

October 16, 2018

David Szymanski Project Manager **New York State Department of Environmental Conservation** Division of Environmental Remediation, Region 9 270 Michigan Avenue, Buffalo, New York 14203-2915

> BVNA Project No. 08018-000099.00.00 Transmitted via e-mail: david.szymanski@dec.ny.gov

> > Main: (330) 252-5100

Fax: (330) 252-5105

www.us.bureauveritas.com

Subject: 2018 Annual Groundwater Monitoring and Periodic Review Report

Lexington Machining, LLC.

201 Winchester Road, Village of Lakewood, Town of Busti Chauatagua County, New York - NYSDEC Site Number: 907004

Dear Mr. Szymanski:

On behalf of Lexington Machining, LLC, Bureau Veritas North America, Inc. (BVNA) is pleased to present the attached 2018 Annual Groundwater Monitoring and Periodic Review Report for your review and approval. The monitoring was completed to satisfy the requirements of the Site Management Plan.

Please contact me at (732) 522-1970 or john.stangline@us.bureauveritas.com with any questions.

Sincerely,

John A. Stangline, ARM, CPEA, CHMM National Director Environmental Services

Health Safety and Environmental Services

Michael Lubin, Chairman, Lexington Machining LLC CC:

Annual Groundwater Monitoring, Periodic Review Report

Lexington Machining, LLC

NYSDEC Site Number: 907004 Premier Lakewood, Inc. Site 201 Winchester Road Village of Lakewood, Town of Busti Chauatagua County, New York

Bureau Veritas Project No. 08018-000099.00 OCTOBER 2018

Prepared by:

Bureau Veritas North America, Inc. 520 South Main Street, Suite 2444 Akron, Ohio 44311 330.252.5100 www.us.bureaveritas.com

For the benefit of business and people

Main: (330) 252-5100 Fax: (330) 252-5105

www.us.bureauveritas.com

CONTENTS

SECTIO	<u>DN</u>	<u>Page</u>
1.0 1.1 1.2	BACKGROUNDHISTORIC OPERATIONSSITE ENVIRNMENTAL SUMMERY	
2.0 2.1	ANNUAL GROUNDWATER MONITORING	2
3.0	ANALYTICAL RESULTS	4
4.0 4.1 4.2 4.3	DISCUSSION Acceptable Groundwater Conditions Improving Groundwater Conditions Groundwater Conditions for Continued Monitoring	5 6
5.0	CONCLUSIONS	
6.0	SIGNATURES	. 10
FIGUR	<u>res</u>	
1. 2 3	Site Location Map Groundwater Monitoring Well Network Inferred Groundwater Elevations	
TABLE	<u>ES</u>	
1. 2. 3.	September 2018 Groundwater Elevation Measurements September 2018 Groundwater Sample Data Summary Historical Groundwater Data Summary	
<u>APPEI</u>	NDICIES .	
A B C	Site Wide Inspection Form Site Management Periodic Review Report, Institutional and Engineering Controls Certification Form Groundwater Sampling Logs Pace Analytical Laboratory Report	
ט	race Analytical Laboratory Neport	

1.0 BACKGROUND

Subsequent to active remediation, a Site Management Plan (SMP) was prepared for the Lexington Machining LLC (LMLLC) property located at 201 Winchester Road in Lakewood, New York, Site # 907004 (the Site). A Site location map is presented in Figure 1. The SMP was prepared to address low levels of volatile organic compounds (VOCs) remaining in soil and groundwater of the Site and is required by the New York State Department of Environmental Conservation (NYSDEC) draft Order on Consent and Administrative Settlement Index # B9-0792-08-10.

Annual Groundwater monitoring is required within section 3.2.1 Groundwater Monitoring of the SMP. This report presents the methods and results of the annual groundwater monitoring conducted in October 2018.

The site is located in the Village of Lakewood, Town of Busti, County of Chautauqua, New York and is situated on three lots identified as Block 385 and Lots 06-3-58, 06-3-59 and 06-3-60 on the Chautauqua County Tax Map. The site is an approximately 5.7-acre area bounded by a Chautauqua Regional Railroad Authority rail line to the north, a residential property and a vacant commercial/industrial facility to the south, Matco Tools manufacturing facility and American Legion Lakewood Memorial Post 1286 to the east, and Winchester Road to the west (see Figure 2).

1.1 HISTORIC OPERATIONS

The site was undeveloped vacant land at least through the 1930s with initial construction of the existing manufacturing building beginning circa 1956. Die casting operations, including aluminum, magnesium, and zinc die castings manufactured for consumer and industrial products, have been located at the property since that time. The manufacturing plant was occupied through the 1980s by Falconer Metal Specialties, which was succeeded by Falconer Die Casting, Lexington Die Casting, and Premier Tool & Die, and Premier Lakewood, Inc. the current operator. Lexington Precision Corporation, the previous owner of the Property, was the owner of Lexington Die Casting before selling the manufacturing equipment and operation to Premier Tool & Die in 2006. The current site owner is LMLLC.

Operations at the site ceased circa April 2014 with removal of equipment and manufacturing materials through the end of August 2014.

1.2 SITE ENVIRONMENTAL SUMMARY

VOCs were identified in Site soil and groundwater during due diligence environmental site investigations and underground storage tank (UST) closure activities between July 2002 and November 2006. The primary soil and groundwater contaminant, 1,1,1-trichloroethane (1,1,1-TCA), had been previously used at the Site as a solvent and degreaser from approximately 1960 through 1991. Breakdown products of 1,1,1-TCA identified in groundwater include 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), chloroethane and vinyl chloride. Also identified in several groundwater samples

were 1,1,2-trichloroethane (1,1,2-TCA) and its breakdown product 1,2-dichloroethane (1,2-DCA). 8

An enhanced in-situ bioremediation program was conducted to address VOCs in groundwater at the Site in August through November 2006. The program included injection of bio-amendments into groundwater to support and increase the rate of naturally occurring degradation of contaminants by reductive dechlorination.

Post-remediation groundwater sampling conducted in April 2007, indicated a reduction in 1,1,1-TCA concentrations and an increase in 1,1,1-TCA breakdown products such as 1,1-DCA, and chloroethane

A groundwater sampling program was conducted in June 2010 to evaluate groundwater quality conditions at the Site. The concentrations of the primary contaminant, 1,1,1-TCA, had fallen below NYSDEC Groundwater Quality Standard (GWQS) in all but one monitoring well. The secondary contaminant, 1,1,2-TCA was detected in only one monitoring well at a concentration above the GWQS; the concentration was lower than the previously detected concentrations. Concentrations of contaminant breakdown products are generally increasing at the site. Concentrations of tertiary breakdown products chloroethane and chloroethane are also increasing. Secondary breakdown product concentrations of 1,1-DCA, 1,2-DCA and 1,1-DCE increased under the Site building but decreased in most other areas of the Site. These changes indicate that natural attenuation of the VOC contaminants at the Site is occurring.

Soil contaminants remaining at the site are located at depths of 4 to 11.5 feet beneath site structures and include chlorinated solvents and acetone at concentrations below criteria for protection of public health in residential, commercial or industrial settings, but above criteria for protection of groundwater.

Groundwater contaminants remaining at the Site, including chlorinated solvent VOCs, are present in overburden groundwater under approximately half of the 99,000 square foot manufacturing building and the northern portion of the LMLLC property. Groundwater elevations are generally encountered at depths of 10 to 16 feet below grade. One groundwater sample, collected from deep groundwater monitoring well (MW-11D) in June 2010, exhibited concentrations of four VOCs, three at concentrations below groundwater quality standards, and the fourth, acetone, detected slightly above standards. Monitoring well MW-11D is located outside the southwest corner of the manufacturing building and up-gradient of chemical use areas. No other VOCs have been detected above standards in the deep groundwater zone.

2.0 Annual Groundwater Monitoring

The 2018 annual groundwater monitoring was completed to satisfy the requirements of SMP Sections 2.2.1.1, Monitored Natural Attenuation, and 3.2.1, Groundwater Monitoring.

Monitoring well sampling activities were recorded in a field book and on groundwater-sampling log sheets presented in SMP Appendix F. Relevant field observations (e.g.,

well integrity, etc.) were noted on the well sampling logs. The completed well sampling logs are provided in Appendix C. $\,$.

2.1 Sample Collection

Prior to collecting groundwater samples, the groundwater level in each well was measured and recorded. Observed groundwater elevations are recorded on the well sampling logs and provided in Table 1. Inferred groundwater elevations and contours are depicted in Figure 3. Inferred groundwater flow direction is consistent with historic observations to the northeast.

Groundwater samples were collected using the low-flow purging and sampling technique using a peristaltic pump and polyethylene tubing at flow rates of 0.1 to 0.4 liters per minute. The samples were collected once stabilization for three consecutive readings was achieved for the following parameters and variances:

- turbidity (10 percent for values greater than 1 NTU),
- · dissolved oxygen (10 percent),
- specific conductance (3 percent),
- temperature (3 percent),
- pH (0.1 units) and
- oxygen reduction potential (10 millivolts).

The groundwater field parameters were monitored using a Horiba U-52 multi-parameter water quality meter with flow-through cell. The U-52 meter was calibrated at the beginning of each sampling day using manufacturer provided calibration fluid.

Purge water was collected, contained in a 55-gallon drum and temporarily staged onsite pending disposal.

Groundwater samples were collected directly into laboratory provided bottles and shipped overnight in an ice-filled cooler to Pace Analytical Pittsburgh, Pennsylvania facility, a New York State certified laboratory (New York: NYDOH (NELAP) #10888). Two field blank samples (one per field day) and one trip blank sample were collected for quality assurance/quality control (QA/QC). Appropriate decontamination procedures were followed, and proper chain of custody procedures employed.

Groundwater samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) method 8260B. No contaminants were reported above laboratory detection limits in the field and trip blank samples with the exception of: toluene, which was detected at a concentration of 1.1 parts per billion 1.1 (ug/L) in Field Blank 1 and at a concentration of 2.3 ug/L in Field Blank 2. The Trip Blank reported no detected contaminants.

The analytical results were compared to the NYSDEC Groundwater Quality Standards (Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1), and ECL Part 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations) to evaluate targeted compounds present above laboratory detection limits.

3.0 ANALYTICAL RESULTS

Pace Analytical provided its Laboratory Report dated September 8, 2018 for the samples collected at the Lexington Machining site (Appendix D). Pace Analytical reported that all holding times were met and proper preservation noted for the methods performed on the samples.

Table 2 provides a summary of the sample analytical results for the contaminants of concern in groundwater of the site. Table 3 provides a summary of the historical analytical results for those compounds.

Acetone, methyl ethyl ketone, benzene, and toluene were not detected in any groundwater samples. Toluene was detected in the field blanks. This is most likely due to a lab contaminant.

Primary contaminants of concern at the site, 1,1,1-TCA and 1,1,2-TCA were detected in several groundwater samples.

- 1,1,1-TCA was at a concentration of 7.8 ug/L and 2.2 ug/L in groundwater samples MW-9 and MW-10, respectively. The concentration of 7.8 ug/L in MW-9 exceeded the GWQS for 1,1,1-TCA of 5 ug/L. 1,1,1-TCA was not detected above the laboratory detection limits in the remaining groundwater samples analyzed.
- 1,1,2-TCA was detected in only one of the sample exceeding GWQS of 1 ug/L in MW-10 (2.2 ug/L). 1,1,2-TCA was not detected above the laboratory detection limits in the remaining groundwater samples analyzed.

Secondary (breakdown product) contaminants including, 1,1-DCA, 1,1,-DCE, 1,2-DCA, and chloroethene (vinyl chloride [VC]) were also detected in groundwater samples.

- 1,1-DCA was detected in nine of the fourteen groundwater samples with eight concentrations exceeding the GWQS of 5 ug/L. One concentration was below the GWQS with a detection of 4.1 ug/L in MW- 9. The maximum concentration of 46.0 ug/L was detected in MW-2. 1,1-DCA was not detected above the laboratory detection limits in the remaining six groundwater samples.
- 1,1,-DCE was detected in ten of the fourteen groundwater samples with seven of the concentrations exceeding the GWQS of 5 ug/L. The maximum concentration of 194 ug/L was detected in MW-9. The other reported concentrations of 1,1,-DCE are listed in Table 2.
- 1,2-DCA was detected in two of the fourteen groundwater samples with both concentrations exceeding the GWQS of 0.6 ug/L. The maximum concentration of 4.1 ug/L was detected in MW-9. The other reported concentration of 1,2-DCA is listed in Table 2.

VC was detected in two of the fourteen groundwater samples with both of the concentrations exceeding the GWQS of 2 ug/L. The maximum concentration of 4.4 ug/L was detected in MW-7. The other reported concentrations of VC are listed in Table 2.

Tertiary breakdown products, chloroethane and 1,2-Dichlorobenzene were detected in groundwater samples. Chloroethane was detected in four groundwater samples, with three exceeding the GWQS of 5 ug/L. The maximum chloroethane concentration of 430 ug/L was detected in MW-13. The lowest concentration was 1.3 ug/L. The other reported concentrations of chloroethane are listed in Table 2.

1,2-Dichlorobenzene (ODCB) was not detected in any groundwater samples.

4.0 DISCUSSION

Groundwater samples collected from the monitoring well network at the site continue to exhibit concentrations of contaminants of concern exceeding GWQS. Historical groundwater quality data is provided in Table 3. Monitoring wells exhibited attainment of GWQS and/or non-detectable concentrations of contaminants, decreasing contaminant concentrations or elevated concentrations requiring continued monitoring.

4.1 Acceptable Groundwater Conditions

Five of the fourteen monitoring wells exhibited no detected concentrations of contaminants or detections well below the GWQS, including the following:

Monitoring Well ID	Location on Site
MONICHIO WEILID	LOCAHON ON SHE

MW-2D	North center outside the building
MW-4	East of the building
MW-5	Northwest of the building
MW-11	West of the building
MW-11D	West of the building

These five monitoring wells have historically been free of concentrations of contaminants above detection limits and/or GWQS. Monitoring wells MW-11, MW-11D and MW-4 are up-gradient and monitoring well MW-5 is cross-gradient of impacted areas. Monitoring well MW-2D is down-gradient of impacted areas and is installed in the site's deeper water bearing zone to 27 feet below ground surface.

4.2 Improving Groundwater Conditions

Groundwater samples collected from four monitoring wells exhibited a clear decrease in contaminant concentrations between samples collected in June 2010 and September 2018. The four monitoring wells include the following:

Monitoring Well ID Location on Site

MW-1	North center outside the building
MW-3	North center outside the building
MW-7	Northeast of the building
MW-9	Inside the secondary machining
	area of the building

In monitoring well MW-1, detected concentrations of chloroethene decreased from 2.20 ug/L to below the laboratory detection limit, 1,1,1-TCA decreased from 12.6 ug/L to below the laboratory detection limits; 1,1-DCE decreased from 75.9 ug/L to 4.6 ug/L; 1,1-DCA decreased from 25.1 ug/L to 2.7 ug/L and; chloroethane from 137 ug/L to below the laboratory detection limits.

Monitoring well MW-3 exhibited decreasing concentrations of chloroethene and cis-1,2-DCE. Chloroethene concentrations decreased from 1.23 ug/L to below the laboratory detection limits, and cis-1,2-DCE from 10.3 ug/L to below the laboratory detection limits

Monitoring well MW-7 exhibited decreased concentrations of 1,1-DCE from 19.5 ug/L to 2.6 ug/L, 1,1-DCA from 22.3 ug/L to 5.6 ug/L and chloroethene from 22.3 ug/L to below the laboratory detection limits.

In monitoring well MW-9, detected concentrations of 1,1-DCE decreased from 788 ug/L to 194 ug/L; 1,1-DCA decreased from 346 ug/L to 166 ug/L and; 1,2-DCA from 11.4 ug/L to 4.1 ug/L. The detected concentrations of 1,1,1-TCA from 43 to 7.8 ug/L.

Monitoring wells MW-1 and MW-7 are down and cross-gradient of the impacted areas at the boundaries of historical impacted groundwater plume. Monitoring wells MW-9 and MW-10 are cross and up-gradient of the soil and groundwater impact areas. There is no evidence from the groundwater data from these monitoring wells that indicates that the historical groundwater impact plume is spreading beyond previous delineation.

4.3 Groundwater Conditions for Continued Monitoring

Groundwater samples collected from five monitoring wells exhibited an overall increase in contaminant concentrations between June 2010 and September 2018.

Monitoring Well ID Location on Site

MW-3	Northeast outside the building
MW-10	Inside the compressor area of the
	building
MW-12	Northeast outside the building
MW-13	Northeast outside the building
MW-14	Northeast outside the building

1,2-DCA increased from 0.962 ug/L in 2017 to 69.6 ug/L in 2018 in monitoring well MW-3.

In monitoring well MW-10, detected concentrations of 1,1,2-TCA decreased from 2.65 ug/L to a concentration of 1.9 ug/L; 1,1-DCE decreased from 58.7 ug/L to 4.1 ug/L; and 1,2-DCA decreased from an estimated 0.715 ug/L to below detection limits. The concentration of 1,1-DCA exhibited an increase from a non-detectable concentration in June 2010 to 61.1 ug/L in September 2018. 1,1-DCA; however, exhibits an historical decrease from prior concentrations of 77 ug/L and 110 ug/L.

MW-12 exhibited decreases in two compounds including 1,1-DCA from 20.9 ug/L in 2010 to 5.9 ug/L in 2018 and 1,1-DCE from 28.1 ug/L in 2010 to 12.7 ug/L in 2018.

MW-13 exhibited increases in four compounds including 1,1-DCE from 4.4 ug/L in 2016 to 7.6 ug/L in 2018, 1,2-DCA from non-detectable concentrations in 2016 to 1.3 ug/L in 2018; 1,1-DCA from 1.96 ug/L to 27.6 ug/L; and chloroethane from 25.9 ug/L in 2018 to 430 ug/L in 2018.

MW-14 exhibited a decrease in two compounds including 1,1-DCA in 2014 from 33 ug/L to 6.1 ug/L in 2018 and 1,1,-DCE chloroethane in 2014 from 42 ug/L to 3.5 ug/L.

MW-14 exhibited increases in one compound; chloroethene in 2014 from 3.1 ug/L to 4.33 ug/L in 2018.

5.0 CONCLUSIONS

Based upon the results of the annual groundwater monitoring completed at the Lexington Machining, LLC site in Lakewood, New York continued groundwater monitoring is required under the NYSDEC approved Site Management Plan.

Groundwater contaminant concentrations are generally decreasing or remaining below GWQS and/or detection limits in most groundwater monitoring wells (eleven of fourteen). One monitoring well, MW-10, exhibited a modest increase in three concentrations of four contaminants. Two monitoring wells exhibited increasing concentrations of contaminants including MW-8 and MW-14.

