs), and prepared boring logs indicating the soil types

CORPORATE/
BUFFALO OFFICE

5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

ALBANY OFFICE
PO Box 2199
Ballston Spa, NY 12020

5 Knabner Road Mechanicville, NY 12118 Phone: (518) 899-7491 (518) 899-7496

□ CORTLAND OFFICE

60 Miller Street Cortland, NY 13045 Phone: (607) 758-7182 Fax: (607) 758-7188

□ ROCHESTER OFFICE

535 Summit Point Drive Henrietta, NY 14467 Phone: (585) 359-2730 Fax: (585) 359-9668

MEMBER

encountered, indications of potential contamination, and other pertinent observations and information. The locations of the borings, wells, and test pits are illustrated on the site survey drawing in Attachment A.

In general, the subsurface conditions encountered at the various locations consisted of sand fills overlying native sands and gravels. The vertical extent of the fill materials ranged from zero to approximately 18 feet below grade, with an average thickness of approximately 6 to 8 feet.

Direct Push Borings: The 16 direct push borings, ranging in depths from 0.5 to 20.0 feet, were completed on September 9 and 10, 2008 utilizing a truck mounted Simco 2400 SK-1 direct push unit. The soil sampling was completed in general accordance with *ASTM D-6282; Standard Guide for Direct Push Soil Sampling for Environmental Site Characterizations.* At each location, continuous soil sampling was performed from ground surface to the termination depth using the Geoprobe[®] Macro-Core (MC) Soil Sampling System. The MC soil sampler permits the collection of soil samples 1.5 inches in diameter and 48 inches in length. The samplers are fitted with a removable cutting shoe and clear PVC liner. A new liner was installed prior to each sample collection to prevent cross-contamination between sampling intervals and boring locations. The direct push logs are presented in Attachment B, Subsurface Logs.

Test Pits: Twenty test pits were excavated onsite utilizing a rubber tire Ford New Holland 555 backhoe. The test pits were excavated during November 18 - 20, 2008 ranging in depths from 4.0 to 15.0 feet. At test pit location TP-5, and to a lesser degree at locations TP-6 and TP-7, miscellaneous debris such as wood fragments, glass, plastic bottles, and wire were encountered approximately 10 to 13 feet below grade. A slight diesel fuel odor was noted during excavation of test pit TP-19. Test pit logs are presented in Attachment B, Subsurface Logs.

Test Borings: The five test borings, designated MW-1, MW-2, MW-3, MW-4 and MW-5, were completed during December 10 - 12, 2008. The borings, ranging in depths from 20.0 to 32.0 feet, were advanced using a rubber tire CME-550X ATV drilling rig. Standard drilling techniques were employed to advance 4 ¼" inside diameter hollow stem augers through the overburden soils. Representative soil samples were obtained during the advancement of each boring by driving a 2 inch outside diameter (O.D.) split spoon sampler into the undisturbed soils beneath the augers, utilizing a 140 pound drop hammer freely falling 30 inches. Data regarding the compaction and consistency of the overburden soils are related to the penetration of the split spoon sampler, in accordance with the "Standard Penetration Test" (ASTM D-1586).

Individual test boring logs are presented in Attachment B, Subsurface Logs, along with a sheet entitled "General Information and Key to Subsurface Logs" explaining the symbols and terms used in their preparation.

Monitoring Wells: Monitoring wells were installed in borings MW-2, MW-4 and MW-5, since the presence of groundwater was noted at 20.0, 28.0 and 13.0 feet below grade, respectively. Groundwater was not encountered during the advancement of borings MW-1 and MW-3. The wells were constructed of two inch diameter Schedule 40 PVC, with 10 feet long, 0.01 inch slotted screen flush threaded to riser pipe. A filter pack consisting of Number 1 silica sand was placed around the well screen and extended 2.0 to 2.5 feet above the top of the well screen. A 1.5 to 2.5 foot bentonite clay seal was constructed above the sand pack. The remainder of the boring was backfilled with a cement-bentonite grout. A locking protective casing was installed at each monitoring well location to protect and secure the well. Individual monitoring well diagrams are presented in Attachment C, Monitoring Well Diagrams.

Monitoring wells MW-2 and MW-4 were developed on January 26, 2009. Water was not present in monitoring well MW-5. The wells were developed by repeated cycles of surging and purging using a 1.5 inch PVC bailer in the water column. Twenty gallons, approximately 10.0 well volumes, were removed from monitoring well MW-2. Ten well volumes or approximately 12.0 gallons were purged from monitoring well MW-4.

Surface Samples: Eleven surface soil samples were collected as part of this investigation. Samples SS-1(TP-5), SS-2, SS-3 and SS-4(TP-12) were collected during November 18 - 19, 2008. Samples were collected at locations SS-4 through SS-8 on December 12, 2008. Soil samples SS-9 and SS-10 were collected on January 24, 2009. At each location, the sample was collected from 0 to 6 inches below grade.

III. ENVIRONMENTAL SCREENING

Excavated and sampled soils were screened for volatile organic compounds (VOCs) using an lon Science PhoCheck 1000 Photoionization Detector (PID) equipped with a 10.6 eV lamp. The PID will detect, if present, the aggregate concentration of many VOCs at a practical threshold of approximately 1 to 2 parts per million (ppm). The soils were also inspected for evidence of environmental degradation (i.e. discoloration, staining, odors, etc.). Other than the occasional, slightly elevated PID measurements during the advancement of the direct push borings and a slight diesel odor noted during the excavation of TP-19, significant evidence of soil degradation was not observed during any of the subsurface activities. The results of the PID screenings and noted observations are presented on the subsurface logs in Attachment B.

IV. SAMPLE COLLECTION AND ANALYTICAL TESTING

The collected samples were placed into pre-cleaned appropriate glass containers, labeled with the date, time, location of the project, and placed in an iced cooler at approximately 4-degrees Celsius for transport via courier to TestAmerica Laboratories, Inc. (TestAmerica) in Amherst, New York. TestAmerica is a New York State Department of Health (NYSDOH) certified analytical testing laboratory. Chain-of-custody documentation accompanied the samples. Test America's analytical report is presented in Attachment D.

Test Borings: Soil samples for analytical testing were not collected from the test borings as part of this subsurface investigation.

Test Pits: Soil samples were collected from test pits TP-5, TP-8, TP-11, TP-12 and TP-19 for chemical analysis. Test pit locations and the corresponding sampling depths are summarized on the following table.

PENN EMPIRE TRANSPORTATION TEST PIT LOCATIONS AND SAMPLE COLLECTION DEPTHS					
TEST PIT LOCATIONS	SAMPLE COLLECTION DEPTH (FT)				
TP-5	11.0 (contained misc. debris)				
TP-8	2.0				
TP-11	5.0				
TP-12	4.0				
TP-19	3.5 (slight diesel fuel odor)				

Soil samples collected from TP-5, TP-11, TP-12 and TP-19 were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs). Samples collected from TP-5, TP-8, TP-11 and TP-19 were analyzed for TCL Semi-Volatile Organic Compounds (SVOCs). Samples collected from TP-5, TP-8 and TP-11 were analyzed for Target Analyte List (TAL) metals. Polychlorinated biphenyls (PCBs) testing was also completed on the sample recovered from TP-5.

Direct Push Borings: As directed by the NYSDEC, a soil sample was collected for chemical analysis at location B-16 from a depth interval of 4.0 to 8.0 feet. The sample was analyzed for TCL VOCs, TCL SVOCs, PCBs, and TAL metals.

Surface Samples: Soil samples SS-1(TP-5) and SS-4 (TP-12) were analyzed for TCL SVOCs, and TAL metals. Total lead analysis was completed on samples collected at locations SS-2, SS-3, SS-9 and SS-10. Surface soil samples collected from locations SS-4, SS-5, SS-6, SS-7, and SS-8 were analyzed for RCRA metals.

Monitoring Wells: Groundwater samples were collected from monitoring wells MW-2 and MW-4 on January 27, 2009. A minimum of five well volumes was purged from the wells prior to sampling. The collected samples were analyzed for TCL VOCs, TCL SVOCs, TAL metals, PCBs, pesticides, and herbicides.

V. LABORATORY ANALYTICAL RESULTS

The analytical results of the soil samples were compared to the New York State Department of Environmental Conservation (NYSDEC) Soil Cleanup Objectives (SCOs) for Unrestricted site use (6 NYCRR Subpart 375-6, Table 375-6.8(a)) and for Restricted Use Soil Cleanup Objectives (RUSCOs) - Commercial site use (6 NYCRR Subpart 375-6, Table 375-6.8(b)).

The analytical results of the groundwater samples were compared to New York State Department of Environmental Conservation (NYSDEC) Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations presented in 6NYCRR Part 703.

Test Pits

Volatile Organic Compounds: Methylene chloride and 2-butanone were detected at levels below the unrestricted SCOs for test pits TP-5, TP-11, TP-12 and TP-19. Acetone was detected at a concentration just above the unrestricted SCO in TP-5. Acetone was also detected at estimated concentrations well-below the unrestricted SCOs in TP-11 and TP-19. No other VOCs were detected above the method detection limit for the collected soil samples.

A summary of detected VOCs is presented on Table 1 of Attachment E.

Semi-Volatile Organic Compounds: Eleven SVOCs were detected in the collected samples. Benzo(a)pyrene was detected in TP-11 at an estimated concentration of 1,600 ppb, exceeding the Part 375 RUSCO of 1,000 ppb for Commercial site use. Benzo(a)anthracene, benzo(b)fluoranthene, chrysene, and indeno-(1,2,3-cd) pyrene were detected in TP-11 at estimated concentrations of 1,500 ppb, 1,800 ppb, 1,400 ppb, and 1,000 ppb, respectively, exceeding the Part 375 RUSCOs for Unrestricted site use of 1,000 ppb, 1,000 ppb, 1,000 ppb, and 500 ppb, respectively, but were well-below the RUSCOs for Commercial site use of 5,600 ppb, 5,600 ppb, 56,000 ppb, and 5,600 ppb, respectively.

A summary of the detected SVOCs is presented on Table 2 of Attachment E.

Metals: Eighteen metals were detected in the collected soil samples. None of the detections exceeded the Part 375 RUSCOs for Commercial site use. Arsenic, lead, and zinc were detected in TP-11 at concentrations of 14.2 ppm, 293 ppm, and 243 ppm, respectively. These concentrations exceeded the Part 375 SCOs for Unrestricted site use of 13 ppm, 63, ppm, and 109 ppm, respectively, but were below the RUSCOs for Commercial site use of 16 ppm, 1,000 ppm, and 10,000 ppm, respectively

A summary of detected metals is presented on Table 3A of Attachment E.

Polychlorinated Biphenlys: Polychlorinated biphenlys (PCBs) were not detected in the soil sample collected at TP-5. No other test pit samples were analyzed for PCBs.

Direct Push Borings

Volatile Organic Compounds: Acetone, methylene chloride and 2-butanone were detected in the soil sample collected at B-16. The detected levels of 2-butanone and methylene chloride were below the Unrestricted use SCOs. Acetone was detected in B-16 at 67 ppb, slightly exceeding the SCO of 50 ppb for Unrestricted site use. No other VOCs were detected.

A summary of the detected VOCs is presented on Table 1 of Attachment E.

Semi-Volatile Organic Compounds: None of the eleven estimated SVOC detections in B-16 exceeded the Part 375 RUSCOs for Commercial use or the SCOs for Unrestricted use.

A summary of detected SVOCs is presented on Table 2 of Attachment E.

Metals: None of the 18 detections of metals in B-16 exceeded the Part 375 RUSCOs for Commercial use or the SCOs for Unrestricted use.

A summary of detected inorganic/metal compounds is presented on Table 3A of Attachment E.

Polychlorinated Biphenlys: Aroclor 1248 and Aroclor 1254 were detected in B-16 at estimated concentrations of 5.7 ppb and 12 ppb, respectively, well below the Part 375 RUSCO for Commercial use of 1,000 ppb for total PCBs and the SCO for Unrestricted use of 100 ppb.

Surface Samples

Volatile Organic Compounds: Surface soil samples were not submitted for analysis for VOCs.

Semi-Volatile Organic Compounds: Surface soil samples collected from SS-1 (TP-5) and SS-4 (TP-12) were submitted for SVOC analysis. None of the six estimated detections of SVOCs in SS-4 (TP-12) exceeded the Part 375 RUSCOs for Commercial use or the SCO for Unrestricted use.

A summary of the detected SVOCs is presented on Table 2 of Attachment E.

Polychlorinated Biphenlys: PCBs were not detected in the surface soil sample collected at SS-4 (TP-12). No other surface soil samples were analyzed for PCBs.

Metals: Lead was detected in each of the eleven surface soil samples. Lead concentrations exceeding the Part 375 RUSCO for Commercial use of 1,000 ppm were detected in SS-2 (3,140 ppm), SS-3 (9,260 ppm), SS-5 (2,230 ppm), and SS-9 (3,100 ppm). Lead concentrations exceeding the Part 375 SCO for Unrestricted use of 63 ppm were detected in SS-6 (939 ppm), SS-7 (707 ppm), SS-8 (105 ppm), and SS-10 (770 ppm), but were less than the RUSCO for Commercial use of 1,000 ppm.

The surface soil samples collected at SS-1 (TP-5) and SS-5 had mercury concentrations of 0.2 ppm and 1.5 ppm respectively, which exceeded the Part 375 SCO for Unrestricted use of 0.18 ppm, but were less than the RUSCO for Commercial use of 2.8 ppm.

The detected arsenic concentration of 13 ppm in SS-4 is equal to the Part 375 SCO for Unrestricted site use, but is less than the Commercial use RUSCO of 16 ppm. The detected arsenic concentration of 17 ppm in SS-5 slightly exceeded the Part 375 RUSCO for Commercial use of 16 ppm. The detected arsenic concentration of 13.1 ppm in SS-6 slightly exceeded the SCO for Unrestricted use of 13 ppm, but was less than the RUSCO for Commercial use of 16 ppm.

The detected barium concentration of 547 ppm in SS-5 exceeded the Part 375 RUSCO for Commercial use of 400 ppm.

The detected cadmium concentration of 7.3 ppm at location SS-5 exceeded the Part 375 SCO for Unrestricted use of 2.5 ppm, but was less than the RUSCO for Commercial use of 9.3 ppm.

A summary of detected metals is presented on Table 3B of Attachment E.

Monitoring Wells

Volatile Organic Compounds: VOCs were not detected in the collected groundwater samples.

Semi-Volatile Organic Compounds: Bis(2-ethylhexyl)phthalate was detected at 5.8 and 9.9 parts per billion (ppb) for MW-2 and MW-4, respectively. These detections are slightly above the NYSDEC groundwater standard of 5 ppb. No other SVOCs were detected.

Metals: Sixteen metals were detected in the groundwater samples. However, only aluminum and sodium exceeded NYSDEC groundwater quality standards. Groundwater collected at MW-2 had detection values of 3.40 ppm and 42.0 ppm for aluminum and sodium, respectively. Aluminum and sodium were detected at 5.85 ppm and 70.3 ppm, respectively at MW-4. The quality standards for aluminum and sodium are 0.1 ppm and 20 ppm, respectively. It should be noted that an aluminum groundwater quality standard is not presented in 6NYCRR Part 703. Therefore the groundwater quality standard for aluminum - ionic was used.

A summary of metals detected in groundwater is presented on Table 4 of Attachment E.

Herbicides/Pesticides: Five herbicide/pesticide compounds were detected in the groundwater sample collected at MW-2 at estimated concentrations less than the method detection limits. Herbicide and pesticide compounds were not detected at MW-4.

Polychlorinated Biphenlys: PCBs were not detected in the collected groundwater samples.

VI. ADDITIONAL SITE ACTIVITIES

<u>Site Survey</u>: Empire subcontracted Daniel L. Barry Land Surveyor LLC of Lakewood, New York to complete a survey of the site. The first task was a survey of the property boundary and existing site features. The locations of all investigation sampling points were surveyed and added to the site drawing after investigation field work was completed. The surveyor's site drawing is included in Attachment A.

<u>Tractor Trailer Inspection</u>: Empire inspected and documented the contents of the 20 semi-trailers abandoned onsite. The purpose of the inspection was to identify items of potential environmental concern. During the inspection, Empire labeled the trailers in numerical order as the trailers were inspected. The findings of the inspection are summarized below.

Trailer No.	Contents
Trailer #1	Used tires
Trailer #2	Used tires
Trailer #3	Used tires
Trailer #4	Miscellaneous debris, paint cans and an empty barbecue propane tank
Trailer #5	Scrap wood, tires and hoses
Trailer #6	Scaffolding and prefabricated furniture
Trailer #7	Empty used fuel cans and furniture pieces
Trailer #8	Empty
Trailer #9	Empty
Trailer #10	Empty 55-gallon drum, 5-gallon pail of degreaser ½ full
Trailer #11	Scrap wood, office furniture
Trailer #12	Wood pallets
Trailer #13	Empty
Trailer #14	Empty
Trailer #15	A metal chair
Trailer #16	Wood pallets and crates
Trailer #17	Used tires
Trailer #18	Used tires
Trailer #19	Contents unknown, trailer locked
Trailer #20	Contents unknown, no access doors backed against loading dock

<u>Drum Inventory & Inspection</u>: Empire inventoried existing 55-gallon drums onsite in July 2008. The majority of the drums were located approximately 50 feet north of the former truck maintenance shop. However, drums were also located in semi-trailers and the maintenance shop. A few drums were scattered throughout the property. Empire labeled the drums in numerical sequence as they were inspected and the contents tentatively identified. The drums were generally categorized as empty, waste oil, oil water mixture, oil water mixture with solvent odor, and solvent. The findings of the inspection are summarized below. Unless stated, the drums were 55 gallons in capacity.

<u>Drum No.</u>	<u>Contents</u>
Drum #1	Empty located in Trailer #10
Drum #2	Oil water mix, less than 10 gallons
Drum #3	Empty and crushed
Drum #4	Empty

Drum #5 Empty, staining near drum bottom

Drum #6 Empty blue poly drum

Drum #7 Numerous holes in drum, approximately 25 gallons of oil water mix

Drum #8 ½ full of liquid, the drum is rusted and has holes in it some appear to be

bullet holes

Drum #9 Empty
Drum #10 Empty
Drum #11 Empty

Drum #12 Oil water mix, 1/3 full

Drum #13 Swollen
Drum #14 Empty
Drum #15 Empty
Drum #16 Empty
Drum #17 Empty
Drum #18 Oil water mix
Drum #19 Empty

Drum #20 Empty, labeled as anti-freeze Drum #21 Oil water mix, 25 gallons

Drum #22 Empty

Drum #23 Oil water mix, 40 gallons

Drum #24 Empty
Drum #25 Empty

Drum #26 Oil water mix, 10 gallons
Drum #27 Oil water mix, 25 gallons

Drum #28 Empty
Drum #29 Empty

Drum #30 10 gallons, liquid not identified
Drum #31 Oil water mix, 20 gallons
Drum #32 Empty 30 gallon drum
Drum #33 Empty 30 gallon drum
Drum #34 Empty 30 gallon drum
Drum #35 Empty 30 gallon drum

Drum #36 Empty 30 gallon drum, labeled as electrolytic nickel

Drum #37 Oil water mix, 10 gallons

Drum #38 Empty drum, labeled as 10W30 motor oil

Drum #39 Empty drum
Drum #40 Empty

Drum #41 10 Gallons, labeled as rv/marine anti-freeze

Drum #42 Less than 10 gallons, labeled as waste lubricant- solvent smell Labeled as waste oil lubricant methanol, solution gas/oil odor

Drum #44 20 Gallons, labeled as waste oil lubricant, methanol solution gas/oil odor

Drum #45 20 Gallons, labeled as waste lubricant oil- solvent odor

Drum #46 Empty, oil staining present on sides

Drum #47 Labeled as waste lube oil and paint thinner, oily odor present, contents

initially under pressure

Drum #48 55 Gallons, labeled as Pit-Pen Company Methanol

Drum #49 55 Gallons, labeled as waste lubricant

Drum #50 30 Gallons, oil water mixture

Drum #51 25 Gallons, oil water mixture with antifreeze odor Drum #52 30 Gallon drum ¾ full labeled as Kendall oil

Drum #53 30 Gallon drum solvent smell

Drum #54	55 Gallons, labeled "good anti-freeze"
Drum #55	55 Gallons, labeled as waste lubricant/mix, oil-solvent mixture
Drum #56	55 Gallons, solvent odor
Drum #57	25 Gallons, waste oil below solvent layer
Drum #58	25 Gallons, waste oil
Drum #59	Empty
Drum #60	10 Gallons, anti-freeze colored pink
Drum #61	Empty
Drum #62	Empty
Drum #63	Empty
Drum #64	Empty
Drum #65	Empty
Drum #66	Empty
Drum #67	Empty

On August 6, 2008, Empire staged the drums inside the former maintenance shop to prevent further deterioration of the drums and limit the possibility of impacting the site soils with chemical or petroleum contamination. The drums were grouped by their tentatively identified contents. Empire collected a composite sample from each drum grouping on October 22, 2008 for waste disposal purposes. Since the "oil water mixture" contained the largest number of drums not including empty drums, Empire collected 3 composite samples from this group. Grouping the drums according to content allowed them to be characterized with seven samples (one to three samples per group) rather than 30 samples (one sample for each drum). The samples were analyzed for Target Compound List (TCL) volatile organic compounds, TCL semi-volatile organic compounds, Target Analyte List metals, polychlorinated biphenyls, total petroleum hydrocarbons, pesticides, herbicides, pH, and flashpoint. Based on the analytical results, the drums were generally categorized for shipping purposes as waste flammable liquids or hazardous waste liquid.

On February 19, 2009, Tonawanda Tank Transport Service, Inc. (Tonawanda Tank) transported the drums to Petro-Chem Processing Group, a permitted facility, located in Detroit, Michigan. Nine drums required overpacking because their condition was not suitable for shipping. Approximately 740 gallons or 6,150 pounds of waste were transported to the designated facility. Waste manifest forms are included in Attachment F.

In addition to the aforementioned drums, Empire noted the following storage containers present in the former maintenance shop:

- 5 gallon plastic container of oil solvent mixture;
- > 5 gallon pail labeled as waste oil;
- ➤ 2 to 2.5 gallons of a unknown purple liquid having an odor similar to brake or transmission fluid in a 5 gallon pail;
- ➤ 10 15 foot long "zipper" drain present along the central floor area, apparently stained with an oil water mixture;
- Two, 200 gallon above ground empty storage tanks, and;
- A 550 gallon above ground heating oil storage tank with an estimated of 250-gallons oil present inside.

<u>Monitoring Well Decommissioning</u>: Empire's affiliate, SJB Services, Inc., decommissioned the three groundwater monitoring wells (MW-2, MW-4, and MW-5) on June 23, 2009. For each well, the protective casing was removed and attempts were made to pull and remove the two-

inch ID PVC well screen and riser pipe. If the PVC screen or riser pipe pulled apart, then the screen bottom plug was punched out so that the borehole could be grouted over its entire depth. All three boreholes were backfilled with a Portland cement/bentonite mix up to ground surface.

Aboveground Storage Tank: Empire opened one of the fittings in the top of the onsite aboveground storage tank (AST) that was formerly used for storing and dispensing diesel fuel. A bailer was lowered into the AST and retrieved. The contents of the bailer indicated that approximately nine inches of "fluid" are present at the bottom of the AST, including five inches of oily sludge and four inches of water. Empire closed the fitting after making the measurement.

Maintenance Building Floor Drains: The former onsite truck maintenance building contains two floor drains that appear to be connected to each other. Although the discharge point for these drains was not confirmed, it appears that they are likely connected to the existing sanitary sewer line that exists just east of the northeast corner of the site. This is based on the three "4" PVC clean-outs" that exist in a generally straight line between the former maintenance building and a sanitary sewer manhole, as seen on the site survey drawing in Attachment A.

VII. CONCLUSIONS

The laboratory data for the soil samples indicate that relatively few elements or compounds exceeded the Part 375 RUSCOs for Commercial site use, and the amount of any exceedance typically was insignificant. Therefore it appears that the site is suitable in its current condition for return to commercial use without remedial actions. Soil remediation would likely be needed to make the site suitable for Unrestricted use because several elements and compounds were detected above these SCOs. Appropriate health and safety guidelines should be considered for any future construction activities in areas that exhibited elevated levels of potential contaminants, particularly along the east property line where significant levels of lead where detected in surface soil samples.

A few elements and compounds were detected in the groundwater monitoring wells at concentrations slightly exceeding NYSDEC groundwater standards. However this is not considered to represent a significant environmental concern because the site is served by a municipal water supply.

IX. CLOSING

This report has been prepared for the exclusive use of the New York State Department of Environmental Conservation for the specific application to the subject site in accordance with generally accepted environmental practices. If you have any questions or provide further assistance, please contact our office at 716-649-8110.

Respectfully submitted,

EMPIRE GEO-SERVICES, INC.

Stephen J. Bochenek Engineering Geologist David R. Steiner Environmental Services Manager

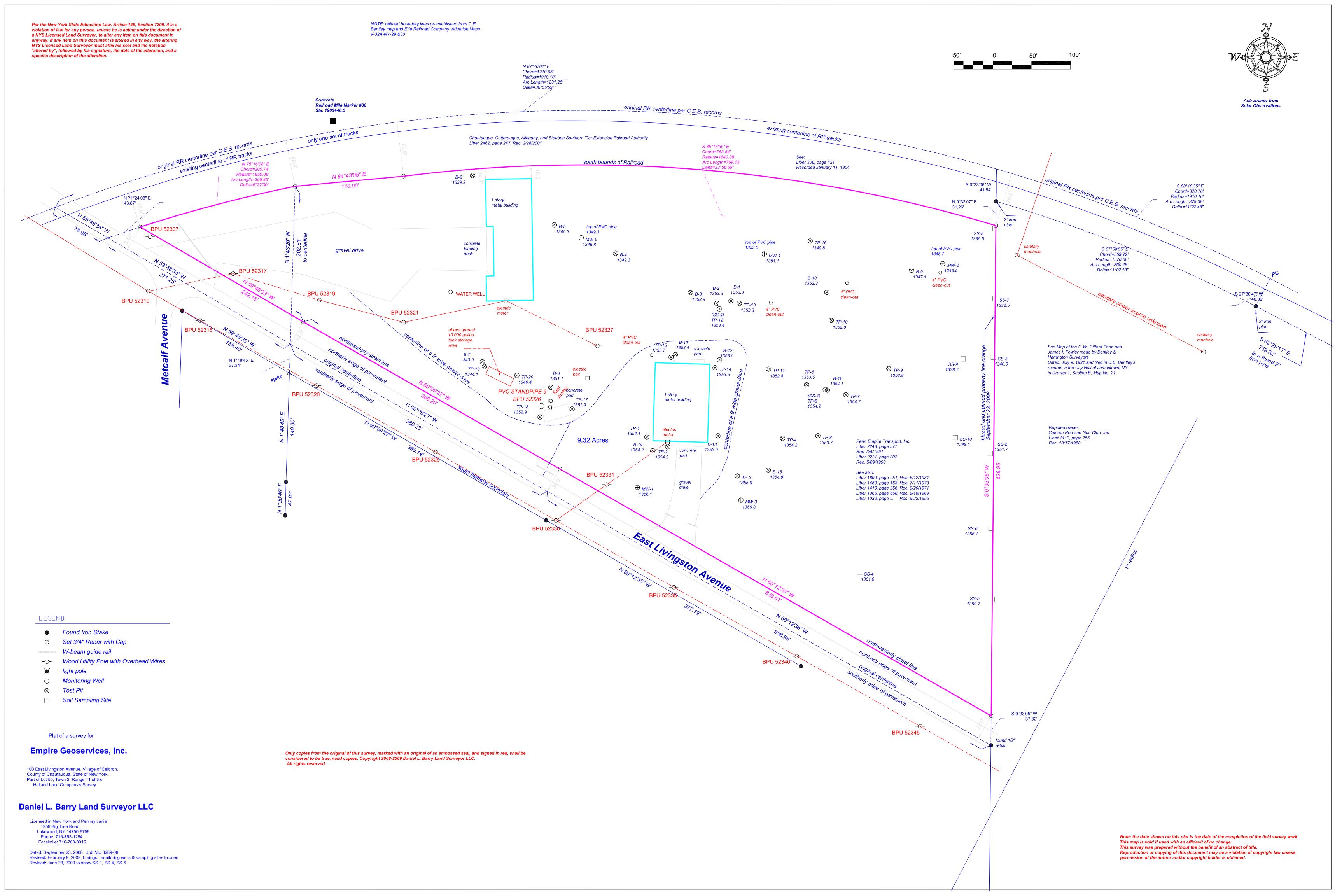
David L. Stein

ATTACHMENT A - FIGURES

ATTACHMENT B - SUBSURFACE LOGS

ATTACHMENT C - MONITORING WELL DIAGRAMS

ATTACHMENT D - TESTAMERICA'S ANALYTICAL REPORTS


ATTACHMENT E - ANALYTICAL SUMMARY TABLES

ATTACHMENT F - MANIFESTS

A.	TΤ	Ά	CI	НΙ	VI	FI	N.	Т	Α

Figures

ATT	Ά	Cŀ	HΝ	ΛEI	NT	В

Subsurface Logs

STARTED 9/9/2008 **FINISHED** 9/9/2008

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO.

SB-5

SHEET	-	1 OF 1		SERVICES, INC.	G.W. DEPTH See Notes	
PROJI	FCT·	PENN EMPIRE TRA	NSPORTATION SITE	LOCATION: 100 EAST L	VINGSTON AVE	
PROJ.		BEV-08-028	NOI ORTATION OFFE	CELERON, NEW YORK		
DEPTH	PID		SOIL OR ROCK		NOTES	
FT.	READING		CLASSIFICATION			
		Light Brown f-m SAN	ID and Silt, tr. gravel (moist,	FILL)	PID= Photoionization	
1	BG				Detector	
					BG= Background,	
2	3.7				measured in parts per	
	2.2				million.	
3					_	
					S-1: 0-4'	
4	BG				S-2: 4'-8'	
					S-3: 8'-12'	
5	BG					
6	BG					
7						
	2.8				_	
8	4.0					
		Contains little f. Grav	rel		_	
9					_	
					_	
10	BG				_	
					_	
11					_	
					_	
12					_	
13			Direct Push Complete a	t 12.0'	_	
			•		_	
14					_	
					_	
15					_	
					_	
16					_	
	I	L			ı	
DRILLER:	R. STEIN	NER DRILL RIG TY	'PE: SIMCO	CLASSIFIED BY:	GEOLOGIST	
METHOD O	F INVESTIG	ATION: ASTM 6282 - I	DIRECT PUSH SAMPLING			

 STARTED
 9/9/2008

 FINISHED
 9/9/2008

 SHEET
 1 OF 1

METHOD OF INVESTIGATION:

ASTM 6282 - DIRECT PUSH SAMPLING

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV G.W. DEPTH SB-1
See Notes

PROJECT: PENN EMPIRE TRANSPORTATION SITE LOCATION: 100 EAST LIVINGSTON AVE.

PROJ.	. NO.:	BEV-08-028 CELORON, N	IEW YORK
DEPTH	PID	SOIL OR ROCK	NOTES
FT.	READING	CLASSIFICATION	
1			
		Direct Pushed Terminated at 6" Due to Refusal	No Recovery
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
			_
12	1		
			_
13	1		
14	1		
			_
15	1		
	1		_
16	1		_
DRILLER:	R. STEIN	NER DRILL RIG TYPE: SIMCO CLASSIFIED BY:	GEOLOGIST

STARTED 9/9/2008 **FINISHED**

9/9/2008

HOLE NO. SB-2

SHEET		1 OF 2		SERVICES, INC.	G.W. DEPTH See Notes
PROJI			NSPORTATION SITE	LOCATION: 100 EAST LI	
PROJ.	NO.:	BEV-08-028		CELORON,	NEW YORK
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION		NOTES
		Light Brown f-c SANI	D, some f-c Gravel		PID= Photoionization
1		(moist, FILL)			Detector
	BG				BG= Background,
2					measured in parts per
					million.
3	9.5				_
	-				S-1: 0-4'
4	=				S-2: 4'-8'
	9.2	Light Brown f-m SAN	D and Silt, tr. gravel (moist, FIL	L)	S-3: 8'-12'
5					S-4: 12'-16'
	-				S-5: 16'-20'
6	40.0				_
	19.0				_
7	-				_
	-				_
8	0.7				_
	8.7				_
9					_
10	BG				
	BG				_
11					_
					_
12	BG	Brown f-c GRAVEL a	und f a Sand (maist)		-
	BG	F			-
13	-	Light Brown SAND, to (moist)	ı. yıavcı, u. sılı		_
— [']		(11.5151)			_
14	BG				
					_
15					
					_
16	BG				
					07017777
DRILLER:	R. STEIN		PE: SIMCO	_ CLASSIFIED BY:	GEOLOGIST

DATE: START FINISH SHEET PROJI PROJ.	HED T ECT:	2 OF 2 PENN EMPIRE TRANBEV-08-028	SJB SERVICES, INC. DIRECT PUSH LOG	SERVICES, INC. CATION: 100 EAST LI CELORON, I	
DEPTH	PID	BL V-00-028	SOIL OR ROCK	<u>CLLONON, I</u>	NOTES
FT.	READING		CLASSIFICATION		
1718	BG				PID= Photoionization Detector BG= Background, measured in parts per
19	BG				million.
20	. BG				_
21			Direct Push Complete at 20.0'		_
2223					_
24					
25					
26 27					_
28					
29					_
30					
31					_
32 DRILLER:		DRILL RIG TY	PE:	CLASSIFIED BY:	

METHOD OF INVESTIGATION:

ASTM 6282 - DIRECT PUSH SAMPLING

\Box	Λ	т	ᆮ	

 STARTED
 9/9/2008

 FINISHED
 9/9/2008

 SHEET
 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV SB-3

G.W. DEPTH See Notes

PROJECT: PENN EMPIRE TRANSPORTATION SITE LOCATION: 100 EAST LIVINGSTON AVE.

PROJECT: PENN EMPIRE TRANSPORTATION SITE LOCATION: 100 EAST LIVINGSTON AVE.

CEL ORON NEW YORK

PROJ.	NO	DEV-00-020 CELORON, I	NEW TORK
DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES
		Light Brown f-c SAND, some f-c Gravel	PID= Photoionization
1	BG	(moist, FILL)	Detector
			BG= Background,
2			measured in parts per
		Contains little Silt	million.
3	BG		_
			S-1: 0-4'
4			S-2: 4'-8'
		Light Brown f-m SAND and Silt, little f-c Gravel (moist, FILL)	S-3: 8'-12'
5	BG	g,,	S-4: 12'-16'
			_
6			_
_			_
7	BG		_
_ ′ _	ВО		_
8			_
_ ° _			_
	DO		_
9	BG		_
			_
10			_
			_
11	BG		_
			_
12			_
		Light Brown f-c SAND, some f-c Gravel, tr. silt (moist)	_
13	BG		
14			_
			_
15	BG		_
16		Direct Push Complete at 16.0'	
DRILLER:	R. STEIN	NER DRILL RIG TYPE: SIMCO CLASSIFIED BY:	GEOLOGIST
	FINVESTIGA		

STARTED FINISHED 9/9/2008 9/9/2008

SHEET	Γ	1 OF 1		SERVICES, INC.	G.W. DEPTH See Notes
PROJI PROJ		PENN EMPIRE TRA BEV-08-028	NSPORTATION SITE	LOCATION: 100 EAST LI CELORON, I	
	1	BE V-00-020	COIL OR ROOK	<u>CLLORON, I</u>	
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION		NOTES
	12.0	Light Brown f-m SAN	D, some Silt (moist, FILL)		PID= Photoionization
1	15.0				Detector
					BG= Background,
2	BG				measured in parts per
					million.
3		Dark Grey- Brown f-r	n SAND, some f. Gravel		
		_(moist, FILL)		/	Organic odor noted
4	BG	Light Brown f-m SAN	D, some Silt (moist, FILL)		at 2.5'- 3.0'
5					Organic odor noted at 2.5'- 3.0' S-1: 0-4' S-2: 4'-8'
	10.8				S-2: 4'-8'
6	11.3				S-3: 8'-12'
					S-4: 12'-16'
7	BG				_
8					_
9	BG				_
10					_
	3.0	Contains tr. gravel			
11	2.8				_
12	BG				
13	_				_
	_				_
14	BG				_
	1				_
15	1				_
	_				
16		V	Direct Push Complete a	at 16.0'	
DRILLER:	R. STEI	NER DRILL RIG TY	PE: SIMCO	CLASSIFIED BY:	GEOLOGIST
METHOD O	F INVESTIG	ATION: ASTM 6282 - I	DIRECT PUSH SAMPLING		

STARTED 9/9/2008 FINISHED 9/9/2008 SHEET 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV SB-5

G.W. DEPTH See Notes

			100171011		
PROJ PROJ		PENN EMPIRE TRANSPORTATION SITE BEV-08-028	LOCATION: 100 EAST LIV CELORON. N	LOCATION: 100 EAST LIVINGSTON AVE. CELORON, NEW YORK	
DEPTH FT.	PID READING	SOIL OR ROCK		NOTES	
		Light Brown f-m SAND and Silt, tr. gravel (moist, F	ILL)	PID= Photoionization	
1	BG			Detector	
				BG= Background,	
2	3.7			measured in parts per	
	2.2			million.	
3				_	
				S-1: 0-4'	
4 —	BG			S-2: 4'-8'	
_ —				S-3: 8'-12'	
5	BG			_	
	DO			_	
6	BG			_	
7 —				_	
├ ′ ─	2.8			_	
8	4.0			_	
├	4.0	Contains little f. Gravel		_	
9		Contains little 1. Graver		_	
├				_	
10	BG			_	
				_	
11				_	
				_	
12					
13		Direct Push Complete at	12.0'	_	
				_	
14				_	
				_	
15				_	
				_	
16					
DRILLER:	R. STEI	NER DRILL RIG TYPE: SIMCO	CLASSIFIED BY:	GEOLOGIST	
METHOD O	F INVESTIG	ATION: ASTM 6282 - DIRECT PUSH SAMPLING			

9/9/2008 STARTED **FINISHED** 9/9/2008

SHEET	Γ	1 OF 1		SERVICES, INC.	G.W. DEPTH See Notes
PROJI PROJ		PENN EMPIRE TRA BEV-08-028	NSPORTATION SITE	LOCATION: 100 EAST L	
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION	<u> </u>	NOTES
		Brown SILT and f. Sa	and, little fine Gravel (moist)		PID= Photoionization
1					Detector
					BG= Background,
2	BG				measured in parts per
					million.
3					-
		Dark Brown SAND, li	ittle Clay, tr. gravel		S-1: 0'-4'
4	-	(moist)			S-2: 4'-8'
	0.8				S-3: 8'-12'
5	2.5				S-4: 12'-16'
_	0.3				_
6	1.8				_
_ —		Becomes f-m Sand			_
7					_
_					_
8					_
_	1.2		n f-m Sand, contains little Sil	t, tr. gravel	_
9	3.8	(moist)			_
10	1				_
11	BG				_
—''-	BG				_
12					_
'^	4.5	Decembe Brown fine	Cond contains some Cilt (m	o int)	_
13	1.5 3.4	Becomes Brown line	Sand, contains some Silt (m	ioist)	_
'3	3.4				_
14					_
'					_
15	BG				_
<u> </u>					_
16			Direct Push Complete a	t 16.0'	
DRILLER:	R. STEI	NER DRILL RIG TY	PE: SIMCO	CLASSIFIED BY:	GEOLOGIST
METHOD O	F INVESTIG	ATION: ASTM 6282 - I	DIRECT PUSH SAMPLING		

STARTED 9/9/2008 **FINISHED** 9/9/2008

SHEET	-	1 OF 1		SERVICES, INC.	G.W. DEPTH See Notes	
PROJE	=CT·	DENNI EMDIDE TDAI	NSPORTATION SITE	LOCATION: 100 EAST LI	VINCSTON AVE	
PROJ.		BEV-08-028	NOI ORTATION SITE	CELORON, I	NEW YORK	
DEPTH	PID		SOIL OR ROCK		NOTES	
FT.	READING		CLASSIFICATION			
		TOPSOIL (1.0')			PID= Photoionization	
1	BG				Detector	
		Crush Gravel			BG= Background,	
2		Brown f-m SAND, so	me f-c Gravel, little Silt (moist)		measured in parts per	
					million.	
3						
	1.7				S-1: 0-4'	
4					S-2: 4'-8'	
					S-3: 8'-12'	
5	BG					
	_					
6					_	
├					_	
7					_	
 ' -	2.2	Drawn fo CDAVEL o	and to Cond to cit (moint)		<u> </u>	
	2.2	BIOWN I-C GRAVEL a	and f-c Sand, tr. silt (moist)		_	
8					_	
					_	
9	BG				_	
10					_	
	0.3				_	
11					_	
					_	
12					_	
13			Direct Push Complete at 1	2.0'	_	
					_	
14					_	
15						
16						
DRILLER:	R. STEIN	NER DRILL RIG TY	PE: SIMCO	CLASSIFIED BY:	GEOLOGIST	
METHOD OF	METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING					

 STARTED
 9/9/2008

 FINISHED
 9/9/2008

 SHEET
 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV SB-8

G.W. DEPTH

	-0-		//NOSTON ANG
PROJI PROJ.		PENN EMPIRE TRANSPORTATION SITE LOCATION: 100 EAST LI'BEV-08-028 CELORON, N	
	1		
DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES
- ' ' '	KEADING	TOPSOIL (1.0')	PID= Photoionization
1	BG	101 001E (1.0)	Detector
 ' -		Light Brown f-m SAND, tr. silt, tr. gravel (moist)	BG= Background,
2		Light brown i-m SAND, ii. siit, ii. graver (moist)	
			measured in parts per
	0.2		million.
3			_
			S-1: 0'-4'
4	BG		S-2: 4'-8'
			S-3: 8'-12'
5			_
6			
	0.4	Brown f-c GRAVEL, some f-c Sand, some Silt (moist)	
7			
8	BG		
			Poor Recovery Sample #3
9			
10			_
	BG	Contains and f-c Sand, tr. silt	
11			
	BG		_
12			_
<u> </u>			
13		Direct Push Complete at 12.0'	_
<u> </u>		2 23 23pioto di 12.0	_
14			_
<u></u>			_
15			
- ''-			_
16			_
16			
DRILLER:	R. STEIN	NER DRILL RIG TYPE: SIMCO CLASSIFIED BY:	GEOLOGIST
METHOD OI	F INVESTIGA	ATION: ASTM 6282 - DIRECT PUSH SAMPLING	_

 STARTED
 9/9/2008

 FINISHED
 9/9/2008

 SHEET
 1 OF

2

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV SB-9

G.W. DEPTH

PROJE		PENN EMPIRE TRANSPORTATION SITE LOCATION: 100 EAST L	
PROJ.	NO.:	BEV-08-028 CELORON,	NEW YORK
DEPTH	PID	SOIL OR ROCK	NOTES
FT.	READING	CLASSIFICATION	
	BG	TOPSOIL (0.5')	PID= Photoionization
1		Light Brown to Brown f-m SAND, tr. gravel, tr. silt (moist, possible FILL)	Detector
			BG= Background,
2			measured in parts per
	0.3	Contains little Silt	million.
3			
			S-1: 0'4'
4			S-2: 4'-8'
	0.4	Brown fine to medium SAND, tr. gravel, tr. silt (moist)	S-3: 8'-12'
5		, 5	S-4: 12'-16'
 	0.4		S-5: 16'-20'
6	0.4		
— ° —	0.3		_
7	0.3		_
_ ′ _			_
_	BG		_
<u> </u>			_
9			_
	1.2		
10			_
	2.2		
11			
	0.3		
12			
	BG		
13	-		
	0.4		_
14	0.4		
		/ Brown f-c GRAVEL and fine to medium Sand (moist)	_
15	BG	y Brown 1-6 Stavel and line to medicin Sand (moist)	_
- '3	טט	/ Proup to CAND to group to gib	_
16		/ Brown f-m SAND, tr. gravel, tr. silt	` —
16		(moist)	
DRILLER:	R. STEI	NER DRILL RIG TYPE: SIMCO CLASSIFIED BY:	GEOLOGIST
METHOD OF	FINVESTIG	ATION: ASTM 6282 - DIRECT PUSH SAMPLING	

STARTED **FINISHED** 9/9/2008 9/9/2008

SHEET	Γ	2 OF 2		SERVICES, INC.	G.W. DEPTH See Notes
PROJI PROJ.		PENN EMPIRE TRANSPORTATION SITE LOCATION: 100 EAST LIV EBEV-08-028 CELORON, NI			
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION		NOTES
17 18	BG	Becomes fine to coa	rse SAND, contains tr. grav	el (moist)	PID= Photoionization Detector BG= Background,
18	BG	Light Brown to Grey	f-c GRAVEL, some f-c Sand	d, tr. silt (moist)	measured in parts per million.
20 21			Direct Push Complete	at 20.0'	
22					
24	-				<u> </u>
25 26	-				
2728					
29	_				
30 31 					
32 DRILLER:	R. STEI	NER DRILL RIG TY	/PE: SIMCO	CLASSIFIED BY:	GEOLOGIST
METHOD O	F INVESTIGA	ATION: ASTM 6282 -	DIRECT PUSH SAMPLING		

STARTED **FINISHED**

9/10/2008 9/10/2008

SHEET	-	1 OF 1		SERVICES, INC.	G.W. DEPTH See Notes
PROJE PROJ.		PENN EMPIRE TRA BEV-08-028	NSPORTATION SITE	LOCATION: 100 EAST L CELORON,	
DEPTH	PID	21 00 020	SOIL OR ROCK CLASSIFICATION	<u> </u>	NOTES
FT.	READING BG	TOPSOIL (0.5')	CLASSIFICATION		PID= Photoionization
1 —	ВО		D, some fine to coarse Gravel		Detector
		(moist, FILL)	,		BG= Background,
2		,			measured in parts per
	0.3				million.
3					
	0.8				S-1: 0-4'
4					S-2: 4'-8'
					S-3: 8'-12'
5	BG				_
					_
6					_
		Light Brown to Grey	f-m SAND, little f. Gravel, tr. cl	lay (moist)	_
7	BG				_
					_
8					_
					_
9	BG				_
					_
10					_
					_
11	BG				-
		Light Brown f-c SANI	D and f-c Gravel, tr. silt (moist))	_
12					
13			Direct Push Complete at	12 O'	_
— 'S—			Direct Fusit Complete at	12.0	_
14					_
<u> </u>					_
15					
16					_
DRILLER:	R. STEIN	NER DRILL RIG TY	/PE: SIMCO	CLASSIFIED BY:	GEOLOGIST
METHOD OF			DIRECT PUSH SAMPLING	_	

STARTED 9/10/2008 9/10/2008 **FINISHED** SHEET 1 OF 1

METHOD OF INVESTIGATION:

ASTM 6282 - DIRECT PUSH SAMPLING

SJB SERVICES, INC. **DIRECT PUSH LOG**

HOLE NO. SURF. ELEV G.W. DEPTH See Notes

SB-11

PROJECT: PENN EMPIRE TRANSPORTATION SITE LOCATION: 100 EAST LIVINGSTON AVE. PROJ. NO.: BEV-08-028 CELORON, NEW YORK

DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES
- 22			PID= Photoionization
1	0.1		Detector —
		Dark Brown f-c GRAVEL, some f-c Sand (moist, FILL)	BG= Background,
2			measured in parts per
	1.4	Light Brown f-m SAND, tr. gravel	million.
3		(moist, FILL)	_
			_
4			_
	0.2	·	S-1: 0-4'
5			S-2: 4'-8'
			S-3: 8'-12'
6			_
_ —	0.1		_
⁷			\dashv
8			_
°	0.6	Light Brown f-c SAND, little Silt (moist)	-
9	0.6	Light Brown 1-6 SAND, little Silt (moist)	_
—			-
10	BG		_
			_
11			
<u> </u>			
12			_
13		Direct Push Complete at 12.0'	
14			
			<u> </u>
15			<u> </u>
			_
16			
DRILLER:	R. STEIN	IER DRILL RIG TYPE: SIMCO CLASSIFIED BY:	GEOLOGIST

SHEET

 STARTED
 9/10/2008

 FINISHED
 9/10/2008

1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

G.W. DEPTH

SB-12

PROJECT:		PENN EMPIRE TRANSPORTATION SITE		LOCATION:	LOCATION: 100 EAST LIVINGSTON AVE.		
PROJ. NO.:		BEV-08-028		CELORON, NEW YORK			
DEPTH	PID		SOIL OR ROCK			NOTES	

DEPTH	PID	SOIL OR ROCK	NOTES
FT.	READING	CLASSIFICATION	DID DI () · · ·
		TOPSOIL (1.0')	PID= Photoionization
1			Detector
		Brown f-m SAND, tr. silt, tr. gravel	BG= Background,
2	BG	(moist, FILL)	measured in parts per
			measured in parts per million.
3			_
	0.1		S-1: 0-4'
4			S-2: 4'-8'
		Contains little Silt	S-3: 8'-12'
5	BG		
6			
	0.3	Becomes Light Brown f-c SAND, little Silt, tr. gravel (moist)	_
7	0.0		
<u> </u>			_
8			_
$ ^{\circ}$ $-$	BG		_
	ВС		-
9			_
10			_
11	BG		_
			<u> </u>
12			
			<u> </u>
13		Direct Push Complete at 12.0'	_
14			
15			
16			
DDII I ED.	D OTEIN	IED DRILL DIG TYPE. SIMCO CLASSICIED DV.	CEOLOGIST

DRILLER:	R. STEINER	DRILL RIG TYPE:	SIMCO	CLASSIFIED BY:	GEOLOGIST
METHOD OF	INVESTIGATION:	ASTM 6282 - DIRECT PL	JSH SAMPLING		

 STARTED
 9/10/2008

 FINISHED
 9/10/2008

 SHEET
 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

G.W. DEPTH

SB-13

PROJECT:	PENN EMPIRE TRAI	NSPORTATION SITE	LOCATION:	100 EAST LIVINGSTON AVE.
PROJ. NO.:	BEV-08-028		_	CELORON, NEW YORK

DEPTH	PID	SOIL OR ROCK	NOTES
FT.	READING	CLASSIFICATION	
	BG	TOPSOIL (0.5')	PID= Photoionization
1		Light Brown SAND, tr. clay (moist, FILL)	Detector
			BG= Background,
2			measured in parts per
	0.2		million.
3		Contains little Silt, tr. gravel	_
		-	S-1: 0-4'
4			S-2: 4'-8'
'	0.3	Brown f-c GRAVEL and f-c Sand, tr. silt (moist, FILL)	S-3: 8'-12'
5	0.3	Brown 1-c Gravel and 1-c Sand, it. Siit (moist, File)	
	0.4		_
	0.1		_
6			-
		Light Brown to Grey f-c SAND, little f. Gravel (moist)	_
7			_
	0.2		_
8			_
		Brown f-c GRAVEL and f-c Sand, tr. silt (moist)	_
9			
	BG		
10			_
			_
11	BG		_
''	50		_
12			_
12			-
			_
13		Direct Push Complete at 12.0'	_
			_
14			_
			_
15			_
			_
16			_
		NER DRILL RIG TYPE: SIMCO CLASSIFIED BY:	GEOLOGIST

DRILLER:	R. STEINER	DRILL RIG TYPE:	SIMCO	CLASSIFIED BY:	GEOLOGIST
METHOD OF	INVESTIGATION:	ASTM 6282 - DIRECT PL	JSH SAMPLING		

 STARTED
 9/10/2008

 FINISHED
 9/10/2008

 SHEET
 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

G.W. DEPTH

SB-14

PROJECT:	PENN EMPIRE TRAN	NSPORTATION SITE	LOCATION:	100 EAST LIVINGSTON AVE.
PROJ. NO.:	BEV-08-028			CELORON, NEW YORK

1		22 7 00 020	OLLONGIN, INLIN	
DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION		NOTES
		TOPSOIL (0.1')	PID	= Photoionization
1	BG	Brown Fine SAND and Silt, tr. clay (moist, FILL)		ector
			BG:	= Background,
2				asured in parts per
	BG		mill	
3		Light Brown SAND, little Silt, tr. gravel (moist, FILL)		
			S-1	: 0'- 4'
4				: 4'- 8'
	BG	Brown f-c SAND and f-c Gravel (moist, FILL)	S-3	: 8'-12'
5				
6				
	1.1			
7				
8				
	BG			
9				
10				
	BG	Contains tr. silt		
11				
12				-
				_
13		Direct Push Complete at 12.0'		
14				
	-			
15				
	-			
16				
DRILLER:	R. STEI	NER DRILL RIG TYPE: SIMCO	CLASSIFIED BY:	GEOLOGIST

DRILLER:	R. STEINER	DRILL RIG TYPE:	SIMCO	CLASSIFIED BY:	GEOLOGIST
METHOD OF I	NVESTIGATION:	ASTM 6282 - DIRECT PUSH	SAMPLING		

 STARTED
 9/10/2008

 FINISHED
 9/10/2008

 SHEET
 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

G.W. DEPTH

SB-15

PROJECT:	PENN EMPIRE TRAI	NSPORTATION SITE	LOCATION:	100 EAST LIVINGSTON AVE.
PROJ. NO.:	BEV-08-028			CELORON, NEW YORK

DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES
		TOPSOIL (1.0')	PID= Photoionization
_ 1	1.4		Detector
		Brown Fine SAND and Silt, tr. clay (moist, FILL)	BG= Background,
2			measured in parts per
	1.6		million.
3			0.4.01.41
4			S-1: 0'-4' S-2: 4'-8'
-	0.2	Brown f-c GRAVEL and f-c Sand	S-3: 8'-12'
5	0.2	(moist, FILL)	0-3. 0-12
6	BG		
7			
8			-
		Brown f-c GRAVEL and f-c Sand (moist)	
9	BG		
10			
11	BG	Contains little f-c Sand	
. ' ' —		Softains little 1 e Sand	
12			
13		Direct Push Complete at 12.0'	
14			
15			
16			

DRILLER:	R. STEINER	DRILL RIG TYPE:	SIMCO	CLASSIFIED BY:	GEOLOGIST	
METHOD OF	INVESTIGATION:	ASTM 6282 - DIRECT PUSH	H SAMPLING			

 STARTED
 9/10/2008

 FINISHED
 9/10/2008

 SHEET
 1 OF 1

METHOD OF INVESTIGATION:

ASTM 6282 - DIRECT PUSH SAMPLING

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV G.W. DEPTH SB-16

PROJECT:	PENN EMPIRE TRAI	NSPORTATION SITE	LOCATION	100 EAST LIVINGSTON AVE.
PROJ. NO.:	BEV-08-028		<u> </u>	CELORON, NEW YORK

DEPTH	PID	SOIL OR ROCK	NOTES
FT.	READING	CLASSIFICATION TOPSOIL (0.5')	PID= Photoionization
1	0.0	Light Brown fine to medium SAND, some f-c Gravel (moist, FILL)	Detector
			BG= Background,
2	BG		measured in parts per
			million.
3			
	0.5	Becomes Dark Brown f-c SAND, some Clay (moist, FILL)	S-1: 0-4'
4			S-2: 4'-8'
		Contains some Silt, tr. gravel	S-3: 8'-12'
5			_
	D.C		_
6	BG		_
7			_
- ' -	20.7		_
8	20.7		_
		8.0'- 12.0' Dark Brown CLAY, little f-c Sand, tr. gravel (moist)	_
9			_
	12.9		_
10			
11			_
	BG		
12			_
		Direct Duck Consulate at 40.01	_
13		Direct Push Complete at 12.0'	_
14			_
<u> </u>			_
15			_
			_
16			_
DRILLER:	R. STEIN	NER DRILL RIG TYPE: SIMCO CLASSIFIED BY:	GEOLOGIST

TEST PIT FIELD LOG

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/18/2008

CELORON, NY

TP-1

BEV-08-028

SNOW-OVERCAST/~30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1000	
1010	

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

R. STEINER FORD 555E 0.3 CY 18.5 FT

DEPTH	So	OIL DESCRIPTION		EXCAV EFFORT	REMARK NO.
	Brown f-c SAND, some f-m	Gravel, little Silt (FII		M	I NO.
1'			, 		
	Brown- Tan Sandy SILT to	Silty Sand, little f Gra	avel (FILL)	M	
2'				М	
3'					
4.				M	
4'	Test	t Pit Complete at 4.0'			
5' 		i i i compiono di iic			
6'					
7' <u></u>					1
8'					
9'	_				
10					
11'					
12'					
13'					
14'					
emarks:		ABREVIATIONS	<u> </u>	PROP USED	<u> </u>
No GW encounte	red upon completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/ discoloration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%	
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

TEST PIT FIELD LOG

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/18/2008 CELORON, NY

TP-2

BEV-08-028

SNOW-OVERCAST/~30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1030 1045 OPERATOR MAKE/ MODEL CAPACITY REACH R. STEINER
FORD 555E

0.3 CY
18.5 FT

				_	_
DEPTH	SOIL DESC	CRIPTION		EXCAV	REMARK
				EFFORT	NO.
	TOPS			M	
1'	Brown- Tan Sandy SILT to Silty Sai	nd, little f-c G	Bravel, tr. clay		
	(FILL)			M	
2'	1				1
3'				М	
3	1			М	
4'				IAI	
₹				М	
5' 					
	Test Pit Com	plete at 5.0'			
6' —					
7' 					
01					
8' 					
9'					
7					
10					
11'	-				
12'	1				
13' 					
1.41					
14'	†				
Damania.	<u> </u>		<u>.</u>		<u> </u>
Remarks: I.No GW encountered		ABREVIATIONS		PROP USED	
		F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/	discoloration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/18/2008 CELORON, NY

TP-3

BEV-08-028

SNOW-OVERCAST/~30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1100 1115 OPERATOR
MAKE/ MODEL
CAPACITY
REACH

DEPTH	SOIL DESC			EXCAV EFFORT	REMARK NO.
1'(FILI	vn- Tan Sandy SILT to Silty Sar -)	nd, little f-c G	Gravel, tr. clay	М	
2'				M	
				М	
3, ——				М	
4' —				М	
5'	T1 P'1 O				
6' —	Test Pit Com	piete at 5.0°			
7' —					
8' —					
9' —					
10 —					
11'					
12'					
13'					
14'					
Remarks:		ABREVIATIONS	3	PROP USED	
No GW encountered upon		F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/ disco	Ioration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN YEL-YELLOW	V-VERY	AND	35 - 50%

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT	
CLIENT	
CONTRACT	OR
FIFI D RFP	

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.

