

November 7, 2022

Mr. Michael Lubin Chairman **Lexington Machining, LLC** 677 Buffalo Road Rochester, NY 14611

Apex Project No. LEX004-0309012-22006067

Main: (330) 310-6327

www.apexcos.com

Subject: 2022 Annual Groundwater Monitoring and Periodic Review Report

Lexington Machining, LLC

201 Winchester Road, Village of Lakewood, Town of Busti

Chauataqua County, New York - NYSDEC Site Number: 907044

Dear Mr. Lubin:

Apex Companies, LLC (Apex) is pleased to present the 2022 Annual Groundwater Monitoring and Periodic Review Report. The monitoring was completed to satisfy the requirements of the Site Management Plan, that was revised by Apex and approved by the New York State Department of Environmental Conservation (NYSDEC) in April 2020.

Please contact me at (330) 310-6327 or tim.mccann@apexcos.com with any questions.

Sincerely,

Timothy N. McCann Program Manager

Northeast Ohio Regional Office

Timothy N. M. Com

Annual Groundwater Monitoring and Periodic Review Report

Lexington Machining, LLC

NYSDEC Site Number: 907044
Premier Lakewood, Inc. Site
201 Winchester Road
Village of Lakewood, Town of Busti
Chauataqua County, New York

Apex Project No. LEX004-0309012-22006067 November 7, 2022

Prepared by:

Apex Companies, LLC 520 South Main Street, Suite 2411-C Akron, Ohio 44311

CONTENTS

SECTIO	<u>P</u>	AGE
1.0 1.1 1.2	BACKGROUND HISTORIC OPERATIONS SITE ENVIRNMENTAL SUMMERY	
2.0 2.1	ANNUAL GROUNDWATER MONITORING SAMPLE COLLECTION	2
3.0	ANALYTICAL RESULTS	4
4.0 4.1 4.2 4.3	DISCUSSION Acceptable Groundwater Conditions Improving Groundwater Conditions Groundwater Conditions for Continued Monitoring	5 6
5.0	<u>CONCLUSIONS</u>	9
6.0	SIGNATURES	10
FIGUR	<u>RES</u>	
1. 2 3	Site Location Map Groundwater Monitoring Well Network Groundwater Contour Map	
TABLE	<u>ES</u>	
1. 2. 3.	August 2022 Groundwater Elevation Measurements August 2022 Groundwater Sample Data Summary Historic Groundwater Data Summary	
APPE	NDICIES NDICIES	
A B	Site Wide Inspection Form Site Management Periodic Review Report, Institutional and Engineering Controls Certification Form	
C D E	Groundwater Sampling Logs Purge Water Disposal Manifest Analytical Laboratory Report	
F G	VOC Trendline Graphs Site Photographs	

1.0 BACKGROUND

Subsequent to active remediation, a Site Management Plan (SMP) was prepared for the Lexington Machining, LLC (LMLLC) property located at 201 Winchester Road in Lakewood, New York, Site #907044 (the Site). A site location map is presented in Figure 1. The SMP was prepared to address low levels of volatile organic compounds (VOCs) remaining in soil and groundwater of the Site and is required by the New York State Department of Environmental Conservation (NYSDEC) Order on Consent and Administrative Settlement Index # B9-0792-08-10. The SMP was updated in April 2020 by Apex and included the removal of monitoring wells MW-4, MW-5, and MW-11D from the groundwater monitoring network. In addition, monitoring wells MW-5D and MW-6 were approved to be abandoned following NYSDEC protocol. These wells were abandoned in August 2020.

Annual Groundwater monitoring is required within Section 3.2.1, Groundwater Monitoring of the SMP. This report presents the methods and results of the annual groundwater monitoring conducted in August 2022.

The site is located in the Village of Lakewood, Town of Busti, County of Chautauqua, New York and is situated on three lots identified as Block 385 and Lots 06-3-58, 06-3-59 and 06-3-60 on the Chautauqua County Tax Map. The site is an approximately 6.15-acre area bounded by a Chautauqua Regional Railroad Authority rail line to the north; a residential property and a vacant commercial/industrial facility to the south; Matco Tools manufacturing facility and American Legion Lakewood Memorial Post 1286 to the east; and Winchester Road to the west (see Figure 1).

1.1 HISTORIC OPERATIONS

The site was undeveloped, vacant land at least through the 1930s with initial construction of the existing manufacturing building beginning circa 1956. Die casting operations, including aluminum, magnesium, and zinc die castings manufactured for consumer and industrial products, have been conducted at the property since that time. The manufacturing plant was occupied through the 1980s by Falconer Metal Specialties, which was succeeded by Falconer Die Casting, Lexington Die Casting, Premier Tool & Die, and Premier Lakewood, Inc. Lexington Precision Corporation, the previous owner of the Property, was the owner of Lexington Die Casting before selling the manufacturing equipment and operation to Premier Tool & Die in 2006. The current site owner is LMLLC.

Operations at the site ceased circa April 2014, with removal of equipment and manufacturing materials through the end of August 2014, and the site is currently utilized for warehousing of new office furniture by Bush Industries.

1.2 SITE ENVIRONMENTAL SUMMARY

VOCs were identified in Site soil and groundwater during due diligence environmental site investigations and underground storage tank (UST) closure activities between July 2002 and November 2006. The primary soil and groundwater contaminant, 1,1,1-trichloroethane (1,1,1-TCA), had been previously used at the Site as a solvent and degreaser from approximately 1960 through 1991. Breakdown products of 1,1,1-TCA identified in groundwater include 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), chloroethane, and vinyl chloride. Also

identified in several groundwater samples were 1,1,2-trichloroethane (1,1,2-TCA) and its breakdown product 1,2-dichloroethane (1,2-DCA).

An enhanced in-situ bioremediation program was conducted to address VOCs in groundwater at the Site from August through November 2006. The program included injection of bioamendments into groundwater to support and increase the rate of naturally occurring degradation of contaminants by reductive dechlorination.

Post-remediation groundwater sampling conducted in April 2007, indicated a reduction in 1,1,1-TCA concentrations and an increase in 1,1,1-TCA breakdown products such as 1,1-DCA and chloroethane

A groundwater sampling program was implemented in June 2010 to evaluate groundwater quality conditions at the Site. At that time, the concentrations of the primary contaminant, 1,1,1-TCA, had fallen below NYSDEC Groundwater Quality Standard (GWQS) in all but one monitoring well. The secondary contaminant 1,1,2-TCA was detected in only one monitoring well at a concentration above the GWQS; and was lower than the previously detected concentrations. Concentrations of contaminant breakdown products appeared to be generally increasing at the site. Concentrations of tertiary breakdown product, chloroethane, were also increasing. Secondary breakdown product concentrations of 1,1-DCA, 1,2-DCA, and 1,1-DCE increased under the Site building, but decreased in most other areas of the Site. These changes indicated that natural attenuation of the VOC contaminants at the Site was occurring.

Soil contaminants remaining at the site are located at depths of 4 to 11.5 feet beneath site structures and include chlorinated solvents and acetone at concentrations below criteria for protection of public health in residential, commercial, or industrial settings, but above criteria for protection of groundwater.

Groundwater contaminants remaining at the Site, including chlorinated solvent VOCs, are present in overburden groundwater under approximately half of the 99,000-square-foot manufacturing building and the northern portion of the LMLLC property. Groundwater elevations are generally encountered at depths of 9 to 14 feet below grade. One groundwater sample, collected from deep groundwater monitoring well MW-11D in June 2010, exhibited concentrations of four VOCs, three at concentrations below groundwater quality standards, and the fourth, acetone, detected slightly above standards. Monitoring well MW-11D is located outside the southwest corner of the manufacturing building and up-gradient of chemical use areas. No other VOCs have been detected above standards in the deep groundwater zone.

2.0 ANNUAL GROUNDWATER MONITORING

The 2022 annual groundwater monitoring was completed to satisfy the requirements of SMP Sections 2.2.1.1, Monitored Natural Attenuation, and 3.2.1, Groundwater Monitoring.

During the September 2021 to September 2022 monitoring period, no excavations, changes of use or changes of groundwater use occurred during the Certifying Period with the exception that the building, located on the site, is currently being leased to Bush Industries for the warehousing of boxed office furniture. The boxes are stored on wood pallets in various locations in the building.

Monitoring well sampling activities were recorded in a field book and on groundwater sampling log sheets. Relevant field observations (e.g., well integrity, etc.) were noted on the well sampling logs. The completed well sampling logs are provided in Appendix C. Monitoring well locations are shown on Figure 2.

2.1 SAMPLE COLLECTION

Prior to collecting groundwater samples, the groundwater level in each well was measured and recorded. Observed groundwater elevations are recorded on the well sampling logs and provided in Table 1. Inferred groundwater elevations and contours are depicted in Figure 3. The inferred groundwater flow direction to the northeast is consistent with historic observations.

Groundwater samples were collected using the low-flow purging and sampling technique using a peristaltic pump and polyethylene tubing at flow rates of 0.1 to 0.5 liters per minute. The samples were collected once stabilization for three consecutive readings was achieved for the following parameters and variances:

- turbidity (±10 percent for values greater than 1 NTU),
- dissolved oxygen (±10 percent),
- specific conductance (±3 percent),
- temperature (±3 percent),
- pH (±0.1 units), and
- oxygen reduction potential (±10 millivolts).

The groundwater field parameters were monitored using a Horiba U-52 multi-parameter water quality meter with flow-through cell. The U-52 meter was calibrated at the beginning of each sampling day using manufacturer provided calibration fluid.

Purge water was collected, contained in a 55-gallon drum, and disposed of offsite on September 23, 2022, by Safety-Kleen Systems, Inc. A copy of the purge water disposal manifest is included in Appendix D.

Groundwater samples were collected directly into laboratory provided bottles and shipped overnight in an ice-filled cooler to the Pace Analytical facility located in Pittsburgh, Pennsylvania facility, a New York State certified laboratory (New York: NYDOH (NELAP) #10888). Two field blank samples (one per field day) and one trip blank sample were collected for quality assurance/quality control (QA/QC). Appropriate decontamination procedures were followed, and proper chain of custody procedures employed.

Groundwater samples were analyzed for target compound list (TCL) VOCs by United States Environmental Protection Agency (USEPA) method 8260C. No contaminants were reported above laboratory detection limits in the field blank samples, with the exception of: chloroform, which was detected at a concentration of 12 micrograms per liter (ug/L) in Field Blank 1 and at a concentration of 12.1 ug/L in Field Blank 2. Additionally, bromodichloromethane, was detected at a concentration of 1.8 ug/L in Field Blank 2 and 1,2,4-trimethylbenzene was detected at a concentration of 3.4 ug/L in Field Blank 2. Newly purchased distilled water was utilized to collect the Field blank samples. No contaminants were reported above laboratory detection limits in the trip blank sample.

The analytical results were compared to the NYSDEC Groundwater Quality Standards (Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1), and ECL Part 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations) to evaluate targeted compounds present above laboratory detection limits.

3.0 ANALYTICAL RESULTS

Pace Analytical provided its Laboratory Report dated August 29, 2022, for the samples collected at the LMLLC site (Appendix E). Pace Analytical reported that all holding times were met and proper preservation noted for the methods performed on the samples.

Table 2 provides a summary of the sample analytical results for the contaminants of concern in groundwater of the site.

Primary Contaminants

Primary contaminants of concern at the site, 1,1,1-TCA and 1,1,2-TCA were detected in several groundwater samples.

- 1,1,1-TCA was detected at a concentration of 30.3 ug/L in groundwater sample MW-2, which exceeds the GWQS for 1,1,1-TCA of 5 ug/L. 1,1,1-TCA was detected in groundwater sample MW-9 at a concentration of 1.9 ug/L, which is below the GWQS of 5 ug/L. 1,1,1-TCA was not detected above the laboratory detection limit of 1.0 ug/L in the remaining groundwater samples analyzed.
- 1,1,2-TCA was detected in one sample (MW-10) at a concentration of 2.4 ug/L, which exceeds the GWQS of 1 ug/L. 1,1,2-TCA was not detected above the laboratory detection limit of 1.0 ug/L in the remaining groundwater samples analyzed.

Secondary Contaminants

Secondary (breakdown product) contaminants including, 1,1-DCA, 1,1,-DCE, 1,2-DCA, and chloroethene (vinyl chloride [VC]) were also detected in groundwater samples.

- 1,1-DCA was detected in 10 of the 12 groundwater samples with concentrations in four of the samples (MW-1 and MW-2, MW-9, and MW-10) exceeding the GWQS of 5 ug/L. The maximum concentration of 70.7 ug/L was detected in MW-9. 1,1-DCA was either not detected above the laboratory detection or at concentrations below the GWQS in the remaining groundwater samples.
- Cis-1,2-DCE was not detected above the laboratory detection limit of 1.0 ug/L in the groundwater samples analyzed.
- 1,1,-DCE was detected in nine of the 12 groundwater samples with concentrations in seven of the samples (MW-1, MW-2, MW-3, MW-8, MW-9, MW-10, and MW-14) exceeding the GWQS of 5 ug/L. The maximum concentration of 54.9 ug/L was detected in MW-9. 1,1,-DCE was either not detected above the laboratory detection or at concentrations below the GWQS in the remaining groundwater samples.
- 1,2-DCA was detected in MW-9 at a concentration of 2.2 ug/L, which exceeds the GWQS of 0.6 ug/L. 1,2-DCA was not detected above the laboratory detection limit of 0.6 ug/L in the remaining groundwater samples

VC was detected in MW-3 and MW-7 at concentrations of 1.8 and 2.3 ug/L, respectively. The detected concentration in MW-7 exceeds the GWQS of 2 ug/L. VC was not detected above the laboratory detection limit of 1.0 ug/L in the remaining groundwater samples.

Tertiary Contaminants

Tertiary breakdown products, chloroethane and 1,2-dichlorobenzene, were detected in groundwater samples.

Chloroethane was detected in four of the 12 groundwater samples (MW-1, MW-2, MW-12, and MW-13) with all of the concentrations, with the exception of MW-2, exceeding the GWQS of 5 ug/L. The maximum concentration of 62.7 ug/L was detected in MW-13. Chloroethane was not detected above the laboratory detection limit of 1.0 ug/L in the remaining groundwater samples.

1,2-Dichlorobenzene was detected in MW-2 at a concentration of 5.7 ug/L, which exceeds the GWQS of 3 ug/L. 1,2-Dichlorobenzene was not detected above the laboratory detection limit of 1.0 ug/L in the remaining groundwater samples

Other Contaminants

Benzene was detected in MW-8 and MW-10 at a concentration of 1.4 ug/L, which exceed the GWQS of 1 ug/L. Benzene was not detected above the laboratory detection limit of 1.0 ug/L in the remaining groundwater samples

4.0 DISCUSSION

Groundwater samples collected from the monitoring well network at the site continue to exhibit concentrations of contaminants of concern exceeding GWQS. Monitoring wells exhibited attainment of GWQS and/or non-detectable concentrations of contaminants, decreasing contaminant concentrations, or elevated concentrations requiring continued monitoring.

4.1 ACCEPTABLE GROUNDWATER CONDITIONS

The following section show the comparison between the 2021 and 2022 sampling data. Two of the 12 monitoring wells exhibited no detected concentrations of contaminants or detections well below the GWQS, including the following:

Monitoring Well ID	Location on Site
MW-2D	North center outside the building
MW-11	West of the building

Chemicals of concern were not detected above the laboratory detection limits in monitoring wells MW-2D and MW-11.

Monitoring well MW-11 is up-gradient of impacted areas. Monitoring well MW-2D is downgradient of impacted areas and is installed in the Site's deeper water bearing zone to 27 feet below ground surface.

4.2 IMPROVING GROUNDWATER CONDITIONS

The following section show the comparison between the 2021 and 2022 sampling data. Two of the 12 monitoring wells exhibited a clear decrease in contaminant concentrations from 2021 to 2022.

Monitoring Well ID	Location on Site
MW-7	Northeast of the building
MW-14	North of Building

In Monitoring well MW-7, VC decreased from 3.8 ug/L to 2.3 ug/L; 1,1-DCA decreased from 3.3 ug/L to 1.9 ug/L; and 1,1-DCE decreased from 3.7 ug/L to 1.4 ug/L. The VC concentration is above the respective GWQS.

In Monitoring Well MW-14, chloroethane decreased from 14.1 ug/L to BDL; 1,1-DCA decreased from 5.5 ug/L to 3.2 ug/L; and 1,1-DCE decreased from 16.3 ug/L to 9.4 ug/L. The concentration of 1,1-DCE is above the respective GWQS.

Monitoring well MW-7 is downgradient of the soil and groundwater impact areas and is located in the northeast portion of the property, along the boundary line. MW-14 is located on the north side of the building, downgradient of the impacted areas.

4.3 GROUNDWATER CONDITIONS FOR CONTINUED MONITORING

Groundwater samples collected from eight monitoring wells exhibited an overall increase and/or consistency in contaminant concentrations between 2021 and 2022.

Monitoring Well ID	Location on Site
MW-1	North center outside the building
MW-2	North side of building
MW-3	Northeast outside the building
MW-8	Central portion of the building (inside)
MW-9	Inside the secondary machining area of the building
MW-10	Central portion of the building (inside)
MW-12	North of Building
MW-13	North of Building

In Monitoring Well MW-1, chloroethane increased from BDL to 14.8 ug/L; 1,1-DCE increased from 5.9 ug/L to 15.1 ug/L; and 1,1-DCA increased from 3.3 ug/L to 8.8 ug/L. These concentrations are above their respective GWQS.

In Monitoring Well-2, chloroethane decreased from 8.6 ug/L to 4.7 ug/L; 1,1-DCE increased from 14.2 ug/L to 39.8 ug/L; 1,1-DCA increased from 7.1 ug/L to 19.5 ug/L; 1,1,1-TCA increased from 8.0 ug/L to 30.3 ug/L; and 1,2-dichlorobenzene increased from 1.3 ug/L to 5.7 ug/L. These concentrations are above their respective GWQS with the exception of chloroethane.

In Monitoring Well-3, chloroethane decreased from 2.2 ug/L to BDL; VC increased from BDL to 1.8 ug/L; 1,1-DCA increased from 1.4 ug/L to 1.9 ug/L; and 1,1-DCE increased from 19 ug/L to 36.7 ug/L. The 1,1-DCE concentration is above the applicable GWQS and the concentrations of VC, chloroethane, 1,1-DCA, and 1,2-DCA are below their applicable GWQS.

In Monitoring Well MW-8, 1,1-DCA decreased from 6.7 ug/L to 3.8 ug/L;1,1-DCE increased from 6.1 ug/L to 6.9 ug/L; and benzene increased from BDL to 1.4 ug/L. 1,1-DCE and benzene concentrations are above their applicable GWQS and the 1,1-DCA concentration is below the applicable GWSQ.

In Monitoring Well MW-9, 1,1-DCE decreased from 57.2 ug/L to 54.9 ug/L; 1,1-DCA increased from 69.8 ug/L to 70.7 ug/L; and 1-2-DCA increased from 2.0 ug/L to 2.2 ug/L. These concentrations are above their respective GWQS.

In Monitoring Well MW-10, 1,1-DCE decreased from 9.7 ug/L to 7.6 ug/L; 1,1-DCA decreased from 69 ug/L to 54.6 ug/L; 1,1,2-TCA increased from 2.2 ug/L to 2.4 ug/L; and benzene increased from BDL to 1.4 ug/L. These concentrations are above their respective GWQS.

In Monitoring Well MW-12, chloroethane increased from BDL to 41.8 ug/L and 1,1-DCA increased from BDL to 2.9 ug/L. The concentration of chloroethane is above the applicable GWQS and 1,1-DCA and is below the applicable GWSQ.

In Monitoring Well MW-13, 1,1-DCE increased from 1.6 ug/L to 3.9 ug/L; 1,1-DCA increased from 1.3 ug/L to 1.9 ug/L; and chloroethane increased from 52.4 ug/L to 62.7 ug/L. The concentration of chloroethane is above the applicable GWQS and 1,1-DCA and 1,1-DCE are below their respective GWSQ.

Monitoring wells MW-1, MW-2, MW-3, MW-12 and MW-13 are down-gradient of the impacted areas, at the boundaries of the historical impacted groundwater plume.

Monitoring wells MW-8 and MW-10 are located in the area of the soil and groundwater impact areas.

MW-14 is located on the north side of the building, downgradient of the impacted areas. There is no evidence from the groundwater data from these monitoring wells that indicates that the historical groundwater impact plume is spreading beyond the previous extent of delineation.

5.0 CONCLUSIONS

Based upon the results of the annual groundwater monitoring completed at the Lexington Machining, LLC site in Lakewood, New York, continued groundwater monitoring is required under the NYSDEC approved Site Management Plan.

Groundwater contaminant concentrations are below GWQS in 2 of the 12 groundwater monitoring wells. Groundwater conditions were observed to be improving in monitoring wells MW-7 and MW-14. Eight monitoring wells exhibited increasing concentrations of contaminants including MW-1, MW-2, MW-3, MW-8 through MW-10, MW-12, and MW-13.

No additional action, investigation or revisions of the groundwater monitoring schedule is recommended at the site.