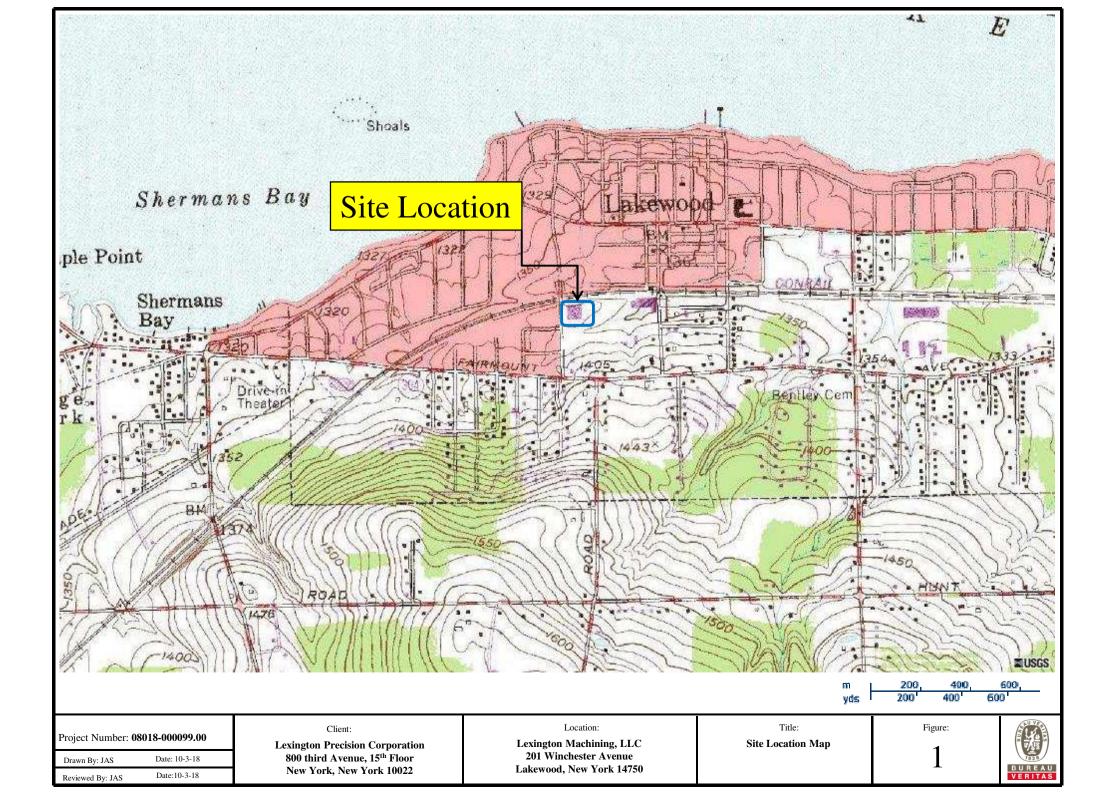
Most compounds exhibiting increased concentrations are breakdown products of the primary contaminants of concern at the site. The exception is the modest increased in 1,1,1-TCA exhibited in the groundwater sample obtained from monitoring well MW-9 with a 1,1,1-TCA concentration of 7.8 ug/L which exceeds the GWQS of 5.0 ug/L. The predominance of secondary and tertiary breakdown products (e.g., 347 ug/L chloroethane in MW-2) indicates that natural attenuation of groundwater contaminants is continuing at the site.

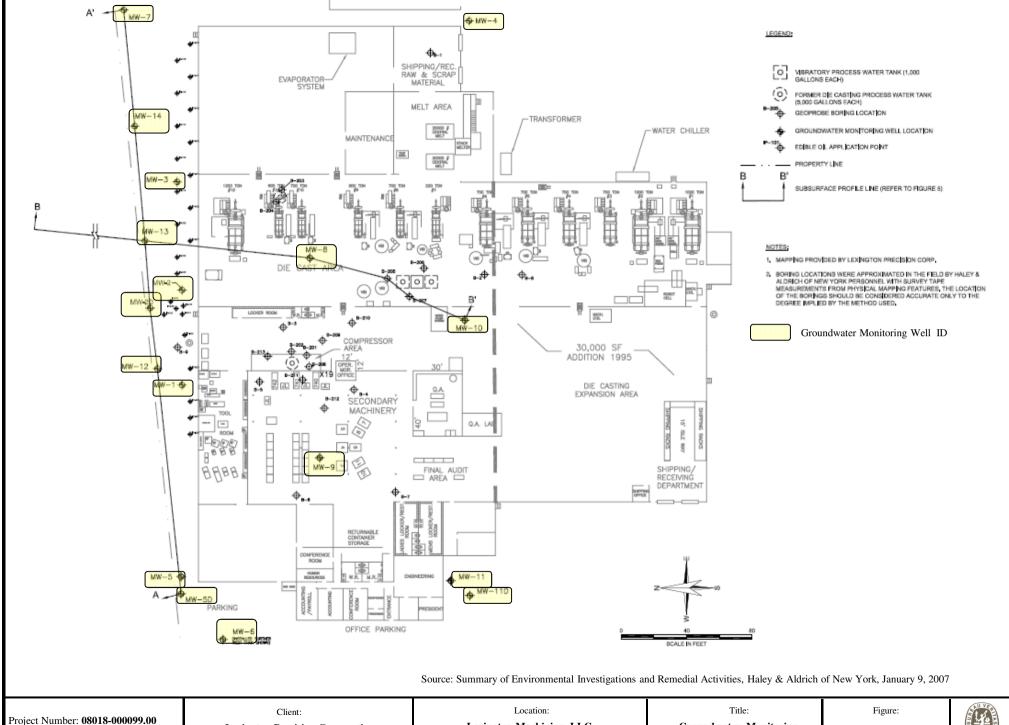
No additional action, investigation or revisions of the groundwater monitoring schedule is recommended at the site.

6.0 **SIGNATURES**

Timothy N. M. Com

Prepared by:


Timothy N. McCann Program Manager-Environmental Services Northeast Ohio Regional Office


Reviewed by:_

John A. Stangline, ARM, CPEA, CHMM National Director Environmental Services

Figures

Lexington Machining, LLC

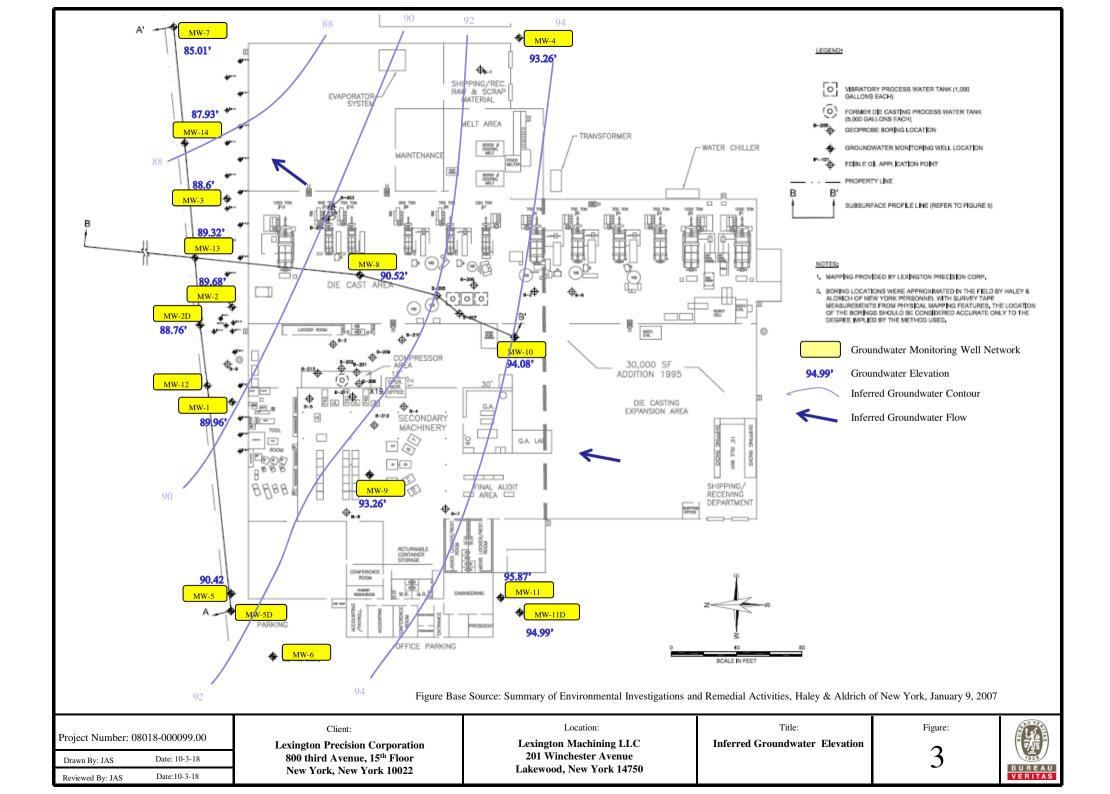
201 Winchester Avenue

Lakewood, New York 14750

Lexington Precision Corporation

800 third Avenue, 15th Floor

New York, New York 10022


Date: 10-3-18

Date:10-3-18

Drawn By: JAS

Reviewed By: JAS

Groundwater Monitoring Well Network

Tables

Table 1
September 2018 Groundwater Elevation Measurements

Well ID	Date	Depth to Water (ft)	Ground Surface Elevation (ft) *	Groundwater Elevation (ft)
MW-1	9/5/2018	11.45	101.82	90.37
MW-2	9/5/2018	12.45	101.3	88.85
MW-2D	9/5/2018	11.86	100.84	88.98
MW-3	9/5/2018	13.01	101.02	88.01
MW-4	9/5/2018	9.5	101.08	91.58
MW-5	9/5/2018	12.71	102.81	90.1
MW-7	9/5/2018	14.45	99.45	85
MW-8	9/5/2018	14.42	105.08	90.66
MW-9	9/5/2018	11.95	105.01	93.06
MW-10	9/5/2018	11.05	105.07	94.02
MW-11	9/5/2018	8.39	104.5	96.11
MW-11D	9/5/2018	9.98	104.23	94.25
MW-12	9/5/2018	10.42	100.8	90.38
MW-13				89.61
MW-14	9/5/2018 9/5/2018	11.19 12	100.8	89.61

^{*} Ground Surface Elevations derived from the January 9, 2007 Summary of Environmental Investigation and Remedial Actions, Haley & Aldrich

Sample #:		TOGs - Table 5			MW-4			MW-7		FIEL	D BLANK -	1
Field ID:		Groundwater										
Lab ID:		Effluent										
Date Sampled:		Limitations (Class GA)		0	9/05/2018		0	9/05/2018		09	9/05/2018	
Depth(ft):		(ug/L)										
Volatiles (ug/L)			Conc	Q	RL	Conc	Q	RL	Conc	Q	RL	
Vinyl chloride		2	ND		1.00	4.4		1.00	ND		1.00	
Chloroethane		5	ND		1.00	1.3		1.00	ND		1.00	
1,1-Dichloroethene		5	ND		1.00	2.6		1.00	ND		1.00	
1,1-Dichloroethane		5	ND		1.00	5.6		1.00	ND		1.00	
cis-1,2-Dichloroethene		5	ND		1.00	ND		1.00	ND		1.00	
Toluene		50	ND		1.00	ND		1.00	1.1		2.00	
1,1,1-Trichloroethane		5	ND		1.00	ND		1.00	ND		1.00	
1,2-Dichloroethane (EDC)		0.6	ND		1.00	ND		1.00	ND		1.00	
1,2,4-trimethylbenzene		5	ND		1.00	ND		1.00	ND		1.00	
1,1,2-Trichloroethane		1	ND		1.00	ND		1.00	ND		1.00	
Tetrachloroethene		5	ND		1.00	ND		1.00	ND		1.00	
1,2-Dichlorobenzene		3	ND		1.00	ND		1.00	ND		1.00	
Technical Guidance and Operation	 al Series - Table 1 New	York State Ambient Water Qua	lity									+
Standards & Guidance Values and T	able 5 New York State	Groundwater Effluent Limitations										
(Class GA), June 1998.												
BOLD Conc	Indicates a concentration	on that exceeds applicable criteria	l-									
NS = No Standard Available												
ND = Analyzed for but Not Detected a	t the MDL											

Sample #:		TOGs - Table 5			MW-14			MW-3			MW-13	
Field ID:		Groundwater										
Lab ID:		Effluent										
Date Sampled:		Limitations (Class GA)		C	9/05/2018		09	9/05/2018		0	9/05/2018	
Depth(ft):		(ug/L)										
Volatiles (ug/L)			Conc	Q	RL	Conc	Q	RL	Conc	Q	RL	
Vinyl chloride		2	3.2		1.00	ND		1.00	ND	1	1.00	
Chloroethane		5	ND		1.00	19.6		1.00	430	D	1.00	
1,1-Dichloroethene		5	3.5		1.00	69.6		1.00	7.6		1.00	
1,1-Dichloroethane		5	6.1		1.00	9.5		1.00	27.6		1.00	
cis-1,2-Dichloroethene		5	ND		1.00	ND		1.00	ND		1.00	
Toluene		50	ND		2.00	ND		2.00	ND		2.00	
1,1,1-Trichloroethane		5	ND		1.00	ND		1.00	ND		1.00	
1,2-Dichloroethane (EDC)		0.6	ND		1.00	ND		1.00	1.3		1.00	
1,2,4-trimethylbenzene		5	ND		1.00	ND		1.00	ND		1.00	
1,1,2-Trichloroethane		1	ND		1.00	ND		1.00	ND		1.00	
Tetrachloroethene		5	ND		1.00	ND		1.00	ND		1.00	
1,2-Dichlorobenzene		3	ND		1.00	ND		1.00	ND		1.00	
Technical Guidance and Operation	│ ıal Series - Table 1 New	York State Ambient Water Qua	li									
Standards & Guidance Values and	Table 5 New York State	Groundwater Effluent Limitations										
(Class GA), June 1998.												
BOLD Conc	Indicates a concentration	on that exceeds applicable criteria										
NS = No Standard Available												
ND = Analyzed for but Not Detected a	at the MDL											

Sample #:		TOGs - Table 5			MW-2			MW-2D			TF	RIP BLANK	
Field ID:		Groundwater											
Lab ID:		Effluent											
Date Sampled:		Limitations (Class GA)		0	9/05/2018		09	0/05/2018			0	8/10/2018	
Depth(ft):		(ug/L)											
Volatiles (ug/L)			Conc	Q	RL	Conc	Q	RL	C	onc	Q	RL	
Vinyl chloride		2	ND		1.00	ND		1.00		1D		1.00	
Chloroethane		5	347	D	1.00	ND		1.00		1D		1.00	
1,1-Dichloroethene		5	5.3		1.00	ND		1.00		1D		1.00	
1,1-Dichloroethane		5	46		1.00	ND	J	1.00		1D		1.00	
cis-1,2-Dichloroethene		5	ND		1.00	ND		1.00		ND		1.00	
Toluene		50	ND		2.00	ND		2.00		1D		2.00	
1,1,1-Trichloroethane		5	ND		1.00	ND		1.00		ND		1.00	
1,2-Dichloroethane (EDC)		0.6	ND		1.00	ND		1.00		ND		1.00	
1,2,4-trimethylbenzene		5	ND		1.00	ND		1.00		1D		1.00	
1,1,2-Trichloroethane		1	ND		1.00	ND		1.00		ND		1.00	
Tetrachloroethene		5	ND		1.00	ND		1.00		ND		1.00	
1,2-Dichlorobenzene		3	ND		1.00	ND		1.00		ND		1.00	
Technical Guidance and Operation	│ ıal Series - Table 1 New	York State Ambient Water Qua	li										
Standards & Guidance Values and	Table 5 New York State	Groundwater Effluent Limitations											
(Class GA), June 1998.													
BOLD Conc	Indicates a concentration	on that exceeds applicable criteria											
NS = No Standard Available													
ND = Analyzed for but Not Detected a	at the MDL												

Sample #:		TOGs - Table 5			MW-1			MW-5				MW-8	
Field ID:		Groundwater											
Lab ID:		Effluent											
Date Sampled:		Limitations (Class GA)		C	9/06/2018		09	/06/2018			C	9/06/2018	
Depth(ft):		(ug/L)											
Volatiles (ug/L)			Conc	Ø	RL	Conc	Q	RL	Co	nc	Ø	RL	
Vinyl chloride		2	ND		1.00	ND		1.00	N	D		1.00	
Chloroethane		5	ND		1.00	ND		1.00	N	D		1.00	
1,1-Dichloroethene		5	4.6		1.00	ND		1.00	10	5.4		1.00	
1,1-Dichloroethane		5	2.7		1.00	ND		1.00	8	.3		1.00	
cis-1,2-Dichloroethene		5	ND		1.00	ND		1.00	N	D		1.00	
Toluene		50	ND		2.00	ND		2.00	N	D		2.00	
1,1,1-Trichloroethane		5	ND		1.00	ND		1.00	N	D		1.00	
1,2-Dichloroethane (EDC)		0.6	ND		1.00	ND		1.00	N	D		1.00	
1,2,4-trimethylbenzene		5	ND		1.00	ND		1.00	N	D		1.00	
1,1,2-Trichloroethane		1	ND		1.00	ND		1.00	N	D		1.00	
Tetrachloroethene		5	ND		1.00	2.2		1.00	N	D		1.00	
1,2-Dichlorobenzene		3	ND		1.00	ND		1.00	N	D		1.00	
Technical Guidance and Operation	 al Series - Table 1 New	York State Ambient Water Qua	li										
Standards & Guidance Values and	Table 5 New York State	Groundwater Effluent Limitations											
(Class GA), June 1998.													
BOLD Conc	Indicates a concentration	on that exceeds applicable criteria											
NS = No Standard Available													
ND = Analyzed for but Not Detected a	at the MDL												

Sample #:		TOGs - Table 5			MW-10			MW-9			FIEL	D BLANK -2	
Field ID:		Groundwater											
Lab ID:		Effluent											
Date Sampled:		Limitations (Class GA)		0	9/06/2018		09	9/06/2018			09	/06/2018	
Depth(ft):		(ug/L)											
Volatiles (ug/L)			Conc	Q	RL	Conc	Q	RL	Con	C	Q	RL	
Vinyl chloride		2	ND		1.00	ND		1.00	NE			1.00	
Chloroethane		5	ND		1.00	ND		1.00	NE			1.00	
1,1-Dichloroethene		5	10.6		1.00	194	D	1.00	NE			1.00	
1,1-Dichloroethane		5	61.1		1.00	166		1.00	NE			1.00	
cis-1,2-Dichloroethene		5	ND		1.00	ND		1.00	NE			1.00	
Toluene		50	ND		2.00	ND		2.00	2.3			2.00	
1,1,1-Trichloroethane		5	ND		1.00	7.8		1.00	NE			1.00	
1,2-Dichloroethane (EDC)		0.6	ND		1.00	4.1		1.00	NE			1.00	
1,2,4-trimethylbenzene		5	ND		1.00	ND		1.00	NE			1.00	
1,1,2-Trichloroethane		1	2.2		1.00	ND		1.00	NE			1.00	
Tetrachloroethene		5	ND	Ĭ	1.00	ND		1.00	NE			1.00	
1,2-Dichlorobenzene		3	ND		1.00	ND		1.00	NE			1.00	
Fechnical Guidance and Operation	│ al Series - Table 1 New	York State Ambient Water Qua	li										
Standards & Guidance Values and 1	Table 5 New York State	Groundwater Effluent Limitations											
(Class GA), June 1998.													
BOLD Conc	Indicates a concentration	on that exceeds applicable criteria											
NS = No Standard Available													
ND = Analyzed for but Not Detected a	t the MDL												