J. METZGER

LOCATION TEST PIT NO. PROJECT NO.

DATE

PROJECT NO. WEATHER / TEMP

11/18/2008

CELORON, NY

TP-4

BEV-08-028

SNOW-OVERCAST/ ~30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1145 1200

OPERATOR MAKE/ MODEL CAPACITY REACH

DEPTH	SOIL DESC	CRIPTION		EXCAV EFFORT	REMARK NO.
1'	Brown- Tan Silty SAND to Sandy S -(FILL)	ilt, little f-c G	iravel, tr. clay	M	
2'				M	
3'				М	
	1			M	
4'	-			М	
5' —	1			М	
6' —	Brown f-c SAND and f-c Gravel (co	mpact, FILL)		Hard	
7' —	Test Pit Com	plete at 7.0'			
8'	-				
9' ——	-				
10	-				
11'	-				
12'	-				
13'	_				
14'	1				
Remarks:		ABREVIATIONS	<u>. </u>	PROP USED	
1. No GW encountered	upon completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/		C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN YEL-YELLOW	V-VERY	AND	35 - 50%

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION
NYSDEC
EMPIRE GEO SERVICES, INC.

J. METZGER

Analytical sample taken at surface (SS-1 (TP-5))

Analytical sample taken at 11' (sVOCs-PCB-Metals)

(metals- sVOCs)

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/18/2008
CELORON, NY
TP-5
BEV-08-028
SNOW-OVERCAST/ ~30 Degrees F

SOME (SO.)

AND

20 -35%

35 - 50%

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1315 1330 OPERATOR R. STEINER

MAKE/ MODEL FORD 555E

CAPACITY 0.3 CY

REACH 18.5 FT

DEPTH	SOIL	DESCRIPTION		EXCAV	REMARK
				EFFORT	NO.
	Black- Brown Sandy SILT, son	ne f-c Gravel, tr. c	clay (FILL)	E	
1'					
2'				E	
2				Е	
3'					
	Greyish- Black Silty Clay, som	e f-c Sand, little f	-c Gravel	Е	
4'	(FILL)				
				E	
5' 					
6'	— Contains little organics			E	
0 -	Contains little organics			Е	
7' <u></u>					
				Е	
8' <u></u>					1
				E	
9' —				E	
10				E	
10				E	
—— 11' —	Contains little Wood Fragment	s, Glass, Plastic	Bottles, Wire, etc.		
	(general rubble FILL)			E	
12'					
. .				E	
—— 13' —	Cray Olive to SAND and to C				
14'	Grey- Olive f-c SAND and f-c G	ravei, little Silt		E	
	Test Pit (Complete at 14.0'	•		
emarks:		ABREVIATIONS		PROP USED	1
	red upon completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
No petroleum od		C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
poli olodili od		0 00/11/02	.,		13 2070

GR - GRAY

BN - BROWN

YEL-YELLOW

M - MEDIUM

V-VERY

TEST PIT FIELD LOG PAGE 1 OF 2

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.

J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/18/2008 CELORON, NY TP-6 BEV-08-028

SNOW-OVERCAST/ ~30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1430 1530

OPERATOR MAKE/ MODEL CAPACITY REACH

DEPTH	SOIL DES	CRIPTION		EXCAV EFFORT	PID
	Brown- Grey Silty SAND to Sandy	Silt, some f-c	c Gravel, tr. clay	E	0.0
1'	—— (FILL)			_	
2'				E	
2				Е	
3'	Contains tr. asphalt fragments				
				E	0.0
4'				E	
5'	Wood logs approximately 22.5' i	n diameter ex	xcavated	E	
-	Contains tr. roots			E	
6'					
71				E	3.8
7' 				Е	
8' <u></u>					
				E	0.0
9' <u></u>	Small metal drum excavated			_	
10				E	
10				E	0.0
11'	 				
				E	
12'				Е	
—— 13' —				_	
				E	0.0
14'	Olive- Grey f-c SAND and f-c Grave	 el, little Silt		E	
emarks:	· · ·	ABREVIATION	S	PROP USED	•
GW slowly infiltra	ating excavation at 15' bgs.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
No petroleum ode		C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

TEST PIT FIELD LOG PAGE 2 OF 2

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.

J. METZGER

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP

DATE

11/18/2008 CELORON, NY

TP-6

BEV-08-028

SNOW-OVERCAST/~30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1430 1530

OPERATOR MAKE/ MODEL CAPACITY REACH

DEPTH SOIL	DESCRIPTION		EXCAV EFFORT	PID
	t Complete at 15.0	•		
16'				
17'				
401				
18'				
19'				
20'				
21'				
22'				
221				
23'				
24'				
25'				
26'				
27'				
001				
28'				
29'				
	<u> </u>	<u>.</u>		
emarks: . GW slowly infiltrating excavation at 15' bgs.	ABREVIATION		PROP USED	0.400/
. Gw slowly inflitrating excavation at 15 bgs. No petroleum odor	F - FINE C - COARSE	F/M - FINE TO MEDIUM F/C-FINE/COARSE	TRACE (TR.) LITTLE (LI.)	0-10% 10 - 20%
. No petroleum odor	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
	BN - BROWN	V-VERY	AND	20 -35% 35 - 50%
	YEL-YELLOW			30 3070

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION
NYSDEC
EMPIRE GEO SERVICES, INC.

J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/19/2008
CELORON, NY
TP-7
BEV-08-028
Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

0845 0930

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

DEPTH	SOIL DESCRIPTION		EXCAV EFFORT	REMARK NO.	
1'	Brown- Grey Silty SAND, some f-c	Gravel, tr. cl	ay (FILL)	E	
I	_			E	
2' —	Contains little Organics				
3'				E	
				E	
4'	_			E	
5'				E	
6' —				E	
7' ——— Contains tr. wood fragments		E			
8' —	_				
9' ——Contains tr. brick fragments			E		
		E			
10 —	_			E	
11'	_			_	
12'				E	
				E	
13'	Olive- Grey f-c SAND and f-c Grave			E	
14'	Test Pit Com	plete at 14.0	1		
Remarks: ABREVIATIONS		PROP USED	-		
1. No GW encountered	d upon completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/	discoloration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/19/2008 CELORON, NY TP-8 BEV-08-028

Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

0940	
1015	

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

DEPTH	SOIL DE	SCRIPTION		EXCAV	REMARK
				EFFORT	NO.
_		PSOIL		E	
1'	Brown Sandy SILT to Silty Sand,	little f-c Grave	el (FILL)		
2'				E	
2 —				E	
3'	Contains occassional topsoil laye	ers		_	
		· -		E	
4'				E	
5' 				E	
6'	_				
7'				E	
•				E	
8' <u></u>				E	
9' <u></u>				E	
10	_				
11'				E	
12'	Contains some f-c Gravel			E	
	Contains some 1-6 Graver			Е	
13'				E	
14' <u></u> _	Test Pit Cor	nplete at 14.0	ı		
Remarks:		ABREVIATION	s	PROP USED	•
	ed upon completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odo		C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
Analytical sample tal	ken at 2' (metals-sVOCs)	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
- -	-	BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/19/2008 CELORON, NY

TP-9

BEV-08-028

Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1030 1100 OPERATOR
MAKE/ MODEL
CAPACITY
REACH

DEPTH	SOIL DE	SCRIPTION		EXCAV	REMARK
				EFFORT	NO.
1'	Brown f-c SAND and f-c Gravel, I	ittle Silt (FILL)		E	
2'				E	
3'				E	
4'	Contains tr. wood fragments			E	
5'				E	
6'				E	
7'	Brown- Tan Sandy SILT, little f-c	 Gravel		E	
 8'				_ E	
9'	Test Pit Co	omplete at 8.0'			
10					
11'					
12' —					
13'					
14'					
Remarks:	<u> </u>	ABREVIATION	<u> </u>	PROP USED	<u> </u>
	ed upon completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odo	or/ discoloration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION
NYSDEC
EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/19/2008
CELORON, NY
TP-10
BEV-08-028
Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1115 1145 OPERATOR R. STEINER

MAKE/ MODEL FORD 555E

CAPACITY 0.3 CY

REACH 18.5 FT

DEPTH	SOIL DESCRIPTION			EXCAV EFFORT	REMARK NO.
1'	Brown f-c SAND and f-c Gravel, some Silt, tr. clay, tr. organics (FILL)			E	
2' ——				E	
3'				E	
- 3 <u></u>				E	
4' —	Black- Grey Silty CLAY to Clayey S	ilt, some orç	ganics (FILL)	E	
5' ——				E	
6' —	Brown- Tan Sandy SILT to Silty Sai	 nd, little f-c (Gravel	E	
7' —	_	·		н	
8' —	_			н	
9' —	Contains little Cobble				
10	_			Н	
11'				Н	
12'				Н	
13'				н	
	Test Pit Com	plete at 13.0	•		
14'	<u> </u>		<u>.</u>		
Remarks:		ABREVIATIONS	S	PROP USED	
1. No GW encountered		F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor	discoloration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN YEL-YELLOW	V-VERY	AND	35 - 50%

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION
NYSDEC
EMPIRE GEO SERVICES, INC.

LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

DATE

11/19/2008 CELORON, NY

TP-11

BEV-08-028

Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1200 1230

J. METZGER

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

R. STEINER FORD 555E 0.3 CY 18.5 FT

2. No petroleum odor/ discoloration Analytical sample taken at 5' (metals-sVOCs, PCBs) C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 2 SOME (SO.) 20 -38	DEPTH	SOIL DE	ESCRIPTION		EXCAV EFFORT	REMARK NO.
B	1'	_	Sand, little f-c G	ravel, tr. organics,	E	
E					E	
E	_				E	
Dark Brown Sandy SILT, some Organics, tr. concrete fragments, tr. brick fragments, tr. gravel (FILL) E E E E E E E E E E E E E	-				E	
E	•	■ = = = = = = = = = = = = = = = = = = =	_	crete fragments,	E	
E		⊣tr. brick fragments, tr. gravel (FII	LL)		E	
E		-			E	
E	•	-			E	
E 11' Grey- Olive f-c SAND and f-c Gravel, little Silt E 12' Test Pit Complete at 12.0' 13' emarks: No GW encountered upon completion. No petroleum odor/ discoloration No petroleum odor/ discoloration nalytical sample taken at 5' (metals-sVOCs, PCBs) E ABREVIATIONS F - FINE F/M - FINE TO MEDIUM C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 2 SOME (SO.) 20 -38	8' 	-			E	
E	—— 9' ——	-			E	
emarks: No GW encountered upon completion. No petroleum odor/ discoloration nalytical sample taken at 5' (metals-sVOCs, PCBs) Test Pit Complete at 12.0' ABREVIATIONS F - FINE F/M - FINE TO MEDIUM C - COARSE F/C-FINE/COARSE LITTLE (LI.) SOME (SO.) 10 - 2 SOME (SO.) E Test Pit Complete at 12.0' ABREVIATIONS F - FINE F/M - FINE TO MEDIUM C - COARSE F/C-FINE/COARSE LITTLE (LI.) SOME (SO.) 20 - 38	10	-			E	
Test Pit Complete at 12.0' 13' 14' ABREVIATIONS PROP USED TRACE (TR.) 0-10% Prop Used Trace (Tr.) 0-10% Trace (Tr.) 0-10% Prop Used Trace (11'	+				
Test Pit Complete at 12.0' 14' ABREVIATIONS F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE Inalytical sample taken at 5' (metals-sVOCs, PCBs) Test Pit Complete at 12.0' ABREVIATIONS F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 2 SOME (SO.) 20 -38	12'	Grey- Olive f-c SAND and f-c Gra	avel, little Silt		E	
ABREVIATIONS F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% TRACE (TR.) 10 - 2 TRACE (TR.) 10 - 2 TRACE (TR.) 20 - 38		Test Pit Co	omplete at 12.0'			
Remarks: No GW encountered upon completion. No petroleum odor/ discoloration C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 2 GR - GRAY M - MEDIUM ROPE USED TRACE (TR.) 0-10% LITTLE (LI.) 10 - 2 SOME (SO.) 20 -38						
. No GW encountered upon completion. F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE Analytical sample taken at 5' (metals-sVOCs, PCBs) GR - GRAY M - MEDIUM TRACE (TR.) 0-10% LITTLE (LI.) 10 - 2 SOME (SO.) 20 -38	14'	†				
2. No petroleum odor/ discoloration C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 2 Analytical sample taken at 5' (metals-sVOCs, PCBs) GR - GRAY M - MEDIUM SOME (SO.) 20 -38	emarks:		ABREVIATIONS	· · · · · · · · · · · · · · · · · · ·	PROP USED	
Analytical sample taken at 5' (metals-sVOCs, PCBs) GR - GRAY M - MEDIUM SOME (SO.) 20 -38	. No GW encountered	d upon completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
	. No petroleum odor/	discoloration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
	Analytical sample take	n at 5' (metals-sVOCs, PCBs)	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		•	BN - BROWN	V-VERY	AND	35 - 50%

YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/19/2008 CELORON, NY

TP-12

BEV-08-028

Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED 1320 1350 OPERATOR
MAKE/ MODEL
CAPACITY
REACH

DEPTH	SOIL DES	CRIPTION		EXCAV EFFORT	PID
1'	TOPSOIL Brown- Tan f-c SAND and f-c Gravel, little Silt, tr. organics			E	0.0
2'	(FILL)		_	E	0.0
3'				E	0.0
4' —	Contains to southalt frameworks				
	Contains tr. asphalt fragments Tan- Brown Silty SAND, little Grave	el, tr. organic	s (FILL)	E	0.0
5'				E	0.0
7'				E	0.0
8'				E	0.0
9'				E	0.0
10	Tost Bit Con	Test Pit Complete at 9.5'			0.0
	rest Fit Con	ipiete at 3.3			
11'					
12'					
13'					
14' ——					
Remarks:		ABREVIATIONS	3	PROP USED	
1. No GW encountered	upon completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/	discoloration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
Analytical sample taker	n at surface	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
(metals-sVOCs-PCB)		BN - BROWN	V-VERY	AND	35 - 50%
Analytical sample taker	n at 4' (VOCs)	YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP 11/19/2008
CELORON, NY
TP-13
BEV-08-028
Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED 1415 1445 OPERATOR
MAKE/ MODEL
CAPACITY
REACH

R. STEINER
FORD 555E
0.3 CY
18.5 FT

				-	-
DEPTH	SOIL DE	SCRIPTION		EXCAV EFFORT	PID
	Brown Silty SAND to Sandy Silt, I	ittle f-c Grave	l, tr. clay,	E	0.0
1'	tr. concrete fragments, tr. asphal				
			,	E	0.0
2'					
				E	0.0
3'					
				E	0.0
4'					
	Test Pit Co	mplete at 4.0'			
5'					
6'					
6 —					
7'					
•					
8' <u></u>					
-					
9'					
10					
11'					
12'					
401					
—— 13' ——					
14'					
14					
emarks:		ABREVIATION	<u>. </u>	PROP USED	
	unan aamulatian				0.400/
. No GW encountered		F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
. No petroleum odor/ o	iiscoloration	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%

YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/19/2008 CELORON, NY

TP-14

BEV-08-028

Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1445 1515 OPERATOR
MAKE/ MODEL
CAPACITY
REACH

DEPTH	SOIL DESC	CRIPTION		EXCAV EFFORT	REMARK NO.
1'	Brown- Grey Sandy SILT, some f-c	Gravel, tr. o	rganics (FILL)	E	
	- Contains tr. clay			Е	
2' ——	-			E	
3'					
4' ——	pea stone			E	
-	Test Pit Com	plete at 4.0'			
5' ——					
6' —	-				
7' —	-				
8' —	-				
9'	-				
10	-				
11'	-				
12'	-				
13'	-				
14'					
Remarks:		ABREVIATIONS	<u></u>	PROP USED	
1. No GW encountered		F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/		C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
3. PVC pipe encounter	ed at 4' bgs.	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIEI D RED

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/19/2008
CELORON, NY
TP-15
BEV-08-028
Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1515 1545 OPERATOR
MAKE/ MODEL
CAPACITY
REACH

DEPTH	SOIL DESC			EXCAV EFFORT	REMARK NO.
1'	Brown Sandy SILT, little Gravel, tr.	concrete fra	gments (FILL)	E	
				E	
2' ——				E	
3'				<u> </u>	
4'	Brown- Tan f-c SAND, little Silt, tr. 9	gravel, tr. cla	у	E	
4				_	
5'	Test Pit Com	plete at 4.5'			
6'					
7' —					
8' —					
9'					
10 —					
11'					
12'					
13'					
14'					
Remarks:		ABREVIATIONS	3	PROP USED	
1. No GW encountered	at completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/ d	iscoloration.	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIEI D RED

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.

J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/20/2008 CELORON, NY TP-16

BEV-08-028

Snow/Overcast~15-30 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

0900	
0930	

OPERATOR MAKE/ MODEL CAPACITY REACH

DEPTH	SOIL DES	CRIPTION		EXCAV EFFORT	REMARK NO.
	TOPS	SOIL		E	110.
1'	_			_	
	Brown Sandy SILT, little f-c Gravel	tr. clay (FIL	L)	E	
2' ——	\dashv				
				E	
3' ——	\dashv			_	
4' —	Cantaina tr. canhalt			E	
4	Contains tr. asphalt			Е	
5' —				_	
				E	
6' —	_				
				E	
7' —				_	
8' —				E	
8	Brown- Tan f-c SAND, little Silt, tr.	nravel		Е	
9' —	Brown Turn o GAND, male one, and				
	Test Pit Com	plete at 9.0'			
10					
11'	7				
12'					
12					
13'	_				
14'	 				-
Remarks:		ABREVIATIONS	S	PROP USED	
1. No GW encountered	ed at completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odo	r/ discoloration.	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

LOCATION TEST PIT NO. PROJECT NO.

DATE

11/20/2008

CELORON, NY

TP-17

BEV-08-028

WEATHER / TEMP SNOW/OVERCAST ~25 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

0945 1000 OPERATOR
MAKE/ MODEL
CAPACITY
REACH

DEPTH	SOIL DES	CRIPTION		EXCAV	PID
				EFFORT	
	Brown f-c SAND and f-c Gravel, litt	le Silt, tr. cla	y (FILL)	E	0.0
1'				E	
2'					
_				E	0.0
3'				_	
Al	Contains some Silt			E	
4'				Е	0.0
5'	_				0.0
				1	
<u> </u>	Test Pit Con	plete at 5.5'			
7'	_				
-					
8' <u></u>	_				
9'					
7					
10					
—— 11' —					
12'					
—— 13' ——					
14'					
14					
lemarks:	<u> </u>	ABREVIATIONS	<u>. </u>	PROP USED	
. No GW encounter		F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
. No petroleum odo		C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

11/20/2008

PROJECT	
CLIENT	
CONTRACTOR	
FIFI D RFP	

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.

J. METZGER

LOCATION TEST PIT NO. PROJECT NO. **CELORON, NY** TP-18 BEV-08-028

WEATHER / TEMP

DATE

SNOW/OVERCAST ~25 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

0950 1015 **OPERATOR** MAKE/ MODEL **CAPACITY** REACH

DEPTH	SOIL DES	CRIPTION		EXCAV EFFORT	PID
	f-c SAND and f-c Gravel, litt	le Silt,tr. clay	(FILL)	E	0.0
1'				E	0.0
2'					0.0
				E	0.0
3'				E	0.0
4' —					0.0
				E	0.0
5' —	Test Pit Com	plete at 4.5'			
6' —					
7' —					
8, —					
9' —					
10					
11'					
12'					
13' —					
14'					
Remarks:	<u> </u>	ABREVIATIONS	<u>. </u>	PROP USED	1
No GW encountered at com	pletion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/ discolo		C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/20/2008 CELORON, NY TP-19 BEV-08-028

SNOW/OVERCAST ~25 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED 1030 1100

OPERATOR MAKE/ MODEL CAPACITY REACH

		_		<u>'</u>	
DEPTH	SOIL D	ESCRIPTION		EXCAV EFFORT	PID
	Brown Sandy SILT, little f-c Gra	vel (FILL)		E	2.0
1'		,			
				E	
2'					
_				E	4.6
3'				_	
· ·	Brown f-c SAND and f-c Gravel,	tr. silt. tr. clav		Е	
4'		an one, an olay		_	
•				Е	2.0
5'					
J				Е	
6'					
J				Е	1.0
7' 	Brown Sandy SILT, tr. gravel				1.0
,	Brown Suriay Sizir, in graver		/	1	
8' 	Test Pit (Complete at 7.0'			
J	restrice	ompicie at 7.0			
9' <u></u>					
,					
10					
10					
11'					
11					
12'					
12					
421					
13'					
14'					
14	 				
		<u> </u>			<u> </u>
Remarks:		ABREVIATION:	S	PROP USED	
1. No GW encountered	ed at completion.	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. Slight diesel odor/	no discoloration.	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
-		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
			v - V LIX I	LIND	33 - 30 /0
		YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

PENN- EMPIRE TRANSPORTATION NYSDEC

EMPIRE GEO SERVICES, INC.
J. METZGER

DATE
LOCATION
TEST PIT NO.
PROJECT NO.
WEATHER / TEMP

11/20/2008 CELORON, NY

TP-20

BEV-08-028

SNOW/OVERCAST ~25 Degrees F

EXCAVATION EQUIP GROUND ELEV TIME STARTED TIME FINISHED

1100 1145

OPERATOR MAKE/ MODEL CAPACITY REACH

DEPTH	SOIL DE	SCRIPTION		EXCAV EFFORT	PID
1'	own Sandy SILT, little f-c Grav	el, tr. clay		E	0.0
2'				E	0.0
3'				E	0.0
sa	me			E	0.0
4' —				E	0.0
5'				_	
6' —	Test Pit Co	omplete at 5.5'			
7' —					
8' <u></u>					
9' —					
10					
11'					
12'					
13'					
14'					
		<u> </u>			
Remarks:		ABREVIATION:	S	PROP USED	
. No GW encountered at		F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
2. No petroleum odor/ disc	coloration.	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
		YEL-YELLOW			

START FINISH 12/10/2008

D. MATTHIES

METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-1
SURF. ELEV
G.W. DEPTH See Notes

PRO	JE	·					ANSF	SPORTATION LOCATION: 100 E. LIVINGSTON AVE.			
PRO				′-08-0				CELORON, N			
DEPTH		SMPL		BLO	WS ON S	AMPLER		SOIL OR ROCK	NOTES		
FT.		NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION			
_	٨								PID= Photoionization		
	$ \langle \rangle $								Detector		
									BG= Background		
									measured in parts per		
5									million		
	()										
	١٧										
		1	3	3				Brown f-c SAND, some fine Gravel, little Silt			
10	/		3	3		6	BG	(moist, FILL)			
		2	3	3							
			2	3		5	BG				
		3	6	5				Brown- Grey f-c SAND, some fine Gravel, little Silt			
			4	5		9	BG	(moist, loose)			
15		4	5	6							
			3	4		9	BG	Brown f-c GRAVEL and f-c Sand, little Silt			
	/	5	7	5				(moist, loose)			
			6	7		11	BG	Contains some f-c Sand (firm)			
_	/	6	10	11					Possible cobble fragments		
20	\angle		27	20		38	BG	(compact)	Sample #6.		
_	/	7	10	14				Becomes Grey Fine Gravel, some f-c Sand,			
	Z,		16	12		28	BG	some Clayey Silt (moist, firm)			
	/	8	15	11				Becomes f-c Gravel			
	V,	_	14	11		25	BG		_		
25	/	9	8	6		40	D.O.		<u> </u>		
_	/	40	6	9		12	BG	Grey Silty CLAY, some f-c Sand, little f-c Gravel			
	/	10	9 22	7		29	BG	(moist, firm)			
_	-		22	50/0.2		29	ВG				
30								Boring Complete at Sampler Refusal at 27.7'	No Free Standing Water		
_ ~ _								and Auger Refusal at 28.0'	Encountered at Boring		
								and Auger Nerusar at 20.0	Completion		
_											
35									_		
									_		
_									_		
-									_		
40											
	N =	NO. BL	OWS TO	D DRIVI	E 2-INC	H SPOO	ON 12-IN	CHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL	ASSIFIED BY: Geologist		

DRILL RIG TYPE: CME-550X

START

12/10/2008

FINISH SHEET 12/10/2008 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-2
SURF. ELEV
G.W. DEPTH See Notes

PRO	PROJECT: PENN EMPIRE TRANSPORTATION LOCATION: 100 E. LIVINGSTON AVE.								
PRO.	J. N	۱O.:	BEV	-08-0	028			CELORON, N	
								SOIL OR ROCK	NOTES
DEPTH FT.		SMPL NO.	0/6	6/12	12/18	N N	PID	CLASSIFICATION	NOTES
	/	1	3	2				Brown f-c SAND, little fine Gravel, little Clayey Silt	PID= Photoionization
	/		2	2		4	BG	(moist, possible FILL, loose)	Detector
		2	2	2				Becomes Orange- Brown, contains some Clayey Silt	BG= Background,
	/		3	3		5	BG		measured in parts per
5		3	4	3				Brown Fine SAND, some Clayey Silt, little f-c Gravel	million
	V		5	7		8	BG	(moist, loose, possible FILL)	
		4	7	4				,	
	V		5	5		9	BG		
		5	4	10				Brown f-m Sand, little Silt, tr. gravel	
10	V		6	11		16	BG	(moist, firm)	
		6	4	16					No Recovery Sample #6
	V		12	20		28	BG		
		7	14	19				Becomes f-c Sand, some fine Gravel, little Silt	_
	/		17	20		36	BG	(compact)	_
15		8	28	14					
			15	12		29	BG	(firm)	_
		9	5	8				Contains tr. gravel	
			7	6		15	BG	Brown SILT and fine Sand (moist, firm)	
	I/I	10	8	10				Brown f-c SAND and f-c Gravel, little Silt (moist, firm)	Poor Recovery Sample #10
20			11	11		21	BG		
	1/	11	1	11				Brown f-c GRAVEL, some f-c Sand, tr. clayey silt	
	\angle		12	12		23	BG	(wet, firm)	<u></u>
	1/	12	11	16				Contains and f-c Sand, little Clayey Silt	
	Z,		10	12		26	BG		<u> </u>
25	/	13	16	27				Brown f-c SAND, some f-c Gravel, little Clayey Silt	
	Z,		22	19		49	BG	(moist, compact)	
	/	14	16	27				Becomes Grey, contains some Clayey Silt,	
_	/		22	12		49	BG	little f-c Gravel	
	-							D : 0 14 400 01	
30	- 1							Boring Complete at 28.0'	No Free Standing Water
_	-								Measurement Obtained
_	-								at Boring Completion
	- 1								
	-								
35	-								_
	-							+	_
_	-							1	_
								1	_
40									_
			1		1			I	I .

N = NO. BLO	NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: Geologist								
DRILLER:	D. MAT	THIES	DRILL RIG TYPE :	CME-550X					
METHOD OF	INVESTIGATION	ASTM D-1586 U	SING HOLLOW STEM AUGERS						

START FINISH 12/11/2008

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-3
SURF. ELEV
G.W. DEPTH See Notes

PROJECT: PENN EMPIRE TRANSPORTATION LOCATION					40.0	OODTATION LOCATION 400 F LUVING	OTON AVE		
						L IR	ANSF		
PRO	J. I	VO.:	RFA	-08-(J28			CELORON, N	EW YUKK
DEPTH		SMPL		BLO	WS ON S	AMPLER		SOIL OR ROCK	NOTES
FT.		NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION	
_	٨								PID= Photoionization
] [}								Detector
									BG= Background,
	111								measured in parts per
5									million
	111								_
	11/								_
	۷,								_
		1	5	16				Brown f-c SAND and fine Gravel, little Silt, occasional	_
10	/		18	26		34	BG	Cobble (moist, FILL)	_
	7	2	28	9					_
	V		7	5		16	BG	Brown Fine SAND, little Silt (moist, firm)	_
	1	3	10	9				` · · · · ·	_
	1		8	8		17	BG	Contains tr. gravel	_
15	1	4	15	9					Poor Recovery Sample #4
	/		11	12		20	BG	Contains little fine Gravel	_
	1	5	17	15				Brown f-c GRAVEL and f-c Sand, little Silt,	<u> </u>
	/		15	15		30	BG	occasional Cobble (moist, firm)	_
	7	6	17	9				Grey Clayey SILT, some f-c Sand, little fine Gravel	<u> </u>
20	/		10	9		19	BG	(moist, firm)	_
	1	7	21	15				Grey f-c GRAVEL, some f-c Sand, some Clayey Silt	_
	/		16	17		31	BG	(moist, compact)	_
	1	8	17	27					_
	/		25	26		52	BG	(v. compact)	_
25	1	9	10	13				` ' '	_
	/		20	34		33	BG	(compact)	REF= Sample Spoon
	1/	10	24	20				(43)	Refusal
	/		18	21		38	BG		_
	\angle	11	7	50/0.2		REF	BG	(v. compact)	Possible weathered
30	Λ							` ' '	rock Sample #'s 10 & 11.
	1								_
	1,								_
									_
								Boring Complete with Auger Refual at 32.5'	No Free Standing Water
35	1							3 , 13 1 1 1 1 1 1 1	Encountered at Boring
	1								Completion
	1				t				
	1				t				_
_	1								_
40	1				t				_
	1	1	1	1	1		1	1	1
	N =	NO. BL	OWS TO	D DRIVI	E 2-INC	H SPOC	N 12-IN	CHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL	ASSIFIED BY: Geologist
		ILLER:			MATT		•	DRILL RIG TYPE : CME-550X	

METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

START

12/11/2008

FINISH SHEET 12/11/2008

1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-4 SURF. ELEV

G.W. DEPTH See Notes

PRO						E TR	ANSF	PORTATION LOCATION: 100 E. LIVING	
PRO	J. N	1O.:	BEV	-08-0	028			CELORON, N	EW YORK
DEPTH		SMPL		BLO	WS ON S	AMPLER		SOIL OR ROCK	NOTES
FT.		NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION	
	٨								PID= Photoionization
	Į١								Detector
									BG= Background,
									measured in parts per
5									million
	17								
	V								
-	7	1	6	6				Light Brown Fine SAND, some Silt	_
10	/		8	8		14	BG	(moist, firm, possible FILL)	
		2	3	6				,	_
	/		5	6		11	BG		
	$^{\prime}$	3	4	8				Contains occasional Silt seams	
	/		8	7		16	BG	Contains socional on socinis	
15	$^{\prime\prime}$	4	16	24				Grey- Brown f-c SAND, little fine Gravel, little Silt	
_ ` _	/	•	18	24		42	BG	(moist, compact)	
	$^{\prime}$	5	30	30		72	50	Brown SILT, little fine Sand, tr. clay partings,	· —
	/		20	17		50	BG	occasional f-c Sand seams (moist, v. compact)	
	-	6	18	24		00	50	Toocasionai i o dana seams (moist, v. compact)	No Recovery Sample #6
20	/		22	21		46	BG	(compact)	
		7	12	12				Red- Brown Fine SAND, some Silt, little f-c Gravel	
	/		13	8		25	BG	(moist, firm)	
	$^{\prime}$	8	7	9				Becomes Grey, tr. gravel	
	/		8	8		17	BG	Joseph Groy, an graver	
25	$^{\prime}$	9	4	8		• • •		Becomes Brown f-c Sand and f-c Gravel, tr. silt	
	/		7	8		15	BG	,,	_
	$^{\prime}$	10	7	10					
	/		12	14		22	BG	(wet)	
	\forall	11	3	6				Brown f-c GRAVEL, some f-c Sand, tr. silt (wet, firm)	
30	/	-	9	9		15	BG	,	
		12	11	12					_
	/		8	9		20	BG	Grey f-c SAND, some Clayey Silt, little fine Gravel	-
			Ū					(moist, firm)	7
								(mass, mm)	
35								Boring Complete at 32.0'	Free Standing Water
								3 22 , 222 22	Encountered at 27.5' at
									Boring Completion
40									_
-				1	1			1	1
	N =	NO. BL	OWS TO	DRIVI	E 2-INC	H SPOC	ON 12-IN	CHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW	ASSIFIED BY: Geologist

DRILLER: A. KOSKE DRILL RIG TYPE: CME-550X

METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

START FINISH 12/12/2008

SHEET

1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-5
SURF. ELEV
G.W. DEPTH See Notes

CLASSIFIED BY:

Geologist

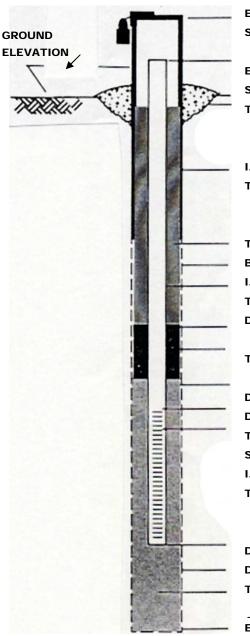
PROJECT: PENN EMPIRE TRAN				VNICE		STON AVE			
						⊏ IK	HINDE		
PRU	J. I	1O.:	BEV	-UÖ-(J∠ŏ			CELORON, N	EW TURK
DEPTH		SMPL		BLO	WS ON S	AMPLER		SOIL OR ROCK	NOTES
FT.		NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION	
	٨								PID= Photoionization
	1[][Detector
	1 t								BG= Background,
_	1								
5	1								million
_	1 t								_
	┤∤┟								measured in parts per million
_	۱۷۱								
_	1	1	12	7				Brown f-m SAND, some Silt, tr. clay	
10	/	<u>'</u>	5	5		12	BG	(moist, firm)	_
_ '	1	2	6	4		12	20	(_
	/		2	5		6	BG	(loose)	_
_	//	3	12	7		U	ВС	(10056)	
_	1/1	<u> </u>	11	8		18	BG	Contains some fine Gravel (wet, firm)	_
45	٧,	4	3	5		10	В	Contains some line Graver (wet, min)	_
15	- /⊦	4	_			0.4	D.C.	Cantaina ta annual	
_	٧,		19	19		24	BG	Contains tr. gravel	
	∤/	5	11	8		4-7		()	
	γ,		9	9		17	BG	(moist)	<u> </u>
	∤/	6	15	11				Brown f-c GRAVEL, some f-m Sand, little Silt	_
20	/		10	16		21	BG	(moist, firm)	
_	-								
	┥ .							Boring Complete at 20.0'	No Free Standing Water
	┥ .								Measurement Obtained
_	┨								Measurement Obtained at Boring Completion
25	┪ .								
_									
_									
_	↓ 								_
30]								_
] [
35									
] [
	1								
	1								
	1								_
40	1								_
			•						

N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW

METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

DRILL RIG TYPE: CME-550X

DRILLER: A. KOSKE


A T7	$\Gamma \Lambda$	\sim 1	IN	4 C I	NIT	\sim
AT	М	СΓ	IΙV	ILI	I VI	U

Monitoring Well Diagrams

MONITORING WELL COMPLETION RECORD

PROJECT:	Penn Empire Trans	sportation	SERVICES, INC.
PROJECT NUMBER:	BEV-08-028	DRILLING METHOD:	ASTM D-1586
WELL NUMBER:	MW-2	GEOLOGIST:	S. Bochenek
DRILLER:	D. Matthies	INSTALLATION DATE	E(S): 12/10/08

ELEVATIONS/ TOP OF SURFACE CASING:

STICK- UP/ TOP OF SURFACE CASING:

N/A

N/A

ELEVATION/ TOP OF RISER PIPE: N/A

STICK- UP/ TOP OF RISER PIPE: 2.0'

TYPE OF SURFACE SEAL: Concrete

I.D. OF SURFACE CASING: 4"

TYPE OF SURFACE CASING: Galvanized

TYPE OF BACKFILL:

BOREHOLE DIAMETER:

1.D. OF RISER PIPE:

TYPE OF RISER PIPE:

DEPTH OF SEAL:

Cement Grout

9"

2"

TYPE OF RISER PIPE:

PVC

13.5'

TYPE OF SEAL: Bentonite Chips

 DEPTH OF SAND PACK:
 16.0'

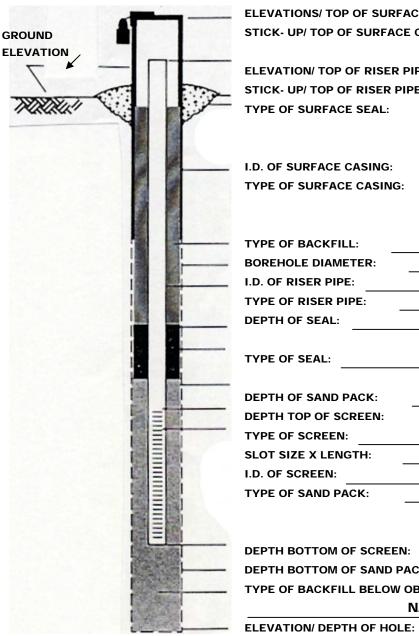
 DEPTH TOP OF SCREEN:
 18.0'

 TYPE OF SCREEN:
 PVC

 SLOT SIZE X LENGTH:
 0.10"x10'

 I.D. OF SCREEN:
 2"

 TYPE OF SAND PACK:
 #1 Silica Sand


DEPTH BOTTOM OF SCREEN: 28.0'
DEPTH BOTTOM OF SAND PACK: 28.0'
TYPE OF BACKFILL BELOW OBSERVATION WELL:
N/A

ELEVATION/ DEPTH OF HOLE: 28.0'

MONITORING WELL COMPLETION RECORD

PROJECT:	Penn Empire Trans	sportation	SERVICES, INC.
PROJECT NUMBER:	BEV-08-028	DRILLING METHOD:	ASTM D-1586
WELL NUMBER:	MW-4	GEOLOGIST:	S. Bochenek
DRILLER:	A. Koske	INSTALLATION DATE	E(S): 12/11/08

ELEVATIONS/ TOP OF SURFACE CASING: N/A N/A STICK- UP/ TOP OF SURFACE CASING:

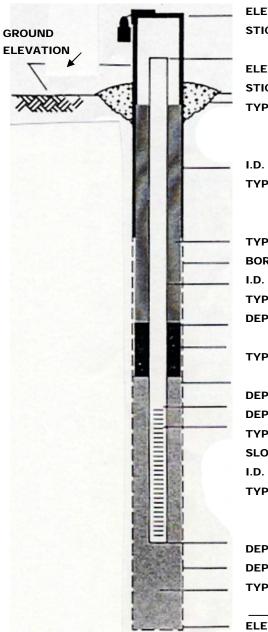
N/A **ELEVATION/ TOP OF RISER PIPE:** 2.0' STICK- UP/ TOP OF RISER PIPE: TYPE OF SURFACE SEAL: Concrete

I.D. OF SURFACE CASING: TYPE OF SURFACE CASING: Galvanized

Cement Grout TYPE OF BACKFILL: **BOREHOLE DIAMETER:** I.D. OF RISER PIPE: TYPE OF RISER PIPE: PVC DEPTH OF SEAL: 18.0'

Bentonite Chips TYPE OF SEAL:

DEPTH OF SAND PACK: 20.0' 22.0' **DEPTH TOP OF SCREEN:** PVC TYPE OF SCREEN: 0.10"x10' SLOT SIZE X LENGTH: 2" I.D. OF SCREEN: #1 Silica Sand TYPE OF SAND PACK:


32.0' **DEPTH BOTTOM OF SCREEN:** DEPTH BOTTOM OF SAND PACK: 32.0' TYPE OF BACKFILL BELOW OBSERVATION WELL: N/A

32.0'

MONITORING WELL COMPLETION RECORD

PROJECT:	Penn Empire Trans	sportation		SERVICES, INC.
PROJECT NUMBER:	BEV-08-028	DRILLING METHOD:	ASTI	M D-1586
WELL NUMBER:	MW-5	GEOLOGIST:	T. Hellert	
DRILLER:	A. Koske	INSTALLATION DATE	(S): 12/	12/08

ELEVATIONS/ TOP OF SURFACE CASING:

STICK- UP/ TOP OF SURFACE CASING:

N/A

N/A

ELEVATION/ TOP OF RISER PIPE: N/A

STICK- UP/ TOP OF RISER PIPE: 3.0'

TYPE OF SURFACE SEAL: Concrete

I.D. OF SURFACE CASING: 4"

TYPE OF SURFACE CASING: Galvanized

TYPE OF BACKFILL:

BOREHOLE DIAMETER:

1.D. OF RISER PIPE:

TYPE OF RISER PIPE:

DEPTH OF SEAL:

Cement Grout

9"

2"

PVC

6.0'

TYPE OF SEAL: Bentonite Chips

 DEPTH OF SAND PACK:
 7.5'

 DEPTH TOP OF SCREEN:
 10.0'

 TYPE OF SCREEN:
 PVC

 SLOT SIZE X LENGTH:
 0.10"x10'

 I.D. OF SCREEN:
 2"

 TYPE OF SAND PACK:
 #1 Silica Sand

DEPTH BOTTOM OF SCREEN: 20.0'
DEPTH BOTTOM OF SAND PACK: 20.0'
TYPE OF BACKFILL BELOW OBSERVATION WELL:
N/A

ELEVATION/ DEPTH OF HOLE: 20.0'

AΤ	ΓΔ	CH	IN/	F١	ıΤ	ח
\boldsymbol{n}		vı.			4 I	\boldsymbol{L}

TestAmerica's Analytical Reports

ANALYTICAL REPORT

Job#: <u>A08-B179</u>

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

Task: NYSDEC Spills - Penn Empire Site: Site #907034

Mr. Chad Staniszewski NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

CC: Mr. Tom Hellert

TestAmerica Laboratories Inc.

Brian J. Fischer Project Manager

09/26/2008

TestAmerica Buffalo Current Certifications

As of 6/15/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	Registration, NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

SAMPLE SUMMARY

			SAMPI	ED	RECEIV	ED
LAB SAMPLE ID	CLIENT SAMPLE ID	<u>MATRIX</u>	DATE	TIME	DATE	TIME
A8B17901	B-16	SOIL	09/10/2008	14:30	09/12/2008	10:45

METHODS SUMMARY

Job#: <u>A08-B179</u>

Project#: NY5A946109 Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

PARAMETER	ANALYTICAL METHOD		
NYSDEC - METHOD 8260 - TCL VOLATILE ORGANICS	SW8463 8260		
NYSDEC -S-METHOD 8270 - TCL SEMI-VOLATILE ORGANICS	SW8463 8270		
NYSDEC-SPILLS- 8082 - POLYCHLORINATED BIPHENYLS-S	SW8463 8082		
Aluminum - Total	SW8463 6010		
Antimony - Total	SW8463 6010		
Arsenic - Total	SW8463 6010		
Barium - Total	SW8463 6010		
Beryllium - Total Cadmium - Total	SW8463 6010 SW8463 6010		
Calcium - Total	SW8463 6010 SW8463 6010		
Chromium - Total	SW8463 6010		
Cobalt - Total	SW8463 6010		
Copper - Total	SW8463 6010		
Iron - Total	SW8463 6010		
Lead - Total	SW8463 6010		
Magnesium - Total	SW8463 6010		
Manganese - Total	SW8463 6010		
Mercury - Total	SW8463 7471		
Nickel - Total	SW8463 6010		
Potassium - Total	SW8463 6010		
Selenium - Total	SW8463 6010		
Silver - Total	SW8463 6010		
Sodium - Total	SW8463 6010		
Thallium - Total	SW8463 6010		
Vanadium - Total	SW8463 6010		
Zinc - Total	SW8463 6010		

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: A08-B179

Project#: <u>NY5A946109</u>

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-B179

Sample Cooler(s) were received at the following temperature(s); $6.0\,^{\circ}$ C All samples were received in good condition.

GC/MS Volatile Data

The recovery of multiple analytes in the Matrix Spike and in the Matrix Spike Duplicate of sample B-16 exceeded quality control limits. The Matrix Spike Blank recoveries were compliant, so no corrective action was performed.

The analyte Methylene Chloride was detected in the Method Blank at a level above the project established reporting limit. Samples had levels of Methylene Chloride less than ten times that of the Method Blank value. All sample detections for Methylene Chloride may potentially be due to laboratory contamination and should be evaluated accordingly. All associated sample detections were qualified with a "B".