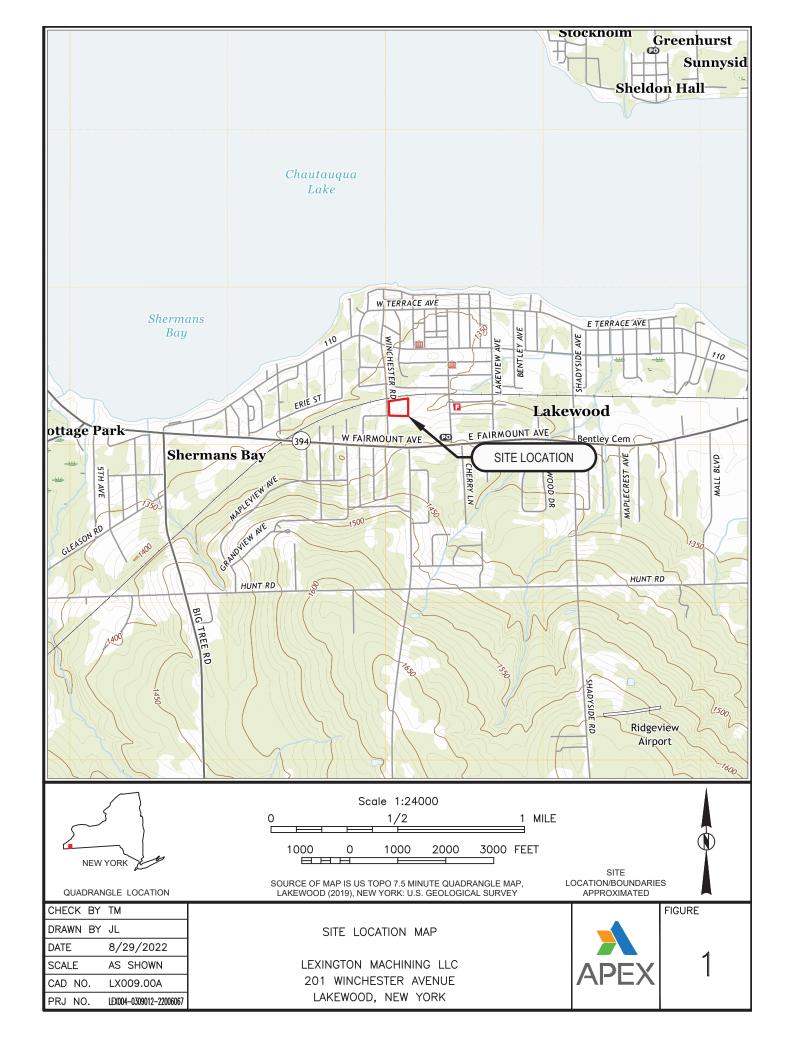
6.0 SIGNATURES

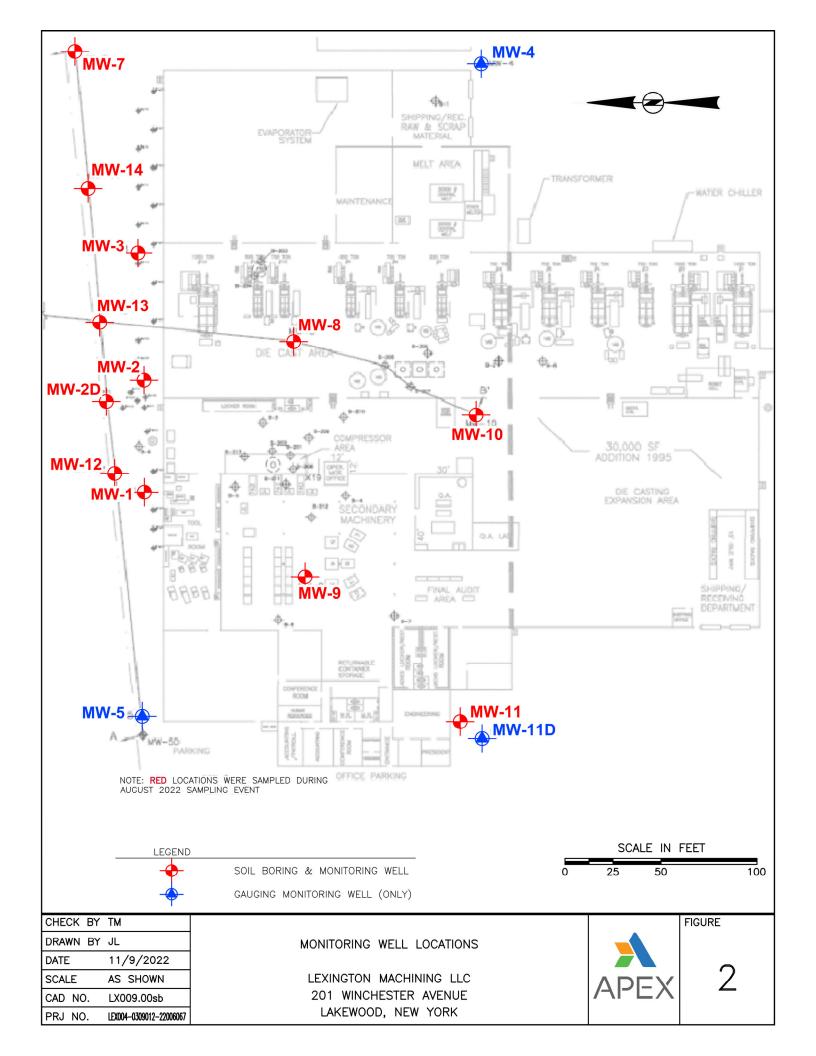
Prepared by:

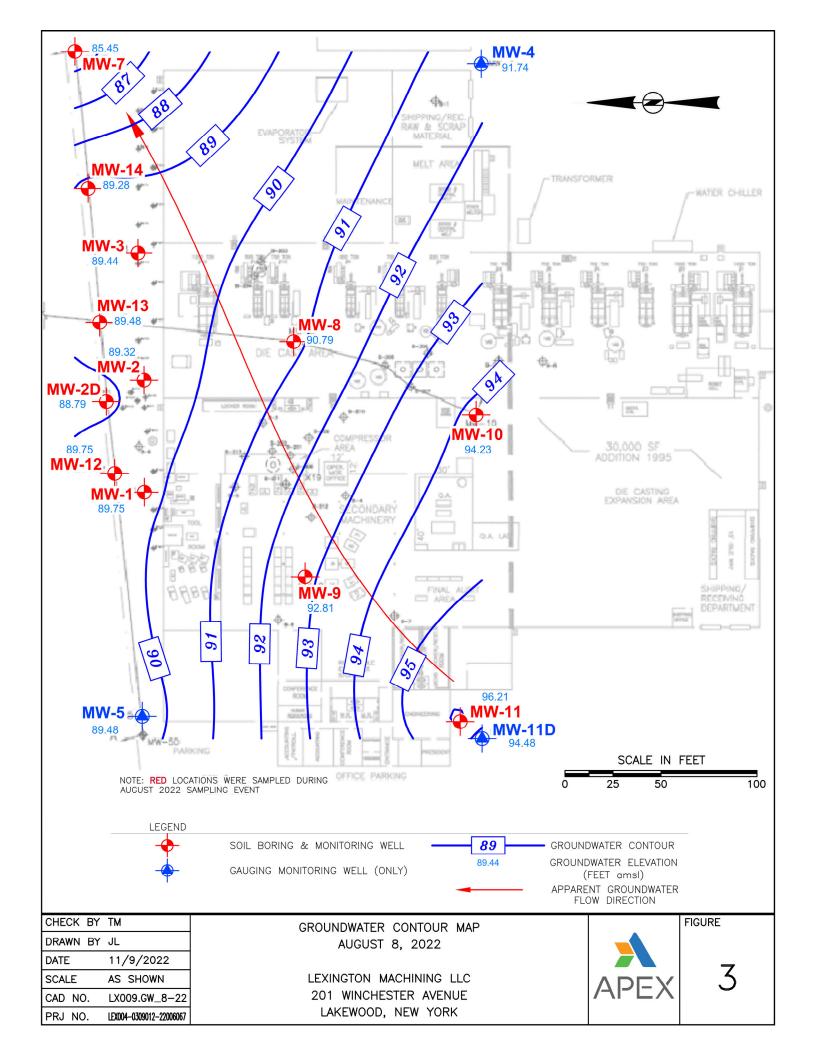
Timothy N. McCann Program Manager

Northeast Ohio Regional Office

Lelling Wi


Timothy N. M.Can


Reviewed by:


Kellie L. Wing Program Manager Detroit Regional Office

FIGURES

TABLES

Table 1
August 2022 Groundwater Elevation Measurements

Well ID	Date	Depth to Water (ft)	Ground Surface Elevation (ft) *	Groundwater Elevation (ft)
MW-1	8/8/2022	12.07	101.82	89.75
MW-2	8/8/2022	11.98	101.3	89.32
MW-2D	8/8/2022	12.05	100.84	88.79
MW-3	8/8/2022	11.58	101.02	89.44
MW-4	8/8/2022	9.34	101.08	91.74
MW-5	8/8/2022	13.33	102.81	89.48
MW-7	8/8/2022	14	99.45	85.45
MW-8	8/8/2022	14.29	105.08	90.79
MW-9	8/8/2022	12.2	105.01	92.81
MW-10	8/8/2022	10.84	105.07	94.23
MW-11	8/8/2022	8.29	104.5	96.21
MW-11D	8/8/2022	9.75	104.23	94.48
MW-12	8/8/2022	11.05	100.8	89.75
MW-13	8/8/2022	11.32	100.8	89.48
MW-14	8/8/2022	11.22	100.5	89.28

^{*} Ground Surface Elevations derived from the January 9, 2007 Summary of Environmental Investigation and Remedial Actions, Haley & Aldrich

Table 2 August 2022 Groundwater Sample Data Summary

Lexington Machining LLC 201 Winchester Road, Lakewood, NY

Sample #:	TOGs - Table 5		MW-	1		MW-2	2		MW-2D		MW-3	3	MW-7		
	Groundwater														
	Effluent														
Date Sampled:	Limitations (Class GA)	08.	/08/2	022	08	/08/2	022	08	/09/2022	08	/08/20	022	08/	/08/20	22
	(ug/L)														
Volatiles (ug/L)		Conc	Q	RL	Conc	Q	RL	Conc	Q RL	Conc	Q	RL	Conc	Q	RL
Vinyl chloride	2	ND	-	1.00	ND		1.00	ND	1.00	1.8		1.00	2.3		1.00
Chloroethane	5	14.8		1.00	4.7		1.00	ND	1.00	ND		1.00	ND	1	1.00
1,1-Dichloroethene	5	15.1		1.00	39.8		1.00	ND	1.00	36.7		1.00	1.4		1.00
1,1-Dichloroethane	5	8.8		1.00	19.5		1.00	ND	1.00	1.9	-	1.00	1.9		1.00
cis-1,2-Dichloroethene	5	ND		1.00	ND		1.00	ND	1.00	ND		1.00	ND		1.00
1,1,1-Trichloroethane	5	ND		1.00	30.3		1.00	ND	1.00	ND		1.00	ND		1.00
1,2-Dichloroethane (EDC)	0.6	ND		1.00	ND		1.00	ND	1.00	ND		1.00	ND		1.00
1,1,2-Trichloroethane	1	ND		1.00	ND		1.00	ND	1.00	ND		1.00	ND		1.00
1,2-Dichlorobenzene	3	ND		1.00	5.7		1.00	ND	1.00	ND		1.00	ND		1.00
Bromodichloromethane	50	ND		1.00	ND		1.00	ND	1.00	ND		1.00	ND		1.00
Methylene Chloride	5	ND		1.00	ND		1.00	ND	1.00	ND		1.00	ND		1.00
Benzene	1	ND		1.00	ND		1.00	ND	1.00	ND		1.00	ND		1.00
Chloroform	7	ND		1.00	ND		1.00	ND	1.00	ND		1.00	ND		1.00
1,2,4-Trimethylbenzene	5	ND		1.00	ND		1.00	ND	1.00	ND		1.00	ND		1.00
Other VOCs	Various	ND		Various	ND		Various	ND	Various	ND		Various	ND		Various
Technical Guidance and Operationa	al Series - Table 1 New York S	State Ambier	nt Wa	iter Quality											
Standards & Guidance Values and T	able 5 New York State Ground	water Effluer	nt Lim	itations											
(Class GA), June 1998.															
Above the GW Effluent Limitations															
NS = No Standard Available															
ND = Analyzed for but Not Detected a	t or above the MDL														
Bold concentrtion detected above MD	L														

Table 2 August 2022 Groundwater Sample Data Summary

Lexington Machining LLC 201 Winchester Road, Lakewood, NY

Sample #:	Sample #: TOGs - Table 5		MW-8	В		MW-9		IV	IW-1	0		MW-1	11		MW-1	2
	Groundwater															
	Effluent															
Date Sampled:	Limitations (Class GA)	08	/09/20)22	08	/09/2022		08/	09/2	022	08	3/09/2	022	0	3/09/2	022
	(ug/L)															
Volatiles (ug/L)		Conc	Q	RL	Conc	Q R	_	Conc	Q	RL	Conc	Q	RL	Conc	Q	RL
Vinyl chloride	2	ND		1.00	ND	1.0	0	ND		1.00	ND		1.00	ND		1.00
Chloroethane	5	ND		1.00	ND	1.0	0	ND		1.00	ND		1.00	41.8		1.00
1,1-Dichloroethene	5	6.9		1.00	54.9	1.0	0	7.6		1.00	ND		1.00	ND		1.00
1,1-Dichloroethane	5	3.8		1.00	70.7	1.0	10	54.6		1.00	ND		1.00	2.9		1.00
cis-1,2-Dichloroethene	5	ND		1.00	ND	1.0	0	ND		1.00	ND		1.00	ND		1.00
1,1,1-Trichloroethane	5	ND		1.00	1.9	1.0	0	ND		1.00	ND		1.00	ND		1.00
1,2-Dichloroethane (EDC)	0.6	ND		1.00	2.2	1.0	0	ND		1.00	ND		1.00	ND		1.00
1,1,2-Trichloroethane	1	ND		1.00	ND	1.0	0	2.4		1.00	ND		1.00	ND		1.00
1,2-Dichlorobenzene	3	ND		1.00	ND	1.0	0	ND		1.00	ND		1.00	ND		1.00
Bromodichloromethane	50	ND		1.00	ND	1.0		ND		1.00	ND		1.00	ND		1.00
Methylene Chloride	5	ND		1.00	ND	1.0	0	ND		1.00	ND		1.00	ND		1.00
Benzene	1	1.4		1.00	ND	1.0	0	1.4		1.00	ND		1.00	ND		1.00
Chloroform	7	ND		1.00	ND	1.0	0	ND		1.00	ND		1.00	ND		1.00
1,2,4-Trimethylbenzene	5	ND		1.00	ND	1.0	0	ND		1.00	ND		1.00	ND		1.00
Other VOCs	Various	ND		Various	ND	Vari	ous	ND		Various	ND		Various	ND		Various
Technical Guidance and Operationa	Il Series - Table 1 New York S															
Standards & Guidance Values and Ta	able 5 New York State Ground															
(Class GA), June 1998.																
Above the GW Effluent Limitations																
NS = No Standard Available																
ND = Analyzed for but Not Detected at																
Bold concentrtion detected above MDI	L															

Table 2 August 2022 Groundwater Sample Data Summary

Lexington Machining LLC 201 Winchester Road, Lakewood, NY

Sample #:	TOGs - Table 5	ı	MW-13			MW-1	4	FIELD	BLANK -1	FIEL	D BLANK -2	TRI	P BLA	NK
Date Sampled:	Groundwater Effluent Limitations (Class GA)	08	/08/202	22	08	3/08/20)22	08/	/08/2022	30	8/09/2022	08	/09/20	22
	(ug/L)													
Volatiles (ug/L)		Conc	Q	RL	Conc	Q	RL	Conc	Q RL	Conc	Q RL	Conc	Q	RL
Vinyl chloride	2	ND		1.00	ND		1.00	ND	1.00	ND	1.00	ND		1.00
Chloroethane	5	62.7		1.0	ND		1.00	ND	1.00	ND	1.00	ND		1.00
1,1-Dichloroethene	5	3.9		1.00	9.4		1.00	ND	1.00	ND	1.00	ND		1.00
1,1-Dichloroethane	5	1.9		1.00	3.2		1.00	ND	1.00	ND	1.00	ND		1.00
cis-1,2-Dichloroethene	5	ND		1.00	ND		1.00	ND	1.00	ND	1.00	ND		1.00
1,1,1-Trichloroethane	5	ND		1.00	ND		1.00	ND	1.00	ND	1.00	ND		1.00
1,2-Dichloroethane (EDC)	0.6	ND		1.00	ND		1.00	ND	1.00	ND	1.00	ND		1.00
1,1,2-Trichloroethane	1	ND		1.00	ND		1.00	ND	1.00	ND	1.00	ND		1.00
1,2-Dichlorobenzene	3	ND		1.00	ND		1.00	ND	1.00	ND	1.00	ND		1.00
Bromodichloromethane	50	ND		1.00	ND		1.00	ND	1.00	1.8	1.00	ND		1.00
Methylene Chloride	5	ND		1.00	ND		1.00	ND	1.00	ND	1.00	ND		1.00
Benzene	1	ND		1.00	ND		1.00	ND	1.00	ND	1.00	ND		1.00
Chloroform	7	ND		1.00	ND		1.00	12	1.00	12.1	1.00	ND		1.00
1,2,4-Trimethylbenzene	5	ND		1.00	ND		1.00	ND	1.00	3.4	1.00	ND		1.00
Other VOCs	Various	ND		Various	ND		Various	ND	Various	ND	Various	ND		Various
Technical Guidance and Operationa	al Series - Table 1 New York S													
Standards & Guidance Values and T	able 5 New York State Ground													
(Class GA), June 1998.														
Above the GW Effluent Limitations														
NS = No Standard Available														
ND = Analyzed for but Not Detected at	t or above the MDL													
Bold concentrtion detected above MDI	L													

Well	Date	PCE (ug/L	Chloroethane (ug/L)	Vinyl Chloride	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	1,1,1-TCA	1,1,2-TCA	Benzene	Acetone	Toluene	ODCB	MEK	Total VOCs
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
IYSDEC G	iwqs	5	5	2	5	0.6	5	5	5	1	1	50	5	3	50	
Well	Date		Chloroethane (ug/L)	Vinyl Chloride (ug/L)	1,1-DCA (ug/L)	1,2-DCA (ug/L)	1,1-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	1,1,2-TCA (ug/L)	Benzene (ug/L)	Acetone (ug/L)	Toluene (ug/L)	ODCB (ug/L)	MEK (ug/L)	Total VOC: (ug/L)
/W-1	5/23/2005		BDL	BDL	210	9.15	370	BDL	174	BDL	BDL	BDL	-	-	-	763.2
	8/17/2006		BDL	BDL	85	3.6	190	BDL	61	BDL	BDL	BDL	-	-	-	339.6
	11/6/2006		13.8	BDL	16.6	BDL	19.4	BDL	5.34	BDL	BDL	BDL	-	-	-	55.1
	4/18/2007 6/2/2010		BDL 137	BDL 2.02	BDL 25.1	BDL 0.331	75.9	BDL BDL	BDL 12.6	BDL BDL	BDL	19.7	0.502	0.737	BDL	0 274
	6/30/2014		11	BDL	9	0.32	26	BDL	0.53	BDL	BDL	BDL	BDL	0.45	BDL	47.42
	11/9/2015	BDL	1.2	BDL	10.7	BDL	16.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	28
	10/25/2016	BDL BDL	BDL BDL	BDL BDL	5.8	BDL	10.7 11.4	BDL BDL	BDL 0.761	BDL BDL	BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	16.5
	9/12/2017 9/6/2018	BDL	BDL	BDL	6.71 2.7	BDL BDL	4.6	BDL	BDL	BDL	BDL BDL	BDL	BDL	BDL	BDL	18.9 7.3
	8/20/2019	BDL	BDL	BDL	BDL	BDL	1.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.3
	8/26/2020	BDL	BDL	BDL	BDL	2.9	- 5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	7.9
	8/17/2021	BDL	BDL	BDL BDL	3.3	BDL BDI	5.9 15.1	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	9.2 38.7
MW-2	8/8/2022 5/23/2005	BDL	14.8	BDL	8.8 81.2	3.92	68.3	BDL	53.8	BDL	BDL	10.3	- BDL	BUL -	- BUL	1317.5
	8/17/2006		750	BDL	82	7.3	86	2.6	42	BDL	BDL	BDL	-	-	-	969.9
	11/6/2006		701	BDL	18.6	9.06	6.8	2.68	BDL	BDL	BDL	BDL	-	-	-	738.1
	4/18/2007		760	BDL BDL	19 27.2	6.8	8.4	3.2 BDL	BDL BDL	BDL BDI	-	-	- BDL	- BDL	- BDL	799
	6/2/2010 6/30/2014		1300 100	BDL	11	BDL 0.55	27.6 2.5	0.4	BDL	BDL	BDL BDL	200 BDL	BDL	BDL	BDL	1550 114.45
	11/9/2015	BDL	950	BDL	16.4	1.7	9.6	1.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	979.1
	10/25/2016	BDL	417	BDL	6.4	BDL	3.8	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	428.2
	9/12/2017	BDL BDL	900 347	BDL BDL	28.1	0.85	7.65	1.08	BDL	BDL BDL	BDL	BDL BDL	BDL	BDL	BDL BDL	946 398.3
	9/5/2018 8/20/2019	BDL	81.8	BDL	46 27	BDL BDL	5.3 20.2	BDL BDL	BDL 5.9	BDL	BDL BDL	BDL	BDL BDL	BDL 1.8	BDL	136.7
	8/26/2020	BDL	23.9	BDL	29.3	BDL	52.8	BDL	27.8	BDL	BDL	BDL	BDL	5.1	BDL	138.9
	8/17/2021	BDL	8.6	BDL	7.1	BDL	14.2	BDL	8	BDL	BDL	BDL	BDL	1.3	BDL	39.2
MW-2D	8/8/2022	BDL	4.7	BDL	19.5	BDL	39.8	BDL	30.3	BDL	BDL	BDL	BDL	5.7	BDL	100
IVIVV-2D	8/1/2005 6/2/2010		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	- BDL	- BDL	- BDL	0
	6/30/2014		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	11/9/2015	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	BDL	-	0
	10/25/2016 9/12/2017	BDL BDL	BDL 4.45	BDL BDL	BDL 0.499	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0 4.95
	9/12/2017 9/5/2018	BDL	4.45 BDL	BDL	0.499 BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.95 0
	8/20/2019	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	8/27/2020	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	8/17/2021 8/9/2022	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0
MW-3	5/23/2005	DDL	15.3	BDL	87.3	2.4	72.7	BDL	98.9	BDL	0.815	58.1	-	-	-	335.5
	8/17/2006		5.4	BDL	35	BDL	62	BDL	43	BDL	BDL	BDL	-	-	-	145.4
	11/6/2006		72.8	BDL BDL	34.1	BDL BDL	63.4	BDL	22.1	BDL	BDL	BDL	-	-	-	192.4
	4/18/2007 6/2/2010		BDL 31.1	1.23	4.1 BDL	BDL	6 41.6	BDL 10.3	1.8 BDL	BDL BDL	- BDL	4.96	BDL	BDL	BDL	12 89.2
	6/30/2014		16	0.7	60	0.68	74	0.46	17	BDL	0.15	BDL	BDL	10	BDL	178.84
	11/9/2015	BDL	57	2.5	58.5	1.8	152	BDL	BDL	BDL	BDL	BDL	BDL	3.1	BDL	272.4
	10/25/2016 9/12/2017	BDL BDL	21.7 41.8	BDL 1.23	28.2 31.2	BDL 0.962	89.5 70.4	BDL 0.46	BDL 0.5	BDL BDL	BDL BDL	BDL BDL	BDL BDL	2.3 1.91	BDL BDL	141.7 150
	9/5/2018	BDL	19.6	BDL	9.5	69.6	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	79.1
	8/19/2019	BDL	29.6	BDL	7.6	1	86.5	BDL	BDL	BDL	BDL	BDL	BDL	2.1	BDL	126.8
	8/26/2020	BDL	14.6	1.7	4.4	BDL	79.8	BDL	BDL	BDL	BDL	BDL	BDL	1.9	BDL	102.4
	8/16/2021 8/8/2022	BDL BDL	2.2 BDL	BDL 1.8	1.4 1.9	BDL BDL	19 36.7	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	22.6 40.4
MW-4	5/23/2005		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	12.7	-	-	-	12.7
	6/2/2010		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	7/1/2014 11/9/2015	BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0
	10/26/2016	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	9/12/2017	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	9/5/2018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
MW-5	8/19/2019 8/1/2005	BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL -	BDL	BDL -	0.0
	6/2/2010		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	6/30/2014		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	11/9/2015	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	10/25/2016 9/12/2017	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0
	9/6/2018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	8/20/2019	1.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.5
MW-5D	8/1/2005 6/2/2010		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 5.23	- BDL	- BDL	- BDL	0.0 5.23
	6/2/2010		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.14	5.23 BDL	BDL	BDL	BDL	5.23 0.14
/IW-6	8/1/2005		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	0.0
	6/2/2010		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
MW-7	6/30/2014 8/1/2005		BDL 5.93	BDL BDL	BDL 34	BDL BDL	BDL 21.9	BDL BDL	BDL 42.4	BDL BDL	BDL BDL	BDL BDL	BDL -	BDL -	BDL -	0 104.2
	8/17/2006		3.3	BDL	38	BDL	49	BDL	52	BDL	BDL	BDL	-	-	-	142.3
	11/6/2006		17.2	BDL	25.6	BDL	70.9	BDL	48.9	BDL	BDL	BDL	-	-	-	162.6
	4/18/2007		BDL	1.4	6	BDL	15	BDL	8	BDL	-	-	-	-	-	30
	6/2/2010 7/1/2014		15.5 11	22.3 9.2	22.3 20	0.453 0.33	19.5 35	BDL 0.27	BDL 0.32	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 0.62	BDL BDL	80.1 79
	11/9/2015	BDL	5.3	9.2	12.8	BDL	10.7	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	28.8
	10/25/2016	BDL	3.4	6.8	10.2	BDL	9.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	29.9
	9/12/2017	BDL	3.58	9.32	9.15	BDL	5.18	BDL	BDL	BDL	BDL	BDL	BDL	0.482	BDL	27.7
	9/5/2018 8/19/2019	BDL BDL	5.6 BDL	BDL 2.1	5.6 BDL	BDL BDL	2.6 1.6	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	13.8 3.7
	8/27/2020	BDL	BDL	4.3	3.1	BDL	2.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	9.5
	8/16/2021	BDL	BDL	3.8	3.3	BDL	3.7	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	10.8
MIN O	8/8/2022	BDL	BDL	2.3	1.9	BDL	1.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	5.6
MW-8	8/1/2005 8/17/2006		BDL BDL	BDL BDL	28.7 14	BDL BDL	10.5 7.6	BDL BDL	2.02 BDL	2.02 BDL	BDL BDL	BDL BDL	-	- 1	-	43.2 21.6
	11/6/2006		BDL BDL	BDL	14 15.3	BDL	7.6	BDL	BDL	BDL	BDL	BDL	-		-	21.6 23.1
	4/19/2007		BDL	1.5	7.9	BDL	3.8	BDL	2.6	BDL	-	-	-	-	-	16
	6/2/2010		1.08	0.631	36.2	0.587	61.2	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	99.7
	7/1/2014	BDL	BDL BDL	BDL BDL	390	11	410	BDL BDL	7.5 BDL	0.64 BDL	0.25 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	819.39
	11/9/2015 10/26/2016	BDL BDL	BDL BDL	BDL BDL	7.1 9.7	BDL BDL	13.9 22.1	BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL BDL	21 31.8
	9/13/2017	BDL	BDL	BDL	6.43	BDL	16.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	22.5
	9/6/2018	BDL	BDL	BDL	8.3	BDL	16.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	24.7
	8/20/2019	BDL	BDL	BDL	4.8	BDL	8.8	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	13.6
	8/27/2020	BDL	BDL	BDL	6.3	BDL	15.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	21.8