Sample #:		TOGs - Table 5			MW-11D			MW-11	
Field ID:		Groundwater							
Lab ID:		Effluent							
Date Sampled:		Limitations (Class GA)		C	9/05/2018		0	9/05/2018	
Depth(ft):		(ug/L)							
Volatiles (ug/L)			Conc	Q	RL	Conc	Q	RL	
Vinyl chloride		2	ND		1.00	ND		1.00	
Chloroethane		5	ND		1.00	ND		0.500	
1,1-Dichloroethene		5	ND		1.00	ND		0.500	
1,1-Dichloroethane		5	ND		1.00	ND		0.500	
cis-1,2-Dichloroethene		5	ND		1.00	ND		0.500	
Toluene		50	ND		2.00	ND		2.00	
1,1,1-Trichloroethane		5	ND		1.00	ND		0.500	
1,2-Dichloroethane (EDC)		0.6	ND		1.00	ND		0.500	
1,2,4-trimethylbenzene		5	ND		1.00	ND		0.500	
1,1,2-Trichloroethane		1	ND		1.00	ND		1.00	
Tetrachloroethene		5	ND		1.00	ND		0.500	
1,2-Dichlorobenzene		3	ND		1.00	ND		0.500	
Technical Guidance and Operation	 al Series - Table 1 New	York State Ambient Water Quali							
Standards & Guidance Values and T	able 5 New York State	Groundwater Effluent Limitations							
(Class GA), June 1998.									
BOLD Conc	Indicates a concentration	on that exceeds applicable criteria.							
NS = No Standard Available									
ND = Analyzed for but Not Detected a	t the MDL								

Lexington Machining LLC 201 Winchester Road, Lakewood, NY Table 3 - Historic Groundwater Sample Data

Well	Date	Chloroethane (ug/L)	Chloroethene	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	1,1,1-TCA	1,1,2-TCA	Benzene	Acetone	Toluene	ODCB	MEK	Total VOCs
NYSDEC GV		5	(ug/L) 2	(ug/L) 5	(ug/L) 0.6	(ug/L) 5	(ug/L) 5	(ug/L) 5	(ug/L) 1	(ug/L) 1	(ug/L) 50	(ug/L) 5	(ug/L)	(ug/L) 50	(ug/L)
Well	-		Chloroethene	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	1,1,1-TCA	1,1,2-TCA	Benzene	Acetone	Toluene	ODCB	MEK	Total VOCs
MW-1	Date	Chloroethane (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
IVIVV - I	5/23/2005 8/17/2006	BDL BDL	BDL BDL	210 85	9.15 3.6	370 190	BDL BDL	174 61	BDL BDL	BDL BDL	BDL BDL	-	-	-	763.2 339.6
	11/6/2006	13.8	BDL	16.6	BDL	19.4	BDL	5.34	BDL	BDL	BDL	-	-	-	55.1
	4/18/2007 6/2/2010	BDL 137	BDL 2.02	BDL 25.1	BDL 0.331	BDL 75.9	BDL BDL	BDL 12.6	BDL BDL	- BDL	- 19.7 FB	- 0.502 J	- 0.737 J	- BDL	0 274
	6/30/2014	11	BDL	9	0.32 J	26	BDL	0.53 J	BDL	BDL	BDL	BDL	0.45 J	BDL	47.42
	11/9/2015	1.2	BDL	10.7	BDL	16.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	28
	10/25/2016 9/12/2017	BDL BDL	BDL BDL	5.8 6.71	BDL BDL	10.7 11.4	BDL BDL	BDL 0.761	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	16.5 18.9
	9/6/2018	BDL	BDL	2.7	BDL	4.6	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	7.3
MW-2	5/23/2005	1100 750	BDL BDL	81.2 82	3.92	68.3 86	BDL 2.6	53.8 42	BDL BDL	BDL BDL	10.3 BDL	-	-	-	1317.5 969.9
	8/17/2006 11/6/2006	701	BDL	18.6	7.3 9.06	6.8	2.68	BDL	BDL	BDL	BDL	-	-	-	738.1
	4/18/2007	760	BDL	19	6.8	8.4	3.2	BDL	BDL	-	-		-	-	799
	6/2/2010 6/30/2014	1300 100	BDL BDL	27.2 11	BDL 0.55 J	27.6 2.5	BDL 0.40 J	BDL BDL	BDL BDL	BDL BDL	200 FB BDL	BDL BDL	BDL BDL	BDL BDL	1550 114.45
	11/9/2015	950	BDL	16.4	1.7	9.6	1.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	979.1
	10/25/2016	417 900	BDL BDL	6.4 28.1	BDL 0.85	3.8 7.65	1 1.08	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	428.2 946
	9/12/2017 9/5/2018	347	BDL	46	BDL	5.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	398.3
MW-2D	8/1/2005	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	0
	6/2/2010 6/30/2014	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0 0
	11/9/2015	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	BDL	-	0
	10/25/2016	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	9/12/2017 9/5/2018	4.45 BDL	BDL BDL	0.499 J BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	4.95 0
MW-3	5/23/2005	15.3	BDL	87.3	2.4	72.7	BDL	98.9	BDL	0.815	58.1	-	-	-	335.5
	8/17/2006	5.4	BDL	35	BDL	62	BDL	43	BDL	BDL	BDL	-	-	-	145.4
	11/6/2006 4/18/2007	72.8 BDL	BDL BDL	34.1 4.1	BDL BDL	63.4 6	BDL BDL	22.1 1.8	BDL BDL	BDL -	BDL -	-	-	-	192.4 12
	6/2/2010	31.1	1.23	BDL	BDL	41.6	10.3	BDL	BDL	BDL	4.96 FB	BDL	BDL	BDL	89.2
	6/30/2014 11/9/2015	16 57	0.70 J 2.5	60 58.5	0.68 J 1.8	74 152	0.46 J BDL	17 BDL	BDL BDL	0.15 J BDL	BDL BDL	BDL BDL	10 3.1	BDL BDL	178.84 272.4
	10/25/2016	21.7	BDL	28.2	BDL	89.5	BDL	BDL	BDL	BDL	BDL	BDL	2.3	BDL	141.7
	9/12/2017	41.8	1.23	31.2	0.962	70.4	0.46 J	0.5	BDL	BDL	BDL	BDL	1.91	BDL	150
MW-4	9/5/2018 5/23/2005	19.6 BDL	BDL BDL	9.5 BDL	69.6 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 12.7	BDL -	BDL -	BDL -	79.1 12.7
	6/2/2010	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	7/1/2014	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	11/9/2015 10/26/2016	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0 0
	9/12/2017	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
MW-5	9/5/2018 8/1/2005	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL -	BDL	BDL	0.0
14144 5	6/2/2010	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	6/30/2014	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	11/9/2015 10/25/2016	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0
	9/12/2017	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.18
MW-5D	9/6/2018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
IVIVV-3D	8/1/2005 6/2/2010	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 5.23 FB	- BDL	- BDL	- BDL	0.0 5.23
	6/30/2014	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.14 J	BDL	BDL	BDL	BDL	0.14
MW-6	8/1/2005 6/2/2010	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	- BDL	- BDL	- BDL	0.0
	6/30/2014	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
MW-7	8/1/2005	5.93	BDL	34	BDL	21.9	BDL	42.4	BDL	BDL	BDL	-	-	-	104.2
	8/17/2006 11/6/2006	3.3 17.2	BDL BDL	38 25.6	BDL BDL	49 70.9	BDL BDL	52 48.9	BDL BDL	BDL BDL	BDL BDL	-	-	-	142.3 162.6
	4/18/2007	BDL	1.4	6	BDL	15	BDL	8	BDL	-	-	-	-	-	30
	6/2/2010 7/1/2014	15.5 11	22.3 9.2	22.3 20	0.453 J 0.33 J	19.5 35	BDL 0.27 J	BDL 0.32 J	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 0.62 J	BDL BDL	80.1 79
	11/9/2015	5.3	9	12.8	BDL	10.7	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	28.8
	10/25/2016	3.4	6.8	10.2	BDL	9.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	29.9
	9/12/2017 9/5/2018	3.58 5.6	9.32 BDL	9.15 5.6	BDL BDL	5.18 2.6	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0.482 J BDL	BDL BDL	27.7 13.8
MW-8	8/1/2005	BDL	BDL	28.7	BDL	10.5	BDL	2.02	2.02	BDL	BDL	-	-	-	43.2
	8/17/2006 11/6/2006	BDL BDL	BDL BDL	14 15.3	BDL BDL	7.6 7.78	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	-	-	-	21.6 23.1
	4/19/2007	BDL	1.5	7.9	BDL	3.8	BDL	2.6	BDL	-	-	-	-	-	16
	6/2/2010	1.08	0.631 J	36.2	0.587 J	61.2	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	99.7
	7/1/2014 11/9/2015	BDL BDL	BDL BDL	390 7.1	11 BDL	410 13.9	BDL BDL	7.5 BDL	0.64 J BDL	0.25 J BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	818.5 21
	10/26/2016	BDL	BDL	9.7	BDL	22.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	31.8
	9/13/2017	BDL	BDL	6.43	BDL BDL	16.1	BDL	BDL BDL	BDL	BDL	BDL	BDL	BDL	BDL	22.5
MW-9	9/6/2018 8/1/2005	BDL BDL	BDL BDL	8.3 108	4.35	16.4 294	BDL BDL	19	BDL BDL	BDL BDL	BDL BDL	BDL -	BDL -	BDL -	24.7 425.4
	8/17/2006	18	BDL	400	16	500	BDL	42	BDL	BDL	BDL	-	-	-	976
	11/6/2006 4/19/2007	BDL BDL	BDL 33	71.5 180	3.44 15	15 590	BDL BDL	6.92 43	BDL BDL	BDL -	BDL -	-	-	-	238.9 846
	6/2/2010	BDL	BDL	346	11.4	788	BDL	BDL	BDL	BDL.	BDL	BDL.	BDL	BDL	1150
	7/1/2014	BDL	BDL	15	0.27 J	36	0.33	0.21 J	BDL	BDL	BDL	BDL	BDL	BDL	51.33
	11/9/2015 10/26/2016	BDL BDL	BDL BDL	216 144	6.8 9.1	328 232	BDL BDL	17.6 10.6	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	568.4 395.7
	9/13/2017	BDL	BDL	196	3.97	181	BDL	11.2	BDL	BDL	BDL	BDL	BDL	BDL	395.7
1 M27 4	9/6/2018	BDL	BDL	166	4.1	194	BDL	7.8	BDL	BDL	BDL	BDL	BDL	BDL	371.9
MW-10	8/1/2005 8/17/2006	BDL BDL	BDL BDL	77 110	BDL 1.6	5.9 14	BDL BDL	BDL 3.5	3.4	BDL BDL	BDL BDL	-	-	-	83 132.5
	6/2/2010	BDL	BDL	BDL	0.715 J	14 58.7	0.496 J	BDL	2.65	BDL	BDL	BDL	BDL	BDL	169
	7/1/2014	BDL	BDL	44	BDL	8.2	BDL	0.18 J	1.8	0.11 J	BDL	BDL	BDL	BDL	55.1
	11/9/2015 10/26/2016	BDL BDL	BDL BDL	40 44.7	BDL 1.7	4.1 9.4	BDL BDL	BDL BDL	1.9 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	44.1 55.8
	. 5, 25, 2010	DDL	DDL	17.1	1.1	V.7	301	DUL	DDL	DDL	JUL	JUL	JUL	JUL	55.0

Lexington Machining LLC 201 Winchester Road, Lakewood, NY Table 3 - Historic Groundwater Sample Data

NYSDEC GV	VQS	5	2	5	0.6	5	5	5	1	1	50	5	3	50	
Well	Date	Chloroethane (ug/L)	Chloroethene	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	1,1,1-TCA	1,1,2-TCA	Benzene	Acetone	Toluene	ODCB	MEK	Total VOCs
wen	Date	Chioroethane (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	9/13/2017	BDL	BDL	38.1	BDL	2.32	BDL	BDL	1.21	BDL	BDL	BDL	BDL	BDL	41.6
	9/6/2018	BDL	BDL	61.1	BDL	10.6	BDL	BDL	2.2	BDL	BDL	BDL	BDL	BDL	73.9
MW-11	8/1/2005	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	-	-	0.0
	4/19/2007	BDL	BDL	BDL	BDL	BDL	BDL	1.6	BDL	-	-	-	-	-	
	6/2/2010	BDL	BDL	0.502 J	BDL	0.572 J	BDL	BDL	BDL	BDL	3.79 FB	BDL	BDL	BDL	4.86
	7/1/2014	BDL	BDL	0.53 J	BDL	BDL	BDL	1.1	BDL	BDL	BDL	BDL	BDL	BDL	1.63
	11/9/2015	BDL	BDL	BDL	BDL	BDL	BDL	1.3	BDL	BDL	BDL	BDL	BDL	BDL	3.2
	10/26/2016	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	9/13/2017	BDL	BDL	1.24	BDL	1.35	BDL	1.4	BDL	BDL	BDL	BDL	BDL	BDL	3.99
	9/5/2018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
MW-11D	8/1/2005	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-				0.0
	6/2/2010	BDL	BDL	0.999 J	BDL	BDL	BDL	BDL	BDL	0.458 J	58.2 FB	BDL	BDL	3.13	62.8
	7/1/2014	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.18 J	BDL	BDL	BDL	BDL	0.18
	11/9/2015	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	10/26/2016	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	9/13/2017	BDL	BDL	1	BDL	1.51	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	2.51
	9/5/2018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
MW-12	11/6/2006	19.2	BDL	7.5	BDL	14	BDL	3.4	BDL	-	-				44
	4/19/2007	190	BDL	6.8	BDL	2.2	BDL	BDL	BDL	-	-	-	-	-	199
	6/2/2010	851	BDL	20.9	BDL	28.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	900
	6/30/2014	BDL	BDL	9.3	0.19 J	17	BDL	1	BDL	BDL	BDL	BDL	0.43 J	BDL	27.9
	11/9/2015						Unable to Lo	cate Well - no	sample						
	10/26/2016						Unable to Lo	cate Well - no	sample						
	9/12/2017						Unable to Lo	cate Well - no	sample						
	9/6/2018	BDL	BDL	5.9	BDL	12.7	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	18.6
MW-13	11/6/2006	BDL	BDL	3.8	BDL	BDL	BDL	BDL	BDL	-	-				3.8
	4/19/2007	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	-	-	0
	6/2/2010	25.9	BDL	1.96	BDL	9.06	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	36.9
	6/30/2014	1200	BDL	69	2.9 J	8.2	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
	11/9/2015	272	BDL	10.6	1	12.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	296.1
	10/25/2016	44.5	BDL	3.4	BDL	4.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	52.5
	9/12/2017	665	BDL	13.2	0.955	11.7	0.96	BDL	BDL	BDL	BDL	BDL	BDL	BDL	699
	9/5/2018	430	BDL	27.6	1.3	7.6	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	466.5
MW-14	11/6/2006	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	-	-	0
	4/18/2007	BDL	BDL	5.5	BDL	16	BDL	8.5	BDL	-	-	-	-	-	30
	6/2/2010	1.59	1.49	2.12	BDL	2.96	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	8.16
	7/1/2014	14	3.1	33	0.21 J	42	0.22 J	3.2	BDL	BDL	BDL	BDL	2.3	BDL	99.68
	11/9/2015	BDL	1.2	10.5	BDL	1.8	BDL	BDL	BDL	BDL	BDL	BDL	1.6	BDL	12.3
	10/25/2016	1.7	1.1	5.8	BDL	4.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	13
	9/12/2017	3.91	4.33	19	BDL	18.7	BDL	BDL	BDL	BDL	BDL	BDL	0.845	BDL	46.8
	9/5/2018	BDL	BDL	6.1	BDL	3.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	9.6
Field	0/5/2012	DD!	201	DDI	DDI	DD!	DD!	DDI	DDI.	DDI.	DDI		DD!	DD!	
Blank-1	9/5/2018		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.1	BDL	BDL	1.1
Field	9/13/2017	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
Blank-2	9/6/2018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	2.3	BDL	BDL	2.3
	9/12/2017	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
Trip Blank	8/10/2018		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
p Diailk	0, 10, 2010	DDL	DDL	- 555	DDL	DDL	DDL	DDL	DDL	DDL	DDL	DDL	DDL	DDL	U

NYSDEC GWQS - New York State Department of Environmental conservation groundwater quality standards "-" Not anlayzed or sampled

"MEK" 2-business de Methyl ethyl ketone)
Chloroethene (a.k.a. vinyl chloride)
Bold type and shading indicates an exceedance of GWQS

[&]quot;BDL" Below detection limit

[&]quot;J" estimated concentration

[&]quot;J" estimated concentration
"FB" Also detected in field blank sample
"1,1-DCA" 1,1-dichloroethane
"1,2-DCA" 1,2-dichloroethane
"1,1-DCE" 1,1-dichloroethane
"1,1-DCE" 1,1-dichloroethene
"1,1,1-TCA" 1,1,1-Trichloroethane
"1,1,2-TCA" 1,1,2-Trichloroethane
"ODCB" 1,2-Dichlorobenzene
"MFK" 2-butanone (aka Methyl ethyl ketor

Appendix A SITE WIDE INSPECTION FORM

SITE-WIDE INSPECTION FORM

Inspection Period: September 2018
Reason for inspection: X Annual Severe Weather Event (Site-wide inspection required annually or following a severe weather event that may have damaged site engineering controls or monitoring wells)
Project location: 201 Winchester Road, Lakewood, New York
Inspection date / time: 9/6/2018 @1100 conducted by: Tim McCann/Lana Ostry
Weather: Sunny, 78 * F Site remains industrial/commercial use? YesNo
If no, what is the current use? Is site occupied and operational? <u>Vacant</u>
Are structures indicated on the Site Layout Map of SMP Figure 2 remaining? X Yes No
If no, described current site conditions, specifically condition of the concrete floor of the existing / former structure
Are monitoring wells depicted on SMP Figure 8 in place and undamaged? X Yes No If no, described monitoring well conditions MW-2 is buried under gravel and cannot be located. The metal bolt rings associated with MW-5 are broken.
Has the annual groundwater monitoring program been implemented for the inspection period?XNo
Have monitoring results been reported to the NYSDEC as indicated in the SMP?
Are records required by the SMP complete, current and available at the Site? X Yes No
If not available on-site are there records available elsewhere?
Have any reportable spills of regulated materials occurred or evidence of former spills be discovered?YesXNo . If Yes, describe:

Appendix B

SITE MANAGEMENT PERIODIC REVIEW REPORT, INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICAITON FORM

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation 625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547

www.dec.ny.gov

8/6/2018

Michael Lubin Chairman Lexington Machining LLC 677 Buffalo Road Rochester, NY 14611

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Lexington Machining LLC

Site No.: 907044

Site Address: 201 Winchester Road

Lakewood, NY 14750

Dear Michael Lubin:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **October 18, 2018**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Qualified Environmental Professional (QEP). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact David Szymanski, the Project Manager, at 716-851-7220 or david.szymanski@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 270 Michigan Ave Buffalo, NY 14203-2915

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

David Szymanski, Project Manager Chad Staniszewski, Hazardous Waste Remediation Supervisor, Region 9

Bureau Veritas North America, Inc - John Stangline - john.stangline@us.bureauveritas.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
Site Management Periodic Review Report Notice
Institutional and Engineering Controls Certification Form

Site	Site Details e No. 907044	Box 1							
	e Name Lexington Machining LLC								
City	e Address: 201 Winchester Road								
Re	porting Period: September 18, 2017 to September 18, 2018								
		YES	NO						
1.	Is the information above correct?	X							
	If NO, include handwritten above or on a separate sheet.								
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X						
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X						
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X						
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.								
5.	Is the site currently undergoing development?		X						
		Box 2							
		YES	NO						
6.	Is the current site use consistent with the use(s) listed below? Industrial	X							
7.	Are all ICs/ECs in place and functioning as designed?	X							
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.									
A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
Sig	nature of Owner, Remedial Party or Designated Representative Date								

SITE NO. 907044 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

385.06-3-58 Lexington Machining LLC

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Building Use Restriction
Monitoring Plan
Site Management Plan
IC/EC Plan

• The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Mnagament Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- · Vegetable gardens and farming on the site are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

385.06-3-59 Lexington Machining LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan IC/EC Plan

- The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Mnagament Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use:
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- · Vegetable gardens and farming on the site are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan IC/EC Plan

- The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Mnagament Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- Vegetable gardens and farming on the site are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

385.06-3-58

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial use will be required. In conformance with the Site Management Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

385.06-3-59

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial use will be required. In conformance with the Site Management

Parcel

Engineering Control

Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

385.06-3-60

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial use will be required. In conformance with the Site Management Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

R	ΛY	- 5

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;	
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO 	1
	${f x}$	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	I
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	l
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. 907044

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Mike Lubin	at 474 48th Ave, Long Island City, NY 11109			
print name	print business address			
am certifying as Owner	(Owner or Remedial Party)			
for the Site named in the Site Details Se	ection of this form.			
_ M l. 2_	10/ (5 /2018			
Signature of Owner, Remedial Party, or Rendering Certification	Designated Representative Date			

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

John A. Stangline	at 520 S. Main Street, Akron, OH 44311	,
print name	print business address	
am certifying as a Qualified Environm	ental Professional for the Lexington Machining, LLC	
	(Owner or Remedial Party)	
101		
V. hatt-Stafe	10/16/2018	1
Signature of Qualified Environmental	Professional, for Stamp Date	
the Owner or Remedial Party, Rende		

Enclosure 3

Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
- B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
 - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

- the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.