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

GC Extractable Da	ata
-------------------	-----

No deviations from protocol were encountered during the analytical procedures.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager	
3	
Date	

Date: 09/26/2008 Time: 13:10:37

Dilution Log w/Code Information For Job AO8-B179

7/13 age: 1 Rept: AN1266R

Client Sample IDLab Sample IDParameter (Inorganic)/Method (Organic)DilutionCodeB-16A8B1790182705.00012

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Time: 13:10:48

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 **9/13** Page: 1 Rept: AN1178

Sample ID: B-16
Lab Sample ID: A8B17901
Date Collected: 09/10/2008
Time Collected: 14:30

Date Received: 09/12/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	ug/kg	8260	09/13/2008 02:07	CDC
1,1,2,2-Tetrachloroethane	ND		6	ug/kg	8260	09/13/2008 02:07	CDC
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	ug/kg	8260	09/13/2008 02:07	CDC
1,1,2-Trichloroethane	ND		6	ug/kg	8260	09/13/2008 02:07	CDC
1,1-Dichloroethane	ND		6	ug/kg	8260	09/13/2008 02:07	CDC
1,1-Dichloroethene	ND		6	ug/kg	8260	09/13/2008 02:07	CDC
1,2,4-Trichlorobenzene	ND		6	ug/kg	8260	09/13/2008 02:07	CDC
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
1,2-Dibromoethane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
1,2-Dichlorobenzene	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
1,2-Dichloroethane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
1,2-Dichloropropane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
1,3-Dichlorobenzene	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
1,4-Dichlorobenzene	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
2-Butanone	10	J	33	UG/KG	8260	09/13/2008 02:07	CDC
2-Hexanone	ND	-	33	UG/KG	8260	09/13/2008 02:07	CDC
4-Methyl-2-pentanone	ND		33	UG/KG	8260	09/13/2008 02:07	CDC
Acetone	67	В	33	UG/KG	8260	09/13/2008 02:07	CDC
Benzene	ND	_	6	UG/KG	8260	09/13/2008 02:07	CDC
Bromodichloromethane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Bromoform	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Bromomethane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Carbon Disulfide	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Carbon Tetrachloride	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Chlorobenzene	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Chloroethane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Chloroform	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Chloromethane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Cyclohexane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Dibromochloromethane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Dichlorodifluoromethane	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Ethylbenzene	ND		6	UG/KG	8260	09/13/2008 02:07	
Isopropylbenzene	ND		6	UG/KG	8260	09/13/2008 02:07	CDC
Methyl acetate	ND		6	UG/KG	8260	09/13/2008 02:07	
Methyl-t-Butyl Ether (MTBE)	ND ND		6	UG/KG	8260	09/13/2008 02:07	
Methylcyclohexane	ND ND		6	UG/KG	8260	09/13/2008 02:07	
Methylene chloride	14	В	6	UG/KG	8260	09/13/2008 02:07	
•	ND	Ь	6	UG/KG	8260	09/13/2008 02:07	
Styrene Tetrachloroethene	ND ND		6	UG/KG	8260	09/13/2008 02:07	
Toluene	ND ND		6	UG/KG	8260	09/13/2008 02:07	
				UG/KG		09/13/2008 02:07	
Total Xylenes trans-1,2-Dichloroethene	ND ND		20 6	UG/KG UG/KG	8260 8260	09/13/2008 02:07	
	ND ND			UG/KG UG/KG		09/13/2008 02:07	
trans-1,3-Dichloropropene	ND ND		6		8260 8260	09/13/2008 02:07	
Trichloroethene	ND ND		6	UG/KG	8260		
Trichlorofluoromethane	ND		6	UG/KG	8260	09/13/2008 02:07	
Vinyl chloride	ND		13	UG/KG	8260	09/13/2008 02:07	CDC

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Penn Empire Site: Site #907034

10/13 Page: 2 Rept: AN1178

Sample ID: B-16
Lab Sample ID: A8B17901
Date Collected: 09/10/2008
Time Collected: 14:30

Time: 13:10:48

Date Received: 09/12/2008
Project No: NY5A946109
Client No: L10190

			Detection			Date/Time	-
Parameter	Result	<u> Flag</u>	Limit	Units_	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2,4,5-Trichlorophenol	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2,4,6-Trichlorophenol	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2,4-Dichlorophenol	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2,4-Dimethylphenol	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2,4-Dinitrophenol	ND		2100	ug/kg	8270	09/17/2008 14:01	AJ
2,4-Dinitrotoluene	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2,6-Dinitrotoluene	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2-Chloronaphthalene	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2-Chlorophenol	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2-Methylnaphthalene	ND		1100	ug/kg	8270	09/17/2008 14:01	
2-Methylphenol	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
2-Nitroaniline	ND		2100	ug/kg	8270	09/17/2008 14:01	AJ
2-Nitrophenol	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ
3,3'-Dichlorobenzidine	ND		1100	ug/kg	8270	09/17/2008 14:01	
3-Nitroaniline	ND		2100	ug/kg	8270	09/17/2008 14:01	
4,6-Dinitro-2-methylphenol	ND		2100	ug/kg	8270	09/17/2008 14:01	
4-Bromophenyl phenyl ether	ND		1100	ug/kg	8270	09/17/2008 14:01	
4-Chloro-3-methylphenol	ND		1100	ug/kg	8270	09/17/2008 14:01	
4-Chloroaniline	ND		1100	ug/kg	8270	09/17/2008 14:01	
4-Chlorophenyl phenyl ether	ND		1100	ug/kg	8270	09/17/2008 14:01	
4-Methylphenol	ND		1100	ug/kg	8270	09/17/2008 14:01	
4-Nitroaniline	ND		2100	ug/kg	8270	09/17/2008 14:01	
4-Nitrophenol	ND		2100	ug/kg	8270	09/17/2008 14:01	
Acenaphthene	ND		1100	ug/kg	8270	09/17/2008 14:01	
Acenaphthylene	ND		1100	ug/kg	8270	09/17/2008 14:01	
Acetophenone	ND		1100	ug/kg	8270	09/17/2008 14:01	
Anthracene	49	J	1100	ug/kg	8270	09/17/2008 14:01	
Atrazine	ND		1100	ug/kg	8270	09/17/2008 14:01	
Benzaldehyde	ND		1100	ug/kg	8270	09/17/2008 14:01	
Benzo(a)anthracene	220	J	1100	ug/kg	8270	09/17/2008 14:01	
Benzo(a)pyrene	180	J	1100	ug/kg	8270	09/17/2008 14:01	
Benzo(b)fluoranthene	210	J	1100	ug/kg	8270	09/17/2008 14:01	
Benzo(ghi)perylene	120	J	1100	ug/kg	8270	09/17/2008 14:01	
Benzo(k)fluoranthene	110	J	1100	ug/kg	8270	09/17/2008 14:01	
Biphenyl	ND		1100	ug/kg	8270	09/17/2008 14:01	
Bis(2-chloroethoxy) methane	ND		1100	ug/kg	8270	09/17/2008 14:01	
Bis(2-chloroethyl) ether	ND		1100	ug/kg	8270	09/17/2008 14:01	
Bis(2-ethylhexyl) phthalate	ND		1100	ug/kg	8270	09/17/2008 14:01	
Butyl benzyl phthalate	ND		1100	ug/kg	8270	09/17/2008 14:01	
Caprolactam	ND		1100	UG/KG	8270	09/17/2008 14:01	
Carbazole	ND		1100	UG/KG	8270	09/17/2008 14:01	
Chrysene	190	J	1100	UG/KG	8270	09/17/2008 14:01	
Di-n-butyl phthalate	ND		1100	ug/kg	8270	09/17/2008 14:01	
Di-n-octyl phthalate	ND		1100	UG/KG	8270	09/17/2008 14:01	
Dibenzo(a,h)anthracene	ND		1100	UG/KG	8270	09/17/2008 14:01	
Dibenzofuran	ND		1100	UG/KG	8270	09/17/2008 14:01	
Diethyl phthalate	ND		1100	UG/KG	8270	09/17/2008 14:01	
Dimethyl phthalate	ND		1100	ug/kg	8270	09/17/2008 14:01	AJ

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

11/13 Page: 3 Rept: AN1178

Sample ID: B-16
Lab Sample ID: A8B17901
Date Collected: 09/10/2008
Time Collected: 14:30

Time: 13:10:48

Date Received: 09/12/2008 Project No: NY5A946109 Client No: L10190

			Detection			_	
Parameter	Result	Flag_	Limit	Units_	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	520	J	1100	ug/kg	8270	09/17/2008 14:	
Fluorene	ND		1100	ug/kg	8270	09/17/2008 14:	
Hexachlorobenzene	ND		1100	ug/kg	8270	09/17/2008 14:	01 AJ
Hexachlorobutadiene	ND		1100	ug/kg	8270	09/17/2008 14:	
Hexachlorocyclopentadiene	ND		1100	ug/kg	8270	09/17/2008 14:	01 AJ
Hexachloroethane	ND		1100	ug/kg	8270	09/17/2008 14:	01 AJ
Indeno(1,2,3-cd)pyrene	98	J	1100	ug/kg	8270	09/17/2008 14:	01 AJ
Isophorone	ND		1100	ug/kg	8270	09/17/2008 14:	01 AJ
N-Nitroso-Di-n-propylamine	ND		1100	ug/kg	8270	09/17/2008 14:	01 AJ
N-nitrosodiphenylamine	ND		1100	UG/KG	8270	09/17/2008 14:	01 AJ
Naphthalene	ND		1100	ug/kg	8270	09/17/2008 14:	01 AJ
Nitrobenzene	ND		1100	UG/KG	8270	09/17/2008 14:	D1 AJ
Pentachlorophenol	ND		2100	UG/KG	8270	09/17/2008 14:	01 AJ
Phenanthrene	330	J	1100	UG/KG	8270	09/17/2008 14:	
Phenol	ND		1100	UG/KG	8270	09/17/2008 14:	
Pyrene	360	J	1100	ug/kg	8270	09/17/2008 14:	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		22	ug/kg	8082	09/16/2008 23:	41 DW
Aroclor 1221	ND		22	UG/KG	8082	09/16/2008 23:	41 DW
Aroclor 1232	ND		22	UG/KG	8082	09/16/2008 23:	
Aroclor 1242	ND		22	UG/KG	8082	09/16/2008 23:	
Aroclor 1248	5.7	J	22	UG/KG	8082	09/16/2008 23:	
Aroclor 1254	12	J	22	UG/KG	8082	09/16/2008 23:	
Aroclor 1260	ND		22	UG/KG	8082	09/16/2008 23:	
Metals Analysis							
Aluminum - Total	11200		14.1	MG/KG	6010	09/15/2008 18:	58 TWS
Antimony - Total	ND		21.1	MG/KG	6010	09/15/2008 18:	58 TWS
Arsenic - Total	8.0		2.8	MG/KG	6010	09/15/2008 18:	
Barium - Total	192		0.70	MG/KG	6010	09/15/2008 18:	
Beryllium - Total	0.47		0.28	MG/KG	6010	09/15/2008 18:	
Cadmium - Total	0.35		0.28	MG/KG	6010	09/15/2008 18:	
Calcium - Total	3120		70.4	MG/KG	6010	09/15/2008 18:	
Chromium - Total	13.5		0.70	MG/KG	6010	09/15/2008 18:	
Cobalt - Total	5.7		0.70	MG/KG	6010	09/15/2008 18:	
Copper - Total	17.4		1.4	MG/KG	6010	09/15/2008 18:	
Iron - Total	18900		14.1	MG/KG	6010	09/15/2008 18:	
Lead - Total	46.0		1.4	MG/KG	6010	09/15/2008 18:	
Magnesium - Total	2100		28.2	MG/KG	6010	09/15/2008 18:	
Manganese - Total	836		0.28	MG/KG	6010	09/15/2008 18:	
Mercury - Total	0.12		0.028	MG/KG	7471	09/15/2008 14:	
Nickel - Total	12.7		0.028	MG/KG	6010	09/15/2008 14:	
Potassium - Total	598		42.2	MG/KG	6010	09/15/2008 18:	
Selenium – Total	ND		5.6	MG/KG	6010	09/15/2008 18:	
Silver - Total			0.70	MG/KG	6010	09/15/2008 18:	
Sodium - Total	ND ND		197	MG/KG	6010	09/15/2008 18:	
Socium - Total Thallium - Total	ND ND		8.4	MG/KG	6010	09/15/2008 18:	
mattum Totat	ND		0.4	no/ No	0010	071 171 2000 10:	58 TWS

Date: 09/26/2008 Time: 13:10:48 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 **12/13** Page: 4 Rept: AN1178

Sample ID: B-16
Lab Sample ID: A8B17901
Date Collected: 09/10/2008

Time Collected: 14:30

Date Received: 09/12/2008 Project No: NY5A946109

Client No: L10190

				Detection	Date/Time					
Pa	rameter	Result	<u>Flag</u>	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>		
Metals Analysis										
Zinc - Total		77.9		2.8	MG/KG	6010	09/15/2008 18:5	8 TWS		

Chain of Custody Record

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

											 				. \	13	/13	
Chain of Custody Number	38384	Page of	Special Instructions/	Conditions of Receipt									(A fee may be assessed if samples are retained longer than 1 morth)		Date Time 10:45	Date Time	Date Time	
Date	4-10 - 00	Analysis (Attach list if more space is needed)		\$ 9	?ન ્	×							(A fee may be asse Months longer than 1 month				· · · · · · · · · · · · · · · · · · ·	6.0.3
STANJSZEWSE	R. Number NISDEK	Lab Contact	771	Containers & Conta	28 28 2004 2004 1004 1004 1004								Disposal By Lab	Ιğ	1. Becgred By	2. Received By	3. Received By	
OHOD See	Number (Area Code)/Fa	110 549	Carrier/Waybill Number	Matrix	Air Advecus Soil	>	200						Sample Disposal Return To Client	STS	Time	Date Time	Date Time	
	1 TO MICHIGANBUR TELEPHONE				Date	9-10-8 224	1430						itant Poison B Unknown	4 Davs 71 Davs			0	
Client V () () () () () () () () ())	City State Zip Code ANY 1.4.2.1.3	Project Name and Location (State) From A ENN ENITE, & CELLEN, NY	Contract/Purchase Order/Ouote No.	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	7-7							Possible Hazard Identification Non-Hazard	e Required	Mr. M. J.	2. Relinquished/8/	3. Relinquished By	Comments

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

Job#: <u>A08-E934</u>

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
Task: NYSDEC Spills - Penn Empire Site: Site #907034

Mr. Chad Staniszewski NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

CC: Mr. Tom Hellert

TestAmerica Laboratories Inc.

Brian J. Fischer Project Manager

12/09/2008

TestAmerica Buffalo Current Certifications

As of 11/3/2008

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

SAMPLE SUMMARY

			SAMPI		RECEIVI	ED .
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A8E93401	SS-1 (TP-5)	SOIL			11/21/2008	
A8E93404	SS-2	SOIL			11/21/2008	
A8E93405	SS-3	SOIL			11/21/2008	
A8E93407	SS-4 (TP-12)	SOIL	11/19/2008	13:30	11/21/2008	13:30
A8E93406	TP-11 @ 5	SOIL	11/19/2008	12:15	11/21/2008	13:30
A8E93408	TP-12 @ 4	SOIL	11/19/2008	13:45	11/21/2008	13:30
A8E93409	TP-19 @ 3.5	SOIL			11/21/2008	
A8E93402	TP-5 @ 11	SOIL	11/18/2008	14:00	11/21/2008	13:30
A8E93403	TP-8 @ 2	SOIL	11/19/2008	10:00	11/21/2008	13:30

METHODS SUMMARY

Job#: <u>A08-E934</u>

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

	ΔNT	ALYTICAL
PARAMETER		METHOD
NYSDEC - METHOD 8260 - TCL VOLATILE ORGANICS	SW8463	
NYSDEC -S-METHOD 8270 - TCL SEMI-VOLATILE ORGANICS	SW8463	8270
NYSDEC-SPILLS- 8082 - POLYCHLORINATED BIPHENYLS-S	SW8463	8082
Aluminum - Total	SW8463	6010
	SW8463	
Antimony - Total		
Arsenic - Total	SW8463	
Barium - Total	SW8463	
Beryllium - Total	SW8463	+
Cadmium - Total	SW8463	
Calcium - Total	SW8463	
Chromium - Total	SW8463	
Cobalt - Total	SW8463	
Copper - Total	SW8463	
Iron - Total	SW8463	6010
Lead - Total	SW8463	6010
Magnesium - Total	SW8463	6010
Manganese - Total	SW8463	6010
Mercury - Total	SW8463	7471
Nickel - Total	SW8463	6010
Potassium - Total	SW8463	6010
Selenium - Total	SW8463	6010
Silver - Total	SW8463	6010
Sodium - Total	SW8463	6010
Thallium - Total	SW8463	
Vanadium - Total	SW8463	
Zinc - Total	SW8463	

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: <u>A08-E934</u>

Project#: <u>NY5A946109</u>

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-E934

Sample Cooler(s) were received at the following temperature(s); $6.0\,^{\circ}$ C All samples were received in good condition.

GC/MS Volatile Data

No deviations from protocol were encountered during the analytical procedures.

GC/MS Semivolatile Data

The surrogate recovery for 2,4,6-Tribromophenol was below the laboratory quality control limits for sample SS-4(TP-12). Based on US EPA CLP National Functional Guidelines for Data Review, one surrogate in either fraction (base/neutral or acid fraction) may have a recovery outside of the control limit. All analytes associated with that surrogate should be considered biased low.

GC Extractable Data

For method 8082, sample 07 was re-extracted within holding time due to Method Blank contamination. Only the re-extraction data for this sample is reported and identified with an "RE" suffix on the laboratory ID.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

129-08

Date

Dilution Log w/Code Information For Job A08~E934 7/29 age:

Rept: AN1266R

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	Dilution	Code
SS-1 (TP-5)	A8E93401	8270	20.00	012
TP~5 @ 11	A8E93402	8270	20.00	012
TP-11 @ 5	A8E93406	8270	20.00	012
SS-4 (TP-12)	A8E93407	8270	20.00	012

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Penn Empire Site: Site #907034

9/29 Page:

Rept: AN1178

Sample ID: SS-1 (TP-5)
Lab Sample ID: A8E93401
Date Collected: 11/18/2008
Time Collected: 12:00

Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

		Detection			Date/Time	
Parameter	Result	FlagLimit	Units	Method	Analyzed	Analysi
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS						
2,2'-0xybis(1-Chloropropane)	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
2,4,5-Trichlorophenol	ND	4000	∪6/KG	8270	12/05/2008 19:04	BWM
2,4,6-Trichlorophenol	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
2,4-Dichlorophenol	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
2,4-Dimethylphenol	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
2,4-Dinitrophenol	ND	7700	ug/kg	8270	12/05/2008 19:04	BWM
2,4-Dinitrotoluene	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
2,6-Dinitrotoluene	ND	4000	υg/kg	8270	12/05/2008 19:04	BWM
2-Chloronaphthalene	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
2-Chlorophenol	ND	4000	UG/KG	8270	12/05/2008 19:04	BWM
2-Methylnaphthalene	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
2-Methylphenol	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
2-Nitroaniline	NÐ	7700	UG/KG	8270	12/05/2008 19:04	BWM
2-Nitrophenol	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
3,3'-Dichlorobenzidine	ND	4000	UG/KG	8270	12/05/2008 19:04	BWM
3-Nitroaniline	ND	7700	ug/kg	8270	12/05/2008 19:04	BWM
4,6-Dinitro-2-methylphenol	ND	7700	ug/kg	8270	12/05/2008 19:04	BWM
4-Bromophenyl phenyl ether	ND	4000	υG/KG	8270	12/05/2008 19:04	BWM
4-Chloro-3-methylphenol	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
4-Chloroaniline	ND	4000	ug/kg	8270	12/05/2008 19:04	BWM
4-Chlorophenyl phenyl ether	ND	4000	ug/kg	8270	12/05/2008 19:04	
4-Methylphenol	ND	4000	ug/kg	8270	12/05/2008 19:04	
4-Nitroaniline	ND	7700	ug/kg	8270	12/05/2008 19:04	
4-Nitrophenol	ND	7700	UG/KG	8270	12/05/2008 19:04	
Acenaphthene	ND	4000	UG/KG	8270	12/05/2008 19:04	
Acenaphthylene	ND	4000	ug/kg	8270	12/05/2008 19:04	
Acetophenone	ND	4000	UG/KG	8270	12/05/2008 19:04	
Anthracene	ND	4000	υG/KG	8270	12/05/2008 19:04	
Atrazine	ND	4000	UG/KG	8270	12/05/2008 19:04	
Benzaldehyde	ND	4000	UG/KG	8270	12/05/2008 19:04	
Benzo(a)anthracene	ND	4000	ug/kg	8270	12/05/2008 19:04	
Benzo(a)pyrene	ND	4000	UG/KG	8270	12/05/2008 19:04	
Benzo(b)fluoranthene	ND	4000	υg/kg	8270	12/05/2008 19:04	
Benzo(ghi)perylene	ND	4000	UG/KG	8270	12/05/2008 19:04	
Benzo(k)fluoranthene	ND	4000	UG/KG	8270	12/05/2008 19:04	
Biphenyl	ND	4000	UG/KG	8270	12/05/2008 19:04	
Bis(2-chloroethoxy) methane	ND	4000	UG/KG	8270	12/05/2008 19:04	
Bis(2-chloroethyl) ether	ND	4000	υg/kg	8270	12/05/2008 19:04	
Bis(2-ethylhexyl) phthalate	ND	4000	UG/KG	8270	12/05/2008 19:04	
Butyl benzyl phthalate	ND	4000	UG/KG	8270	12/05/2008 19:04	
Caprolactam	ND	4000	UG/KG	8270	12/05/2008 19:04	
Carbazole	ND	4000	UG/KG	8270	12/05/2008 19:04	
Chrysene	ND	4000	UG/KG	8270	12/05/2008 19:04	
Di-n-butyl phthalate	ND	4000	UG/KG	8270	12/05/2008 19:04	
Di-n-octyl phthalate	ND	4000	UG/KG	8270	12/05/2008 19:04	
Dibenzo(a,h)anthracene	ND	4000	UG/KG	8270	12/05/2008 19:04	
Dibenzofuran	ND	4000	UG/KG	8270	12/05/2008 19:04	
Diethyl phthalate	ND	4000	ug/kg	8270	12/05/2008 19:04	
Illernyi nnthalate						

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

Rept: AN1178

Site No:

, Sample ID: SS-1 (TP-5) Lab Sample ID: A8E93401 Date Collected: 11/18/2008 Time Collected: 12:00

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		4000	UG/KG	8270	12/05/2008 19:04	BWM
Flyorene	ND		4000	ug/kg	8270	12/05/2008 19:04	BWM
Hexachlorobenzene	ND		4000	ug/kg	8270	12/05/2008 19:04	BWM
Hexachlorobutadiene	ND		4000	UG/KG	8270	12/05/2008 19:04	BWM
Hexachlorocyclopentadiene	ND		4000	ug/kg	8270	12/05/2008 19:04	BWM
Hexachloroethane	NĐ		4000	ug/kg	8270	12/05/2008 19:04	BWM
Indeno(1,2,3-cd)pyrene	NĐ		4000	ug/kg	8270	12/05/2008 19:04	BWM
Isophorone	ND		4000	ug/kg	8270	12/05/2008 19:04	BWM
N-Nitroso-Di-n-propylamine	ND		4000	ug/kg	8270	12/05/2008 19:04	BWM
N-nitrosodiphenylamine	ND		4000	∪G/KG	8270	12/05/2008 19:04	BWM
Naphthalene	ND		4000	UG/KG	8270	12/05/2008 19:04	BWM
Nitrobenzene	ND		4000	∪G/KG	8270	12/05/2008 19:04	BWM
Pentachlorophenol	ND		7700	ug/kg	8270	12/05/2008 19:04	BWM
Phenanthrene	ND		4000	ŲG/KG	8270	12/05/2008 19:04	BWM
Phenol	ND		4000	UG/KG	8270	12/05/2008 19:04	BWM
Pyrene	ND		4000	UG/KG	8270	12/05/2008 19:04	вум
Metals Analysis							
Aluminum - Total	8730		11-1	MG/KG	6010	11/26/2008 17:49	АН
Antimony - Total	ND		16.6	MG/KG	6010	11/26/2008 17:49	AH
Arsenic - Total	8.9		2.2	MG/KG	6010	11/26/2008 17:49	AH
Barium - Total	90.4		0.55	MG/KG	6010	11/26/2008 17:49	
Beryllium - Total	0.34		0.22	MG/KG	6010	11/26/2008 17:49	AH
Cadmium - Total	0.40		0.22	MG/KG	6010	11/26/2008 17:49	
Calcium - Total	4900		55.4	MG/KG	6010	11/26/2008 17:49	
Chromium ~ Total	10.4		0.55	MG/KG	6010	11/26/2008 17:49	
Cobalt - Total	5.9		0.55	MG/KG	6010	11/26/2008 17:49	
Copper - Total	19.6		1.1	MG/KG	6010	11/26/2008 17:49	АН
Iron - Total	16700		11.1	MG/KG	6010	11/26/2008 17:49	AH
Lead - Total	29,5		1.1	MG/KG	6010	11/26/2008 17:49	АН
Magnesium ~ Total	2620		22.2	MG/KG	6010	11/26/2008 17:49	АН
Manganese - Total	571		0.22	MG/KG	6010	11/26/2008 17:49	
Mercury - Total	0.20		0.025	MG/KG	7471	11/26/2008 18:15	
Nickel - Total	14.0		0.55	MG/KG	6010	11/26/2008 17:49	
Potassium - Total	542		33.3	MG/KG	6010	11/26/2008 17:49	
Selenium - Total	ND		4.4	MG/KG	6010	11/26/2008 17:49	
Silver - Total	ND		0.55	MG/KG	6010	11/26/2008 17:49	
Sodium - Total	ND		155	MG/KG	6010	11/26/2008 17:49	
Thallium - Total	ND		6.6	MG/KG	6010	11/26/2008 17:49	
Vanadium - Total	13.9		0.55	MG/KG	6010	11/26/2008 17:49	
Zinc ~ Total	75.6		2.2	MG/KG	6010	11/26/2008 17:49	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 Rept: AN1178

Sample ID: SS-2

Lab Sample ID: A8E93404
Date Collected: 11/19/2008

Time Collected: 10:15

Date Received: 11/21/2008

Project No: NY5A946109 Client No: L10190

Washington .							
			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	<u>Method</u>	Analyzed	<u>Analyst</u>
Metals Analysis							
Lead - Total	3140		1.4	MG/KG	6010	11/26/2008 18:18	АН

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034

Rept: AN1178

Sample ID: SS-3

Lab Sample ID: A8E93405 Date Collected: 11/19/2008

Time Collected: 10:20

Date Received: 11/21/2008

Project No: NY5A946109

Client No: L10190

	,			Detection			Date/Time	
P	arameter	Result	Flag	Limit	<u>Units</u>	<u>Method</u>	Analyzed	Analyst
Metals Analysis Lead – Total		9260		1.5	MG/KG	6010	11/26/2008 18:23	АН

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

Rept: AN1178

NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

Site No:

Lab Sample ID: A8E93407
Date Collected: 11/19/2008
Time Collected: 13:30

Sample ID: SS-4 (TP-12)

Time Collected: 13:30						Site No:	
			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units_	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		4000	ug/kg	8270	12/05/2008 20:36	В₩М
2,4,5-Trichlorophenol	ND		4000	ug/kg	8270	12/05/2008 20:36	
2,4,6-Trichlorophenol	NĐ		4000	ug/kg	8270	12/05/2008 20:36	BWM
2,4-Dichlorophenol	ND		4000	ug/kg	8270	12/05/2008 20:36	
2,4-Dimethylphenol	ND		4000	UG/KG	8270	12/05/2008 20:36	
2,4-Dinitrophenol	ND		7700	UG/KG	8270	12/05/2008 20:36	
2,4-Dinitrotoluene	ND		4000	UG/KG	8270	12/05/2008 20:36	
2,6-Dinitrotoluene	ND		4000	UG/KG	8270	12/05/2008 20:36	
2-Chloronaphthalene	ND		4000	ug/kg	8270	12/05/2008 20:36	
2-Chlorophenol	NĐ		4000	UG/KG	8270	12/05/2008 20:36	
2-Methylnaphthalene	ND		4000	ug/kg	8270	12/05/2008 20:36	
2-Methylphenol	ND		4000	ug/kg	8270	12/05/2008 20:36	
2-Nitroaniline	ND		7700	UG/KG	8270	12/05/2008 20:36	
2-Nitrophenol	ND		4000	UG/KG	8270	12/05/2008 20:36	
3,3'-Dichlorobenzidine	ND		4000	UG/KG	8270	12/05/2008 20:36	
3-Nitroaniline	ND		7700	UG/KG	8270	12/05/2008 20:36	
4,6-Dinitro-2-methylphenol	ND		7700	ug/kg	8270	12/05/2008 20:36	
4-Bromophenyl phenyl ether	ND		4000	UG/KG	8270	12/05/2008 20:36	
4-Chloro-3-methylphenol	ND		4000	ug/kg	8270	12/05/2008 20:36	
4-Chloroaniline	ND		4000	UG/KG	8270	12/05/2008 20:36	
4-Chlorophenyl phenyl ether	ND		4000	UG/KG	8270	12/05/2008 20:36	
4-Methylphenol	ND		4000	UG/KG	8270	12/05/2008 20:36	
4-Nitroaniline	ND ND		7700	UG/KG	8270	12/05/2008 20:36	
4-Nitrophenol	ND		7700	UG/KG	8270	12/05/2008 20:36	
Acenaphthene	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Acenaphthylene			4000	UG/KG			BWM
Ace tophenone	ND NO		•		8270	12/05/2008 20:36	
Anthracene	NĐ NĐ		4000	UG/KG	8270	12/05/2008 20:36	BWM
	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Atrazine Benzaldehyde	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
•	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Benzo(a)anthracene	360	J	4000	UG/KG	8270	12/05/2008 20:36	BWM
Benzo(a)pyrene	260	J	4000	UG/KG	8270	12/05/2008 20:36	BWM
Benzo(b)fluoranthene	240	J	4000	UG/KG	8270	12/05/2008 20:36	BWM
Benzo(ghi)perylene	ND 400		4000	UG/KG	8270	12/05/2008 20:36	BWM
Benzo(k)fluoranthene	190	J	4000	UG/KG	8270	12/05/2008 20:36	B₩M
Biphenyl	ND		4000	UG/KG	8270	12/05/2008 20:36	B₩M
Bis(2-chloroethoxy) methane	ŊD		4000	UG/KG	8270	12/05/2008 20:36	BWM
Bis(2-chloroethyl) ether	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Bis(2-ethylhexyl) phthalate	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Butyl benzył phthalate	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Caprolactam	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Carbazole	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Chrysene	230	J	4000	UG/KG	8270	12/05/2008 20:36	BWM
Di-n-butyl phthalate	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Di-n-octyl phthalate	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Dibenzo(a,h)anthracene	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Dibenzofuran	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Diethyl phthalate	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Dimethyl phthalate	NÐ		4000	UG/KG	8270	12/05/2008 20:36	BWM

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 14/29 Page:

Rept: AN1178

Sample ID: SS-4 (TP-12)
Lab Sample ID: A8E93407

Date Collected: 11/19/2008 Time Collected: 13:30 Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Fluorene	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Hexachlorobenzene	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Hexachlorobutadiene	NÐ		4000	ug/kg	8270	12/05/2008 20:36	BWM
Hexachlorocyclopentadiene	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Hexachloroethane	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Indeno(1,2,3-cd)pyrene	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Isophorone	ND		4000	ug/kg	8270	12/05/2008 20:36	B₩M
N-Nitroso-Di-n-propylamine	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
N-nitrosodiphenylamine	ND		4000	∪G/KG	8270	12/05/2008 20:36	B₩M
Naphthalene	ND		4000	ug/kg	8270	12/05/2008 20:36	BWM
Nitrobenzene	ND		4000	ug/kg	8270	12/05/2008 20:36	B₩M
Pentachlorophenol	ND		7700	UG/KG	8270	12/05/2008 20:36	B₩M
Phenanthrene	ND		4000	UG∕KG	8270	12/05/2008 20:36	BWM
Phenol	ND		4000	UG/KG	8270	12/05/2008 20:36	BWM
Pyrene	280 .	J	4000	UG/KG	8270	12/05/2008 20:36	BWM
etals Analysis							
Aluminum - Total	7780		11.5	MG/KG	6010	11/26/2008 18:33	AH
Antimony - Total	ND		17.3	MG/KG	6010	11/26/2008 18:33	AH
Arsenic - Total	9.0		2.3	MG/KG	6010	11/26/2008 18:33	AH
Barium - Total	65.6		0.58	MG/KG	6010	11/26/2008 18:33	AH
Beryllium - Total	0.34		0.23	MG/KG	6010	11/26/2008 18:33	AH
Cadmium - Total	0.34		0.23	MG/KG	6010	11/26/2008 18:33	AH
Calcium - Total	11200		57.7	MG/KG	6010	11/26/2008 18:33	AH
Chromium - Total	9.4		0.58	MG/KG	6010	11/26/2008 18:33	AH
Cobalt - Total	6.6		0.58	MG/KG	6010	11/26/2008 18:33	AH
Copper - Total	20.8		1.2	MG/KG	6010	11/26/2008 18:33	AH
Iron - Total	17100		11.5	MG/KG	6010	11/26/2008 18:33	AH
Lead - Total	24.8		1.2	MG/KG	6010	11/26/2008 18:33	AH
Magnesium - Total	5870		23.1	MG/KG	6010	11/26/2008 18:33	AH
Manganese - Total	487		0.23	MG/KG	6010	11/26/2008 18:33	АН
Mercury - Total	ND		0.023	MG/KG	7471	11/26/2008 18:23	MM
Nickel - Total	15.3		0.58	MG/KG	6010	11/26/2008 18:33	AH
Potassium - Total	707		34.6	MG/KG	6010	11/26/2008 18:33	AH
Selenium - Total	ND		4.6	MG/KG	6010	11/26/2008 18:33	AH
Silver - Total	ND		0.58	MG/KG	6010	11/26/2008 18:33	AH
Sodium ~ Total	ND		162	MG/KG	6010	11/26/2008 18:33	
Thallium - Total	ND		6.9	MG/KG	6010	11/26/2008 18:33	
Vanadium - Total	11.1		0.58	MG/KG	6010	11/26/2008 18:33	
Zinc - Total	59.5		2.3	MG/KG	6010	11/26/2008 18:33	

Time Collected: 13:30

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 11/21/2008

Project No: NY5A946109

Rept: AN1178

Client No: L10190

Sample ID: SS-4 (TP-12) Lab Sample ID: A8E93407RE Date Collected: 11/19/2008

	Detection					Date/Time			
Parameter	Result	Flag	Limit	Units	Me thod	Analyzed	<u>Analyst</u>		
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS									
Aroclor 1016	ND		20	UG/KG	8082	11/26/2008 11:00	GFD		
Aroclor 1221	NĐ		20	υG/KG	8082	11/26/2008 11:00	GFD		
Aroclor 1232	ND		20	ug/kg	8082	11/26/2008 11:00	GFD		
Aroclor 1242	ND		20	ug/kg	8082	11/26/2008 11:00	GFD		
Aroclor 1248	NÐ		20	ug/kg	8082	11/26/2008 11:00	GFD		
Araclar 1254	ND		20	ug/kg	8082	11/26/2008 11:00	GFD		
Aroclor 1260	ND		20	ug/kg	8082	11/26/2008 11:00	GFD		

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 Rept: AN1178

Sample ID: TP-11 @ 5 Lab Sample ID: A8E93406 Date Collected: 11/19/2008 Time Collected: 12:15 Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analysi
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		8	ug/kg	8260	12/02/2008 02:59	CDC
1,1,2,2~Tetrachloroethane	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
1,1,2-Trichloroethane	ND		8	U6/KG	8260	12/02/2008 02:59	
1,1-Dichloroethane	NĐ		8	ug/kg	8260	12/02/2008 02:59	
1,1-Dichloroethene	ND		8	UG/KG	8260	12/02/2008 02:59	
1,2,4-TrichLorobenzene	ND		8	UG/KG	8260	12/02/2008 02:59	
1,2-Dibromo-3-chloropropane	ND		8	UG/KG	8260	12/02/2008 02:59	
1,2-Dibromoethane	ND		8	UG/KG	8260	12/02/2008 02:59	
1,2-Dichtorobenzene	ND		8	UG/KG	8260	12/02/2008 02:59	
1,2-Dichloroethane	ND		8	UG/KG	8260	12/02/2008 02:59	
1,2-Dichloropropane	ND		8	UG/KG	8260	12/02/2008 02:59	
1,3-Dichlorobenzene	ND		8	ug/kg	8260	12/02/2008 02:59	
1,4-Dichlorobenzene	NĐ		8	UG/KG	8260	12/02/2008 02:59	
2-Butanone	NĐ		39	UG/KG	8260	12/02/2008 02:59	
2-Hexanone	ND		39	UG/KG	8260	12/02/2008 02:59	
4-Methyl-2-pentanone	ND		39	UG/KG	8260	12/02/2008 02:59	
Acetone	20	J	39	UG/KG	8260	12/02/2008 02:59	
Benzene	ND	v	8	UG/KG	8260	12/02/2008 02:59	
Bromodichloromethane	ND		8	UG/KG	8260	12/02/2008 02:59	
Bromoform	ND		8	UG/KG	8260	12/02/2008 02:59	
Bromomethane	ND		8	UG/KG	8260	12/02/2008 02:59	
Carbon Disulfide	ND		8	UG/KG	8260	12/02/2008 02:59	
Carbon Tetrachloride	ND		8	UG/KG			
Chtorobenzene	ND		8	UG/KG	8260	12/02/2008 02:59 12/02/2008 02:59	
Chloroethane	ND ND		8	UG/KG	8260 8260	12/02/2008 02:59	CDC
Chloroform	ND ND		8	UG/KG	8260	12/02/2008 02:59	CDC
Chloromethane	ND		8	UG/KG			CDC
cis~1,2-Dichloroethene			8	UG/KG UG/KG	8260	12/02/2008 02:59	CDC
cis-1,3-Dichloropropene	ND ND			UG/KG UG/KG	8260	12/02/2008 02:59	CDC
Cyclohexane	ND ND		8	•	8260	12/02/2008 02:59	CDC
Dibromochloromethane	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
Dichlorodifluoromethane	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
	NĐ		8	UG/KG	8260	12/02/2008 02:59	CDC
Ethylbenzene	NĐ		8	UG/KG	8260	12/02/2008 02:59	
Isopropylbenzene	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
Methyl acetate	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
Methyl-t-Butyl Ether (MTBE)	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
Methylcyclohexane	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
Methylene chloride	19		8	UG/KG	8260	12/02/2008 02:59	CDC
Styrene	ND		8	ug/kg	8260	12/02/2008 02:59	CDC
Tetrachloroethene	ND		8	ug/kg	8260	12/02/2008 02:59	CDC
Taluene	ND		8	ne\ke	8260	12/02/2008 02:59	CDC
Total Xylenes	ND		23	UG/KG	8260	12/02/2008 02:59	CDC
trans-1,2-Dichloroethene	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
trans-1,3-Dichloropropene	ND		8	ŲG/KG	8260	12/02/2008 02:59	CDC
Trichloroethene	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
Trichlorofluoromethane	ND		8	UG/KG	8260	12/02/2008 02:59	CDC
Vinyl chloride	ND		15	ug/kg	8260	12/02/2008 02:59	CDC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 17/29 Page: Rept: AN1178

Date Received: 11/21/2008 Project No: NY5A946109

Client No: L10190

	Sample	ID;	TP-11 0 5
Lab	Sample	ID:	A8E93406
Date	Collect	ed:	11/19/2008
			40.45

			Detection		Date/Time					
Parameter	Result	<u>Flag</u>	Limit	Units_	Method	Analyzed	<u>Analys</u>			
NYSDEC ~S-SW8463 8270 - TCL SVOA ORGANICS				,						
2,2'-0xybis(1-Chloropropane)	ND		4700	UG/KG	8270	12/05/2008 20:13				
2,4,5-Trichlorophenol	ND		4700	UG/KG	8270	12/05/2008 20:13				
2,4,6-Trichlorophenol	ND		4700	UG/KG	8270	12/05/2008 20:13				
2,4-Dichlorophenol	ND		4700	ug/kg	8270	12/05/2008 20:13				
2,4-Dimethylphenol	ND		4700	ug/kg	8270	12/05/2008 20:13				
2,4-Dinitrophenol	ND		9100	ug/kg	8270	12/05/2008 20:13				
2,4-Dinitrotoluene	ND		4700	UG/KG	8270	12/05/2008 20:13				
2,6-Dinitrotoluene	NĐ		4700	υ6/KG	8270	12/05/2008 20:13				
2-Chloronaphthalene	ND		4700	ug/kg	8270	12/05/2008 20:13				
2-Chlorophenol	NĐ		4700	UG/KG	8270	12/05/2008 20:13	BWM			
2-Methylnaphthalene	NĐ		4700	UG/KG	8270	12/05/2008 20:13	BWM			
2-Methylphenol	ND		4700	UG/KG	8270	12/05/2008 20:13	BWM			
2-Nitroaniline	NĐ		9100	ug/kg	8270	12/05/2008 20:13	BWM			
2-Nitrophenol	NĐ		4700	ug/kg	8270	12/05/2008 20:13	BWM			
3,3'-Dichlorobenzidine	ND		4700	ug/kg	8270	12/05/2008 20:13	BWM			
3-Nitroaniline	ND		9100	ug/kg	8270	12/05/2008 20:13	BWM			
4,6-Dinitro-2-methylphenol	ND		9100	ug/kg	8270	12/05/2008 20:13	BWM			
4-Bromophenyl phenyl ether	ND		4700	ug/kg	8270	12/05/2008 20:13	BWM			
4-Chloro-3-methylphenol	ND		4700	ug/kg	8270	12/05/2008 20:13	BWM			
4-Chloroaniline	NÐ		4700	ug/kg	8270	12/05/2008 20:13	BWM			
4-Chlorophenyl phenyl ether	NĐ		4700	ug/kg	8270	12/05/2008 20:13	₽₩M			
4-Methylphenol	ND		4700	ug/kg	8270	12/05/2008 20:13	₽WM			
4-Nitroaniline	ND		9100	ug/kg	8270	12/05/2008 20:13	₽WM			
4-Nitrophenol	ND		9100	UG/KG	8270	12/05/2008 20:13	BWM			
Acenaphthene	ND		4700	UG/KG	8270	12/05/2008 20:13	BWM			
Acenaphthylene	ND		4700	ug/kg	8270	12/05/2008 20:13	₿₩M			
Acetophenone	ND		4700	ug/kg	8270	12/05/2008 20:13	BWM			
Anthracene	380	J	4700	ug/kg	8270	12/05/2008 20:13	B₩M			
Atrazine	ND		4700	ug/kg	8270	12/05/2008 20:13	BWM			
Benzaldehyde	ND		4700	ug/kg	8270	12/05/2008 20:13	B₩M			
Benzo(a)anthracene	1500	J	4700	UG/KG	8270	12/05/2008 20:13	B₩M			
Benzo(a)pyrene	1600	J	4700	ug/kg	8270	12/05/2008 20:13	B₩M			
Benzo(b)fluoranthene	1800	J	4700	ug/kg	8270	12/05/2008 20:13	B₩M			
Benzo(ghi)perylene	1200	j	4700	ug/kg	8270	12/05/2008 20:13	B₩M			
Benzo(k)fluoranthene	770	j	4700	ug/kg	8270	12/05/2008 20:13				
Biphenyl	ND		4700	ug/kg	8270	12/05/2008 20:13				
Bis(2-chloroethoxy) methane	ND		4700	UG/KG	8270	12/05/2008 20:13				
Bis(2-chloroethyl) ether	ND		4700	ug/kg	8270	12/05/2008 20:13				
Bis(2-ethylhexyl) phthalate	ND		4700	ug/kg	8270	12/05/2008 20:13				
Butyl benzyl phthalate	ND		4700	ug/kg	8270	12/05/2008 20:13				
Caprolactam	ND		4700	ug/kg	8270	12/05/2008 20:13				
Carbazole	ND		4700	UG/KG	8270	12/05/2008 20:13				
Chrysene	1400	J	4700	ŲG∕KG	8270	12/05/2008 20:13				
Di-n-butyl phthalate	ND		4700	ug/kg	8270	12/05/2008 20:13				
Di-n-octyl phthalate	ND		4700	UG/KG	8270	12/05/2008 20:13				
Dibenzo(a,h)anthracene	ND		4700	UG/KG	8270	12/05/2008 20:13				
Dibenzofuran	ND		4700	UG/KG	8270	12/05/2008 20:13				
Diethyl phthalate	ND		4700	υG/KG	8270	12/05/2008 20:13				
Dimethyl phthalate	ND		4700	UG/KG	8270	12/05/2008 20:13				

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 18/29 Page: Rept: Al

Rept: AN1178

Sample ID: TP-11 0 5
Lab Sample ID: A8E93406
Date Collected: 11/19/2008
Time Collected: 12:15

Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	_
Parameter	Result	<u>Flag</u>	Limit	Units_	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	2600	J	4700	ug/kg	8270	12/05/2008 20:1	3 BWM
Fluorene	ND		4700	ug/kg	8270	12/05/2008 20:1	3 B₩M
Hexachlorobenzene	ND		4700	UG/KG	8270	12/05/2008 20:1	3 BWM
Hexachlorobutadiene	ND		4700	ug/kg	8270	12/05/2008 20:1	3 BWM
Hexachlorocyclopentadiene	ND		4700	ug/kg	8270	12/05/2008 20:1	3 B₩M
Hexach loroe thane	ND		4700	ug/kg	8270	12/05/2008 20:1	3 BWM
Indeno(1,2,3-cd)pyrene	1000	J	4700	ug/kg	8270	12/05/2008 20:1	3 BWM
Isophorone	ND		4700	ug/kg	8270	12/05/2008 20:1	3 BWM
N-Nitroso-Di-n-propylamine	ND		4700	ug/kg	8270	12/05/2008 20:1	3 BWM
N-nitrosodiphenylamine	ND		4700	UG/KG	8270	12/05/2008 20:1	3 BWM
Naphthalene	ND		4700	ug/kg	8270	12/05/2008 20:1	3 BWM
Nitrobenzene	ND		4700	UG/KG	8270	12/05/2008 20:1	3 BWM
Pentachlorophenol	ND		9100	UG/KG	8270	12/05/2008 20:1	3 BWM
Phenanthrene	2000	j	4700	∪G/KG	8270	12/05/2008 20:1	3 BWM
Phenol	ND		4700	UG/KG	8270	12/05/2008 20:1	3 BWM
Pyrene	2000	j	4700	ug/kg	8270	12/05/2008 20:1	3 BWM
Metals Analysis							
Aluminum - Total	8340		14.5	MG/KG	6010	11/26/2008 18:2	8 АН
Antimony - Total	ND		21.8	MG/KG	6010	11/26/2008 18:2	8 AH
Arsenic - Total	14.2		2.9	MG/KG	6010	11/26/2008 18:2	8 AH
Barium - Total	129		0.73	MG/KG	6010	11/26/2008 18:2	на 8
Beryllium - Total	0.37		0.29	MG/KG	6010	11/26/2008 18:2	HA 8
Cadmium - Totał	1.0		0.29	MG/KG	6010	11/26/2008 18:2	8 ан
Calcium - Total	6430		72.6	MG/KG	6010	11/26/2008 18:2	8 AH
Chromium - Total	14.2		0.73	MG/KG	6010	11/26/2008 18:2	8 AH
Cobalt - Total	6.4		0.73	MG/KG	6010	11/26/2008 18:2	8 AH
Copper - Total	42.2		1.4	MG/KG	6010	11/26/2008 18:2	8 AH
Iron - Total	25200		14.5	MG/KG	6010	11/26/2008 18:2	8 AH
Lead - Total	293		1.4	MG/KG	6010	11/26/2008 18:2	8 AH
Magnesium - Total	2420		29.0	MG/KG	6010	11/26/2008 18:2	8 AH
Manganese - Total	622		0.29	MG/KG	6010	11/26/2008 18:2	8 AH
Mercury - Total	0.086		0.028	MG/KG	7471	11/26/2008 18:2	2 MM
Nickel - Total	14.5		0.73	MG/KG	6010	11/26/2008 18:2	8 AH
Potassium - Total	958		43.6	MG/KG	6010	11/26/2008 18:2	
Selenium - Total	ND		5.8	MG/KG	6010	11/26/2008 18:2	8 AH
Silver - Total	ND		0.73	MG/KG	6010	11/26/2008 18:2	8 AH
Sodium - Total	ND		203	MG/KG	6010	11/26/2008 18:2	на 8
Thallium - Total	ND		8.7	MG/KG	6010	11/26/2008 18:2	8 AH
Vanadium - Total	12.8		0.73	MG/KG	6010	11/26/2008 18:2	8 АН
Zinc - Total	243		2.9	MG/KG	6010	11/26/2008 18:2	8 AH

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034

Rept: AN1178

Sample ID: TP-12 @ 4 Lab Sample ID: A8E93408 Date Collected: 11/19/2008 Time Collected: 13:45

Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	ug/kg	8260	12/02/2008 03:24	CDC
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	12/02/2008 03:24	CDC
1,1,2-Trichloro-1,2,2-trifluoroethane	NĐ		6	ug/kg	8260	12/02/2008 03:24	CDC
1,1,2-Trichloroethane	ND		6	ug/kg	8260	12/02/2008 03:24	CDC
1,1-Dichloroethane	NĐ		6	⊎G/KG	8260	12/02/2008 03:24	CDC
1,1-Dichloroethene	ND		6	ug/kg	8260	12/02/2008 03:24	
1,2,4-Trichlorobenzene	ND		6	ug/kg	8260	12/02/2008 03:24	CDC
1,2-Dibromo-3-chloropropane	ND		6	ug/kg	8260	12/02/2008 03:24	CDC
1,2-Dibromoethane	ND		6	UG/KG	8260	12/02/2008 03:24	CDC
1,2-Dichlorobenzene	ND		6	ug/kg	8260	12/02/2008 03:24	
1,2-Dichloroethane	ND		6	ug/kg	8260	12/02/2008 03:24	
1,2-Dichloropropane	ND		6	υσ/κσ	8260	12/02/2008 03:24	
1,3-Dichlorobenzene	ŊD		6	UG/KG	8260	12/02/2008 03:24	
1,4-Dichlorobenzene	ND		6	UG/KG	8260	12/02/2008 03:24	
2-Butanone	ND		28	υG/KG	8260	12/02/2008 03:24	
2-Hexanone	ND		28	ug/kg	8260	12/02/2008 03:24	
4-Methyl-2-pentanone	ND		28	UG/KG	8260	12/02/2008 03:24	
Acetone	ND		28	UG/KG	8260	12/02/2008 03:24	
Benzene	ND		6	UG/KG	8260	12/02/2008 03:24	
Bromodichloromethane	ND		6	UG/KG	8260	12/02/2008 03:24	
Bromoform	ND		6	UG/KG	8260	12/02/2008 03:24	
Bromomethane	ND		6	UG/KG	8260	12/02/2008 03:24	
Carbon Disulfide	ND		6	UG/KG	8260	12/02/2008 03:24	
Carbon Tetrachloride	ND ND		6	UG/KG	8260	12/02/2008 03:24	
Chlorobenzene	ND ND		6	UG/KG	8260	12/02/2008 03:24	
Chloroe thane	ND		6	UG/KG	8260	12/02/2008 03:24	
Chloroform			6	UG/KG	8260	12/02/2008 03:24	
Chloromethane	ND ND		6	UG/KG	8260	12/02/2008 03:24	
cis-1,2-Dichloroethene	ND ND		6	UG/KG	8260	12/02/2008 03:24	
	ND ND			UG/KG	8260	12/02/2008 03:24	
cis-1,3-Dichloropropene	ND ND		6	UG/KG		12/02/2008 03:24	
Cyclohexane Dibromochloromethane	ND		6	UG/KG	8260		
	ND		6		8260	12/02/2008 03:24	
Dichlorodifluoromethane	ND		6	UG/KG	8260	12/02/2008 03:24	CDC
Ethylbenzene	ND		6	UG/KG	8260	12/02/2008 03:24	
Isopropylbenzene	ND		6	UG/KG	8260	12/02/2008 03:24	
Methyl acetate	ND		6	UG/KG	8260	12/02/2008 03:24	
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	12/02/2008 03:24	
Methylcyclohexane	ND		6	UG/KG	8260	12/02/2008 03:24	
Methylene chloride	2	J	6	UG/KG	8260	12/02/2008 03:24	
Styrene	ND		6	UG/KG	8260	12/02/2008 03:24	
Tetrachloroethene	ND		6	UG/KG	8260	12/02/2008 03:24	
Toluene	ND		6	UG/KG	8260	12/02/2008 03:24	
Total Xylenes	ND		16	UG/KG	8260	12/02/2008 03:24	
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	12/02/2008 03:24	
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	12/02/2008 03;24	
Trichloroethene	ND		6	UG/KG	8260	12/02/2008 03:24	
Trichlorofluoromethane	ND		6	ug/kg	8260	12/02/2008 03:24	
Vinyl chloride	ND		11	UG/KG	8260	12/02/2008 03:24	COC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 20/29 Page:

Rept: AN1178

Sample ID: TP-19 @ 3.5

Lab Sample ID: A8E93409
Date Collected: 11/20/2008
Time Collected: 10:45

Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		5	UG/KG	8260	12/02/2008 03:50	
1,1,2,2-Tetrachloroethane	ND		5	UG/KG	8260	12/02/2008 03:50	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5	UG/KG	8260	12/02/2008 03:50	
1,1,2-TrichLoroethane	ND		5	UG/KG	8260	12/02/2008 03:50	
1,1-Dichloroethane	ND		5	⊍G/KG	8260	12/02/2008 03:50	CDC
1,1-Dichloroethene	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
1,2,4-Trichlorobenzene	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
1,2-Dibromo-3-chloropropane	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
1,2-Dibromoethane	ND		5	υG/KG	8260	12/02/2008 03:50	CDC
1,2-Dichlorobenzene	ND		5	υG/KG	8260	12/02/2008 03:50	CDC
1,2-Dichloroethane	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
1,2-Dichloropropane	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
1,3-Dichlorobenzene	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
1,4-Dichlorobenzene	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
2-Butanone	ND		25	UG/KG	8260	12/02/2008 03:50	CDC
2-Hexanone	ND		25	UG/KG	8260	12/02/2008 03:50	CDC
4-Methyl-2-pentanone	ND		25	UG/KG	8260	12/02/2008 03:50	CDC
Acetone	5	J	25	UG/KG	8260	12/02/2008 03:50	CDC
Benzene	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
Bromodichloromethane	ND		5	UG/KG	8260	12/02/2008 03:50	
Bromoform	ND		5	UG/KG	8260	12/02/2008 03:50	CDC
Bromomethane	ND		5	UG/KG	8260	12/02/2008 03:50	
Carbon Disulfide	ND		5	UG/KG	8260	12/02/2008 03:50	
Carbon Tetrachloride	ND		5	UG/KG	8260	12/02/2008 03:50	
Chlorobenzene	ND		5	UG/KG	8260	12/02/2008 03:50	
Chloroethane	ND		5	UG/KG	8260	12/02/2008 03:50	
Chloroform	ND		5	UG/KG	8260	12/02/2008 03:50	
Chloromethane	ND		5	UG/KG	8260	12/02/2008 03:50	
cis-1,2-Dichloroethene	ND		5	υg/κg	8260	12/02/2008 03:50	
cis-1,3-Dichloropropene	ND		5	υσ/κσ	8260	12/02/2008 03:50	
Cyclohexane	ND		5	UG/KG	8260	12/02/2008 03:50	
Dibromochloromethane	ND		5	UG/KG	8260	12/02/2008 03:50	
Dichlorodifluoromethane	ND		5	UG/KG	8260	12/02/2008 03:50	
Ethylbenzene	ND		5	UG/KG	8260	12/02/2008 03:50	
Isopropylbenzene	ND		5	υG/KG	8260	12/02/2008 03:50	
Methyl acetate	ND		5	UG/KG	8260	12/02/2008 03:50	
Methyl-t-Butyl Ether (MTBE)	NĐ		5	UG/KG	8260	12/02/2008 03:50	
Methylcyclohexane	ND		5	UG/KG	8260	12/02/2008 03:50	
Methylene chloride	6		5	UG/KG	8260	12/02/2008 03:50	
Styrene	ND		5	UG/KG	8260	12/02/2008 03:50	
Tetrachioroethene	ND		5	UG/KG	8260	12/02/2008 03:50	
Toluene	ND		5	UG/KG	8260	12/02/2008 03:50	
Total Xylenes	ND		15	UG/KG	8260	12/02/2008 03:50	
trans-1,2-Dichloroethene	ND		5	UG/KG	8260	12/02/2008 03:50	
trans-1,3-Dichloropropene	ND		5	UG/KG	8260	12/02/2008 03:50	
Trichloroethene	ND		5	UG/KG	8260	12/02/2008 03:50	
Trichlorofluoromethane	ND		5	UG/KG	8260	12/02/2008 03:50	
Vinyl chloride	ND ND		10	UG/KG	8260	12/02/2008 03:50	

NYSDEC ~ REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 21/29 Page:

Page: 13 Rept: AN1178

Sample ID: TP-19 @ 3.5 Lab Sample ID: A8E93409 Date Collected: 11/20/2008 Time Collected: 10:45 Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	<u>Method</u>	Analyzed	Analys
YSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		180	UG/KG	8270	12/05/2008 20:58	B₩M
2,4,5-Trichlorophenol	ND		180	UG/KG	8270	12/05/2008 20:58	BWM
2,4,6-Trichlorophenol	NĐ		180	UG/KG	8270	12/05/2008 20:58	BWM
2,4-Dichlorophenol	NĐ		180	UG/KG	8270	12/05/2008 20:58	BWM
2,4-Dimethylphenol	NĐ		180	UG/KG	8270	12/05/2008 20:58	BWM
2,4-Dinitrophenol	ND		360	UG/KG	8270	12/05/2008 20:58	BWM
2,4-Dinitrotoluene	ND		180	UG/KG	8270	12/05/2008 20:58	BWM
2,6-Dinitrotoluene	ND		180	υg/κ g	8270	12/05/2008 20:58	BWM
2-Chloronaphthalene	ND		180	UG/KG	8270	12/05/2008 20:58	B₩M
2-Chlorophenol	NÐ		180	ug/kg	8270	12/05/2008 20:58	B₩M
2-Methylnaphthalene	NĐ		180	ug/kg	8270	12/05/2008 20:58	B₩M
2-Methylphenol	ND		180	ug/kg	8270	12/05/2008 20:58	
2-Nitroaniline	ND		360	UG/KG	8270	12/05/2008 20:58	
2-Nitrophenol	ND		180	∪G/KG	8270	12/05/2008 20:58	
3,3'-Dichlorobenzidine	ND		180	UG/KG	8270	12/05/2008 20:58	
3-Nitroaniline	ND		360	UG/KG	8270	12/05/2008 20:58	
4,6-Dinitro-2-methylphenol	ND		360	UG/KG	8270	12/05/2008 20:58	
4-Bromophenyl phenyl ether	ND		180	UG/KG	8270	12/05/2008 20:58	
4-Chloro-3-methylphenol	ND		180	ug/kg	8270	12/05/2008 20:58	
4-Chloroaniline	ND		180	UG/KG	8270	12/05/2008 20:58	
4-Chlorophenyl phenyl ether	ND		180	∪G/KG	8270	12/05/2008 20:58	
4-Methylphenol	ND		180	UG/KG	8270	12/05/2008 20:58	
4-Nitroaniline	ND		360	UG/KG	8270	12/05/2008 20:58	
4-Nitrophenot	ND		360	UG/KG	8270	12/05/2008 20:58	
Acenaphthene	ND		180	ug/kg	8270	12/05/2008 20:58	
Acenaphthylene	ND		180	UG/KG	8270	12/05/2008 20:58	
Acetophenone	ND		180	UG/KG	8270	12/05/2008 20:58	
Anthracene	ND		180	UG/KG	8270	12/05/2008 20:58	
Atrazine	ND		180	UG/KG	8270	12/05/2008 20:58	
Benzaldehyde	ND		180	UG/KG	8270	12/05/2008 20:58	
Benzo(a)anthracene	ND		180	UG/KG	8270	12/05/2008 20:58	
Benzo(a)pyrene	ND		180	UG/KG	8270	12/05/2008 20:58	
Benzo(b)fluoranthene	ND		180	UG/KG	8270	12/05/2008 20:58	
Benzo(ghi)perylene	ND		180	UG/KG	8270	12/05/2008 20:58	BWM
Benzo(k)fluoranthene	ND		180	UG/KG	8270	12/05/2008 20:58	
Biphenyl	ND		180	UG/KG	8270	12/05/2008 20:58	
Bis(2-chloroethoxy) methane	ND		180	UG/KG	8270	12/05/2008 20:58	
Bis(2-chloroethyl) ether	ND		180	UG/KG	8270	12/05/2008 20:58	
Bis(2-ethylhexyl) phthalate	NÐ		180	UG/KG	8270	12/05/2008 20:58	
Butyl benzyl phthalate	ND		180	UG/KG	8270	12/05/2008 20:58	
Caprolactam	ND		180	UG/KG	8270	12/05/2008 20:58	
Carbazole	ND		180	UG/KG	8270	12/05/2008 20:58	
Chrysene	ND		180	UG/KG	8270	12/05/2008 20:58	
Di-n-butyl phthalate	ND		180	UG/K6	8270	12/05/2008 20:58	
Di-n-octyl phthalate	ND		180	UG/KG	8270	12/05/2008 20:58	
Dibenzo(a,h)anthracene	ŊD		180	UG/KG	8270	12/05/2008 20:58	
Dibenzofuran	ND		180	UG/KG	8270 8270	12/05/2008 20:58	
Diethyl phthalate	ND		180	ug/kg	8270	12/05/2008 20:58	
Dimethyl phthalate	ND		180	UG/KG UG/KG	8270	12/05/2008 20:58	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 11/21/2008

Project No: NY5A946109

Rept: AN1178

Client No: L10190

Site No:

Sample ID: TP-19 @ 3.5 Lab Sample ID: A8E93409 Date Collected: 11/20/2008 Time Collected: 10:45

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	NÐ		180	UG/KG	8270	12/05/2008 20:58	BWM
Fluorene	NĐ		180	ug/kg	8270	12/05/2008 20:58	BWM
Hexachtorobenzene	ND		180	ug/kg	8270	12/05/2008 20:58	BWM
Hexachlorobutadiene	NĐ		180	ug/kg	8270	12/05/2008 20:58	BWM
Hexachlorocyclopentadiene	ND		180	ug/kg	8270	12/05/2008 20:58	BWM
Hexachloroethane	NĐ		180	ug/kg	8270	12/05/2008 20:58	BWM
Indeno(1,2,3-cd)pyrene	NĐ		180	UG/KG	8270	12/05/2008 20:58	BWM
Isophorone	ND		180	ug/kg	8270	12/05/2008 20:58	BWM
N-Nitroso-Di-n-propylamine	ND		180	⊎G/KG	8270	12/05/2008 20:58	BWM
N-nitrosodiphenylamine	ND		180	UG/KG	8270	12/05/2008 20:58	BWM
Naphthalene	ND		180	∪G/KG	8270	12/05/2008 20:58	BWM
Nitrobenzene	ND		180	∪G/KG	8270	12/05/2008 20:58	B₩M
Pentachlorophenol	ND		360	ug/kg	8270	12/05/2008 20:58	B₩M
Phenanthrene	ND		180	UG/KG	8270	12/05/2008 20:58	BWM
Phenol	ND		180	ug/kg	8270	12/05/2008 20:58	8WM
Pyrene	ND		180	ug/kg	8270	12/05/2008 20:58	BWM

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 11/21/2008

Project No: NY5A946109 Client No: L10190

Rept: AN1178

Site No:

Sample ID: TP-5 @ 11
Lab Sample ID: A8E93402
Date Collected: 11/18/2008
Time Collected: 14:00

Time Collected: 14:00						Site No:	
			Detection		· · · · · · · · · · · · · · · · · · ·	Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analys</u>
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES				,			
1,1,1~Trichloroethane	ND		7	UG/KG	8260	12/02/2008 02:33	
1,1,2,2-Tetrachloroethane	ND		7	∪G/KG	8260	12/02/2008 02:33	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		7	UG/KG	8260	12/02/2008 02:33	
1,1,2-TrichLoroethane	ND		7	UG/KG	8260	12/02/2008 02:33	
1,1-Dichloroethane	ND		7	UG/KG	8260	12/02/2008 02:33	
1,1-Dichtoroethene	ND		7	UG/KG	8260	12/02/2008 02:33	
1,2,4-Trichlorobenzene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
1,2-Dibromo-3-chloropropane	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
1,2-Dibromoethane	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
1,2-Dichlorobenzene	ŊD		7	UG/KG	8260	12/02/2008 02:33	CDC
1,2-Dichloroethane	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
1,2-Dichloropropane	ND		7	ug/kg	8260	12/02/2008 02:33	CDC
1,3-Dichlorobenzene	ND		7	ug/kg	8260	12/02/2008 02:33	CDC
1,4-Dichlorobenzene	NĐ		7	UG/KG	8260	12/02/2008 02:33	CDC
2-Butanone	13	J	33	UG/KG	8260	12/02/2008 02:33	CDC
2-Hexanone	ND		33	UG/KG	8260	12/02/2008 02:33	CDC
4-Methyl-2-pentanone	ND		33	UG/KG	8260	12/02/2008 02:33	CDC
Acetone	60		33	UG/KG	8260	12/02/2008 02:33	CDC
Benzene	ND		7	ug/kg	8260	12/02/2008 02:33	CDC
Bromodichloromethane	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Bromoform	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Bromomethane	NĐ		7	ug/kg	8260	12/02/2008 02:33	CDC
Carbon Disulfide	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Carbon Tetrachloride	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Chlorobenzene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Chloroethane	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Chloroform	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
€hloromethane	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
cis-1,2-Dichloroethene	ND		7	ug/kg	8260	12/02/2008 02:33	CDC
cis-1,3-Dichloropropene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Cyclohexane	NĐ		7	UG/KG	8260	12/02/2008 02:33	CDC
Dibromochloromethane	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Dichlorodifluoromethane	NĐ		7	UG/KG	8260	12/02/2008 02:33	CDC
Ethylbenzene	NĐ		7	UG/KG	8260	12/02/2008 02:33	CDC
Isopropylbenzene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Methyl acetate	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Methyl-t-Butyl Ether (MTBE)	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Methylcyclohexane	ND		7	ug/kg	8260	12/02/2008 02:33	CDC
Methylene chloride	4	J	7	UG/KG	8260	12/02/2008 02:33	CDC
Styrene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Tetrachloroethene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Toluene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Total Xylenes	ND		20	UG/KG	8260	12/02/2008 02:33	CDC
trans-1,2-Dichloroethene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
trans-1,3-Dichloropropene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Trichloroethene	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Trichlorofluoromethane	ND		7	UG/KG	8260	12/02/2008 02:33	CDC
Vinyt chtoride	ND		, 13	UG/KG	8260	12/02/2008 02:33	CDC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 **24/29** Page: 16 Rept: AN1178

Date Received: 11/21/2008 Project No: NY5A946109

Client No: L10190

Site No:

Sample ID: TP-5 a 11
Lab Sample ID: A8E93402
Date Collected: 11/18/2008
Time Collected: 14:00

Time Collected: 14:00	Site No:								
	*******		Detection			Date/Time			
Parameter	Result	Flag	Limit	Units_	Me thod	Analyzed	Analys		
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS									
2,2'-0xybis(1-Chloropropane)	ND		4600	ug/kg	8270	12/05/2008 19:27	BWM		
2,4,5-Trichlorophenol	ND		4600	UG/KG	8270	12/05/2008 19:27	BWM		
2,4,6-Trichlorophenol	ND		4600	ug/kg	8270	12/05/2008 19:27	BWM		
2,4-Dichlorophenol	NĐ		4600	ug/kg	8270	12/05/2008 19:27	BWM		
2,4-Dimethylphenol	NĐ		4600	ug/kg	8270	12/05/2008 19:27	BWM		
2,4-Dinitrophenol	ND		8800	UG/KG	8270	12/05/2008 19:27	BWM		
2,4-Dinitrotoluene	ND		4600	ug/kg	8270	12/05/2008 19:27			
2,6-Dinitrotoluene	ND		4600	υG/KG	8270	12/05/2008 19:27			
2-Chloronaphthalene	ND		4600	ug/kg	8270	12/05/2008 19:27			
2-Chlorophenol	ND		4600	UG/KG	8270	12/05/2008 19:27			
2-Methylnaphthalene	ND		4600	UG/KG	8270	12/05/2008 19:27			
2-Me thy lphenol	ND		4600	UG/KG	8270	12/05/2008 19:27			
2-Nitroaniline	ND		8800	UG/KG	8270	12/05/2008 19:27			
2-Nitrophenol	ND		4600	UG/KG	8270	12/05/2008 19:27			
3,3'-Dichlorobenzidine	ND ND		4600	UG/KG	8270	12/05/2008 19:27			
·			8800	UG/KG		12/05/2008 19:27			
3-Nitroaniline	ND				8270	· · · · · · · · · · · · · · · · · · ·			
4,6-Dinitro-2-methylphenol	ND		8800	UG/KG	8270	12/05/2008 19:27			
4-Bromophenyl phenyl ether	ND		4600	UG/KG	8270	12/05/2008 19:27			
4-Chloro-3-methylphenol	ND		4600	UG/KG	8270	12/05/2008 19:27			
4-Chloroaniline	ND		4600	UG/KG	8270	12/05/2008 19:27			
4-Chlorophenyl phenyl ether	ND		4600	UG/KG	8270	12/05/2008 19:27			
4-Methylphenol	ND		4600	UG/KG	8270	12/05/2008 19:27			
4-Nitroaniline	NĐ		8800	UG/KG	8270	12/05/2008 19:27	BWM		
4-Nitrophenol	NĐ		8800	ug/kg	8270	12/05/2008 19:27	BWM		
Acenaphthene	ND		4600	ug/kg	8270	12/05/2008 19:27	BWM		
AcenaphthyLene	ND		4600	UG/KG	8270	12/05/2008 19:27	B₩M		
Acetophenone	ND		4600	ug/kg	8270	12/05/2008 19:27	BWM		
Anthracene	ND		4600	UG/KG	8270	12/05/2008 19:27	BWM		
Atrazine	ND		4600	UG/KG	8270	12/05/2008 19:27	BWM		
Benzaldehyde	ND		4600	UG/KG	8270	12/05/2008 19:27	BWM		
Benzo(a)anthracene	550	J	4600	ug/kg	8270	12/05/2008 19:27	BWM		
Benzo(a)pyrene	320	J	4600	υG/KG	8270	12/05/2008 19:27	BWM		
Benzo(b)fluoranthene	380	J	4600	UG/KG	8270	12/05/2008 19:27	BWM		
Benzo(ghi)perytene	ND		4600	ug/kg	8270	12/05/2008 19:27	BWM		
Benzo(k)fluoranthene	190	J	4600	ug/kg	8270	12/05/2008 19:27	BWM		
Biphenyl	ND		4600	ug/kg	8270	12/05/2008 19:27			
Bis(2-chloroethoxy) methane	ND		4600	ug/kg	8270	12/05/2008 19:27	BWM		
Bis(2-chloroethyl) ether	ND		4600	υG/KG	8270	12/05/2008 19:27	BWM		
Bis(2-ethylhexyl) phthalate	ND		4600	UG/KG	8270	12/05/2008 19:27	BWM		
Butyl benzyl phthalate	NĐ		4600	UG/KG	8270	12/05/2008 19:27	BWM		
Caprolactam	NĐ		4600	UG/KG	8270	12/05/2008 19:27	BWM		
Carbazole	NĐ		4600	UG/KG	8270	12/05/2008 19:27	BWM		
Chrysene	350	J	4600	UG/KG	8270	12/05/2008 19:27	BWM		
Di-n-butyl phthalate	ND	•	4600	UG/KG	8270	12/05/2008 19:27	BWM		
Di-n-octyl phthalate	ND ND		4600	UG/KG	8270	12/05/2008 19:27			
Dibenzo(a,h)anthracene	ND ND		4600	UG/KG	8270	12/05/2008 19:27	BWM		
			4600	UG/KG		12/05/2008 19:27	BWM		
Dibenzofuran	ND ND				8270		BWM		
Diethyl phthalate	ND		4600	UG/KG	8270	12/05/2008 19:27	8WM		
Dimethyl phthalate	ND		4600	ug/kg	8270	12/05/2008 19:27	BWM		

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Penn Empire Site: Site #907034

25/29 Page:

Rept: AN1178

Sample ID: TP-5 @ 11
Lab Sample ID: A8E93402
Date Collected: 11/18/2008
Time Collected: 14:00

Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units_	<u>Me thod</u>	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	1000	J	4600	UG/KG	8270	12/05/2008 19:27	
Fluorene	ND		4600	UG/KG	8270	12/05/2008 19:27	
Hexachlorobenzene	ND		4600	UG/KG	8270	12/05/2008 19:27	
Hexachlorobutadiene	ND		4600	ug/kg	8270	12/05/2008 19:27	
Hexachlorocyclopentadiene	ND		4600	UG/KG	8270	12/05/2008 19:27	
Hexachloroethane	ND		4600	UG/KG	8270	12/05/2008 19:27	
Indeno(1,2,3-cd)pyrene	ND		4600	UG/KG	8270	12/05/2008 19:27	
Isophorone	ND		4600	UG/KG	8270	12/05/2008 19:27	
N-Nitroso-Di-n-propylamine	ND		4600	UG/KG	8270	12/05/2008 19:27	
N-nitrosodiphenylamine	ND		4600	UG/KG	8270	12/05/2008 19:27	
Naphthalene	ND		4600	∪G/KG	8270	12/05/2008 19:27	
Nitrobenzene	ND		4600	UG/KG	8270	12/05/2008 19:27	
Pentachlorophenol	ND		8800	UG/KG	8270	12/05/2008 19:27	
Phenanthrene	890	J	4600	UG/KG	8270	12/05/2008 19:27	
Phenol	ND		4600	UG/KG	8270	12/05/2008 19:27	
Pyrene	790	J	4600	UG/KG	8270	12/05/2008 19:27	' BWM
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		23	UG/KG	8082	11/24/2008 16:26	6 GFD
Aroclor 1221	ND		23	UG∕KG	8082	11/24/2008 16:26	6 GFD
Aroclor 1232	ND		23	∪G/KG	8082	11/24/2008 16:26	GFD
Aroclor 1242	ND		23	UG/KG	8082	11/24/2008 16:26	G G F D
Aroclor 1248	ND		23	ug/kg	8082	11/24/2008 16:26	G GFD
Aroclor 1254	ND		23	ug/kg	8082	11/24/2008 16:26	GFD
Aroclor 1260	ŊD		23	ug/kg	8082	11/24/2008 16:26	GFD
Metals Analysis							
Aluminum - Total	12100		14.8	MG/KG	6010	11/26/2008 17:54	• AH
Antimony - Total	ND		22.2	MG/KG	6010	11/26/2008 17:54	. AH
Arsenic - Total	10		3.0	MG/KG	6010	11/26/2008 17:54	. AH
Barium - Total	288		0.74	MG/KG	6010	11/26/2008 17:54	. AH
Beryllium - Total	0.81		0.30	MG/KG	6010	11/26/2008 17:54	AH •
Cadmium - Total	0.58		0.30	MG/KG	6010	11/26/2008 17:54	AH
Calcium - Total	8570		74.0	MG/KG	6010	11/26/2008 17:54	AH
Chromium - Total	16.7		0.74	MG/KG	6010	11/26/2008 17:54	+ AH
Cobalt - Total	8.0		0.74	MG/KG	6010	11/26/2008 17:54	+ AH
Copper - Total	36.0		1.5	MG/KG	6010	11/26/2008 17:54	+ AH
Iron - Total	21200		14.8	MG/KG	6010	11/26/2008 17:54	+ AH
Lead - Total	45.0		1.5	MG/KG	6010	11/26/2008 17:54	+ AH
Magnesium - Total	2830		29.6	MG/KG	6010	11/26/2008 17:54	+ AH
Manganese - Total	931		0.30	MG/KG	6010	11/26/2008 17:54	AH
Mercury - Total	0.085		0.029	MG/KG	7471	11/26/2008 18:18	3 MM
Nickel - Total	17.4		0.74	MG/KG	6010	11/26/2008 17:54	+ AH
Potassium - Total	1310		44.4	MG/KG	6010	11/26/2008 17:54	AH
Selenium - Total	ND		5.9	MG/KG	6010	11/26/2008 17:54	4 AH
Silver - Total	ND		0.74	MG/KG	6010	11/26/2008 17:54	AH
Sodium - Total	ND		207	MG/KG	6010	11/26/2008 17:54	
Thallium - Total	ND		8.9	MG/KG	6010	11/26/2008 17:54	
Vanadium - Total	21.2		0.74	MG/KG	6010	11/26/2008 17:54	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 11/21/2008

Project No: NY5A946109

Rept: AN1178

Client No: L10190

Site No:

Sample ID: TP-5 @ 11
Lab Sample ID: A8E93402
Date Collected: 11/18/2008
Time Collected: 14:00

· · · · · · · · · · · · · · · · · · ·								
				Detection			Date/Time	
	Parameter	Result	Flag	<u>Limit</u>	Units	<u>Me thod</u>	Analyzed	<u>Analyst</u>
Metals Analysis								
Zinc - Total		98.8		3.0	MG/KG	6010	11/26/2008 17:54	AH

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 27/29 Page:

Rept: AN1178

Sample ID: TP-8 a 2 Lab Sample ID: A8E93403 Date Collected: 11/19/2008 Time Collected: 10:00 Date Received: 11/21/2008 Project No: NY5A946109 Client No: L10190

		Detection			Date/Time		
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analysi
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		200	UG∕KG	8270	12/05/2008 19:50) BWM
2,4,5-Trichlorophenol	ND		200	UG/KG	8270	12/05/2008 19:50) BWM
2,4,6-Trichlorophenol	ND		200	UG/KG	8270	12/05/2008 19:50) BWM
2,4-Dichlorophenol	ND		200	∪G/KG	8270	12/05/2008 19:50) BWM
2,4-Dimethylphenol	ND		200	UG∕KG	8270	12/05/2008 19:50) BWM
2,4-Dinitrophenol	ND		390	UG/KG	8270	12/05/2008 19:50) BWM
2,4-Dinitrotoluene	ND		200	UG/KG	8270	12/05/2008 19:50) BWM
2,6-Dinitrotoluene	ND		200	υg/κg	8270	12/05/2008 19:50) BWM
2-Chloronaphthalene	ND		200	UG/KG	8270	12/05/2008 19:50) BWM
2-Chlorophenol	ND		200	UG/KG	8270	12/05/2008 19:50) BWM
2-Methylnaphthalene	ND		200	UG/KG	8270	12/05/2008 19:50) BWM
2-Methylphenol	ND		200	UG/KG	8270	12/05/2008 19:50	
2-Nitroaniline	ND		390	ug/kg	8270	12/05/2008 19:50	
2-Nitrophenol	ND		200	UG/KG	8270	12/05/2008 19:50	
3,3'-Dichlorobenzidine	ND		200	UG/KG	8270	12/05/2008 19:50	
3-Nitroaniline	NĐ		390	UG/KG	8270	12/05/2008 19:50	
4,6-Dinitro-2-methylphenol	ND		390	UG/KG	8270	12/05/2008 19:50	
4-Bromophenyl phenyl ether	ND		200	UG/KG	8270	12/05/2008 19:50	
4-Chloro-3-methylphenol	ND		200	∪g/kg	8270	12/05/2008 19:50	
4-Chloroaniline	ND		200	UG/KG	8270	12/05/2008 19:50	
4-Chlorophenyl phenyl ether	ND		200	UG/KG	8270	12/05/2008 19:50	
4-Methylphenol	ND		200	ug/kg	8270	12/05/2008 19:50	
4-Nitroaniline	ND		390	UG/KG	8270	12/05/2008 19:50	
4-Nitrophenol	ND		390	UG/KG	8270	12/05/2008 19:50	
Acenaphthene	ND		200	ug/kg	8270	12/05/2008 19:50	
Acenaphthylene	ND		200	UG/KG	8270	12/05/2008 19:50	
Acetophenone	ND		200	UG/KG	8270	12/05/2008 19:50	
Anthracene	ND		200	UG/KG	8270	12/05/2008 19:50	
Atrazine	ND		200	UG/KG	8270	12/05/2008 19:50	
Benzaldehyde	ND		200	UG/KG	8270	12/05/2008 19:50	
Benzo(a)anthracene	ND		200	UG/KG	8270	12/05/2008 19:50	
Benzo(a)pyrene	ND		200	ug/kg	8270	12/05/2008 19:50	
Benzo(b)fluoranthene	ND		200	UG/KG	8270	12/05/2008 19:50	
Benzo(ghi)perylene	ND		200	UG/KG	8270	12/05/2008 19:50	
Benzo(k)fluoranthene	ND		200	ug/kg	8270	12/05/2008 19:50	
Biphenyl	ND		200	UG/KG	8270	12/05/2008 19:50	
Bis(2-chloroethoxy) methane	ND		200	ug/kg	8270	12/05/2008 19:50	
Bis(2-chloroethyl) ether	ND		200	UG/KG	8270	12/05/2008 19:50	
Bis(2-ethylhexyl) phthalate	NÐ		200	UG/KG	8270	12/05/2008 19:50	
Butyl benzyl phthalate	NÐ		200	UG/KG	8270	12/05/2008 19:50	
Caprolactam	ND		200	UG/KG	8270	12/05/2008 19:50	
Carbazole	ND		200	UG/KG	8270	12/05/2008 19:50	
Chrysene	ND		200	UG/KG	8270	12/05/2008 19:50	
Di-n-butyl phthalate	ND		200	UG/KG	8270	12/05/2008 19:50	
Di-n-octyl phthalate	ND		200	UG/KG	8270	12/05/2008 19:50	
Dibenzo(a,h)anthracene	ND		200	UG/KG	8270	12/05/2008 19:50	
Dibenzofuran	ND ND		200	UG/KG	8270 8270	12/05/2008 19:50	
Diethyl phthalate	ND		200	υσ/κσ υσ/κσ	. 8270	12/05/2008 19:50	
Dimethyl phthalate	ND		200	UG/KG	8270	12/05/2008 19:50	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

Sample ID: TP-8 @ 2 Lab Sample ID: A8E93403 Date Collected: 11/19/2008

Time Collected: 10:00

Time: 08:42:45

Date Received: 11/21/2008 Project No: NY5A946109

Client No: L10190

Rept: AN1178

		Detection			Date/Time		-	
Parameter	Result F	Lag	Limit	<u>Units</u>	Method	Analyze	·d	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS								
Flyoranthene	ND		200	∪G/KG	8270	12/05/2008	19:50	B₩M
Fluorene	ND		200	UG/KG	8270	12/05/2008	19:50	B₩M
Hexachlorobenzene	ND		200	UG/KG	8270	12/05/2008	19:50	B₩M
Hexachlorobutadiene	ND		200	∪G/KG	8270	12/05/2008	19:50	BWM
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	12/05/2008	19:50	B₩M
Hexachloroethane	ND		200	∪G/KG	8270	12/05/2008	19:50	B₩M
Indeno(1,2,3-cd)pyrene	ND		200	UG/KG	8270	12/05/2008	19:50	BWM
Isophorone	ND		200	∪G/KG	8270	12/05/2008	19:50	B₩M
N-Nitroso-Di-n-propylamine	ND		200	∪G/KG	8270	12/05/2008	19:50	BWM
N-nitrosodiphenylamine	ND		200	ug/kg	8270	12/05/2008	19:50	BWM
Naphthalene	ND		200	ug/kg	8270	12/05/2008	19:50	BWM
Nitrobenzene	ND		200	ug/kg	8270	12/05/2008	19:50	BWM
Pentachlorophenol	ND		390	ug/kg	8270	12/05/2008	19:50	BWM
Phenanthrene	ND		200	ug/kg	8270	12/05/2008	19:50	₿₩M
Phenol	ŊD		200	u6/kg	8270	12/05/2008	19:50	BWM
Pyrene	ND		200	ug/kg	8270	12/05/2008	19:50	BWM
Metals Analysis								
Aluminum ~ Total	11700		13.0	MG/KG	6010	11/26/2008	18:13	АН
Antimony - Total	ND		19.4	MG/KG	6010	11/26/2008	18:13	AH
Arsenic - Total	8.7		2.6	MG/KG	6010	11/26/2008	18:13	АН
Barium - Total	68.4		0.65	MG/KG	6010	11/26/2008	18:13	АН
Beryllium - Total	0.38		0.26	MG/KG	6010	11/26/2008		
Cadmium - Total	0.26		0.26	MG/KG	6010	11/26/2008		
Calcium - Total	2370		64.8	MG/KG	6010	11/26/2008	18:13	АН
Chromium - Total	11.4		0.65	MG/KG	6010	11/26/2008		
Cobalt - Total	7.0		0.65	MG/KG	6010	11/26/2008		
Copper - Total	16.8		1.3	MG/KG	6010	11/26/2008		АН
Iron - Total	18500		13.0	MG/KG	6010	11/26/2008		АН
Lead - Total	15.6		1.3	MG/KG	6010	11/26/2008		АН
Magnesium - Total	2620		25.9	MG/KG	6010	11/26/2008		АН
Manganese - Total	493		0.26	MG/KG	6010	11/26/2008		AH
Mercury - Total	0.037		0,026	MG/KG	7471	11/26/2008		MM
Nickel - Total	14.6		0.65	MG/KG	6010	11/26/2008		AH
Potassium - Total	714		38.9	MG/KG	6010	11/26/2008		AH
Selenium - Total	ND		5.2	MG/KG	6010	11/26/2008		
Silver - Total	ND		0.65	MG/KG	601.0	11/26/2008		
Sodium - Total	ND		181	MG/KG	6010	11/26/2008		
Thallium - Total	NĐ		7.8	MG/KG	6010	11/26/2008		
Vanadium - Total	17.3		0.65	MG/KG	6010	11/26/2008		
Zinc - Total	56.7		2.6	MG/KG	6010	11/26/2008		

Custody Record Chain of

TestAmerica

Dometrous @ sibegs. com + detaile @ siver. Com Please smail come to the s Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained fonger than 1 month) Chain of Custody Numbe Page THE LEADER IN ENVIRONMENTAL TESTING Date | 18-08 Analysis (Attach list if more space is needed) Lab Number X Archive For SNo. Months ×× PCE5 - 8082 X M X X × × × 09e8 × //////- 6010 × //00/3 - 83-60 //00/3 - 83-60 × × × × × 851-735 QC Requirements (Specify, Containers & Preservatives Disposal By Lab Telephone Number (Area Code)/Fax Number (716) 851~7340 / (716) 1956 HOBN 3. Received By Project Manager Chad Staniszewst. ЮН EONH Lab Contact Drinking Water? Yes No HSSO 7 M دما M M Temperature on Receipt Site Contact
D. Steiner- Empire 1330 Mother DEC SH. × lios × × × \times × × × Time Carrier/Waybill Number Matrix '080 11-21-08 snoenby ıį∀ F-0 24£ 5171 **o**oh i 000 1015 **P** 330 Time Date 🗌 21 Days Project Name and Location (State)
Peny-Empire Transportation - Celebra, NY 1-19-08 80-81-11 1 P P P | 80-81-11 NV Zip Code Poison B Date T4 Days (Containers for each sample may be combined on one line) Skin Irritant Sample I.D. No. and Description 🗌 7 Days Client NYS DEC - Region 9 Address Michigan St 🔲 Flammable Contract/Purchase Order/Quote No SC-1 (TP-5) (t1-d1) h-55 10-19 @ 3.5. 48 Hours Possible Hazard Identification 70-5 e II T o King TO SE um Around Time Required Oly Buffalo TP-8 @ 55 3. Relinquished By Non-Hazard 24 Hours

29/29

DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample, PINK - Field Copy

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

Job#: <u>A08-F730</u>

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
Task: NYSDEC Spills - Penn Empire Site: Site #907034

Mr. Chad Staniszewski NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

CC: Mr. Tom Hellert

TestAmerica Laboratories Inc.

Brian J. Fischer Project Manager

12/22/2008

TestAmerica Buffalo Current Certifications

As of 11/3/2008

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	. SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

SAMPLE SUMMARY

				SAMPI	ED	RECEIVE	∄ D
LAB SAMPLE ID	CLIENT S	SAMPLE ID	MATRIX	DATE	TIME_	DATE	TIME
A8F73001	SS-4					12/11/2008	
A8F73002	SS-5					12/11/2008	
A8F73003	SS-6					12/11/2008	
A8F73004	SS-7					12/11/2008	
A8F73005	SS-8		SOIL	12/10/2008	10:40	12/11/2008	10:10

METHODS SUMMARY

Job#: <u>A08-F730</u>

Project#: <u>NY5A946109</u>

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

	ANALYTICAL
PARAMETER	METHOD
Arsenic - Total	SW8463 6010
Barium - Total	SW8463 6010
Cadmium - Total	SW8463 6010
Chromium - Total	SW8463 6010
Lead - Total	SW8463 6010
Mercury - Total	SW8463 7471
Selenium - Total	SW8463 6010
Silver - Total	SW8463 6010

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: A08-F730

Project#: <u>NY5A946109</u>

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-F730

Sample Cooler(s) were received at the following temperature(s); 8.3 °C Temp from courier pick up at 8.3C.

<u>Metals Data</u>

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

12-22-08

Date

Dilution Log w/Code Information For Job A08-F730

7/14 Page:

Rept: AN1266R

Client Sample ID Lab Sample ID Parameter (Inorganic)/Method (Organic) Dilution Code SS-5 A8F73002 Mercury - Total 5.00 008

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 **9/14** Page:

Rept: AN1178

Sample ID: SS-4

Lab Sample ID: A8F73001
Date Collected: 12/10/2008

Time Collected: 10:00

Date Received: 12/11/2008

Project No: NY5A946109 Client No: L10190

		Detection			Date/Time	
Parameter	Result Flag	Limit	Units	Method	Analyzed	Analyst
Metals Analysis						
Arsenic - Total	13.0	3.0	MG/KG	6010	12/16/2008 05:37	AH
Barium - Total	50.2	0.74	MG/KG	6010	12/16/2008 05:37	АН
Cadmium - Total	ND	0.30	MG/KG	6010	12/18/2008 03:27	TWS
Chromium - Total	12.7	0.74	MG/KG	6010	12/16/2008 05:37	АН
Lead - Total	55.1	1.5	MG/KG	6010	12/16/2008 05:37	AH
Mercury - Total	0.12	0.030	MG/KG	7471	12/17/2008 16:20	MM
Selenium - Total	ND	6.0	MG/KG	6010	12/16/2008 05:37	AH
Silver - Total	ND	0.74	MG/KG	6010	12/16/2008 05:37	АН

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 10/14 Page:

Rept: AN1178

Sample ID: SS-5

Lab Sample ID: A8F73002 Date Collected: 12/10/2008

Time Collected: 10:10

Date Received: 12/11/2008 Project No: NY5A946109

Client No: L10190

						——Date/Time	
Parameter	Result	Flag	Detection Limit	Units	Method	Analyzed	Analyst
Metals Analysis							
Arsenic - Total	17.0		3.1	MG/KG	6010	12/16/2008 05:42	НA
Barium - Total	547		0.78	MG/KG	6010	12/16/2008 05:42	AH
Cadmium - Total	7.3		0.31	MG/KG	6010	12/18/2008 03:33	TWS
Chromium - Total	27.7		0.78	MG/KG	6010	12/16/2008 05:42	AH
Lead - Total	2230		1.6	MG/KG	6010	12/16/2008 05:42	AH
Mercury - Total	1.5		0.16	MG/KG	7471	12/17/2008 18:06	MM
Selenium - Total	ND		6.2	MG/KG	6010	12/16/2008 05:42	AH
Silver - Total	1.4		0.78	MG/KG	6010	12/16/2008 05:42	АН

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 11/14 Page:

Rept: AN1178

Sample ID: SS-6
Lab Sample ID: A8F73003
Date Collected: 12/10/2008

Time Collected: 10:20

Date Received: 12/11/2008 Project No: NY5A946109 Client No: L10190

		Detection			Date/Time	
Parameter	Result Flag	Limit	Units	Me thod	Analyzed	Analyst
Metals Analysis						
Arsenic - Total	13.1	3.0	MG/KG	6010	12/16/2008 05:47	AH
Barjum - Total	152	0.75	MG/KG	6010	12/16/2008 05:47	AH
Cadmium - Total	0.33	0.30	MG/KG	6010	12/18/2008 03:38	TWS
Chromium - Total	13.4	0.75	MG/KG	6010	12/16/2008 05:47	AH
Lead - Total	939	1.5	MG/KG	6010	12/16/2008 05:47	AH
Mercury - Total	0.10	0.032	MG/KG	7471	12/17/2008 16:26	MM
Selenium - Total	ND	6.0	MG/KG	6010	12/16/2008 05:47	АН
Silver - Total	ФИ	0.75	MG/KG	6010	12/16/2008 05:47	АН

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 12/14 Page:

Rept: AN1178

Sample ID: SS-7

Lab Sample ID: A8F73004
Date Collected: 12/10/2008

Time Collected: 10:30

Date Received: 12/11/2008 Project No: NY5A946109

Client No: L10190

		Detection			Date/Time	
Parameter	Result Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
Metals Analysis						
Arsenic - Total	9.8	2.9	MG/KG	6010	12/16/2008 05:52	AH
Barium - Total	184	0.74	MG/KG	6010	12/16/2008 05:52	AH
Cadmium - Total	0.34	0.29	MG/KG	6010	12/18/2008 03:43	TWS
Chromium - Total	11.0	0.74	MG/KG	6010	12/16/2008 05:52	AH
Lead - Total	7 07	1.5	MG/KG	6010	12/16/2008 05:52	AH
Mercury - Total	0.085	0.030	MG/KG	7471	12/17/2008 16:28	MM
Selenium - Total	NÐ	5.9	MG/KG	6010	12/16/2008 05:52	AH
Silver - Total	ND	0.74	MG/KG	6010	12/16/2008 05:52	АН

Date: 12/22/2008

Time: 09:06:55

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034

Rept: AN1178

Sample ID: SS-8

Lab Sample ID: A8F73005

Date Collected: 12/10/2008 Time Collected: 10:40

Date Received: 12/11/2008

Project No: NY5A946109 Client No: L10190

	Detection			Date/Time	
Result Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
9.4	3.4	MG/KG	6010	12/16/2008 05:57	AH
107	0.86	MG/KG	6010	12/16/2008 05:57	AH
0.37	0.34	MG/KG	6010	12/18/2008 03:48	TWS
10.1	0.86	MG/KG	6010	12/16/2008 05:57	AH
105	1.7	MG/KG	6010	12/16/2008 05:57	AH
0.13	0.034	MG/KG	7471	12/17/2008 16:30	MM
ND	6.9	MG/KG	6010	12/16/2008 05:57	АH
ND	0.86	MG/KG	6010	12/16/2008 05:57	AH
	9.4 107 0.37 10.1 105 0.13	Result Flag Limit 9.4 3.4 107 0.86 0.37 0.34 10.1 0.86 105 1.7 0.13 0.034 ND 6.9	Result Flag Limit Units 9.4 3.4 MG/KG 107 0.86 MG/KG 0.37 0.34 MG/KG 10.1 0.86 MG/KG 105 1.7 MG/KG 0.13 0.034 MG/KG ND 6.9 MG/KG	Result Flag Limit Units Method 9.4 3.4 MG/KG 6010 107 0.86 MG/KG 6010 0.37 0.34 MG/KG 6010 10.1 0.86 MG/KG 6010 105 1.7 MG/KG 6010 0.13 0.034 MG/KG 7471 ND 6.9 MG/KG 6010	Result Flag Limit Units Method Analyzed 9.4 3.4 MG/KG 6010 12/16/2008 05:57 107 0.86 MG/KG 6010 12/16/2008 05:57 0.37 0.34 MG/KG 6010 12/18/2008 03:48 10.1 0.86 MG/KG 6010 12/16/2008 05:57 105 1.7 MG/KG 6010 12/16/2008 05:57 0.13 0.034 MG/KG 7471 12/17/2008 16:30 ND 6.9 MG/KG 6010 12/16/2008 05:57

Chain of Custody Record

Temperature on Receipt __

Drinking Water? Yes □ No 🖟

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)				¥ .			ľ	
NISDEC-RESIGNS / FATIRECTUSATIONS	STORES OF	Colect mans	TOTO -	29. 35Ki.	(Empre)	12:10:09	Chain of Custody Number	~
Address		Telephone N	umber (Area Code)/Fax Number	Telephone Number (Area Code)/Fax Number	Lab Number	Page (
City State Zip Code	epo	Site Comact	200	tot Lab Contact		Analysis (Attach list if more space is needed)		
Project Name and Location (State)	12 000	Carrier/Waybill Number	ill Number		17) C a c 240
Contract/Purchase Order/Quote No. NXDEC Sp. 11 # 90034			Matrix	Containers & Preservatives	S & Wes		Special Instructions/ Conditions of Receipt	suons/ Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	suoeupA Sed. Soil	HCI HIXO3 HISO4 Nubles	HOBN HOBN HOBN HOBN			
55.4	1210-08	0001	×		×			
55-5		0/0/	X		×			
55-6		020/	×		X			
55-7		050/	, ×		XX			
SS-9	12,008	0,01	×		XX			
The state of the s								
	second the							
nn mmable Skin Imtant	Poison B	Sar Unknown	Sample Disposal Return To Client	☐ Disposal By Lab	Lab		(A fee may be assessed if samples are retained Months longer than 1 month)	9
Tum Around Time Required 24 Hours	; 📋 21 Days	K Other IODO) POD	OC Requirements	S S	4	Star Brown	
1. Relinquished By		Date	Time	1. Received		740	Date Time	
2. Remarkhed By		Date	Time	2. Received By		7	Date Time	3
3. Relinquished By		Date	Time	3. Received By			Date Time	# *
Comments				8.30	}			
DISTRIBUTION: WHITE - Returned to Cilent with Report; CANARY - Stays with the Sample; PINK - Field Copy	INARY - Stays with	the Sample; P	INK - Field Copy					

Analytical Report

Work Order: RSA0876

Work Order Description: NYSDEC Spills - Penn Empire Site: Site #907034

For:

Chad Staniszewski

New York State D.E.C. - Buffalo, NY

270 Michigan Avenue Buffalo, NY 14203

Brian Fischer

Project Manager

Brian.Fischer@testamericainc.com

Friday, February 6, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSA0876

Received:

01/28/09

Reported: 02/06/09 13:42

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH -0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA, NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana *	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0 04 4
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP, SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania *	NELAP CWA,RCRA	68-00281
Tenness ee	SDWA	02970
Texas *	NELAP CWA, RCRA	T10470441208-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As requiredunder the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

www.testamericainc.com Page 2 of 9

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue Buffalo, NY 14203 Work Order: RSA0876

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Case Narrative

According to 40CFR part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediatly after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediatly, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

01/28/09

02/06/09 13:42

Received:

Reported:

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSA0876

Received:

01/28/09

Reported:

ed: 02/06/09 13:42

Project Number: NYSDEC

DATA QUALIFIERS AND DEFINITIONS

Project: NYSDEC Spills - Penn Empire Site: Site #907034

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSA0876

Received:

01/28/09

Reported:

d: 02/06/09 13:42

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Executive Summary - Detections

Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0876-01 (SS-9 - Solid)					Sa	mpled: 01	/26/09 13:00	Rec	vd: 01/28/	09 11:30
General Chemistry Parameters										
Percent Solids	69.9		0.0100	0.0100	%	1.00	01/29/09 14:44	CM	9A29014	Dry Weight
Total Metals by SW 846 Series Methods										
Lead	3100		1.37	0.00397	mg/kg dry	1.00	02/02/09 18:29	TWS	9A30039	6010B
Sample ID: RSA0876-02 (SS-10 - Solid)					Sa	impled: 01	/26/09 13:15	Rec	vd: 01/28/	09 11:30
General Chemistry Parameters										
Percent Solids	82.8		0.0100	0.0100	%	1.00	01/29/09 14:46	CM	9A29014	Dry Weight
Total Metals by SW 846 Series Methods										
Lead	770		1.14	0.00329	mg/kg dry	1.00	02/02/09 18:34	TWS	9A30039	6010B

www.testamericainc.com Page 5 of 9

270 Michigan Avenue Buffalo, NY 14203

Work Order: RSA0876

Received:

01/28/09

Reported:

02/06/09 13:42

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Sample Summary

SAMPLE IDENTIFICATION	LAB NUMBER	Client Matrix	Date/Time Sampled	Date/Time Received
SS-9	RSA0876-01	Solid	01/26/09 13:00	01/28/09 11:30
SS-10	RSA0876-02	Solid	01/26/09 13:15	01/28/09 11:30

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSA0876

Received:

01/28/09

Reported: 02/06/09 13:42

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

			Analytic	al Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0876-01 (SS-9 - Solid)				Sampled: 01/26/09 13:00 Recvd: 01/28/09 11:30						
General Chemistry Parameters										
Percent Solids	69.9		0.0100	0.0100	%	1.00	01/29/09 14:44	CM	9A29014	Dry Weight
Total Metals by SW 846 Series Methods										
Lead	3100		1.37	0.00397	mg/kg dry	1.00	02/02/09 18:29	TWS	9A30039	6010B

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

270 Michigan Avenue Buffalo, NY 14203 Work Order: RSA0876

Received:

01/28/09

Reported:

rted: 02/06/09 13:42

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Timily total Report											
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method	
Sample ID: RSA0876-02 (SS-10 - Solid)						ampled: 01	/26/09 13:15	Rec	vd: 01/28/	09 11:30	
General Chemistry Parameters											
Percent Solids	82.8		0.0100	0.0100	%	1.00	01/29/09 14:46	CM	9A29014	Dry Weight	
Total Metals by SW 846 Series Methods											
Lead	770		1.14	0.00329	mg/kg dry	1.00	02/02/09 18:34	TWS	9A30039	6010B	

Page 8 of 9

270 Michigan Avenue Buffalo, NY 14203 Work Order: RSA0876

Received:

01/28/09

Reported:

02/06/09 13:42

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

SAMPLE EXTRACTION DATA

			Wt/Vol	Extracted			
Parameter	Batch	Lab Number	Extracted	Volume	Date	Analyst	Extraction Method
General Chemistry Parameters							
Dry Weight	9A29014	RSA0876-01	10	10	01/29/09 09:51	CAM	Dry Weight
Dry Weight	9A29014	RSA0876-02	10	10	01/29/09 09:51	CAM	Dry Weight
Total Metals by SW 846 Series Methods							
6010B	9A30039	RSA0876-01	1	50	02/02/09 12:00	MLD	3050B
6010B	9A30039	RSA0876-02	1	50	02/02/09 12:00	MLD	3050B

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4142 (0907)
Client | N. W. **€** Contract/Purchase Order/Quote No. Project Name and Location (State)
Penn Empire: Transportation - Celoron, W Sample I.D. No. and Description (Containers for each sample may be combined on one line) DISTRIBUTION: Relinquished By Possible Hazard Identification Comments . A dirquiste SS-10 52-4 Buttalo NYSDEC-Region 9 on unfigure oct WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy ☐ Flammable 7 Days Skin trritant State ☐ 14 Days Lot hi Poison B 1-26-09 1-8-04 Date 21 Days ☐ Unknown 1300 Time Other_ Telephone Number (Area Code)/Fax Nymber (716) 851-725 Date 1-29-09 Time Carrier/Waybill Number D. Stainer-Empire Project Manager Return To Client | Disposal By Lab Sample Disposal DEC S.M. Matrix Sed. Time C Kand Soil Staniszewsti Lab Contact Unpres OC Requirements (Specify) 3. Received By 1. Received By Containers & Preservatives HNO3 ICI NaOH ZnAc/ NaOH Lego St. Months Analysis (Attach list if more space is needed) Lab Number 1-26-09 (A fee may be assessed if samples are retained longer than 1 month) 40-88-14 Chain of Custody Number 389370 Date metzger @ sjaegs.com estance @ Siberys. Om + Email results be Special Instructions/ Conditions of Receipt Time 9

Analytical Report

Work Order: RSA0874

Work Order Description: NYSDEC Spills - Penn Empire Site: Site #907034

For:

Chad Staniszewski

New York State D.E.C. - Buffalo, NY

270 Michigan Avenue Buffalo, NY 14203

Brian Fischer

Project Manager

Brian.Fischer@testamericainc.com

Friday, February 27, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSA0874

Received: Reported: 01/28/09 02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0 0 4 4
Maryland	SD W A	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T10470441208-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters or which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

www.testamericainc.com Page 2 of 18

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSA0874

Received:

01/28/09

Reported:

02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Case Narrative

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

270 Michigan Avenue Buffalo, NY 14203 Work Order: RSA0874

Received: Reported: 01/28/09 02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

DATA QUALIFIERS AND DEFINITIONS

B1 Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration

found in the method blank.