Lexington Machining LLC 201 Winchester Road, Lakewood, NY Table 3 - Historic Groundwater Sample Data

VIJDEC O	wqs		5 5	2	5	0.6	5	5	5	1	1	50	5	3	50	W-1 1115
Well	Date		Chloroethane (ug/L)	Vinyl Chloride (ug/L)	1,1-DCA (ug/L)	1,2-DCA (ug/L)	1,1-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	1,1,2-TCA (ug/L)	Benzene (ug/L)	Acetone (ug/L)	Toluene (ug/L)	ODCB (ug/L)	MEK (ug/L)	Total VOC (ug/L)
	8/16/2021 8/9/2022	BDL BDL	BDL BDL	BDL BDL	6.7 3.8	BDL BDL	6.1 6.9	BDL BDL	BDL BDL	BDL BDL	BDL 1.4	BDL BDL	BDL BDL	BDL BDL	BDL BDL	12.8 12.1
MW-9	8/1/2005		BDL	BDL	108	4.35	294	BDL	19	BDL	BDL	BDL	-	-	-	425.4
	8/17/2006 11/6/2006		18 BDL	BDL BDL	400 71.5	16 3.44	500 15	BDL BDL	42 6.92	BDL BDL	BDL BDL	BDL BDL	-	-	-	976 238.9
	4/19/2007		BDL	33	180	15	590	BDL	43	BDL	-	-	-	-	-	846
	6/2/2010 7/1/2014		BDL BDL	BDL BDL	346 15	11.4 0.27	788 36	BDL 0.33	BDL 0.21	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	1150 51.81
	11/9/2015	BDL	BDL	BDL	216	6.8	328	BDL	17.6	BDL	BDL	BDL	BDL	BDL	BDL	568.4
	10/26/2016 9/13/2017	BDL BDL	BDL BDL	BDL BDL	144 196	9.1 3.97	232 181	BDL BDL	10.6 11.2	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	395.7 392
	9/6/2018	BDL	BDL	BDL	166	4.1	194	BDL	7.8	BDL	BDL	BDL	BDL	BDL	BDL	371.9
	8/20/2019 8/27/2020	BDL BDL	BDL BDL	BDL BDL	123 142	BDL 4.1	107 163	BDL BDL	BDL 8.2	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	230 317.3
	8/16/2021	BDL	BDL	BDL	69.8	2	57.2	BDL	1.9	BDL	BDL	BDL	BDL	BDL	BDL	130.9
MW-10	8/9/2022 8/1/2005	BDL	BDL BDL	BDL BDL	70.7 77	2.2 BDL	54.9 5.9	BDL BDL	1.9 BDL	BDL BDL	BDL BDL	BDL BDL	BDL -	BDL -	BDL -	129.7 83
14144-10	8/17/2006		BDL	BDL	110	1.6	14	BDL	3.5	3.4	BDL	BDL			-	132.5
	6/2/2010		BDL BDL	BDL BDL	BDL	0.715 BDL	58.7	0.496 BDL	BDL	2.65	BDL 0.11	BDL BDL	BDL BDL	BDL BDL	BDL BDL	169
	7/1/2014 11/9/2015	BDL	BDL	BDL	44 40	BDL	8.2 4.1	BDL	0.18 BDL	1.8 1.9	BDL	BDL	BDL	BDL	BDL	55.1 44.1
	10/26/2016	BDL	BDL	BDL	44.7	1.7	9.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	55.8
	9/13/2017 9/6/2018	BDL BDL	BDL BDL	BDL BDL	38.1 61.1	BDL BDL	2.32 10.6	BDL BDL	BDL BDL	1.21 2.2	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	41.6 73.9
	8/20/2019	BDL	BDL	BDL	50.2	BDL	6.1	BDL	BDL	2.2	BDL	BDL	BDL	BDL	BDL	58.5
	8/27/2020 8/16/2021	BDL BDL	BDL BDL	BDL BDL	59.7 69	BDL BDL	9.6 9.7	BDL BDL	BDL BDL	2.1 2.2	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	71.4 80.9
	8/9/2022	BDL	BDL	BDL	54.6	BDL	7.6	BDL	BDL	2.4	1.4	BDL	BDL	BDL	BDL	66
MW-11	8/1/2005 4/19/2007	-	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 1.6	BDL BDL	-			-		0.0 1.6
	6/2/2010		BDL	BDL	0.502	BDL	0.572	BDL	BDL	BDL	BDL	3.79	BDL	BDL	BDL	4.86
	7/1/2014	BDL	BDL BDL	BDL BDL	0.53 BDL	BDL BDL	BDL BDL	BDL BDL	1.1	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	1.63
	11/9/2015 10/26/2016	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.3 BDL	BDL	BDL	BDL	BDL	BDL	BDL	3.2 0
	9/13/2017 9/5/2018	BDL BDL	BDL BDL	BDL BDL	1.24 BDL	BDL BDL	1.35 BDL	BDL BDL	1.4 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	3.99 0
	8/19/2019	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	8/26/2020	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	8/17/2021 8/9/2022	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0
MW-11D	8/1/2005	-	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	-	-	0.0
	6/2/2010 7/1/2014	-	BDL BDL	BDL BDL	0.999 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0.458 0.18	58.2 BDL	BDL BDL	BDL BDL	3.13 BDL	62.8 0.18
	11/9/2015	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
	10/26/2016 9/13/2017	BDL BDL	BDL BDL	BDL BDL	BDL 1	BDL BDL	BDL 1.51	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0 2.51
	9/5/2018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0
MW-12	8/20/2019	BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL	BDL BDL	BDL -	BDL	BDL	BDL	BDL	0
IVIVV-12	11/6/2006 4/19/2007		19.2 190	BDL BDL	7.5 6.8	BDL BDL	14 2.2	BDL	3.4 BDL	BDL	-	-	-	-	-	44 199
	6/2/2010		851	BDL	20.9	BDL	28.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	900
	6/30/2014 11/9/2015		BDL	BDL	9.3	0.19	17 Unab	BDL ole to Locate W	1 ell - no sample	BDL	BDL	BDL	BDL	0.43	BDL	27.9
	10/26/2016							ole to Locate W								
	9/12/2017 9/6/2018	BDL	BDL	BDL	5.9	BDL	Unat 12.7	ble to Locate W BDL	ell - no sample BDL	BDL	BDL	BDL	BDL	BDL	BDL	18.6
	8/20/2019	BDL	BDL	BDL	BDL	BDL	1.8	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.8
	8/26/2020 8/17/2021	BDL BDL	3.3 BDL	BDL BDL	2.5 BDL	BDL BDL	3.4 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDI	9.2 0
	8/9/2022	BDL	41.8	BDL	2.9	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	44.7
MW-13	11/6/2006 4/19/2007		BDL BDL	BDL BDL	3.8 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDI	-	-				3.8 0
	6/2/2010		25.9	BDL	1.96	BDL	9.06	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	36.9
	6/30/2014 11/9/2015	BDL	1200 272	BDL BDL	69 10.6	2.9	8.2 12.5	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	1281 296.1
	10/25/2016	BDL	44.5	BDL	3.4	BDL	4.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	52.5
	9/12/2017 9/5/2018	BDL BDL	665 430	BDL BDL	13.2 27.6	0.955 1.3	11.7 7.6	0.96 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	699 466.5
	8/19/2019	BDL	198	BDL	19.3	BDL	2.6	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	219.9
	8/26/2020 8/16/2021	BDL BDL	576 52.4	BDL BDL	20.1	1.4 BDL	9.7 1.6	1.3 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	608.5 55.3
	8/8/2022	BDL	62.7	BDL	1.9	BDL	3.9	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	68.5
				BDL	BDL	BDL BDL	BDL 16	BDL BDL	BDL 8.5	BDL BDL	-	-	-	-	-	0 30
MW-14	11/6/2006		BDL							BDL	BDL	BDL	BDL	BDL	BDL	8.16
WW-14	11/6/2006 4/18/2007 6/2/2010		BDL BDL 1.59	BDL 1.49	5.5 2.12	BDL	2.96	BDL	BDL				BDL	2.3		
WW-14	4/18/2007 6/2/2010 7/1/2014		BDL 1.59 14	BDL 1.49 3.1	2.12 33	BDL 0.21	2.96 42	0.22	3.2	BDL	BDL	BDL			BDL	99.68
MW-14	4/18/2007 6/2/2010 7/1/2014 11/9/2015	BDL BDL	BDL 1.59 14 BDL	BDL 1.49	2.12 33 10.5	BDL 0.21 BDL	2.96 42 1.8	0.22 BDL	3.2 BDL	BDL BDL	BDL BDL	BDL	BDL	1.6	BDL	12.3
MW-14	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017	BDL BDL	BDL 1.59 14 BDL 1.7 3.91	BDL 1.49 3.1 1.2 1.1 4.33	2.12 33 10.5 5.8 19	BDL 0.21 BDL BDL BDL	2.96 42 1.8 4.4 18.7	0.22 BDL BDL BDL	3.2 BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL	BDL BDL BDL	1.6 BDL 0.845	BDL BDL BDL	12.3 13 46.8
//W-14	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016	BDL BDL BDL	BDL 1.59 14 BDL 1.7	BDL 1.49 3.1 1.2 1.1 4.33 BDL	2.12 33 10.5 5.8 19 6.1	BDL 0.21 BDL BDL BDL BDL	2.96 42 1.8 4.4 18.7 3.5	0.22 BDL BDL BDL BDL	3.2 BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	1.6 BDL 0.845 BDL	BDL BDL BDL BDL	12.3 13 46.8 9.6
/W-14	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020	BDL BDL BDL BDL BDL	BDL 1.59 14 BDL 1.7 3.91 BDL BDL BDL	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6	BDL 0.21 BDL BDL BDL BDL BDL BDL BDL BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7	BDL BDL BDL BDL BDL BDL BDL	3.2 BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3
/W-14	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020 8/16/2021	BDL BDL BDL BDL BDL BDL	BDL 1.59 14 BDL 1.7 3.91 BDL BDL BDL	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
IYSDEC	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 6WQS - New	BDL BDL BDL BDL BDL BDL BDL York State D	BDL 1.59 14 BDL 1.7 3.91 BDL BDL BDL	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	BDL BDL BDL BDL BDL BDL BDL	3.2 BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3
IYSDEC " Not ani	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 GWQS - New ayzed or samp	BDL BDL BDL BDL BDL BDL BDL York State D	BDL 1.59 14 BDL 1.7 3.91 BDL BDL BDL 14.1 BDL	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
IYSDEC " Not anl BDL" Bel	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 6WQS - New	BDL BDL BDL BDL BDL BDL York State D bled mit	BDL 1.59 14 BDL 1.7 3.91 BDL BDL BDL 14.1 BDL	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
NYSDEC ." Not anl BDL" Beld J" estima FB" Also	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 GWQS - New ayzed or samp w detection lii ted concentrati	BDL BDL BDL BDL BDL BDL York State D bled mit ion	BDL 1.59 144 BDL 1.7 3.91 BDL BDL BDL BDL BDL 14.1 BDL BDL 14.1 BDL	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
NYSDEC - " Not anl BDL" Bel J" estima FB" Also 1,1-DCA"	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2022 8/9/2020 8/9/20 8/9/	BDL BDL BDL BDL BDL BDL SOL SOL SOL SOL SOL SOL SOL SOL SOL SO	BDL 1.59 144 BDL 1.7 3.91 BDL BDL BDL BDL BDL 14.1 BDL BDL 14.1 BDL	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
NYSDEC -" Not anl BDL" Bel J" estima FB" Also 1,1-DCA" 1,2-DCA"	4/18/2007 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 GWQS - New ayzed or samp w detection lii ted concentrati	BDL BDL BDL BDL BDL BDL SDL York State D oled mit ion Id blank sam thane	BDL 1.59 144 BDL 1.7 3.91 BDL BDL BDL BDL BDL 14.1 BDL BDL 14.1 BDL	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
NYSDEC " Not anl BDL" Beld J" estima FB" Also 1,1-DCA" 1,1-DCA" 1,1-DCE: cis 1,2-Dicis	4/18/2007 6/2/2010 6/2/2010 6/2/2010 1/19/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2020 8/19/2020 8/19/2021 8/8/2022 GWQS - New ayzed or samp tedetectied in fiel 1,1-dichloroet 1,2-dichloroet 1,2-dichloroet 1,2-dichloroet	BDL	BDL 1.59 14 BDL 1.7 3.91 BDL BDL 14.1 BDL 14.1 BDL apartment of Environmen	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
NYSDEC " Not anl BDL" Bele J" estima FB" Also 1,1-DCA" 1,2-DCA" 1,1-DCE" cis 1,2-D1,1,1-TC,	4/18/2007 62/2010 62/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/16/2021 8/8/2022 8/16/2021 8/8/2021 8/8/2021 12/8/2019 8/8/2021 12/8/2019 8/8/2021 12/8/2019 8/8/2021 12/8/2019 8/8/2021 12/8/2019 8/8/2021 12/8/2019 8/8/2021 12/8/2019 8/8/2021 8/8/20	BDL	BDL 1.59 14 BDL 1.7 3.91 BDL BDL 14.1 BDL 14.1 BDL apartment of Environmen	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
NYSDEC " Not anl BDL" Bele J" estima FB" Also 1,1-DCA" 1,2-DCA" 1,1-1-TC 1,1,1-TC 1,1,2-TC 0DCB" 1	4/18/2007 6/2/2010 6/2/2010 6/2/2010 6/2/2010 6/2/2015 6/2/2015 6/2/2017 6/2/2018 6/19/2020 6/19/2020 6/19/2020 6/19/2020 6/19/2021 6/19	BDL BDL BDL BDL BDL BDL BDL SDL BDL SDL BDL BDL BDL BDL BDL BDL BDL BDL BDL B	BDL 1.59 144 BDL 1.7 3.91 BDL BDL 14.1 BDL 14.1 BDL epartment of Environmen	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	D.22 BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1
IYSDEC " Not anl BDL" Bele "" estima FB" Also 1,1-DCA" 1,2-DCA" 1,1-TCC, 1,1,2-TC, 0DCB" 1 MEK" 2-b	4/18/2007 6/2/2010 7/1/2014 1/19/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/19/2020 8/16/2020 8/16/2020 6/16/2020 6/16/2020 8/16/2021 8/16/202	BDL BDL BDL BDL BDL BDL BDL SDL BDL BDL BDL BDL BDL BDL BDL BDL BDL B	BDL 1.59 144 BDL 1.7 3.91 BDL BDL 14.1 BDL 14.1 BDL epartment of Environmen	BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL	2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	BDL 0.21 BDL	2.96 42 1.8 4.4 18.7 3.5 4.1 8.7 16.3 9.4	D.22 BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	1.6 BDL 0.845 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	12.3 13 46.8 9.6 4.1 12.3 37.1

Appendix A SITE WIDE INSPECTION FORM

SITE-WIDE INSPECTION FORM

Inspection Period: August 2021 through August 2022
Reason for inspection: X Annual Severe Weather Event (Site-wide inspection required annually or following a severe weather event that may have damaged site engineering controls or monitoring wells)
Project location: 201 Winchester Road, Lakewood, New York
Inspection date / time: 8/9/22 10:30AM conducted by: Tim McCann Weather: Cloudy 70s
Site remains industrial/commercial use? X Yes No
If no, what is the current use? Is site occupied and operational? The onsite building is 59% occupied by Bush Industries
for warehousing of boxed office furniture.
Are structures indicated on the Site Layout Map of SMP Figure 2 remaining? X Yes No
If no, described current site conditions, specifically condition of the concrete floor of the
existing / former structure
Are monitoring wells depicted on SMP Figure 8 in place and undamaged? X Yes No
If no, described monitoring well conditions: .
Has the annual groundwater monitoring program been implemented for the inspection period? YesNo
Have monitoring results been reported to the NYSDEC as indicated in the SMP? X No
Are records required by the SMP complete, current and available at the Site? X Yes No
If not available on-site are there records available elsewhere?
YesNo Where?
Have any reportable spills of regulated materials occurred or evidence of former spills be discovered? Yes X No . If Yes, describe:

Appendix B

SITE MANAGEMENT PERIODIC REVIEW REPORT, INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICAITON FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details E Site No. 907044										
Sit	e Name Lexingt	on Machining LLC									
Cit _y	e Address: 201 V y/Town: Lakewo unty: Chautauqua e Acreage: 6.150	od I	Zip Code: 14750								
Re	porting Period: S	eptember 18, 2021	to September 18, 2022								
					YES	NO					
1.	Is the informatio	n above correct?			$X\square$						
	If NO, include ha	andwritten above or	on a separate sheet.								
2.		of the site property I ment during this Rep	peen sold, subdivided, mergo orting Period?	ed, or undergone a		$X\square$					
3.	Has there been (see 6NYCRR 3		t the site during this Reporti	ng Period	$X\square$						
4.	•	al, state, and/or local perty during this Rep	permits (e.g., building, dischorting Period?	harge) been issued		$X\square$					
			2 thru 4, include documer riously submitted with this								
5.	Is the site currer	ntly undergoing deve	lopment?			$X\square$					
					Box 2						
					YES	NO					
6.	Is the current sit Industrial	e use consistent witl	n the use(s) listed below?		$X\square$						
7.	Are all ICs in pla	ace and functioning a	s designed?	\mathbf{X}							
			QUESTION 6 OR 7 IS NO, si E REST OF THIS FORM. Ot	-	ind						
AC	Corrective Measu	res Work Plan must	be submitted along with thi	is form to address th	nese iss	ues.					
 Sig		I. McCann Remedial Party or De	signated Representative	10/3/22 Date							

SITE NO. 907044 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

Lexington Machining LLC 385.06-3-58

> Ground Water Use Restriction Soil Management Plan Landuse Restriction **Building Use Restriction** Monitoring Plan Site Management Plan

IC/EC Plan

The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC:
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Mnagament Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use:
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- Vegetable gardens and farming on the site are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of periury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

385.06-3-59 Lexington Machining LLC

> Ground Water Use Restriction Soil Management Plan Landuse Restriction **Building Use Restriction** Monitoring Plan Site Management Plan IC/EC Plan

- The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Mnagament Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use:
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- Vegetable gardens and farming on the site are prohibited:
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan IC/EC Plan

- The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Mnagament Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- Vegetable gardens and farming on the site are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

385.06-3-58

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial/commercial use will be required. In conformance with the Site Management Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

385.06-3-59

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial/commercial use will be required. In conformance with the Site

Parcel

Engineering Control

Management Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

385.06-3-60

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial/commercial use will be required. In conformance with the Site Management Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

R	ΩY	5

	Periodic Review Report (PRR) Certification Statements				
1.	I certify by checking "YES" below that:				
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;				
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted				
	engineering practices; and the information presented is accurate and compete. YES NO				
	$\mathbf{X}\Box$ \Box				
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:				
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;				
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;				
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;				
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and				
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.				
	YES NO				
	$X\square$				
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.				
	Timothy N. McCann 10/2/22				
Sig	nature of Owner, Remedial Party or Designated Representative Date				

IC CERTIFICATIONS SITE NO. 907044

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

WARREN DELAND	at 27 VALLEY WOOD RD, COS COB, CTOLBOT
print name	print business address
am certifying as DWNER (LEXII	NGTON MACHINING LLC (Owner or Remedial Party)
	RESIDENT 10/3/22
Signature of Owner, Remedial Party, or Rendering Certification	or Designated Representative Date

EC CERTIFICATIONS

Qualified Environmental Professional Signature	Box 7			
I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.				
I Timothy N McCann at 520 S. Main Street Suite 2411-C, Akron, Ohio 44311, print name print business address				
am certifying as a Qualified Environmental Professional for the Lexington Machining LLC (Owner or Remedial Party)				
Timothy N. McCann Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification (Required for PE)	10/4/2022 Date			

New York State Department of Environmental Conservation

Division of Environmental Remediation 700 Delaware Avenue, Buffalo, NY 14209

P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

Basil Seggos Commissioner

August 30, 2022

Tim McCann Apex Companies, LLC 520 South Main Street Suite 2411-C Akron, Ohio 44311

Re: Change of Use Notification

Lexington Machining LLC, 907044

Dear Tim McCann:

This letter acknowledges receipt of your August 29, 2022 60-Day Advance Notification of Change of Use Form for the above referenced site, wherein the type of change was indicated as a partial lease of the Site, which was previously vacant. This acknowledgement is not intended to imply approval or concurrence with the proposed change of use.

We appreciate your attention to this matter. If you have any questions or need additional information, you may contact me at the address given above.

Sincerely,

Megan Kuczka

Environmental Program Specialist 1

ec: Andrea Caprio - NYSDEC

Michael Lubin – Lexington Machining LLC

Warren Delano – Lexington Machining LLC

Shawn Lohnes – eSolutions Furniture Group

Appendix C GROUNDWATER SAMPLING LOGS

GROUNDWATER MONITORING WELL SAMPLING LOG

TOTAL GALLONS PURGED: ~1.2 GALLONS

WELL NO. MW-1			
PROJECT: GW SAMPLING			
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY			
SAMPLING DATE: 8/8/22 SAMPLED BY: TIM MCCANN/LANA OSTRY			
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>SUNNY</u>			
SAMPLING TIME: 16:45 AMBIENT TEMP: 80s °F			
WATER ELEVATION DATA:			
METHOD OF MEASUREMENT: DEPTH SOUNDER:			
WATER LEVEL GAUGE: X			
DEPTH TO WATER (FT): 12.07			
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW			
WAS WELL PUMPED DRY? YES X NO			

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1630	12.07	+1000	0.237	25.48	2.39	7.46	169
1633	12.69	+1000	0.224	25.04	0.31	6.44	174
1636	12.88	639	0.209	24.6	0.3	6.09	170
1639	12.96	424	0.206	24.42	0.45	5.98	159
1642	13.01	402	0.205	24.4	0.44	5.93	149
1645	13.1	400	0.21	24.44	0.42	5.9	149

Comments:	Dark gray, No odor, No Sheen	
Concre	crete in tact, well casing in tact, cap in tact , screws in place	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-2
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/8/22 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>SUNNY</u>
SAMPLING TIME: 15:15 AMBIENT TEMP: 80s °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.98
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YESXNO
TOTAL GALLONS PURGED: ~1.1 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1500	11.98	80	0.387	23.29	1.22	7.03	-51
1503	12.31	58	0.392	22.93	0.16	6.55	-43
1506	12.43	49	0.391	22.7	0	6.51	-39
1509	12.44	49	0.391	22.67	0	6.50	-33
1512	12.48	47	0.391	22.66	0	6.48	-31

Comments:	Clear, sulfur-like odor. No sheen
Concr	ete in tact, well casing in tact, cap in tact , screws in tact

GROUNDWATER MONITORING WELL SAMPLING LOG

TOTAL GALLONS PURGED: ~1.2 GALLONS

WELL NO. MW-2D
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/9/22 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: CLOUDY
SAMPLING TIME: 10:25 AMBIENT TEMP: 70s °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 12.05
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
WAS WELL PUMPED DRY? YES XNO

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1006	12.05	+1000	0.254	18.44	0.18	7.65	-158
1009	12.34	+1000	0.249	18.03	0	7.37	-174
1012	12.47	+1000	0.251	17.59	0	7.23	-176
1015	12.7	+1000	0.244	17.50	0	7.21	-181
1018	12.97	+1000	0.241	17.48	0	7.17	-173
1021	13.2	+1000	0.240	17.47	0	7.14	-172

Comments:	Brown/grey, No odor, No Sheen	
	-	
Concre	ete in tact, well casing in tact, cap in tact , screws in place	

GROUNDWATER MONITORING WELL SAMPLING LOG	
WELL NO. MW-3	
PROJECT: GW SAMPLING	
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY	
SAMPLING DATE: 8/8/22 SAMPLED BY: TIM MCCANN/LANA OSTRY	
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>SUNNY</u>	
SAMPLING TIME: 14:45 AMBIENT TEMP: 80S °F	
WATER ELEVATION DATA:	
METHOD OF MEASUREMENT: DEPTH SOUNDER:	
WATER LEVEL GAUGE: X	
DEPTH TO WATER (FT): 11.58	
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW	
DEPTH OF PUMP BELOW TOP OF CASING (FT):	
WAS WELL PUMPED DRY?YES XNO	
TOTAL GALLONS PURGED: ~1.3 GALLONS	

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1431	12.9	0.0	0.6	22.42	0.55	6.38	-36
1434	13.19	229	0.561	22.06	0.27	6.04	-15
1437	13.3	98.2	0.491	21.79	0.22	5.82	14
1440	13.5	97.2	0.491	21.68	0.19	5.79	22
1443	13.68	96.7	0.496	21.66	0.19	5.79	22