C. Future PRR Submittals

- 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

Appendix C GROUNDWATER SAMPLING LOGS

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-1
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/6/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 8:15 AM AMBIENT TEMP: 76 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.45
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.2 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
804	11.45	1.7	0.207	22.93	3.44	8.54	157
806	12.00	0.1	0.209	22.75	2.03	8.21	179
808	12.13	0.5	0.210	22.52	3.01	7.91	197
810	12.23	0.5	0.211	22.30	2.96	7.90	208
812	12.37	0.3	0.211	22.30	2.95	7.85	200

Comments:	Clear/Light Grey, No odor, No Sheen
	Concrete in tact, well casing in tact, cap in tact, screws in place

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-2 D
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 3:56 PM AMBIENT TEMP: 89 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.86
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.0 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
346	11.86	101	0.179	29.04	0.65	8.34	-40
348	12.31	97	0.179	28.79	0.51	8.16	-63
350	12.42	83	0.179	28.56	0.49	8.06	-84
353	12.71	79	0.179	28.31	0.47	7.97	-90
356	12.81	78	0.178	28.30	0.46	7.96	-91

Comments:	Light Brown, Clear, No odor, No Sheen
	Concrete in tact, well casing in tact, cap in tact, screws in tact

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-2
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 3:22 PM AMBIENT TEMP: 89 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 12.45
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.0 GALLONS

TIME	DEPTH TO	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
313	12.45	10.5	0.226	28.97	0.52	8.95	23
316	11.95	6.3	0.224	28.04	0.28	8.13	22
319	11.99	7.0	0.226	28.00	0.21	8.09	17
321	11.91	7.2	0.227	28.00	0.19	8.08	14

Comments:	Clear, No Odor, No Sheen		
Concre	ete in tact, well casing in tact, o	cap in tact , screws in tact	
	-	•	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-3
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>SUNNY/CLOUDY</u>
SAMPLING TIME: 2:20 PM AMBIENT TEMP: 89 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 13.01
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES X_NO

TIME	DEPTH TO	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
208	13.01	800 +	0.579	28.02	0.69	8.18	16
210	13.31	800 +	0.462	27.66	0.56	8.00	21
212	13.50	400	0.409	27.11	0.40	7.74	32
214	13.70	207	0.421	26.68	0.32	7.58	30
217	14.20	200	0.436	26.48	0.24	7.50	24
220	14.70	199	0.437	26.55	0.24	7.49	22

TOTAL GALLONS PURGED: ~1.5 GALLONS

Comments:	Light grey, Sulfur odor, No Sheen
	Concrete in tact, well casing in tact, cap in tact & screws
	•

GROUNDWATER MONITORING WELL SAMPLING LOG WELL NO. __MW-4 PROJECT: __GW SAMPLING LOCATION: _201 WINCHESTER RD, LAKEWOOD, NY

SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY

SAMPLING TIME: 11:54 AM AMBIENT TEMP: 82 °F

SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY

WATER ELEVATION DATA:

METHOD OF MEASUREMENT: DEPTH SOUNDER:_____

WATER LEVEL GAUGE: X

DEPTH TO WATER (FT): 14.45

PURGE METHOD: PERISTALTIC PUMP / LOW FLOW

DEPTH OF PUMP BELOW TOP OF CASING (FT):

WAS WELL PUMPED DRY? YES X NO

TOTAL GALLONS PURGED: ~1.2

TIME	DEPTH TO	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
	WATER						
1138	14.45	800	0.741	27.88	1.07	7.32	82
1141	14.40	520	0.722	27.89	0.87	7.04	75
1144	14.35	261	0.680	27.92	0.76	7.18	58
1147	14.30	126	0.668	27.95	0.82	6.63	57
1150	14.25	121	0.673	28.00	0.86	6.69	57
1153	14.20	118	0.676	28.00	0.84	6.69	51

Comments:	Clear, No Odor, No Sheen	
Concr	ete good, Lid good, Screws in place	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-5
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/6/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: CLOUDY
SAMPLING TIME: 9:04 AM AMBIENT TEMP: 77 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 12.71
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
851	12.71	800 +	0893	21.96	0.26	7.69	101
857	13.70	800 +	0.900	21.58	0.06	7.58	99
900	13.65	417	0.923	21.36	0.00	7.49	98
902	13.72	395	0.917	21.30	0.01	7.43	98
904	13.81	399	0.911	22.28	0.01	7.39	101

Comments:	Light Brown/Grey, No odor, No Sheen
	Concrete in tact, well casing in tact, cap good, No screws

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-7
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 1:20 PM AMBIENT TEMP: 89 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 14.45
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES X NO

TIME	DEPTH TO	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
108	WATER 14.45	125	0.533	25.04	0.69	8.42	8
110	14.31	96	0.531	25.57	0.63	7.89	13
112	14.31	91	0.533	25.87	0.48	7.47	20
114	14.33	70	0.534	26.12	0.41	7.24	27
116	14.35	69	0.534	26.30	0.36	7.20	33
118	14.35	69	0.533	26.40	0.32	7.17	35

TOTAL GALLONS PURGED: ~1.3 GALLONS

Comments:	Black particles in purge water, Sulfur-like odor
	Concrete in tact, well casing in tact, cap good

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-8
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/6/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: CLOUDY
SAMPLING TIME: 10:22 AM AMBIENT TEMP: 78 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 14.42
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED:

TIME	DEPTH TO	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1010	WATER	900 .	0.400	20.60	0.00	0.13	122
1010	14.42	800 +	0.488	20.60	0.90	8.12	122
1013	15.20	604	0.488	20.54	0.67	8.08	106
1016	15.50	292	0.490	20.39	0.61	8.10	99
1018	15.65	282	0.497	20.28	0.65	8.11	101
1020	15.75	283	0.496	20.23	0.68	8.12	101

Comments:	Light Brown, Clear, No odor	
	-	
Concr	crete in tact, well casing in tact, cap in place, screws in	place
	-	•

GROUNDWATER MONITORING WELL SAMPLING LOG	
WELL NO. MW-9	
PROJECT: GW SAMPLING	
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY	
SAMPLING DATE: 9/6/18 SAMPLED BY: TIM MCCANN/LANA OSTRY	
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: CLOUDY	
SAMPLING TIME: 9:55 AM AMBIENT TEMP: 77 °F	
WATER ELEVATION DATA:	
METHOD OF MEASUREMENT: DEPTH SOUNDER:	
WATER LEVEL GAUGE: X	
DEPTH TO WATER (FT): 11.95	
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW	
DEPTH OF PUMP BELOW TOP OF CASING (FT):	
WAS WELL PUMPED DRY? YES X_NO	
TOTAL GALLONS PURGED: 1.2 GALLONS	

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
943	11.95	0.0	0.671	22.30	3.77	7.88	152
946	12.60	0.0	0.675	21.75	3.83	7.69	154
949	12.85	0.0	0.678	21.50	3.84	7.61	154
952	13.11	0.0	0.682	21.35	3.90	7.59	154

Comments:	Light Brown/Grey, No odor, No Sheen
	Concrete in tact, well casing in tact, cap good, screws in tact

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-10
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/6/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY/CLOUDY
SAMPLING TIME: 10:45 AM AMBIENT TEMP: 78 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.05
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED:

TIME	DEPTH TO	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
	WATER						
1036	11.05	74	0.757	20.67	0.48	7.73	52
1038	11.70	65	0.770	20.37	0.49	7.58	54
1040	11.90	63	0.775	20.35	0.47	7.52	54
1042	12.00	60	0.780	20.30	0.45	7.51	51

Comments:	Light Brown, Clear, No odor, No Sheen	
	Concrete in tact	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-11 D
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 12:22 PM AMBIENT TEMP: 84 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 9.98
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YESXNO
TOTAL GALLONS PURGED: ~0.8 GALLONS

TIME	DEPTH TO	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1214	9.98	96	0.731	28.21	0.50	11.73	-16
1216	9.83	75	0.719	28.22	0.18	11.85	-22
1218	9.78	70	0.714	28.21	0.16	11.91	-25
1220	9.71	67	0.712	28.21	0.10	11.93	-28

Comments:	Clear, No Odor, No sheen	
Road	dry, In tact, Concrete in tact,	Cap in place, Screws in place

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-11
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 12:49 AM AMBIENT TEMP: 87 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 9.39
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT): 4.4
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.3

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1239	9.51	70	0.418	25.30	1.34	10.21	97
1241	9.76	54	0.407	25.60	1.21	9.68	109
1243	9.95	54	0.403	25.67	1.13	9.26	119
1245	10.15	53	0.403	25.69	1.16	9.18	125
1247	10.45	50	0.402	25.74	1.19	9.12	129

Comments:			
_			

TIME	DEPTH TO	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
824	WATER 10.72	6.0	0.273	20.25	0.60	8.27	37
827	11.00	420	0.275	20.55	0.39	7.54	34
829	11.10	156	0.277	20.61	0.38	7.37	32
837	11.12	50	0.277	20.66	0.36	7.29	30
833	11.17	45	0.278	20.70	0.34	7.21	29
835	11.20	44	0.277	20.71	0.31	7.20	28

TOTAL GALLONS PURGED: ~1.3 GALLONS

Comments:	Clear/Light Grey, Few Black particles, No odor,	
	Concrete in tact, well casing in tact, cap in tact, screws in place	
	•	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-13
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>SUNNY</u>
SAMPLING TIME: 2:53 PM AMBIENT TEMP: 89 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.19
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES X_NO
TOTAL GALLONS PURGED: ~1.2 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
242	11.19	41	0.424	23.10	1.15	8.41	32
245	11.85	27	0.384	24.42	0.66	7.85	42
248	11.90	25	0.378	24.40	0.60	7.80	39
251	11.95	20	0.383	24.40	0.61	7.80	36

Comments:	Clear, No Odor, No Sheen	
Concr	ete in tact, well casing in tact, cap in tact ,2 screws	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-14
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 9/5/18 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY/CLOUDY
SAMPLING TIME: 1:50 PM AMBIENT TEMP: 89 °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 12.00
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES _XNO
TOTAL GALLONS PURGED: ~1.3 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
137	12.00	199	0.450	27.64	0.92	8.64	-8
139	12.50	163	0.445	27.73	0.58	8.23	-9
142	12.71	105	0.447	27.40	0.44	7.84	-10
145	12.86	100	0.446	27.14	0.38	7.74	-9
148	13.02	98	0.442	27.00	0.44	7.77	33

Comments:	Light brown, No odor, No Sheen	
Concre	ete in tact, well casing in tact, cap in tact	
Concre	te in fact, wen casing in fact, cap in fact	

Appendix D PACE ANALYTICAL LABORATORY REPORT

Greensburg, PA 15601 (724)850-5600

September 24, 2018

Mr. Timothy McCann Bureau Veritas 520 South Main Street Suite 2444 Akron, OH 44311

RE: Project: 08018-000099.00

Pace Project No.: 30264524

Dear Mr. McCann:

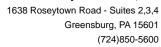
Enclosed are the analytical results for sample(s) received by the laboratory on September 08, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura

Samuntha Bayune


samantha.bayura@pacelabs.com

(724)850-5622 Project Manager

Enclosures

cc: Mr. Daniel Zinz, Bureau Veritas

CERTIFICATIONS

Project: 08018-000099.00

Pace Project No.: 30264524

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

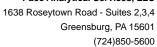
North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

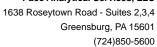


Date: 09/24/2018 04:25 PM

ANALYTICAL RESULTS

Project: 08018-000099.00

Sample: MW-1	Lab ID: 302	64524001	Collected: 09/06/1	8 08:15	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 01:19	9 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 01:19	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 01:19	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 01:19	9 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 01:19	75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 01:19	74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 01:19	9	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 01:19	78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 01:19	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 01:19	9 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 01:19	9 108-90-7	
Chloroethane	ND	ug/L	1.0	1		09/16/18 01:19		
Chloroform	ND	ug/L	1.0	1		09/16/18 01:19		
Chloromethane	ND	ug/L	1.0	1		09/16/18 01:19		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 01:19		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 01:19	_	
1,3-Dichlorobenzene	ND ND	ug/L	1.0	1		09/16/18 01:19		
,,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 01:19		
1,1-Dichloroethane	2.7	ug/L	1.0	1		09/16/18 01:19		
		-		1		09/16/18 01:19		
1,2-Dichloroethane	ND	ug/L	1.0					
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1		09/16/18 01:19		
1,1-Dichloroethene	4.6	ug/L	1.0	1		09/16/18 01:19		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 01:19		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 01:19		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 01:19		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/16/18 01:19		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/16/18 01:19		
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 01:19		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 01:19		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 01:19	9 98-82-8	
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 01:19	9 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 01:19		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 01:19	9 1634-04-4	
Naphthalene	ND	ug/L	2.0	1		09/16/18 01:19	91-20-3	
Styrene	ND	ug/L	1.0	1		09/16/18 01:19	9 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 01:19	9 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 01:19	9 127-18-4	
Toluene	ND	ug/L	1.0	1		09/16/18 01:19	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 01:19	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 01:19	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 01:19		
Trichloroethene	ND	ug/L	1.0	1		09/16/18 01:19		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 01:19		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 01:19		
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 01:19		
Xylene (Total)	ND ND	ug/L	3.0	1		09/16/18 01:19		
m&p-Xylene	ND ND	ug/L ug/L	2.0	1			9 1330-20-7 9 179601-23-1	



Project: 08018-000099.00

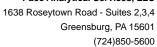
Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-1	Lab ID:	30264524001	Collected: 09/06/1	18 08:15	Received: 09	9/08/18 11:00 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical N	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 01:19	95-47-6	
4-Bromofluorobenzene (S)	103	%.	79-129	1		09/16/18 01:19	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%.	80-120	1		09/16/18 01:19	17060-07-0	
Toluene-d8 (S)	102	%.	80-120	1		09/16/18 01:19	2037-26-5	
Dibromofluoromethane (S)	95	%.	80-120	1		09/16/18 01:19	1868-53-7	

Date: 09/24/2018 04:25 PM

ANALYTICAL RESULTS

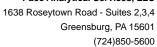

Project: 08018-000099.00

Pace Project No.: 30264524

Sample: MW-2	Lab ID: 302	64524002	Collected: 09/05/1	8 15:22	Received: 0	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Met	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 06:41	67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 06:41	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 06:41	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 06:41	75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 06:41	75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 06:41	74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 06:41		
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 06:41	78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 06:41	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 06:41	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 06:41	108-90-7	
Chloroethane	347	ug/L	1.0	1		09/16/18 06:41	75-00-3	
Chloroform	ND	ug/L	1.0	1		09/16/18 06:41	67-66-3	
Chloromethane	ND	ug/L	1.0	1		09/16/18 06:41	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 06:41	124-48-1	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 06:41	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 06:41	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 06:41		
1,1-Dichloroethane	46.0	ug/L	1.0	1		09/16/18 06:41		
1,2-Dichloroethane	ND	ug/L	1.0	1		09/16/18 06:41		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1		09/16/18 06:41		
1,1-Dichloroethene	5.3	ug/L	1.0	1		09/16/18 06:41		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 06:41		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 06:41		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 06:41		
cis-1,3-Dichloropropene	ND ND	ug/L	1.0	1		09/16/18 06:41		
trans-1,3-Dichloropropene	ND ND	_	1.0	1		09/16/18 06:41		
Ethylbenzene	ND ND	ug/L	1.0	1		09/16/18 06:41		
2-Hexanone	ND ND	ug/L	10.0	1		09/16/18 06:41		
		ug/L						
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 06:41		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 06:41		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 06:41		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 06:41		
Naphthalene	ND	ug/L	2.0	1		09/16/18 06:41		
Styrene	ND	ug/L	1.0	1		09/16/18 06:41		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 06:41		
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 06:41		
Toluene	ND	ug/L	1.0	1		09/16/18 06:41		
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 06:41		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 06:41		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 06:41		
Trichloroethene	ND	ug/L	1.0	1		09/16/18 06:41		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 06:41		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 06:41		
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 06:41	75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 06:41	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		09/16/18 06:41	179601-23-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

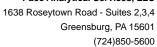


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-2	Lab ID: 3	30264524002	Collected: 09/05/1	18 15:22	Received: 09	9/08/18 11:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical N	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 06:41	95-47-6	
4-Bromofluorobenzene (S)	101	%.	79-129	1		09/16/18 06:41	460-00-4	
1,2-Dichloroethane-d4 (S)	115	%.	80-120	1		09/16/18 06:41	17060-07-0	
Toluene-d8 (S)	105	%.	80-120	1		09/16/18 06:41	2037-26-5	
Dibromofluoromethane (S)	94	%.	80-120	1		09/16/18 06:41	1868-53-7	

