

May 16, 2025

Mr. Allan Steinberg Manager **201 Winchester Road, LLC** 1888 Niagara Falls Blvd., Suite 1 Tonawanda, New York 14150

Apex Project No. WIN043-0309031-24006881

Main: (330) 310-6327

www.apexcos.com

Subject: 2024 Annual Groundwater Monitoring and Periodic Review Report(Revised)

Lexington Machining, LLC

201 Winchester Road, Village of Lakewood, Town of Busti Chauataqua County, New York - NYSDEC Site Number: 907044

Dear Mr. Steinberg:

Apex Companies, LLC (Apex) is pleased to present the 2024 Annual Groundwater Monitoring and Periodic Review Report. The monitoring was completed to satisfy the requirements of the Site Management Plan, which was revised by Apex and approved by the New York State Department of Environmental Conservation (NYSDEC) in April 2020.

Please contact me at (330) 310-6327 or at tim.mccann@apexcos.com with any questions.

Sincerely,

Timothy N. McCann Program Manager

Northeast Ohio Regional Office

Timothy N. M. Com

Annual Groundwater Monitoring and Periodic Review Report (Revised)

Former Lexington Machining, LLC

NYSDEC Site Number: 907044
Premier Lakewood, Inc. Site
201 Winchester Road
Village of Lakewood, Town of Busti
Chauataqua County, New York

Apex Project No. WIN043-0309031-24006881 May 16, 2025

Prepared by:

Apex Companies, LLC 520 South Main Street, Suite 2411-C Akron, Ohio 44311

CONTENTS

SECTIO	<u>N</u>	PAGE
1.0 1.1 1.2	BACKGROUND HISTORICAL OPERATIONS SITE ENVIRONMENTAL SUMMARY	
2.0 2.1	ANNUAL GROUNDWATER MONITORING SAMPLE COLLECTION	2
3.0	ANALYTICAL RESULTS	4
4.0 4.1 4.2 4.3	DISCUSSION Acceptable Groundwater Conditions Improving Groundwater Conditions Groundwater Conditions for Continued Monitoring	5 6
5.0	<u>CONCLUSIONS</u>	9
6.0	SIGNATURES	10
FIGUR	<u>ES</u>	
1. 2 3	Site Location Map Monitoring Well Locations Groundwater Contour Map	
TABLE	<u>:S</u>	
1. 2. 3.	August 2024 Groundwater Elevation Measurements August 2024 Groundwater Sample Data Summary Historical Groundwater Data Summary	
APPEN	NDICES .	
A B	Site Wide Inspection Form Site Management Periodic Review Report, Institutional and Engineering Controls Certification Form	
C D E	Groundwater Sampling Logs Purge Water Disposal Manifest Analytical Laboratory Report	
F G	VOC Trendline Graphs Site Photographs	

1.0 BACKGROUND

Subsequent to active remediation, a Site Management Plan (SMP) was prepared for the former Lexington Machining, LLC (LMLLC) property located at 201 Winchester Road in Lakewood, New York, Site #907044 (the Site). A site location map is presented in Figure 1. The SMP was prepared to address low levels of volatile organic compounds (VOCs) remaining in soil and groundwater of the Site and is required by the New York State Department of Environmental Conservation (NYSDEC) Order on Consent and Administrative Settlement Index # B9-0792-08-10. The SMP was updated in April 2020 by Apex and included the removal of monitoring wells MW-4, MW-5, and MW-11D from the groundwater monitoring network. In addition, monitoring wells MW-5D and MW-6 were approved to be abandoned following NYSDEC protocol. These wells were abandoned in August 2020.

Annual groundwater monitoring is required within Section 3.2.1, Groundwater Monitoring of the SMP. This report presents the methods and results of the annual groundwater monitoring conducted in August 2024.

The site is located in the Village of Lakewood, Town of Busti, County of Chautauqua, New York and is situated on three lots identified as Block 385 and Lots 06-3-58, 06-3-59 and 06-3-60 on the Chautauqua County Tax Map. The site is an approximately 6.15-acre area bounded by a Chautauqua Regional Railroad Authority rail line to the north; a residential property and a vacant commercial/industrial facility to the south; Matco Tools manufacturing facility and American Legion Lakewood Memorial Post 1286 to the east; and Winchester Road to the west (see Figure 1).