Comments:	Dark grey, No Odor, No Sheen
Concr	ete in tact, well casing in tact, cap in tact & screws

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. <u>MW-7</u>
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/8/22 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: CLOUDY
SAMPLING TIME: 13:35 AMBIENT TEMP: 70s °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 14.00
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.2 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1319	14.12	16.4	0.391	23.31	2.13	7.68	-37
1322	14.13	12.8	0.387	23.2	0.73	7.55	21
1325	14.15	11.6	0.382	22.95	0.3	7.47	36
1328	14.15	12.0	0.382	22.72	0.17	7.4	27
1331	14.15	11.8	0.381	22.44	0.19	7.4	26
1334	14.15	11.7	0.380	22.42	0.2	7.41	20

Comments:	Light brown, Sulfur-like odor, No Sheen				
	Concrete in tact, well casing in tact, cap good, screws present				

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-8
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/9/22 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>CLOUDY</u>
SAMPLING TIME: 8:35 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 14.29
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY?YES XNO
TOTAL GALLONS PURGED: ~1.1 GALLON

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
823	14.29	107	0.280	21.57	2.54	7.88	-13
826	15.1	63.3	0.274	20.96	1.59	7.3	41
829	15.21	44	0.243	20.7	1.61	7.11	68
832	15.23	48	0.244	20.63	1.61	7.19	77
835	15.37	42	0.237	20.31	1.62	7.12	76

Comments:	Clear, No odor, No Sheen
Concr	rete in tact, well casing in tact, cap in place, screws in place

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-9
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/9/22 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: CLOUDY
SAMPLING TIME: 9:45 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 12.20
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: 1.0 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
934	12.5	+1000	0.637	19.53	2.63	7.75	188
937	12.65	357	0.705	19.04	1.29	7.25	181
940	12.67	362	0.716	18.98	1.21	7.23	180
943	12.8	360	0.708	18.97	1.18	7.2	178

Comments:	Dark Brown/Grey, No odor, No Sheen
	Concrete in tact, well casing in tact, cap good, screws in tact

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-10
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/9/22 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: CLOUDY
SAMPLING TIME: 9:05 AMBIENT TEMP: 70S F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 10.84
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES X_NO
TOTAL GALLONS PURGED: ~1.0

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
852	10.84	19.3	0.683	19.69	2.45	7.33	-16
855	11.35	19	0.669	19.64	0.6	7.2	81
858	11.52	18.8	0.670	19.59	0.55	7.13	91
901	11.67	18	0.665	19.58	0.54	7.14	87

Comments:	Light gray, No odor, No Sheen	
Concre	ete in tact, screws in place, cap in place	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-11
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/8/22 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>SUNNY</u>
SAMPLING TIME: 17:15 AMBIENT TEMP: 80S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 8.29
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.4

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1700	8.29	0	0.466	25.16	0.91	6.8	166
1703	9.87	694	0.471	24.56	0.65	6.49	165
1706	10.11	223	0.471	24.29	0.38	6.44	165
1709	10.71	112	0.475	24.11	0.32	6.44	164
1712	11.79	110	0.478	24.05	0.3	6.45	164
1715	12.3	108	0.477	24.05	0.31	6.45	164

Comments:	Dark gray, no odor, no sheen
Concre	ete in tact, screws in place, cap in place

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-12
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/8/22 SAMPLED BY: <u>TIM MCCANN/LANA OSTRY</u>
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>SUNNY</u>
SAMPLING TIME: 16:10 AMBIENT TEMP: 80S°F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.05
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.1 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1555	11.05	961	0.123	23.57	0.17	7.16	-44
1558	11.65	352	0.116	23.27	0	6.55	-43
1601	11.66	142	0.112	23.05	0	6.48	-42
1604	11.68	106	0.111	23.00	0	6.45	-41
1607	11.69	100	0.112	23.00	0	6.44	-34
1610	11.74	101	0.114	22.88	0	6.44	-35

Comments:	Light Grey/clear, sulfur-like odor, no sheen	
	Concrete in tact, well casing in tact, cap in tact, screws in place	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-13
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/8/22 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 15:40 AMBIENT TEMP: 80S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.32
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.2 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1528	11.32	27.4	0.421	23.19	0.9	6.45	-33
1531	11.4	15.3	0.416	22.91	0.14	6.29	-43
1534	11.46	13.4	0.414	22.71	0	6.26	-39
1537	11.55	13.8	0.415	22.51	0	6.27	-38

Comments:	Light Grey, Sulfur-type Odor, No Sheen
Concr	ete in tact, well casing in tact, cap in tact ,screws in place

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. <u>MW-14</u>
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/8/22 SAMPLED BY: <u>TIM MCCANN/LANA OSTRY</u>
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>CLOUDY</u>
SAMPLING TIME: 14:10 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.22
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.2 GALLONS

TIME	DEPTH TO WATER	TURBIDITY	CONDUCTIVITY	TEMP	DO	PH	ORP
1349	11.22	184	0.416	22.39	0.07	7.58	-15
1352	11.68	116	0.419	21.87	0	6.97	1
1355	11.9	93	0.424	21.59	0	6.85	5
1358	12.09	26	0.425	21.38	0	6.82	2
1401	12.21	0	0.424	21.35	0	6.81	-9
1404	12.5	0	0.420	21.25	0	6.81	-12
1407	12.61	0	0.420	21.20	0	6.82	-11

Comments:	Light brown, No odor, No Sheen
Concre	te in tact, well casing in tact, cap in tact

Appendix D ANALYTICAL LABORATORY REPORT

(724)850-5600

August 29, 2022

Mr. Timothy McCann Apex Companies 520 South Main Street Suite 2444 Akron, OH 44311

RE: Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Dear Mr. McCann:

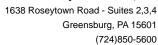
Enclosed are the analytical results for sample(s) received by the laboratory on August 11, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Greensburg

(Greensburg PA) - Revision 1 - This report replaces the August 25, 2022 report. This project was revised on August 29, 2022 to report the results using qualifiers.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

David A. Pichette david.pichette@pacelabs.com (724)850-5617

Project Manager

Enclosures

CERTIFICATIONS

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

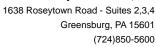
New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30513470001	MW-1	Water	08/08/22 16:45	08/11/22 09:30
30513470002	MW-2	Water	08/08/22 15:15	08/11/22 09:30
30513470003	MW-2D	Water	08/09/22 10:25	08/11/22 09:30
30513470004	MW-3	Water	08/08/22 14:45	08/11/22 09:30
30513470005	MW-7	Water	08/08/22 13:35	08/11/22 09:30
30513470006	MW-8	Water	08/08/22 08:35	08/11/22 09:30
30513470007	MW-9	Water	08/08/22 09:45	08/11/22 09:30
30513470008	MW-10	Water	08/09/22 09:05	08/11/22 09:30
30513470009	MW-11	Water	08/09/22 17:15	08/11/22 09:30
30513470010	MW-12	Water	08/09/22 16:10	08/11/22 09:30
30513470011	MW-13	Water	08/08/22 15:40	08/11/22 09:30
30513470012	MW-14	Water	08/08/22 14:10	08/11/22 09:30
30513470013	Field Blank 01	Water	08/08/22 15:30	08/11/22 09:30
30513470014	Field Blank 02	Water	08/09/22 10:05	08/11/22 09:30
30513470015	Trip Blank	Water	08/09/22 00:01	08/11/22 09:30

SAMPLE ANALYTE COUNT

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30513470001	MW-1	EPA 8260C	JAS	52	PASI-PA
30513470002	MW-2	EPA 8260C	JAS	52	PASI-PA
30513470003	MW-2D	EPA 8260C	JAS	52	PASI-PA
30513470004	MW-3	EPA 8260C	JAS	52	PASI-PA
30513470005	MW-7	EPA 8260C	JAS	52	PASI-PA
30513470006	MW-8	EPA 8260C	JAS	52	PASI-PA
30513470007	MW-9	EPA 8260C	JAS	52	PASI-PA
30513470008	MW-10	EPA 8260C	JAS	52	PASI-PA
30513470009	MW-11	EPA 8260C	JAS	52	PASI-PA
30513470010	MW-12	EPA 8260C	JAS	52	PASI-PA
30513470011	MW-13	EPA 8260C	JAS	52	PASI-PA
30513470012	MW-14	EPA 8260C	JAS	52	PASI-PA
30513470013	Field Blank 01	EPA 8260C	JAS	52	PASI-PA
30513470014	Field Blank 02	EPA 8260C	JAS	52	PASI-PA
30513470015	Trip Blank	EPA 8260C	JAS	52	PASI-PA

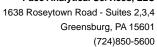
PASI-PA = Pace Analytical Services - Greensburg

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-1	Lab ID:	30513470001	Collecte	d: 08/08/22	2 16:45	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results -	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytica	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
Acetone	10.0 U	ug/L	10.0	5.6	1		08/20/22 16:20	67-64-1	N4
Benzene	1.0 U	ug/L	1.0	0.34	1		08/20/22 16:20		N4
Bromochloromethane	1.0 U	ug/L	1.0	0.48	1		08/20/22 16:20		N4
Bromodichloromethane	1.0 U	ug/L	1.0	0.35	1		08/20/22 16:20		N4
Bromoform	4.0 U	ug/L	4.0	1.5	1		08/20/22 16:20	-	N4
Bromomethane	4.0 U	ug/L	4.0	2.5	1		08/20/22 16:20		CL,N4
TOTAL BTEX	6.0 U	ug/L	6.0	2.4	1		08/20/22 16:20		N4
2-Butanone (MEK)	10.0 U	ug/L	10.0	1.5	1		08/20/22 16:20	78-93-3	CL,L2,
, ,		~ <i>9</i> / =			·		00/20/22 :0:20	. 0 00 0	N4
Carbon disulfide	1.0 U	ug/L	1.0	0.32	1		08/20/22 16:20		N4
Carbon tetrachloride	1.0 U	ug/L	1.0	0.44	1		08/20/22 16:20		N4
Chlorobenzene	1.0 U	ug/L	1.0	0.26	1		08/20/22 16:20	108-90-7	N4
Chloroethane	14.8	ug/L	1.0	0.64	1		08/20/22 16:20	75-00-3	N4
Chloroform	1.0 U	ug/L	1.0	0.93	1		08/20/22 16:20	67-66-3	N4
Chloromethane	1.0 U	ug/L	1.0	0.40	1		08/20/22 16:20	74-87-3	CL,N4
Dibromochloromethane	1.0 U	ug/L	1.0	0.43	1		08/20/22 16:20	124-48-1	N4
1,2-Dichlorobenzene	1.0 U	ug/L	1.0	0.38	1		08/20/22 16:20	95-50-1	N4
1,3-Dichlorobenzene	1.0 U	ug/L	1.0	0.45	1		08/20/22 16:20	541-73-1	N4
1,4-Dichlorobenzene	1.0 U	ug/L	1.0	0.48	1		08/20/22 16:20	106-46-7	N4
1,1-Dichloroethane	8.8	ug/L	1.0	0.50	1		08/20/22 16:20	75-34-3	N4
1,2-Dichloroethane	1.0 U	ug/L	1.0	0.33	1		08/20/22 16:20	107-06-2	N4
1,2-Dichloroethene (Total)	2.0 U	ug/L	2.0	0.66	1		08/20/22 16:20	540-59-0	N4
1,1-Dichloroethene	15.1	ug/L	1.0	0.49	1		08/20/22 16:20	75-35-4	N4
cis-1,2-Dichloroethene	1.0 U	ug/L	1.0	0.38	1		08/20/22 16:20	156-59-2	N4
trans-1,2-Dichloroethene	1.0 U	ug/L	1.0	0.28	1		08/20/22 16:20	156-60-5	N4
1,2-Dichloropropane	1.0 U	ug/L	1.0	0.28	1		08/20/22 16:20	78-87-5	N4
cis-1,3-Dichloropropene	1.0 U	ug/L	1.0	0.29	1		08/20/22 16:20	10061-01-5	N4
trans-1,3-Dichloropropene	1.0 U	ug/L	1.0	0.32	1		08/20/22 16:20	10061-02-6	N4
Ethylbenzene	1.0 U	ug/L	1.0	0.40	1		08/20/22 16:20	100-41-4	N4
2-Hexanone	10.0 U	ug/L	10.0	0.58	1		08/20/22 16:20	591-78-6	CL,L2,
Isopropylbenzene (Cumene)	1.0 U	ug/L	1.0	0.47	1		08/20/22 16:20	00 02 0	N4 N4
Methylene Chloride	1.0 U	ug/L ug/L	1.0	0.47	1		08/20/22 16:20		CL,N4
4-Methyl-2-pentanone (MIBK)	10.0 U	ug/L	10.0	0.42	1		08/20/22 16:20		CL,L2,
Methyl-tert-butyl ether	1.0 U	ug/L	1.0	0.25	1		08/20/22 16:20	1634-04-4	N4 N4
Naphthalene	4.0 U	ug/L	4.0	2.1	1		08/20/22 16:20		N4
•	4.0 U	-	1.0	0.33	1		08/20/22 16:20		N4 N4
Styrene 1,1,2,2-Tetrachloroethane		ug/L							
Tetrachloroethene	1.0 U 1.0 U	ug/L	1.0 1.0	0.47 0.39	1 1		08/20/22 16:20 08/20/22 16:20		N4 N4
		ug/L							
Toluene	1.0 U	ug/L	1.0	0.32	1		08/20/22 16:20		N4
1,2,4-Trichlorobenzene	4.0 U	ug/L	4.0	0.73	1		08/20/22 16:20		N4
1,1,1-Trichloroethane	1.0 U	ug/L	1.0	0.38	1		08/20/22 16:20		N4
1,1,2-Trichloroethane	1.0 U	ug/L	1.0	0.33	1		08/20/22 16:20		N4
Trichloroethene	1.0 U	ug/L	1.0	0.29	1		08/20/22 16:20		N4
1,2,4-Trimethylbenzene	1.0 U	ug/L	1.0	0.63	1		08/20/22 16:20	95-63-6	N4



Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-1	Lab ID:	30513470001	Collecte	d: 08/08/22	2 16:45	Received: 08	3/11/22 09:30 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
		 .							-
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	1.0 U	ug/L	1.0	0.45	1		08/20/22 16:20	108-67-8	N4
Vinyl chloride	1.0 U	ug/L	1.0	0.29	1		08/20/22 16:20	75-01-4	CL,N4
Xylene (Total)	3.0 U	ug/L	3.0	1.4	1		08/20/22 16:20	1330-20-7	N4
m&p-Xylene	2.0 U	ug/L	2.0	0.94	1		08/20/22 16:20	179601-23-1	N4
o-Xylene	1.0 U	ug/L	1.0	0.41	1		08/20/22 16:20	95-47-6	N4
Surrogates		_							
4-Bromofluorobenzene (S)	114	%.	70-130		1		08/20/22 16:20	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%.	70-130		1		08/20/22 16:20	17060-07-0	
Toluene-d8 (S)	91	%.	70-130		1		08/20/22 16:20	2037-26-5	
Dibromofluoromethane (S)	111	%.	70-130		1		08/20/22 16:20	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-2	Lab ID:	30513470002	Collecte	d: 08/08/2	2 15:15	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV	•	Method: EPA 8		ıra					
		lytical Services		Ü					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 16:46		N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 16:46		N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 16:46		N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 16:46	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 16:46	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 16:46	74-83-9	CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 16:46		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 16:46	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 16:46	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 16:46	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 16:46	108-90-7	N4
Chloroethane	4.7	ug/L	1.0	0.64	1		08/20/22 16:46	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 16:46	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 16:46	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 16:46		N4
1,2-Dichlorobenzene	5.7	ug/L	1.0	0.38	1		08/20/22 16:46	95-50-1	N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 16:46		N4
1.4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 16:46		N4
1,1-Dichloroethane	19.5	ug/L	1.0	0.50	1		08/20/22 16:46		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 16:46		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 16:46		N4
1,1-Dichloroethene	39.8	ug/L	1.0	0.49	1		08/20/22 16:46		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/20/22 16:46		N4
trans-1,2-Dichloroethene	ND ND	-	1.0	0.38	1		08/20/22 16:46		N4 N4
•	ND ND	ug/L	1.0	0.28	1		08/20/22 16:46		N4 N4
1,2-Dichloropropane		ug/L							
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 16:46		N4
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/20/22 16:46		N4
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/20/22 16:46		N4
2-Hexanone	ND	ug/L	10.0	0.58	1		08/20/22 16:46	591-78-6	CL,L2, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 16:46		N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 16:46	75-09-2	CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 16:46	108-10-1	CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 16:46	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 16:46	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 16:46	100-42-5	N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 16:46	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 16:46	127-18-4	N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 16:46	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 16:46	120-82-1	N4
1,1,1-Trichloroethane	30.3	ug/L	1.0	0.38	1		08/20/22 16:46		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 16:46		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 16:46		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 16:46		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-2	Lab ID:	30513470002	Collecte	d: 08/08/22	2 15:15	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 16:46	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 16:46	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 16:46	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 16:46	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 16:46	95-47-6	N4
Surrogates									
4-Bromofluorobenzene (S)	96	%.	70-130		1		08/20/22 16:46	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%.	70-130		1		08/20/22 16:46	17060-07-0	
Toluene-d8 (S)	96	%.	70-130		1		08/20/22 16:46	2037-26-5	
Dibromofluoromethane (S)	115	%.	70-130		1		08/20/22 16:46	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-2D	Lab ID:	30513470003	Collecte	d: 08/09/22	2 10:25	Received: 08	3/11/22 09:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 17:11	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 17:11	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 17:11	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 17:11	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 17:11	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 17:11		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 17:11		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 17:11	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 17:11	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 17:11		N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 17:11		N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 17:11		N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 17:11		N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 17:11		CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 17:11		N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 17:11		N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 17:11		N4
1.4-Dichlorobenzene	ND ND	ug/L	1.0	0.48	1		08/20/22 17:11		N4
1,1-Dichloroethane	ND ND	ug/L	1.0	0.40	1		08/20/22 17:11		N4
1,2-Dichloroethane	ND ND	ug/L ug/L	1.0	0.33	1		08/20/22 17:11		N4 N4
·	ND ND	-	2.0	0.55	1		08/20/22 17:11		N4 N4
1,2-Dichloroethene (Total) 1,1-Dichloroethene	ND ND	ug/L	1.0	0.49	1		08/20/22 17:11		N4 N4
•		ug/L			1				N4 N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38			08/20/22 17:11		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.28	1		08/20/22 17:11		N4
1,2-Dichloropropane	ND	ug/L	1.0	0.28	1		08/20/22 17:11		N4
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 17:11		N4
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/20/22 17:11		N4
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/20/22 17:11		N4
2-Hexanone	ND	ug/L	10.0	0.58	1		08/20/22 17:11	591-78-6	CL,L2, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 17:11		N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 17:11	75-09-2	CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 17:11	108-10-1	CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 17:11	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 17:11	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 17:11	100-42-5	N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 17:11	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 17:11	127-18-4	N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 17:11	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 17:11	120-82-1	N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 17:11		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 17:11		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 17:11		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 17:11		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-2D	Lab ID:	30513470003	Collecte	d: 08/09/22	10:25	Received: 08	3/11/22 09:30 M	atrix: Water	
ъ.	5 "	11.76	Report	MBI	5.5			04041	0 1
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	ytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 17:11	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 17:11	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 17:11	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 17:11	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 17:11	95-47-6	N4
Surrogates									
4-Bromofluorobenzene (S)	109	%.	70-130		1		08/20/22 17:11	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%.	70-130		1		08/20/22 17:11	17060-07-0	
Toluene-d8 (S)	91	%.	70-130		1		08/20/22 17:11	2037-26-5	
Dibromofluoromethane (S)	114	%.	70-130		1		08/20/22 17:11	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-3	Lab ID:	30513470004	Collecte	d: 08/08/22	2 14:45	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	•	Method: EPA 8 lytical Services		ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 17:36	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 17:36	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 17:36	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 17:36	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 17:36	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 17:36		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 17:36		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 17:36	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 17:36	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 17:36	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 17:36	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 17:36	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 17:36	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 17:36	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 17:36	124-48-1	N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 17:36	95-50-1	N4
1.3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 17:36		N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 17:36		N4
1,1-Dichloroethane	1.9	ug/L	1.0	0.50	1		08/20/22 17:36		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 17:36		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 17:36		N4
1,1-Dichloroethene	36.7	ug/L	1.0	0.49	1		08/20/22 17:36		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.43	1		08/20/22 17:36		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 17:36		N4
1,2-Dichloropropane	ND ND	ug/L	1.0	0.28	1		08/20/22 17:36		N4
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 17:36		N4
	ND ND	-		0.29	1		08/20/22 17:36		N4
trans-1,3-Dichloropropene	ND ND	ug/L	1.0 1.0	0.32	1		08/20/22 17:36		N4 N4
Ethylbenzene 2-Hexanone	ND ND	ug/L ug/L	10.0	0.40	1		08/20/22 17:36		CL,L2, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 17:36	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 17:36		CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 17:36		CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 17:36	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 17:36	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 17:36		N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 17:36		N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 17:36		N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 17:36		N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 17:36		N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 17:36		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 17:36		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 17:36		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.23	1		08/20/22 17:36		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-3	Lab ID:	30513470004	Collecte	d: 08/08/22	2 14:45	Received: 08	3/11/22 09:30 Ma	atrix: Water	
_			Report						
Parameters —	Results	Units	Limit	MDL	DF	Prepared	Analyzed —	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	3260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 17:36	108-67-8	N4
Vinyl chloride	1.8	ug/L	1.0	0.29	1		08/20/22 17:36	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 17:36	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 17:36	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 17:36	95-47-6	N4
Surrogates									
4-Bromofluorobenzene (S)	97	%.	70-130		1		08/20/22 17:36	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%.	70-130		1		08/20/22 17:36	17060-07-0	
Toluene-d8 (S)	94	%.	70-130		1		08/20/22 17:36	2037-26-5	
Dibromofluoromethane (S)	108	%.	70-130		1		08/20/22 17:36	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-7	Lab ID:	30513470005	Collecte	d: 08/08/22	2 13:35	Received: 08	3/11/22 09:30 Ma	atrix: Water	
_			Report						
Parameters	Results -	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV	•	Method: EPA 8 lytical Services		ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 18:01	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 18:01	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 18:01	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 18:01	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 18:01	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 18:01		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 18:01		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 18:01	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 18:01	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 18:01	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 18:01	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 18:01	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 18:01	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 18:01	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 18:01		N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 18:01		N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 18:01		N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 18:01		N4
1,1-Dichloroethane	1.9	ug/L	1.0	0.50	1		08/20/22 18:01		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 18:01		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 18:01		N4
1,1-Dichloroethene	1.4	ug/L	1.0	0.49	1		08/20/22 18:01		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 18:01		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.28	1		08/20/22 18:01		N4
1,2-Dichloropropane	ND ND	ug/L	1.0	0.28	1		08/20/22 18:01		N4
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 18:01		N4
trans-1,3-Dichloropropene	ND ND	ug/L ug/L	1.0	0.29	1		08/20/22 18:01		N4 N4
Ethylbenzene	ND ND	_	1.0	0.32	1		08/20/22 18:01		N4 N4
2-Hexanone	ND ND	ug/L ug/L	10.0	0.40	1		08/20/22 18:01		CL,L2, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 18:01	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 18:01		CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 18:01		CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 18:01	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 18:01	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 18:01		N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 18:01	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 18:01	127-18-4	N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 18:01	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 18:01		N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 18:01		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 18:01		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 18:01		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 18:01		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-7	Lab ID:	30513470005	Collecte	d: 08/08/22	13:35	Received: 08	3/11/22 09:30 M	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed —	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 18:01	108-67-8	N4
Vinyl chloride	2.3	ug/L	1.0	0.29	1		08/20/22 18:01	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 18:01	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 18:01	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 18:01	95-47-6	N4
Surrogates		_							
4-Bromofluorobenzene (S)	106	%.	70-130		1		08/20/22 18:01	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%.	70-130		1		08/20/22 18:01	17060-07-0	
Toluene-d8 (S)	91	%.	70-130		1		08/20/22 18:01	2037-26-5	
Dibromofluoromethane (S)	114	%.	70-130		1		08/20/22 18:01	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-8	Lab ID:	30513470006	Collecte	d: 08/08/22	2 08:35	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	•	Method: EPA 8		ıra					
Acetone	ND	ug/L	10.0	9 5.6	1		08/20/22 18:26	67-64-1	N4
Benzene	1.4	ug/L	1.0	0.34	1		08/20/22 18:26		N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 18:26		N4
Bromodichloromethane	ND ND	ug/L	1.0	0.46	1		08/20/22 18:26		N4
Bromoform	ND ND	-	4.0	1.5	1		08/20/22 18:26	-	N4 N4
		ug/L		2.5	1				
Bromomethane	ND	ug/L	4.0		-		08/20/22 18:26	74-63-9	CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 18:26	70.00.0	N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 18:26	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 18:26	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 18:26	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 18:26	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 18:26	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 18:26	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 18:26	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 18:26	124-48-1	N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 18:26	95-50-1	N4
1.3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 18:26	541-73-1	N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 18:26		N4
1,1-Dichloroethane	3.8	ug/L	1.0	0.50	1		08/20/22 18:26		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 18:26		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 18:26		N4
1,1-Dichloroethene	6.9	ug/L	1.0	0.49	1		08/20/22 18:26		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 18:26		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.28	1		08/20/22 18:26		N4
1,2-Dichloropropane	ND ND	ug/L	1.0	0.28	1		08/20/22 18:26		N4
cis-1,3-Dichloropropene	ND ND	ug/L	1.0	0.29	1		08/20/22 18:26		N4
• •	ND ND	-		0.29	1		08/20/22 18:26		N4
trans-1,3-Dichloropropene		ug/L	1.0		1		08/20/22 18:26		N4 N4
Ethylbenzene 2-Hexanone	ND ND	ug/L ug/L	1.0 10.0	0.40 0.58	1		08/20/22 18:26		CL,L2,
2-Hexamone	ND	ug/L	10.0	0.50	,		00/20/22 10.20	331-70-0	N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 18:26	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 18:26	75-09-2	CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 18:26	108-10-1	CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 18:26	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 18:26	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 18:26		N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 18:26		N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 18:26		N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 18:26		N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 18:26		N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 18:26		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 18:26		N4
Trichloroethene	ND ND	ug/L	1.0	0.33	1		08/20/22 18:26		N4
1,2,4-Trimethylbenzene	ND ND	ug/L ug/L	1.0	0.29	1		08/20/22 18:26		N4 N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-8	Lab ID:	30513470006	Collecte	d: 08/08/22	2 08:35	Received: 08	3/11/22 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- Tarameters						- Troparca	- — —		
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	ytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 18:26	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 18:26	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 18:26	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 18:26	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 18:26	95-47-6	N4
Surrogates		_							
4-Bromofluorobenzene (S)	99	%.	70-130		1		08/20/22 18:26	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%.	70-130		1		08/20/22 18:26	17060-07-0	
Toluene-d8 (S)	97	%.	70-130		1		08/20/22 18:26	2037-26-5	
Dibromofluoromethane (S)	110	%.	70-130		1		08/20/22 18:26	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-9	Lab ID:	30513470007	Collecte	d: 08/08/22	2 09:45	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV		Method: EPA 8 lytical Services		ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 18:52	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 18:52	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 18:52		N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 18:52		N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 18:52	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 18:52		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 18:52		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 18:52	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 18:52	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 18:52	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 18:52	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 18:52	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 18:52	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 18:52	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 18:52		N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 18:52		N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 18:52		N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 18:52		N4
1,1-Dichloroethane	70.7	ug/L	1.0	0.50	1		08/20/22 18:52		N4
1,2-Dichloroethane	2.2	ug/L	1.0	0.33	1		08/20/22 18:52		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 18:52		N4
1,1-Dichloroethene	54.9	ug/L	1.0	0.49	1		08/20/22 18:52		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/20/22 18:52		N4
trans-1,2-Dichloroethene	ND ND	ug/L ug/L	1.0	0.38	1		08/20/22 18:52		N4 N4
1,2-Dichloropropane	ND ND	ug/L ug/L	1.0	0.28	1		08/20/22 18:52		N4 N4
• •	ND ND	•		0.28	1		08/20/22 18:52		N4 N4
cis-1,3-Dichloropropene		ug/L	1.0		1				N4 N4
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32			08/20/22 18:52		
Ethylbenzene 2-Hexanone	ND ND	ug/L ug/L	1.0 10.0	0.40 0.58	1 1		08/20/22 18:52 08/20/22 18:52		N4 CL,L2,
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 18:52	98-82-8	N4 N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 18:52		CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 18:52		CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 18:52	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 18:52	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 18:52		N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 18:52		N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 18:52	127-18-4	N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 18:52	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 18:52		N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 18:52		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 18:52		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 18:52		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 18:52		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-9	Lab ID: 30513470007		Collecte	Collected: 08/08/22 09:45			/11/22 09:30 Ma	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 18:52	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 18:52	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 18:52	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 18:52	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 18:52	95-47-6	N4
Surrogates		_							
4-Bromofluorobenzene (S)	106	%.	70-130		1		08/20/22 18:52	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%.	70-130		1		08/20/22 18:52	17060-07-0	
Toluene-d8 (S)	101	%.	70-130		1		08/20/22 18:52	2037-26-5	
Dibromofluoromethane (S)	112	%.	70-130		1		08/20/22 18:52	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-10	Lab ID:	30513470008	Collected: 08/09/22 09:05			Received: 08	08/11/22 09:30 Matrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytica	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 19:17	67-64-1	N4
Benzene	1.4	ug/L	1.0	0.34	1		08/20/22 19:17	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 19:17	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 19:17	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 19:17	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 19:17		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 19:17		N4,RS
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 19:17		CL,L2,
,	115	ug/L	10.0	1.0	•		00/20/22 10.17	70 00 0	N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 19:17	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 19:17		N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 19:17	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 19:17	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 19:17	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 19:17	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 19:17	124-48-1	N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 19:17	95-50-1	N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 19:17	541-73-1	N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 19:17	106-46-7	N4
1,1-Dichloroethane	54.6	ug/L	1.0	0.50	1		08/20/22 19:17	75-34-3	N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 19:17	107-06-2	N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 19:17	540-59-0	N4
1,1-Dichloroethene	7.6	ug/L	1.0	0.49	1		08/20/22 19:17		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 19:17		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.28	1		08/20/22 19:17		N4
1,2-Dichloropropane	ND	ug/L	1.0	0.28	1		08/20/22 19:17		N4
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 19:17		N4
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/20/22 19:17		N4
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/20/22 19:17		N4
2-Hexanone	ND ND	ug/L ug/L	10.0	0.40	1		08/20/22 19:17		CL,L2,
2-1 lexamone	ND	ug/L	10.0	0.50	•		00/20/22 19.17	391-70-0	ML, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 19:17	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 19:17	75-09-2	CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 19:17	108-10-1	CL,L2,
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 19:17	1634-04-4	ML, N4 N4
Naphthalene	ND ND	ug/L ug/L	4.0	2.1	1		08/20/22 19:17		N4
Styrene	ND ND	ug/L ug/L	1.0	0.33	1		08/20/22 19:17		N4 N4
1,1,2,2-Tetrachloroethane	ND ND	-	1.0	0.33			08/20/22 19:17		N4 N4
Tetrachloroethene	ND ND	ug/L	1.0	0.47	1		08/20/22 19:17		N4 N4
		ug/L			1				
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 19:17		N4,R1
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 19:17		N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 19:17		N4
1,1,2-Trichloroethane	2.4	ug/L	1.0	0.33	1		08/20/22 19:17		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 19:17		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 19:17	95-63-6	N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-10	Lab ID:	Collecte	Collected: 08/09/22 09:05			3/11/22 09:30 Ma	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	2600						
02000 MOV	•	lytical Services		ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 19:17	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 19:17	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 19:17	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 19:17	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 19:17	95-47-6	N4
Surrogates		_							
4-Bromofluorobenzene (S)	100	%.	70-130		1		08/20/22 19:17	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%.	70-130		1		08/20/22 19:17	17060-07-0	
Toluene-d8 (S)	98	%.	70-130		1		08/20/22 19:17	2037-26-5	
Dibromofluoromethane (S)	113	%.	70-130		1		08/20/22 19:17	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-11	Lab ID:	30513470009	Collected: 08/09/22 17:15			Received: 08	08/11/22 09:30 Matrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV	•	Method: EPA 8 lytical Services		ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 19:42	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 19:42	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 19:42	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 19:42	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 19:42	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 19:42		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 19:42		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 19:42	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 19:42	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 19:42	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 19:42	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 19:42	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 19:42	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 19:42	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 19:42	124-48-1	N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 19:42		N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 19:42		N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 19:42		N4
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/20/22 19:42		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 19:42		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 19:42		N4
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/20/22 19:42		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 19:42		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.28	1		08/20/22 19:42		N4
1,2-Dichloropropane	ND	ug/L	1.0	0.28	1		08/20/22 19:42		N4
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 19:42		N4
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/20/22 19:42		N4
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/20/22 19:42		N4
2-Hexanone	ND	ug/L	10.0	0.58	1		08/20/22 19:42		CL,L2, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 19:42	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 19:42		CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 19:42		CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 19:42	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 19:42	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 19:42	100-42-5	N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 19:42	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 19:42	127-18-4	N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 19:42	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 19:42	120-82-1	N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 19:42	71-55-6	N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 19:42		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 19:42		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 19:42		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-11	Lab ID:	30513470009	Collecte	d: 08/09/22	2 17:15	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	3260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 19:42	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 19:42	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 19:42	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 19:42	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 19:42	95-47-6	N4
Surrogates		•							
4-Bromofluorobenzene (S)	107	%.	70-130		1		08/20/22 19:42	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%.	70-130		1		08/20/22 19:42	17060-07-0	
Toluene-d8 (S)	98	%.	70-130		1		08/20/22 19:42	2037-26-5	
Dibromofluoromethane (S)	116	%.	70-130		1		08/20/22 19:42	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-12	Lab ID:	30513470010	Collected: 08/09/22 16:10			Received: 08	08/11/22 09:30 Matrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	-	Method: EPA 8		ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 20:07	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 20:07	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 20:07	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 20:07	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 20:07	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 20:07		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 20:07		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 20:07	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 20:07	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 20:07	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 20:07	108-90-7	N4
Chloroethane	41.8	ug/L	1.0	0.64	1		08/20/22 20:07	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 20:07	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 20:07	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 20:07	124-48-1	N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 20:07	95-50-1	N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 20:07		N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 20:07		N4
1,1-Dichloroethane	2.9	ug/L	1.0	0.50	1		08/20/22 20:07		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 20:07		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 20:07		N4
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/20/22 20:07		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 20:07		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.28	1		08/20/22 20:07		N4
1,2-Dichloropropane	ND	ug/L	1.0	0.28	1		08/20/22 20:07		N4
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 20:07		N4
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/20/22 20:07		N4
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/20/22 20:07		N4
2-Hexanone	ND	ug/L	10.0	0.58	1		08/20/22 20:07		CL,L2, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 20:07	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 20:07		CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 20:07		CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 20:07	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 20:07	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 20:07	100-42-5	N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 20:07	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 20:07	127-18-4	N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 20:07	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 20:07	120-82-1	N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 20:07		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 20:07		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 20:07		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 20:07		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-12	Lab ID:	Collecte	Collected: 08/09/22 16:10			3/11/22 09:30 M	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- Tarameters						Ticpaica	Analyzed		- Quai
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	ytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 20:07	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 20:07	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 20:07	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 20:07	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 20:07	95-47-6	N4
Surrogates		_							
4-Bromofluorobenzene (S)	104	%.	70-130		1		08/20/22 20:07	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%.	70-130		1		08/20/22 20:07	17060-07-0	
Toluene-d8 (S)	94	%.	70-130		1		08/20/22 20:07	2037-26-5	
Dibromofluoromethane (S)	114	%.	70-130		1		08/20/22 20:07	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-13	Lab ID:	30513470011	Collecte	d: 08/08/2	2 15:40	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 20:32	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 20:32	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 20:32	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 20:32	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 20:32	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 20:32		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 20:32		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 20:32	78-93-3	CL,L2,
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 20:32	75-15-0	N4 N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 20:32		N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 20:32		N4
Chloroethane	62.7	ug/L	1.0	0.64	1		08/20/22 20:32		N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 20:32		N4
Chloromethane	ND ND	ug/L	1.0	0.40	1		08/20/22 20:32		CL,N4
Dibromochloromethane	ND ND	ug/L ug/L	1.0	0.40	1		08/20/22 20:32		N4
	ND ND	-	1.0	0.43	1		08/20/22 20:32		N4 N4
1,2-Dichlorobenzene		ug/L			1		08/20/22 20:32		N4 N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45			08/20/22 20:32	-	
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1				N4
1,1-Dichloroethane	1.9	ug/L	1.0	0.50	1		08/20/22 20:32		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 20:32		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 20:32		N4
1,1-Dichloroethene	3.9	ug/L	1.0	0.49	1		08/20/22 20:32		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 20:32		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.28	1		08/20/22 20:32		N4
1,2-Dichloropropane	ND	ug/L	1.0	0.28	1		08/20/22 20:32		N4
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 20:32		N4
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/20/22 20:32		N4
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/20/22 20:32	100-41-4	N4
2-Hexanone	ND	ug/L	10.0	0.58	1		08/20/22 20:32	591-78-6	CL,L2, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 20:32	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 20:32	75-09-2	CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 20:32	108-10-1	CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 20:32	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 20:32	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 20:32		N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 20:32		N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 20:32		N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 20:32		N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 20:32		N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 20:32		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 20:32		N4
Trichloroethene	ND ND	ug/L	1.0	0.33	1		08/20/22 20:32		N4
1,2,4-Trimethylbenzene	ND ND	ug/L	1.0	0.63	1		08/20/22 20:32		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-13	Lab ID:	30513470011	Collecte	d: 08/08/22	2 15:40	Received: 08	3/11/22 09:30 Ma	/latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- Falailleteis	— — — –	———·		IVIDE .	DI	- Frepareu	– Analyzeu		Quai
8260C MSV	Analytical	Method: EPA 8	3260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 20:32	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 20:32	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 20:32	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 20:32	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 20:32	95-47-6	N4
Surrogates		-							
4-Bromofluorobenzene (S)	93	%.	70-130		1		08/20/22 20:32	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%.	70-130		1		08/20/22 20:32	17060-07-0	
Toluene-d8 (S)	96	%.	70-130		1		08/20/22 20:32	2037-26-5	
Dibromofluoromethane (S)	116	%.	70-130		1		08/20/22 20:32	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-14	Lab ID:	30513470012	Collected: 08/08/22 14:10			Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV		Method: EPA 8		ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 20:57	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 20:57	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 20:57	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 20:57	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 20:57	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 20:57		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 20:57		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 20:57	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 20:57	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 20:57	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 20:57	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 20:57	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 20:57	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 20:57	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 20:57	124-48-1	N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 20:57		N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 20:57		N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 20:57	-	N4
1,1-Dichloroethane	3.2	ug/L	1.0	0.50	1		08/20/22 20:57		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 20:57		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 20:57		N4
1,1-Dichloroethene	9.4	ug/L	1.0	0.49	1		08/20/22 20:57		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.43	1		08/20/22 20:57		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 20:57		N4
1,2-Dichloropropane	ND ND	ug/L ug/L	1.0	0.28	1		08/20/22 20:57		N4 N4
	ND ND	_		0.28	1		08/20/22 20:57		N4 N4
cis-1,3-Dichloropropene	ND ND	ug/L	1.0	0.29	1		08/20/22 20:57		N4 N4
trans-1,3-Dichloropropene		ug/L	1.0		1		08/20/22 20:57		N4 N4
Ethylbenzene 2-Hexanone	ND ND	ug/L ug/L	1.0 10.0	0.40 0.58	1		08/20/22 20:57		CL,L2, N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 20:57	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 20:57		CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 20:57		CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 20:57	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 20:57	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 20:57		N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 20:57	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 20:57		N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 20:57		N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 20:57		N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 20:57		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 20:57		N4
Trichloroethene	ND	ug/L	1.0	0.33	1		08/20/22 20:57		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.23	1		08/20/22 20:57		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: MW-14	Lab ID:	30513470012	Collecte	d: 08/08/22	2 14:10	Received: 08	3/11/22 09:30 Ma	Matrix: Water	
		Report	Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	3260C						
	Pace Ana	ytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 20:57	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 20:57	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 20:57	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 20:57	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 20:57	95-47-6	N4
Surrogates									
4-Bromofluorobenzene (S)	105	%.	70-130		1		08/20/22 20:57	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%.	70-130		1		08/20/22 20:57	17060-07-0	
Toluene-d8 (S)	97	%.	70-130		1		08/20/22 20:57	2037-26-5	
Dibromofluoromethane (S)	108	%.	70-130		1		08/20/22 20:57	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: Field Blank 01	Lab ID:	30513470013	Collected: 08/08/22 15:30			Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV		Method: EPA 8							
		lytical Services		•					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 21:22		N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 21:22		N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 21:22		N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 21:22		N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 21:22		N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 21:22	74-83-9	CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 21:22		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 21:22	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 21:22	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 21:22	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 21:22	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 21:22	75-00-3	N4
Chloroform	12.0	ug/L	1.0	0.93	1		08/20/22 21:22	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 21:22	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 21:22	124-48-1	N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 21:22	95-50-1	N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 21:22	541-73-1	N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 21:22	106-46-7	N4
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/20/22 21:22		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 21:22		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 21:22		N4
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/20/22 21:22		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 21:22		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 21:22		N4
1,2-Dichloropropane	ND ND	ug/L ug/L	1.0	0.28	1		08/20/22 21:22		N4
cis-1,3-Dichloropropene	ND	ug/L ug/L	1.0	0.29	1		08/20/22 21:22		N4
· · ·	ND ND	-		0.29	1		08/20/22 21:22		N4 N4
trans-1,3-Dichloropropene Ethylbenzene	ND ND	ug/L	1.0 1.0	0.32	1		08/20/22 21:22		N4 N4
2-Hexanone	ND ND	ug/L		0.40	1		08/20/22 21:22		CL,L2,
2-nexamone	ND	ug/L	10.0	0.56	'		06/20/22 21:22	391-76-6	N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 21:22		N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 21:22	75-09-2	CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 21:22	108-10-1	CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 21:22	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 21:22	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 21:22	100-42-5	N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 21:22	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 21:22	127-18-4	N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 21:22	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 21:22		N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 21:22		N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 21:22		N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 21:22		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 21:22		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: Field Blank 01	Lab ID:	30513470013	Collecte	d: 08/08/22	2 15:30	Received: 08	3/11/22 09:30 Ma	/latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 21:22	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 21:22	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 21:22	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 21:22	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 21:22	95-47-6	N4
Surrogates									
4-Bromofluorobenzene (S)	109	%.	70-130		1		08/20/22 21:22	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%.	70-130		1		08/20/22 21:22	17060-07-0	
Toluene-d8 (S)	96	%.	70-130		1		08/20/22 21:22	2037-26-5	
Dibromofluoromethane (S)	107	%.	70-130		1		08/20/22 21:22	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: Field Blank 02	Lab ID:	30513470014	Collecte	d: 08/09/2	2 10:05	Received: 08	3/11/22 09:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 82	260C						
	Pace Ana	lytical Services	Greensbu	ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 21:47	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 21:47	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 21:47	74-97-5	N4
Bromodichloromethane	1.8	ug/L	1.0	0.35	1		08/20/22 21:47		N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 21:47	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 21:47		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 21:47		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 21:47	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 21:47	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 21:47	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 21:47	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 21:47	75-00-3	N4
Chloroform	12.1	ug/L	1.0	0.93	1		08/20/22 21:47	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 21:47	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 21:47		N4
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 21:47	95-50-1	N4
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 21:47	541-73-1	N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 21:47		N4
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/20/22 21:47		N4
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 21:47		N4
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/20/22 21:47		N4
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/20/22 21:47		N4
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/20/22 21:47		N4
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.28	1		08/20/22 21:47		N4
1,2-Dichloropropane	ND	ug/L	1.0	0.28	1		08/20/22 21:47		N4
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/20/22 21:47		N4
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/20/22 21:47		N4
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/20/22 21:47		N4
2-Hexanone	ND ND	ug/L	10.0	0.58	1		08/20/22 21:47		CL,L2,
2-1 lexamone	ND	ug/L	10.0	0.50	'		00/20/22 21.47	391-70-0	N4
sopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 21:47	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 21:47	75-09-2	CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 21:47	108-10-1	CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 21:47	1634-04-4	N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 21:47	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 21:47		N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 21:47	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 21:47		N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 21:47	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 21:47	120-82-1	N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 21:47	71-55-6	N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 21:47	79-00-5	N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 21:47	79-01-6	N4
1,2,4-Trimethylbenzene	3.4	ug/L	1.0	0.63	1		08/20/22 21:47	95-63-6	N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: Field Blank 02	Lab ID:	30513470014	Collecte	d: 08/09/22	2 10:05	Received: 08	3/11/22 09:30 Ma	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 21:47	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 21:47	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 21:47	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 21:47	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 21:47	95-47-6	N4
Surrogates									
4-Bromofluorobenzene (S)	99	%.	70-130		1		08/20/22 21:47	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%.	70-130		1		08/20/22 21:47	17060-07-0	
Toluene-d8 (S)	96	%.	70-130		1		08/20/22 21:47	2037-26-5	
Dibromofluoromethane (S)	112	%.	70-130		1		08/20/22 21:47	1868-53-7	

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: Trip Blank	Lab ID:	30513470015	Collecte	d: 08/09/2	2 00:01	Received: 08	3/11/22 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 82	260C						
	Pace Ana	lytical Services	Greensbu	ırg					
Acetone	ND	ug/L	10.0	5.6	1		08/20/22 15:55	67-64-1	N4
Benzene	ND	ug/L	1.0	0.34	1		08/20/22 15:55	71-43-2	N4
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/20/22 15:55	74-97-5	N4
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/20/22 15:55	75-27-4	N4
Bromoform	ND	ug/L	4.0	1.5	1		08/20/22 15:55	75-25-2	N4
Bromomethane	ND	ug/L	4.0	2.5	1		08/20/22 15:55		CL,N4
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/20/22 15:55		N4
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/20/22 15:55	78-93-3	CL,L2, N4
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/20/22 15:55	75-15-0	N4
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/20/22 15:55	56-23-5	N4
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/20/22 15:55	108-90-7	N4
Chloroethane	ND	ug/L	1.0	0.64	1		08/20/22 15:55	75-00-3	N4
Chloroform	ND	ug/L	1.0	0.93	1		08/20/22 15:55	67-66-3	N4
Chloromethane	ND	ug/L	1.0	0.40	1		08/20/22 15:55	74-87-3	CL,N4
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/20/22 15:55		N4
1.2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/20/22 15:55		N4
1.3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/20/22 15:55		N4
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/20/22 15:55		N4
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/20/22 15:55		N4
1,2-Dichloroethane	ND ND	ug/L	1.0	0.33	1		08/20/22 15:55		N4
1,2-Dichloroethane (Total)	ND	ug/L	2.0	0.66	1		08/20/22 15:55		N4
1,1-Dichloroethene	ND ND	ug/L	1.0	0.49	1		08/20/22 15:55		N4
cis-1,2-Dichloroethene	ND ND	ug/L	1.0	0.49	1		08/20/22 15:55		N4
trans-1,2-Dichloroethene	ND ND	ug/L	1.0	0.38	1		08/20/22 15:55		N4
1,2-Dichloropropane	ND ND	ug/L ug/L	1.0	0.28	1		08/20/22 15:55		N4 N4
cis-1,3-Dichloropropene	ND ND	-	1.0	0.20	1		08/20/22 15:55		N4
	ND ND	ug/L		0.29	1		08/20/22 15:55		N4 N4
trans-1,3-Dichloropropene		ug/L	1.0						
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/20/22 15:55		N4 CL,L2,
2-Hexanone	ND	ug/L	10.0	0.58	1		08/20/22 15:55	591-78-6	N4
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/20/22 15:55	98-82-8	N4
Methylene Chloride	ND	ug/L	1.0	0.64	1		08/20/22 15:55	75-09-2	CL,N4
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/20/22 15:55	108-10-1	CL,L2, N4
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/20/22 15:55		N4
Naphthalene	ND	ug/L	4.0	2.1	1		08/20/22 15:55	91-20-3	N4
Styrene	ND	ug/L	1.0	0.33	1		08/20/22 15:55	100-42-5	N4
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/20/22 15:55	79-34-5	N4
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/20/22 15:55	127-18-4	N4
Toluene	ND	ug/L	1.0	0.32	1		08/20/22 15:55	108-88-3	N4
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/20/22 15:55	120-82-1	N4
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/20/22 15:55	71-55-6	N4
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/20/22 15:55	79-00-5	N4
Trichloroethene	ND	ug/L	1.0	0.29	1		08/20/22 15:55		N4
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/20/22 15:55		N4