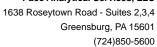


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-2D	Lab ID: 302	64524003	Collected: 09/05/1	8 15:56	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	hod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 01:4	5 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 01:4	5 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 01:4	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 01:4	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 01:4	5 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 01:4	5 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 01:4	5	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 01:4	5 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 01:4	5 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 01:4	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 01:4	5 108-90-7	
Chloroethane	ND	ug/L	1.0	1		09/16/18 01:4		
Chloroform	ND	ug/L	1.0	1		09/16/18 01:4		
Chloromethane	ND	ug/L	1.0	1		09/16/18 01:4		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 01:4		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 01:4		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 01:4		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 01:4		
1,1-Dichloroethane	ND	ug/L	1.0	1		09/16/18 01:4		
1,2-Dichloroethane	ND ND	ug/L ug/L	1.0	1		09/16/18 01:4		
1,2-Dichloroethane 1,2-Dichloroethene (Total)	ND ND	ug/L ug/L	2.0	1		09/16/18 01:4		
1,1-Dichloroethene	ND ND	ug/L ug/L	1.0	1		09/16/18 01:4		
cis-1,2-Dichloroethene	ND ND	-	1.0	1		09/16/18 01:4		
trans-1,2-Dichloroethene	ND ND	ug/L	1.0	1		09/16/18 01:4		
•		ug/L		1				
1,2-Dichloropropane	ND	ug/L	1.0			09/16/18 01:4		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 01:4		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 01:4		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 01:4		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 01:4		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 01:4		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 01:4		
Naphthalene	ND	ug/L	2.0	1		09/16/18 01:4		
Styrene	ND	ug/L	1.0	1		09/16/18 01:4	5 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 01:4		
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 01:4	5 127-18-4	
Toluene	ND	ug/L	1.0	1		09/16/18 01:4	5 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 01:4	5 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 01:4	5 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 01:4	5 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 01:4	5 79-01-6	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 01:4		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 01:4	5 108-67-8	
/inyl chloride	ND	ug/L	1.0	1		09/16/18 01:4	5 75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 01:4		
m&p-Xylene	ND	ug/L	2.0	1		09/16/18 01:4	5 179601-23-1	1



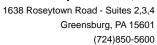
Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-2D	Lab ID: 30	264524003	Collected: 09/05/1	8 15:56	Received: 09	9/08/18 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Me	ethod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 01:45	95-47-6	
4-Bromofluorobenzene (S)	101	%.	79-129	1		09/16/18 01:45	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%.	80-120	1		09/16/18 01:45	17060-07-0	
Toluene-d8 (S)	99	%.	80-120	1		09/16/18 01:45	2037-26-5	
Dibromofluoromethane (S)	94	%.	80-120	1		09/16/18 01:45	1868-53-7	

Project: 08018-000099.00


Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-3	Lab ID: 302	64524004	Collected: 09/05/1	8 14:20	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 08:2	8 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 08:2	8 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 08:2	8 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 08:2	8 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 08:2	8 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 08:2	8 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 08:2	В	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 08:2	8 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 08:2	8 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 08:2	8 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 08:2	8 108-90-7	
Chloroethane	19.6	ug/L	1.0	1		09/16/18 08:2	8 75-00-3	
Chloroform	ND	ug/L	1.0	1		09/16/18 08:2		
Chloromethane	ND	ug/L	1.0	1		09/16/18 08:2		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 08:2		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 08:2		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 08:2		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 08:2		
I.1-Dichloroethane	9.5	ug/L	1.0	1		09/16/18 08:2		
1,2-Dichloroethane	ND	ug/L ug/L	1.0	1		09/16/18 08:2		
•				1				
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1		09/16/18 08:2		
1,1-Dichloroethene	69.6	ug/L	1.0			09/16/18 08:2		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 08:2		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 08:2		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 08:2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			8 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			8 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 08:2		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 08:2		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 08:2		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 08:2		
1-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 08:2		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 08:2	8 1634-04-4	
Naphthalene	ND	ug/L	2.0	1		09/16/18 08:2	8 91-20-3	
Styrene	ND	ug/L	1.0	1		09/16/18 08:2	8 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 08:2	8 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 08:2	8 127-18-4	
Toluene Toluene	ND	ug/L	1.0	1		09/16/18 08:2	8 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 08:2	8 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 08:2	8 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 08:2		
Frichloroethene	ND	ug/L	1.0	1		09/16/18 08:2		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 08:2		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 08:2		
/inyl chloride	ND ND	ug/L	1.0	1		09/16/18 08:2		
Kylene (Total)	ND ND	ug/L ug/L	3.0	1		09/16/18 08:2		
m&p-Xylene	ND ND	ug/L ug/L	2.0	1		09/16/18 08:2		

REPORT OF LABORATORY ANALYSIS

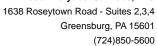
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-3	Lab ID: 3	30264524004	Collected: 09/05/1	8 14:20	Received: 09	9/08/18 11:00 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical M	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 08:28	95-47-6	
4-Bromofluorobenzene (S)	103	%.	79-129	1		09/16/18 08:28	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%.	80-120	1		09/16/18 08:28	17060-07-0	
Toluene-d8 (S)	100	%.	80-120	1		09/16/18 08:28	2037-26-5	
Dibromofluoromethane (S)	96	%.	80-120	1		09/16/18 08:28	1868-53-7	



Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

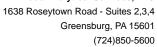
Sample: MW-4	Lab ID: 302	64524005	Collected: 09/05/1	8 11:54	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 02:1	2 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 02:1	2 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 02:1	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 02:1	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 02:1	2 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 02:1	2 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 02:1	2	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 02:1	2 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 02:1	2 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 02:1	2 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 02:1	2 108-90-7	
Chloroethane	ND	ug/L	1.0	1		09/16/18 02:1	2 75-00-3	
Chloroform	ND	ug/L	1.0	1		09/16/18 02:1		
Chloromethane	ND	ug/L	1.0	1		09/16/18 02:1		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 02:1		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 02:1		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 02:1		
,,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 02:1		
1,1-Dichloroethane	ND	ug/L	1.0	1		09/16/18 02:1		
1,2-Dichloroethane	ND ND	ug/L ug/L	1.0	1		09/16/18 02:1		
1,2-Dichloroethene (Total)	ND ND		2.0	1		09/16/18 02:1		
1,1-Dichloroethene	ND ND	ug/L	1.0	1		09/16/18 02:1		
•		ug/L						
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 02:1		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 02:1		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 02:1		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			2 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1			2 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 02:1		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 02:1		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 02:1		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 02:1		
1-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 02:1		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 02:1		
Naphthalene	ND	ug/L	2.0	1		09/16/18 02:1	2 91-20-3	
Styrene	ND	ug/L	1.0	1		09/16/18 02:1	2 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 02:1	2 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 02:1	2 127-18-4	
Toluene	ND	ug/L	1.0	1		09/16/18 02:1	2 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 02:1	2 120-82-1	
,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 02:1	2 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 02:1	2 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 02:1	2 79-01-6	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 02:1	2 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 02:1		
/inyl chloride	ND	ug/L	1.0	1		09/16/18 02:1	2 75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 02:1		
m&p-Xylene	ND	ug/L	2.0	1			2 179601-23-1	1

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-4	Lab ID: 3	30264524005	Collected: 09/05/1	18 11:54	Received: 0	9/08/18 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical N	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 02:12	95-47-6	
4-Bromofluorobenzene (S)	101	%.	79-129	1		09/16/18 02:12	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%.	80-120	1		09/16/18 02:12	17060-07-0	
Toluene-d8 (S)	103	%.	80-120	1		09/16/18 02:12	2037-26-5	
Dibromofluoromethane (S)	93	%.	80-120	1		09/16/18 02:12	1868-53-7	

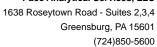


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-5	Lab ID: 302	64524006	Collected: 09/06/1	8 09:04	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 02:3	9 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 02:3	9 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 02:3	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 02:3	9 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 02:3	9 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 02:3	9 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 02:3	9	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 02:3	9 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 02:3	9 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 02:3	9 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 02:3	9 108-90-7	
Chloroethane	ND	ug/L	1.0	1		09/16/18 02:3		
Chloroform	ND	ug/L	1.0	1		09/16/18 02:3		
Chloromethane	ND	ug/L	1.0	1		09/16/18 02:3		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 02:3		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 02:3		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 02:3		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 02:3		
1,1-Dichloroethane	ND	ug/L	1.0	1		09/16/18 02:3		
1.2-Dichloroethane	ND ND	ug/L	1.0	1		09/16/18 02:3		
1,2-Dichloroethane 1,2-Dichloroethene (Total)	ND ND	ug/L	2.0	1		09/16/18 02:3		
1,1-Dichloroethene	ND ND	ug/L ug/L	1.0	1		09/16/18 02:3		
cis-1,2-Dichloroethene	ND ND	_	1.0	1		09/16/18 02:3		
trans-1,2-Dichloroethene	ND ND	ug/L	1.0	1		09/16/18 02:3		
·		ug/L				09/16/18 02:3		
1,2-Dichloropropane	ND	ug/L	1.0	1				
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			9 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			9 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 02:3		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 02:3		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 02:3		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 02:3		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 02:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 02:3		
Naphthalene	ND	ug/L	2.0	1		09/16/18 02:3		
Styrene	ND	ug/L	1.0	1		09/16/18 02:3	9 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 02:3	9 79-34-5	
Tetrachloroethene	2.2	ug/L	1.0	1		09/16/18 02:3		
Toluene	ND	ug/L	1.0	1		09/16/18 02:3	9 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 02:3	9 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 02:3	9 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 02:3	9 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 02:3	9 79-01-6	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 02:3		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 02:3	9 108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 02:3	9 75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 02:3		
m&p-Xylene	ND	ug/L	2.0	1		09/16/18 02:3	9 179601-23-1	



Project: 08018-000099.00

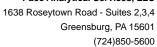
Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-5	Lab ID: 3	30264524006	Collected: 09/06/1	18 09:04	Received: 09	9/08/18 11:00 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical N	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 02:39	95-47-6	
4-Bromofluorobenzene (S)	102	%.	79-129	1		09/16/18 02:39	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%.	80-120	1		09/16/18 02:39	17060-07-0	
Toluene-d8 (S)	104	%.	80-120	1		09/16/18 02:39	2037-26-5	
Dibromofluoromethane (S)	92	%.	80-120	1		09/16/18 02:39	1868-53-7	

Date: 09/24/2018 04:25 PM

ANALYTICAL RESULTS


Project: 08018-000099.00

Pace Project No.: 30264524

Sample: MW-7	Lab ID: 302	64524007	Collected: 09/05/1	8 13:20	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	hod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 03:0	6 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 03:0	6 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 03:0	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 03:0	6 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 03:0	6 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 03:0	6 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 03:0	6	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 03:0	6 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 03:0	6 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 03:0		
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 03:0		
Chloroethane	1.3	ug/L	1.0	1		09/16/18 03:0		
Chloroform	ND	ug/L	1.0	1		09/16/18 03:0		
Chloromethane	ND	ug/L	1.0	1		09/16/18 03:0		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 03:0		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 03:0		
1,3-Dichlorobenzene	ND ND	ug/L	1.0	1		09/16/18 03:0		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		09/16/18 03:0		
1,4-Dichloroethane	5.6		1.0	1		09/16/18 03:0		
1,1-Dichloroethane		ug/L						
,	ND	ug/L	1.0	1		09/16/18 03:0		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1		09/16/18 03:0		
1,1-Dichloroethene	2.6	ug/L	1.0	1		09/16/18 03:0		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 03:0		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 03:0		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 03:0		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			6 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			6 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 03:0		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 03:0		
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 03:0		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 03:0		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 03:0		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 03:0		
Naphthalene	ND	ug/L	2.0	1		09/16/18 03:0	6 91-20-3	
Styrene	ND	ug/L	1.0	1		09/16/18 03:0	6 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 03:0	6 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 03:0	6 127-18-4	
Toluene	ND	ug/L	1.0	1		09/16/18 03:0	6 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 03:0	6 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 03:0	6 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 03:0	6 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 03:0	6 79-01-6	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 03:0	6 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 03:0	6 108-67-8	
Vinyl chloride	4.4	ug/L	1.0	1		09/16/18 03:0		
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 03:0		
m&p-Xylene	ND	ug/L	2.0	1			6 179601-23-1	1

REPORT OF LABORATORY ANALYSIS

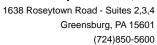
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-7	Lab ID: 3	30264524007	Collected: 09/05/1	8 13:20	Received: 09	9/08/18 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical M	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 03:06	95-47-6	
4-Bromofluorobenzene (S)	101	%.	79-129	1		09/16/18 03:06	460-00-4	
1,2-Dichloroethane-d4 (S)	113	%.	80-120	1		09/16/18 03:06	17060-07-0	
Toluene-d8 (S)	100	%.	80-120	1		09/16/18 03:06	2037-26-5	
Dibromofluoromethane (S)	92	%.	80-120	1		09/16/18 03:06	1868-53-7	



Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

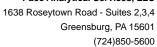
Sample: MW-8	Lab ID: 302	64524008	Collected: 09/06/1	8 10:22	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	hod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 03:3	3 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 03:3	3 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 03:3	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 03:3	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 03:3	3 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 03:3	3 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 03:3	3	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 03:3	3 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 03:3	3 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 03:3	3 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 03:3		
Chloroethane	ND	ug/L	1.0	1		09/16/18 03:3		
Chloroform	ND	ug/L	1.0	1		09/16/18 03:3		
Chloromethane	ND	ug/L	1.0	1		09/16/18 03:3		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 03:3		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 03:3		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 03:3		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 03:3		
1,1-Dichloroethane	8.3	ug/L	1.0	1		09/16/18 03:3		
1,1-Dichloroethane	ND	-	1.0	1		09/16/18 03:3		
,		ug/L		1				
1,2-Dichloroethene (Total)	ND	ug/L	2.0			09/16/18 03:3		
1,1-Dichloroethene	16.4	ug/L	1.0	1		09/16/18 03:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 03:3		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 03:3		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 03:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 03:3		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 03:3		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 03:3		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 03:3		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 03:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 03:3		
Naphthalene	ND	ug/L	2.0	1		09/16/18 03:3	3 91-20-3	
Styrene	ND	ug/L	1.0	1		09/16/18 03:3	3 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 03:3	3 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 03:3	3 127-18-4	
Toluene	ND	ug/L	1.0	1		09/16/18 03:3	3 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 03:3	3 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 03:3	3 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 03:3	3 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 03:3	3 79-01-6	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 03:3	3 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 03:3	3 108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 03:3		
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 03:3		
m&p-Xylene	ND	ug/L	2.0	1			3 179601-23-1	1

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-8	Lab ID: 3	0264524008	Collected: 09/06/1	8 10:22	Received: 09	9/08/18 11:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical M	lethod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 03:33	95-47-6	
4-Bromofluorobenzene (S)	98	%.	79-129	1		09/16/18 03:33	460-00-4	
1,2-Dichloroethane-d4 (S)	112	%.	80-120	1		09/16/18 03:33	17060-07-0	
Toluene-d8 (S)	101	%.	80-120	1		09/16/18 03:33	2037-26-5	
Dibromofluoromethane (S)	91	%.	80-120	1		09/16/18 03:33	1868-53-7	



Date: 09/24/2018 04:25 PM

ANALYTICAL RESULTS

Project: 08018-000099.00

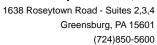
Pace Project No.: 30264524 Sample: MW-9 Received: 09/08/18 11:00 Lab ID: 30264524009 Collected: 09/06/18 09:55 Matrix: Water **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260C MSV Analytical Method: EPA 8260C Acetone ND ug/L 10.0 1 09/16/18 04:00 67-64-1 ND 09/16/18 04:00 71-43-2 Benzene ug/L 1.0 1 ND ug/L Bromochloromethane 1.0 09/16/18 04:00 74-97-5 1 Bromodichloromethane ND 09/16/18 04:00 75-27-4 ug/L 1.0 1 ND **Bromoform** ug/L 1.0 1 09/16/18 04:00 75-25-2 Bromomethane ND ug/L 1.0 1 09/16/18 04:00 74-83-9 CL **TOTAL BTEX** ND ug/L 6.0 1 09/16/18 04:00 2-Butanone (MEK) ND ug/L 10.0 09/16/18 04:00 78-93-3 1 Carbon disulfide ND ug/L 1.0 1 09/16/18 04:00 75-15-0 Carbon tetrachloride ND ug/L 1.0 1 09/16/18 04:00 56-23-5 Chlorobenzene ND ug/L 1.0 09/16/18 04:00 108-90-7 1 Chloroethane ND 1.0 09/16/18 04:00 75-00-3 ug/L 1 Chloroform ND 09/16/18 04:00 67-66-3 ug/L 1.0 1 Chloromethane ND 09/16/18 04:00 74-87-3 ug/L 1.0 1 ND Dibromochloromethane 09/16/18 04:00 124-48-1 ug/L 1.0 1 09/16/18 04:00 95-50-1 1,2-Dichlorobenzene ND ug/L 1.0 1 1,3-Dichlorobenzene ND ug/L 1.0 1 09/16/18 04:00 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 09/16/18 04:00 106-46-7 1,1-Dichloroethane 166 1.0 09/16/18 04:00 75-34-3 ug/L 1 1,2-Dichloroethane 4.1 ug/L 1.0 1 09/16/18 04:00 107-06-2 1,2-Dichloroethene (Total) ND ug/L 2.0 1 09/16/18 04:00 540-59-0 1,1-Dichloroethene 194 ug/L 1.0 09/16/18 04:00 75-35-4 1 ND ug/L 1.0 09/16/18 04:00 156-59-2 cis-1.2-Dichloroethene 1 trans-1,2-Dichloroethene ND 1.0 09/16/18 04:00 156-60-5 ug/L 1 1,2-Dichloropropane ND ug/L 1.0 09/16/18 04:00 78-87-5 1 cis-1,3-Dichloropropene ND ug/L 1.0 1 09/16/18 04:00 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 09/16/18 04:00 10061-02-6 Ethylbenzene ND ug/L 1.0 1 09/16/18 04:00 100-41-4 2-Hexanone ND ug/L 10.0 1 09/16/18 04:00 591-78-6 Isopropylbenzene (Cumene) ND 1.0 09/16/18 04:00 98-82-8 ug/L 1 Methylene Chloride ND ug/L 1.0 1 09/16/18 04:00 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 1 09/16/18 04:00 108-10-1 Methyl-tert-butyl ether ND ua/L 1.0 1 09/16/18 04:00 1634-04-4 Naphthalene ND ug/L 2.0 1 09/16/18 04:00 91-20-3 ND Styrene ug/L 1.0 1 09/16/18 04:00 100-42-5 09/16/18 04:00 79-34-5 ND 1,1,2,2-Tetrachloroethane ug/L 1.0 1 09/16/18 04:00 127-18-4 ND Tetrachloroethene 1.0 ug/L 1 09/16/18 04:00 108-88-3 ND Toluene ug/L 1.0 1 1,2,4-Trichlorobenzene ND ug/L 1.0 1 09/16/18 04:00 120-82-1 1,1,1-Trichloroethane 7.8 ug/L 1.0 09/16/18 04:00 71-55-6 1,1,2-Trichloroethane 09/16/18 04:00 79-00-5 ND ug/L 1.0 1 Trichloroethene ND ug/L 1.0 1 09/16/18 04:00 79-01-6 1,2,4-Trimethylbenzene ND ug/L 1.0 1 09/16/18 04:00 95-63-6 ug/L 1,3,5-Trimethylbenzene ND 1.0 09/16/18 04:00 108-67-8 1 Vinyl chloride ND 1.0 09/16/18 04:00 75-01-4 ug/L 1 Xylene (Total) NΠ 3.0 09/16/18 04:00 1330-20-7 ug/L 1 m&p-Xylene NΠ 09/16/18 04:00 179601-23-1 ug/L 2.0 1