1.1 HISTORICAL OPERATIONS

The site was undeveloped, vacant land through at least the 1930s, with initial construction of the existing manufacturing building beginning circa 1956. Die casting operations, including aluminum, magnesium, and zinc die castings manufactured for consumer and industrial products, have been conducted at the property since that time. The manufacturing plant was occupied through the 1980s by Falconer Metal Specialties, which was succeeded by Falconer Die Casting, Lexington Die Casting, Premier Tool & Die, and Premier Lakewood, Inc. Lexington Precision Corporation, the previous owner of the Property, was the owner of Lexington Die Casting before selling the manufacturing equipment and operation to Premier Tool & Die in 2006. The current site owner is 201 Winchester Road, LLC, who purchased the property in 2023.

Operations at the site ceased circa April 2014, with removal of equipment and manufacturing materials through the end of August 2014. The site is currently vacant.

1.2 SITE ENVIRONMENTAL SUMMARY

VOCs were identified in the Site's soil and groundwater during due diligence environmental site investigations and underground storage tank (UST) closure activities between July 2002 and November 2006. The primary soil and groundwater contaminant, 1,1,1-trichloroethane (1,1,1-TCA), had been previously used at the Site as a solvent and degreaser from approximately 1960 through 1991. Breakdown products of 1,1,1-TCA identified in groundwater include 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), chloroethane, and vinyl chloride. Also identified in several groundwater samples were 1,1,2-trichloroethane (1,1,2-TCA) and its

breakdown product, 1,2-dichloroethane (1,2-DCA).

An enhanced in-situ bioremediation program was conducted to address VOCs in groundwater at the Site from August through November 2006. The program included injection of bioamendments into groundwater to support and increase the rate of naturally occurring degradation of contaminants by reductive dechlorination.

Post-remediation groundwater sampling conducted in April 2007, indicated a reduction in 1,1,1-TCA concentrations and an increase in 1,1,1-TCA breakdown products such as 1,1-DCA and chloroethane.

A groundwater sampling program was implemented in June 2010 to evaluate groundwater quality conditions at the Site. At that time, the concentrations of the primary contaminant, 1,1,1-TCA, had fallen below NYSDEC Groundwater Quality Standard (GWQS) in all but one monitoring well. The secondary contaminant 1,1,2-TCA was detected in only one monitoring well at a concentration above the GWQS; and was lower than the previously detected concentrations. Concentrations of contaminant breakdown products appeared to be generally increasing at the site. Concentrations of tertiary breakdown product, chloroethane, were also increasing. Secondary breakdown product concentrations of 1,1-DCA, 1,2-DCA, and 1,1-DCE increased under the Site building, but decreased in most other areas of the Site. These changes indicated that natural attenuation of the VOC contaminants at the Site was occurring.

Soil contaminants remaining at the site are located at depths of 4 to 11.5 feet beneath site structures and include chlorinated solvents and acetone at concentrations below criteria for protection of public health in residential, commercial, or industrial settings, but above criteria for protection of groundwater.

Groundwater contaminants remaining at the Site, including chlorinated solvent VOCs, are present in overburden groundwater under approximately half of the 99,000-square-foot manufacturing building and the northern portion of the property. Groundwater elevations are generally encountered at depths of 9 to 14 feet below grade. One groundwater sample, collected from deep groundwater monitoring well MW-11D in June 2010, exhibited concentrations of four VOCs, three at concentrations below groundwater quality standards, and the fourth, acetone, detected slightly above standards. Monitoring well MW-11D is located outside the southwest corner of the manufacturing building and up-gradient of chemical use areas. No other VOCs have been detected above standards in the deep groundwater zone.

2.0 ANNUAL GROUNDWATER MONITORING

The 2024 annual groundwater monitoring was completed to satisfy the requirements of SMP Sections 2.2.1.1, Monitored Natural Attenuation, and 3.2.1, Groundwater Monitoring.

During the September 2023 to September 2024 monitoring period, no excavations, changes of use, or changes of groundwater use occurred during the Certifying Period, with the exception that the onsite building is now vacant.

Monitoring well sampling activities were recorded in a field book and on groundwater sampling log sheets. Relevant field observations (e.g., well integrity, etc.) were noted on the well sampling logs. The completed well sampling logs are provided in Appendix C. Monitoring well locations are shown on Figure 2.

2.1 SAMPLE COLLECTION

Prior to collecting groundwater samples, the groundwater level in each well was measured and recorded. Observed groundwater elevations are recorded on the well sampling logs and provided in Table 1. Inferred groundwater elevations and contours are depicted in Figure 3. The inferred groundwater flow direction to the northeast is consistent with historical observations.