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Sample: Trip Blank	Lab ID:	30513470015	Collecte	d: 08/09/22	2 00:01	Received: 08	3/11/22 09:30 Ma	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/20/22 15:55	108-67-8	N4
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/20/22 15:55	75-01-4	CL,N4
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/20/22 15:55	1330-20-7	N4
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/20/22 15:55	179601-23-1	N4
o-Xylene	ND	ug/L	1.0	0.41	1		08/20/22 15:55	95-47-6	N4
Surrogates									
4-Bromofluorobenzene (S)	106	%.	70-130		1		08/20/22 15:55	460-00-4	
1,2-Dichloroethane-d4 (S)	118	%.	70-130		1		08/20/22 15:55	17060-07-0	
Toluene-d8 (S)	92	%.	70-130		1		08/20/22 15:55	2037-26-5	
Dibromofluoromethane (S)	119	%.	70-130		1		08/20/22 15:55	1868-53-7	

LGX004-0309012-22006067-Revised Report Project:

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

QC Batch: 527193 Analysis Method: **EPA 8260C** QC Batch Method: **EPA 8260C** Analysis Description: 8260C MSV

> Laboratory: Pace Analytical Services - Greensburg

30513470001, 30513470002, 30513470003, 30513470004, 30513470005, 30513470006, 30513470007, Associated Lab Samples:

30513470008, 30513470009, 30513470010, 30513470011, 30513470012, 30513470013, 30513470014,

30513470015

METHOD BLANK: 2558390 Matrix: Water

30513470001, 30513470002, 30513470003, 30513470004, 30513470005, 30513470006, 30513470007,Associated Lab Samples:

30513470008, 30513470009, 30513470010, 30513470011, 30513470012, 30513470013, 30513470014,

30513470015

333.3		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
-						
1,1,1-Trichloroethane	ug/L	1.0 U	1.0	0.38	08/20/22 15:30	N4
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0	0.47	08/20/22 15:30	N4
1,1,2-Trichloroethane	ug/L	1.0 U	1.0	0.33	08/20/22 15:30	N4
1,1-Dichloroethane	ug/L	1.0 U	1.0	0.50	08/20/22 15:30	N4
1,1-Dichloroethene	ug/L	1.0 U	1.0	0.49	08/20/22 15:30	N4
1,2,4-Trichlorobenzene	ug/L	4.0 U	4.0	0.73	08/20/22 15:30	N4
1,2,4-Trimethylbenzene	ug/L	1.0 U	1.0	0.63	08/20/22 15:30	N4
1,2-Dichlorobenzene	ug/L	1.0 U	1.0	0.38	08/20/22 15:30	N4
1,2-Dichloroethane	ug/L	1.0 U	1.0	0.33	08/20/22 15:30	N4
1,2-Dichloroethene (Total)	ug/L	2.0 U	2.0	0.66	08/20/22 15:30	N4
1,2-Dichloropropane	ug/L	1.0 U	1.0	0.28	08/20/22 15:30	N4
1,3,5-Trimethylbenzene	ug/L	1.0 U	1.0	0.45	08/20/22 15:30	N4
1,3-Dichlorobenzene	ug/L	1.0 U	1.0	0.45	08/20/22 15:30	N4
1,4-Dichlorobenzene	ug/L	1.0 U	1.0	0.48	08/20/22 15:30	N4
2-Butanone (MEK)	ug/L	10.0 U	10.0	1.5	08/20/22 15:30	CL,N4
2-Hexanone	ug/L	10.0 U	10.0	0.58	08/20/22 15:30	CL,N4
4-Methyl-2-pentanone (MIBK)	ug/L	10.0 U	10.0	0.42	08/20/22 15:30	CL,N4
Acetone	ug/L	10.0 U	10.0	5.6	08/20/22 15:30	N4
Benzene	ug/L	1.0 U	1.0	0.34	08/20/22 15:30	N4
Bromochloromethane	ug/L	1.0 U	1.0	0.48	08/20/22 15:30	N4
Bromodichloromethane	ug/L	1.0 U	1.0	0.35	08/20/22 15:30	N4
Bromoform	ug/L	4.0 U	4.0	1.5	08/20/22 15:30	N4
Bromomethane	ug/L	4.0 U	4.0	2.5	08/20/22 15:30	CL,N4
Carbon disulfide	ug/L	1.0 U	1.0	0.32	08/20/22 15:30	N4
Carbon tetrachloride	ug/L	1.0 U	1.0	0.44	08/20/22 15:30	N4
Chlorobenzene	ug/L	1.0 U	1.0	0.26	08/20/22 15:30	N4
Chloroethane	ug/L	1.0 U	1.0	0.64	08/20/22 15:30	N4
Chloroform	ug/L	1.0 U	1.0	0.93	08/20/22 15:30	N4
Chloromethane	ug/L	1.0 U	1.0	0.40	08/20/22 15:30	CL,N4
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0	0.38	08/20/22 15:30	N4
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0	0.29	08/20/22 15:30	N4
Dibromochloromethane	ug/L	1.0 U	1.0	0.43	08/20/22 15:30	N4
Ethylbenzene	ug/L	1.0 U	1.0	0.40	08/20/22 15:30	N4
Isopropylbenzene (Cumene)	ug/L	1.0 U	1.0	0.47	08/20/22 15:30	N4
m&p-Xylene	ug/L	2.0 U	2.0	0.94	08/20/22 15:30	N4
Methyl-tert-butyl ether	ug/L	1.0 U	1.0	0.25	08/20/22 15:30	N4
Methylene Chloride	ug/L	1.0 U	1.0	0.64	08/20/22 15:30	CL,N4
,	~ 5 , –	0		0.01	11.20,22 .0.00	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

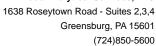
Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

METHOD BLANK: 2558390 Matrix: Water

Associated Lab Samples: 30513470001, 30513470002, 30513470003, 30513470004, 30513470005, 30513470006, 30513470007,


30513470008, 30513470009, 30513470010, 30513470011, 30513470012, 30513470013, 30513470014,

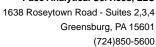
30513470015

	Blank	Reporting			
Units	Result	Limit	MDL	Analyzed	Qualifiers
ug/L	4.0 U	4.0	2.1	08/20/22 15:30	N4
ug/L	1.0 U	1.0	0.41	08/20/22 15:30	N4
ug/L	1.0 U	1.0	0.33	08/20/22 15:30	N4
ug/L	1.0 U	1.0	0.39	08/20/22 15:30	N4
ug/L	1.0 U	1.0	0.32	08/20/22 15:30	N4
ug/L	6.0 U	6.0	2.4	08/20/22 15:30	N4
ug/L	1.0 U	1.0	0.28	08/20/22 15:30	N4
ug/L	1.0 U	1.0	0.32	08/20/22 15:30	N4
ug/L	1.0 U	1.0	0.29	08/20/22 15:30	N4
ug/L	1.0 U	1.0	0.29	08/20/22 15:30	CL,N4
ug/L	3.0 U	3.0	1.4	08/20/22 15:30	N4
%.	113	70-130		08/20/22 15:30	
%.	102	70-130		08/20/22 15:30	
%.	112	70-130		08/20/22 15:30	
%.	91	70-130		08/20/22 15:30	
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Units Result ug/L 4.0 U ug/L 1.0 U ug/L 3.0 U wg/L 3.0 U %. 113 %. 102 %. 112	Units Result Limit Ug/L 4.0 U 4.0 Ug/L 1.0 U 1.0 Ug/L 1.0 U	Units Result Limit MDL ug/L 4.0 U 4.0 2.1 ug/L 1.0 U 1.0 0.41 ug/L 1.0 U 1.0 0.33 ug/L 1.0 U 1.0 0.39 ug/L 1.0 U 1.0 0.32 ug/L 1.0 U 1.0 0.28 ug/L 1.0 U 1.0 0.32 ug/L 1.0 U 1.0 0.29 ug/L 1.0 U 1.0 0.29 ug/L 3.0 U 3.0 1.4 %. 113 70-130 %. 102 70-130 %. 112 70-130	Units Result Limit MDL Analyzed ug/L 4.0 U 4.0 2.1 08/20/22 15:30 ug/L 1.0 U 1.0 0.41 08/20/22 15:30 ug/L 1.0 U 1.0 0.33 08/20/22 15:30 ug/L 1.0 U 1.0 0.39 08/20/22 15:30 ug/L 1.0 U 1.0 0.32 08/20/22 15:30 ug/L 6.0 U 6.0 2.4 08/20/22 15:30 ug/L 1.0 U 1.0 0.28 08/20/22 15:30 ug/L 1.0 U 1.0 0.32 08/20/22 15:30 ug/L 1.0 U 1.0 0.29 08/20/22 15:30 ug/L 1.0 U 1.0 0.29 08/20/22 15:30 ug/L 3.0 U 3.0 1.4 08/20/22 15:30 ws. 113 70-130 08/20/22 15:30 %. 102 70-130 08/20/22 15:30 %. 112 70-130 08/20/22 15:30

LABORATORY CONTROL SAMPLE:	2558391					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		26.0	130	70-130	N4
1,1,2,2-Tetrachloroethane	ug/L	20	21.8	109	70-130	N4
1,1,2-Trichloroethane	ug/L	20	18.1	90	70-130	N4
1,1-Dichloroethane	ug/L	20	19.8	99	70-130	N4
1,1-Dichloroethene	ug/L	20	18.4	92	70-130	N4
1,2,4-Trichlorobenzene	ug/L	20	17.8	89	70-130	N4
1,2,4-Trimethylbenzene	ug/L	20	20.7	104	70-130	N4
1,2-Dichlorobenzene	ug/L	20	19.5	97	70-130	N4
1,2-Dichloroethane	ug/L	20	18.0	90	70-130	N4
1,2-Dichloroethene (Total)	ug/L	40	36.4	91	70-130	N4
1,2-Dichloropropane	ug/L	20	18.4	92	70-130	N4
1,3,5-Trimethylbenzene	ug/L	20	21.1	106	70-130	N4
1,3-Dichlorobenzene	ug/L	20	19.6	98	70-130	N4
1,4-Dichlorobenzene	ug/L	20	19.0	95	70-130	N4
2-Butanone (MEK)	ug/L	20	13.6	68	70-130	CL,L2,N4
2-Hexanone	ug/L	20	13.7	69	70-130	CL,L2,N4
4-Methyl-2-pentanone (MIBK)	ug/L	20	13.9	69	70-130	CL,L2,N4
Acetone	ug/L	20	16.8	84	67-173	N4
Benzene	ug/L	20	20.2	101	70-130	N4
Bromochloromethane	ug/L	20	19.1	95	70-130	N4
Bromodichloromethane	ug/L	20	19.2	96	70-130	N4
Bromoform	ug/L	20	19.5	97	63-119	N4
Bromomethane	ug/L	20	11.0	55	24-159	CL,N4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LGX004-0309012-22006067-Revised Report


Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

ABORATORY CONTROL SAMPLE:	2558391					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
arbon disulfide	ug/L	20	16.3	82	57-132	N4
rbon tetrachloride	ug/L	20	23.0	115	70-130	N4
llorobenzene	ug/L	20	19.3	97	70-130	N4
loroethane	ug/L	20	23.6	118	62-145	N4
oroform	ug/L	20	20.2	101	70-130	N4
oromethane	ug/L	20	14.1	70	66-140	CL,N4
-1,2-Dichloroethene	ug/L	20	18.0	90	70-130	N4
-1,3-Dichloropropene	ug/L	20	19.3	97	70-130	N4
romochloromethane	ug/L	20	18.7	93	70-130	N4
ylbenzene	ug/L	20	20.1	101	70-130	N4
propylbenzene (Cumene)	ug/L	20	22.1	110	70-130	N4
p-Xylene	ug/L	40	39.4	98	70-130	N4
hyl-tert-butyl ether	ug/L	20	20.0	100	70-130	N4
thylene Chloride	ug/L	20	15.5	77	70-130	CL,N4
hthalene	ug/L	20	16.6	83	55-160	N4
ylene	ug/L	20	19.3	97	70-130	N4
ene	ug/L	20	19.8	99	70-130	N4
achloroethene	ug/L	20	21.7	108	70-130	N4
iene	ug/L	20	20.9	104	70-130	N4
TAL BTEX	ug/L	120	120	100	70-130	N4
s-1,2-Dichloroethene	ug/L	20	18.3	92	70-130	N4
ns-1,3-Dichloropropene	ug/L	20	18.9	95	70-130	N4
hloroethene	ug/L	20	22.3	111	70-130	N4
yl chloride	ug/L	20	14.7	73	70-130	CL,N4
ene (Total)	ug/L	60	58.7	98	70-130	N4
Dichloroethane-d4 (S)	%.			97	70-130	
romofluorobenzene (S)	%.			107	70-130	
omofluoromethane (S)	%.			109	70-130	
uene-d8 (S)	%.			96	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2558793 2558794												
	:	30513470008	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	20	20	21.8	21.7	109	108	55-146	0	30	N4
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	18.9	21.2	95	106	55-118	11	30	N4
1,1,2-Trichloroethane	ug/L	2.4	20	20	18.1	18.1	79	79	61-122	0	30	N4
1,1-Dichloroethane	ug/L	54.6	20	20	69.5	67.1	74	62	59-130	4	30	N4
1,1-Dichloroethene	ug/L	7.6	20	20	24.9	23.0	86	77	52-119	8	30	N4
1,2,4-Trichlorobenzene	ug/L	ND	20	20	19.6	18.9	98	95	38-146	3	30	N4
1,2,4-Trimethylbenzene	ug/L	ND	20	20	20.8	19.2	104	96	52-151	8	30	N4
1,2-Dichlorobenzene	ug/L	ND	20	20	18.0	18.3	90	92	58-126	2	30	N4
1,2-Dichloroethane	ug/L	ND	20	20	15.9	16.4	79	82	49-135	3	30	N4
1,2-Dichloroethene (Total)	ug/L	ND	40	40	30.9	31.7	77	79	61-119	3	30	N4
1,2-Dichloropropane	ug/L	ND	20	20	15.4	16.0	77	80	67-121	4	30	N4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPLICAT	E: 2558			2558794							
	2054	10.470000	MS	MSD	МС	MCD	MC	MCD	0/ Daa		Mari	
Parameter	Units	3470008 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
1,3,5-Trimethylbenzene	ug/L	ND	20	20	20.1	20.6	101	103	53-142	2	30	N4
1,3-Dichlorobenzene	ug/L	ND	20	20	19.1	19.3	96	97	56-130	1	30	N4
1,4-Dichlorobenzene	ug/L	ND	20	20	17.8	18.6	89	93	60-121	5	30	N4
2-Butanone (MEK)	ug/L	ND	20	20	13.1	12.1	65	61	59-138	8		CL,N
2-Hexanone	ug/L	ND	20	20	11.7	12.4	58	62	66-123	6	30	CL,M N4
4-Methyl-2-pentanone (MIBK)	ug/L	ND	20	20	11.4	11.4	57	57	70-130	0	30	CL,M N4
Acetone	ug/L	ND	20	20	15.6	18.1	78	90	57-140	15	30	N4
Benzene	ug/L	1.4	20	20	21.9	18.1	103	84	50-149	19	30	N4
Bromochloromethane	ug/L	ND	20	20	17.2	17.1	86	85	63-120	1	30	N4
Bromodichloromethane	ug/L	ND	20	20	16.9	17.5	84	87	46-131	3		N4
Bromoform	ug/L	ND	20	20	16.8	17.4	84	87	30-119	4		N4
Bromomethane	ug/L	ND	20	20	7.4	9.8	37	49	10-163	28	30	CL,N
Carbon disulfide	ug/L	ND	20	20	13.0	13.2	65	66	41-116	2		N4
Carbon tetrachloride	ug/L	ND	20	20	19.1	19.3	95	97	55-119	1	30	N4
Chlorobenzene	ug/L	ND	20	20	16.0	17.1	80	85	66-124	7	30	N4
Chloroethane	ug/L	ND	20	20	23.9	22.3	120	112	45-162	7	30	N4
Chloroform	ug/L	ND	20	20	17.5	17.3	87	87	56-123	1	30	N4
Chloromethane	ug/L	ND	20	20	12.5	12.6	63	63	49-150	1	30	CL,N
cis-1,2-Dichloroethene	ug/L	ND	20	20	15.3	16.3	76	81	63-116	6	30	N4
cis-1,3-Dichloropropene	ug/L	ND	20	20	16.0	16.8	80	84	46-119	5	30	N4
Dibromochloromethane	ug/L	ND	20	20	16.4	16.3	82	81	42-120	1	30	N4
Ethylbenzene	ug/L	ND	20	20	17.9	16.9	90	84	63-135	6	30	N4
sopropylbenzene (Cumene)	ug/L	ND	20	20	20.8	22.4	104	112	50-167	7		N4
m&p-Xylene	ug/L	ND	40	40	36.7	34.1	92	85	63-135	7		N4
Methyl-tert-butyl ether	ug/L	ND	20	20	18.5	16.6	92	83	53-123	11		N4
Methylene Chloride	ug/L	ND	20	20	13.2	12.1	66	61	57-132	8		CL,N
Naphthalene	ug/L	ND	20	20	15.7	17.5	78	87	30-157	11		N4
o-Xylene	ug/L	ND	20	20	17.2	17.0	86	85	57-133	1		N4
Styrene	ug/L	ND	20	20	17.7	16.9	89	84	58-130	5		N4
Tetrachloroethene	ug/L	ND	20	20	18.6	18.1	93	90	61-132	3		N4
Toluene	ug/L	ND	20	20	27.7	18.4	139	92	59-139	40		N4,R
TOTAL BTEX	ug/L	ND	120	120	121	105	100	86	50-149	15		N4,F
rans-1,2-Dichloroethene	ug/L	ND	20	20	15.7	15.5	78	77	60-124	1		N4
rans-1,3-Dichloropropene	ug/L	ND	20	20	15.3	15.6	77	78	48-121	2		N4
Trichloroethene	ug/L	ND	20	20	17.5	18.7	87	93	63-128	7		N4
Vinyl chloride	ug/L	ND	20	20	15.6	14.6	78	73	67-141	7		CL,N
Xylene (Total)	ug/L	ND	60	60	54.0	51.1	90	85	63-135	5	30	N4
1,2-Dichloroethane-d4 (S)	%.						97	96	70-130			
4-Bromofluorobenzene (S)	%.						111	113	70-130			
Dibromofluoromethane (S)	%.						100	97	70-130			
Toluene-d8 (S)	%.						96	95	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Sample: 30513470001

[1] Residual Chlorine was present in the VOA vial used for analysis.

Sample: 30513470009

[1] Residual Chlorine was present in the VOA vial used for analysis.

ANALYTE QUALIFIERS

Date: 08/29/2022 02:09 PM

CL	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased
	low.

- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- N4 The laboratory does not hold accreditation for this parameter by the relevant laboratory accrediting body.
- R1 RPD value was outside control limits.
- RS The RPD value in one of the constituent analytes was outside the control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LGX004-0309012-22006067-Revised Report

Pace Project No.: 30513470

Date: 08/29/2022 02:09 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30513470001	MW-1	EPA 8260C	527193		
30513470002	MW-2	EPA 8260C	527193		
30513470003	MW-2D	EPA 8260C	527193		
30513470004	MW-3	EPA 8260C	527193		
30513470005	MW-7	EPA 8260C	527193		
30513470006	MW-8	EPA 8260C	527193		
30513470007	MW-9	EPA 8260C	527193		
30513470008	MW-10	EPA 8260C	527193		
30513470009	MW-11	EPA 8260C	527193		
30513470010	MW-12	EPA 8260C	527193		
30513470011	MW-13	EPA 8260C	527193		
30513470012	MW-14	EPA 8260C	527193		
30513470013	Field Blank 01	EPA 8260C	527193		
30513470014	Field Blank 02	EPA 8260C	527193		
30513470015	Trip Blank	EPA 8260C	527193		

VES (ND Of:			:84								1				-	
Non Conformance(s): Page:			:M4		:əwiT/	Date	ature)	sngi2) :Yneqr	η pλ\Con	Received		:əmiT	\este\	(e	γ: (Signatur	neqmo2\yd bədsiupnilə
HCL MeOH TSP Other			Prelogin:													
Trip Blank Received: (Y N NA			:muntɔɔA ətelqməT	Date\Time:			Réceived by Company: (Signature)) Date/Time:				neqm <mark>o</mark> ጋ\yd bədsiupnilə	
	Table #:			ə	0560 K-11-9			My Cab.			2.5 14-01-8			(A de	The Male	
Comments:	MTJL LAB USE ONLY				Date/Time:			ngis) :γnedι	ι by/Con	Received		:əmiT	Date/	(6	γ: (Signatur	neqm <mark>o</mark> 2\yd bədsiupnile
Cooler 1 Therm Corr. Factor: 6.6 October 1 Corrected Temp:	urier	r Pace Co	SinuoD	 Client	eceived vis	3034	AN) N	д :(ш	(<200 cb	creened (s (s)əldu	вз шәцәред	1		Par I	1 1/19/3 T
Cooler 1 Temp Upon Receipt: 1, 1		CHI	711		siv bevieses	Isolume?			20	1				715m 875	0 04	17-D:Chlorocations
Temp Blank Received: Y W NA Therm ID#:		Lab Tracking #: 2772749					+	L :p	erial Use	Packing Mat			100	Legarting ling +		
Lab Sample Temperature Info:		A\N D	ionrs): Y	ENT (<72 h	SHORT HOLDS PRESENT (<7;			A STATE OF THE STA					azards:	emarks / Special Conditions / Possible Haza		
	90					X	[7 100	7/8/8	1			T		41- MM
	100				5 4	X	6		100	7/8/8)1- MW
	lo			7 5		X	2			17/4/8			1 2			01-WW
	00					X	E			7/5/8	3 4			1 11		6- WW
220	(CO)					X	5	ومد		17/5/3	7.1				1 12	8-15W
	(B)					X	6	2		7/8/8	, it			ia or		4-MW
	an					X	6	ار	9.1	8/3/8						r-mw
	to					X	5			7/6/8		1 4				04-WW
	10 11					X	6		191 10	1/8/8			1	~~~		7-NW
	nl						E	Эu	17	Date	əmiT	Date	୍ ମ	M9		1-mW
	0						Ctns	12	- 1			Composite	Grab	* xirtsM		Ustomer Sample
mbje # / Comments:						ICL	lo #	SAR	ı∃ ətisoq			etoello <mark></mark> 2	/ dmo2			
ectate Strips:							Ξ.									Matrix Codes (Insert in Product (P), Soil/solid (
e Present Y NA		10 10 10 10 10 10 10 10 10 10 10 10 10 1				Nocs	79	(,,,,,	7	sisylsnA			gredite Charg		_	:ріон [
bh Acceptable Y NA						5		on [səY[]] Next Day] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	[] keturn	A Dispose as appropriate Archive:
al Chlorine Present Y N WA	Residu			- 5		5		applicable):				Yed tyok [. 3	:ysny	11	ample Disposal:
Headspace Acceptable T N NA egulated Soils Y N NA	M AGEU					36		oN [s∌Y [X]				Norne	-	JW)
s Received on Ice # N NA	Sample				27-1	0		cked on Ice:	o2 noita ately Pac				te Reguirec	Turnaround Da		ollected By (signature):
t Bottles T N NA T Solume T N NA T Solume	Correc						5v /n.v	.00		DW PW			:# -	urchase Order Quote #:	La Company	ollected By (print):
tor Signature Present T N NA s Intact	Collec						5	oN [səy 💢	3 3					ilism . nccon
Y Seals Present/Intact Y N NA Y Signatures Present * N NA							1	- Sgninotin			داوسه	7 .101		oite/Facility ID	000-41	2010-10-016 :3104
mple Receipt Checklist:				i i	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			betzelloD er TD [] TM [ounty/Cit	101	11 7	C1010	A 1	ustomer Project Name/
:9uiJ\	Lab Profile		breserved,	rak, (U) (421 səsylen		(C) ammonium hy		3				Site Collecti	1.3			.oT γqo
odium hydroxide, (5) zinc acetate, sic acid, (B) ammonium sulfate,	e, (A) ascorb	fate, (9) hexane	nsoiqt mnil	fate, (8) sod	ınsıq wnipos	(6) methanol, (7)		281		مردردم	1 ~!	(Len	
etetese sair (3) obivesbud muibo		(3) pydrochlori 80213470	A V STATES	(C) hine ai	atin (1) sagy	T evitevnegerq **	-					-:oT lism3	Tan si		1	
	Container Preservative Type					1	1909001	7-7	10Pol	ארן - א	1 5 A	1 12			ddress: Alen, 814	
			DEC	AHS 11	A						nation:	noful guilli8		Sice	o mys	мээн : Уперто
913470	UE.	#OM					S	bleif field	lete all re	Iqmo⊃ - آ	COMENT	s a LEGAL DO	i γbotsuϽ-ٔ	o-nisdO	וכשו	Mace Analy
DZVGVJ				W xiffA -Y	B USE ONL	∀ 1	ţuə	Docum	<u>ş</u> sənb	sal Rec	nalytic	А УООТ	OE-CN2.	-NIAHO	01-31	Page 41 of 42

nple Receipt Checklist:	e, (A) ascorbi	te, (9) hexan	thiosulfa	muibos (8) , (U) Unpres	dium bisulfate	* Preservative Typ i) methanol, (7) so c) ammonium hydi] CT [VET (60)	ldress: 7: Time Zone Collec A [] PT[] MT[mail To: ite Collection Info/Ad tate: County/City	/ ሪ ን0°	Report To: Copy To: Customer Project Name/Number: LEX GAY -C) GAOLL-Abook
Cor Signatures Present Y N NA Intact Y N NA Internal Y N NA Intact Y N NA Internal Y N NA Intact Y N NA Internal Y N NA Intact Y N NA Intact Y N NA Internal Y N N N N N N N N N N N N N N N N N N	Custody Custody Collect Bottleet Sumples Voh - H USDA Residua Colsect Samples Residua Colsect					TCL YOU PAGE); (ce:	Compliance Monitoring: Yes [] No DW PWS ID #: Manadiately Packed on I Yes [] No Yes [: Mext Day 5 Day 5 Day 6 Day 7 Day	Site/Facility ID #: Surchase Order #: Curnaround Date Required Rush: [] Same Day [] 3 Day [] 5 Day [] 6 Day [] 6 Day [] 7 Day [] 8 Day [] 8 Day [] 8 Day [] 9 Day	Phone: \$10-716-6/22, Email: Collected By (print) Collected By (signature):
	200 200 200 200 200 200 200 200 200 200					X X X		0 (S) TY/8/8 0 (S) TY/8/8 0 (S) TY/8/8		9 69	11-UM FIELD BENEVOL FIELD BENEVOL Trie BENEVOL
Lab Sample Temperature Info: Temp Blank Received: Y N NA Therm ID#: Cooler 1 Temp Upon Receipt: Cooler 1 Therm Corr. Factor: Cooler 1 Corrected Temp: Comments: Trip Blank Received: Y N NA HCL MeOH TSP Other Non Conformance(s): Of: YES		Pace Cc	Courier MTJI MTJI mplate:	Client Ta	ceived via:	Lab Trackir Samples re FEDEX Date/T	égnature) (anature)	Wet Blue Dry reened (<500 cpm): Y secelyed by/Company: (5 secelyed by/Company: (5)	Packing Material Used Sadchem sample(s) sc	(e) Date/	Customer Remarks / Special Condition 1,2-0; Chlorochene to the selection of the selection

Appendix E PURGE WATER MANIFEST

Safety-Kleen Systems, Inc.
42 Longwater Drive
Norwell, MA 02061
CORPORATE: 800-669-5740
24 HR EMERGENCY: 800-468-1760 (Safety-Kleen)
7168268931

REFERENCE NBR.