H4 Sample was extracted past holding time, but analyzed within analysis holding time.

J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).

Concentrations within this range are estimated.

P-HS Sample container contained headspace.

www.testamericainc.com Page 4 of 18

270 Michigan Avenue Buffalo, NY 14203

Work Order: RSA0874

Received:

01/28/09

Reported:

02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Executive Summary - Detections

	Sample	Data		•		Dilution	Date		C/	
Analyte	Result	Qualifiers	Rpt Limi	t MDL	Units	Factor	Analyzed	Analyst	Seq/ Batch	Method
·			Tept Ziiii	VIVIDE	Units	ractor	Anaryzeu	Analyst	Daten	Michiga
Sample ID: RSA0874-01 (MW-2 - Wa	-				S	Sampled: (01/27/09 11:28	Rec	evd: 01/28/	09 11:30
Organochlorine Pesticides by EPA Metho				0.005		4.00	02/02/00 42 40		0.1.000.1.0	
Aldrin	0.016	J	0.047	0.006	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Semivolatile Organics by GC/MS										
Bis(2-ethylhexyl) phthalate	5.8		4.9	4.7	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
Total Metals by SW 846 Series Methods										
Aluminum	3.40		0.200	0.0236	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Barium	0.545		0.00200	0.000280	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Calcium	134		0.500	0.100	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Chromium	0.00381	J	0.00400	0.000880	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Cobalt	0.00189	J	0.00400	0.00106	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Copper	0.0331	7.4	0.0100	0.00126	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Iron	4.13	B1	0.0500	0.0193	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Lead	0.00501		0.00500	0.00290	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Magnesium	22.1		0.200	0.0423	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Manganese	0.186	J	0.00300	0.000240	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Nickel Betessium	0.00558 2.77	J	0.0100	0.00103	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Potassium Sodium	42.0		0.500 1.00	0.0500 0.339	mg/L	1.00 1.00	01/31/09 02:57	AH	9A29024 9A29024	6010B 6010B
Vanadium	0.00536		0.00500	0.000980	mg/L	1.00	01/31/09 02:57 01/31/09 02:57	AH	9A29024 9A29024	6010B
Zinc	0.00530		0.0100	0.00360	mg/L	1.00	01/31/09 02:57	AH AH	9A29024 9A29024	6010B
Zinc	0.0735		0.0100	0.00300	mg/L	1.00	01/31/09 02.37	ΑП	JA27024	00101
Sample ID: RSA0874-01RE1 (MW-2	- Water)				5	Sampled: (01/27/09 11:28	Rec	evd: 01/28/	09 11:30
Organochlorine Pesticides by EPA Metho	od 8081A									
4,4'-DDE [2C]	0.022	H4,J	0.049	0.011	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
delta-BHC [2C]	0.025	H4,J	0.049	0.010	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
gamma-Chlordane [2C]	0.024	H4,J	0.049	0.011	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Heptachlor epoxide [2C]	0.016	H4,J	0.049	0.005	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Sample ID: RSA0874-02 (MW-4 - Wa	nter)				5	Sampled: (01/27/09 12:04	Rec	evd: 01/28/	09 11:30
Semivolatile Organics by GC/MS						•				
Bis(2-ethylhexyl) phthalate	9.9		4.7	4.5	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Total Metals by SW 846 Series Methods										
Aluminum	5.85		0.200	0.0236	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Arsenic	0.00796	J	0.0100	0.00370	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Barium	0.386		0.00200	0.000280	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Calcium	161		0.500	0.100	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Chromium	0.00716		0.00400	0.000880	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Cobalt	0.00512		0.00400	0.00106	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Copper	0.0268		0.0100	0.00126	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Iron	8.92	B1	0.0500	0.0193	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Lead	0.00882		0.00500	0.00290	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Magnesium	33.7		0.200	0.0423	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Manganese	0.370		0.00300	0.000240	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Nickel	0.00930	J	0.0100	0.00103	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Potassium	6.14		0.500	0.0500	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Sodium	70.3		1.00	0.339	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Vanadium	0.00848		0.00500	0.000980	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Zinc	0.0562		0.0100	0.00360	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Page 5 of 18 www.testamericainc.com

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSA0874

Received:

01/28/09

Reported:

02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Sample Summary

SAMPLE IDENTIFICATION	LAB NUMBER	Client Matrix	Date/Time Sampled	Date/Time Received
MW-2	RSA0874-01	Water	01/27/09 11:28	01/28/09 11:30
MW-4	RSA0874-02	Water	01/27/09 12:04	01/28/09 11:30

270 Michigan Avenue

Work Order: RSA0874

Received: Reported: 01/28/09 02/27/09 13:40

Buffalo, NY 14203

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Analytical Repo

	Sample	Data	Rpt Limit	MDL		Dilution	Date		Seq/	
Analyte	Result	Qualifiers	крі Епші	MIDL	Units	Factor	Analyzed	Analyst	Batch	Method
Sample ID: RSA0874-01 (MW-2 -	Water)				S	ampled: 01	/27/09 11:28	Rec	vd: 01/28/	09 11:30
<u>Herbicides</u>										
2,4,5-T [2C]	ND		0.49	0.15	ug/L	1.00	02/02/09 13:01	tch	9A29023	8151A
2,4-D [2C]	ND		0.49	0.11	ug/L	1.00	02/02/09 13:01	tch	9A29023	8151A
Silvex [2,4,5-TP] [2C]	ND		0.49	0.11	ug/L	1.00	02/02/09 13:01	tch	9A29023	8151A
Surr: 2,4-Dichlorophenylacetic acid [2C] (1	19-128%) 57 %						02/02/09 13:01	tch	9A29023	8151A
Organochlorine Pesticides by EPA M	lethod 8081A									
4,4'-DDD	ND		0.047	0.016	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
4,4'-DDE	ND		0.047	0.011	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
4,4'-DDT	ND		0.047	0.010	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Aldrin	0.016	J	0.047	0.006	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
alpha-BHC	ND		0.047	0.006	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
alpha-Chlordane	ND		0.047	0.014	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
beta-BHC	ND		0.047	0.024	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Chlordane	ND		0.474	0.048	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
delta-BHC	ND		0.047	0.010	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Dieldrin	ND		0.047	0.018	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Endosulfan I	ND		0.047	0.023	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Endosulfan II	ND		0.047	0.018	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Endosulfan sulfate	ND		0.047	0.015	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Endrin	ND		0.047	0.013	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Endrin aldehyde	ND		0.047	0.015	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Endrin ketone	ND		0.047	0.019	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
gamma-BHC (Lindane)	ND		0.047	0.006	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
gamma-Chlordane	ND		0.047	0.010	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Heptachlor	ND		0.047	0.008	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Heptachlor epoxide	ND		0.047	0.005	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Methoxychlor	ND		0.047	0.013	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Toxaphene	ND		0.474	0.114	ug/L	1.00	02/03/09 12:19	tch	9A29019	8081A
Surr: Decachlorobiphenyl (15-139%)	32 %						02/03/09 12:19	tch	9A29019	8081A
Surr: Tetrachloro-m-xylene (30-139%)	85 %						02/03/09 12:19	tch	9A29019	8081A
Polychlorinated Biphenyls by EPA M	<u> 1ethod 8082</u>									
Aroclor 1016	ND		0.474	0.167	ug/L	1.00	01/31/09 16:15	tch	9A29020	8082
Aroclor 1221	ND		0.474	0.167	ug/L	1.00	01/31/09 16:15	tch	9A29020	8082
Aroclor 1232	ND		0.474	0.167	ug/L	1.00	01/31/09 16:15	tch	9A29020	8082
Aroclor 1242	ND		0.474	0.167	ug/L	1.00	01/31/09 16:15	tch	9A29020	8082
Aroclor 1248	ND		0.474	0.167	ug/L	1.00	01/31/09 16:15	tch	9A29020	8082
Aroclor 1254	ND		0.474	0.237	ug/L	1.00	01/31/09 16:15	tch	9A29020	8082
Aroclor 1260	ND		0.474	0.237	ug/L	1.00	01/31/09 16:15	tch	9A29020	8082
Surr: Decachlorobiphenyl (12-137%)	37 %						01/31/09 16:15	tch	9A29020	8082
Surr: Tetrachloro-m-xylene (35-121%)	87 %						01/31/09 16:15	tch	9A29020	8082
Semivolatile Organics by GC/MS										
1,2,4-Trichlorobenzene	ND		9.8	0.11	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
1,2-Dichlorobenzene	ND		9.8	0.14	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
1,3-Dichlorobenzene	ND		9.8	0.13	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
1,4-Dichlorobenzene	ND		9.8	0.15	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
2,4,5-Trichlorophenol	ND		4.9	0.97	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
2,4,6-Trichlorophenol	ND		4.9	0.97	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
2,4-Dichlorophenol	ND		4.9	0.77	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
2,4-Dimethylphenol	ND		4.9	0.94	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
2,4-Dinitrophenol	ND		9.8	2.2	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
2,4-Dinitrotoluene	ND		4.9	0.44	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
2,6-Dinitrotoluene	ND		4.9	0.50	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 7 of 18

270 Michigan Avenue

Work Order: RSA0874

Received: Reported: 01/28/09 02/27/09 13:40

Buffalo, NY 14203

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Aliaiyutai Nepul	Ana	lvtical	Report
------------------	-----	---------	--------

Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method		
Sample ID: RSA0874-01 (MW-2	- Water) - cont.				Sampled: 01/27/09 11:28 Recv				vd: 01/28/	vd: 01/28/09 11:30		
Semivolatile Organics by GC/MS -	cont.					•						
2-Chloronaphthalene	ND		4.9	0.082	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
2-Chlorophenol	ND		4.9	0.50	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
2-Methylnaphthalene	ND		4.9	0.080	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
2-Methylphenol	ND		4.9	0.22	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
2-Nitroaniline	ND		9.8	0.49	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
2-Nitrophenol	ND		4.9	0.59	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
3,3'-Dichlorobenzidine	ND		4.9	0.37	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
3-Nitroaniline	ND		9.8	1.5	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
4,6-Dinitro-2-methylphenol	ND		9.8	2.2	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
4-Bromophenyl phenyl ether	ND		4.9	0.88	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
4-Chloro-3-methylphenol	ND		4.9	0.58	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
4-Chloroaniline	ND		4.9	0.32	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
4-Chlorophenyl phenyl ether	ND		4.9	0.16	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
4-Methylphenol	ND		4.9	0.35	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
4-Nitroaniline	ND		9.8	0.45	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
4-Nitrophenol	ND		9.8	1.5	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Acenaphthene	ND		4.9	0.11	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Acenaphthylene	ND		4.9	0.046	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Anthracene	ND		4.9	0.055	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Benzo(a)anthracene	ND		4.9	0.063	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Benzo(a)pyrene	ND		4.9	0.089	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Benzo(b)fluoranthene	ND		4.9	0.062	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Benzo(ghi)perylene	ND		4.9	0.076	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Benzo(k)fluoranthene	ND		4.9	0.065	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Bis(2-chloroethoxy)methane	ND		4.9	0.37	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Bis(2-chloroethyl)ether	ND		4.9	0.18	ug/L ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
2,2'-Oxybis(1-Chloropropane)	ND		4.9	0.42	_	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Bis(2-ethylhexyl) phthalate	5.8		4.9	4.7	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Butyl benzyl phthalate	ND		4.9	1.7	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Carbazole	ND		4.9	0.087	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Chrysene	ND		4.9	0.037	ug/L	1.00	02/23/09 20:11		9A30042	8270C 8270C		
Dibenzo(a,h)anthracene	ND		4.9	0.27	ug/L	1.00	02/23/09 20:11	ERK ERK	9A30042	8270C 8270C		
Dibenzofuran	ND		4.9	0.096	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Diethyl phthalate	ND		4.9	0.030	ug/L	1.00	02/23/09 20:11		9A30042	8270C 8270C		
Dimethyl phthalate	ND		4.9	0.11	ug/L	1.00	02/23/09 20:11	ERK ERK	9A30042	8270C 8270C		
Di-n-butyl phthalate	ND		4.9	0.29	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C 8270C		
Di-n-octyl phthalate	ND		4.9	0.24	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C 8270C		
Fluoranthene	ND ND		4.9	0.096	ug/L	1.00	02/23/09 20:11		9A30042	8270C 8270C		
Fluorene	ND ND		4.9	0.073	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C 8270C		
Hexachlorobenzene	ND ND			0.073	ug/L		02/23/09 20:11	ERK	9A30042			
Hexachlorobutadiene	ND		4.9 4.9	2.5	ug/L	1.00 1.00	02/23/09 20:11	ERK	9A30042	8270C 8270C		
Hexachlorocyclopentadiene	ND ND				ug/L			ERK		8270C 8270C		
			4.9	2.5	ug/L	1.00	02/23/09 20:11	ERK	9A30042			
Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND		4.9	2.8 0.15	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C 8270C		
· · · · · · · · · · · · · · · · · · ·	ND ND		4.9 4.9	0.15	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C 8270C		
Isophorone Naphthalana	ND ND				ug/L	1.00	02/23/09 20:11	ERK	9A30042			
Naphthalene	ND ND		4.9	0.11	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C 8270C		
Nitrobenzene N Nitrosodi n propylamine	ND ND		4.9	0.53	ug/L	1.00	02/23/09 20:11	ERK	9A30042			
N-Nitrosodi-n-propylamine			4.9	0.44	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
N-Nitrosodiphenylamine	ND ND		4.9	0.25	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Pentachlorophenol	ND		9.8	5.0	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		
Phenanthrene	ND		4.9	0.11	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C		

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 8 of 18

270 Michigan Avenue

Work Order: RSA0874

Received: Reported: 01/28/09 02/27/09 13:40

Buffalo, NY 14203

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

			Analyti	cal Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0874-01 (MW-2 - V	Vater) - cont.				S	amnled: 01	/27/09 11:28	Recvd: 01/28/09		09 11:30
Semivolatile Organics by GC/MS - con	,				5	umpicu. 01	727707 11.20	1100	v u. 01/20/	0, 11.00
Phenol	ND		4.9	0.44	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
Pyrene	ND		4.9	0.067	ug/L	1.00	02/23/09 20:11	ERK	9A30042	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	93 %				ug 2		02/23/09 20:11	ERK	9A30042	8270C
Surr: 2-Fluorobiphenyl (48-120%)	93 %						02/23/09 20:11	ERK	9A30042	8270C
Surr: 2-Fluorophenol (20-120%)	41 %						02/23/09 20:11	ERK	9A30042	8270C
Surr: Nitrobenzene-d5 (46-120%)	94 %						02/23/09 20:11	ERK	9A30042	8270C
Surr: Phenol-d5 (16-120%)	31 %						02/23/09 20:11	ERK	9A30042	8270C
Surr: p-Terphenyl-d14 (24-136%)	52 %						02/23/09 20:11	ERK	9A30042	8270C
Total Metals by SW 846 Series Method	d <u>s</u>									
Aluminum	3.40		0.200	0.0236	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Antimony	ND		0.0200	0.00548	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Arsenic	ND		0.0100	0.00370	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Barium	0.545		0.00200	0.000280	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Beryllium	ND		0.00200	0.000330	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Cadmium	ND	B1	0.00100	0.000330	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Calcium	134		0.500	0.100	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Chromium	0.00381	J	0.00400	0.000880	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Cobalt	0.00189	J	0.00400	0.00106	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Copper	0.0331		0.0100	0.00126	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Iron	4.13	B1	0.0500	0.0193	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Lead	0.00501		0.00500	0.00290	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Magnesium	22.1		0.200	0.0423	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Manganese	0.186		0.00300	0.000240	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Nickel	0.00558	J	0.0100	0.00103	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Potassium	2.77		0.500	0.0500	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Selenium	ND		0.0150	0.00610	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Silver	ND		0.00300	0.00127	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Sodium	42.0		1.00	0.339	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Thallium	ND		0.0200	0.00588	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Vanadium	0.00536		0.00500	0.000980	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Zinc	0.0753		0.0100	0.00360	mg/L	1.00	01/31/09 02:57	AH	9A29024	6010B
Mercury	ND		0.000200	0.000120	mg/L	1.00	01/30/09 16:40	MM	9A30043	7470A
Volatile Organic Compounds by EPA	8260B									
1,1,1-Trichloroethane	ND	P-HS	5.0	0.26	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
1,1,2,2-Tetrachloroethane	ND	P-HS	5.0	0.21	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
1,1,2-Trichloroethane	ND	P-HS	5.0	0.23	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
1,1-Dichloroethane	ND	P-HS	5.0	0.75	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
1,1-Dichloroethene	ND	P-HS	5.0	0.29	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
1,2-Dichloroethane	ND	P-HS	5.0	0.21	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
1,2-Dichloroethene, Total	ND	P-HS	10	0.70	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
1,2-Dichloropropane	ND	P-HS	5.0	0.14	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
2-Butanone	ND	P-HS	25	1.3	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
2-Hexanone	ND	P-HS	25	1.2	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
4-Methyl-2-pentanone	ND	P-HS	25	0.91	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Acetone	ND	P-HS	25	1.3	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Benzene	ND	P-HS	5.0	0.16	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Bromodichloromethane	ND	P-HS	5.0	0.39	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Bromoform	ND	P-HS	5.0	0.26	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Bromomethane	ND	P-HS	5.0	0.28	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Carbon disulfide	ND	P-HS	5.0	0.19	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Carbon Tetrachloride	ND	P-HS	5.0	0.27	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 9 of 18

270 Michigan Avenue Buffalo, NY 14203

Work Order: RSA0874

Received:

01/28/09

Reported: 02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Analytical Report										
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0874-01 (MW-2 - V	Water) - cont.				S	sampled: 01	/27/09 11:28	Rec	vd: 01/28/	09 11:30
Volatile Organic Compounds by EPA	8260B - cont.					•				
Chlorobenzene	ND	P-HS	5.0	0.32	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Dibromochloromethane	ND	P-HS	5.0	0.32	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Chloroethane	ND	P-HS	5.0	0.32	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Chloroform	ND	P-HS	5.0	0.34	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Chloromethane	ND	P-HS	5.0	0.35	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
cis-1,3-Dichloropropene	ND	P-HS	5.0	0.36	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Ethylbenzene	ND	P-HS	5.0	0.18	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Methylene Chloride	ND	P-HS	5.0	0.44	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Styrene	ND	P-HS	5.0	0.18	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Tetrachloroethene	ND	P-HS	5.0	0.36	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Toluene	ND	P-HS	5.0	0.51	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
trans-1,3-Dichloropropene	ND	P-HS	5.0	0.37	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Trichloroethene	ND	P-HS	5.0	0.18	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Vinyl acetate	ND	P-HS	25	0.85	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Vinyl chloride	ND	P-HS	5.0	0.24	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Xylenes, total	ND	P-HS	15	0.93	ug/L	1.00	02/10/09 15:39	DHF	9B10025	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	90 %	P-HS					02/10/09 15:39	DHF	9B10025	8260B
Surr: 4-Bromofluorobenzene (73-120%)	109 %	P-HS					02/10/09 15:39	DHF	9B10025	8260B
Surr: Dibromofluoromethane (70-130%)	92 %	P-HS					02/10/09 15:39	DHF	9B10025	8260B
Surr: Toluene-d8 (71-126%)	100 %	P-HS					02/10/09 15:39	DHF	9B10025	8260B

Page 10 of 18 www.testamericainc.com

270 Michigan Avenue

Buffalo, NY 14203

Work Order: RSA0874

Received:

01/28/09

Reported:

02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0874-01RE1 (MW-2	- Water)				5	Sampled: 01	/27/09 11:28	Rec	vd: 01/28/	09 11:30
Organochlorine Pesticides by EPA Meth	,					p				
4,4'-DDD [2C]	ND	H4	0.049	0.016	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
4,4'-DDE [2C]	0.022	H4,J	0.049	0.011	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
4,4'-DDT [2C]	ND	H4	0.049	0.011	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Aldrin [2C]	ND	H4	0.049	0.006	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
alpha-BHC [2C]	ND	H4	0.049	0.006	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
alpha-Chlordane [2C]	ND	H4	0.049	0.015	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
beta-BHC [2C]	ND	H4	0.049	0.024	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Chlordane [2C]	ND	H4	0.490	0.049	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
delta-BHC [2C]	0.025	H4,J	0.049	0.010	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Dieldrin [2C]	ND	H4	0.049	0.019	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Endosulfan I [2C]	ND	H4	0.049	0.024	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Endosulfan II [2C]	ND	H4	0.049	0.019	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Endosulfan sulfate [2C]	ND	H4	0.049	0.015	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Endrin [2C]	ND	H4	0.049	0.014	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Endrin aldehyde [2C]	ND	H4	0.049	0.016	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Endrin ketone [2C]	ND	H4	0.049	0.020	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
gamma-BHC (Lindane) [2C]	ND	H4	0.049	0.006	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
gamma-Chlordane [2C]	0.024	H4,J	0.049	0.011	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Heptachlor [2C]	ND	H4	0.049	0.008	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Heptachlor epoxide [2C]	0.016	H4,J	0.049	0.005	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Methoxychlor [2C]	ND	H4	0.049	0.014	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Toxaphene [2C]	ND	H4	0.490	0.118	ug/L	1.00	02/09/09 12:43	tch	9B04035	8081A
Surr: Decachlorobiphenyl [2C] (15-139%)	48 %	H4					02/09/09 12:43	tch	9B04035	8081A
Surr: Tetrachloro-m-xylene [2C] (30-139%)	77 %	H4					02/09/09 12:43	tch	9B04035	8081A

Page 11 of 18 www.testamericainc.com

270 Michigan Avenue

Work Order: RSA0874

Received: Reported: 01/28/09 02/27/09 13:40

9A30042

9A30042

ERK

ERK

8270C

8270C

Buffalo, NY 14203

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Analytical Report											
Analytical Report Sample Data Dilution Date Seq/											
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analyst	Seq/ Batch	Method	
Sample ID: RSA0874-02 (MW-4 -	Water)					ampladı A1	-		vd: 01/28/		
Herbicides	water)				3	ampieu: vi	/27/09 12:04	Rec	vu: 01/28/	09 11:30	
2,4,5-T [2C]	ND		0.48	0.14	ug/L	1.00	02/02/09 13:31	tch	9A29023	8151A	
2,4-D [2C]	ND		0.48	0.14	ug/L ug/L	1.00	02/02/09 13:31	tch	9A29023	8151A	
Silvex [2,4,5-TP] [2C]	ND		0.48	0.11	ug/L ug/L	1.00	02/02/09 13:31	tch	9A29023	8151A	
Surr: 2,4-Dichlorophenylacetic acid [2C] (1			0.10	0.11	ug/L	1.00	02/02/09 13:31	tch	9A29023	8151A	
Organochlorine Pesticides by EPA M											
4,4'-DDD	ND		0.048	0.016	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
4,4'-DDE	ND		0.048	0.011	ug/L ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
4,4'-DDT	ND		0.048	0.010	ug/L ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Aldrin	ND		0.048	0.006	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
alpha-BHC	ND		0.048	0.006	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
alpha-Chlordane	ND		0.048	0.014	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
beta-BHC	ND		0.048	0.024	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Chlordane	ND		0.476	0.048	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
delta-BHC	ND		0.048	0.010	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Dieldrin	ND		0.048	0.019	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Endosulfan I	ND		0.048	0.023	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Endosulfan II	ND		0.048	0.018	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Endosulfan sulfate	ND		0.048	0.015	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Endrin	ND		0.048	0.013	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Endrin aldehyde	ND		0.048	0.016	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Endrin ketone	ND		0.048	0.019	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
gamma-BHC (Lindane)	ND		0.048	0.006	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
gamma-Chlordane	ND		0.048	0.010	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Heptachlor	ND		0.048	0.008	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Heptachlor epoxide	ND		0.048	0.005	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Methoxychlor	ND		0.048	0.013	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Toxaphene	ND		0.476	0.114	ug/L	1.00	02/03/09 12:55	tch	9A29019	8081A	
Surr: Decachlorobiphenyl (15-139%)	38 %				8		02/03/09 12:55	tch	9A29019	8081A	
Surr: Tetrachloro-m-xylene (30-139%)	79 %						02/03/09 12:55	tch	9A29019	8081A	
Polychlorinated Biphenyls by EPA M	1ethod 8082										
Aroclor 1016	ND		0.476	0.168	ug/L	1.00	01/31/09 16:59	tch	9A29020	8082	
Aroclor 1221	ND		0.476	0.168	ug/L	1.00	01/31/09 16:59	tch	9A29020	8082	
Aroclor 1232	ND		0.476	0.168	ug/L	1.00	01/31/09 16:59	tch	9A29020	8082	
Aroclor 1242	ND		0.476	0.168	ug/L ug/L	1.00	01/31/09 16:59	tch	9A29020	8082	
Aroclor 1248	ND		0.476	0.168	ug/L	1.00	01/31/09 16:59	tch	9A29020	8082	
Aroclor 1254	ND		0.476	0.238	ug/L ug/L	1.00	01/31/09 16:59	tch	9A29020	8082	
Aroclor 1260	ND		0.476	0.238	ug/L	1.00	01/31/09 16:59	tch	9A29020	8082	
Surr: Decachlorobiphenyl (12-137%)	43 %				ug/L		01/31/09 16:59	tch	9A29020	8082	
Surr: Tetrachloro-m-xylene (35-121%)	79 %						01/31/09 16:59	tch	9A29020	8082	
Semivolatile Organics by GC/MS											
1,2,4-Trichlorobenzene	ND		9.4	0.11	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C	
1,2-Dichlorobenzene	ND		9.4	0.14	ug/L ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C	
1,3-Dichlorobenzene	ND		9.4	0.14	ug/L ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C	
1,4-Dichlorobenzene	ND		9.4	0.15	ug/L ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C	
2,4,5-Trichlorophenol	ND		4.7	0.13	ug/L ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C	
2,4,6-Trichlorophenol	ND		4.7	0.94	ug/L ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C	
2,4-Dichlorophenol	ND		4.7	0.74	_	1.00	02/23/09 20:34		9A30042 9A30042	8270C 8270C	
2,4-Dimethylphenol	ND		4.7	0.74	ug/L	1.00	02/23/09 20:34	ERK ERK	9A30042 9A30042	8270C 8270C	
2,4-Dinitrophenol	ND ND		9.4	2.1	ug/L	1.00	02/23/09 20:34		9A30042 9A30042	8270C 8270C	
2.4 Dinitratalyana	ND		9. 4	0.42	ug/L	1.00	02/23/09 20:34	ERK	0.4.20042	8270C	

TestAmerica Buffalo

2,4-Dinitrotoluene

2,6-Dinitrotoluene

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

ND

ND

Page 12 of 18 www.testamericainc.com

0.42

0.48

ug/L

ug/L

1.00

1.00

02/23/09 20:34

02/23/09 20:34

4.7

4.7

270 Michigan Avenue

Work Order: RSA0874

Received: Reported: 01/28/09 02/27/09 13:40

Buffalo, NY 14203

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0874-02 (MW-4 - V	Vater) - cont.				S	Sampled: 01	/27/09 12:04	Rec	vd: 01/28/	09 11:30
Semivolatile Organics by GC/MS - con	ıt.					•				
2-Chloronaphthalene	ND		4.7	0.079	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
2-Chlorophenol	ND		4.7	0.48	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
2-Methylnaphthalene	ND		4.7	0.077	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
2-Methylphenol	ND		4.7	0.22	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
2-Nitroaniline	ND		9.4	0.47	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
2-Nitrophenol	ND		4.7	0.57	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
3,3'-Dichlorobenzidine	ND		4.7	0.35	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
3-Nitroaniline	ND		9.4	1.5	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
4,6-Dinitro-2-methylphenol	ND		9.4	2.1	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
4-Bromophenyl phenyl ether	ND		4.7	0.85	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
4-Chloro-3-methylphenol	ND		4.7	0.56	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
4-Chloroaniline	ND		4.7	0.31	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
4-Chlorophenyl phenyl ether	ND		4.7	0.16	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
4-Methylphenol	ND		4.7	0.33	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
4-Nitroaniline	ND		9.4	0.43	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
4-Nitrophenol	ND		9.4	1.4	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Acenaphthene	ND		4.7	0.11	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Acenaphthylene	ND		4.7	0.044	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Anthracene	ND		4.7	0.053	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Benzo(a)anthracene	ND		4.7	0.060	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Benzo(a)pyrene	ND		4.7	0.086	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Benzo(b)fluoranthene	ND		4.7	0.059	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Benzo(ghi)perylene	ND		4.7	0.074	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Benzo(k)fluoranthene	ND		4.7	0.062	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Bis(2-chloroethoxy)methane	ND		4.7	0.35	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Bis(2-chloroethyl)ether	ND		4.7	0.17	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
2,2'-Oxybis(1-Chloropropane)	ND		4.7	0.40	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Bis(2-ethylhexyl) phthalate	9.9		4.7	4.5	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Butyl benzyl phthalate	ND		4.7	1.6	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Carbazole	ND		4.7	0.084	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Chrysene	ND		4.7	0.26	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Dibenzo(a,h)anthracene	ND		4.7	0.19	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Dibenzofuran	ND		4.7	0.092	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Diethyl phthalate	ND		4.7	0.10	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Dimethyl phthalate	ND		4.7	0.28	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Di-n-butyl phthalate	ND		4.7	0.28	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Di-n-octyl phthalate	ND		4.7	0.23	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Fluoranthene	ND		4.7	0.093	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Fluorene	ND		4.7	0.070	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Hexachlorobenzene	ND		4.7	0.42	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Hexachlorobutadiene	ND		4.7	2.4	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Hexachlorocyclopentadiene	ND		4.7	2.4	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Hexachloroethane	ND		4.7	2.7	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Indeno(1,2,3-cd)pyrene	ND		4.7	0.14	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Isophorone	ND		4.7	0.30	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Naphthalene	ND		4.7	0.11	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Nitrobenzene	ND		4.7	0.51	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
N-Nitrosodi-n-propylamine	ND		4.7	0.43	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
N-Nitrosodiphenylamine	ND		4.7	0.25	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Pentachlorophenol	ND		9.4	4.8	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Phenanthrene	ND		4.7	0.11	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 13 of 18

New York State D.E.C. - Buffalo, NY

270 Michigan Avenue

Work Order: RSA0874

N N

Received: 01/28/09 Reported: 02/27/09 13:40

Buffalo, NY 14203 Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

			Analyti	cal Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0874-02 (MW-4 - '	Water) - cont.				5	Sampled: 01	1/27/09 12:04	Rec	vd: 01/28/	09 11:30
Semivolatile Organics by GC/MS - co	-									
Phenol	ND		4.7	0.42	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Pyrene	ND		4.7	0.064	ug/L	1.00	02/23/09 20:34	ERK	9A30042	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	97 %				ug/2		02/23/09 20:34	ERK	9A30042	8270C
Surr: 2-Fluorobiphenyl (48-120%)	93 %						02/23/09 20:34	ERK	9A30042	8270C
Surr: 2-Fluorophenol (20-120%)	40 %						02/23/09 20:34	ERK	9A30042	8270C
Surr: Nitrobenzene-d5 (46-120%)	94 %						02/23/09 20:34	ERK	9A30042	8270C
Surr: Phenol-d5 (16-120%)	29 %						02/23/09 20:34	ERK	9A30042	8270C
Surr: p-Terphenyl-d14 (24-136%)	51 %						02/23/09 20:34	ERK	9A30042	8270C
Total Metals by SW 846 Series Metho								Litt		
Aluminum	5.85		0.200	0.0236	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Antimony	ND		0.0200	0.00548	-	1.00	01/31/09 03:03	AH	9A29024	6010B
Arsenic	0.00796	J	0.0100	0.00370	mg/L	1.00	01/31/09 03:03	АП АН	9A29024	6010B
Barium	0.386	,	0.00200	0.000370	mg/L	1.00	01/31/09 03:03	АП АН	9A29024	6010B
Beryllium	ND		0.00200	0.000280	mg/L	1.00	01/31/09 03:03	AH AH	9A29024	6010B
Cadmium	ND	В1	0.00200	0.000330	mg/L	1.00	01/31/09 03:03		9A29024 9A29024	6010B
Calcium	161	ы	0.500	0.100	mg/L	1.00	01/31/09 03:03	AH	9A29024 9A29024	6010B
Chromium	0.00716				mg/L			AH		
			0.00400	0.000880	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Cobalt	0.00512		0.00400	0.00106	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Copper	0.0268	D.1	0.0100	0.00126	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Iron	8.92	B1	0.0500	0.0193	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Lead	0.00882		0.00500	0.00290	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Magnesium	33.7		0.200	0.0423	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Manganese	0.370		0.00300	0.000240	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Nickel	0.00930	J	0.0100	0.00103	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Potassium	6.14		0.500	0.0500	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Selenium	ND		0.0150	0.00610	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Silver	ND		0.00300	0.00127	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Sodium	70.3		1.00	0.339	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Thallium	ND		0.0200	0.00588	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Vanadium	0.00848		0.00500	0.000980	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Zinc	0.0562		0.0100	0.00360	mg/L	1.00	01/31/09 03:03	AH	9A29024	6010B
Mercury	ND		0.000200	0.000120	mg/L	1.00	01/30/09 16:41	MM	9A30043	7470A
Volatile Organic Compounds by EPA	8260B									
1,1,1-Trichloroethane	ND	P-HS	5.0	0.26	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
1,1,2,2-Tetrachloroethane	ND	P-HS	5.0	0.21	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
1,1,2-Trichloroethane	ND	P-HS	5.0	0.23	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
1,1-Dichloroethane	ND	P-HS	5.0	0.75	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
1,1-Dichloroethene	ND	P-HS	5.0	0.29	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
1,2-Dichloroethane	ND	P-HS	5.0	0.21	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
1,2-Dichloroethene, Total	ND	P-HS	10	0.70	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
1,2-Dichloropropane	ND	P-HS	5.0	0.14	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
2-Butanone	ND	P-HS	25	1.3	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
2-Hexanone	ND	P-HS	25	1.2	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
4-Methyl-2-pentanone	ND	P-HS	25	0.91	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Acetone	ND	P-HS	25	1.3	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Benzene	ND	P-HS	5.0	0.16	ug/L ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Bromodichloromethane	ND	P-HS	5.0	0.39	ug/L ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Bromoform	ND	P-HS	5.0	0.26	ug/L ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Bromomethane	ND	P-HS	5.0	0.28	ug/L ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Carbon disulfide	ND	P-HS	5.0	0.19	ug/L ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Carbon Tetrachloride	ND	P-HS	5.0	0.19	-	1.00	02/10/09 16:04	DHF	9B10025	8260B
Caroon retractionide	ND	1-113	5.0	0.47	ug/L	1.00	02/10/07 10:04	DHF	2D10023	0200 D

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 14 of 18

New York State D.E.C. - Buffalo, NY

270 Michigan Avenue Buffalo, NY 14203

Work Order: RSA0874

Received:

01/28/09

Reported:

02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

			Analytic	al Repo	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0874-02 (MW-4 - V	Vater) - cont.				S	sampled: 01	/27/09 12:04	Rec	vd: 01/28/	09 11:30
Volatile Organic Compounds by EPA	8260B - cont.					•				
Chlorobenzene	ND	P-HS	5.0	0.32	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Dibromochloromethane	ND	P-HS	5.0	0.32	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Chloroethane	ND	P-HS	5.0	0.32	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Chloroform	ND	P-HS	5.0	0.34	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Chloromethane	ND	P-HS	5.0	0.35	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
cis-1,3-Dichloropropene	ND	P-HS	5.0	0.36	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Ethylbenzene	ND	P-HS	5.0	0.18	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Methylene Chloride	ND	P-HS	5.0	0.44	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Styrene	ND	P-HS	5.0	0.18	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Tetrachloroethene	ND	P-HS	5.0	0.36	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Toluene	ND	P-HS	5.0	0.51	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
trans-1,3-Dichloropropene	ND	P-HS	5.0	0.37	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Trichloroethene	ND	P-HS	5.0	0.18	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Vinyl acetate	ND	P-HS	25	0.85	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Vinyl chloride	ND	P-HS	5.0	0.24	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Xylenes, total	ND	P-HS	15	0.93	ug/L	1.00	02/10/09 16:04	DHF	9B10025	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	100 %	P-HS					02/10/09 16:04	DHF	9B10025	8260B
Surr: 4-Bromofluorobenzene (73-120%)	118 %	P-HS					02/10/09 16:04	DHF	9B10025	8260B
Surr: Dibromofluoromethane (70-130%)	102 %	P-HS					02/10/09 16:04	DHF	9B10025	8260B
Surr: Toluene-d8 (71-126%)	108 %	P-HS					02/10/09 16:04	DHF	9B10025	8260B

Page 15 of 18

New York State D.E.C. - Buffalo, NY $\,$

Work Order: RSA0874

Received: Reported: 01/28/09

02/27/09 13:40

270 Michigan Avenue Buffalo, NY 14203

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

			Analytic	al Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0874-02RE1 (MW-4	1 - Water)				S	ampled: 01	/27/09 12:04	Rec	vd: 01/28/	09 11:30
Organochlorine Pesticides by EPA Met	hod 8081A					•				
4,4'-DDD [2C]	ND	H4	0.048	0.016	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
4,4'-DDE [2C]	ND	H4	0.048	0.011	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
4,4'-DDT [2C]	ND	H4	0.048	0.010	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Aldrin [2C]	ND	H4	0.048	0.006	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
alpha-BHC [2C]	ND	H4	0.048	0.006	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
alpha-Chlordane [2C]	ND	H4	0.048	0.014	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
beta-BHC [2C]	ND	H4	0.048	0.024	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Chlordane [2C]	ND	H4	0.476	0.048	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
delta-BHC [2C]	ND	H4	0.048	0.010	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Dieldrin [2C]	ND	H4	0.048	0.019	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Endosulfan I [2C]	ND	H4	0.048	0.023	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Endosulfan II [2C]	ND	H4	0.048	0.018	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Endosulfan sulfate [2C]	ND	H4	0.048	0.015	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Endrin [2C]	ND	H4	0.048	0.013	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Endrin aldehyde [2C]	ND	H4	0.048	0.016	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Endrin ketone [2C]	ND	H4	0.048	0.019	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
gamma-BHC (Lindane) [2C]	ND	H4	0.048	0.006	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
gamma-Chlordane [2C]	ND	H4	0.048	0.010	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Heptachlor [2C]	ND	H4	0.048	0.008	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Heptachlor epoxide [2C]	ND	H4	0.048	0.005	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Methoxychlor [2C]	ND	H4	0.048	0.013	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Toxaphene [2C]	ND	H4	0.476	0.114	ug/L	1.00	02/09/09 13:18	tch	9B04035	8081A
Surr: Decachlorobiphenyl [2C] (15-139%)	41 %	H4					02/09/09 13:18	tch	9B04035	8081A
Surr: Tetrachloro-m-xylene [2C] (30-139%)	75 %	H4					02/09/09 13:18	tch	9B04035	8081A

www.testamericainc.com Page 16 of 18

New York State D.E.C. - Buffalo, NY $\,$

270 Michigan Avenue Buffalo, NY 14203 Work Order: RSA0874

Received: Reported: 01/28/09 02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

SAMPLE EXTRACTION DATA

			Wt/Vol	Extract			
Parameter	Batch	Lab Number	Extracted	Volume	Date	Analyst	Extraction Method
Herbicides							
8151A	9A29023	RSA0874-01	1,020.00	10.00	01/29/09 12:24	JB	8151A Aq. Prep
8151A	9A29023	RSA0874-02	1,050.00	10.00	01/29/09 12:24	JB	8151A Aq. Prep
Organochlorine Pesticides by EPA Metho	d 8081A						
8081A	9A29019	RSA0874-01	1,055.00	10.00	01/29/09 15:15	EKD	3510C GC
8081A	9B04035	RSA0874-01RE	1,020.00	10.00	02/04/09 14:00	BL	3510C GC
8081A	9A29019	RSA0874-02	1,050.00	10.00	01/29/09 15:15	EKD	3510C GC
8081A	9B04035	RSA0874-02RE	1,050.00	10.00	02/04/09 14:00	BL	3510C GC
Polychlorinated Biphenyls by EPA Metho	d 8082						
8082	9A29020	RSA0874-01	1,055.00	10.00	01/29/09 15:15	EKD	3510C GC
8082	9A29020	RSA0874-02	1,050.00	10.00	01/29/09 15:15	EKD	3510C GC
Semivolatile Organics by GC/MS							
8270C	9A30042	RSA0874-01	1,020.00	1.00	01/30/09 15:00	LT	3510C MB
8270C	9A30042	RSA0874-02	1,060.00	1.00	01/30/09 15:00	LT	3510C MB
Total Metals by SW 846 Series Methods							
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-01	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 17 of 18

New York State D.E.C. - Buffalo, NY

270 Michigan Avenue Buffalo, NY 14203

Work Order: RSA0874

Received:

01/28/09

Reported:

02/27/09 13:40

Project: NYSDEC Spills - Penn Empire Site: Site #907034

Project Number: NYSDEC

SAMPLE EXTRACTION DATA

			Wt/Vol Extracted	Extract Volume			
Parameter	Batch	Lab Number	Extracted	Volume	Date	Analyst	Extraction Method
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
6010B	9A29024	RSA0874-02	50.00	50.00	01/30/09 09:00	MLD	3005A
7470A	9A30043	RSA0874-01	30.00	50.00	01/30/09 15:15	MM	7470A / 245.1
7470A	9A30043	RSA0874-02	30.00	50.00	01/30/09 15:15	MM	7470A / 245.1
Volatile Organic Compounds by EPA 82	60B						
8260B	9B10025	RSA0874-01	5.00	5.00	02/10/09 00:00	DHC	5030B MS
8260B	9B10025	RSA0874-02	5.00	5.00	02/10/09 00:00	DHC	5030B MS

Chain of Custody Record

Temperature on Receipt

estAmerico

Drinking Water? Yes No M THE LEADER IN ENVIRONMENTAL TESTING

L-4124 (1007)	Project Manager			Data	Chair as Outlands Att.
) } }	Charles Stranger Com	and the series	「アーノー	1:27.05	112181
Iddiress ()	Telephone Number (Area Code)/Fax Number			Lab Number	
	D .				Page 1 of 1
State Zip Code	Site Contact		Analy more	Analysis (Attach list if more space is needed)	
	Chad Jenisaux	CAL DICATION		j	7 T
	Carrier/Waybill Number				
on Engre Vansporthy Celeron NY					Special Instructions/
ontract/Purchase Order/Quote No.	Matrix	Containers & Preservatives		``	Conditions of Receipt
NYSDEC 30/1 # 70/03Y	**************************************	 	\ nL 1		
Sample I.D. No. and Description Containers for each sample may be combined on one line) Date	Air Aqueous Sed. Soil	Unpres H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	40 h 40 h 40 h 450 m		¥ -
mu - 2	128	-	Ž		40ml YOAS - TCL YOLS
1.2709	12cH X	-	*		Poly-Foll TAL Motals
1.27.09	1128 ×	*	*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,5
50-22-1	1204 X	\frac{1}{2}	*		तिक
1.57.08	1128		イ 文学		Peshales
1.27.05	1204 X		**		Habado
1		Tox.	ч 28		
	n-	7	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
				-	
	al-			0	- A.
	-				
	-				
 		_			(A fee may be assessed if samples are retained
Non-Hazard	☐ Unknown ☐ Heturn to Client	OC Requirements (Specify)	Decify) I	Months longer than 1 month)	nth)
24 Hours 48 Hours 7 Days 14 Days 21 Days	Other NASDESC	ō R	1	e e	
1. Helinquished By	Date	1. Received by	The said		Date Time 11:30
2. Retrospored B	Date Time	2. Received By			Date Time
D. Charles B.	Date	-)-			
3. Relinquished by		or yacaraa ay		3 .	Date
Comments			ے) jc	
DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy	h the Sample; PINK - Field	Сору	-		

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

Job#: <u>A08-D352</u>

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

Task: NYSDEC Spills - Penn Empire Site: Site #907034

Mr. Chad Staniszewski NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

CC: Mr. Tom Hellert

TestAmerica Laboratories Inc.

Brian J Fischer Project Manager

11/19/2008

TestAmerica Buffalo Current Certifications

As of 6/15/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	Registration, NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	ED .
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A8D35204	OIL MIX SOLVENT	OIL	10/22/2008	09:40	10/23/2008	11:30
A8D35201	OIL WATER MIX #1	OIL	10/22/2008	09:50	10/23/2008	11:30
A8D35202	OIL WATER MIX #2	OIL	10/22/2008	09:54	10/23/2008	11:30
A8D35203	OIL WATER MIX #3	OIL	10/22/2008	09:57	10/23/2008	11:30
A8D35205	SOLVENT	OIL	10/22/2008	10:27	10/23/2008	11:30
A8D35206	UNOPER (8&13)	OIL	10/22/2008	10:42	10/23/2008	11:30

METHODS SUMMARY

Job#: <u>A08-D352</u>

Project#: NY5A946109 Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

PARAMETER	ANALYTICAL METHOD
NYSDEC - METHOD 8260 - TCL VOLATILE ORGANICS	SW8463 8260
1110210 121102 0200 100 10011112	5.10103 0200
NYSDEC -S-METHOD 8270 - TCL SEMI-VOLATILE ORGANICS	SW8463 8270
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082(OIL)
REG.9 - METHOD 310.13 - PETROLEUM PRODUCTS	NYSDOH 31013
Aluminum - Total	SW8463 6010
Antimony - Total	SW8463 6010
Arsenic - Total	SW8463 6010
Barium - Total	SW8463 6010
Beryllium - Total	SW8463 6010
Cadmium - Total	SW8463 6010
Calcium - Total	SW8463 6010
Chromium - Total	SW8463 6010
Cobalt - Total	SW8463 6010
Copper - Total	SW8463 6010
Iron - Total	SW8463 6010
Lead - Total	SW8463 6010
Magnesium - Total	SW8463 6010
Manganese - Total	SW8463 6010
Mercury - Total	SW8463 7471
Nickel - Total	SW8463 6010
Potassium - Total	SW8463 6010
Selenium - Total	SW8463 6010
Silver - Total	SW8463 6010
Sodium - Total	SW8463 6010
Thallium - Total	SW8463 6010
Vanadium - Total	SW8463 6010
Zinc - Total	SW8463 6010
•	
Flashpoint	SW8463 1010
Leachable pH	SW8463 9045

References:

NYSDOH

"Compendium of Methods", New York State Department of Health, Wadsworth Center for Laboratories and Research.

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: A08-D352

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-D352

Sample Cooler(s) were received at the following temperature(s); 4.8 °C Analyze top oil layer only.

<u>GC/MS Volatile Data</u>

The surrogates in Method 8260 were not recoverable for samples and dilutions OIL WATER MIX #1, OIL WATER MIX #2, OIL WATER MIX #3 and OIL WATER SOLVENT due to dilutions performed on the sample. A lesser dilution could not be performed due to the nature of the sample.

Due to the sample matrix, the laboratory was unable to do a dry weight determination, therefore a dry weight of 100% was assumed for calculation purposes.

The analyte methyl acetate was detected in the VBLK 110308 A8B2547102. The dilution process involves additional manipulation of the sample, therefore, the sample detection for methyl acetate in the VBLK may potentially be due to laboratory contamination and should be evaluated accordingly.

GC/MS Semivolatile Data

The Relative Percent Difference between the Matrix Spike Blank A8B2495301 and the Matrix Spike Blank Duplicate A8B2495302 exceeded quality control criteria for 2-Chlorophenol, though all individual recoveries are compliant. No action required.

The surrogate recovery for Nitrobenzene-D5 was above the laboratory quality control limits for sample OIL WATER MIX #1. Based on the laboratory SOP, one surrogate in either fraction (base/neutral or acid fraction) may have a recovery outside of the control limit.

The surrogate recovery for 2-Fluorobiphenyl was above the laboratory quality control limits for sample SOLVENT. Based on the laboratory SOP, one surrogate in either fraction (base/neutral or acid fraction) may have a recovery outside of the control limit.

The internal standard recovery for Naphthalene-D8 was above the method defined quality control limit in sample SOLVENT. The sample was re-analyzed at a higher dilution with compliant results. Due to better separation of peaks in this dilution, 2,4-dimethylphenol is now detected but was not in the initial analysis. Both analyses are included in the report. No further corrective action was required.