Groundwater samples were collected using the low-flow purging and sampling technique using a peristaltic pump and polyethylene tubing at flow rates of 0.1 to 0.5 liters per minute. The samples were collected once stabilization for three consecutive readings was achieved for the following parameters and variances:

- turbidity (±10 percent for values greater than 1 NTU),
- dissolved oxygen (±10 percent),
- specific conductance (±3 percent),
- temperature (±3 percent),
- pH (±0.1 units), and
- oxygen reduction potential (±10 millivolts).

The groundwater field parameters were monitored using a Horiba U-52 multi-parameter water quality meter with flow-through cell. The U-52 meter was calibrated at the beginning of each sampling day using provided calibration fluid.

Purge water was collected, contained in a 55-gallon drum, and picked up by Safety Kleen on October 2, 2024 for offsite disposal. A copy of the purge water disposal manifest is included in Appendix D.

Groundwater samples were collected directly into laboratory provided bottles and shipped overnight in an ice-filled cooler to the Pace Analytical facility located in Pittsburgh, Pennsylvania facility, a New York State certified laboratory (New York: NYDOH (NELAP) #10888). Two field blank samples (one per field day) and one trip blank sample were collected for quality assurance/quality control (QA/QC). Appropriate decontamination procedures were followed, and proper chain of custody procedures employed.

Groundwater samples were analyzed for target compound list (TCL) VOCs by United States Environmental Protection Agency (USEPA) method 8260C. No contaminants were reported above laboratory detection limits in the field blank samples. Newly purchased distilled water was utilized to collect the Field blank samples. No contaminants were reported above laboratory detection limits in the trip blank sample.

The analytical results were compared to the NYSDEC Groundwater Quality Standards (Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1), and ECL Part 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations) to evaluate targeted compounds present above laboratory detection limits.

3.0 ANALYTICAL RESULTS

Pace Analytical provided its Laboratory Report dated August 22, 2024, for the samples collected at the LMLLC site (Appendix E). Pace Analytical reported that all holding times were met and proper preservation noted for the methods performed on the samples.

Table 2 provides a summary of the sample analytical results for the contaminants of concern in groundwater of the site.

Primary Contaminants

Primary contaminants of concern at the site, 1,1,1-TCA and 1,1,2-TCA were detected in several groundwater samples.

- 1,1,1-TCA was detected in groundwater sample MW-9 at a concentration of 3.9 micrograms per liter (μ g/L), which is below the GWQS of 5 μ g/L. 1,1,1-TCA was not detected above the laboratory detection limit of 1.0 μ g/L in the remaining groundwater samples analyzed.
- 1,1,2-TCA was detected in one sample (MW-10) at a concentration of 1.9 μ g/L, which exceeds the GWQS of 1 μ g/L. 1,1,2-TCA was not detected above the laboratory detection limit of 1.0 μ g/L in the remaining groundwater samples analyzed.

Secondary Contaminants

Secondary (breakdown product) contaminants including, 1,1-DCA, 1,1,-DCE, 1,2-DCA, and chloroethene (vinyl chloride [VC]) were also detected in groundwater samples.

- 1,1-DCA was detected in five of the 12 groundwater samples with concentrations in two of the samples (MW-9 and MW-10) exceeding the GWQS of 5 μ g/L. The maximum concentration of 56.8 μ g/L was detected in MW-10. 1,1-DCA was either not detected above the laboratory detection or at concentrations below the GWQS in the remaining groundwater samples.
- Cis-1,2-DCE was not detected above the laboratory detection limit of 1.0 μg/L in the groundwater samples analyzed.
- 1,1,-DCE was detected in six of the 12 groundwater samples with concentrations in four of the samples (MW-8, MW-9, MW-10, and MW-14) exceeding the GWQS of 5 μ g/L. The maximum concentration of 51 μ g/L was detected in MW-9. 1,1,-DCE was either not detected above the laboratory detection or at concentrations below the GWQS in the remaining groundwater samples.
- 1,2-DCA was detected in MW-9 at a concentration of 1.6 μ g/L, which exceeds the GWQS of 0.6 μ g/L. 1,2-DCA was not detected above the laboratory detection limit of 0.6 μ g/L in the remaining groundwater samples.

VC was detected in MW-7 at a concentration of 2.0 μ g/L and in MW-14 at a concentration of 1.4 μ g/L. The detected concentration in MW-7 exceeds the GWQS of 2 μ g/L. VC was not detected above the laboratory detection limit of 1.0 μ g/L in the remaining groundwater samples.

Tertiary Contaminants

Tertiary breakdown product chloroethane was detected in groundwater samples.