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-9	Lab ID: 3	30264524009	Collected: 09/06/1	18 09:55	Received: 09	9/08/18 11:00 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical N	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 04:00	95-47-6	
4-Bromofluorobenzene (S)	102	%.	79-129	1		09/16/18 04:00	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%.	80-120	1		09/16/18 04:00	17060-07-0	
Toluene-d8 (S)	105	%.	80-120	1		09/16/18 04:00	2037-26-5	
Dibromofluoromethane (S)	91	%.	80-120	1		09/16/18 04:00	1868-53-7	



Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

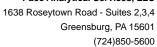
Sample: MW-10	Lab ID: 302	64524010	Collected: 09/06/1	8 10:45	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 04:2	7 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 04:2	7 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 04:2	7 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 04:2	7 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 04:2	7 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 04:2	7 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 04:2	7	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 04:2	7 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 04:2	7 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 04:2	7 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 04:2	7 108-90-7	
Chloroethane	ND	ug/L	1.0	1		09/16/18 04:2		
Chloroform	ND	ug/L	1.0	1		09/16/18 04:2		
Chloromethane	ND	ug/L	1.0	1		09/16/18 04:2		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 04:2		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 04:2		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 04:2		
1.4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 04:2		
1,1-Dichloroethane	61.1	ug/L	1.0	1		09/16/18 04:2		
1,1-Dichloroethane	ND	-	1.0	1		09/16/18 04:2		
,		ug/L		1				
1,2-Dichloroethene (Total)	ND	ug/L	2.0			09/16/18 04:2		
1,1-Dichloroethene	10.6	ug/L	1.0	1 1		09/16/18 04:2		
cis-1,2-Dichloroethene	ND	ug/L	1.0			09/16/18 04:2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 04:2		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 04:2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			7 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			7 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 04:2		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 04:2		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 04:2		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 04:2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 04:2		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 04:2		
Naphthalene	ND	ug/L	2.0	1		09/16/18 04:2		
Styrene	ND	ug/L	1.0	1		09/16/18 04:2	7 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 04:2	7 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 04:2	7 127-18-4	
Toluene	ND	ug/L	1.0	1		09/16/18 04:2	7 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 04:2	7 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 04:2	7 71-55-6	
1,1,2-Trichloroethane	2.2	ug/L	1.0	1		09/16/18 04:2	7 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 04:2	7 79-01-6	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 04:2	7 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 04:2	7 108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 04:2		
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 04:2		
m&p-Xylene	ND	ug/L	2.0	1			7 179601-23-1	1

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-10	Lab ID: 30	264524010	Collected: 09/06/1	8 10:45	Received: 09	9/08/18 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Me	ethod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 04:27	95-47-6	
4-Bromofluorobenzene (S)	102	%.	79-129	1		09/16/18 04:27	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%.	80-120	1		09/16/18 04:27	17060-07-0	
Toluene-d8 (S)	99	%.	80-120	1		09/16/18 04:27	2037-26-5	
Dibromofluoromethane (S)	94	%.	80-120	1		09/16/18 04:27	1868-53-7	

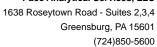


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-11	Lab ID: 302	64524011	Collected: 09/05/1	8 12:49	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	hod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 04:5	3 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 04:5	3 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 04:5	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 04:5	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 04:5	3 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 04:5	3 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 04:5	3	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 04:5	3 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 04:5	3 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 04:5	3 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 04:5		
Chloroethane	ND	ug/L	1.0	1		09/16/18 04:5		
Chloroform	ND	ug/L	1.0	1		09/16/18 04:5		
Chloromethane	ND	ug/L	1.0	1		09/16/18 04:5		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 04:5		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 04:5		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 04:5		
1.4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 04:5		
1,1-Dichloroethane	ND ND	ug/L ug/L	1.0	1		09/16/18 04:5		
1,1-Dichloroethane	ND ND	_	1.0	1		09/16/18 04:5		
1,2-Dichloroethene (Total)		ug/L		1				
,	ND	ug/L	2.0			09/16/18 04:5		
1,1-Dichloroethene	ND	ug/L	1.0	1 1		09/16/18 04:5		
cis-1,2-Dichloroethene	ND	ug/L	1.0			09/16/18 04:5		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 04:5		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 04:5		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 04:5		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 04:5		
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 04:5		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 04:5		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 04:5		
Methyl-tert-butyl ether	ND	ug/L	1.0	1			3 1634-04-4	
Naphthalene	ND	ug/L	2.0	1		09/16/18 04:5		
Styrene	ND	ug/L	1.0	1		09/16/18 04:5	3 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 04:5	3 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 04:5	3 127-18-4	
Toluene	ND	ug/L	1.0	1		09/16/18 04:5	3 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 04:5	3 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 04:5	3 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 04:5	3 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 04:5	3 79-01-6	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 04:5	3 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 04:5	3 108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 04:5		
Xylene (Total)	ND	ug/L	3.0	1			3 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1			3 179601-23-1	

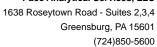


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-11	Lab ID: 30	0264524011	Collected: 09/05/1	8 12:49	Received: 09	9/08/18 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical M	ethod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 04:53	95-47-6	
4-Bromofluorobenzene (S)	98	%.	79-129	1		09/16/18 04:53	460-00-4	
1,2-Dichloroethane-d4 (S)	112	%.	80-120	1		09/16/18 04:53	17060-07-0	
Toluene-d8 (S)	102	%.	80-120	1		09/16/18 04:53	2037-26-5	
Dibromofluoromethane (S)	87	%.	80-120	1		09/16/18 04:53	1868-53-7	



Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

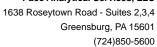
Sample: MW-11D	Lab ID: 302	64524012	Collected: 09/05/1	8 12:22	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	hod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 05:2	0 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 05:2	0 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 05:2	0 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 05:2	0 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 05:2	0 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 05:2	0 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 05:2	0	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 05:2	0 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 05:2	0 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 05:2	0 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 05:2		
Chloroethane	ND	ug/L	1.0	1		09/16/18 05:2		
Chloroform	ND	ug/L	1.0	1		09/16/18 05:2		
Chloromethane	ND	ug/L	1.0	1		09/16/18 05:2		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 05:2		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 05:2		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 05:2		
1.4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 05:2		
1,1-Dichloroethane	ND ND	ug/L	1.0	1		09/16/18 05:2		
1,1-Dichloroethane	ND ND	-	1.0	1		09/16/18 05:2		
,		ug/L		1		09/16/18 05:2		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1				
1,1-Dichloroethene	ND	ug/L	1.0			09/16/18 05:2		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 05:2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 05:2		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 05:2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			0 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			0 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 05:2		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 05:2		
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 05:2		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 05:2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 05:2		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 05:2		
Naphthalene	ND	ug/L	2.0	1		09/16/18 05:2		
Styrene	ND	ug/L	1.0	1		09/16/18 05:2	0 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 05:2	0 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 05:2	0 127-18-4	
Toluene	ND	ug/L	1.0	1		09/16/18 05:2	0 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 05:2	0 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 05:2	0 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 05:2	0 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 05:2	0 79-01-6	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 05:2	0 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 05:2	0 108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 05:2		
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 05:2		
m&p-Xylene	ND	ug/L	2.0	1			0 179601-23-1	

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-11D	Lab ID: 3	30264524012	Collected: 09/05/1	18 12:22	Received: 09	9/08/18 11:00 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical M	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 05:20	95-47-6	
4-Bromofluorobenzene (S)	97	%.	79-129	1		09/16/18 05:20	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%.	80-120	1		09/16/18 05:20	17060-07-0	
Toluene-d8 (S)	101	%.	80-120	1		09/16/18 05:20	2037-26-5	
Dibromofluoromethane (S)	98	%.	80-120	1		09/16/18 05:20	1868-53-7	

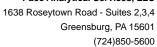


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-12	Lab ID: 302	64524013	Collected: 09/06/1	8 08:37	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	hod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 05:4	7 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 05:4	7 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 05:4	7 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 05:4	7 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 05:4	7 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 05:4	7 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 05:4	.7	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 05:4	7 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 05:4	7 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 05:4	7 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 05:4	7 108-90-7	
Chloroethane	ND	ug/L	1.0	1		09/16/18 05:4		
Chloroform	ND	ug/L	1.0	1		09/16/18 05:4		
Chloromethane	ND	ug/L	1.0	1		09/16/18 05:4		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 05:4		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 05:4	_	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 05:4		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 05:4		
1,1-Dichloroethane	5.9	ug/L	1.0	1		09/16/18 05:4		
1,2-Dichloroethane	ND	ug/L	1.0	1		09/16/18 05:4		
1,2-Dichloroethane 1,2-Dichloroethene (Total)	ND ND	ug/L	2.0	1		09/16/18 05:4		
1,1-Dichloroethene	12.7	ug/L	1.0	1		09/16/18 05:4		
cis-1,2-Dichloroethene	ND	ug/L ug/L	1.0	1		09/16/18 05:4		
trans-1,2-Dichloroethene	ND ND	-	1.0	1		09/16/18 05:4		
•	ND ND	ug/L	1.0	1		09/16/18 05:4		
1,2-Dichloropropane		ug/L		1				
cis-1,3-Dichloropropene	ND	ug/L	1.0				7 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			7 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 05:4		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 05:4		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 05:4		
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 05:4		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 05:4		
Methyl-tert-butyl ether	ND	ug/L	1.0	1			7 1634-04-4	
Naphthalene -	ND	ug/L	2.0	1		09/16/18 05:4		
Styrene	ND	ug/L	1.0	1		09/16/18 05:4	7 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 05:4		
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 05:4		
Toluene	ND	ug/L	1.0	1		09/16/18 05:4		
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 05:4	7 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 05:4		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 05:4	7 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		09/16/18 05:4	7 79-01-6	
1,2,4-Trimethylbenzene	1.1	ug/L	1.0	1		09/16/18 05:4		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 05:4	7 108-67-8	
/inyl chloride	ND	ug/L	1.0	1		09/16/18 05:4	7 75-01-4	
Xylene (Total)	ND	ug/L	3.0	1			7 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		09/16/18 05:4	7 179601-23-1	1

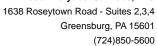


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-12	Lab ID: 3	0264524013	Collected: 09/06/1	18 08:37	Received: 09	9/08/18 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical M	lethod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 05:47	95-47-6	
4-Bromofluorobenzene (S)	99	%.	79-129	1		09/16/18 05:47	460-00-4	
1,2-Dichloroethane-d4 (S)	112	%.	80-120	1		09/16/18 05:47	17060-07-0	
Toluene-d8 (S)	101	%.	80-120	1		09/16/18 05:47	2037-26-5	
Dibromofluoromethane (S)	95	%.	80-120	1		09/16/18 05:47	1868-53-7	



Date: 09/24/2018 04:25 PM

ANALYTICAL RESULTS

Project: 08018-000099.00

Sample: MW-13	Lab ID: 3026	64524014	Collected: 09/05/1	8 14:53	Received: 09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
8260C MSV	Analytical Meth	od: EPA 82	260C				
Acetone	ND	ug/L	10.0	1	09/16/18 07:3	84 67-64-1	
Benzene	ND	ug/L	1.0	1	09/16/18 07:3	34 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1	09/16/18 07:3	34 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1	09/16/18 07:3	34 75-27-4	
Bromoform	ND	ug/L	1.0	1	09/16/18 07:3	34 75-25-2	
Bromomethane	ND	ug/L	1.0	1	09/16/18 07:3	34 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1	09/16/18 07:3	34	
2-Butanone (MEK)	ND	ug/L	10.0	1	09/16/18 07:3	34 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1	09/16/18 07:3	34 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1	09/16/18 07:3	34 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1	09/16/18 07:3	34 108-90-7	
Chloroethane	430	ug/L	50.0	50	09/16/18 08:0	1 75-00-3	
Chloroform	ND	ug/L	1.0	1	09/16/18 07:3	84 67-66-3	
Chloromethane	ND	ug/L	1.0	1	09/16/18 07:3	34 74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1	09/16/18 07:	34 124-48-1	
1,2-Dichlorobenzene	ND	ug/L	1.0	1	09/16/18 07:		
I,3-Dichlorobenzene	ND	ug/L	1.0	1	09/16/18 07:		
,4-Dichlorobenzene	ND	ug/L	1.0	1	09/16/18 07:		
1.1-Dichloroethane	27.6	ug/L	1.0	1	09/16/18 07:		
,2-Dichloroethane	1.3	ug/L	1.0	1	09/16/18 07:		
,2-Dichloroethene (Total)	ND	ug/L	2.0	1	09/16/18 07:		
1,1-Dichloroethene	7.6	ug/L	1.0	1	09/16/18 07:		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	09/16/18 07:		
•		-		1			
rans-1,2-Dichloroethene	ND	ug/L	1.0		09/16/18 07:		
1,2-Dichloropropane	ND	ug/L	1.0	1	09/16/18 07:		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		34 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		34 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1	09/16/18 07:3		
2-Hexanone	ND	ug/L	10.0	1	09/16/18 07:		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1	09/16/18 07:		
Methylene Chloride	ND	ug/L	1.0	1	09/16/18 07:3		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1	09/16/18 07:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		34 1634-04-4	
Naphthalene	ND	ug/L	2.0	1	09/16/18 07:		
Styrene	ND	ug/L	1.0	1	09/16/18 07:3	34 100-42-5	
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	09/16/18 07:3	34 79-34-5	
etrachloroethene	ND	ug/L	1.0	1	09/16/18 07:3	34 127-18-4	
Toluene	ND	ug/L	1.0	1	09/16/18 07:3	34 108-88-3	
,2,4-Trichlorobenzene	ND	ug/L	1.0	1	09/16/18 07:3	34 120-82-1	
,1,1-Trichloroethane	ND	ug/L	1.0	1	09/16/18 07:3	34 71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1	09/16/18 07:3	34 79-00-5	
Frichloroethene	ND	ug/L	1.0	1	09/16/18 07:3	34 79-01-6	
,2,4-Trimethylbenzene	ND	ug/L	1.0	1	09/16/18 07:3	34 95-63-6	
,3,5-Trimethylbenzene	ND	ug/L	1.0	1	09/16/18 07:3		
/inyl chloride	ND	ug/L	1.0	1	09/16/18 07:		
(ylene (Total)	ND	ug/L	3.0	1		34 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		34 179601-23-1	

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: MW-13	Lab ID: 30	264524014	Collected: 09/05/1	8 14:53	Received: 09	9/08/18 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Me	thod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 07:34	95-47-6	
4-Bromofluorobenzene (S)	96	%.	79-129	1		09/16/18 07:34	460-00-4	
1,2-Dichloroethane-d4 (S)	112	%.	80-120	1		09/16/18 07:34	17060-07-0	
Toluene-d8 (S)	105	%.	80-120	1		09/16/18 07:34	2037-26-5	
Dibromofluoromethane (S)	97	%.	80-120	1		09/16/18 07:34	1868-53-7	

1,3,5-Trimethylbenzene

Date: 09/24/2018 04:25 PM

Vinyl chloride

Xylene (Total)

m&p-Xylene

ANALYTICAL RESULTS

Project: 08018-000099.00

Pace Project No.: 30264524 Sample: MW-14 Lab ID: 30264524015 Received: 09/08/18 11:00 Collected: 09/05/18 13:54 Matrix: Water **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260C MSV Analytical Method: EPA 8260C Acetone ND ug/L 10.0 1 09/16/18 06:14 67-64-1 ND 09/16/18 06:14 71-43-2 Benzene ug/L 1.0 1 ND ug/L Bromochloromethane 1.0 09/16/18 06:14 74-97-5 1 Bromodichloromethane ND 09/16/18 06:14 75-27-4 ug/L 1.0 1 ND **Bromoform** ug/L 1.0 1 09/16/18 06:14 75-25-2 Bromomethane ND ug/L 1.0 1 09/16/18 06:14 74-83-9 CL **TOTAL BTEX** ND ug/L 6.0 1 09/16/18 06:14 2-Butanone (MEK) ND ug/L 10.0 09/16/18 06:14 78-93-3 1 Carbon disulfide ND ug/L 1.0 1 09/16/18 06:14 75-15-0 Carbon tetrachloride ND ug/L 1.0 1 09/16/18 06:14 56-23-5 Chlorobenzene ND ug/L 1.0 09/16/18 06:14 108-90-7 1 Chloroethane ND 1.0 09/16/18 06:14 75-00-3 ug/L 1 Chloroform ND 09/16/18 06:14 67-66-3 ug/L 1.0 1 ND 09/16/18 06:14 74-87-3 Chloromethane ug/L 1.0 1 ND Dibromochloromethane 09/16/18 06:14 124-48-1 ug/L 1.0 1 1,2-Dichlorobenzene ND ug/L 1.0 1 09/16/18 06:14 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 09/16/18 06:14 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 09/16/18 06:14 106-46-7 1,1-Dichloroethane 6.1 ug/L 1.0 09/16/18 06:14 75-34-3 1 ND 1,2-Dichloroethane ug/L 1.0 1 09/16/18 06:14 107-06-2 1,2-Dichloroethene (Total) ND ug/L 2.0 1 09/16/18 06:14 540-59-0 1,1-Dichloroethene 3.5 ug/L 1.0 09/16/18 06:14 75-35-4 1 ND ug/L 1.0 09/16/18 06:14 156-59-2 cis-1.2-Dichloroethene 1 trans-1,2-Dichloroethene ND 1.0 09/16/18 06:14 156-60-5 ug/L 1 1,2-Dichloropropane ND ug/L 1.0 09/16/18 06:14 78-87-5 1 cis-1,3-Dichloropropene ND ug/L 1.0 1 09/16/18 06:14 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 09/16/18 06:14 10061-02-6 Ethylbenzene ND ug/L 1.0 1 09/16/18 06:14 100-41-4 2-Hexanone ND ug/L 10.0 1 09/16/18 06:14 591-78-6 Isopropylbenzene (Cumene) ND 1.0 09/16/18 06:14 98-82-8 ug/L 1 Methylene Chloride ND ug/L 1.0 1 09/16/18 06:14 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 1 09/16/18 06:14 108-10-1 Methyl-tert-butyl ether ND ua/L 1.0 1 09/16/18 06:14 1634-04-4 Naphthalene ND ug/L 2.0 1 09/16/18 06:14 91-20-3 ND Styrene ug/L 1.0 1 09/16/18 06:14 100-42-5 09/16/18 06:14 79-34-5 ND 1,1,2,2-Tetrachloroethane ug/L 1.0 1 09/16/18 06:14 127-18-4 ND Tetrachloroethene 1.0 ug/L 1 09/16/18 06:14 108-88-3 ND Toluene ug/L 1.0 1 1,2,4-Trichlorobenzene ND ug/L 1.0 1 09/16/18 06:14 120-82-1 1,1,1-Trichloroethane ND ug/L 1.0 09/16/18 06:14 71-55-6 1,1,2-Trichloroethane ND 09/16/18 06:14 79-00-5 ug/L 1.0 1 Trichloroethene ND ug/L 1.0 1 09/16/18 06:14 79-01-6 1,2,4-Trimethylbenzene ND ug/L 1.0 1 09/16/18 06:14 95-63-6