GC Extractable Data

For method 8082, all sample extracts and associated quality control required treatment with Copper prior to analysis due to the presence of elemental Sulfur.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

80-19-11

Date

Date: 11/19/2008 Time: 07:21:22 Dilution Log w/Code Information For Job AO8-D352 9/40°age:

Rept: AN1266R

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	Dilution	<u>Code</u>
OIL WATER MIX #1	A8D35201	31013	20.00	800
OIL WATER MIX #1	A8D35201	8260	50.00	800
OIL WATER MIX #1	A8D35201	8270	10.00	012
OIL WATER MIX #1	A8D352O1DL	8260	200,00	800
OIL WATER MIX #2	A8D352O2	31013	10.00	800
OIL WATER MIX #2	A8D352O2	8260	50.00	800
OIL WATER MIX #2	A8D35202	8270	10.00	012
OIL WATER MIX #2	A8D352O2DL	8260	200.00	800
OIL WATER MIX #3	A8D352O3	31013	10.00	800
OIL WATER MIX #3	A8D352O3	8260	50.00	800
OIL WATER MIX #3	A8D352O3	8270	10.00	012
OIL WATER MIX #3	A8D352O3DL	8260	200.00	800
OIL MIX SOLVENT	A8D352O4	31013	20.00	800
OIL MIX SOLVENT	A8D352O4	8082(OIL)	2.00	002
OIL MIX SOLVENT	A8035204	8260	50.00	800
OIL MIX SOLVENT	A8D352O4	8270	10.00	012
SOLVENT	A8D352O5	31013	20.00	800
SOLVENT	A8D35205	8082(0IL)	10.00	200
SOLVENT RI	A8D352O5RI	8270	5.00	005
UNOPER (8&13)	A8D35206	31013	20.00	800
UNOPER (8&13)	A8D35206	8270	10.00	012

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

 ${\tt O11}$ - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 11/40 Page:

Rept: AN1178

Sample ID: OIL MIX SOLVENT

Lab Sample ID: A8D35204
Date Collected: 10/22/2008
Time Collected: 09:40

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			──Date/Time──	į
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analysi
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6100	∪G/KG	8260	11/03/2008 19:29	
1,1,2,2-Tetrachloroethane	ND		6100	UG/KG	8260	11/03/2008 19:29	
1,1,2-Trichloro-1,2,2-trifluoroethane	ŊD		6100	ug/kg	8260	11/03/2008 19:29	
1,1,2-Trichloroethane	MD		6100	UG∕KG	8260	11/03/2008 19:29	
1,1-Dichloroethane	ND		6100	UG/KG	8260	11/03/2008 19:29	
1,1-Dichloroethene	NĐ		6100	UG/KG	8260	11/03/2008 19:29	
1,2,4-Trichlorobenzene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
1,2-Dibromo-3-chloropropane	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
1,2-Dibromoethane	ND		6100	ug/kg	8260	11/03/2008 19:29	RJ
1,2-Dichlorobenzene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
1,2-Dichloroethane	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
1,2-Dichloropropane	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
1,3-Dichlorobenzene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
1,4-Dichtorobenzene	ND		6100	ug/kg	8260	11/03/2008 19:29	RJ
2-Butanone	ŊD		31000	UG∕KG	8260	11/03/2008 19:29	RJ
2-Hexanone	ND		31000	UG/KG	8260	11/03/2008 19:29	RJ
4-Methyl-2-pentanone	, ND		31000	UG/KG	8260	11/03/2008 19:29	RJ
Acetone	470000		31000	∪G/KG	8260	11/03/2008 19:29	RJ
Benzene	22000		6100	UG∕KG	8260	11/03/2008 19:29	RJ
Bromodichloromethane	NÐ		6100	UG/KG	8260	11/03/2008 19:29	RJ
Bromoform	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Bromomethane	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Carbon Disulfide	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Carbon Tetrachloride	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Chlorobenzene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Chloroethane	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Chloroform	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Chloromethane	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
cis-1,2-Dichloroethene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
cis-1,3-Dichloropropene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Cyclohexane	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Dibromochloromethane	ND		6100	υg/κg	8260.	11/03/2008 19:29	RJ
Dichlorodifluoromethane	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Ethylbenzene	110000		6100	UG/KG	8260	11/03/2008 19:29	RJ
Isopropylbenzene	7800		6100	UG/KG	8260	11/03/2008 19:29	RJ
Methyl acetate	NÐ		6100	UG/KG	8260	11/03/2008 19:29	RJ
Methyl-t-Butyl Ether (MTBE)	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Methylcyclohexane	9600		6100	UG/KG	8260	11/03/2008 19:29	RJ
Methylene chloride	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Styrene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Tetrachloroethene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Toluene	290000		6100	UG/KG	8260	11/03/2008 19:29	RJ
Total Xylenes	550000		18000	UG/KG	8260	11/03/2008 19:29	RJ
trans-1,2-Dichloroethene	ND		6100	UG∕KG	8260	11/03/2008 19:29	RJ
trans-1,3-Dichloropropene	ND		6100	UG/KG	8260	11/03/2008 19:29	RJ
Trichloroethene	ND		6100	UG/KG	8260	11/03/2008 19:29	
Trichlorofluoromethane	ND		6100	UG/KG	8260	11/03/2008 19:29	
Vinyl chloride	ND		12000	UG/KG	8260	11/03/2008 19:29	

Date: 11/19/2008 Time: 07:21:45

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Penn Empire Site: Site #907034

12/40 Page: 2 Rept: AN1178

Sample ID: OIL MIX SOLVENT

Lab Sample ID: A8D35204
Date Collected: 10/22/2008
Time Collected: 09:40

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

New Name				Detection			Date/Time	
2, 2, -0-sybrist 1chtorpopenno)	Parameter	Result	Flag	Limit	Units_	<u>Me thod</u>	Analyzed	Analys
2, 4, 5 - Trichlorophenol	NYSDEC -\$-\$W8463 8270 - TCL SVOA ORGANICS							
2, 4, e-l'richtorophenot ND 340000 Ue/Ke 8270 11/06/2008 02:50 2, 4-0 lichtorophenot ND 340000 Ue/Ke 8270 11/06/2008 02:50 2, 4-0 lichtorophenot ND 340000 Ue/Ke 8270 11/06/2008 02:50 2, 4-0 linitrotoulene ND 340000 Ue/Ke 8270 11/06/2008 02:50 2, 4-0 linitrotoulene ND 340000 Ue/Ke 8270 11/06/2008 02:50 2, 4-0 linitrotoulene ND 340000 Ue/Ke 8270 11/06/2008 02:50 2, 4-0 linitrotoulene ND 340000 Ue/Ke 8270 11/06/2008 02:50 2-chorophanot ND 340000 Ue/Ke 8270 11/06/2008 02:50 2-chorophanot ND 340000 Ue/Ke 8270 11/06/2008 02:50 2-chettytupahhalene 2500000 340000 Ue/Ke 8270 11/06/2008 02:50 2-mettytupahhalene ND 340000 Ue/Ke 8270 11/06/2008 02:50 3,3'-10ichlorobenzidire ND 340000 Ue/Ke 8270 11/06/2008 02:50 3,3'-10ichlorobenzidire ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-bromophenyt jehnyt ether ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-bromophenyt jehnyt ether ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chloro-3-methytybahnot ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chloro-3-methytybahnot ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chloro-3-methytybahnot ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chlorophenyt jehnyt ether ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chlorophenyt jehnyt ether ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chlorophenyt jehnyt ether ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chlorophenyt jehnyt ether ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chlorophenyt jehnyt ether ND 340000 Ue/Ke 8270 11/06/2008 02:50 4-chl	2,2'-0xybis(1-Chloropropane)	ND		340000	∪G/KG	8270	11/06/2008 02:50	MD
2,4-Pinthrophenol	2,4,5-Trichlorophenol	ND		340000	⊎G/KG	8270	11/06/2008 02:50	MD
2,4-pinitrophenol N0 660000 Ug/kg 8270 11/06/2008 02:50 2,6-pinitrotoluene N0 340000 Ug/kg 8270 11/06/2008 02:50 12,6-pinitrotoluene N0 340000 Ug/kg 8270 11/06/2008 02:50 12,6-pinitrotoluene N0 340000 Ug/kg 8270 11/06/2008 02:5	2,4,6-Trichlorophenol	ND		340000	ug/kg	8270	11/06/2008 02:50	MD
2,4-Dinitrophenol	2,4-Dichlorophenol	ND		340000	ug/kg	8270	11/06/2008 02:50	MD
2,4-pinitrotoluene	2,4-Dimethylphenol	ND		340000	ug/kg	8270	11/06/2008 02:50	MD
2,000	2,4-Dinitrophenol	NĐ		660000	ug/kg	8270	11/06/2008 02:50	MD
2-chtoroaphthalene	2,4-Dinitrotoluene	NĐ		340000	UG/KG	8270	11/06/2008 02:50	MO
2-chtorophenot No 340000 Ue/kg 8270 11/06/2008 02:50	2,6-Dinitrotoluene	ND		340000	ug/kg	8270	11/06/2008 02:50	MD
2-Methytnaphthalene	2-Chloronaphthalene	ND		340000	ug/kg	8270	11/06/2008 02:50	MD
2-Methythenol	2-Chlorophenol	ND		340000	UG/KG	8270	11/06/2008 02:50	MD
2-Methythenol	2-Methylnaphthalene	2500000		340000	UG/KG	8270	11/06/2008 02:50	MD
2-Nitrophenol		ND		340000	-	8270		
2-Nitrophenol		ND		660000				
3,31-Dichlorobenzidine	2-Nitrophenol	ND		340000	UG/KG	8270	11/06/2008 02:50	MD
3-Mitroaniline	3,3'-Dichlorobenzidine	ND		340000				
4,6-Dinitro-2-methylphenol ND 660000 UG/KG 8270 11/06/2008 02:50 4-Bromophenyl phenyl ether ND 340000 UG/KG 8270 11/06/2008 02:50 4-Chloro-3-methylphenol ND 340000 UG/KG 8270 11/06/2008 02:50 4-Chlorophenyl phenyl ether ND 340000 UG/KG 8270 11/06/2008 02:50 4-Chlorophenyl phenyl ether ND 340000 UG/KG 8270 11/06/2008 02:50 4-Methylphenol ND 340000 UG/KG 8270 11/06/2008 02:50 4-Mitrophenol ND 340000 UG/KG 8270 11/06/2008 02:50 4-Mitrophenol ND 660000 UG/KG 8270 11/06/2008 02:50 4-Mitrophenol ND 660000 UG/KG 8270 11/06/2008 02:50 4-Mitrophenol ND 660000 UG/KG 8270 11/06/2008 02:50 4-Mitrophenol ND 340000 UG/KG 8270 11/06/2008 02:50 4-Mitrophenol ND 340000 UG/KG 8270 11/06/2008 02:50 4-Mitracene 40000 JA 340000 UG/KG 8270 11/06/2008 02:50 4-Mitracene 26000 JA 340000 UG/KG 8270 11/06/2008 02:50 4-Mitracene ND 340000 UG/KG 8270 11/06/2008		ND		660000				
4-Bromophenyl phenyl ether ND 340000 Ug/Kg 8270 11/06/2008 02:50 4-Chloro-3-methylphenol ND 340000 Ug/Kg 8270 11/06/2008 02:50 4-Chloro-3-methylphenol ND 340000 Ug/Kg 8270 11/06/2008 02:50 4-Chlorophenyl phenyl ether ND 340000 Ug/Kg 8270 11/06/2008 02:50 4-Rethylphenol ND 340000 Ug/Kg 8270 11/06/2008 02:50 4-Rethylphenol ND 340000 Ug/Kg 8270 11/06/2008 02:50 4-Ritrophenol ND 660000 Ug/Kg 8270 11/06/2008 02:50 4-Ritrophenol ND 660000 Ug/Kg 8270 11/06/2008 02:50 4-Ritrophenol ND 660000 Ug/Kg 8270 11/06/2008 02:50 4-Ritrophenol ND 340000 Ug/Kg 8270 11/06/2008 02:50 4-Ritrophenol	4,6-Dinitro-2-methylphenol	ND		660000			11/06/2008 02:50	MD
4-chloro-3-methylphenol		ND		340000				MĐ
4-chloroaniline ND 340000 Ug/kg 8270 11/06/2008 02:50 4-chlorophenyl phenyl ether ND 340000 Ug/kg 8270 11/06/2008 02:50 4-methylphenol ND 340000 Ug/kg 8270 11/06/2008 02:50 4-mitrophenol ND 660000 Ug/kg 8270 11/06/2008 02:50 Acenaphthene 47000 J 340000 Ug/kg 8270 11/06/2008 02:50 Acenaphthene MD 340000 Ug/kg 8270 11/06/2008 02:50 Acenaphthylene ND 340000 Ug/kg 8270 11/06/2008 02:50 Acetophenone ND 340000 Ug/kg 8270 11/06/2008 02:50 Antrazine ND 340000 Ug/kg 8270 11/06/2008 02:50 Atrazine ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(a)ptrene ND 340000 Ug/kg	4-Chloro-3-methylphenol	ND		340000	•			MD
A-chlorophenyl phenyl ether ND 340000 UG/KG 8270 11/06/2008 02:50 4-Methyl phenol ND 340000 UG/KG 8270 11/06/2008 02:50 4-Mitroaniline ND 660000 UG/KG 8270 11/06/2008 02:50 4-Mitrophenol ND 660000 UG/KG 8270 11/06/2008 02:50 Acenaphthene 47000 J 340000 UG/KG 8270 11/06/2008 02:50 Acenaphthylene ND 340000 UG/KG 8270 11/06/2008 02:50 Acenaphthylene ND 340000 UG/KG 8270 11/06/2008 02:50 Acetophenone ND 340000 UG/KG 8270 11/06/2008 02:50 Acetophenone ND 340000 UG/KG 8270 11/06/2008 02:50 Acetophenone ND 340000 UG/KG 8270 11/06/2008 02:50 Athracine A0000 J 340000 UG/KG 8270 11/06/2008 02:50 Athracine ND 340000 UG/KG 8270 11/06/2008 02		ND		340000			•	MD
4-Methylphenol ND 340000 Ug/Kg 8270 11/06/2008 02:50 4-Mitroaniline ND 660000 Ug/Kg 8270 11/06/2008 02:50 4-Nitrophenol ND 660000 Ug/Kg 8270 11/06/2008 02:50 Acenaphthene 47000 J 340000 Ug/Kg 8270 11/06/2008 02:50 Acenaphthylene ND 340000 Ug/Kg 8270 11/06/2008 02:50 Acetophenone ND 340000 Ug/Kg 8270 11/06/2008 02:50 Anthracene 40000 J 340000 Ug/Kg 8270 11/06/2008 02:50 Atrazine ND 340000 Ug/Kg 8270 11/06/2008 02:50 Benzaldehyde ND 340000 Ug/Kg 8270 11/06/2008 02:50 Benzac(a)pytrene ND 340000 Ug/Kg 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 Ug/Kg 8270 11/06/2008 02:50 Benzo(k)fluoranthene ND 340000	4-Chlorophenyl phenyl ether							MD
4-Nitroaniline ND 660000 Ug/kg 8270 11/06/2008 02:50 4-Nitrophenol ND 660000 Ug/kg 8270 11/06/2008 02:50 Acenaphthene 47000 J 340000 Ug/kg 8270 11/06/2008 02:50 Acetophenone ND 340000 Ug/kg 8270 11/06/2008 02:50 Anthracene 40000 J 340000 Ug/kg 8270 11/06/2008 02:50 Antrazine ND 340000 Ug/kg 8270 11/06/2008 02:50 Atrazine ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzaldehyde ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(a)anthracene 26000 J 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(a)fluoranthene ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(h)fluoranthene ND	· · · · · · · · · · · · · · · · · · ·							MD
A-Nitrophenol								MD
Acenaphthene 47000 J 340000 Ue/kg 8270 11/06/2008 02:50 Acenaphthylene ND 340000 Ue/kg 8270 11/06/2008 02:50 Acetophenone ND 340000 Ue/kg 8270 11/06/2008 02:50 Anthracene 4000 J 340000 Ue/kg 8270 11/06/2008 02:50 Atrazine ND 340000 Ue/kg 8270 11/06/2008 02:50 Benzaldehyde ND 340000 Ue/kg 8270 11/06/2008 02:50 Benzo(a)anthracene 26000 J 340000 Ue/kg 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 Ue/kg 8270 11/06/2008 02:50 Benzo(sh)fluoranthene ND 340000 Ue/kg 8270 11/06/2008 02:50 Benzo(sh)fluoranthene ND 340000 Ue/kg 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane ND 340000 Ue/kg 8270 11/06/2008 02:50 Bis(2-ethlylexyl) ether					-			MD
Acenaphthylene ND 340000 UG/KG 8270 11/06/2008 02:50 Acetophenone ND 340000 UG/KG 8270 11/06/2008 02:50 Anthracene 40000 J 340000 UG/KG 8270 11/06/2008 02:50 Atrazine ND 340000 UG/KG 8270 11/06/2008 02:50 Benzaldehyde ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(a)anthracene 26000 J 340000 UG/KG 8270 11/06/2008 02:50 Benzo(a)pyrene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(sh)lperylene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(sh)lenyllene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(sh)lenyllene ND 340000 <td>·</td> <td></td> <td>J</td> <td></td> <td></td> <td></td> <td></td> <td>MD</td>	·		J					MD
Acetophenone ND 340000 UG/KG 8270 11/06/2008 02:50 Anthracene 40000 J 340000 UG/KG 8270 11/06/2008 02:50 Atrazine ND 340000 UG/KG 8270 11/06/2008 02:50 Benzaldehyde ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(a)anthracene 26000 J 340000 UG/KG 8270 11/06/2008 02:50 Benzo(a)pyrene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(ghi)perylene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(k)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(h)fluoranthene ND <th< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>MD</td></th<>	•							MD
Anthracene 40000 J 340000 Ug/kg 8270 11/06/2008 02:50 Atrazine ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzaldehyde ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(a)anthracene 26000 J 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(a)pyrene ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(ghi)perylene ND 340000 Ug/kg 8270 11/06/2008 02:50 Benzo(x)fluoranthene ND				•				MD
Atrazine ND 340000 UG/KG 8270 11/06/2008 02:50 Benzaldehyde ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(a)anthracene 26000 J 340000 UG/KG 8270 11/06/2008 02:50 Benzo(a)pyrene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(k)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethox)methate ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethox)methate 20	,		J				- '	MD
Benzaldehyde ND 340000 Ue/K6 8270 11/06/2008 02:50 Benzo(a)anthracene 26000 J 340000 Ug/K6 8270 11/06/2008 02:50 Benzo(a)pyrene ND 340000 Ug/K6 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 Ug/K6 8270 11/06/2008 02:50 Benzo(k)fluoranthene ND 340000 Ug/K6 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane ND 340000 Ug/K6 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane			•					MD
Benzo(a)anthracene 26000 J 340000 UG/KG 8270 11/06/2008 02:50 Benzo(a)pyrene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(k)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Biphenyl 270000 J 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethyl) ether ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chlylexyl) phthalate 220000 J 340000 UG/KG 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 <					-			MD
Benzo(a)pyrene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(b)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(ghi)perylene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(k)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Biphenyl 270000 J 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethyl) ether ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-ethylhexyl) phthalate 220000 J 340000 UG/KG 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 </td <td>•</td> <td></td> <td>J</td> <td></td> <td>-</td> <td></td> <td></td> <td>MD</td>	•		J		-			MD
Benzo(b)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(ghi)perylene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(k)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Biphenyl 270000 J 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethyl) ether ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-ethylhexyl) phthalate 220000 J 340000 UG/KG 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50			v					MD
Benzo(ghi)perylene ND 340000 UG/KG 8270 11/06/2008 02:50 Benzo(k)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Biphenyl 270000 J 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethyl) ether ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-ethylhexyl) phthalate 220000 J 340000 UG/KG 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 UG/KG 8270 11/06/2008 02:50 Caprolactam ND 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50								MD
Benzo(k)fluoranthene ND 340000 UG/KG 8270 11/06/2008 02:50 Biphenyl 270000 J 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethyl) ether ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-ethylhexyl) phthalate 220000 J 340000 UG/KG 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 UG/KG 8270 11/06/2008 02:50 Caprolactam ND 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 <								MD
Biphenyl 270000 J 340000 Ue/k6 8270 11/06/2008 02:50 Bis(2-chloroethoxy) methane ND 340000 Ue/k6 8270 11/06/2008 02:50 Bis(2-chloroethyl) ether ND 340000 Ue/k6 8270 11/06/2008 02:50 Bis(2-ethylhexyl) phthalate 220000 J 340000 Ue/k6 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 Ue/k6 8270 11/06/2008 02:50 Caprolactam ND 340000 Ue/k6 8270 11/06/2008 02:50 Carbazole ND 340000 Ue/k6 8270 11/06/2008 02:50 Chrysene 14000 J 340000 Ue/k6 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 Ue/k6 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 Ue/k6 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 Ue/k6 8270 11/06/2008 02								MD
Bis(2-chloroethoxy) methane ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-chloroethyl) ether ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-ethylhexyl) phthalate 220000 J 340000 UG/KG 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 UG/KG 8270 11/06/2008 02:50 Caprolactam ND 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50			.1					
Bis(2-chloroethyl) ether ND 340000 UG/KG 8270 11/06/2008 02:50 Bis(2-ethylhexyl) phthalate 220000 J 340000 UG/KG 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 UG/KG 8270 11/06/2008 02:50 Caprolactam ND 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50	• •		Ū					
Bis(2-ethylhexyl) phthalate 220000 J 340000 UG/KG 8270 11/06/2008 02:50 Butyl benzyl phthalate 100000 J 340000 UG/KG 8270 11/06/2008 02:50 Caprolactam ND 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50	• •							
Butyl benzyl phthalate 100000 J 340000 Ug/kg 8270 11/06/2008 02:50 Caprolactam ND 340000 Ug/kg 8270 11/06/2008 02:50 Carbazole ND 340000 Ug/kg 8270 11/06/2008 02:50 Chrysene 14000 J 340000 Ug/kg 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 Ug/kg 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 Ug/kg 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 Ug/kg 8270 11/06/2008 02:50	•		ı					
Caprolactam ND 340000 UG/KG 8270 11/06/2008 02:50 Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50					-			MD
Carbazole ND 340000 UG/KG 8270 11/06/2008 02:50 Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Di-n-octyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50	•		J					
Chrysene 14000 J 340000 UG/KG 8270 11/06/2008 02:50 Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Di-n-octyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50							· · · · · · · · · · · · · · · · · · ·	
Di-n-butyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Di-n-octyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50			J		-			MD
Di-n-octyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50			ŭ					MD
Dibenzo(a,h)anthracene ND 340000 UG/KG 8270 11/06/2008 02:50 Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50	, ,							
Dibenzofuran 81000 J 340000 UG/KG 8270 11/06/2008 02:50								
			J					MD MD
υτο τιτής επιτιμέτατο το τη 11/00/2008 02:30			J					
Dimethyl phthalate ND 340000 UG/KG 8270 11/06/2008 02:50								MD MD

Time: 07:21:45

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 10/23/2008 Project No: NY5A946109

13/40 Page:

Rept: AN1178

Client No: L10190 Site No:

Sample ID: OIL MIX SOLVENT Lab Sample ID: A8D35204 Date Collected: 10/22/2008

Time Collected: 09:40

Parameter Result Plag Linit Units Rethod Analyzed	Time Collected: 09:40						Site No:	
Fluorantheme			•	Detection			Date/Time	_
Fluoranthene	Parameter	Result	Flag	Limit	Units	<u>Me thod</u>	Analyzed	Analys
Fluorene 200000 J 340000 Us ks 8270 11/06/2008 02:50 Nb Mexachlorobatratiene ND 340000 Us ks 8270 11/06/2008 02:50 Nb Mexachlorocyclopentadiane ND 340000 Us ks 8270 11/06/2008 02:50 Nb Mexachlorocyclopentadiane ND 340000 Us ks 8270 11/06/2008 02:50 Nb Mexachlorocyclopentadiane ND 340000 Us ks 8270 11/06/2008 02:50 Nb Mexachlorocyclopentadiane ND 340000 Us ks 8270 11/06/2008 02:50 Nb Indianot(1,2,3-cd)byene ND 340000 Us ks 8270 11/06/2008 02:50 Nb Indianot(1,2,3-cd)byene ND 340000 Us ks 8270 11/06/2008 02:50 Nb Ne'N troso-bi-in-propylasine ND 340000 Us ks 8270 11/06/2008 02:50 Nb Ne'N troso-bi-in-propylasine ND 340000 Us ks 8270 11/06/2008 02:50 Nb Nitrobenzone Kb 340000 Us ks 8270 11/06/2008 02:50 Nb Nitrobenzone Kb 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 02:50 Nb Piensantiriene 34000 340000 Us ks 8270 11/06/2008 0	NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Hexachlorobenzeme	Fluoranthene	31000	J	340000	UG/KG	8270		
Hexachtorobutadine	Fluorene	200000	J	340000	UG/KG	8270	11/06/2008 02:50) MD
	Hexachlorobenzene	ND		340000		8270		
Hexachtorechane	Hexachlorobutadiene	ND		340000		8270		
Indemont _2,7-s-cd)pyrene	Hexachlorocyclopentadiene	ND		340000		8270	, ,	
Maph	Hexachloroethane	ND		340000		8270		
N-N-titroso-0i-m-propylamine	Indeno(1,2,3-cd)pyrene	ND		340000		8270		
N-pitrosodiphenytamine Np 34,0000 Ug/K6 8270 11/06/2008 02:50 Np Naphthatene 100000 34,0000 Ug/K6 8270 11/06/2008 02:50 Np Nitrobenzene Np 34,0000 Ug/K6 8270 11/06/2008 02:50 Np Pentachtorophenol Np 66,0000 Ug/K6 8270 11/06/2008 02:50 Np Phermathrene 34,0000 34,0000 Ug/K6 8270 11/06/2008 02:50 Np Phermathrene Np 34,0000 Ug/K6 8270 11/06/2008 02:50 Np Phermathrene Np 34,0000 Ug/K6 8270 11/06/2008 02:50 Np Np Np Np Np Np Np N	Isophorone	ND		340000		8270	, ,	
Naphthalene	N-Nitroso-Di~n-propylamine	ND		340000	UG/KG	8270	11/06/2008 02:50	OM (
Mitrobenzene ND 340000 Ug/kg 8270 17/06/2008 02:50 ND		ND		340000		8270		
Pentachlorophenol No 660000 U6/Kg 8270 11/06/2008 02:50 MD Phenonthrene 340000 340000 U6/Kg 8270 11/06/2008 02:50 MD Phenot No 340000 U6/Kg 8270 11/06/2008 02:50 MD Pyrene 80000 J 340000 U6/Kg 8270 11/06/2008 02:50 MD Pyrene 80000 J 340000 U6/Kg 8270 11/06/2008 02:50 MD Pyrene 80000 J 340000 U6/Kg 8270 11/06/2008 02:50 MD REG. 9 - SOIL-NYSDOH 310.15 - PETROLEUM PRODUC Fuel oil M2	Naphthalene	1000000		340000	-	8270		
Phenanthrene	Nitrobenzene	NĐ		340000	∪6/KG	8270	11/06/2008 02:50) MD
Phenot ND 340000 U6/K6 8270 11/06/2008 02:50 MD Pyrene 80000 U 3/40000 U6/K6 8270 11/06/2008 02:50 MD ND ND ND ND ND ND ND	Pentachlorophenol	ND		660000	-	8270		
Pyrene	Phenanthrene	340000		340000	-	8270		
REG.9 - SOIL-MYSDOH 310.13 - PETROLEUM PRODUC Fuel Oil #2	Phenol	ND		340000		8270		
Fuel oil #2	Pyrene	80000	J	340000	ug/kg	8270	11/06/2008 02:50) MD
Fuel oil #4	REG.9 - SOIL-NYSDOH 310.13 - PETROLEUM PRODUC							
Fuel Oil #6	Fuel Oil #2	440000		35000	MG/KG	31013	11/03/2008 12:43	5 DW
Gaseline 110000 35000 M6/K6 31013 11/03/2008 12:43 DV Kerosene ND 35000 M6/K6 31013 11/03/2008 12:43 DV Motor Oil ND 35000 M6/K6 31013 11/03/2008 12:43 DV Motor Oil ND 35000 M6/K6 31013 11/03/2008 12:43 DV NYSDEC	Fuel Oil #4	ND		35000	MG/KG	31013	11/03/2008 12:43	5 DW
No	Fuel Oil #6	ND		35000	MG/KG	31013	11/03/2008 12:43	5 DW
Motor Oil	Gasoline	110000		35000	MG/KG-	31013	11/03/2008 12:43	5 DW
NYSDEC	Kerosene	NÐ		35000	M6/K6	31013	11/03/2008 12:43	5 DW
NYSDEC - 8082 - POLYCHLORINATED BIPHENYLS IN Aroclor 1016 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Aroclor 1221 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Aroclor 1232 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Aroclor 1242 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Aroclor 1248 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Aroclor 1254 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Aroclor 1254 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Aroclor 1260 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Aroclor 1260 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00;47 GFD Metals Analysis Aluminum - Total ND 10.1 M6/K6 6010 10/29/2008 22:34 AH Antimony - Total 25.4 15.1 M6/K6 6010 10/29/2008 22:34 AH Antimony - Total ND 2.0 M6/K6 6010 10/29/2008 22:34 AH Barium - Total ND 0.50 M6/K6 6010 10/29/2008 22:34 AH Cadmium - Total ND 0.20 M6/K6 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 M6/K6 6010 10/29/2008 22:34 AH Cadmium - Total 10 50.4 M6/K6 6010 10/29/2008 22:34 AH Calcium - Total ND 0.50 M6/K6 6010 10/29/2008 22:34 AH Calcium - Total ND 0.50 M6/K6 6010 10/29/2008 22:34 AH Calcium - Total ND 0.50 M6/K6 6010 10/29/2008 22:34 AH Calcium - Total ND 0.50 M6/K6 6010 10/29/2008 22:34 AH Calcium - Total ND 0.50 M6/K6 6010 10/29/2008 22:34 AH Copper - Total ND 0.50 M6/K6 6010 10/29/2008 22:34 AH Copper - Total ND 0.50 M6/K6 6010 10/29/2008 22:34 AH Copper - Total 50.3 10.1 M6/K6 6010 10/29/2008 22:34 AH Copper - Total 50.3 10.1 M6/K6 6010 10/29/2008 22:34 AH Lead - Total 10.4 10.0 M6/K6 6010 10/29/2008 22:34 AH Lead - Total 10.1 M6/K6 6010 10/29/2008 22:34 AH	Motor Oil	ND		35000	MG/KG	31013	11/03/2008 12:43	5 DW
Aroclor 1016 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1221 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1232 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1242 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1248 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1248 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1254 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1260 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1260 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1260 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD Aroclor 1260 ND 3.8 Mg/Kg 8082(01L) 11/04/2008 00:47 GFD ND 3.8 Mg/K	Other-1	ND		35000	MG/KG	31013	11/03/2008 12:43	5 DW
Aroclor 1221 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00:47 6FD Aroclor 1232 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00:47 6FD Aroclor 1242 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00:47 6FD Aroclor 1248 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00:47 6FD Aroclor 1248 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00:47 6FD Aroclor 1254 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00:47 6FD Aroclor 1254 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00:47 6FD Aroclor 1260 ND 3.8 M6/K6 8082(OIL) 11/04/2008 00:47 6FD ND 10.1 M6/K6 6010 10/29/2008 22:34 AH ARIBONY TOTAL ND 2.0 M6/K6 6010 10/29/2008 22:34 AH BBRITUM TOTAL ND 2.0 M6/K6 6010 10/29/2008 22:34 AH BBRITUM TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CALCIUM TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CALCIUM TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CALCIUM TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CALCIUM TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CALCIUM TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34 AH CODALT TOTAL ND 0.50 M6/K6 6010 10/29/2008 22:34	NYSDEC - 8082 - POLYCHLORINATED BIPHENYLS IN			-				
Aroclor 1232 ND 3.8 MG/KG 8082(01L) 11/04/2008 00:47 GFD Aroclor 1242 ND 3.8 MG/KG 8082(01L) 11/04/2008 00:47 GFD Aroclor 1248 ND 3.8 MG/KG 8082(01L) 11/04/2008 00:47 GFD Aroclor 1254 ND 3.8 MG/KG 8082(01L) 11/04/2008 00:47 GFD Aroclor 1254 ND 3.8 MG/KG 8082(01L) 11/04/2008 00:47 GFD Aroclor 1260 ND 3.8 MG/KG 8082(01L) 11/04/2008 00:47 GFD Aroclor 1260 ND 3.8 MG/KG 8082(01L) 11/04/2008 00:47 GFD ND 10.1 MG/KG 6010 10/29/2008 22:34 AH Arsenic - Total ND 2.0 MG/KG 6010 10/29/2008 22:34 AH Barium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Beryllium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total ND 0.20 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobait - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobait - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobait - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 1.0	Aroclor 1016	ND		3.8	MG/KG	8082(01L)	11/04/2008 00:47	' GFD
Aroclor 1242 ND 3.8 MG/KG 8082(OIL) 11/04/2008 00:47 GFD Aroclor 1248 ND 3.8 MG/KG 8082(OIL) 11/04/2008 00:47 GFD Aroclor 1254 ND 3.8 MG/KG 8082(OIL) 11/04/2008 00:47 GFD Aroclor 1250 ND 3.8 MG/KG 8082(OIL) 11/04/2008 00:47 GFD Aroclor 1260 ND 3.8 MG/KG 8082(OIL) 11/04/2008 00:47 GFD MG/KG 8010 10/29/2008 22:34 AH CAMBURAN MG/KG 8082(OIL) 11/04/2008 00:47 GFD MG/KG 8010 10/29/2008 22:34 AH CAMBURAN	Arocior 1221	ND		3.8	MG/KG	8082(0IL)	11/04/2008 00:47	' GFD
Aroclor 1248	Aroclor 1232	ND		3.8	MG/KG	8082(01L)	11/04/2008 00:47	' GFD
Aroclor 1254 ND 3.8 MG/KG 8082(OIL) 11/04/2008 00:47 GFD ND 10.1 MG/KG 6010 10/29/2008 22:34 AH Antimony - Total 25.4 15.1 MG/KG 6010 10/29/2008 22:34 AH Arsenic - Total ND 2.0 MG/KG 6010 10/29/2008 22:34 AH Barium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Beryllium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 MG/KG 6010 10/29/2008 22:34 AH Calcium - Total 10 50.4 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Aroctor 1242	ND		3.8	MG/KG	8082(01L)	11/04/2008 00:47	' GFD
Aroclor 1260 ND 3.8 MG/KG 8082(OIL) 11/04/2008 00:47 GFD Metals Analysis Aluminum - Total ND 10.1 MG/KG 6010 10/29/2008 22:34 AH Antimony - Total 25.4 15.1 MG/KG 6010 10/29/2008 22:34 AH Arsenic - Total ND 2.0 MG/KG 6010 10/29/2008 22:34 AH Barium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Beryllium - Total ND 0.20 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 MG/KG 6010 10/29/2008 22:34 AH Calcium - Total 110 50.4 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 <td>Aroclor 1248</td> <td>ND</td> <td></td> <td>3.8</td> <td>MG/KG</td> <td>8082(0ĮL)</td> <td>11/04/2008 00:47</td> <td>' GFD</td>	Aroclor 1248	ND		3.8	MG/KG	8082(0ĮL)	11/04/2008 00:47	' GFD
Metals Analysis Aluminum - Total ND 10.1 Mg/Kg 6010 10/29/2008 22:34 AH Antimony - Total 25.4 15.1 Mg/Kg 6010 10/29/2008 22:34 AH Arsenic - Total ND 2.0 Mg/Kg 6010 10/29/2008 22:34 AH Barium - Total ND 0.50 Mg/Kg 6010 10/29/2008 22:34 AH Beryllium - Total ND 0.20 Mg/Kg 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 Mg/Kg 6010 10/29/2008 22:34 AH Calcium - Total 110 50.4 Mg/Kg 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 Mg/Kg 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 Mg/Kg 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 Mg/Kg 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 Mg/Kg 6010 10/29/2008 22:34 AH <td>Aroclor 1254</td> <td>ND</td> <td></td> <td>3.8</td> <td>MG/KG</td> <td>8082(0IL)</td> <td>11/04/2008 00:47</td> <td>' GFD</td>	Aroclor 1254	ND		3.8	MG/KG	8082(0IL)	11/04/2008 00:47	' GFD
Aluminum - Total ND 10.1 MG/KG 6010 10/29/2008 22:34 AH Antimony - Total 25.4 15.1 MG/KG 6010 10/29/2008 22:34 AH Arsenic - Total ND 2.0 MG/KG 6010 10/29/2008 22:34 AH Barium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Beryllium - Total ND 0.20 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 MG/KG 6010 10/29/2008 22:34 AH Calcium - Total 10 50.4 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Aroclor 1260	ND		3.8	MG/KG	8082(OIL)	11/04/2008 00:47	' GFD
Antimony - Total 25.4 15.1 Mg/Kg 6010 10/29/2008 22:34 AH Arsenic - Total ND 2.0 Mg/Kg 6010 10/29/2008 22:34 AH Barium - Total ND 0.50 Mg/Kg 6010 10/29/2008 22:34 AH Beryllium - Total ND 0.20 Mg/Kg 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 Mg/Kg 6010 10/29/2008 22:34 AH Calcium - Total 10 50.4 Mg/Kg 6010 10/29/2008 22:34 AH Calcium - Total 110 50.4 Mg/Kg 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 Mg/Kg 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 Mg/Kg 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 Mg/Kg 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 Mg/Kg 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 Mg/KG 6010 10/29/2008 22:34 AH	Metals Analysis							
Arsenic - Total ND 2.0 MG/KG 6010 10/29/2008 22:34 AH Barium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Beryllium - Total ND 0.20 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 MG/KG 6010 10/29/2008 22:34 AH Calcium - Total 10 50.4 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Aluminum - Total	ND		10.1	MG/KG	6010	10/29/2008 22:34	+ AH
Barium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Beryllium - Total ND 0.20 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 MG/KG 6010 10/29/2008 22:34 AH Calcium - Total 110 50.4 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Antimony - Total	25.4		15.1	MG/KG	6010	10/29/2008 22:34	∔ AH
Beryllium - Total ND 0.20 MG/KG 6010 10/29/2008 22:34 AH Cadmium - Total 0.31 0.20 MG/KG 6010 10/29/2008 22:34 AH Calcium - Total 110 50.4 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Arsenic - Total	ND		2.0	MG/KG	6010	10/29/2008 22:34	HA ŧ
Cadmium - Total 0.31 0.20 MG/KG 6010 10/29/2008 22:34 AH Calcium - Total 110 50.4 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Barium - Total	ND		0.50	MG/KG	6010	10/29/2008 22:34	+ AH
Calcium - Total 110 50.4 MG/KG 6010 10/29/2008 22:34 AH Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Beryllium - Total	ND		0.20	MG/KG	6010	10/29/2008 22:34	• AH
Chromium - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Cadmium - Total	0.31		0.20	MG/KG	6010	10/29/2008 22:34	. AH
Cobalt - Total ND 0.50 MG/KG 6010 10/29/2008 22:34 AH Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Calcium - Total	110		50.4	MG/KG	6010	10/29/2008 22:34	• AH
Copper - Total 5.0 1.0 MG/KG 6010 10/29/2008 22:34 AH Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Chromium ~ Total	ND		0.50	MG/KG	6010	10/29/2008 22:34	€ AH
Iron - Total 50.3 10.1 MG/KG 6010 10/29/2008 22:34 AH Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Cobalt - Total	ND		0.50	MG/KG	6010	10/29/2008 22:34	€ AH
Lead - Total 11.4 1.0 MG/KG 6010 10/29/2008 22:34 AH	Copper - Total	5.0		1.0	MG/KG	6010	10/29/2008 22:34	€ AH
	Iron - Total	50.3		10.1	MG/KG	6010	10/29/2008 22:34	∔ AH
Magnesium - Total 25.2 20.2 MG/KG 6010 10/29/2008 22:34 AH	Lead - Total	11.4		1.0	MG/KG	6010		
	Magnesium - Total	25.2		20.2	MG/KG	6010	10/29/2008 22:34	AH

TestAmerica

Date: 11/19/2008 Time: 07:21:45

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 14/4() Page:

Rept: AN1178

Sample ID: OIL MIX SOLVENT

Lab Sample ID: A8D35204 Date Collected: 10/22/2008 Time Collected: 09:40

Date Received: 10/23/2008 Project No: NY5A946109

Client No: L10190

		Detection			Date/Time	
Parameter	Result Fl	ag Limit	Units_	Method	Analyzed	<u>Analyst</u>
Metals Analysis						
Manganese - Total	0.38	0.20	MG/KG	6010	10/29/2008 22:34	AH
Mercury - Total	ND	0.020	MG/KG	7471	11/03/2008 17:24	MM
Nickel - Total	ND	0.50	MG/KG	6010	10/29/2008 22:34	AH
Potassium - Total	ND	30.2	MG/KG	6010	10/29/2008 22:34	AH
Selenium - Total	ND	4.0	MG/KG	6010	10/29/2008 22:34	AH
Silver - Total	ND	0.50	MG/KG	6010	10/29/2008 22:34	AH
Sodium - Total	ND	141	MG/KG	6010	10/29/2008 22:34	AH
Thallium - Total	ND	6.0	MG/KG	6010	10/29/2008 22:34	АН
Vanadium - Total	ND	0.50	MG/KG	6010	10/29/2008 22:34	АH
Zinc - Total	119	2.0	MG/KG	6010	10/29/2008 22:34	AH
Wet Chemistry Analysis						
Flashpoint	110	0	٥F	1010	11/06/2008 08:00	RMM
Leachable pH	8.00	0	s.U.	9045	10/28/2008 14:08	ERK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 **15/40** Page: 5 Rept: AN1178

Sample ID: OIL WATER MIX #1

Lab Sample ID: A8D35201
Date Collected: 10/22/2008
Time Collected: 09:50

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			——Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							1
1,1,1-Trichloroethane	ND		6200	UG/KG	8260	11/03/2008 18:05	RJ
1,1,2,2~Tetrachloroethane	ND		6200	υg/kg	8260	11/03/2008 18:05	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6200	υG/KG	8260	11/03/2008 18:05	
1,1,2-Trichloroethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,1-Dichloroethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,1-Dichloroethene	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,2,4-TrichLorobenzene	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,2-Dibromo-3-chloropropane	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,2-Dibromoethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,2-Dichlorobenzene	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,2-Dichloroethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,2-Dichloropropane	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,3-Dichtorobenzene	ND		6200	UG/KG	8260	11/03/2008 18:05	
1,4-Dichlorobenzene	ND		6200	ug/kg	8260	11/03/2008 18:05	
2-Butanone	ND		31000	UG/KG	8260	11/03/2008 18:05	
2-Hexanone	ND		31000	UG/KG	8260	11/03/2008 18:05	
4-Methyl-2-pentanone	52000		31000	UG/KG	8260	11/03/2008 18:05	
Acetone	110000		31000	UG/KG	8260	11/03/2008 18:05	
Benzene	190000		6200	UG/KG	8260	11/03/2008 18:05	
Bromodichloromethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
Bromoform	ND		6200	ug/kg	8260	11/03/2008 18:05	
Bromomethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
Carbon Disulfide	ND		6200	ug/kg	8260	11/03/2008 18:05	
Carbon Tetrachioride	ND		6200	UG/KG	8260	11/03/2008 18:05	
Chlorobenzene	ND		6200	ug/kg	8260	11/03/2008 18:05	
Chloroethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
Chloroform	ND		6200	UG/KG	8260	11/03/2008 18:05	
Chloromethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
cis-1,2-Dichloroethene	ND		6200	UG/KG	8260	11/03/2008 18:05	
cis-1,3-Dichtoropropene	ND		6200	UG/KG	8260	11/03/2008 18:05	
Cyclohexane	ND		6200	UG/KG	8260	11/03/2008 18:05	
Dibromochloromethane	ND ND		6200	UG/KG	8260 .	11/03/2008 18:05	
Dichlorodifluoromethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
Ethylbenzene	380000		6200				
Isopropylbenzene	32000		6200	UG/KG UG/KG	8260	11/03/2008 18:05	
Methyl acetate			6200	UG/KG	8260 8260	11/03/2008 18:05 11/03/2008 18:05	
Methyl-t-Butyl Ether (MTBE)	ND No.					11/03/2008 18:05	
Methylcyclohexane	ND (FOOO		6200	UG/KG	8260	11/03/2008 18:05	
Methylene chloride	45000		6200 6200	ug/kg ug/kg	8260	11/03/2008 18:05	
	ND ND		6200	UG/KG	8260		
Styrene Tetrachloroethene	ND				8260	11/03/2008 18:05	
Toluene	22000 1300000	F	6200	UG/KG	8260	11/03/2008 18:05	
		E	6200	UG/KG	8260	11/03/2008 18:05	
Total Xylenes	1800000		18000	UG/KG	8260	11/03/2008 18:05	
trans-1,2-Dichloroethene	ND ND		6200	UG/KG	8260	11/03/2008 18:05	
trans-1,3-Dichloropropene	ND		6200	UG/KG	8260	11/03/2008 18:05	
Trichlorethene	ND		6200	UG/KG	8260	11/03/2008 18:05	
Trichlorofluoromethane	ND		6200	UG/KG	8260	11/03/2008 18:05	
Vinyl chloride	ND		12000	UG/KG	8260	11/03/2008 18:05	RJ

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 16/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #1

Lab Sample ID: A8D35201
Date Collected: 10/22/2008
Time Collected: 09:50

Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		280000	UG/KG	8270	10/31/2008 01:20	
2,4,5-Trichlorophenol	ND		280000	ug/kg	8270	10/31/2008 01:20	RM
2,4,6-Trichlorophenol	ND		280000	ug/kg	8270	10/31/2008 01:20	ЯM
2,4-Dichlorophenol	ND		280000	ug/kg	8270	10/31/2008 01:20	RM
2,4-Dimethylphenol	ND		280000	ug/kg	8270	10/31/2008 01:20	RM
2,4-DinitrophenoL	ND		550000	ug/kg	8270	10/31/2008 01:20	RM
2,4-Dinitrotoluene	ND		280000	UG/KG	8270	10/31/2008 01:20	RM
2,6-Dinitrotoluene	NÐ		280000	UG/KG	8270	10/31/2008 01:20	RM
2-Chloronaphthalene	ND		280000	UG/KG	8270	10/31/2008 01:20	RM
2-Chlorophenol	ND		280000	UG/KG	8270	10/31/2008 01:20	RM
2-Methylnaphthalene	690000		280000	UG/KG	8270	10/31/2008 01:20	RM
2-Methylphenol	ND		280000	ug/kg	8270	10/31/2008 01:20	RM
2-Nitroaniline	ND		550000	ug/kg	8270	10/31/2008 01:20	RM
2-Nitrophenol	ND		280000	ug/kg	8270	10/31/2008 01:20	RM
3,3'-Dichlorobenzidine	ND		280000	ug/kg	8270	10/31/2008 01:20	RM
3-Nitroaniline	ND		550000	UG/KG	8270	10/31/2008 01:20	RM
4,6-Dinitro-2-methylphenol	ND		550000	ug/kg	8270	10/31/2008 01:20	
4-Bromophenyl phenyl ether	ND		280000	ug/kg	8270	10/31/2008 01:20	
4-Chloro-3-methylphenol	ND		280000	ug/kg	8270	10/31/2008 01:20	
4-Chloroaniline	ND		280000	ug/kg	8270	10/31/2008 01:20	
4-Chlorophenyl phenyl ether	ND		280000	UG/KG	8270	10/31/2008 01:20	
4-Methylphenol	ND		280000	ug/kg	8270	10/31/2008 01:20	
4~Nitroaniline	ND		550000	UG/KG	8270	10/31/2008 01:20	
4-Nitrophenol	ND		550000	UG/KG	8270	10/31/2008 01:20	
Acenaphthene	52000	J	280000	UG/KG	8270	10/31/2008 01:20	
Acenaphthylene	ND	-	280000	UG/KG	8270	10/31/2008 01:20	
Acetophenone	ND		280000	UG/KG	8270	10/31/2008 01:20	
Anthracene	19000	J	280000	UG/KG	8270	10/31/2008 01:20	
Atrazine	ND	•	280000	UG/KG	8270	10/31/2008 01:20	
Benzaldehyde	ND		280000	UG/KG	8270	10/31/2008 01:20	
Benzo(a)anthracene	12000	J	280000	UG/KG	8270	10/31/2008 01:20	
Benzo(a)pyrene	ND	·	280000	UG/KG	8270.	10/31/2008 01:20	
Benzo(b)fluoranthene	ND		280000	UG/KG	8270	10/31/2008 01:20	RM
Benzo(ghi)perylene	ND		280000	UG/KG	8270	10/31/2008 01:20	RM
Benzo(k)fluoranthene	ND		280000	UG/KG	8270	10/31/2008 01:20	RM
Bipheny L	200000	J	280000	UG/KG	8270	10/31/2008 01:20	
Bis(2-chloroethoxy) methane	ND	•	280000	UG/KG	8270	10/31/2008 01:20	
Bis(2-chloroethyl) ether	ND ND		280000	UG/KG	8270	10/31/2008 01:20	
Bis(2-ethylhexyl) phthalate	96000	J	280000	UG/KG	8270	10/31/2008 01:20	
Butyl benzyl phthalate	ND	J	280000	UG/KG	8270	10/31/2008 01:20	
Caprolactam			280000	UG/KG	8270	10/31/2008 01:20	
Carbazole	ND		280000	UG/KG	8270	10/31/2008 01:20	
	ND			UG/KG		10/31/2008 01:20	
Chrysene Di-n-butyl phthalate	ND ND		280000 280000	UG/KG	8270 8270	10/31/2008 01:20	
				ug/kg		10/31/2008 01:20	
Di-n-octyl phthalate	ND ND		280000	UG/KG UG/KG	8270	10/31/2008 01:20	
Dibenzo(a,h)anthracene	ND 70000 ·	,	280000		8270		
Dibenzofuran	70000	J	280000	UG/KG	8270	10/31/2008 01:20	
Diethyl phthalate	ND		280000	UG/KG	8270	10/31/2008 01:20	
Dimethyl phthalate	ND		280000	ug/kg	8270	10/31/2008 01:20	RM

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 **17/40** Page: 7 Rept: AN1178

Sample ID: OIL WATER MIX #1

Lab Sample ID: A8D35201
Date Collected: 10/22/2008
Time Collected: 09:50

Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	_
Parameter	Result	Flag	Limit	Units	Me thod	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		280000	UG/KG	8270	10/31/2008 01:20	
Fluorene	180000	J	280000	UG/KG	8270	10/31/2008 01:20) RM
Hexachlorobenzene	ND		280000	UG/KG	8270	10/31/2008 01:20) RM
Hexachlorobutadiene	ND		280000	∪G/KG	8270	10/31/2008 01:20) RM
Hexachlorocyclopentadiene	ND		280000	UG/KG	8270	10/31/2008 01:20) RM
Hexachloroethane	ND		280000	UG/KG	8270	10/31/2008 01:20) RM
Indeno(1,2,3-cd)pyrene	ND		280000	UG/KG	8270	10/31/2008 01:20	RM
Isophorone	ND		280000	UG/KG	8270	10/31/2008 01:20	RM
N-Nitroso-Di-n-propylamine	ND		280000	ug/kg	8270	10/31/2008 01:20) RM
N-nitrosodiphenylamine	ND		280000	ug/kg	8270	10/31/2008 01:20	RM (
Naphthalene	220000	J	280000	ug/kg	8270	10/31/2008 01:20) RM
Nitrobenzene	ND		280000	ug/kg	8270	10/31/2008 01:20	RM (
Pentachlorophenol	ND		550000	UG/KG	8270	10/31/2008 01:20) RM
Phenanthrene	180000	J	280000	UG/KG	8270	10/31/2008 01:20) RM
Phenol	ND		280000	UG/KG	8270	10/31/2008 01:20	RM (
Pyrene	40000	J	280000	UG/KG	8270	10/31/2008 01:20	RM
REG.9 - SOIL-NYSDOH 310.13 - PETROLEUM PRODUC							
Fuel Oil #2	490000		50000	MG/KG	31013	10/30/2008 12:00	DW
Fuel Oil #4	ND		50000	MG/KG	31013	10/30/2008 12:00	DW
Fuel Oil #6	NÐ		50000	MG/KG	31013	10/30/2008 12:00) DW
Gasoline	NĐ		50000	MG/KG	31013	10/30/2008 12:00	DW (
Kerosene	ND		50000	MG/KG	31013	10/30/2008 12:00) DW
Motor Oil	ND		50000	MG/KG	31013	10/30/2008 12:00) DW
0 ther-1	ND		50000	MG/KG	31013	10/30/2008 12:00	I DW
NYSDEC - 8082 - POLYCHLORINATED BIPHENYLS IN							
Aroclor 1016	ND		1.8	MG/KG	8082(OIL)	11/04/2008 00:05	GFD
Aroclor 1221	ND		1.8	MG/KG	8082(OIL)	11/04/2008 00:05	GFD
Aroclor 1232	ND		1.8	MG/KG	8082(01L)	11/04/2008 00:05	GFD
Aroclor 1242	ND		1.8	MG/KG	8082(OIL)	11/04/2008 00:05	GFD
Aroclor 1248	ND		1.8	MG/KG	8082(0IL)	11/04/2008 00:05	GFD
Aroclor 1254	ND		1.8	MG/KG	8082(01L)	11/04/2008 00:05	GFD
Aroclor 1260	ND		1.8	MG/KG	8082(01L)	11/04/2008 00:05	GFD
Metals Analysis							
Aluminum - Total	NĐ		9.8	MG/KG	6010	10/29/2008 22:19	' AH
Antimony - Total	NĐ		14.7	MG/KG	6010	10/29/2008 22:19	' AH
Arsenic - Total	ND		2.0	MG/KG	6010	10/29/2008 22:19	AH.
Barium - Total	ND		0.49	MG/KG	6010	10/29/2008 22:19	АН
Beryllium - Total	ND		0.20	MG/KG	6010	10/29/2008 22:19	AH
Cadmium - Total	ND		0.20	MG/KG	6010	10/29/2008 22:19	' AH
Calcium - Total	70.8		48.9	MG/KG	6010	10/29/2008 22:19	' AH
Chromium - Total	ND		0.49	MG/KG	6010	10/29/2008 22:19	' AH
Cobalt - Total	ND		0.49	MG/KG	6010	10/29/2008 22:19	' AH
Copper - Total	2.0		0.98	MG/KG	6010	10/29/2008 22:19	
Iron - Total	118		9.8	MG/KG	6010	10/29/2008 22:19	
Lead - Total	1.5		0.98	MG/KG	6010	10/29/2008 22:19	
Magnesium - Total	42.1		19.6	MG/KG	6010	10/29/2008 22:19	