Chloroethane was not detected above the laboratory detection limit of 1.0 μ g/L in the groundwater samples analyzed.

Other Contaminants

No other contaminants were detected above the laboratory detection limits in the groundwater samples analyzed.

4.0 <u>DISCUSSION</u>

Groundwater samples collected from the monitoring well network at the site continue to exhibit concentrations of contaminants of concern exceeding GWQS. Monitoring wells exhibited attainment of GWQS and/or non-detectable concentrations of contaminants, decreasing contaminant concentrations, or elevated concentrations requiring continued monitoring.

4.1 ACCEPTABLE GROUNDWATER CONDITIONS

The following section shows the comparison between the 2023 and 2024 sampling data. Three of the 12 monitoring wells exhibited no detected concentrations of contaminants or detections well below the GWQS, including the following:

Monitoring Well ID	Location on Site
MW-1	North south-central outside of building
MW-2D	North center outside the building
MW-11	West of the building

Chemicals of concern were not detected above the QWQS limits in monitoring wells MW-1, MW-2D, and MW-11.

Monitoring well MW-11 is up-gradient of impacted areas. Monitoring wells MW-1 and MW-2D are down-gradient of impacted areas. MW2D is installed in the Site's deeper water bearing zone to 27 feet below ground surface.

4.2 IMPROVING GROUNDWATER CONDITIONS

The following section shows the comparison between the 2023 and 2024 sampling data. Five of the 12 monitoring wells exhibited a clear decrease in contaminant concentrations from 2023 to 2024.

Monitoring Well ID	Location on Site
MW-2	North of Building
MW-3	North of Building
MW-7	Northeast outside the building
MW-12	North of Building
MW-13	North of building

In Monitoring Well MW-2, chloroethane decreased from 1.8 ug/l to below detection limit (BDL); ODCB decreased from 3.0 ug/L to BDL; 1,1-DCA decreased from 12.5 μ g/L to 3.5 ug/L; 1,1-DCE decreased from 23.3 μ g/L to 3.5 ug/L; 1,4-Dichlorobenzene decreased from 1.4 μ g/L to BDL and 1,1,1-TCA decreased from 11.9 μ g/L to BDL. The concentrations are below their respective GWQS.

In Monitoring Well MW-3, 1,1-DCE decreased from 9.9 μ g/L to BDL and 1,2-DCA decreased from 1.2 μ g/L to BDL.

In Monitoring Well MW-7, VC decreased from 3.2 μ g/L to 2.0 μ g/L and 1,1-DCE decreased from 1.9 μ g/L to 1.4 μ g/L. The detected concentrations are below their applicable GWQS.

In Monitoring Well MW-12, chloroethane decreased from 5.2 µg/L to BDL.

In Monitoring Well MW-13, 1,1-DCE decreased from 4.6 μ g/L to BDL; 1,1-DCA decreased from 3.4 μ g/L to BDL; and chloroethane decreased from 259 μ g/L to BDL.

Monitoring wells MW-2, MW-3, MW-12, and MW-13 are located on the north side of the building, downgradient of the impacted areas, and MW-7 is located to the northeast outside of the building.

4.3 GROUNDWATER CONDITIONS FOR CONTINUED MONITORING

Groundwater samples collected from four monitoring wells exhibited an overall increase and/or consistency in contaminant concentrations between 2023 and 2024.

Monitoring Well ID	Location on Site
MW-8	Central portion of the building (inside)
MW-9	Inside the secondary machining area of the building
MW-10	Central portion of the building (inside)
MW-14	North of building

In Monitoring Well MW-8, 1,1-DCA decreased from 4.9 μg/L to 3.6 ug/L;1,1-DCE decreased from 11.5 μg/L to 10.7 ug/L. The 1,1-DCA and 1,1-DCE concentrations are above the GWQS.

In Monitoring Well MW-9, 1,1-DCE decreased from 167 μ g/L to 51 μ g/L; 1,1-DCA decreased from 160 μ g/L to 46.9 μ g/L; 1,1,1-TCA stay consistent at 3.9 μ g/L; and 1-2-DCA decreased from 4.4 μ g/L to 1.6 μ g/L. With the exception of 1,1,1-TCA, these concentrations are above their respective GWQS.

In Monitoring Well MW-10, 1,1-DCE decreased from 11.7 μ g/L to 7.7 μ g/L; 1,1-DCA decreased from 62.4 μ g/L to 56.8 μ g/L; and 1,1,2-TCA stayed consistent at 1.9 μ g/L. These concentrations are above their respective GWQS.