REPORT OF LABORATORY ANALYSIS

1.0

1.0

3.0

2.0

1

1

1

1

ND

3.2

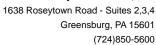
NΠ

NΠ

ug/L

ug/L

ug/L


ug/L

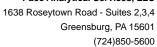
09/16/18 06:14 108-67-8

09/16/18 06:14 75-01-4

09/16/18 06:14 1330-20-7

09/16/18 06:14 179601-23-1

Date: 09/24/2018 04:25 PM

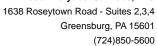

ANALYTICAL RESULTS

Project: 08018-000099.00

Pace Project No.: 30264524

Sample: MW-14 Lab ID: 30264524015 Collected: 09/05/18 13:54 Received: 09/08/

Sample: MW-14	Lab ID: 302	64524015	Collected: 09/05/1	8 13:54	Received: 09	9/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Met	hod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 06:14	95-47-6	
4-Bromofluorobenzene (S)	98	%.	79-129	1		09/16/18 06:14	460-00-4	
1,2-Dichloroethane-d4 (S)	117	%.	80-120	1		09/16/18 06:14	17060-07-0	
Toluene-d8 (S)	99	%.	80-120	1		09/16/18 06:14	2037-26-5	
Dibromofluoromethane (S)	93	%.	80-120	1		09/16/18 06:14	1868-53-7	



Date: 09/24/2018 04:25 PM

ANALYTICAL RESULTS

Project: 08018-000099.00

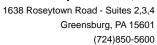
Sample: Field Blank	Lab ID: 302	64524016	Collected: 09/05/1	8 15:55	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/15/18 23:58	8 67-64-1	
Benzene	ND	ug/L	1.0	1		09/15/18 23:58	3 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/15/18 23:58	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/15/18 23:58	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/15/18 23:58	3 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/15/18 23:58	3 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/15/18 23:58	3	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/15/18 23:58	78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/15/18 23:58	3 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/15/18 23:58	3 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/15/18 23:58		
Chloroethane	ND	ug/L	1.0	1		09/15/18 23:58		
Chloroform	ND	ug/L	1.0	1		09/15/18 23:58		
Chloromethane	ND	ug/L	1.0	1		09/15/18 23:58		
Dibromochloromethane	ND	ug/L	1.0	1		09/15/18 23:58		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/15/18 23:58		
1,3-Dichlorobenzene	ND ND	ug/L	1.0	1		09/15/18 23:58		
,4-Dichlorobenzene	ND	ug/L	1.0	1		09/15/18 23:58		
1,1-Dichloroethane	ND ND	ug/L	1.0	1		09/15/18 23:58		
1,2-Dichloroethane	ND ND	•	1.0	1		09/15/18 23:58		
•		ug/L						
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1 1		09/15/18 23:58		
I,1-Dichloroethene	ND	ug/L	1.0			09/15/18 23:58		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/15/18 23:58		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/15/18 23:58		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/15/18 23:58		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/15/18 23:58		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/15/18 23:58		
Ethylbenzene	ND	ug/L	1.0	1		09/15/18 23:58		
2-Hexanone	ND	ug/L	10.0	1		09/15/18 23:58		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/15/18 23:58	8 98-82-8	
Methylene Chloride	ND	ug/L	1.0	1		09/15/18 23:58	3 75-09-2	
1-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/15/18 23:58	3 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/15/18 23:58	3 1634-04-4	
Naphthalene	ND	ug/L	2.0	1		09/15/18 23:58	91-20-3	
Styrene	ND	ug/L	1.0	1		09/15/18 23:58	3 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/15/18 23:58	3 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/15/18 23:58	3 127-18-4	
Toluene	1.1	ug/L	1.0	1		09/15/18 23:58	3 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/15/18 23:58	3 120-82-1	
I,1,1-Trichloroethane	ND	ug/L	1.0	1		09/15/18 23:58	3 71-55-6	
I,1,2-Trichloroethane	ND	ug/L	1.0	1		09/15/18 23:58		
Frichloroethene	ND	ug/L	1.0	1		09/15/18 23:58		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/15/18 23:58		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/15/18 23:58		
/inyl chloride	ND	ug/L	1.0	1		09/15/18 23:58		
(ylene (Total)	ND ND	ug/L	3.0	1		09/15/18 23:58		
m&p-Xylene	ND ND	ug/L ug/L	2.0	1		09/15/18 23:58		

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: Field Blank	Lab ID: 3	0264524016	Collected: 09/05/1	8 15:55	Received: 09	9/08/18 11:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical M	lethod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/15/18 23:58	95-47-6	
4-Bromofluorobenzene (S)	102	%.	79-129	1		09/15/18 23:58	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%.	80-120	1		09/15/18 23:58	17060-07-0	
Toluene-d8 (S)	102	%.	80-120	1		09/15/18 23:58	2037-26-5	
Dibromofluoromethane (S)	91	%.	80-120	1		09/15/18 23:58	1868-53-7	

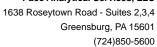


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: Field Blank 2	Lab ID: 302	64524017	Collected: 09/06/1	8 11:05	Received:	09/08/18 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Met	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 00:2	5 67-64-1	
Benzene	ND	ug/L	1.0	1		09/16/18 00:2	5 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 00:2	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 00:2	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		09/16/18 00:2	5 75-25-2	
Bromomethane	ND	ug/L	1.0	1		09/16/18 00:2	5 74-83-9	CL
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 00:2	5	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 00:2	5 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 00:2	5 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 00:2	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 00:2		
Chloroethane	ND	ug/L	1.0	1		09/16/18 00:2		
Chloroform	ND	ug/L	1.0	1		09/16/18 00:2		
Chloromethane	ND	ug/L	1.0	1		09/16/18 00:2		
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 00:2		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 00:2		
1,3-Dichlorobenzene	ND ND	ug/L	1.0	1		09/16/18 00:2		
1,3-Dichlorobenzene	ND ND	ug/L	1.0	1		09/16/18 00:2		
,								
1,1-Dichloroethane	ND	ug/L	1.0	1		09/16/18 00:2		
1,2-Dichloroethane	ND	ug/L	1.0	1		09/16/18 00:2		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1		09/16/18 00:2		
1,1-Dichloroethene	ND	ug/L	1.0	1		09/16/18 00:2		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 00:2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 00:2		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 00:2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 00:2		
2-Hexanone	ND	ug/L	10.0	1		09/16/18 00:2		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/16/18 00:2	5 98-82-8	
Methylene Chloride	ND	ug/L	1.0	1		09/16/18 00:2	5 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/16/18 00:2	5 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/16/18 00:2	5 1634-04-4	
Naphthalene	ND	ug/L	2.0	1		09/16/18 00:2	5 91-20-3	
Styrene	ND	ug/L	1.0	1		09/16/18 00:2	5 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 00:2	5 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 00:2	5 127-18-4	
Toluene	2.3	ug/L	1.0	1		09/16/18 00:2	5 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 00:2	5 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 00:2		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 00:2		
Trichloroethene	ND	ug/L	1.0	1		09/16/18 00:2		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 00:2		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 00:2		
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 00:2		
Xylene (Total)	ND ND	ug/L	3.0	1		09/16/18 00:2		
m&p-Xylene	ND ND	ug/L ug/L	2.0	1		09/16/18 00:2		



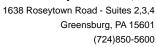
Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: Field Blank 2	Lab ID: 302	64524017	Collected: 09/06/1	8 11:05	Received: 09	9/08/18 11:00 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 00:25	95-47-6	
4-Bromofluorobenzene (S)	97	%.	79-129	1		09/16/18 00:25	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%.	80-120	1		09/16/18 00:25	17060-07-0	
Toluene-d8 (S)	104	%.	80-120	1		09/16/18 00:25	2037-26-5	
Dibromofluoromethane (S)	90	%.	80-120	1		09/16/18 00:25	1868-53-7	

Date: 09/24/2018 04:25 PM


ANALYTICAL RESULTS

Project: 08018-000099.00

Sample: Trip Blank	Lab ID: 30	264524018	Collected: 08/10/1	8 00:01	Received: 0	9/08/18 11:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Me	ethod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		09/16/18 00:52	67-64-1	НЗ
Benzene	ND	ug/L	1.0	1		09/16/18 00:52	71-43-2	H3
Bromochloromethane	ND	ug/L	1.0	1		09/16/18 00:52	74-97-5	H3
Bromodichloromethane	ND	ug/L	1.0	1		09/16/18 00:52	75-27-4	H3
Bromoform	ND	ug/L	1.0	1		09/16/18 00:52	75-25-2	H3
Bromomethane	ND	ug/L	1.0	1		09/16/18 00:52	74-83-9	CL,H3
TOTAL BTEX	ND	ug/L	6.0	1		09/16/18 00:52		
2-Butanone (MEK)	ND	ug/L	10.0	1		09/16/18 00:52	78-93-3	H3
Carbon disulfide	ND	ug/L	1.0	1		09/16/18 00:52	75-15-0	H3
Carbon tetrachloride	ND	ug/L	1.0	1		09/16/18 00:52	56-23-5	H3
Chlorobenzene	ND	ug/L	1.0	1		09/16/18 00:52	108-90-7	H3
Chloroethane	ND	ug/L	1.0	1		09/16/18 00:52	75-00-3	H3
Chloroform	ND	ug/L	1.0	1		09/16/18 00:52	67-66-3	НЗ
Chloromethane	ND	ug/L	1.0	1		09/16/18 00:52	74-87-3	H3
Dibromochloromethane	ND	ug/L	1.0	1		09/16/18 00:52	124-48-1	НЗ
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 00:52	95-50-1	НЗ
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 00:52	541-73-1	НЗ
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/16/18 00:52	106-46-7	Н3
1.1-Dichloroethane	ND	ug/L	1.0	1		09/16/18 00:52		НЗ
1,2-Dichloroethane	ND	ug/L	1.0	1		09/16/18 00:52		НЗ
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1		09/16/18 00:52		
1,1-Dichloroethene	ND	ug/L	1.0	1		09/16/18 00:52		НЗ
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 00:52		H3
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/16/18 00:52		H3
1,2-Dichloropropane	ND	ug/L	1.0	1		09/16/18 00:52		H3
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/16/18 00:52		H3
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/16/18 00:52		H3
Ethylbenzene	ND	ug/L	1.0	1		09/16/18 00:52		H3
2-Hexanone	ND	ug/L	10.0	1		09/16/18 00:52		H3
Isopropylbenzene (Cumene)	ND ND	ug/L ug/L	1.0	1		09/16/18 00:52		H3
Methylene Chloride	ND ND	ug/L ug/L	1.0	1		09/16/18 00:52		H3
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L ug/L	10.0	1		09/16/18 00:52		H3
Methyl-tert-butyl ether	ND ND	ug/L ug/L	1.0	1		09/16/18 00:52		H3
	ND ND	_	2.0	1		09/16/18 00:52		H3
Naphthalene Styrono		ug/L						
Styrene	ND	ug/L	1.0	1		09/16/18 00:52		H3
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/16/18 00:52		H3
Tetrachloroethene	ND	ug/L	1.0	1		09/16/18 00:52		H3
Toluene	ND	ug/L	1.0	1		09/16/18 00:52		H3
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		09/16/18 00:52		H3
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/16/18 00:52		H3
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/16/18 00:52		H3
Trichloroethene	ND	ug/L	1.0	1		09/16/18 00:52		H3
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 00:52		H3
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/16/18 00:52		НЗ
Vinyl chloride	ND	ug/L	1.0	1		09/16/18 00:52		НЗ
Xylene (Total)	ND	ug/L	3.0	1		09/16/18 00:52		
m&p-Xylene	ND	ug/L	2.0	1		09/16/18 00:52	179601-23-1	H3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Sample: Trip Blank	Lab ID: 3	30264524018	Collected: 08/10/1	18 00:01	Received: 0	9/08/18 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical N	Method: EPA 82	260C					
o-Xylene Surrogates	ND	ug/L	1.0	1		09/16/18 00:52	95-47-6	Н3
4-Bromofluorobenzene (S)	99	%.	79-129	1		09/16/18 00:52	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%.	80-120	1		09/16/18 00:52	17060-07-0	
Toluene-d8 (S)	101	%.	80-120	1		09/16/18 00:52	2037-26-5	
Dibromofluoromethane (S)	89	%.	80-120	1		09/16/18 00:52	1868-53-7	

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

QC Batch: 313110 Analysis Method: EPA 8260C QC Batch Method: EPA 8260C Analysis Description: 8260C MSV

30264524001, 30264524002, 30264524003, 30264524004, 30264524005, 30264524006, 30264524007, Associated Lab Samples:

30264524008, 30264524009, 30264524010, 30264524011, 30264524012, 30264524013, 30264524014,

30264524015, 30264524016, 30264524017, 30264524018

METHOD BLANK: 1529163 Matrix: Water

 $30264524001, 30264524002, 30264524003, 30264524004, 30264524005, 30264524006, 30264524007, \\30264524008, 30264524009, 30264524010, 30264524011, 30264524012, 30264524013, 30264524014, \\$ Associated Lab Samples:

30264524015, 30264524016, 30264524017, 30264524018 Dionic

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND ND	1.0	09/15/18 23:31	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	09/15/18 23:31	
1,1,2-Trichloroethane	ug/L	ND	1.0	09/15/18 23:31	
1,1-Dichloroethane	ug/L	ND	1.0	09/15/18 23:31	
1,1-Dichloroethene	ug/L	ND	1.0	09/15/18 23:31	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	09/15/18 23:31	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	09/15/18 23:31	
1,2-Dichlorobenzene	ug/L	ND	1.0	09/15/18 23:31	
1,2-Dichloroethane	ug/L	ND	1.0	09/15/18 23:31	
1,2-Dichloroethene (Total)	ug/L	ND	2.0	09/15/18 23:31	
1,2-Dichloropropane	ug/L	ND	1.0	09/15/18 23:31	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	09/15/18 23:31	
1,3-Dichlorobenzene	ug/L	ND	1.0	09/15/18 23:31	
1,4-Dichlorobenzene	ug/L	ND	1.0	09/15/18 23:31	
2-Butanone (MEK)	ug/L	ND	10.0	09/15/18 23:31	
2-Hexanone	ug/L	ND	10.0	09/15/18 23:31	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	09/15/18 23:31	
Acetone	ug/L	ND	10.0	09/15/18 23:31	
Benzene	ug/L	ND	1.0	09/15/18 23:31	
Bromochloromethane	ug/L	ND	1.0	09/15/18 23:31	
Bromodichloromethane	ug/L	ND	1.0	09/15/18 23:31	
Bromoform	ug/L	ND	1.0	09/15/18 23:31	
Bromomethane	ug/L	ND	1.0	09/15/18 23:31	CL
Carbon disulfide	ug/L	ND	1.0	09/15/18 23:31	
Carbon tetrachloride	ug/L	ND	1.0	09/15/18 23:31	
Chlorobenzene	ug/L	ND	1.0	09/15/18 23:31	
Chloroethane	ug/L	ND	1.0	09/15/18 23:31	
Chloroform	ug/L	ND	1.0	09/15/18 23:31	
Chloromethane	ug/L	ND	1.0	09/15/18 23:31	
cis-1,2-Dichloroethene	ug/L	ND	1.0	09/15/18 23:31	
cis-1,3-Dichloropropene	ug/L	ND	1.0	09/15/18 23:31	
Dibromochloromethane	ug/L	ND	1.0	09/15/18 23:31	
Ethylbenzene	ug/L	ND	1.0	09/15/18 23:31	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	09/15/18 23:31	
m&p-Xylene	ug/L	ND	2.0	09/15/18 23:31	
Methyl-tert-butyl ether	ug/L	ND	1.0	09/15/18 23:31	
Methylene Chloride	ug/L	ND	1.0	09/15/18 23:31	
Naphthalene	ug/L	ND	2.0	09/15/18 23:31	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

METHOD BLANK: 1529163 Matrix: Water

Associated Lab Samples: 30264524001, 30264524002, 30264524003, 30264524004, 30264524005, 30264524006, 30264524007,

30264524008, 30264524009, 30264524010, 30264524011, 30264524012, 30264524013, 30264524014, 302

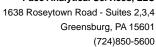
30264524015, 30264524016, 30264524017, 30264524018

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
o-Xylene	ug/L	ND	1.0	09/15/18 23:31	
Styrene	ug/L	ND	1.0	09/15/18 23:31	
Tetrachloroethene	ug/L	ND	1.0	09/15/18 23:31	
Toluene	ug/L	ND	1.0	09/15/18 23:31	
TOTAL BTEX	ug/L	ND	6.0	09/15/18 23:31	
trans-1,2-Dichloroethene	ug/L	ND	1.0	09/15/18 23:31	
trans-1,3-Dichloropropene	ug/L	ND	1.0	09/15/18 23:31	
Trichloroethene	ug/L	ND	1.0	09/15/18 23:31	
Vinyl chloride	ug/L	ND	1.0	09/15/18 23:31	
Xylene (Total)	ug/L	ND	3.0	09/15/18 23:31	
1,2-Dichloroethane-d4 (S)	%.	110	80-120	09/15/18 23:31	
4-Bromofluorobenzene (S)	%.	98	79-129	09/15/18 23:31	
Dibromofluoromethane (S)	%.	95	80-120	09/15/18 23:31	
Toluene-d8 (S)	%.	103	80-120	09/15/18 23:31	

LABORATORY CONTROL SAMPLE:	1529164					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		19.3	96	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	18.3	91	65-127	
1,1,2-Trichloroethane	ug/L	20	20.9	104	70-130	
1,1-Dichloroethane	ug/L	20	20.8	104	70-130	
1,1-Dichloroethene	ug/L	20	20.8	104	70-130	
1,2,4-Trichlorobenzene	ug/L	20	17.6	88	70-130	
1,2,4-Trimethylbenzene	ug/L	20	17.1	85	70-130	
1,2-Dichlorobenzene	ug/L	20	17.6	88	70-130	
1,2-Dichloroethane	ug/L	20	18.2	91	70-130	
1,2-Dichloroethene (Total)	ug/L	40	40.9	102	70-130	
1,2-Dichloropropane	ug/L	20	21.7	108	70-130	
1,3,5-Trimethylbenzene	ug/L	20	17.9	89	70-130	
1,3-Dichlorobenzene	ug/L	20	17.5	87	70-130	
1,4-Dichlorobenzene	ug/L	20	17.9	90	70-130	
2-Butanone (MEK)	ug/L	20	16.8	84	72-170	
2-Hexanone	ug/L	20	19.6	98	65-151	
4-Methyl-2-pentanone (MIBK)	ug/L	20	17.8	89	66-150	
Acetone	ug/L	20	14.1	70	30-179	
Benzene	ug/L	20	19.1	96	70-130	
Bromochloromethane	ug/L	20	18.2	91	70-130	
Bromodichloromethane	ug/L	20	19.3	97	70-130	
Bromoform	ug/L	20	16.5	83	70-130	
Bromomethane	ug/L	20	11.4	57	47-174(CL
Carbon disulfide	ug/L	20	17.1	85	43-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 08018-000099.00