Date: 11/19/2008 Time: 07:21:45 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 18/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #1

Lab Sample ID: A8D35201
Date Collected: 10/22/2008
Time Collected: 09:50

Date Received: 10/23/2008

Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
Metals Analysis							
Manganese - Total	0.38		0.20	MG/KG	6010	10/29/2008 22:19	AH
Mercury - Total	ND		0.020	MG/KG	7471	11/03/2008 17:17	MM
Nickel ~ Total	ND		0.49	MG/KG	6010	10/29/2008 22:19	AH
Potassium - Total	ND		29.4	MG/KG	6010	10/29/2008 22:19	AH
Selenium - Total	ND		3.9	MG/KG	6010	10/29/2008 22:19	AH
Silver - Total	ND		0.49	MG/KG	6010	10/29/2008 22:19	AH
Sodium - Total	ND		137	MG/KG	6010	10/29/2008 22:19	AH
Thallium - Total	ND		5.9	MG/KG	6010	10/29/2008 22:19	АН
Vanadium - Total	ND		0.49	MG/KG	6010	10/29/2008 22:19	AH
Zinc - Total	71.8		2.0	MG/KG	6010	10/29/2008 22:19	АН
Wet Chemistry Analysis							
Flashpoint	>176.0		0	٥F	1010	11/04/2008 20:00	RJP
Leachable pH	8.00		0	s.u.	9045	10/28/2008 14:08	ERK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 19/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #1

Lab Sample ID: A8D35201DL Date Collected: 10/22/2008 Time Collected: 09:50

Project No: NY5A946109 Client No: L10190

			Detection			Date/Time
Parameter	Result	Flag	Limit	Units	Me thod	Analyzed Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES						
1,1,1-Trichloroethane	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,1,2,2-Tetrachloroethane	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	NĐ		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,1,2-TrichLoroethane	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,1-Dichloroethane	NÐ		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,1-Dichloroethene	NÐ		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,2,4-Trichlorobenzene	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,2-Dibromo-3-chloropropane	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,2-Dibromoethane	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,2-Dichlorobenzene	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,2-Dichloroethane	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,2-Dichloropropane	ND		25000	υσ/κσ	8260	11/04/2008 13:37 RJ
1,3-Dichlorobenzene	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
1,4-Dichlorobenzene	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
2-Butanone	ND		120000	UG/KG	8260	11/04/2008 13:37 RJ
2-Hexanone	ND		120000	UG/KG	8260	11/04/2008 13:37 RJ
4-Methyl-2-pentanone	ND		120000	UG/KG	8260	11/04/2008 13:37 RJ
Acetone	160000	D	120000	UG/KG	8260	11/04/2008 13:37 RJ
Benzene	180000	D	25000	UG/KG	8260	11/04/2008 13:37 RJ
Bromodichloromethane	. ND	D .	25000	ψG/KG	8260	11/04/2008 13:37 RJ
Bromoform	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
Bromomethane	NÐ		25000	UG/KG	8260	11/04/2008 13:37 RJ
Carbon Disulfide	NÐ		25000	UG/KG	8260	11/04/2008 13:37 RJ
Carbon Tetrachloride	NĐ		25000	UG/KG	8260	11/04/2008 13:37 RJ
Chlorobenzene	NÐ		25000	UG/KG	8260	11/04/2008 13:37 RJ
Chloroethane	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
Chloroform	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
Chloromethane	ND		25000	UG/KG	8260	
cis-1,2-Dichloroethene	ND ND		25000	UG/KG	8260	, ,
cis-1,3-Dichloropropene			25000	UG/KG	8260 8260	, ,
Cyclohexane	ND ND		25000	UG/KG	8260	· · · ·
Dibromochlorome thane	ND ND			UG/KG		· . · .
Dichlorodifluoromethane	· ND		25000 25000	UG/KG	8260. 8360	, ,
	ND	D			8260	
Ethylbenzene	360000	D	25000	UG/KG	8260	11/04/2008 13:37 RJ
Isopropylbenzene	23000	ÐJ	25000	UG/KG	8260	11/04/2008 13:37 RJ
Methyl acetate	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
Methyl-t-Butyl Ether (MTBE)	ND	_	25000	UG/KG	8260	11/04/2008 13:37 RJ
Methylcyclohexane	41000	D	25000	UG/KG	8260	11/04/2008 13:37 RJ
Methylene chloride	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
Styrene	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
Tetrachloroethene	18000	DJ	25000	UG/KG	8260	11/04/2008 13:37 RJ
Toluene	1400000	D	25000	UG/KG	8260	11/04/2008 13:37 RJ
Total Xylenes	1800000	D	74000	UG/KG	8260	11/04/2008 13:37 RJ
trans-1,2-Dichloroethene	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
trans-1,3-Dichloropropene	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
Trichloroethene	ND		25000	∪G/KG	8260	11/04/2008 13:37 RJ
Trichlorofluoromethane	ND		25000	UG/KG	8260	11/04/2008 13:37 RJ
Vinyl chloride	ND		49000	UG/KG	8260	11/04/2008 13:37 RJ

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 20/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #2

Lab Sample ID: A8D35202
Date Collected: 10/22/2008
Time Collected: 09:54

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6200	ug/kg	8260	11/03/2008 18:33	RJ
1,1,2,2-Tetrachloroethane	ND		6200	ug/kg	8260	11/03/2008 18:33	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6200	ug/kg	8260	11/03/2008 18:33	RJ
1,1,2-Trichloroethane	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
1,1-Dichloroethane	ND		6200	UG/KG	8260	11/03/2008 18:33	
1,1-Dichloroethene	NÐ		6200	UG/KG	8260	11/03/2008 18:33	RJ
1,2,4-Trichlorobenzene	ND		6200	UG/KG	8260	11/03/2008 18:33	
1,2-Dibromo-3-chloropropane	ND		6200	UG/KG	8260	11/03/2008 18:33	
1,2-Dibromoethane	ND		6200	υG/KG	8260	11/03/2008 18:33	
1,2-Dichlorobenzene	ND		6200	UG/KG	8260	11/03/2008 18:33	
1,2-Dichloroethane	ND		6200	UG/KG	8260	11/03/2008 18:33	
1,2-Dichloropropane	ND		6200	UG/KG	8260	11/03/2008 18:33	
1,3-Dichlorobenzene	ŊD		6200	UG/KG	8260	11/03/2008 18:33	
1,4-Dichtorobenzene	ND		6200	UG/KG	8260	11/03/2008 18:33	
2-Butanone	16000	J	31000	UG/KG	8260	11/03/2008 18:33	
2-Hexanone	ND	v	31000	UG/KG	8260	11/03/2008 18:33	
4-Methyl-2-pentanone	120000		31000	UG/KG	8260	11/03/2008 18:33	
Acetone	300000		31000	UG/KG	8260	11/03/2008 18:33	
Benzene	180000		6200	UG/KG	8260	11/03/2008 18:33	
Bromodichloromethane	ND		6200	UG/KG		11/03/2008 18:33	
Bromoform			6200	UG/KG	8260 8260	11/03/2008 18:33	
Bromomethane	ND ND			*.			
Carbon Disulfide	ND ND		6200	ne/ke.	8260	11/03/2008 18:33	
Carbon Disatifide	ND		6200	UG/KG	8260	11/03/2008 18:33	
Chlorobenzene	ND		6200	UG/KG	8260	11/03/2008 18:33	
Chloroethane	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
	ND		6200 .	UG/KG	8260	11/03/2008 18:33	RJ
Chloroform	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Chloromethane	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
cis-1,2-Dichloroethene	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
cis-1,3-Dichloropropene	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Cyclohexane	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Dibromochloromethane	ND		6200	ug/kg	8260	11/03/2008 18:33	RJ
Dichlorodifluoromethane	ND		6200	∪G/KG	8260	11/03/2008 18:33	RJ
Ethylbenzene 	390000		6200	ug/kg	8260	11/03/2008 18:33	RJ
Isopropylbenzene	33000		6200	UG/KG	8260	11/03/2008 18:33	RJ
Methyl acetate	ND		6200	ug/kg	8260	11/03/2008 18:33	RJ
Methyl-t-Butyl Ether (MTBE)	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Methylcyclohexane	59000		6200	UG/KG	8260	11/03/2008 18:33	RJ
Methylene chloride	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Styrene	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Tetrachloroethene	61000		6200	UG/KG	8260	11/03/2008 18:33	RJ
Toluene	1300000	Е	6200	UG/KG	8260	11/03/2008 18:33	RJ
Total Xylenes	1800000		19000	UG/KG	8260	11/03/2008 18;33	RJ
trans-1,2-Dichloroethene	NÐ		6200	UG/KG	8260	11/03/2008 18:33	RJ
trans-1,3-Dichloropropene	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Trichloroethene	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Trichlorofluoromethane	ND		6200	UG/KG	8260	11/03/2008 18:33	RJ
Vinyl chloride	ND		12000	ug/kg	8260	11/03/2008 18:33	RJ

Date: 11/19/2008 Time: 07:21:45

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 21/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #2

Lab Sample ID: A8D35202
Date Collected: 10/22/2008
Time Collected: 09:54

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	<u>Method</u>	Analyzed	Analys
NYSDEC ~S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		320000	UG/KG	8270	11/06/2008 02:03	
2,4,5-Trichlorophenol	ND		320000	ug/kg	8270	11/06/2008 02:03	
2,4,6-Trichlorophenol	ND		320000	UG/KG	8270	11/06/2008 02:03	
2,4-Dichlorophenol	ND		320000	UG/KG	8270	11/06/2008 02:03	
2,4-Dimethylphenol	ND		320000	ug/kg	8270	11/06/2008 02:03	
2,4-Dinitrophenol	ND		620000	UG/KG	8270	11/06/2008 02:03	
2,4-Dinitrotoluene	ŊD		320000	ug/kg	8270	11/06/2008 02:03	
2,6-Dinitrotoluene	ND		320000	ne/ke	8270	11/06/2008 02:03	
2-Chloronaphthalene	ND		320000	UG/KG	8270	11/06/2008 02:03	
2-Chlorophenol	ND		320000	UG/KG	8270	11/06/2008 02:03	
2-Methylnaphthalene	1300000		320000	UG/KG	8270	11/06/2008 02:03	
2-Methylphenol	NĐ		320000	ug/kg	8270	11/06/2008 02:03	
2-Nitroaniline	ND		620000	ug/kg	8270	11/06/2008 02:03	
2-Nitrophenol	ND		320000	UG/KG	8270	11/06/2008 02:03	
3,3'-Dichlorobenzidine	ND		320000	UG/KG	8270	11/06/2008 02:03	
3-Nitroaniline	ND		620000	ug/kg	8270	11/06/2008 02:03	MD
4,6-Dinitro-2-methylphenol	ND		620000	UG/KG	8270	11/06/2008 02:03	MD
4-Bromophenyl phenyl ether	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
4-Chloro-3-methylphenol	ND		320000	∪G/KG	8270	11/06/2008 02:03	MD
4-Chloroaniline	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
4-Chlorophenyl phenyl ether	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
4-Methylphenol	ND		320000	UG/KG-	8270	11/06/2008 02:03	MD
4-Nitroaniline	ND		620000	UG/KG	8270	11/06/2008 02:03	MD
4-Nitrophenol	ND		620000	UG/KG	8270	11/06/2008 02:03	MD
Acenaphthene	42000	J	320000	UG/KG	8270	11/06/2008 02:03	MD
Acenaphthylene	19000	J	320000	UG/KG	8270	11/06/2008 02:03	MD
Acetophenone	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Anthracene	42000	J	320000	UG/KG	8270	11/06/2008 02:03	MD
Atrazine	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
8enzaldehyde	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Benzo(a)anthracene	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Benzo(a)pyrene	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Benzo(b)fluoranthene	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Benzo(ghi)perylene	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Benzo(k)fluoranthene	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Biphenyl	110000	J	320000	UG/KG	8270	11/06/2008 02:03	MD
Bis(2-chloroethoxy) methane	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Bis(2-chloroethyl) ether	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Bis(2-ethylhexyl) phthalate	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Butyl benzyl phthalate	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Caprolactam	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Carbazole	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Chrysene	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Di-n-butyl phthalate	ND		320000	ug/kg	8270	11/06/2008 02:03	MD
Di-n-octyl phthalate	ND		320000	ug/kg	8270	11/06/2008 02:03	MD
Dibenzo(a,h)anthracene	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Dibenzofuran	28000	J	320000	ug/kg	8270	11/06/2008 02:03	
Diethyl phthalate	ND		320000	ug/kg	8270	11/06/2008 02:03	MD
Dimethyl phthalate	ND		320000	UG/KG	8270	11/06/2008 02:03	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 Rept: AN1178

Sample ID: OIL WATER MIX #2

Lab Sample ID: A8D35202
Date Collected: 10/22/2008
Time Collected: 09:54

Date Received: 10/23/2008 Project No: NY5A946109

Client No: L10190

			Detection			Date/Time	=
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	<u>Me thod</u>	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	40000	J	320000	UG/KG	8270	11/06/2008 02:03	
Fluorene	110000	J	320000	UG/KG	8270	11/06/2008 02:03	
Hexachlorobenzene	ND		320000	UG/KG	8270	11/06/2008 02:03	
Hexachlorobutadiene	ND		320000	UG/KG	8270	11/06/2008 02:03	
Hexachlorocyclopentadiene	ND		320000	UG/KG	8270	11/06/2008 02:03	
Hexachloroethane	ND		320000	UG/KG	8270	11/06/2008 02:03	
Indeno(1,2,3-cd)pyrene	ND		320000	UG/KG	8270	11/06/2008 02:03	
Isophorone	ND		320000	UG/KG	8270	11/06/2008 02:03	
N-Nitroso-Di-n-propylamine	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
N-nitrosodiphenylamine	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Naphthalene	1200000		320000	ug/kg	8270	11/06/2008 02:03	MD
Nitrobenzene	ND		320000	ug/kg	8270	11/06/2008 02:03	MD
Pentachlorophenol	ND		620000	ug/kg	8270	11/06/2008 02:03	MD
Phenanthrene	170000	J	320000	ug/kg	8270	11/06/2008 02:03	MD
Phenol	ND		320000	UG/KG	8270	11/06/2008 02:03	MD
Pyrene	64000	J	320000	UG/KG	8270	11/06/2008 02:03	MD
REG.9 - SOIL-NYSDOH 310.13 - PETROLEUM PRODUC							
Fuel Oil #2	240000		21000	MG/KG	31013	10/30/2008 12:34	• DW
Fuel Oil #4	ND		21000	MG/KG	31013	10/30/2008 12:34	DW
Fuel Oil #6	ND		21000	MG/KG	31013	10/30/2008 12:34	DW
Gasoline	120000		21000	MG/KG	31013	10/30/2008 12:34	DW
Kerosene	130000		21000	MG/KG	31013	10/30/2008 12:34	DW
Motor Oil	1200000		21000	MG/KG	31013	10/30/2008 12:34	DW
Other-1	NĐ		21000	MG/KG	31013	10/30/2008 12:34	DW
NYSDEC - 8082 - POLYCHLORINATED BIPHENYLS IN							
Aroclor 1016	NÐ		1.9	MG/KG	8082(OIL)	11/04/2008 00:19	GFD
Aroclor 1221	, NĐ		1.9	MG/KG	8082(0IL)	11/04/2008 00:19	GFD
Aroclor 1232	ND		1.9	MG/KG	8082(OIL)	11/04/2008 00:19	GFD
Aroclor 1242	ND		1.9	MG/KG	8082(OIL)	11/04/2008 00:19	GFD
Aroclor 1248	ND		1.9	MG/KG	8082(OIL)	11/04/2008 00:19	GFD
Aroclor 1254	ND		1.9	MG/KG	8082(OIL)	11/04/2008 00:19	GFD
Aroclor 1260	ND		1.9	mg/kg	8082(01L)	11/04/2008 00:19	GFD
Metals Analysis							
Aluminum - Total	ND		10.2	MG/KG	6010	10/29/2008 22:24	AH
Antimony - Total	ND		15.3	MG/KG	6010	10/29/2008 22:24	AH
Arsenic - Total	ND		2.0	MG/KG	6010	10/29/2008 22:24	AH
Barium - Total	2.8		0.51	MG/KG	6010	10/29/2008 22:24	AH .
Beryllium - Total	ND		0.20	MG/KG	6010	10/29/2008 22:24	AH
Cadmium - Total	ND		0.20	mg/kg	6010	10/29/2008 22:24	
Calcium - Total	284		50.9	mg/kg	6010	10/29/2008 22:24	
Chromium - Total	ND		0.51	MG/KG	6010	10/29/2008 22:24	
Cobalt - Total	ND		0.51	MG/KG	6010	10/29/2008 22:24	
Copper - Total	2.9		1.0	MG/KG	6010	10/29/2008 22:24	
Iron - Total	234		10.2	MG/KG	6010	10/29/2008 22:24	
Lead - Total	3.6		1.0	MG/KG	6010	10/29/2008 22:24	
Magnesium - Total	37.9		20.4	MG/KG	6010	10/29/2008 22:24	

Date: 11/19/2008 Time: 07:21:45 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 23/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #2

Lab Sample ID: A8D35202
Date Collected: 10/22/2008
Time Collected: 09:54

Date Received: 10/23/2008 Project No: NY5A946109

Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
Metals Analysis							
Manganese - Total	1.4		0.20	MG/KG	6010	10/29/2008 22:24	AH
Mercury - Total	ND		0.020	MG/KG	7471	11/03/2008 17:18	MM
Nickel - Total	NĐ		0.51	MG/KG	6010	10/29/2008 22:24	AH
Potassium - Total	67.0		30.5	MG/KG	6010	10/29/2008 22:24	AH
Selenium - Total	ND		4.1	MG/KG	6010	10/29/2008 22:24	АН
Silver - Total	ND		0.51	MG/KG	6010	10/29/2008 22:24	АН
Sodium - Total	ND		142	MG/KG	6010	10/29/2008 22:24	АН
Thallium - Total	ND		6.1	MG/KG	6010	10/29/2008 22:24	AH
Vanadium - Total	ND		0.51	MG/KG	6010	10/29/2008 22:24	AH
Zinc - Total	106		2.0	MG/KG	6010	10/29/2008 22:24	АН
Wet Chemistry Analysis							
Flashpoint	96		0	٥F	1010	11/06/2008 08:00	RMM
Leachable pH	5.00		0	s.U.	9045	10/28/2008 14:08	ERK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 24/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #2

Lab Sample ID: A8D35202DL Date Collected: 10/22/2008 Time Collected: 09:54

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		25000	ug/kg	8260	11/04/2008 14:05	RJ
1,1,2,2-Tetrachloroethane	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,1,2-Trichloroethane	ND		25000	ug/kg	8260	11/04/2008 14:05	RJ
1,1-Dichloroethane	ND		25000	ug/kg	8260	11/04/2008 14:05	RJ
1,1-Dichloroethene	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,2,4-Trichlorobenzene	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,2-Dibromo-3-chloropropane	ND		25000	ug/kg	8260	11/04/2008 14:05	RJ
1,2-Dibromoethane	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,2-Dichlorobenzene	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,2-Dichloroethane	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,2-Dichloropropane	NĐ		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,3-Dichlorobenzene	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
1,4-Dichlorobenzene	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
2-Butanone	ND		120000	UG/KG	8260	11/04/2008 14:05	RJ
2-Hexanone	ND		120000	UG/KG	8260	11/04/2008 14:05	RJ
4-Methyl-2-pentanone	91000	ÐJ	120000	UG/KG	8260	11/04/2008 14:05	RJ
Acetone	290000	Đ	120000	UG/KG	8260	11/04/2008 14:05	RJ
Benzene	160000	Đ	25000	UG/KG	8260	11/04/2008 14:05	RJ
Bromodichloromethane	ND	v	25000	UG/KG	8260	11/04/2008 14:05	RJ
Bromoform	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
Bromone thane	ND		25000	ug/kg	8260	11/04/2008 14:05	RJ
Carbon Disulfide			25000	UG/KG	8260 8260	11/04/2008 14:05	RJ
	ND			UG/KG		11/04/2008 14:05	
Carbon Tetrachloride	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
Chlorobenzene	ND		25000	-	8260		RJ
Chloroethane	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
Chloroform	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
Chloromethane	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
cis-1,2-Dichloroethene	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
cis-1,3-Dichloropropene	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
Cyclohexane	NĐ		25000	UG/KG	8260	11/04/2008 14:05	RJ
Dibromochloromethane	NÐ		25000	UG/KG	8260	11/04/2008 14:05	RJ
Dichlorodifluoromethane	NÐ		25000	UG/KG	8260	11/04/2008 14:05	RJ
Ethylbenzene	360000	D	25000	ug/kg	8260	11/04/2008 14:05	RJ
Isopropylbenzene	25000	D	25000	∪G/KG	8260	11/04/2008 14:05	
Methyl acetate	ND		25000	ne/ke	8260	11/04/2008 14:05	
Methyl-t-Butyl Ether (MTBE)	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
Methylcyclohexane	45000	D	25000	∪G/KG	8260	11/04/2008 14:05	RJ
Methylene chloride	ND		25000	UG/KG	8260	11/04/2008 14:05	
Styrene	ND		25000	UG/KG	8260	11/04/2008 14:05	
Tetrachloroethene	51000	D	25000	ug/kg	8260	11/04/2008 14:05	RJ
Toluene	1500000	D	25000	ug/kg	8260	11/04/2008 14:05	RJ
Total Xylenes	1800000	D	75000	ug/kg	8260	11/04/2008 14:05	RJ
trans-1,2-Dichloroethene	ND		25000	ug/kg	8260	11/04/2008 14:05	RJ
trans-1,3-Dichloropropene	ND		25000	υg/κg	8260	11/04/2008 14:05	RJ
Trichloroethene	ND		25000	UG/KG	8260	11/04/2008 14:05	RJ
Trichlorofluoromethane	ND		25000	ug/kg	8260	11/04/2008 14:05	RJ
Vinyl chloride	ND		50000	UG/KG	8260	11/04/2008 14:05	RJ

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 25/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #3

Lab Sample ID: A8D35203
Date Collected: 10/22/2008
Time Collected: 09:57

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

	Detection					Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6000	ug/kg	8260	11/03/2008 19:01	RJ
1,1,2,2-Tetrachloroethane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
1,1,2-Trichloroethane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
1,1-Dichloroethane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
1,1-Dichloroethene	ND		6000	ug/kg	8260	11/03/2008 19:01	RJ
1,2,4-Trichlorobenzene	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
1,2-Dibromo-3-chloropropane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
1,2-Dibromoethane	ND		6000	∪G/KG	8260	11/03/2008 19:01	RJ
1,2-Dichlorobenzene	ND		6000	ug/kg	8260	11/03/2008 19:01	RJ
1,2-Dichloroethane	ND		6000	ug/kg	8260	11/03/2008 19:01	RJ
1,2-Dichloropropane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
1,3-Dichlorobenzene	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
1,4-Dichlorobenzene	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
2-Butanone	ND		30000	UG/KG	8260	11/03/2008 19:01	RJ
2-Hexanone	ND		30000	UG/KG	8260	11/03/2008 19:01	RJ
4-Methyl-2-pentanone	20000	J	30000	UG/KG	8260	11/03/2008 19:01	RJ
Acetone	ND	·	30000	ug/kg	8260	11/03/2008 19:01	RJ
Benzene	16000		6000	UG/KG	8260	11/03/2008 19:01	RJ
Bromodichloromethane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Bromoform	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ RJ
Bromome thane	ND		6000	UG/KG	8260	11/03/2008 19:01	
Carbon Disulfide	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Carbon Tetrachloride	ND		6000	UG/KG UG/KG	8260	11/03/2008 19:01	RJ
Chtorobenzene			6000	UG/KG	8260	11/03/2008 19:01	RJ
Chloroethane	ND ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Chloroform	ND ND		6000	-		11/03/2008 19:01	RJ
Chloromethane	ND			UG/KG UG/KG	8260	11/03/2008 19:01	RJ
cis-1,2-Dichloroethene	ND ND		6000 6000	UG/KG	8260	11/03/2008 19:01	RJ
·	ND ND				8260	• •	RJ
cis-1,3-Dichloropropene Cyclohexane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Dibromochloromethane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Dichlorodifluoromethane	ND (70000	-	6000	UG/KG	8260	11/03/2008 19:01	RJ
Ethylbenzene	630000	E	6000	UG/KG	8260	11/03/2008 19:01	RJ
Isopropylbenzene	69000		6000	UG/KG	8260	11/03/2008 19:01	RJ
Methyl acetate	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Methyl-t-Butyl Ether (MTBE)	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Methylcyclohexane	41000		6000	UG∕KG	8260	11/03/2008 19:01	RJ
Methylene chloride	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Styrene	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Tetrachloroethene	36000		6000	UG/KG	8260	11/03/2008 19:01	RJ
Toluene	1200000	E	6000	UG/KG	8260	11/03/2008 19:01	RJ
Total Xylenes	3000000	Е	18000	∪G/KG	8260	11/03/2008 19:01	RJ
trans-1,2-Dichloroethene	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
trans-1,3-Dichloropropene	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Trichloroethene	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Trichlorofluoromethane	ND		6000	UG/KG	8260	11/03/2008 19:01	RJ
Vinyl chloride	ND		12000	ug/kg	8260	11/03/2008 19:01	RJ

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 26/40 Page:

Rept: AN1178

Sample ID: OIL WATER MIX #3

Lab Sample ID: A8D35203
Date Collected: 10/22/2008
Time Collected: 09:57

Date Received: 10/23/2008 Project No: NY5A946109

Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Me thod	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		340000	UG/KG	8270	11/06/2008 02:26	MD
2,4,5-Trichlorophenol	ND		340000	UG/KG	8270	11/06/2008 02:26	MD
2,4,6-Trichlorophenol	ND		340000	UG/KG	8270	11/06/2008 02:26	MD
2,4-Dichlorophenol	ND		340000	⊎G/KG	8270	11/06/2008 02:26	MD
2,4-Dimethylphenol	ND		340000	∪G/KG	8270	11/06/2008 02:26	MD
2,4-Dinitrophenol	ND		660000	UG/KG	8270	11/06/2008 02:26	MD
2,4-Dinitrotoluene	ND		340000	ue/ke	8270	11/06/2008 02:26	MD
2,6-Dinitrotoluene	ND		340000	UG/KG	8270	11/06/2008 02:26	MD
2-Chloronaphthalene	ND		340000	UG/KG	8270	11/06/2008 02:26	MD
2-Chlorophenol	NÐ		340000	UG/KG	8270	11/06/2008 02:26	MD
2-Methylnaphthalene	740000		340000	UG/KG	8270	11/06/2008 02:26	MD
2-Methylphenol	ND		340000	UG/KG	8270	11/06/2008 02:26	MD
2-Nitroaniline	ND		660000	ŲG/KG	8270	11/06/2008 02:26	MD
2-Nitrophenol	ND		340000	UG/KG	8270	11/06/2008 02:26	MD
3,3'-Dichlorobenzidine	ND		340000	UG/KG	8270	11/06/2008 02:26	MD
3-Nitroaniline	ND		660000	UG/KG	8270	11/06/2008 02:26	MD
4,6~Dinitro-2-methylphenol	ND		660000	UG/KG	8270	11/06/2008 02:26	MD
4-Bromophenyl phenyl ether	ND		340000	UG/KG	8270	11/06/2008 02:26	
4-Chloro-3-methylphenol	NĐ		340000	UG/KG	8270	11/06/2008 02:26	
4-Chloroaniline	ND		340000	UG/KG	8270	11/06/2008 02:26	
4-Chlorophenyl phenyl ether	ND		340000	ug/kg	8270	11/06/2008 02:26	
4-Methylphenol	ND		340000	UG/KG	8270	11/06/2008 02:26	
4-Nitroaniline	ND		660000	UG/KG	8270	11/06/2008 02:26	
4-Nitrophenol	ND		660000	UG/KG	8270	11/06/2008 02:26	
Acenaphthene	24000	J	340000	UG/KG	8270	11/06/2008 02:26	
Acenaphthylene	ND		340000	UG/KG	8270	11/06/2008 02:26	
Acetophenone	ND		340000	UG/KG	8270	11/06/2008 02:26	
Anthracene	20000	J	340000	UG/KG	8270	11/06/2008 02:26	
Atrazine	ND		340000	ug/kg	8270	11/06/2008 02:26	
Benzaldehyde	ND		340000	UG/KG	8270	11/06/2008 02:26	
Benzo(a)anthracene	ND		340000	UG/KG	8270	11/06/2008 02:26	
Benzo(a)pyrene	NĐ		340000	UG/KG	8270	11/06/2008 02:26	
Benzo(b)fluoranthene	ND		340000	UG/KG	8270	11/06/2008 02:26	
Benzo(ghí)perylene	ND		340000	UG/KG	8270	11/06/2008 02:26	
Benzo(k)fluoranthene	ND		340000	UG/KG	8270	11/06/2008 02:26	
Biphenyl	83000	J	340000	UG/KG	8270	11/06/2008 02:26	
Bis(2-chloroethoxy) methane	ND	·	340000	UG/KG	8270	11/06/2008 02:26	
Bis(2-chloroethyl) ether	ND		340000	UG/KG	8270	11/06/2008 02:26	
Bis(2-ethylhexyl) phthalate	280000	J	340000	UG/KG	8270	11/06/2008 02:26	
Butyl benzyl phthalate	ND	J	340000	UG/KG	8270	11/06/2008 02:26	
Caprolactam	ND ND		340000	UG/KG	8270	11/06/2008 02:26	
Carbazole			340000	UG/KG	8270	11/06/2008 02:26	
Chrysene	ND ND		340000	UG/KG	8270 8270	11/06/2008 02:26	
Di-n-butyl phthalate	ND ND		340000	UG/KG UG/KG	8270 8270	11/06/2008 02:26	
Di-n-octyl phthalate			340000	UG/KG		11/06/2008 02:26	
	ND ND				8270 8270	11/06/2008 02:26	
Dibenzo(a,h)anthracene	ND ND		340000	UG/KG	8270		
Dibenzofuran	ND ND		340000	UG/KG	8270	11/06/2008 02:26	
Diethyl phthalate	NĐ		340000	UG/KG	8270	11/06/2008 02:26	
Dimethyl phthalate	ND		340000	UG/KG	8270	11/06/2008 02:26	MD

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 Rept: AN1178

Sample ID: OIL WATER MIX #3

Lab Sample ID: A8D35203
Date Collected: 10/22/2008
Time Collected: 09:57

Date Received: 10/23/2008 Project No: NY5A946109

Client No: L10190

Time Cottected: 07.57						01101	
			Detection			Date/Time	=
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	22000	J	340000	ŲG/KG	8270	11/06/2008 02:20	
Fluorene	83000	J	340000	UG/KG	8270	11/06/2008 02:20	
Hexachlorobenzene	ND		340000	∪G/KG	8270	11/06/2008 02:20	
HexachLorobutadiene	ND		340000	UG/KG	8270	11/06/2008 02:20	
Hexachlorocyclopentadiene	ND		340000	UG/KG	8270	11/06/2008 02:20	
Hexachloroethane	ND		340000	UG/KG	8270	11/06/2008 02:20	
Indeno(1,2,3-cd)pyrene	ND		340000	ug/kg	8270	11/06/2008 02:20	
Isophorone	ND		340000	UG/KG	8270	11/06/2008 02:20	
N-Nitroso-Di-n-propylamine	ND		340000	υg/κg	8270	11/06/2008 02:20	5 MD
N-nitrosodiphenylamine	ND		340000	UG/KG	8270	11/06/2008 02:20	5 MD
Naphthalene	310000	J	340000	ug/kg	8270	11/06/2008 02:26	5 MD
Nitrobenzene	ND		340000	υg/kg	8270	11/06/2008 02:20	5 MD
Pentachlorophenol	ND		660000	UG/KG	8270	11/06/2008 02:20	≶ MD
Phenanthrene	96000	J	340000	UG/KG	8270	11/06/2008 02:20	5 MD
Phenol	ND		340000	∪G/KG	8270	11/06/2008 02:20	5 MD
Pyrene	42000	J	340000	UG/KG	8270	11/06/2008 02:20	S MD
REG.9 - SOIL-NYSDOH 310.13 - PETROLEUM PRODUC							
Fuel Oil #2	200000		18000	MG/KG	31013	10/30/2008 13:08	3 DW
Fuel Oil #4	NÐ		18000	MG/KG	31013	10/30/2008 13:08	3 DW
Fuel Oil #6	ND		18000	MG/KG	31013	10/30/2008 13:08	3 DW
Gasoline	29000		18000	MG/KG	31013	10/30/2008 13:08	3 DW
Kerosene	70000		18000	MG/KG	31013	10/30/2008 13:08	3 DW
Motor Oil	1500000		18000	MG/KG	31013	10/30/2008 13:08	3 DW
Other-1	ND		18000	MG/KG	31013	10/30/2008 13:08	3 ĐW
NYSDEC - 8082 - POLYCHLORINATED BIPHENYLS IN							
Aroclor 1016	ND		2.1	MG/KG	8082(OIL)	11/04/2008 00:33	G F D
Aroclor 1221	ND		2.1	MG/KG	8082(QIL)	11/04/2008 00:33	GFD
Aroclor 1232	ND		2.1	MG/KG	8082(01L)	11/04/2008 00:33	GFD
Aroclor 1242	ND		2.1	MG/KG	8082(01L)	11/04/2008 00:33	G F D
Aroclor 1248	ND		2.1	MG/KG	8082(OIL)	11/04/2008 00:33	G F D
Aroclor 1254	ND		2.1	MG/KG	8082(01L)	11/04/2008 00:33	S GFD
Aroclor 1260	ND		2.1	MG/KG	8082(01L)	11/04/2008 00:33	G F D
Metals Analysis							
Aluminum - Total	12.5		10	MG/KG	6010	10/29/2008 22:29	HA 🤆
Antimony - Total	ND		14.9	MG/KG	6010	10/29/2008 22:29	P AH
Arsenic - Total	ND		2.0	MG/KG	6010	10/29/2008 22:29	₹ AH
Barium - Total	1.6		0.50	MG/KG	6010	10/29/2008 22:29	∂ AH
Beryllium - Total	ND		0.20	MG/KG	6010	10/29/2008 22:29	AH F
Cadmium - Total	0.25		0.20	MG/KG	6010	10/29/2008 22:29	P AH
Calcium - Total	642		49.8	MG/KG	6010	10/29/2008 22:29	P AH
Chromium - Total	ND		0.50	MG/KG	6010	10/29/2008 22:29	AH
Cobalt - Total	ND		0.50	MG/KG	6010	10/29/2008 22:29	AH 🤄
Copper - Total	8.4		1.0	MG/KG	6010	10/29/2008 22:29	AH
Iron - Total	109		10	MG/KG	6010	10/29/2008 22:29	AH
Lead - Total	8.7		1.0	MG/KG	6010	10/29/2008 22:29	AH (
Magnesium - Total	31.8		19.9	MG/KG	6010	10/29/2008 22:29	AH 🤄
				•			

Date: 11/19/2008 Time: 07:21:45 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 28/40 Page:

Rept: AN1178

Sample ID; OIL WATER MIX #3

Lab Sample ID: A8D35203
Date Collected: 10/22/2008
Time Collected: 09:57

Date Received: 10/23/2008

Project No: NY5A946109 Client No: L10190

			Detection		Date/Time			
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst	
Metals Analysis								
Manganese - Total	0.90		0.20	MG/KG	6010	10/29/2008 22:29	AH	
Mercury - Total	ND		0.020	MG/KG	7471	11/03/2008 17:23	MM	
Nickel - Total	ND		0.50	MG/KG	6010	10/29/2008 22:29	AH	
Potassium - Total	ND		29.9	MG/KG	6010	10/29/2008 22:29	AH	
Selenium - Total	ŊD		4.0	MG/KG	6010	10/29/2008 22:29	АН	
Silver - Total	ND		0.50	MG/KG	6010	10/29/2008 22:29	АН	
Sodium - Total	ND		139	MG/KG	6010	10/29/2008 22:29	АН	
Thallium - Total	ND		6.0	MG/KG	6010	10/29/2008 22:29	АН	
Vanadium - Total	ND		0.50	MG/KG	6010	10/29/2008 22:29	АН	
Zinc - Total	276		2.0	MG/KG	6010	10/29/2008 22:29	АН	
Wet Chemistry Analysis								
Flashpoint	>176		0	٥F	1010	11/06/2008 08:00	RMM	
Leachable pH	6.00		0	S.U.	9045	10/28/2008 14:08	ERK	

NYSDEC
SDEC - REGION 9 REMEDIATION/SPILLS CO

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 10/23/2008

Project No: NY5A946109

29/40 Page:

Rept: AN1178

Client No: L10190

Site No:

Sample ID: OIL WATER MIX #3
Lab Sample ID: A8D352O3DL
Date Collected: 10/22/2008
Time Collected: 09:57

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		24000	ug/kg	8260	11/04/2008 14:34	RJ
1,1,2,2-Tetrachloroethane	ND		24000	ug/kg	8260	11/04/2008 14:34	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		24000	UG/KG	8260	11/04/2008 14:34	RJ
1,1,2-Trichloroethane	NÐ		24000	UG/KG	8260	11/04/2008 14:34	RJ
1,1-Dichloroethane	NĐ		24000	ug/kg	8260	11/04/2008 14:34	RJ
1,1-Dichloroethene	ND		24000	UG/KG	8260	11/04/2008 14:34	RJ
1,2,4-Trichlorobenzene	ND		24000	∪G/KG	8260	11/04/2008 14:34	RJ
1,2-Dibromo-3-chloropropane	ND		24000	UG/KG	8260	11/04/2008 14:34	RJ
1,2-Dibromoethane	ND		24000	UG/KG	8260	11/04/2008 14:34	RJ
1,2-Dichlorobenzene	ND		24000	UG/KG	8260	11/04/2008 14:34	RJ
1,2-Dichloroethane	ND		24000	UG/KG	8260	11/04/2008 14:34	RJ
1,2-Dichloropropane	ND		24000	ug/kg	8260	11/04/2008 14:34	RJ
1,3-Dichlorobenzene	ND		24000	ug/kg	8260	11/04/2008 14:34	RJ
1,4-Dichlorobenzene	NÐ		24000	UG/KG	8260	11/04/2008 14:34	RJ
2-Butanone	ND		120000	UG/KG	8260	11/04/2008 14:34	RJ
2-Hexanone	ND		120000	UG/KG	8260	11/04/2008 14:34	RJ
4-Methyl-2-pentanone	ND		120000	UG/KG	8260	11/04/2008 14:34	
Acetone	ND		120000	UG/KG	8260	11/04/2008 14:34	RJ
Benzene	13000	DJ	24000	UG/KG	8260	11/04/2008 14:34	
Bromodichloromethane	ND		24000	UG/KG	8260	11/04/2008 14:34	
Bromoform	ŊD		24000	UG/KG	8260	11/04/2008 14:34	
Bromomethane	NÐ		24000	UG/KG	8260	11/04/2008 14:34	
Carbon Disulfide	ND		24000	UG/KG	8260	11/04/2008 14:34	
Çarbon Tetrachloride	ND		24000	UG/KG	8260	11/04/2008 14:34	
Chlorobenzene	ND		24000	UG/KG	8260	11/04/2008 14:34	
Chloroethane	ND		24000	ug/kg	8260	11/04/2008 14:34	
Chloroform	ND		24000	UG/KG	8260	11/04/2008 14:34	
Chloromethane	ND		24000	UG/KG	8260	11/04/2008 14:34	
cis-1,2-Dichloroethene	ND		24000	UG/KG	8260	11/04/2008 14:34	
cis-1,3-Dichloropropene	ND		24000	UG/KG	8260	11/04/2008 14:34	RJ
Cyclohexane	ND		24000	UG/KG	8260	11/04/2008 14:34	
Dibromochloromethane	NĐ		24000	UG/KG	8260	11/04/2008 14:34	RJ
Dichlorodifluoromethane	ND		24000	UG/KG	8260	11/04/2008 14:34	
Ethylbenzene	570000	D	24000	UG/KG	8260	11/04/2008 14:34	RJ
Isopropylbenzene	52000	D	24000	UG/KG	8260	11/04/2008 14:34	R.J
Methyl acetate	ND		24000	UG/KG	8260	11/04/2008 14:34	
Methyl-t-Butyl Ether (MTBE)	ND		24000	ug/kg	8260	11/04/2008 14:34	
Methylcyclohexane	28000	D	24000	UG/KG	8260	11/04/2008 14:34	
Methylene chloride	ND		24000	ug/kg	8260	11/04/2008 14:34	
Styrene	ND		24000	ug/kg	8260	11/04/2008 14:34	
Tetrachloroethene	28000	D	24000	UG/KG	8260	11/04/2008 14:34	
Toluene	1100000	D	24000	UG/KG	8260	11/04/2008 14:34	RJ
Total Xylenes	3000000	D	73000	UG/KG	8260	11/04/2008 14:34	RJ
trans-1,2-Dichloroethene	ND		24000	UG/KG	8260	11/04/2008 14:34	RJ
trans-1,3-Dichloropropene	ND		24000	υG/KG	8260	11/04/2008 14:34	RJ
Trichloroethene	ND		24000	ug/kg	8260	11/04/2008 14:34	RJ
Trichlorofluoromethane	ND		24000	UG/KG	8260	11/04/2008 14:34	
Vinyl chloride	ND		48000	UG/KG	8260	11/04/2008 14:34	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 30/40 Page:

Rept: AN1178

Date Received: 10/23/2008

Project No: NY5A946109 Client No: L10190

	Sample ID:	SOLVENT
Lab	Sample ID:	A8D352O5
Date	Collected:	10/22/2008
Time	Collected:	10:27

Time Collected: 10:27						Site No:	
						Date/Time	
Parameter	Result	Flag	Limit	Units_	Method	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		120	UG/KG	8260	11/04/2008 15:02	RJ
1,1,2,2-Tetrachloroethane	ND		120	UG/KG	8260	11/04/2008 15:02	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		120	∪g/kg	8260	11/04/2008 15:02	RJ
1,1,2-Trichloroethane	ND		120	UG/KG	8260	11/04/2008 15:02	RJ
1,1-Dichloroethane	ND		120	UG/KG	8260	11/04/2008 15:02	RJ
1,1-Dichloroethene	· NĐ		120	UG/KG	8260	11/04/2008 15:02	RJ
1,2,4-Trichlorobenzene	NÐ		120	UG/KG	8260	11/04/2008 15:02	RJ
1,2-Dibromo-3-chloropropane	ND		120	ug/kg	8260	11/04/2008 15:02	RJ
1,2-Dibromoethane	ND		120	UG/KG	8260	11/04/2008 15:02	RJ
1,2-Dichlorobenzene	ND		120	UG/KG	8260	11/04/2008 15:02	
1,2-Dichloroethane	ND		120	UG/KG	8260	11/04/2008 15:02	
1,2-DichLoropropane	ND		120	ug/kg	8260	11/04/2008 15:02	
1,3-Dichlorobenzene	ND		120	UG/KG	8260	11/04/2008 15:02	
1,4-Dichlorobenzene	ND		120	UG/KG	8260	11/04/2008 15:02	
2-Butanone	ND		610	UG/KG	8260	11/04/2008 15:02	
2-Hexanone	ND		610	UG/KG	8260	11/04/2008 15:02	
4-Methyl-2-pentanone	ND		610	UG/KG	8260	11/04/2008 15:02	
Acetone	540	j	610	UG/KG	8260	11/04/2008 15:02	
Benzene	ND	·	120	UG/KG	8260	11/04/2008 15:02	
Bromodichloromethane	ND		120	UG/KG	8260	11/04/2008 15:02	
Bromoform	ND		120	UG/KG	8260	11/04/2008 15:02	
Bromomethane	ND		120	ug/kg	8260	11/04/2008 15:02	
Carbon Disulfide	ND		120	UG/KG	8260	11/04/2008 15:02	
Carbon Tetrachloride	ND		120	UG/KG	8260	11/04/2008 15:02	
Chlorobenzene	ND ND		120	ug/kg	8260	11/04/2008 15:02	
Chloroethane	NÐ		120	ug/kg	8260	11/04/2008 15:02	
Chloroform	ND		120	UG/KG	8260	11/04/2008 15:02	
Chloromethane			120	UG/KG	8260	11/04/2008 15:02	
cis-1,2-Dichloroethene	ND No.		120	UG/KG	8260	11/04/2008 15:02	
•	ND No.		120	UG/KG	8260 8260	11/04/2008 15:02	
cis-1,3-Dichloropropene Cyclohexane	ND ND			UG/KG	8260 8260	11/04/2008 15:02	
Dibromochloromethane	ND		120 120	UG/KG	8260.	11/04/2008 15:02	
	ND ND		120			11/04/2008 15:02	
Dichlorodifluoromethane	ND 430			UG/KG	8260		
Ethylbenzene	120		120	UG/KG	8260	11/04/2008 15:02 11/04/2008 15:02	
Isopropylbenzene	ND		120	UG/KG	8260		
Methyl acetate	NĐ		120	UG/KG	8260	11/04/2008 15:02	
Methyl-t-Butyl Ether (MTBE)	ND		120	UG/KG	8260	11/04/2008 15:02	
Methylcyclohexane	ND		120	UG/KG	8260	11/04/2008 15:02 11/04/2008 15:02	
Methylene chloride	ND		120	UG/KG	8260		
Styrene	ND		120	UG/KG	8260	11/04/2008 15:02	
Tetrachloroethene	200		120	UG/KG	8260	11/04/2008 15:02	
Toluene	170		120	UG/KG	8260	11/04/2008 15:02	
Total Xylenes	720		360	UG/KG	8260	11/04/2008 15:02	
trans-1,2-Dichloroethene	ND		120	UG/KG	8260	11/04/2008 15:02	
trans-1,3-Dichloropropene	ND		120	UG/KG	8260	11/04/2008 15:02	
Trichlaroethene	ND		120	UG/KG	8260	11/04/2008 15:02	
Trichloroflyoromethane	ND		120	UG/KG	8260	11/04/2008 15:02	
Vinyl chloride	ND		240	UG/KG	8260	11/04/2008 15:02	RJ

Time: 07:21:45

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 Rept: AN1178

21

Sample ID: SOLVENT Lab Sample ID: A8D35205 Date Collected: 10/22/2008

Time Collected: 10:27

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
2,4,5-Trichlorophenol	ND		32000	ug/kg	8270	11/06/2008 03:13	MD
2,4,6-Trichlorophenol	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
2,4-Dichlorophenol	ND		32000	ug/kg	8270	11/06/2008 03:13	
2,4-Dimethylphenol	ND		32000	UG/KG	8270	11/06/2008 03:13	
2,4-Dinitrophenol	ND		62000	UG/KG	8270	11/06/2008 03:13	
2,4-Dinitrotoluene	ND		32000	UG/KG	8270	11/06/2008 03:13	
2,6-Dinitrotoluene	ND		32000	υg/KG	8270	11/06/2008 03:13	
2-Chloronaphthalene	ND		32000	ug/kg	8270	11/06/2008 03:13	
2-Chlorophenol	ND		32000	UG/KG	8270	11/06/2008 03:13	
2-Methylnaphthalene	ND		32000	υG/KG	8270	11/06/2008 03:13	
2-Methylphenol	ND		32000	UG/KG	8270	11/06/2008 03:13	
2-Nitroaniline	ND		62000	UG/KG	8270	11/06/2008 03:13	
2-Nitrophenol	ND		32000	UG/KG	8270	11/06/2008 03:13	
3,3'-Dichlorobenzidine	ND		32000	UG/KG	8270	11/06/2008 03:13	
3-Nitroaniline	ND		62000	UG/KG	8270	11/06/2008 03:13	
4,6-Dinitro-2-methylphenol	ND		62000	UG/KG	8270	11/06/2008 03:13	
4-Bromophenyl phenyl ether	ND		32000	UG/KG	8270	11/06/2008 03:13	
4-Chloro-3-methylphenol	ND		32000	UG/KG	8270	11/06/2008 03:13	MĐ
4-Chloroaniline	ND		32000	UG/KG	8270	11/06/2008 03:13	MO
4-Chlorophenyl phenyl ether	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
4-Methylphenol	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
4-Nitroaniline	ND		62000	UG/KG	8270	11/06/2008 03:13	MD
4-Nitrophenol	ND		62000	UG/KG	8270	11/06/2008 03:13	MD
Acenaphthene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Acenaphthylene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Acetophenone	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Anthracene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Atrazine	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Benzaldehyde	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Benzo(a)anthracene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Benzo(a)pyrene	ND		32000	UG/KG	8270.	11/06/2008 03:13	MD
Benzo(b)fluoranthene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Benzo(ghi)perylene	ND		32000	ŲG/KG	8270	11/06/2008 03:13	MD
Benzo(k)fluoranthene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Biphenyl	ND		32000	UG/KG	8270	11/06/2008 03:13	
Bis(2-chloroethoxy) methane	ND		32000	UG/KG	8270	11/06/2008 03:13	
Bis(2-chloroethyl) ether	ND		32000	UG/KG	8270	11/06/2008 03:13	
Bis(2-ethylhexyl) phthalate	ND		32000	UG/KG	8270	11/06/2008 03:13	
Butyl benzyl phthalate	ND		32000	UG/KG	8270	11/06/2008 03:13	
Caprolactam	ND		32000	UG/KG	8270	11/06/2008 03:13	
Carbazole	ND		32000	UG/KG	8270	11/06/2008 03:13	
Chrysene	ND		32000	υσ/κσ	8270	11/06/2008 03:13	
Di-n-butyl phthalate	ND		32000	UG/KG	8270	11/06/2008 03:13	
Di-n-octyl phthalate	ND		32000	UG/KG	8270	11/06/2008 03:13	
Dibenzo(a,h)anthracene	ND		32000	UG/KG	8270	11/06/2008 03:13	
Dibenzofuran	ND		32000	UG/KG	8270	11/06/2008 03:13	
Diethyl phthalate	2800	J	32000	υG/KG	8270	11/06/2008 03:13	
Dimethyl phthalate	ND		32000	UG/KG	8270	11/06/2008 03:13	
• •				•			