In Monitoring Well MW-14, 1,1-DCA decreased from 4.4 μ g/L to 2.3 μ g/L; VC decreased from 1.7 μ g/L to 1.4 μ g/L; and 1,1-DCE decreased from 14.4 μ g/L to 8 μ g/L. The 1,1-DCE concentration is above the GWQS.

Monitoring Wells MW-8, MW-9 and MW-10 are located in the area of the soil and groundwater impact areas.

Monitoring Well MW-14 is located on the north side of the building, downgradient of the impacted areas. There is no evidence from the groundwater data from these monitoring wells that indicates that the historical groundwater impact plume is spreading beyond the previous extent of delineation.

5.0 CONCLUSIONS

Based upon the results of the annual groundwater monitoring completed at the Lexington Machining, LLC site in Lakewood, New York, continued groundwater monitoring is required under the NYSDEC approved Site Management Plan.

Groundwater contaminant concentrations are below GWQS in monitoring wells MW-1, MW-2D, and MW-11. Groundwater conditions were observed to be improving in monitoring wells MW-2, MW-3, MW-7, MW-12, and MW-13. Four monitoring wells exhibited increasing/consistent concentrations of contaminants including MW-8 through MW-10, and MW-14.

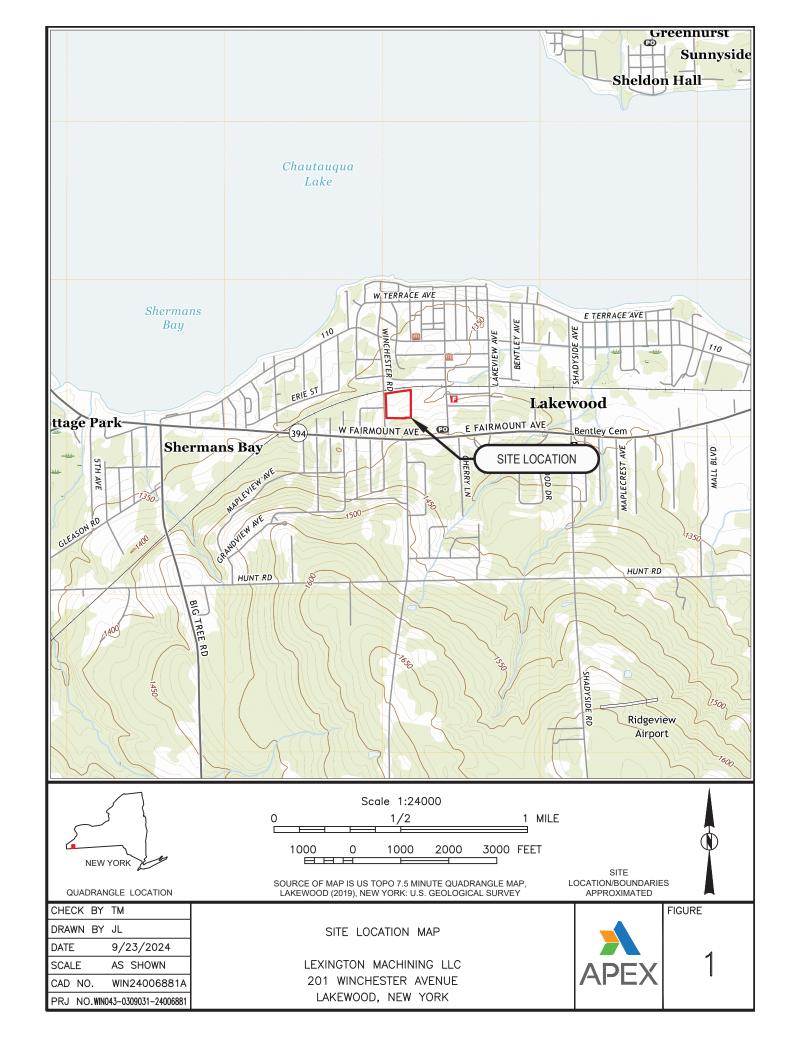
Based on the results of the 2024 sampling event and a review of the results of sampling events from 2021-2023, it appears that the groundwater concentrations in monitoring wells MW-8, MW-9, and MW-10 have become stagnant and are either staying consistent or slightly increasing. This indicates that natural attenuation of the groundwater may not be occurring in and around these wells. Based upon this, Apex recommends conducting an evaluation of possible remedial approaches, including but not limited to, injectable liquid material. Specifically, an injectable liquid material designed for *in situ* remediation projects where the anaerobic biodegradation of chlorinated compounds through the enhanced reductive dechlorination (ERD) process is possible, in order to accelerate the breakdown of chemicals of concern exceeding applicable GWQS. The evaluation and implementation of the remedial measures would be conducted in the late second quarter/ early third quarter of 2025.