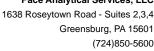

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Spike Conc. 20 20 20 20 20 20 20 20 20 20 20 20	LCS Result 17.3 20.0 20.7 18.6 17.3 19.9 18.0 17.9 20.3 17.8 38.5	86 100 103 93 86 99 90 89 101 89	% Rec Limits 56-143 70-130 67-139 70-130 57-138 70-130 70-130 70-130	Qualifiers	-	
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20 20 20 20 20 20 20 20 20 20 20	17.3 20.0 20.7 18.6 17.3 19.9 18.0 17.9 20.3 17.8	86 100 103 93 86 99 90 89	56-143 70-130 67-139 70-130 57-138 70-130 70-130 70-130	Qualifiers	-	
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20 20 20 20 20 20 20 20 20 20 20	20.0 20.7 18.6 17.3 19.9 18.0 17.9 20.3	100 103 93 86 99 90 89	70-130 67-139 70-130 57-138 70-130 70-130 70-130		-	
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20 20 20 20 20 20 20 20 20 40	20.7 18.6 17.3 19.9 18.0 17.9 20.3 17.8	103 93 86 99 90 89	67-139 70-130 57-138 70-130 70-130 70-130 70-130			
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20 20 20 20 20 20 20 20 40	18.6 17.3 19.9 18.0 17.9 20.3 17.8	93 86 99 90 89 101	70-130 57-138 70-130 70-130 70-130 70-130			
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20 20 20 20 20 20 20 40	17.3 19.9 18.0 17.9 20.3 17.8	86 99 90 89 101	57-138 70-130 70-130 70-130 70-130			
ug/L ug/L ug/L ug/L ug/L ug/L	20 20 20 20 20 20 40	19.9 18.0 17.9 20.3 17.8	99 90 89 101	70-130 70-130 70-130 70-130			
ug/L ug/L ug/L ug/L ug/L ug/L	20 20 20 20 40	18.0 17.9 20.3 17.8	90 89 101	70-130 70-130 70-130			
ug/L ug/L ug/L ug/L ug/L	20 20 20 40	17.9 20.3 17.8	89 101	70-130 70-130			
ug/L ug/L ug/L ug/L ug/L	20 20 40	20.3 17.8	101	70-130			
ug/L ug/L ug/L ug/L	20 40	17.8					
ug/L ug/L ug/L	40		89	70.465			
ug/L ug/L		38.5		70-130			
ug/L		00.0	96	70-130			
-	20	16.7	84	70-130			
	20	18.3	92	55-144			
ug/L	20	16.8	84	70-130			
ug/L	20	19.1	95	70-130			
ug/L	20	18.9	95	70-130			
	20	19.6	98	70-130			
	20	21.3	107	70-130			
•	20	21.0	105	70-130			
-	20	19.9	99	70-130			
-				70-130			
Ū							
-							
•				80-120			
			97	79-129			
			90	80-120			
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L 20 ug/L 60 %. %.	ug/L 20 19.6 ug/L 20 21.3 ug/L 118 ug/L 20 21.0 ug/L 20 19.9 ug/L 20 18.8 ug/L 20 19.9 ug/L 60 57.5 %. %. %. %.	ug/L 20 19.6 98 ug/L 20 21.3 107 ug/L 118 105 ug/L 20 21.0 105 ug/L 20 19.9 99 ug/L 20 18.8 94 ug/L 20 19.9 99 ug/L 60 57.5 96 %. 100 %. 97 %. 90	ug/L 20 19.6 98 70-130 ug/L 20 21.3 107 70-130 ug/L 118 105 70-130 ug/L 20 21.0 105 70-130 ug/L 20 19.9 99 70-130 ug/L 20 19.9 99 70-130 ug/L 20 19.9 99 70-130 ug/L 60 57.5 96 70-130 %. 100 80-120 %. 97 79-129 %. 90 80-120	ug/L 20 19.6 98 70-130 ug/L 20 21.3 107 70-130 ug/L 118 118 118 ug/L 20 21.0 105 70-130 ug/L 20 19.9 99 70-130 ug/L 20 19.9 99 70-130 ug/L 20 19.9 99 70-130 ug/L 60 57.5 96 70-130 %. 100 80-120 %. 97 79-129 %. 90 80-120	ug/L 20 19.6 98 70-130 ug/L 20 21.3 107 70-130 ug/L 118 ug/L 20 21.0 105 70-130 ug/L 20 19.9 99 70-130 ug/L 20 18.8 94 70-130 ug/L 20 19.9 99 70-130 ug/L 60 57.5 96 70-130 %. 100 80-120 %. 97 79-129 %. 90 80-120

			IVIO	IVISD							
	302	264524001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	20	20	22.1	21.7	110	109	79-129	2	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	17.9	17.3	89	87	57-118	3	
1,1,2-Trichloroethane	ug/L	ND	20	20	20.6	20.9	103	105	68-117	2	
1,1-Dichloroethane	ug/L	2.7	20	20	25.3	23.8	113	105	74-119	6	
1,1-Dichloroethene	ug/L	4.6	20	20	27.6	26.4	115	109	63-126	4	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	18.0	16.8	90	84	60-117	7	
1,2,4-Trimethylbenzene	ug/L	ND	20	20	17.8	16.9	89	84	75-125	5	
1,2-Dichlorobenzene	ug/L	ND	20	20	17.4	16.8	87	84	72-119	4	
1,2-Dichloroethane	ug/L	ND	20	20	20.2	19.6	101	98	69-116	3	
1,2-Dichloroethene (Total)	ug/L	ND	40	40	44.8	42.1	112	105	70-119	6	
1,2-Dichloropropane	ug/L	ND	20	20	21.7	21.0	109	105	63-118	3	
1,3,5-Trimethylbenzene	ug/L	ND	20	20	17.8	17.2	89	86	76-121	3	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

MATRIX SPIKE & MATRIX SPIKE	- DUPLICAT	E: 15291		MCD	1529168						
	201	264524001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
,3-Dichlorobenzene	ug/L	ND	20	20	17.8	16.8	89	84	81-119	6	
,4-Dichlorobenzene	ug/L	ND	20	20	18.6	16.9	93	84	72-118	9	
P-Butanone (MEK)	ug/L	ND	20	20	18.2	17.7	91	88	72-168	3	
-Hexanone	ug/L	ND	20	20	20.1	19.7	100	99	66-143	2	
-Methyl-2-pentanone (MIBK)	ug/L	ND	20	20	19.4	19.0	97	95	67-145	2	
cetone	ug/L	ND	20	20	15.9	15.9	80	80	15-175	0	
enzene	ug/L	ND	20	20	19.8	19.6	99	98	67-121	1	
romochloromethane	ug/L	ND	20	20	20.4	17.7	102	88	62-128	14	
romodichloromethane	ug/L	ND	20	20	20.3	18.6	102	93	66-127	9	
romoform	ug/L	ND	20	20	15.6	14.9	78	74	71-127	5	
romomethane	ug/L	ND	20	20	8.2	11.6	41	58	10-156	35	CL,R1
arbon disulfide	ug/L	ND	20	20	17.0	16.7	85	83	45-131	2	
arbon tetrachloride	ug/L	ND	20	20	20.2	18.4	101	92	69-134	9	
hlorobenzene	ug/L	ND	20	20	19.1	19.4	96	97	69-119	1	
hloroethane	ug/L	ND	20	20	22.8	22.5	114	112	60-156	1	
hloroform	ug/L	ND	20	20	19.2	18.9	96	95	69-115	1	
hloromethane	ug/L	ND	20	20	19.5	20.0	98	100	52-145	2	
s-1,2-Dichloroethene	ug/L	ND	20	20	22.2	20.7	111	103	65-120	7	
s-1,3-Dichloropropene	ug/L	ND	20	20	18.2	17.7	91	89	57-125	3	
ibromochloromethane	ug/L	ND	20	20	16.9	17.4	84	87	64-131	3	
thylbenzene	ug/L	ND	20	20	19.8	19.8	99	99	70-127	0	
copropylbenzene (Cumene)	ug/L	ND	20	20	18.5	17.8	92	89	80-122	4	
n&p-Xylene	ug/L	ND	40	40	38.2	38.2	96	96	71-128	0	
lethyl-tert-butyl ether	ug/L	ND	20	20	18.3	17.4	91	87	79-135	5	
lethylene Chloride	ug/L	ND	20	20	19.5	19.7	97	99	54-133	1	
laphthalene	ug/L	ND	20	20	15.6	15.6	78	78	62-131	0	
-Xylene	ug/L	ND	20	20	19.1	19.0	95	95	68-125	0	
tyrene	ug/L	ND	20	20	18.1	17.4	90	87	65-121	4	
etrachloroethene	ug/L	ND	20	20	19.6	20.6	98	103	77-125	5	
oluene	ug/L	ND	20	20	20.9	21.1	104	105	77-125	1	
OTAL BTEX	ug/L	ND			118	118				0	
ans-1,2-Dichloroethene	ug/L	ND	20	20	22.6	21.4	113	107	70-119	6	
ans-1,3-Dichloropropene	ug/L	ND	20	20	18.7	18.8	94	94	52-125	1	
richloroethene	ug/L	ND	20	20	18.6	19.1	93	95	74-128	2	
inyl chloride	ug/L	ND	20	20	23.0	23.7	115	119	60-131	3	
ylene (Total)	ug/L	ND	60	60	57.3	57.2	95	95	69-128	0	
2-Dichloroethane-d4 (S)	%.						111	110	80-120		
Bromofluorobenzene (S)	%.						102	99	79-129		
ibromofluoromethane (S)	%.						94	98	80-120		
oluene-d8 (S)	%.						106	109	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 08018-000099.00

Pace Project No.: 30264524

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

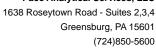
RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.


Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/24/2018 04:25 PM

- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased
- H3 Sample was received or analysis requested beyond the recognized method holding time.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 08018-000099.00

Pace Project No.: 30264524

Date: 09/24/2018 04:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
30264524001	MW-1	EPA 8260C	313110	_	
30264524002	MW-2	EPA 8260C	313110		
30264524003	MW-2D	EPA 8260C	313110		
30264524004	MW-3	EPA 8260C	313110		
30264524005	MW-4	EPA 8260C	313110		
30264524006	MW-5	EPA 8260C	313110		
30264524007	MW-7	EPA 8260C	313110		
80264524008	MW-8	EPA 8260C	313110		
80264524009	MW-9	EPA 8260C	313110		
30264524010	MW-10	EPA 8260C	313110		
30264524011	MW-11	EPA 8260C	313110		
30264524012	MW-11D	EPA 8260C	313110		
30264524013	MW-12	EPA 8260C	313110		
30264524014	MW-13	EPA 8260C	313110		
30264524015	MW-14	EPA 8260C	313110		
30264524016	Field Blank	EPA 8260C	313110		
30264524017	Field Blank 2	EPA 8260C	313110		
30264524018	Trip Blank	EPA 8260C	313110		

MO#:30264524

DRINKING WATER L. Horizon (D) (C) [-OTHER ŏ GROUND WATER Page: REGULATORY AGENCY RCRA NPDES Site Location STATE: E-CUSTODY / Analytical Request Document lody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. OSGISCOCCRCTSN Pace Quote
Reference:
Reference:
Manager:
Pace Profile #: Invoice Information: Attention: Сотрапу Nате: Section C Address: 05011-00009900 Purchase Order No.: Project Number: Project Name: Report To: Copy To: 30264524 1200 1. Gar Pace Analytical "
www.pacelabs.com <u>†</u> 15.88.1 Section A Required Client Information: Phone: 760 C Email To: Address:

Requested Analysis Filtered (Y/N)

,,,,,,				-				2				۷.	requested Analysis Fittered (Y/N)	narysis rin	rerea (1/N				
	Section D Required Client Information	흥성	***************************************			COLLECTED	STED			Pres	Preservatives	Î N /A					:	i.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>C</u> <u>U</u>	ater ter	Saboa bilev ees	=CBVB C=CC	COMPOSITE	35	COMPOSITE END/GRAB	OFFECTION	S			P77.8				(N/A			13
1883/Anores Harman	(A-Z, 0-9/,-) Sample IDs MUST BE UNIQUE	Wipe W Air A Tissue T						TA 4M3T	MTAINER:			tseT sis) enitoldD	``````````````````````````````````````		<u>.</u>
# M∃TI			иятАМ	SAMPLE	DATE	TIME	DATE	⊒ H Blamas	# OF CC	H ^S SO ⁴	Methano Na ₂ S ₂ O ₃ NaOH HCI	Other				Sesidual	MINISTER NEW TOWN	Č	
-	1.30		3	<u>ں</u>		,	3 196	127	eι/			>					Ì	Logect	race Project No./ Lab I.U.
2	6		earch.	مدوسیا د		V~	100	3					- Parasenta				38		
ო				~~~~			1	X Sec.	noac _{erson} e								36	-	
4	N N N					7	967					> -					ر اور اور		
Ω	2.36					\ \frac{\omega_{\text{``}}}{\omega_{\text{``}}}		S. S.											- The state of the
9	7.35			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		9	-6					/ <u> </u>			#	-	9		
۲.	3 %			-		10	2 20					/ >					3		
80	3	6				O	and 4.5										3		
6		0				6			**************************************			<i>(</i>)	-				X		
9		0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5	777	200	المريدة			× 3					8		WINO
=		-						4 5	0000 C 0000		-	× ·		-			<u>3</u>		
72			ľ			9	41 ~	4	-		+	/ /					3		
	CO INITIONAL	ď	1							<u> </u>		jk					$\frac{2}{2}$		
	ADDITIONAL COMMENT	0		ELINOUE	RELINQUISHED BY / AFFILIATION	(FFILIATIO)	7	DATE	TIME		ACCE	ACCEPTED BY / AFFILIATION	ILIATION	DATE	TIME		SAME	SAMPLE CONDITIONS	ONS
			4	Melan	3	77	35	218	The state of the s	7	5	7)		9-8-18/100	\$ 1/100	57	<i>></i>	2	7
\bot	TRANSPORT OF THE PROPERTY OF T	THE PARTY OF THE P									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								TO THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE PROPERT
\perp	- Table 1				THE PARTY OF THE P														
_ P	1944									_									
age		ANDED	MAL		<u>~ 1</u>	SAMPLER	SAMPLER NAME AND	SIGNATURE	w l			1 A A A A A A A A A A A A A A A A A A A				0		let	tos
45						ā	PRINT Name of SAMPLER:	SAMPLER:	English	3	3	35,5				୍ଷା di	bevi (MW)	stody d Coo (NN)	(N/A) ea Julg
of 4					;	Ö	SIGNATURE of SAMPLER:	SAMPLER	1/1	() []	y	DA	DATE Signed	6	7	məT		este	
7	Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of	m you are accepting Pac	ce's NET 3	O day payr	nent terms and	1 anneeing to	ate charges of	1 Kol. nor month for an	, , , , , , , , , , , , , , , , , , , ,			TRAIL TRAIL	41 DUI 1 1 J.		0			s	s

F-ALL-Q-020rev.07, 15-May-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Face Analytical www.parelebs.com

ŧ

100

() M

86 (7 80 8 8. J

Pace Project No./ Lab i.D. DRINKING WATER (N/Y) samples lutact SAMPLE CONDITIONS た、下で (D) OTHER Custody Sealed Cooler (Y/N) ŏ Q (258 35 (N/X) eoi 3 GROUND WATER Received on Residual Chlorine (Y/N) ゔ Temp in °C Page: 2 REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) 3 TIME 378.9 STATE Site Location NPDES DATE UST DATE Signed 7/5/(ACCEPTED BY / AFFILIATION 106 2718 Analysis Test 👃 N/A ij Other Methanol Pace Quote
Reference:
Pace Project C
Manager:
Pace Profile #: Preservatives [€]O_SS_SeN HOBN HCI nvoice information: ž HNO3 Company Name: [†]OS²H Section C 760 Attention: Unpreserved TIME Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION 25/5 DATE 100 E TIME 2 COMPOSITE: END/GRAB 0801810000 A 9.00 5 7 カデル 13/2/20 S. J. DATE COLLECTED RELINQUISHED BY / AFFILIATION ACRUA TIME COMPOSITE START DATE Required Project Information: Man (G=GRAB C=COMP) SAMPLE TYPE Purchase Order No.: Project Number: (see valid codes to left) MATRIX CODE Project Name: ORIGINAL Section B Report To: Sopy To: WY W G S P W S E P Matrix Codes Drinking Water Water Waste Water Product Soil/Soild Oil Wipe Afrir Assue いられ 50 Marie Veske 7-34 Mw-13 MU-C 200 ADDITIONAL COMMENTS 3 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLEID かんかり S S Section A Required Client Information: Required Olient Information Requested Due Date/TAT: Section D company: Address: Email To: Page 46 of 47 # MaTI m 4 ιn ø œ ø, Ç Ę 7

F-ALL-Q-020rev.07, 15-May-2007

*Important Nate: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

Pittsburgh Lab Sample Con	ditio	n Up	on f	Receipt	30264
Face Analytical Client Name:		B	W.e	au Ventes	Project #
Courier: Fed Ex DUPS DUSPS DCIII Tracking #: 7731 611782	ent (□com	mercia	I Pace Other	Label M
Custody Seal on Cooler/Box Present:		no	Se	als intact;	□no □
Thermometer Used 10	Ту	pe of I	ce: V	let Blue None	
				rrection Factor: 1	°C Final Temp: <u>LL.</u> °C
Comments:	Ύε	s N	0 N	pH paper Lot#	Date and Initials of person examining contents: かつら ターそづく
Chain of Custody Present:	17			1.	
Chain of Custody Filled Out:	17		+	2.	4
Chain of Custody Relinquished:	17			3.	
Sampler Name & Signature on COC:	17		_	4.	
Sample Labels match COC:	-	17	/		15 Mas & the of 150
-Includes date/time/ID Matrix:	1	t		- 30	
Samples Arrived within Hold Time:	1/	^	-	6.	
Short Hold Time Analysis (<72hr remaining):	ĺ		ļ,	7.	
Rush Turn Around Time Requested:		1/	+	8.	
Sufficient Volume:		1-	†	9.	
Correct Containers Used:	1	1		10.	
-Pace Containers Used:			1	1	
Containers Intact:		1	†	111.	
Orthophosphate field filtered			1	12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered			1	13.	
Organic Samples checked for dechlorination:			1	14.	
Filtered volume received for Dissolved tests				15.	
All containers have been checked for preservation.			/	16,	
All containers needing preservation are found to be in compliance with EPA recommendation.					
exceptions (VOA) coliform, TOC, O&G, Phenolics				Initial when completed https://www.scarpeleted.com/scarpeleted/scarpelete/sca	Date/time of preservation
leadspace in VOA Vials (>6mm):		/		preservative	
rip Blank Present:				<u>17.</u> 18.	
rip Blank Custody Seals Present	\mathcal{I}			16,	
ad Aqueous Samples Screened > 0.5 mrem/hr	_		<i>-</i> / 1	nitial when	
lient Notification/ Resolution:			/ [completed;	Date:
Barra O. / A. I		,) = t = (T)		
Person Contacted: Comments/ Resolution:			Jate/11	me:	Contacted By:
				<u> </u>	
				1112	
					
			-		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.