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Penn Empire Site: Site #907034

32/40 Page: 22 Rept: AN1178

Sample ID: SOLVENT
Lab Sample ID: A8D35205
Date Collected: 10/22/2008
Time Collected: 10:27

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	NÐ		32000	UG/KG	8270	11/06/2008 03:13	MD
Fluorene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Hexachlorobenzene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Hexachlorobutadiene	ND .		32000	UG/KG	8270	11/06/2008 03:13	MD
Hexachlorocyclopentadiene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Hexachloroethane	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Indeno(1,2,3-cd)pyrene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Isophorone	ND		32000	∪G/KG	8270	11/06/2008 03:13	MD
N-Nitroso-Di-n-propylamine	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
N-nitrosodiphenylamine	6800	J	32000	UG/KG	8270	11/06/2008 03:13	MD
Naphthalene	ND		32000	ŲG/KG	8270	11/06/2008 03:13	MD
Nitrobenzene	ND		32000	UG/KG	8270	11/06/2008 03:13	MD
Pentachlorophenol	ND		62000	UG/KG	8270	11/06/2008 03:13	MD
Phenanthrene	4700	J	32000	υG/KG	8270	11/06/2008 03:13	MD
Phenol	ND		32000	UG/KG	8270	11/06/2008 03:13	MĐ
Pyrene	1500	J	32000	ug/kg	8270	11/06/2008 03:13	MĐ
REG.9 - SOIL-NYSDOH 310.13 - PETROLEUM PRODUC							
Fuel Oil #2	ND		38000	MG/KG	31013	11/03/2008 13:17	DW
Fuel Oil #4	ND		38000	MG/KG	31013	11/03/2008 13:17	DW
Fuel Oil #6	ND		38000	MG/KG	31013	11/03/2008 13:17	D₩
Gasoline	ND		38000	MG/KG	31013	11/03/2008 13:17	D₩
Kerosene	210000		38000	MG/KG	31013	11/03/2008 13:17	DW
Motor Oil	ND		38000	MG/KG	31013	11/03/2008 13:17	DW
Other-1	ND		38000	MG/KG	31013	11/03/2008 13:17	D₩
NYSDEC - 8082 - POLYCHLORINATED BIPHENYLS IN			-				
Aroclor 1016	ND		17	MG/KG	8082(01L)	11/04/2008 01:01	6FD
Aroclor 1221	ND	•	17	MG/KG		11/04/2008 01:01	GFD
Aroclor 1232	ND		17	MG/KG		11/04/2008 01:01	GFD
Aroclor 1242	ND		17	MG/KG		11/04/2008 01:01	GFD
Aroclor 1248	ND		17	MG/KG		11/04/2008 01:01	GFD
Aroclor 1254	ΝD		17	MG/KG		11/04/2008 01:01	GFD
Aroclor 1260	ND		17	MG/KG		11/04/2008 01:01	GFD
Metals Analysis							
Aluminum - Total	ŊĐ		9.5	MG/KG	6010	10/29/2008 22:39	АН
Antimony - Total	ND		14.2	MG/KG	6010	10/29/2008 22:39	АН
Arsenic - Total	NĐ		1.9	MG/KG	6010	10/29/2008 22:39	AH
Barium - Total	ND		0.47	MG/KG	6010	10/29/2008 22:39	
Beryllium - Total	ND		0.19	MG/KG	6010	10/29/2008 22:39	
Cadmium - Total	ND		0.19	MG/KG	6010	10/29/2008 22:39	
Calcium - Total	NĐ		47.3	MG/KG	6010	10/29/2008 22:39	
Chromium - Total	ND		0.47	MG/KG	6010	10/29/2008 22:39	
Cobalt - Total	ND		0.47	MG/KG	6010	10/29/2008 22:39	
Copper - Total	2.6		0.95	MG/KG	6010	10/29/2008 22:39	
Iron - Total	ND		9.5	MG/KG	6010	10/29/2008 22:39	
Lead - Total	1.0		0.95	MG/KG	6010	10/29/2008 22:39	
Magnesium - Total	ND		18.9	MG/KG	6010	10/29/2008 22:39	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

Rept: AN1178

Sample ID: SOLVENT Lab Sample ID: A8D35205

Time Collected: 10:27

Date Collected: 10/22/2008

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

		Detection			Date/Time	
Parameter	Result Flag	Limit	Units	Me thod	Analyzed	Analyst
Metals Analysis						
Manganese - Total	ND	0.19	MG/KG	6010	10/29/2008 22:39	ΑH
Mercury - Total	ND	0.019	MG/KG	7471	11/03/2008 17:26	MM
Nickel - Totał	ND	0.47	MG/KG	6010	10/29/2008 22:39	AH
Potassium - Total	1630	28.4	MG/KG	6010	10/29/2008 22:39	AH
Selenium - Total	ND	3.8	MG/KG	6010	10/29/2008 22:39	АН
Silver - Total	ND	0.47	MG/KG	6010	10/29/2008 22:39	АН
Sodium - Total	2740	132	MG/KG	6010	10/29/2008 22:39	АН
Thallium - Total	ND	5.7	MG/KG	6010	10/29/2008 22:39	АН
Vanadium - Total	ND	0.47	MG/KG	6010	10/29/2008 22:39	АН
Zinc ~ Total	3.5	1.9	MG/KG	6010	10/29/2008 22:39	AH
Wet Chemistry Analysis						
Flashpoint	121	0	٥F	1010	11/06/2008 08:00	RMM
Leachable pH	9.00	0	s.u.	9045	10/28/2008 14:08	ERK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Penn Empire Site: Site #907034

34/40 Page: 24 Rept: AN1178

Sample ID: SOLVENT RI
Lab Sample ID: A8D35205RI
Date Collected: 10/22/2008
Time Collected: 10:27

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

		Detection			Date/Time	
Parameter	Result	<u>Flag</u> <u>Limit</u>	<u>Units</u>	Me thod	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS						
2,2'-0xybis(1-Chloropropane)	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
2,4,5-Trichlorophenol	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
2,4,6-Trichlorophenol	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
2,4-Dichlorophenol	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
2,4-Dimethylphenol	480000	160000	ug/kg	8270	11/13/2008 23:42	MD
2,4-Dinitrophenol	ND	310000	ug/kg	8270	11/13/2008 23:42	MD
2,4-Dinitrotoluene	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
2,6-Dinitrotoluene	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
2-Chloronaphthalene	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
2-Chlorophenol	. ND	160000	ug/kg	8270	11/13/2008 23:42	MD
2-Methylnaphthalene	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
2-Methylphenol	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
2-Nitroaniline	ND	310000	ug/kg	8270	11/13/2008 23:42	MD
2-Nitrophenol	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
3,3'-Dichlorobenzidine	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
3-Nitroaniline	NĐ	310000	ug/kg	8270	11/13/2008 23:42	MD
4,6-Dinitro-2-methylphenol	ND	310000	∪G/KG	8270	11/13/2008 23:42	MĐ
4-Bromophenyl phenyl ether	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
4-Chloro-3-methylphenol	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
4-Chloroaniline	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
4-Chlorophenyl phenyl ether	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
4-Methylphenol	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
4-Nitroaniline	ND	310000	UG/KG	8270	11/13/2008 23:42	MD
4-Nitrophenol	ND	310000	UG/KG	8270	11/13/2008 23:42	MD
Acenaphthene	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
Acenaphthy Lene	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
Acetophenone	ND	160000	UG/KG	8270	11/13/2008 23:42	
Anthracene	ND	160000	ug/kg	8270	11/13/2008 23:42	
Atrazine	ND	160000	ŲG/KG	8270	11/13/2008 23:42	
Benzaldehyde	ND	160000	ug/KG	8270	11/13/2008 23:42	
Benzo(a)anthracene	ND	160000	ug/KG	8270	11/13/2008 23:42	
Benzo(a)pyrene	ND	160000	UG/KG	8270	11/13/2008 23:42	
Benzo(b)fluoranthene	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
Benzo(ghi)perylene	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
Benzo(k)fluoranthene	ND	160000	ug/kg	8270	11/13/2008 23:42	
Biphenyl	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
Bis(2-chloroethoxy) methane	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
Bis(2-chloroethyl) ether	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
Bis(2-ethylhexyl) phthalate	ND	160000	ug/kg	8270	11/13/2008 23:42	
Butyl benzyl phthalate	ND	160000	UG/KG	8270	11/13/2008 23:42	MD
Caprolactam	ND	160000	ug/kg	8270	11/13/2008 23:42	
Carbazole	ND	160000	ug/kg	8270	11/13/2008 23:42	MD
Chrysene	ND	160000	ug/kg	8270	11/13/2008 23:42	
Di-n-butyl phthalate	ND	160000	UG/KG	8270	11/13/2008 23:42	
Di-n-octyl phthalate	ND	160000	ug/kg	8270	11/13/2008 23:42	
Dibenzo(a,h)anthracene	ND	160000	υG/KG	8270	11/13/2008 23:42	
Dibenzofuran	ND	160000	UG/KG	8270	11/13/2008 23:42	
Diethyl phthalate	ND	160000	UG/KG	8270	11/13/2008 23:42	
Dimethyl phthalate	ND	160000	UG/KG	8270	11/13/2008 23:42	

Date: 11/19/2008

NYSDEC

Time: 07:21:45

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 35/40 Page:

Rept: AN1178

Sample ID: SOLVENT RI
Lab Sample ID: A8D35205RI

Date Collected: 10/22/2008

Time Collected: 10:27

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

		Detec	tion		Date/Time	
Parameter	Result	Flag Lim	it Units	Me thod	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS						
Fluoranthene	ND	16000	0 UG/KG	8270	11/13/2008 2	3:42 MD
Flyorene	ND	16000	0 UG/KG	8270	11/13/2008 2	3:42 MD
Hexachlorobenzene	ND	16000	0 UG/KG	8270	11/13/2008 2	3:42 MD
Hexachlorobutadiene	ND	16000	0 UG/KG	8270	11/13/2008 2	3:42 MD
Hexachlorocyclopentadiene	ND	16000	0 UG/KG	8270	11/13/2008 2	3:42 MD
Hexachloroethane	ND	16000	0 υ σ/ κσ	8270	11/13/2008 2	3:42 MD
Indeno(1,2,3-cd)pyrene	ND	16000	o ug/kg	8270	11/13/2008 2	3:42 MD
Isophorone	ND	16000	0 υσ/κσ	8270	11/13/2008 2	3:42 MD
N-Nitroso-Di-n-propylamine	ND	16000	0 υ σ/ κ σ	8270	11/13/2008 2	3:42 MD
N-nitrosodiphenylamine	ND	16000	O UG/KG	8270	11/13/2008 2	3:42 MD
Naphthalene	ND	16000	O UG/KG	8270	11/13/2008 2	3:42 MD
Nitrobenzene	ND	16000	0 UG/KG	8270	11/13/2008 2	3:42 MD
Pentachlorophenol	ΝĐ	31000	O UG/KG	8270	11/13/2008 2	3:42 MD
Phenanthrene	ND	16000	0 UG/KG	8270	11/13/2008 2	3:42 MD
Phenol	ND	16000	o ug/kg	8270	11/13/2008 2	3:42 MD
Pyrene	ŊĐ	16000	0 UG/KG	8270	11/13/2008 2	3:42 MD

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 36/40 Page: Rept: AN1178

26

Sample ID: UNOPER (8&13) Lab Sample ID: A8D35206 Date Collected: 10/22/2008 Time Collected: 10:42

Time: 07:21:45

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES						-	
1,1,1-Trichloroethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,1,2,2-Tetrachloroethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,1,2-Trichloroethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,1-Dichloroethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,1-Dichloroethene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,2,4-Trichlorobenzene	ND		120	υG/KG	8260	11/04/2008 15:31	RJ
1,2-Dibromo-3-chloropropane	ND		120	ug/kg	8260	11/04/2008 15:31	RJ
1,2-Dibromoethane	ND		120	ug/kg	8260	11/04/2008 15:31	RJ
1,2-Dichlorobenzene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,2-Dichloroethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,2-Dichloropropane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,3-Dichlorobenzene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
1,4-Dichlorobenzene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
2-Butanone	ND		600	UG/KG	8260	11/04/2008 15:31	RJ
2-Hexanone	ND		600	UG/KG	8260	11/04/2008 15:31	RJ
4-Methyl-2-pentanone	ND		600	UG/KG	8260	11/04/2008 15:31	RJ
Acetone	ND		600	ug/kg	8260	11/04/2008 15:31	RJ
Benzene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Bromodichloromethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Bromoform	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Bromomethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Carbon Disulfide	ND		120	UG/KG	8260	11/04/2008 15:31	
Carbon Tetrachloride	ND		120	UG/KG	8260 8260	11/04/2008 15:31	RJ
Chlorobenzene	ND		120	UG/KG	8260 8260	11/04/2008 15:31	RJ
Chloroethane			120	UG/KG		11/04/2008 15:31	RJ
Chtoroform	ND			-	8260		RJ
Chloromethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
cis-1,2-Dichloroethene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
cis-1,3-Dichloropropene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
, ,	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Cyclohexane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Dibromochloromethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Dichlorodifluoromethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Ethylbenzene	78	J	120	UG/KG	8260	11/04/2008 15:31	RJ
Isopropylbenzene	ND		120	ug/kg	8260	11/04/2008 15:31	RJ
Methyl acetate	NĐ		120	UG/KG	8260	11/04/2008 15:31	RJ
Methyl-t-Butyl Ether (MTBE)	ND		120	ug/kg	8260	11/04/2008 15:31	RJ
Methylcyclohexane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Methylene chloride	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Styrene	ND		120	UG/KG	8260	11/04/2008 15:31	ŖЈ
Tetrachloroethene	330		120	UG/KG	8260	11/04/2008 15:31	RJ
Toluene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Total Xylenes	770		360	UG/KG	8260	11/04/2008 15:31	RJ
trans-1,2-Dichloroethene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
trans-1,3-Dichloropropene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Trichloroethene	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Trichlorofluoromethane	ND		120	UG/KG	8260	11/04/2008 15:31	RJ
Vinyl chloride	NĐ		240	UG/KG	8260	11/04/2008 15:31	RJ

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 37/40 Page:

Rept: AN1178

Sample ID: UNOPER (8&13) Lab Sample ID: A8D35206 Date Collected: 10/22/2008

Time Collected: 10:42

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		340000	ug/kg	8270	11/06/2008 03:36	
2,4,5-Trichtorophenol	ND		340000	ug/kg	8270	11/06/2008 03:36	MD
2,4,6-Trichlorophenol	ND		340000	ug/kg	8270	11/06/2008 03:36	MD
2,4-Dichlorophenol	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
2,4-Dimethylphenol	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
2,4-Dinitrophenol	ND		660000	UG/KG	8270	11/06/2008 03:36	MD
2,4-Dinitrotoluene	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
2,6-Dinitrotoluene	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
2-Chloronaphthalene	ND		340000	UG/KG	8270	11/06/2008 03:36	MĐ
2-Chlorophenol	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
2-Methylnaphthalene	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
2-Methylphenol	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
2-Nitroaniline	ND		660000	ug/kg	8270	11/06/2008 03:36	MD
2-Nitrophenol	ND		340000	ug/kg	8270	11/06/2008 03:36	MD
3,3'-Dichlorobenzidine	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
3-Nitroaniline	NĐ		660000	UG/KG	8270	11/06/2008 03:36	MD
4,6-Dinitro-2-methylphenol	ND		660000	∪G/KG	8270	11/06/2008 03:36	MĐ
4-Bromophenyl phenyl ether	ND		340000	UG/KG	8270	11/06/2008 03:36	MĐ
4-Chloro-3-methylphenol	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
4-Chloroaniline	ND		340000	UG/KG	8270	11/06/2008 03:36	
4-Chlorophenyl phenyl ether	ND		340000	UG/KG	8270	11/06/2008 03:36	
4-Methylphenol	ND		340000	UG/KG	8270	11/06/2008 03:36	
4-Nitroaniline	ND		660000	UG/KG	8270	11/06/2008 03:36	
4-Nitrophenol	ND		660000	ug/kg	8270	11/06/2008 03:36	
Acenaphthene	ND		340000	ug/kg	8270	11/06/2008 03:36	
Acenaphthylene	ND		340000	UG/KG	8270	11/06/2008 03:36	
Acetophenone	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Anthracene	ND		340000	υg/kg	8270	11/06/2008 03:36	MD
Atrazine	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Benzaldehyde	ND		340000	υg/κg	8270	11/06/2008 03:36	MD
Benzo(a)anthracene	17000	J	340000	UG/KG	8270	11/06/2008 03:36	MD
Benzo(a)pyrene	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Benzo(b)fluoranthene	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Benzo(ghi)perylene	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Benzo(k)fluoranthene	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Biphenyl	ND		340000	UG/KG	8270	11/06/2008 03:36	
Bis(2-chloroethoxy) methane	ND		340000	UG/KG	8270	11/06/2008 03:36	
Bis(2-chloroethyl) ether	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Bis(2-ethylhexyl) phthalate	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Butyl benzyl phthalate	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Caprolactam	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Carbazole	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Chrysene	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Di-n-butyl phthalate	ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Di-n-octyl phthalate	ND ND		340000	UG/KG	8270	11/06/2008 03:36	MD
Dibenzo(a,h)anthracene	ND		340000	UG/KG	8270	11/06/2008 03:36	
Dibenzofuran	ND 14D		340000	UG/KG	8270 8270	11/06/2008 03:36	MD MM
Diethyl phthalate	ND		340000	UG/KG	8270	11/06/2008 03:36	MĐ
Dimethyl phthalate							MD
инеснус раснасате	ND		340000	UG∕KG	8270	11/06/2008 03:36	MD

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Penn Empire Site: Site #907034 38/40 Page:

Rept: AN1178

Sample ID: UNOPER (8%13)
Lab Sample ID: A8D35206
Date Collected: 10/22/2008

Time Collected: 10:42

Date Received: 10/23/2008 Project No: NY5A946109 Client No: L10190

Time Cottected, 10.42								
			Detection			Date/Time		
<u>Parameter</u>	Result	<u>Flag</u>	Limit	<u>Units</u>	<u>Method</u>	Analyzed	<u> </u>	Analysi
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS					0070			
Fluoranthene	ND		340000	UG/KG	8270	11/06/2008 0		MD
Fluorene	ND		340000	UG/KG	8270	11/06/2008 0		MD
Hexachlorobenzene	ND		340000	UG/KG	8270	11/06/2008 0		
Hexachlorobutadiene	ND		340000	UG/KG	8270	11/06/2008 0		MD
Hexachlorocyclopentadiene	ND		340000	UG/KG	8270	11/06/2008 0		MD
Hexachloroethane	ND		340000	UG/KG	8270	11/06/2008 0		
Indeno(1,2,3-cd)pyrene	ND		340000	ŲG/KG	8270	11/06/2008 0		
Isophorone	ND		340000	UG/KG	8270	11/06/2008 0		
N-Nitroso-Di-n-propylamine	ND		340000	UG/KG	8270	11/06/2008 0		
N-nitrosodiphenylamine	ND		340000	UG/KG	8270	11/06/2008 0		
Naphthalene	ND		340000	UG/KG	8270	11/06/2008 0		
Nitrobenzene	ND		340000	UG/KG	8270	11/06/2008 0		
Pentachlorophenol	ND		660000	UG/KG	8270	11/06/2008 0		
Phenanthrene	ND		340000	ug/kg	8270	11/06/2008 0		
Pheno L	ND		340000	∪G/KG	8270	11/06/2008 0	3:36	MD
Pyrene	ND		340000	ug/kg	8270	11/06/2008 0	3:36	MD
REG.9 - SOIL-NYSDOH 310.13 - PETROLEUM PRODUC								
Fuel Oil #2	76000		60000	MG/KG	31013	10/30/2008 1	3:42	DW
Fuel Oil #4	ND		60000	MG/KG	31013	10/30/2008 1	3:42	DW
Fuel Oil #6	ND		60000	MG/KG	31013	10/30/2008 1	3:42	DW
Gasoline	ND		60000	MG/KG	31013	10/30/2008 1	3:42	DW
Kerosene	ND		60000	MG/KG	31013	10/30/2008 1	3:42	DW
Motor Oil	450000		60000	MG/KG	31013	10/30/2008 1	3:42	DW
Other-1	ND		60000	MG/KG	31013	10/30/2008 1	3:42	DW
NYSDEC - 8082 - POLYCHLORINATED BIPHENYLS IN			-					
Aroclor 1016	ND		1.5	MG/KG	8082(01L)	11/04/2008 0	1:16	GFD
Aroclor 1221	ND		1.5	MG/KG	8082(OIL)	11/04/2008 0	1:16	GFÐ
Aroclor 1232	ND		1.5	MG/KG	8082(QIL)	11/04/2008 0	1:16	GFD
Aroclor 1242	NĐ		1.5	MG/KG	8082(OIL)	11/04/2008 0	1:16	GFD
Aroctor 1248	NĐ		1.5	MG/KG	8082(OIL)	11/04/2008 0	1:16	GFD
Aroclor 1254	ND		1.5	MG/KG	8082(OIL)	11/04/2008 0	1:16	GFD
Aroclor 1260	ND		1.5	MG/KG	8082(OIL)	11/04/2008 0	1:16	GFD
Metals Analysis								
Aluminum - Total	ND		10.6	MG/KG	6010	10/29/2008 2	2:44	AH
Antimony - Total	NÐ		16.0	MG/KG	6010	10/29/2008 2	2:44	AH
Arsenic - Total	NÐ		2.1	MG/KG	6010	10/29/2008 2	2:44	AH
Barium - Total	5.4		0.53	MG/KG	6010	10/29/2008 2	2:44	AH
Beryllium ~ Total	ND		0.21	MG/KG	6010	10/29/2008 2	2:44	AH
Cadmium - Total	0.26		0.21	MG/KG	6010	10/29/2008 2		
Calcium - Total	201		53.2	MG/KG	6010	10/29/2008 2		
Chromium - Total	2.5		0.53	MG/KG	6010	10/29/2008 2		
Cobalt - Total	NĐ		0.53	MG/KG	6010	10/29/2008 2		
Copper - Total	16.7		1.1	MG/KG	6010	10/29/2008 2		
Iron - Total	306		10.6	MG/KG	6010	10/29/2008 2		
Lead - Total	25.7		1.1	MG/KG	6010	10/29/2008 2		
Magnesium - Total	ND.		21.3	MG/KG	6010	10/29/2008 2		
· · · · · · · · · · · · · · · · · · ·	11-		- ·	,	· -	, , ,		

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Penn Empire Site: Site #907034

Date Received: 10/23/2008

Project No: NY5A946109 Client No: L10190

39/40 Page:

Rept: AN1178

Site No:

Sample ID: UNOPER (8&13)
Lab Sample ID: A8D35206
Date Collected: 10/22/2008
Time Collected: 10:42

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Me thod	Analyzed	Analyst
Metals Analysis							
Manganese - Total	2.6		0.21	MG/KG	6010	10/29/2008 22:44	AH
Mercury - Total	ND		0.019	MG/KG	7471	11/03/2008 17:27	MM
Nickel - Total	1.4		0.53	MG/KG	6010	10/29/2008 22:44	АН
Potassium - Total	ND		31.9	MG/KG	6010	10/29/2008 22:44	АН
Selenium - Total	ND		4.2	MG/KG	6010	10/29/2008 22:44	АН
Silver - Total	ND		0.53	MG/KG	6010	10/29/2008 22:44	АН
Sodium - Total	ND		149	MG/KG	6010	10/29/2008 22:44	АН
Thallium - Total	ND		6.4	MG/KG	6010	10/29/2008 22:44	АН
Vanadium - Total	ND		0.53	MG/KG	6010	10/29/2008 22:44	АН
Zinc - Total	138		2.1	MG/KG	6010	10/29/2008 22:44	АН
Wet Chemistry Analysis							
Flashpoint	>176		0	٥F	1010	11/06/2008 08:00	RMM
Leachable pH	6.00		0	s.u.	9045	10/28/2008 14:08	ERK

Chain of Custody Record

Temperature on Receipt ___

perature on Receipt _____

Drinking Water? Yes □ NaDs.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)	700000000000000000000000000000000000000							_	
Client		Project Manager					Date	Chain of Custody Number	ì
NYSDEC-PRSIONS: SJBSPNICAS, INC.	Inc	ChadShan	isze ecski		Park Stener SUR	9-STR	10.33.00	7,33	
Address	-	Telephone Number (Area Code)/Fax Number	er (Area Code)/		34.		Lab Number		}
T. T. C.	ļ							Page of 1	
City State Zp Code	de	Site Contact	7	Lab Contact	<u> </u>		Analysis (Attach list if more space is needed)		I
Project Name and Location (State) Penn Empre Transportation Celeron, New York	nsportches	Carrier/Waybill Number	umber			জোক ক		Special Inetructions	
Contract/Purchase Order/Quote No.		V	Matrix	Containers & Preservatives		wro L		Conditions of Receipt	*
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time Air	IIOS TPOS	HOS H	HOBN HOBN	(2)		All Camples	
·	10-22-09	Øf350 ×			X	×		To Be Archzed Par	ıβ
OLLOCAT MIX#Z		CSS4 X			×	×		TCLYOCS TCLSVOS	· 18
OIL WOCHER MIX #3		Ofso X			$\stackrel{\widehat{\lambda}}{\lambda}$	x		1	PCBs
CAL MIX SOUCE-	Ů	X OFFO			~ *	×		HC SHAPTER OH	، کمہ ا
Solvent		X C201			XX				ī
Wester	_	X Se			\(\frac{\cappa_{\chi}}{\chi} \)	×		TPH (310.13	<u> </u>
Unope (8613)	60.0001	1042 X			<u>×</u>	×		*12 POST/HEKB PRE	۱ ۱
n de la companya de l								D. STEINTE LY 10/M	Mo
								Samples Collected	ected Person
								Francidons	
								THE PARTY LAND	ı
Preciple Lovery Identification									ı
mmable Skin Imitant	R Poison B ■	Vinknown Re	Sample Disposal Return To Client	Disposal By Lab		Archive For	(A fee may b — Months tonger than 1	(A fee may be assessed if samples are retained longer than 1 month)	
Tum Around Time Required 24 Hours 48 Hours 7 Days 14 Days	21,Days	SYN SAN	SOE TO OCY	OC Requirements (Specify)	nts (Specify)			The state of the s	ı
See O		Date	Time	1. Received By		2		. Date	ı
XX		to Bass				14	,	20-08	<u></u>
2. Renthuisher By		Date & Coc.	Time	2. Received By				Date	40
3. Relinquished By		Date	Time	3. Received By			•	Date Time	/ 40
Comments					7		(0,0		ı
The state of the s						4	7.8		
DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy	VARY - Stays wit	h the Sample; PINK	- Field Copy) 		TETLEMENT TO THE PROPERTY TO THE PROPERTY OF T	1

Α	T	TΑ	C	н	M	ΙE	N	Т	E

Analytical Summary Tables

TABLE 1 PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRR	PART 375			LOCATIONS		
		Unrestricted	Commercial					
Analyte	Units	Use SCOs	RUSCOs	TP-5 @ 11'	TP-11 @ 5'	TP-12 @ 4'	TP-19 @ 3.5'	B-16
2-Butanone	ug/kg	120	500,000	13 (J)	ND	ND	ND	10 (J)
Acetone	ug/kg	50	500,000	60	20 (J)	ND	5 (J)	67 (B)
Methylene Chloride	ug/kg	50	500,000	4 (J)	19	2 (J)	6	14 (B)

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

NE- Not established.

(J)- Estimated value.

(B)- Analyte found in associated blank.

ND- Analyte analyzed for, but not detected in sample.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 2 PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRI	R PART 375				LOCATIONS			
		Unrestricted	Commerical							
Analyte	Units	Use	RUSCOs	TP-5 @ 11'	TP-11 @ 5'	TP-8 @ 2'	TP-19 @ 3.5'	B-16	SS-1 (TP-5)	SS-4 (TP-12)
Anthracene	ug/kg	100,000	500,000	ND	380 (J)	ND	ND	49 (J)	ND	ND
Benzo(a)anthracene	ug/kg	1,000	5,600	550 (J)	1,500 (J)	ND	ND	220 (J)	ND	360 (J)
Benzo(a)pyrene	ug/kg	1,000	1,000	320 (J)	1,600 (J)	ND	ND	180 (J)	ND	260 (J)
Benzo(b)fluoranthene	ug/kg	1,000	5,600	380 (J)	1,800 (J)	ND	ND	210 (J)	ND	240 (J)
Benzo(ghi)perylene	ug/kg	100,000	500,000	ND 1,200 (J) ND ND 120 (J) NI						ND
Benzo(k)fluoranthene	ug/kg	800	56,000	190 (J)	770 (J)	ND	ND	110 (J)	ND	190 (J)
Chrysene	ug/kg	1,000	56,000	350 (J)	1,400 (J)	ND	ND	190 (J)	ND	230 (J)
Fluoranthene	ug/kg	100,000	500,000	1,000 (J)	2,600 (J)	ND	ND	520 (J)	ND	ND
Indeno(1,2,3-cd)pyrene	ug/kg	500	5,600	ND	1,000 (J)	ND	ND	98 (J)	ND	ND
Phenanthrene	ug/kg	100,000	500,000	890 (J)	2,000 (J)	ND	ND	330 (J)	ND	ND
Pyrene	ug/kg	100,000	500,000	790 (J)	2,000 (J)	ND	ND	360 (J)	ND	280 (J)

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

(J)- Estimated value.

ND- Analyte analyzed for, but not detected in sample.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 3A PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF METAL/INORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRI	R PART 375		LOCA	TIONS	
Analyte	Units	Unrestricted Use	Commerical RUSCOs	TP-5 @ 11'	TP-8 @ 2'	TP-11 @ 5'	B-16
Aluminum - Total	mg/kg	NE	NE	12,100	11,700	8,340	11,200
Arsenic - Total	mg/kg	13	16	10	8.7	14.2	8.0
Barium - Total	mg/kg	350	400	288	68.4	129	192
Beryllium - Total	mg/kg	7.2	590	0.81	0.38	0.37	0.47
Cadmium - Total	mg/kg	2.5	9.3	0.58	0.26	1.0	0.4
Calcium - Total	mg/kg	NE	NE	8,570	2,370	6,430	3,120
Chromium - Total	mg/kg	30*	1,500*	16.7	11.4	14.2	13.5
Cobalt - Total	mg/kg	NE	NE	8.0	7.0	6.4	5.7
Copper - Total	mg/kg	50	270	36.0	16.8	42.2	17.4
Iron - Total	mg/kg	NE	NE	21,200	18,500	25,200	18,900
Lead - Total	mg/kg	63	1,000	45.0	15.6	293	46.0
Magnesium - Total	mg/kg	NE	NE	2,830	2,620	2,420	2,100
Manganese - Total	mg/kg	1,600	10,000	931	493	622	836
Mercury - Total	mg/kg	0.18	2.8	0.085	0.037	0.086	0.12
Nickel - Total	mg/kg	30	310	17.4	14.6	14.5	12.7
Potassium - Total	mg/kg	NE	NE	1,310	714	958	598
Vanadium - Total	mg/kg	NE	NE	21.2	17.3	12.8	19.9
Zinc - Total	mg/kg	109	10,000	98.8	56.7	243	77.9

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

*- Cleanup objective not established for chromium, total. Therefore, chromium, trivalent cleanup objective referenced.

ND- Analyte analyzed for, but not detected in sample.

ANP- Analysis not performed.

NE- Not established.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 3B PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF METAL/INORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRF	R PART 375			LOCATIONS		
Analyte	Units	Unrestricted Use	Commerical RUSCOs	SS-1 (TP-5)	SS-4 (TP-12)	SS-2	SS-3	SS-4
Aluminum - Total	mg/kg	NE	NE	8,730	7,780	ANP	ANP	ANP
Arsenic - Total	mg/kg	13	16	8.9	9.0	ANP	ANP	13.0
Barium - Total	mg/kg	350	400	90.4	65.6	ANP	ANP	50.2
Beryllium - Total	mg/kg	7.2	590	0.34	0.34	ANP	ANP	ANP
Cadmium - Total	mg/kg	2.5	9.3	0.40	0.34	ANP	ANP	ND
Calcium - Total	mg/kg	NE	NE	4,900	11,200	ANP	ANP	ANP
Chromium - Total	mg/kg	30*	1,500*	10.4	9.4	ANP	ANP	12.7
Cobalt - Total	mg/kg	NE	NE	5.9	6.6	ANP	ANP	ANP
Copper - Total	mg/kg	50	270	19.6	20.8	ANP	ANP	ANP
Iron - Total	mg/kg	NE	NE	16,700	17,100	ANP	ANP	ANP
Lead - Total	mg/kg	63	1,000	29.5	24.8	3140	9,260	55.1
Magnesium - Total	mg/kg	NE	NE	2,620	5,870	ANP	ANP	ANP
Manganese - Total	mg/kg	1,600	10,000	571	487	ANP	ANP	ANP
Mercury - Total	mg/kg	0.18	2.8	0.20	ND	ANP	ANP	0.12
Nickel - Total	mg/kg	30	310	14.0	15.3	ANP	ANP	ANP
Potassium - Total	mg/kg	NE	NE	542	707	ANP	ANP	ANP
Silver - Total	mg/kg	2	1,500	ND	ND	ANP	ANP	ND
Vanadium - Total	mg/kg	NE	NE	13.9	11.1	ANP	ANP	ANP
Zinc - Total	mg/kg	109	10,000	75.6	59.5	ANP	ANP	ANP

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

*- Cleanup objective not established for chromium, total. Therefore, chromium, trivalent cleanup objective referenced.

ND- Analyte analyzed for, but not detected in sample.

ANP- Analysis not performed.

NE- Not established.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 3B PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF METAL/INORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

		6 NYCRI	R PART 375			LOCA	TIONS		
Analyte	Units	Unrestricted Use	Commerical RUSCOs	SS-5	SS-6	SS-7	SS-8	SS-9	SS-10
Aluminum - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP
Arsenic - Total	mg/kg	13	16	17.0	13.1	9.8	9.4	ANP	ANP
Barium - Total	mg/kg	350	400	547	152	184	107	ANP	ANP
Beryllium - Total	mg/kg	7.2	590	ANP	ANP	ANP	ANP	ANP	ANP
Cadmium - Total	mg/kg	2.5	9.3	7.3	0.33	0.34	0.37	ANP	ANP
Calcium - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP
Chromium - Total	mg/kg	30*	1,500*	27.7	13.4	11.0	10.1	ANP	ANP
Cobalt - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP
Copper - Total	mg/kg	50	270	ANP	ANP	ANP	ANP	ANP	ANP
Iron - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP
Lead - Total	mg/kg	63	1,000	2,230	939	707	105	3,100	770
Magnesium - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP
Manganese - Total	mg/kg	1,600	10,000	ANP	ANP	ANP	ANP	ANP	ANP
Mercury - Total	mg/kg	0.18	2.8	1.5	0.10	0.085	0.13	ANP	ANP
Nickel - Total	mg/kg	30	310	ANP	ANP	ANP	ANP	ANP	ANP
Potassium - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP
Silver - Total	mg/kg	2	1,500	1.4	ND	ND	ND	ANP	ANP
Vanadium - Total	mg/kg	NE	NE	ANP	ANP	ANP	ANP	ANP	ANP
Zinc - Total	mg/kg	109	10,000	ANP	ANP	ANP	ANP	ANP	ANP

Notes:

SCOs/RUSCOs - Unrestricted/Restricted Use Soil Cleanup Objectives per NYSDEC, 6 NYCRR Part 375,

Environmental Remediation Programs, Effective December 14, 2006.

*- Cleanup objective not established for chromium, total. Therefore, chromium, trivalent cleanup objective referenced.

ND- Analyte analyzed for, but not detected in sample.

ANP- Analysis not performed.

NE- Not established.

Blue bold concentration equals or exceeds Unrestricted Use Soil Cleanup Objectives.

TABLE 4 PENN EMPIRE TRANSPORTATION - NYSDEC SITE NUMBER 907034 SUMMARY OF METAL/INORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES

			LOCA	TIONS
Analyte	Units	Groundwater Quality Standards	MW-2	MW-4
Aluminum	mg/l	0.1*	3.40	5.85
Arsenic	mg/l	0.25	ND	0.00796 (J)
Barium	mg/l	1	0.545	0.386
Calcium	mg/l	NS	134	161
Chromium	mg/l	0.5	0.00381 (J)	0.00716
Cobalt	mg/l	NS	0.00189 (J)	0,00512
Copper	mg/l	0.2	0.0331	0.0268
Iron	mg/l	0.3	4.13 (B1)	8.92 (B1)
Lead	mg/l	0.25	0.00501	0.00882
Magnesium	mg/l	NS	22.1	33.7
Manganese	mg/l	0.3	0.186	0.370
Nickel	mg/l	0.1	0.00558 (J)	0.00930 (J)
Potassium	mg/l	NS	2.77	6.14
Sodium	mg/l	20	42.0	70.3
Vanadium	mg/l	NS	0.00536	0.00848
Zinc	mg/l	NS	0.0753	0.0562

Notes

Groundwater quality standards presented in New York State Department of Environmental Conservation Part 703 Regulations: Surface Water and Groundwater Effluent Limitations.

ND- Analyte analyzed for, but not detected in sample.

NS- No standard provided.

- J- Concentrations are estimated.
- B1- Analyte was detected in associated laboratory method blank.

Bold concentration equals or exceeds groundwater quality standards.

^{*-} Ionic aluminum groundwater quality standard.

	<u>ATTACHMENT F</u>
--	---------------------

Manifests

	print or type. (Form designed for use on elite (12-pitch) typewriter.)						OWR NO.	2050-0039
5.	WASTE MANIFEST N Y D 9 8 6 9 1 4 2 5 7	ge 1 of 3. Emergency Respons	7226		519	168	3 J.	JK
	Penn Empire Transport Inc. (NYSDEC - REGION 9) 5167 SOUTH PARK AVE. HAMBURG NY 14075	NER Generator's Site Address Penn Empire T LIVINGSTON I CELORON N	ransport STREET	nan mailing addres	s) EG - Ri	EGION S	3)	
	nerator's Phone: 7 1 6 6 4 9 - 8 1 1 0			110 551 151				
6.	Transporter 1 Company Name TONAWANDA TANK TRANSPORT			U.S. EPAID N		7 8 4	48 (0 1
7	Transporter 2 Company Name			U.S. EPA ID N			-	
	Transporter 2 company reality				arribor			
8.	Designated Facility Name and Site Address PETRO-CHEM PROCESSING GROUP 421 LYCASTE			U.S. EPA ID N	umber			
	DETROIT MI 48214			1 2 4 1 2				
Fa	cility's Phone: 313 824-5840			MID	98	0 6 1	5 2 5	98
98	18 11 6 75 11	10. Conta		11. Total	12. Unit	13.	Waste Code	es
Н	M and Packing Group (if any))	No.	Туре	Quantity	Wt./Vol.			
GENERATOR	X 1. RQ NA3082, Hazardous waste, liquid, n.o.s. 9, PGIII (Fuel Oil, Benzene)	505	DM	1000	Р	D018	D039	B
NI-	2. RQ UN1993, WASTE Flammable liquids, n.o.s.					D001	D018	D035
5	X (Benzene, Methyl Ethyl Ketone, Trichloroethylene)	007		1400				0000
	3, PGII	800 1	DM	1400	P	D039	В	
Ш.	3. RQ NA3082, Hazardous waste, liquid, n.o.s					D008	D018	D039
	X 9, PGIII (Benzene, Lead, Trichloroethylene)	006	DM	1200	р	8		
	4 20 11 27 20 11		Tuent					
	RQ NASB82, Hazardous waste, liquid, n.o.s. 9, PGIII - (Benzene, Lead, Trichloroethylene)	place the public				B0008	7	
	o, rom tomeson, non, monoroungeno,	003	DM	650	Р			
15		gnment are fully and accurately d to applicable international and na Acknowledgment of Consent.	tional governr	e by the proper sh mental regulations.				
Ge	enerator's/Offeror's Printed/Typed Name	Signature	ian quartity ge	enerator) is true.		Мо	nth Day	Year
	Stopped Richard FORDER ROLL	11 12	Och	L		1	211	14
16	. International Shipments Import to U.S. Expo	ort from U.S. Port of e	ntry/exit:					
NT.	ansporter signature (for exports only):		ving U.S.:					
出 17	. Transporter Acknowledgment of Receipt of Materials							
TRANSPORTER	ansporter 1 Printed/Typed Name	Signature		A distributed	/,	Mo	nth Day	Year
S T	ansporter 2 Printed/Typed Name	Signature	1		_	Mo	nth Day	
RA		I				I		1
	Discrepancy							
111	a. Discrepancy Indication Space Quantity Type	Residue		Partial Rej	ection		Full Rej	jection
11		Manifest Reference	ce Number:					
E 18	b. Alternate Facility (or Generator)			U.S. EPA ID N	lumber			
ACII	icility's Phone: ic. Signature of Alternate Facility (or Generator)					1 84	onth Da	y Year
D FACILITY	o. Organization Attentiate Lability (of Octobator)					l Wil	J. 101	
ATED FACII								
IGNATED FACI	Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment	disposal and recycling evetomes						
DESIGNATED FACIL	. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, 2.	disposal, and recycling systems) 3.		4.				
NATED		disposal, and recycling systems) 3.		4.				
DESIGNATED 1.		3.	em 18a	4.				
18 19 1. 20	2.	3.	em 18a	4.		Mo	onth Day	y Year

06/15/2009 10:35 FAX 7168770227 TO	NAWANDA	TANK					2 1	002
m designed for use on elite (12-plich) typewritor.)	752	631			For	т /фрюче	OMB No	2050-003
		nergoncy Respons		Manifest	Tracking I			
Mame and Mailing Address Ferripire Transport Inc. (NYSDEC - REGION 9) IN SOUTH PARK AVE.	INER Gener	ators Sale Address on Empure TI	(If different I	than mailing addre	55) DEC - F	EGION	9)	<u> </u>
MBURG NY 14075 2007s Phone: 7 1 6 6 4 9 - 8 1 1 0		LORON N	14/20					
SENIADORT 1 COMPANN NAME TONAWANDA TANK TRANSPORT				N Y		7 6 4	4 8	0 1
7. Transporter 2 Company Name				U S. EPA ID N		21 09	72	75
Designated Facility Name and Stle/Address PETRO-CHEM PROCESSING GROUP		-		U S. EPA ID N	Number			
421 LYCASTE DETROIT MI 48214				l M ! D	9 8	0 6 1	5 2	2 8
Facility's Phone: 313 824-5840 9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,		10. Contain	673	1 Total	12. Unit	Γ		
HM and Packing Group (II any))		No.	Туре	Quantity	WL/Val.		Waste Code	
1. RQ NA3082, Hazardous waste, liquid, n.o.s. 9, PGIII (Fuel Oil, Benzene)		005	DM	1000	.р	10018	D039	8
2. RQ UN1993, WASTE Flammable liquids, n.c.s.						10001	D018	D035
(Benzene, Methyl Ethyl Ketone, Trichloroethylene) 3, PGII		007	DM	1400	P	10039	В	
3. RQ NA3082, Hazerdous waste, liquid, n.o.s. 9, PGIII (Benzene, Lead, Trichloroethylene)		006		1200	_	1000B	D018	D039
4. RQ NA3062, Hazardous waste, liquid, n.o.s.			DM	,	Р	B	-	
9, PGIII (Benzene, Lead, Trichloroethylene)		∞ 3	DM	650	P	10006	T	
14. Special Handling Instructions and Additional Information 1) 402088-00 ERG#171 2) 402087-00 ERG#128 3) 402085	-00 ERG#	H71 4)402	090-00	ERG#171	1	/ ^	7/	
	i Are OF		Dis o	1,9%	/4	00°	_/	
15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consign	nment are fully a	nd accurately desc	ribed above	by the proper ship				
marked and labeled/placarded, and are in all respects in proper condition for transport according to Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA A I cartify that the waste minimization statement identified in 40 CFR 262.27(e) (if I am a large quant	dnowledgment.	of Consent.			export still	pirentanu i a	m tre Parta	,
Generator's/Offeror's Printed/Typed Name	Signature	RA	(/		Mon		Yest
16. International Shipments		Port of entry	lovit:				-1 /.	
Transponer signature (for exports only):	from U.S.	Date leaving						
17. Transporter Acknowledgment of Receipt of Matonals Transporter 1 Printed/Typed Name	Signature			THE .	_	Mont	Day	Year
Transporter 2 Printed/Typed Name	Signature	1 the		FP WA	/	Hom	(/ /	Year
Tanaparier 2 Francia Types refine	Signature	<i>ب</i> ـُـرِّ .	Da	rti		Mon	42	الحقرا
E. Discrepancy								
18è. Ciscrepancy Indication Space Quantity Type		Residue		Parlial Reject	lion	L	Full Rejac	tion
18b. Alternate Facility (or Generator)	Mar	nilest Relerence M	umber.	U.I. EPAID Nun	nber			-
To J. Change				1				
acility's Phone: 8c Signature of Atternate Facility (or Generator)						Mont	n Day	Yoar
9 Hazardous Waste Report Management Method Codes (i.e., codes for hazardous wasta treatment, dis	sposal, and recyt	ding systems)						
H1461 - 4.41	3.	ji, c	47	4.	14			
10. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the Finited/Typed Name	menifest except Signature	as noted in Item 16	Ba			Montr		Year
14 1 3 1 1 The same of the sam		16.	7	11.				. 7
are 9700 22 (Pay 2 05, Browing addiago are sheeter							_	- +

Plea	se pri	nt or type. (Form designed for use on elite (12-pitch) typewriter.)					11	. OMB No.	2050-0039
1	W	ORM HAZARDOUS ASTE MANIFEST 1. Generator ID Number N Y D 9 8 6 9 1 4 2 5 7 2. Page 10	7/6 851	.7220	27 67 1	519	168		JK
	100	nerator's Name and Mailing Address enn Empire Transport Inc. (NYSDEC - REGION 9) 167 SOUTH PARK AVE. AMBURG NY 14075	Generator's Site Addre Penn Empire I LIVINGSTON CELORON N	STREET		EC - RI	EGION S	9)	
		rator's Phone: 7 1 6 6 4 9 - 8 1 1 0 nsporter 1 Company Name			U.S. EPA ID N	Number			
		ONAWANDA TANK TRANSPORT			NYD	0 9	7 6 4	48 (7 1
	7. Tra	nsporter 2 Company Name			U.S. EPA ID N	lumber			
	8. De:	signated Facility Name and Site Address			U.S. EPA ID N	Number			
		ETRO-CHEM PROCESSING GROUP 21 LYCASTE							
		ETROIT MI 48214 bys Phone: 313 824-5840			IMID	98	0 6 1	5 2 8	8
	9a.	9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,	10. Con	tainers	11. Total	12. Unit			
	НМ	and Packing Group (if any))	No.	Туре	Quantity	Wt./Vol.		. Waste Code	es .
GENERATOR	Х	1-RQ UN1993, WASTE Flammable liquids, n.o.s. (Kerosene) 3, PGII	003	DM	700	P	D001	B	
ENE	3.7	² RQ UN1993, WASTE Flammable liquids, n.o.s.		+			D001	D008	D039
9	X	3, PGII (Benzene)	00%	DM	1200	Р	В		
		3.							
		4.							
П	14. S	I pecial Handling Instructions and Additional Information							
		1)402091-00 ERG#128 2)402092-00 ERG#128							
		(150P)							
		GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignme marked and labeled/placarded, and are in all respects in proper condition for transport according to ap							
		trained and labeled practiced, and are in all respects in proper common for transport according to ap- Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Ackn I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity q	owledgment of Consent.			. II export si	iipment and	i ain the Filit	lary
			Signature	maii quantity g	enerator) is true.		Mo	onth Day	Year
1	4	The Taker Regard	-	100	{			411	7 27
INT		ternational Shipments Import to U.S. Export from Exporter signature (for exports only):		entry/exit: aving U.S.:					
_	-	ansporter Acknowledgment of Receipt of Materials	Date le	aving U.S					
TRANSPORTER	Trans	porter 1 Printed/Typed Name	Signature	· /	7/1/2	1/	Mo	onth Day	Year
NSP	Trans		Signature	-	16.00		Mo	onth Day	Year
TRA									
1		screpancy							
	18a. L	Discrepancy Indication Space Quantity Type	Residue		Partial Rej	ection		Full Re	jection
			Manifest Referer	nce Number:					
FACILITY	18b. A	Alternate Facility (or Generator)			U.S. EPA ID N	Number			
FAC	Facilit	y's Phone:			1				
TED	18c. S	Signature of Alternate Facility (or Generator)					M	lonth Da	y Year
GNA	10 H	azardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, dispo	neal and recycling systems	:\					
DESIGNATED	1.	2. 3		'1	4.				
1									
		esignated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the mad/Typed Name	anifest except as noted in I Signature	tem 18a			M	onth Day	/ Year
1							- 1		

Form 8700-22 (Rev. 3-05) Previous editions are absolute.

Printed/Typed Name

20, Designated Facility Owner or Operator: Conflication of receipt of hazardous materials covered by the manifest except as noted in Item 18a

Title: Materials Management Coordinator

2004 Facility This is to certify that the following waste material was received, managed, and treated in compliance with All applicable Federal and State Laws and Regulations. CERTIFICATE OF TREATMENT, RECYCLING, AND/OR DISPOSAL : PETRO-CHEM PROCESSING GROUP 421 LYCASTE

Page #

DETROIT MI, 48214

EPA ID Generator: 116102 - PENN EMPIRE TRANSPORT, INC. : MID980615298 EPA ID : NYD986914257

	Convers	Treatment		Final Treatment	Final PSC	Final Date/
Line Profile	Material Description	Disposal Description	rīption	Disposal Facility	Manifest	PgLn Shipped
1 402088-00	HAZARDOUS WASTE, LIQUID, N.O.S. (FUEL	UID, N.O.S. (FUEL,			005056637JJK	1 03/12/2009
					005056689JJK	1 03/31/2009
					46588-09	
2 402087-00	WASTE FLAMMABLE LIQUIDS, N.O.S.	DS, N.O.S.			Nrrsonnonano	
	(BENZENE,				75278-09	
	MIXTURE #2)					
					005056637JJK	2 03/12/2009
					39313-09	
					005056637JJK	1103/12/2009
					39313-09	
3 402089-00	HAZARDOUS WASTE, LIQUID, N.O.S.	ข้าD, N.O.S.			005056637JJK	1 03/12/2009
	(BENZENE, LEAD. TETRACHLOROETHYLENE-OIL WATER	OIL WATER			39313-09	
	MIXTURE #3)					
					005056637JJK	2 03/12/2009
					39313-09	
4 402090-00	HAZARDOUS WASTE, LIQUID, N.O.S. (OIL, WATER, LEAD - UNOPEN (88/13))	りは, N.O.S. (OIL, (8&13))			000000003JJK 75278-09	٦
				1		

PgLn Shipped

Final Date

1 03/12/2009

04/08/2009

05/01/2009

Page #