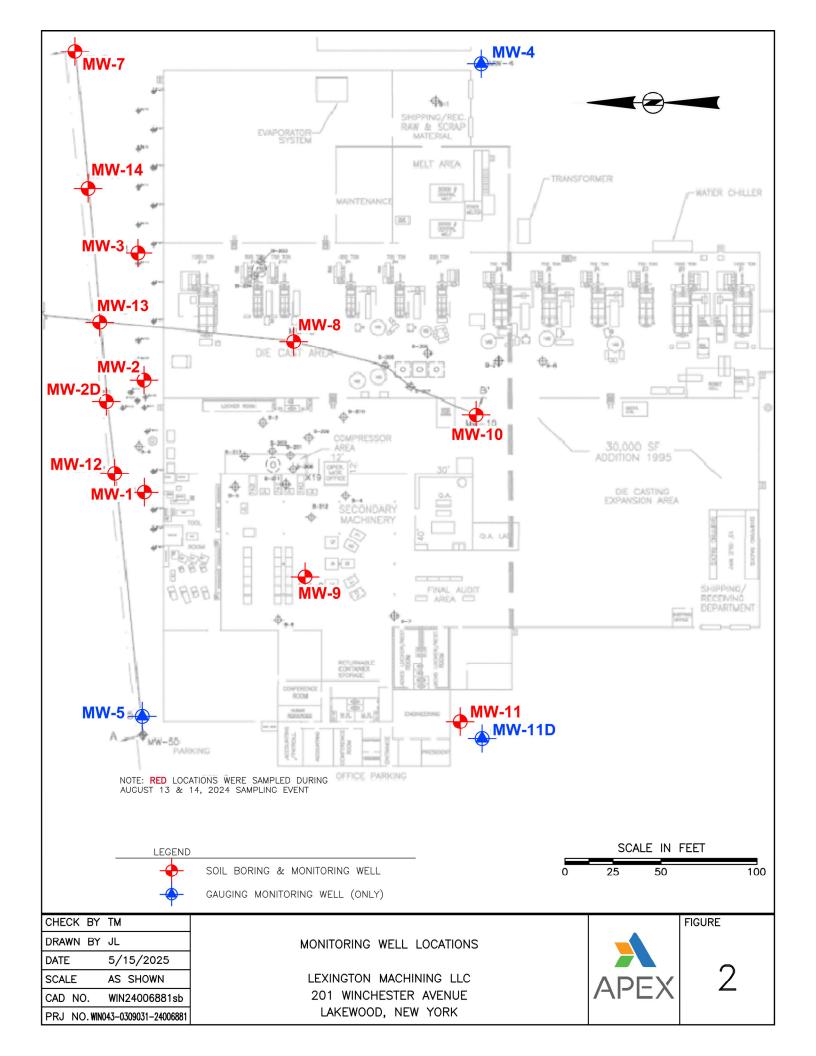
6.0 SIGNATURES

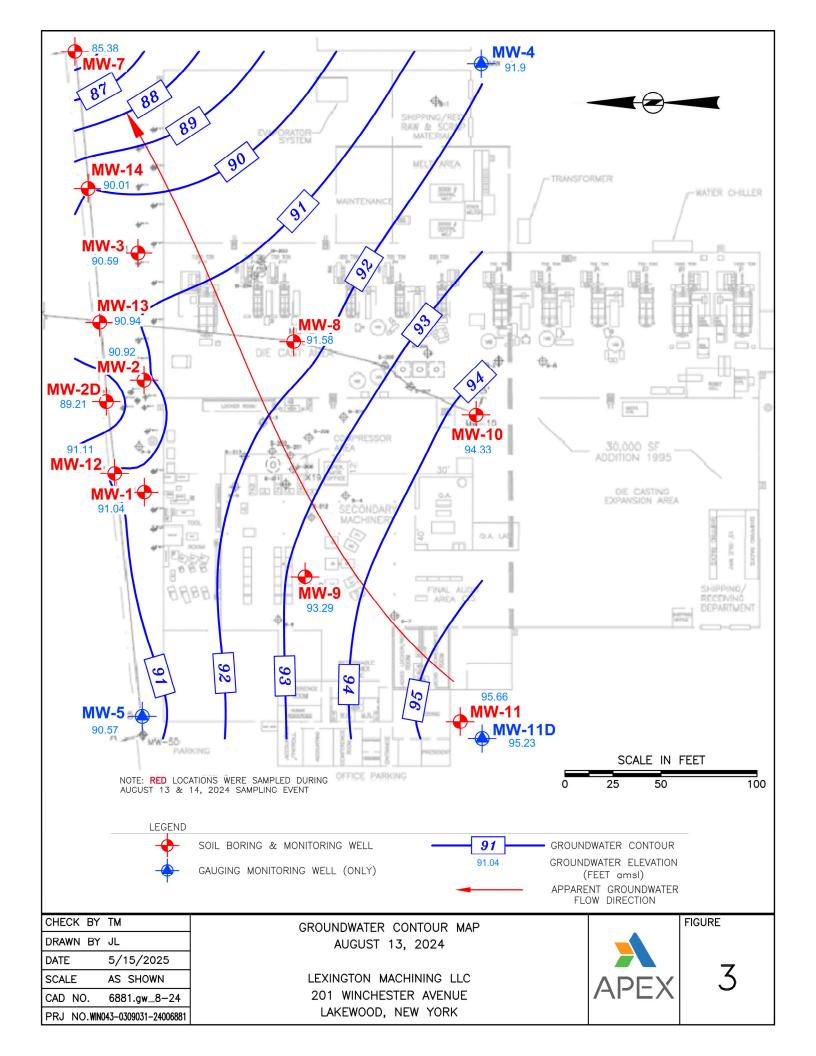
Prepared by:

Timothy N. McCann Program Manager

Northeast Ohio Regional Office


Jinoth N. M.C.


Reviewed by:


Kellie L. Wing
Program Manager
Detroit Regional Office

FIGURES

LEGEND

SUBJECT PROPERTY BOUNDARYSUBJECT PARCEL BOUNDARY

SCALE IN FEET

0 50 100 200

AERIAL IMAGE: GOOGLE EARTH 2024

CHECK BY	TM
DRAWN BY	JL
DATE	9/23/2024
SCALE	AS SHOWN
CAD NO.	WIN24006881sb
PRJ NO.WING	043-0309031-24006881

TAX PARCEL ID MAP

LEXINGTON MACHINING LLC 201 WINCHESTER AVENUE LAKEWOOD, NEW YORK

FIGURE

4

TABLES

Table 1
August 2024 Groundwater Elevation Measurements

Well ID	Date	Depth to Water (ft)	Ground Surface Elevation (ft) *	Groundwater Elevation (ft)
MW-1	8/13/2024	10.78	101.82	91.04
MW-2	8/13/2024	10.38	101.3	90.92
MW-2D	8/13/2024	11.63	100.84	89.21
MW-3	8/13/2024	10.43	101.02	90.59
MW-4	8/13/2024	9.18	101.08	91.9
MW-5	8/13/2024	12.24	102.81	90.57
MW-7	8/13/2024	14.07	99.45	85.38
MW-8	8/13/2024	13.5	105.08	91.58
MW-9	8/13/2024	11.72	105.01	93.29
MW-10	8/13/2024	10.74	105.07	94.33
MW-11	8/13/2024	8.84	104.5	95.66
MW-11D	8/13/2024	9	104.23	95.23
MW-12	8/13/2024	9.69	100.8	91.11
MW-13	8/13/2024	9.86	100.8	90.94
MW-14	8/13/2024	10.49	100.5	90.01

^{*} Ground Surface Elevations derived from the January 9, 2007 Summary of Environmental Investigation and Remedial Actions, Haley & Aldrich