TAX EXEMPT#

466.23

89998448 - 2200391304

SRVC WEEK: 2022-38

SRVC DATE: 09-23-2022

CUSTOMER# LE19013 Lexington Die Casting

201 Winchester Road

NY 14750-0000 PHONE 585-313-4845

Lakewood

BILL TO CUSTOMER# BILL TO ADDRESS:
LE10377 Lexington Machining

677 Buffalo Rd

Rochester
NY 14611-2014
PHONE 585-235-0880

PURCHASE ORDER#

PRODUCT/SERVICES

1 ROBGO 1/GERVIGES												
SERVICE/PRODUCT		QTY	UNIT PRICE	TAX	TOTAL CHARGE							
875480/ 1955579 CNOS SERVICE TERM 0 WEEK	55GL NON HAZ SEMI SLDS	1.0	364.30	29.14	393.44							
100030 RECOVERY FEE		1.0	67.40	5.39	72.79							
	TOTAL SERVICE/PRODUCTS											
			431.70	34.53 TOTAL CHARGE CREDITS	466.23 466.23 0.00							
				TOTAL DUE	466.23							

UNPAID BALANCE THIS RECEIPT

GENERATOR STATUS 0-220 lbs/month

Customer certifies that (i) the above-named materials are properly classified, packaged, marked and labeled, and are in proper condition for transportation according to the applicable regulations of the Department of Transportation (ii) no material change has occurred either in the characteristics of the waste/material or in the process generating the waste/material, and (iii) the above referenced Generator Status is correct. Customer agrees to pay the above charges and to be bound by the terms and conditions (1) set forth in (a) the General Terms and Conditions provided separately to Customer or (b) any SK agreement signed by Customer and SK, and (2) incorporated herein by reference. Unless otherwise indicated in the payment received section, SK is authorized to charge Customers account for this transaction. If Customer fails to make payment when due, an amount equal to the lesser of (i) 1.5% per month (18% per annum) or (ii) the maximum amount allowed by law, will be added to all unpaid amounts outstanding. Customer certifies that the individual signing this Service Acknowledgement is duly authorized to sign and bind Customer. Customer acknowledges that it is responsible for maintaining its Generator Status and obtaining an EPA ID number if required by applicable law. The following provision is applicable to Safety-Kleens parts cleaner and paint gun cleaner services: Customer agrees that it will not introduce any substance into the solvent or aqueous cleaning solution, including without limitation any hazardous waste or hazardous waste constituent, except to the extent such introduction is incidental to the normal use of the machine. Customer further agrees that it will not clean parts/paint guns that have been contaminated with or otherwise introduce polychlorinated biphenyls (PCBs), herbicides, pesticides, dioxins or listed hazardous waste into the solvent or aqueous cleaning solution. The receiving facility has the appropriate permit(s) for, and will accept, the waste the generator is shipping. Customer agrees that it is responsible for properly classifying its waste streams as Used Oil or Nonhazardous Maste in accordance with the provision of 40 CFR 262.11 and applicable state laws. Customer agrees that it will not introduce any non-conforming substance into the SK Property, including, without limitation, any hazardous waste or hazardous waste constituent, (i.e., polychlorinated biphenyls ("PCBs"), herbicides, pesticides, dioxins, or listed hazardous wastes) except to the extent such introduction is incidental to the normal use of the SK Property. In the event of the introduction of such non-conforming hazardous waste, Customer agrees that it will be responsible for all costs and remediation expenses related to or arising from the proper management and disposal of the non-conforming waste, including the cost of equipment decontamination and subsequent disposal. Final invoicing will be based on the actual services provided, which may include additional charges for off specification waste and surcharges. Final invoice amount may be more than the amount listed on the printed receipt. If any legal action is commenced because of an alleged dispute, breach, default or misrepresentation, the Customer also agrees that the prevailing party will be entitled to recover reasonable attorneys fees and costs associated with the non-conforming contamination event. Safety-Kleens failure to screen Customers material or take a retain sample, in no way constitutes a waiver of Customers obligation to properly classify its materials. Safety-Kleen relies on Customers representations and Customer is responsible for informing Safety-Kleen of any process changes that may alter the characteristics of the materials provided. In accordance with 40 CFR 263.21 (b)(3) Clean Harbors and/or Safety-Kleen, as applicable, as the current transporter is expressly given agency authority by the generator to act as the generator's agent and accordingly, Clean Harbors and/or Safety-Kleen, as applicable, may change the transporter(s) designated on the manifest, or add a new transporter, during transportation

without the generator's prior, explicit approval. IN THE EVENT OF AN EMERGENCY CALL **24-HR NUMBER** 1-800-468-1760 (Safety-Rieen) A variable recovery fee that fluctuates with the DOE national average diesel price may be applied to your invoice. For more information regarding our recovery fee calculation please go to http://safety-kleen.com/ customer-service/environmental-fees/recovery-fees. A variable Chemistry Fee that fluctuates based on internal material costs may be applied to your invoice. A variable Product Delivery Fee that fluctuates may be applied to your invoice. Please note e-manifest fees applicable to this order may not be included in the total above and will be included in the final invoice or credit card statement. RECEIPT ONLY - THIS IS NOT AN INVOICE

CUSTOMER / GENERATOR: Lexington Die Casting

TRANSPORTER: Schifano, Michael

CSG SK-LSC-BOX-26 Schifano, Michael 09-23-2022 12:04 PAGE 2

SHIPPING DOCUMENT

IN THE EVENT OF AN EMERGENCY CALL **24-Hr-Number** 1-800-468-1760 (SAFETY-KLEEN SYSTEMS, INC.)

#REFERENCE NBR. 89998448 - 2200391304

CUSTOMER#/GENERATOR: LE19013 Lexington Die Casting 201 Winchester Road

Lakewood NY 14750-0000 PHONE 585-313-4845

GENERATOR USEPA ID: GENERATOR STATE ID:

MANIFEST#: FORM CD: NR SHIP#: 238139393

TRANSPORTER 1: TXR000081205 Safety Kleen

Address Transporter1: SAFETY-KLEEN SYSTEMS INC. 1722 COOPER CREEK RD Ste 100 DENTON, TX, US 76208, Phone: 800-669-5840 TRANSPORTER 2:

US DOT DESCRIPTION (INCLUDING PROPER SHIPPING NAME, HAZARD CLASS, AND ID) NONE, NON DOT REGULATED, (WATER), $\rm N/A$ FEDERAL WASTE CODES NONE

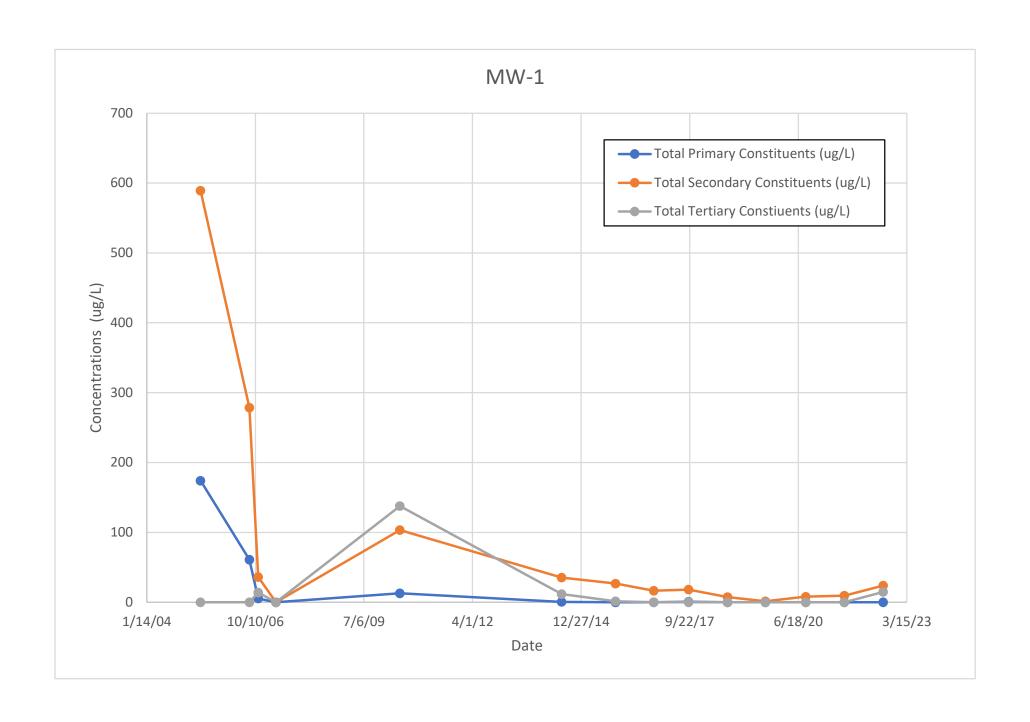
DESIGNATED FACILITY NAME/ADDRESS: SPRING GROVE RESOURCE RECOVERY INC 4879 SPRING GROVE AVE CINCINNATI OH 45232 TSD PHONE 513-681-6242 FACILITY USEPA ID NO OHD000816629 FACILITY STATE ID NO 9390610002

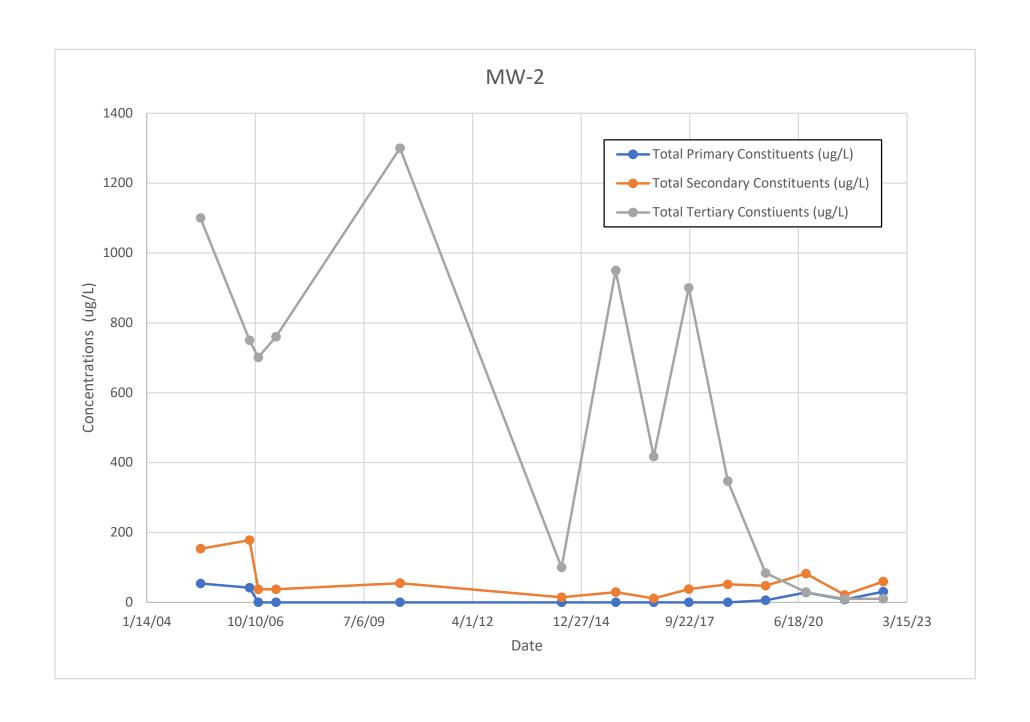
GENERATOR STATUS 0-220 lbs/month

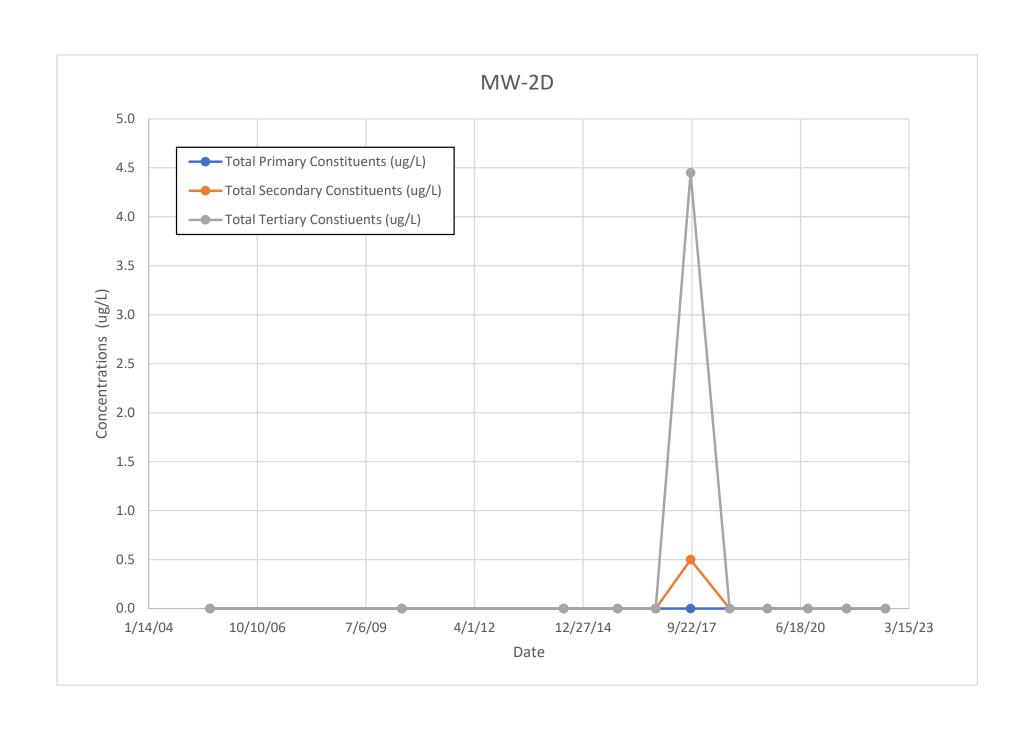
CUSTOMER / GENERATOR: Lexington Die Casting all

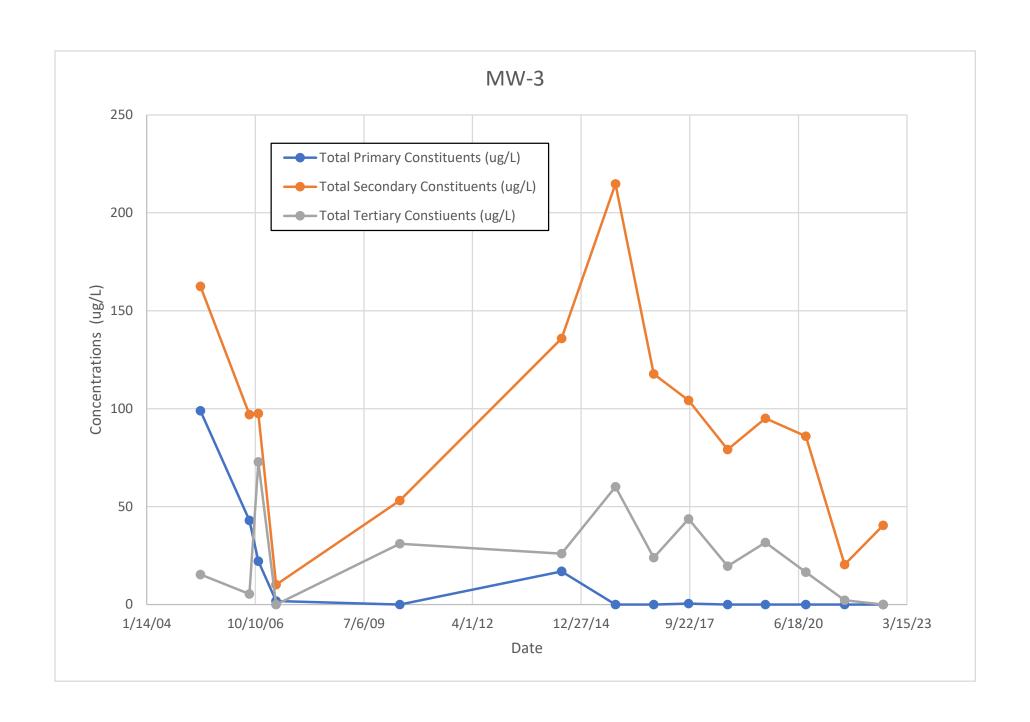
TRANSPORTER: Schifano, Michael

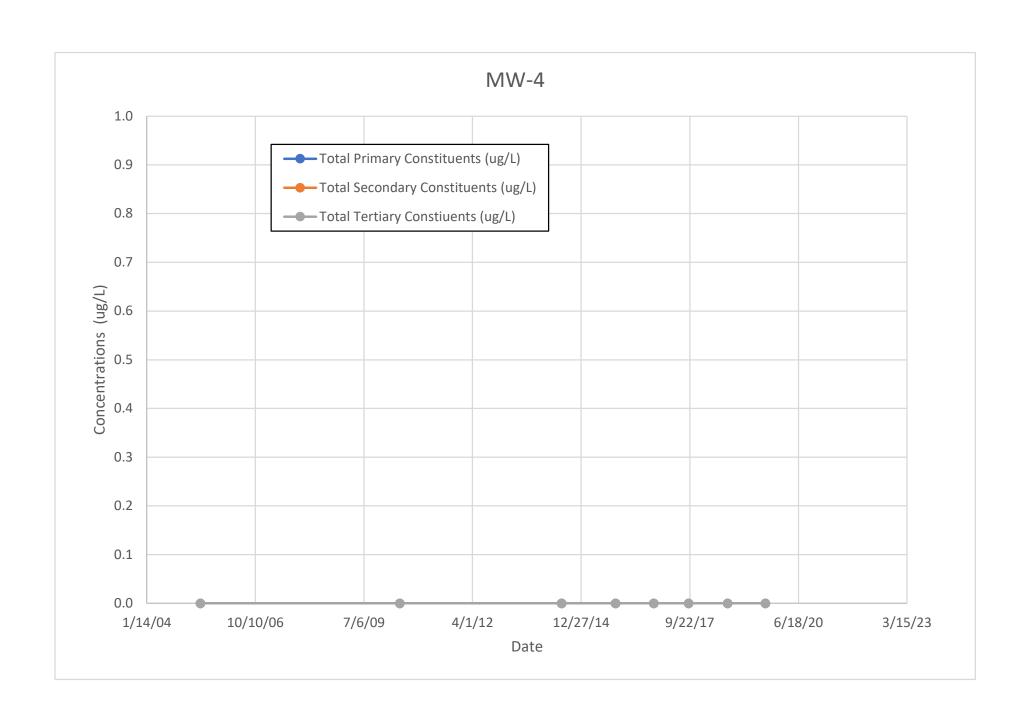
2

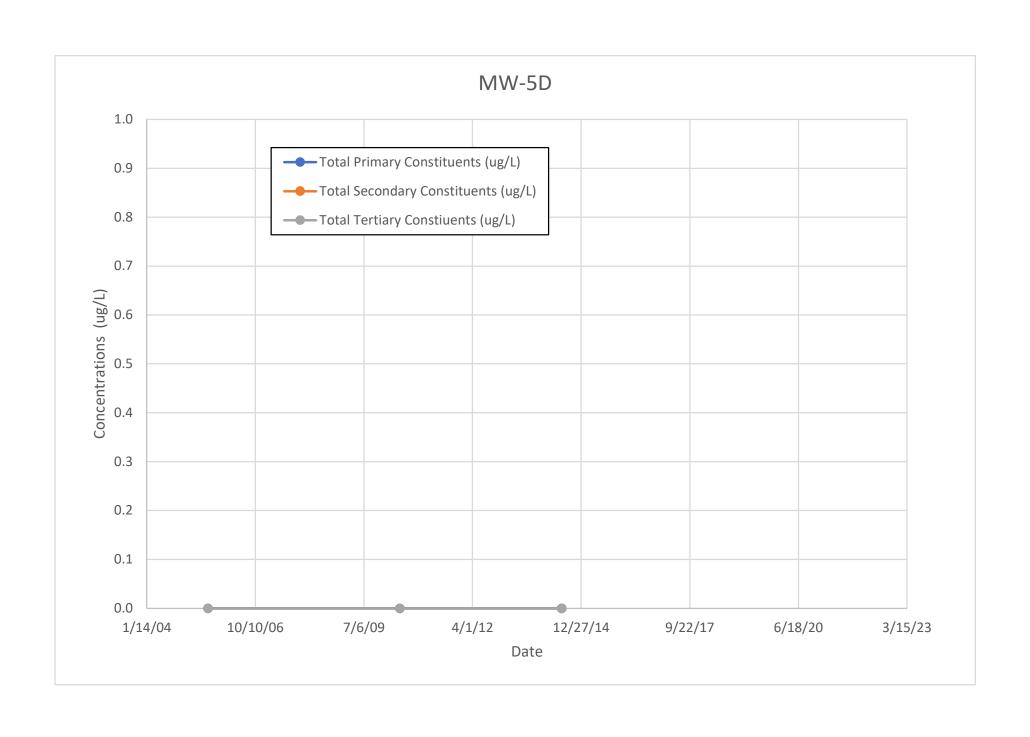

TRANSPORTER2:

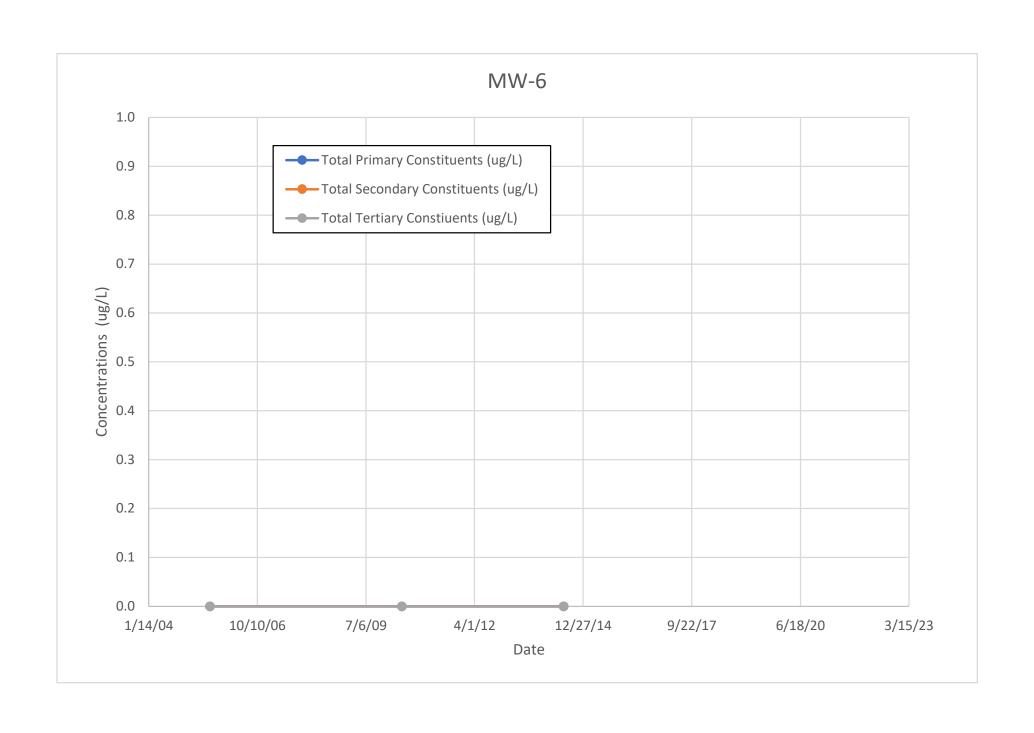


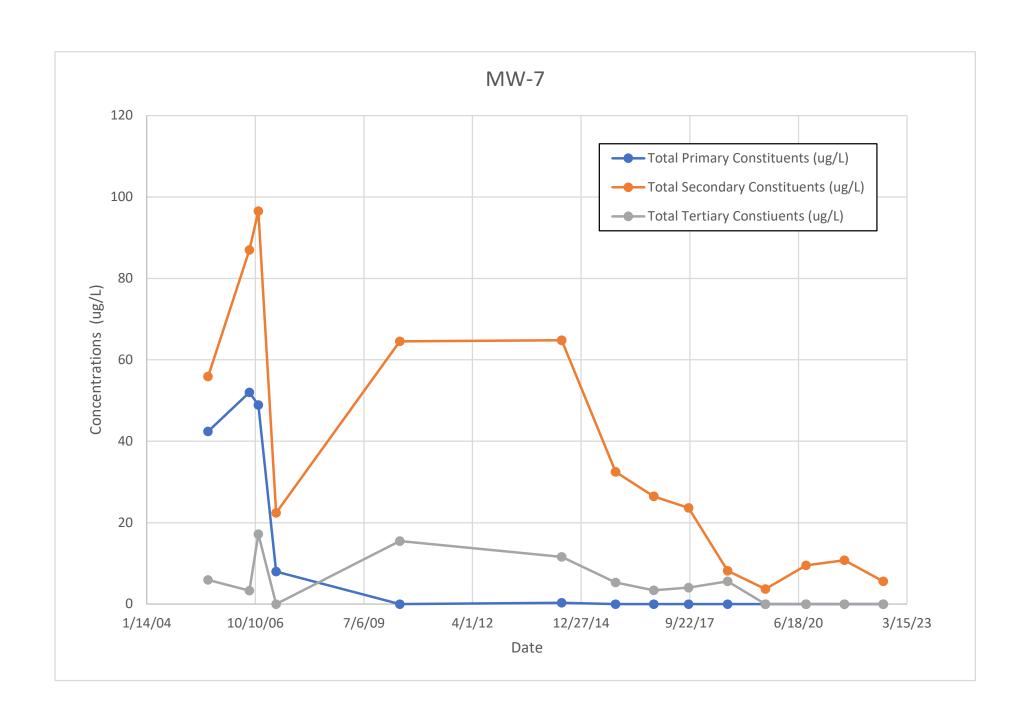

---LASTPAGE

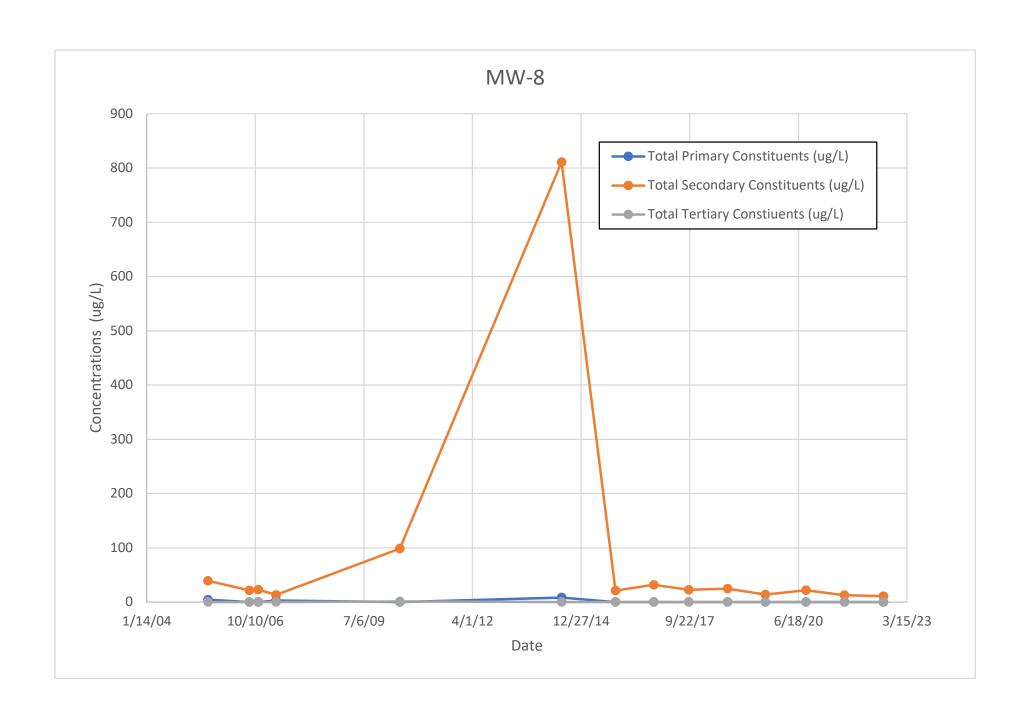


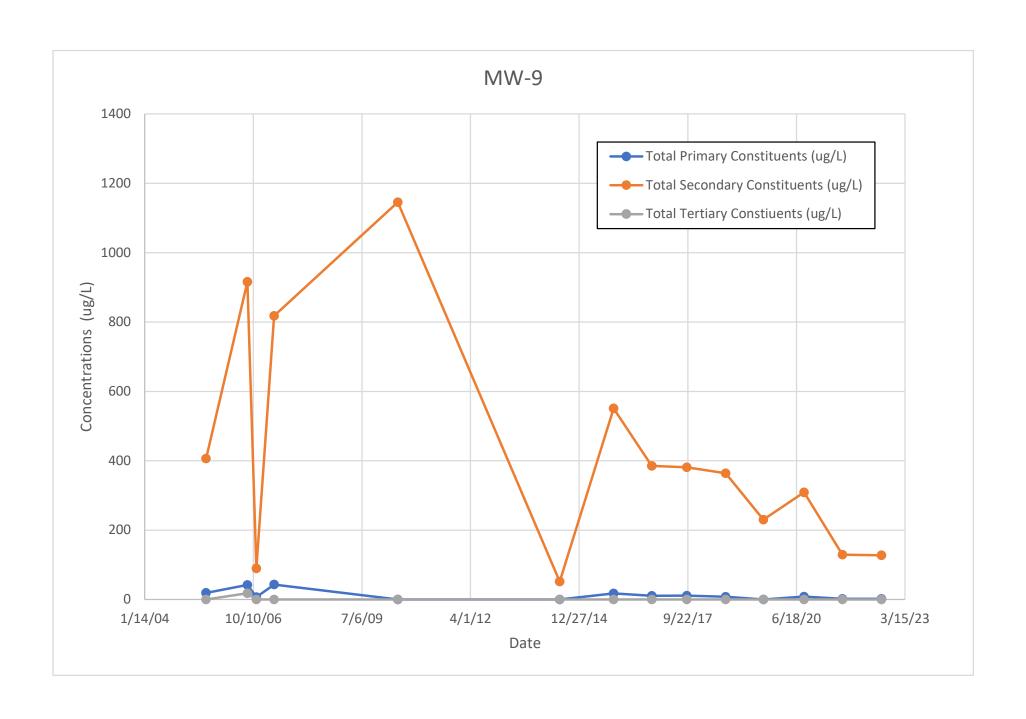

Appendix F VOC TRENDLINE GRAPHS

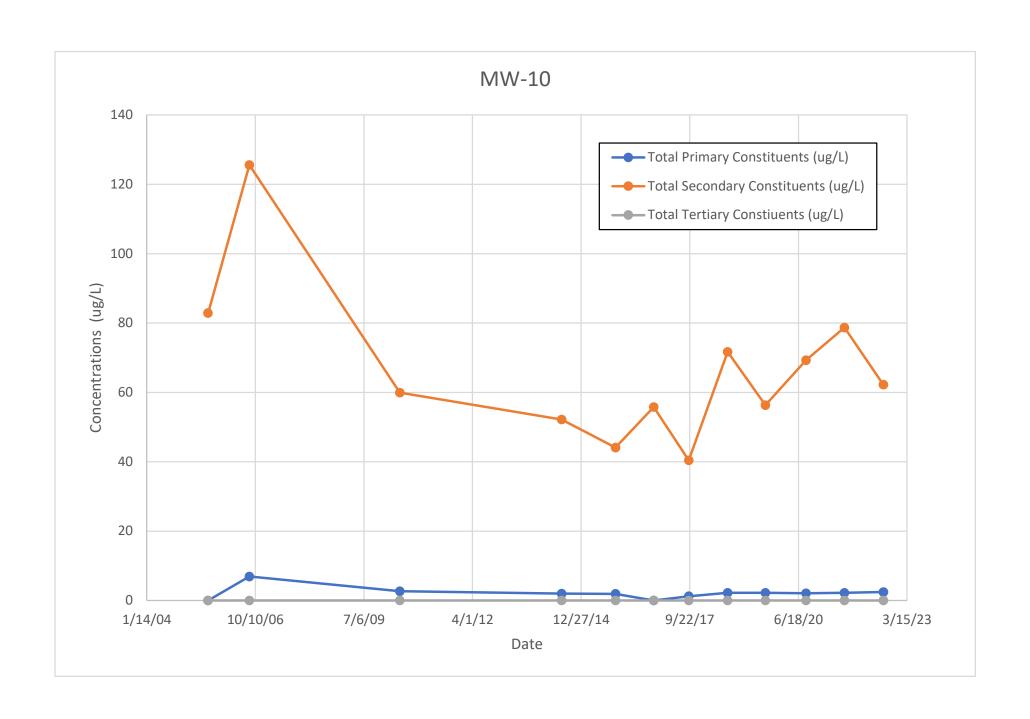


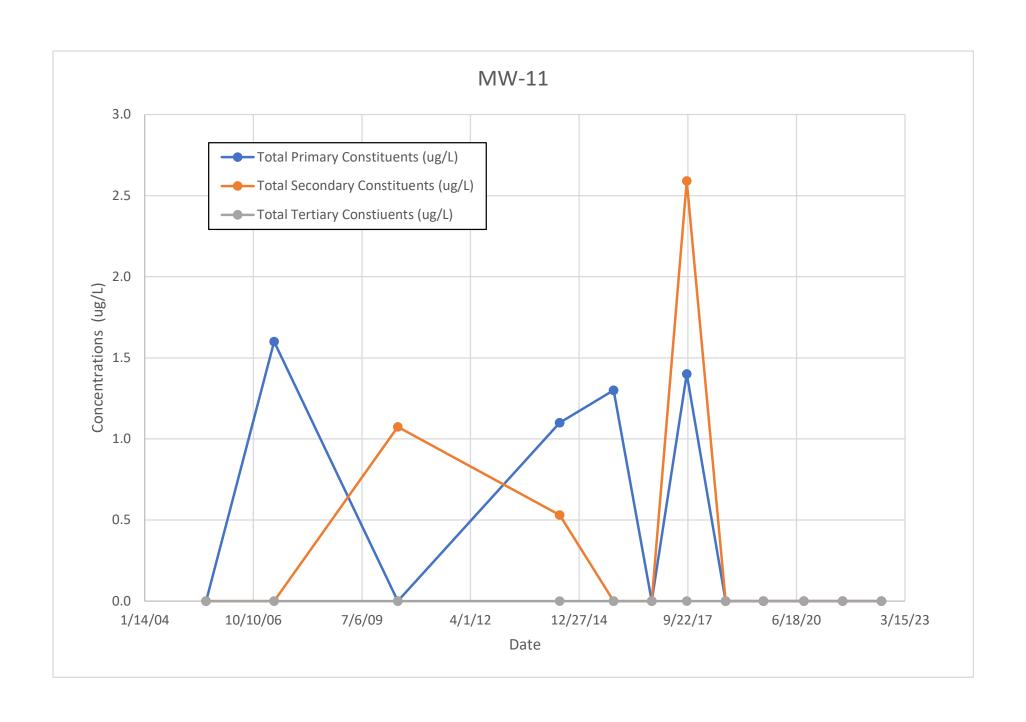


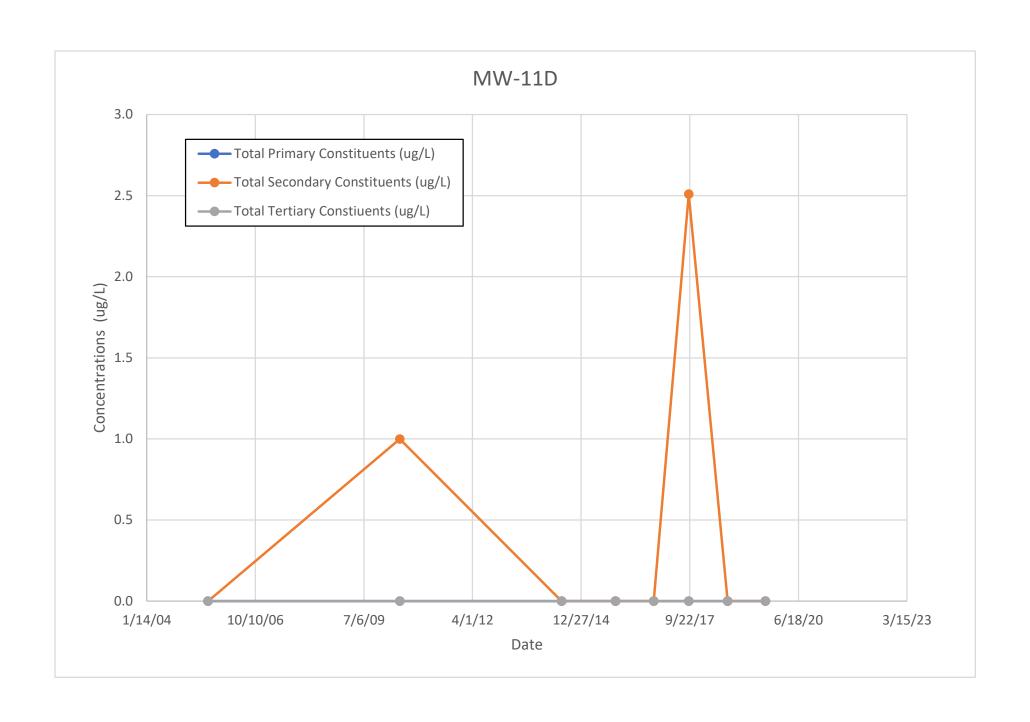


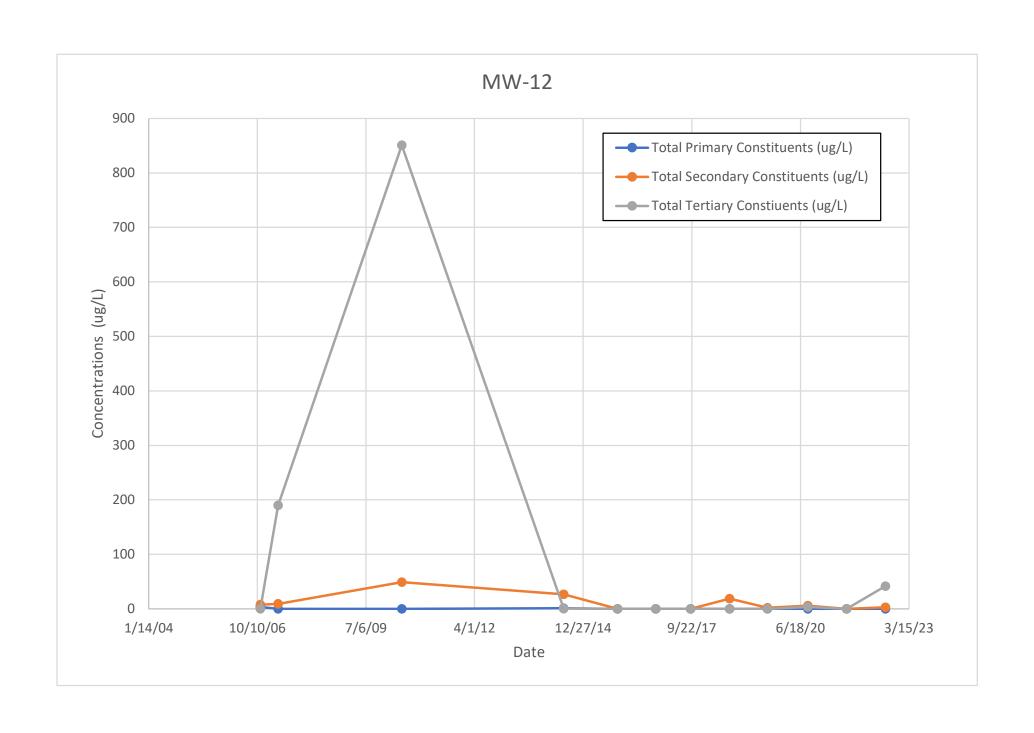


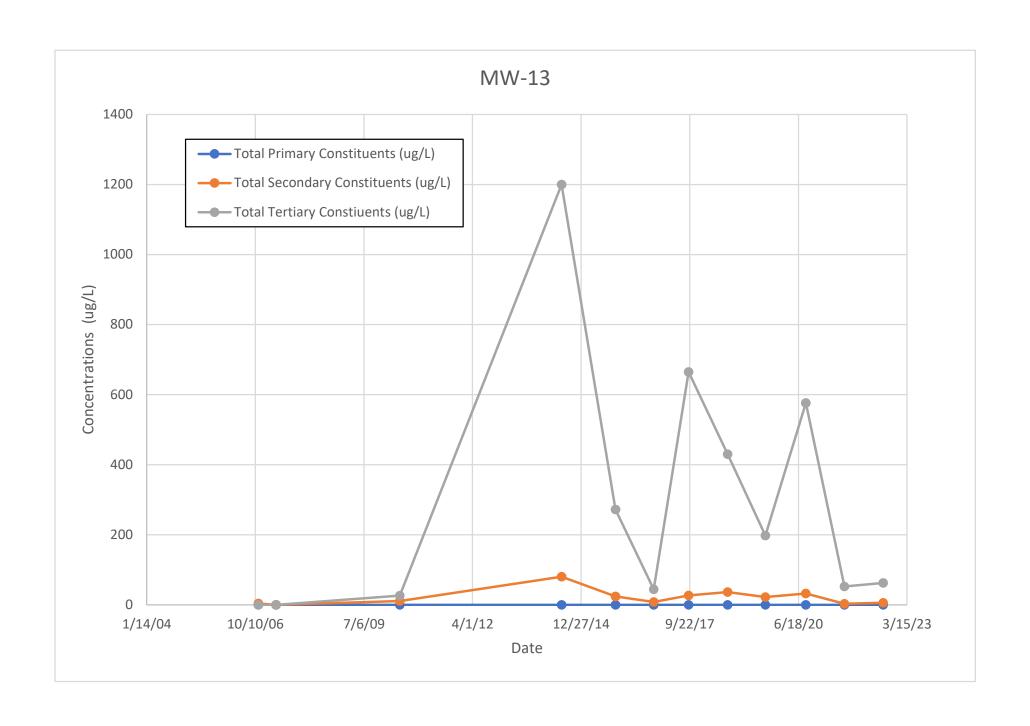


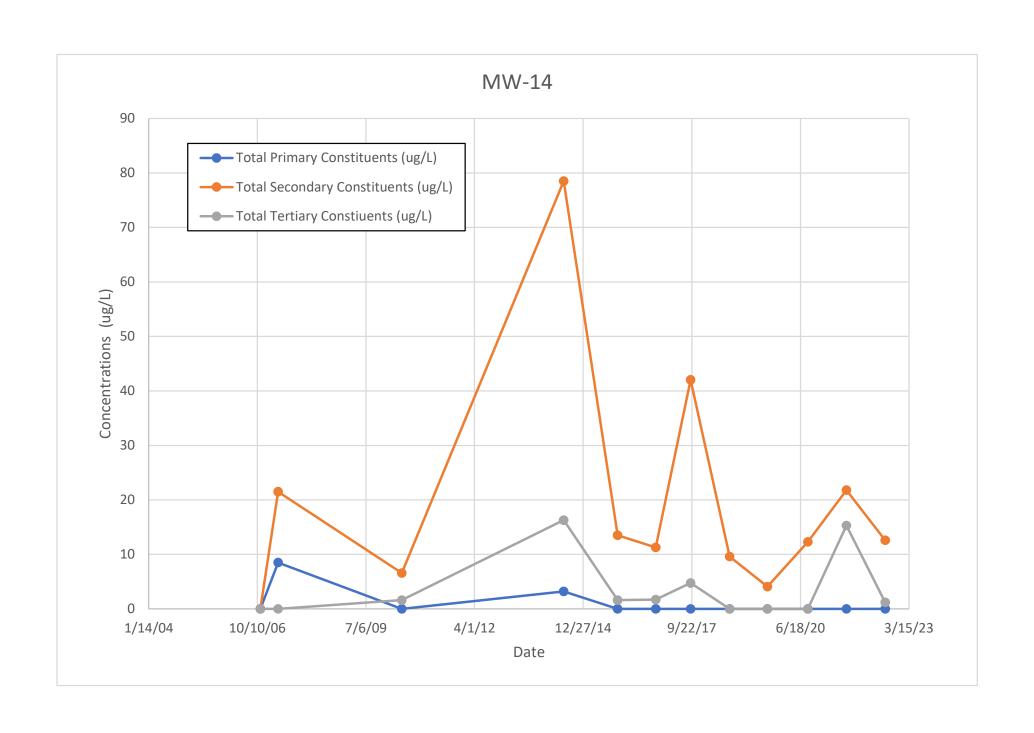












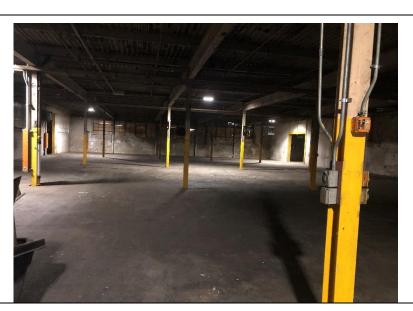
Appendix G SITE PHOTOGRAPHS

View of the northern exterior of the property.

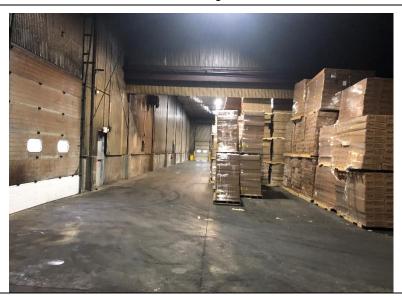
View of the western exterior of the property.

View of the southern portion of the property.

View of the eastern portion of the property.


SITE: 201 W

Lexington Machining, Inc. 201 Winchester Road Lakewood, New York


View of the office area.

View of a typical vacant portion of the onsite building.

View of a typical Bush Industries storage area located inside the building.

View of a typical Bush Industries storage area located inside the building.

SITE: Lexington Machining, Inc. 201 Winchester Road Lakewood, New York