Sample #:	TOGs - Table 5	ı	MW-1		М	W-2		M\		MW-3				
	Groundwater													
	Effluent													
Date Sampled:	Limitations (Class GA)	08/		08/1	3/202	4	08/1		08/13/2024		4			
	(ug/L)													
Volatiles (ug/L)		Conc	Q	RL	Conc	Q	RL	Conc	Q RL	Cor	ıc	Q	RL	
Vinyl chloride	2	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
Chloroethane	5	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
1,1-Dichloroethene	5	ND		1.00	3.5		1.00	ND	1.00	NE)		1.00	
1,1-Dichloroethane	5	ND		1.00	3.5		1.00	ND	1.00	NE)		1.00	
cis-1,2-Dichloroethene	5	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
1,1,1-Trichloroethane	5	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
1,2-Dichloroethane (EDC)	0.6	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
1,1,2-Trichloroethane	1	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
1,2-Dichlorobenzene	3	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
Bromodichloromethane	50	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
Methylene Chloride	5	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
1,4-Dichlorobenzene	3	ND		1.00	ND		1.00	ND	1.00	NE)		1.00	
Chloroform	7	ND		1.00	ND		1.00	ND	1.00				1.00	
Toluene	5	ND		1.00	ND		1.00	ND	1.00				1.00	
Other VOCs	Various	ND	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Various	ND		Various	ND	Vario	ıs NE)		Various	
Technical Guidance and Operational Series - Table 1 New Yo	ork State Ambient Water Quality													
Standards & Guidance Values and Table 5 New York State Gro	oundwater Effluent Limitations													
(Class GA), June 1998.														
Above the GW Effluent Limitations														
NS = No Standard Available														
ND = Analyzed for but Not Detected at or above the MDL														
Bold concentrtion detected above MDL														
The chain of custody and subsequent laboratory results incorrec	tly listed MW-2D as MW-12D													

Sample #:	TOGs - Table 5	MW-	-7	М	W-8	N	IW-9	M	W-10	
	Groundwater									
	Effluent									
Date Sampled:	Limitations (Class GA)	08/13/2	2024	08/1	4/2024	08/	4/2024	08/09/202		23
	(ug/L)									
Volatiles (ug/L)		Conc	ર RL	Conc	Q RL	Conc	Q RL	Conc	Q	RL
Vinyl chloride	2	2.0	1.00	ND	1.00	ND	1.00	ND		1.00
Chloroethane	5	ND	1.00	ND	1.00	ND	1.00	ND		1.00
1,1-Dichloroethene	5	1.4	1.00	10.7	1.00	51	1.00	7.7		1.00
1,1-Dichloroethane	5	ND	1.00	3.6	1.00	46.9	1.00	56.8		1.00
cis-1,2-Dichloroethene	5	ND	1.00	ND	1.00	ND	1.00	ND		1.00
1,1,1-Trichloroethane	5	ND	1.00	ND	1.00	3.9	1.00	ND		1.00
1,2-Dichloroethane (EDC)	0.6	ND	1.00	ND	1.00	1.6	1.00	ND		1.00
1,1,2-Trichloroethane	1	ND	1.00	ND	1.00	ND	1.00	1.9		1.00
1,2-Dichlorobenzene	3	ND	1.00	ND	1.00	ND	1.00	ND		1.00
Bromodichloromethane	50	ND	1.00	ND	1.00	ND	1.00	ND		1.00
Methylene Chloride	5	ND	1.00	ND	1.00	ND	1.00	ND		1.00
1,4-Dichlorobenzene	3	ND	1.00	ND	1.00	ND	1.00	ND		1.00
Chloroform	7	ND	1.00	ND	1.00	ND	1.00	ND		1.00
Toluene	5	ND	1.00	ND	1.00	ND	1.00	ND		1.00
Other VOCs	Various	ND	Various	ND	Various	ND	Various	ND		Various
Technical Guidance and Operational Series - Table 1 New Y	ork State Ambient Water Quality									
Standards & Guidance Values and Table 5 New York State Gr										
(Class GA), June 1998.	oundwide Elindent Elimidaterie									
Above the GW Effluent Limitations										
NS = No Standard Available										
ND = Analyzed for but Not Detected at or above the MDL										
Bold concentrtion detected above MDL										
The chain of custody and subsequent laboratory results incorred	ctly listed MW-2D as MW-12D									

Sample #:	TOGs - Table 5	MW-1		M\	W-12		M\	N-13	М	W-14	
	Groundwater										
	Effluent										
Date Sampled:	Limitations (Class GA)	08/13/20	24	08/1	4/2024		08/1	08/1	3/202	24	
	(ug/L)										
Volatiles (ug/L)		Conc Q	RL	Conc	Q	RL	Conc	Q RL	Conc	Q	RL
Vinyl chloride	2	ND	1.00	ND	1	.00	ND	1.00	1.4		1.00
Chloroethane	5	ND	1.00	ND	1	.00	ND	1.0	ND		1.00
1,1-Dichloroethene	5	ND	1.00	ND	1	.00	ND	1.00	8.0		1.00
1,1-Dichloroethane	5	ND	1.00	ND	1	.00	ND	1.00	2.3		1.00
cis-1,2-Dichloroethene	5	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
1,1,1-Trichloroethane	5	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
1,2-Dichloroethane (EDC)	0.6	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
1,1,2-Trichloroethane	1	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
1,2-Dichlorobenzene	3	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
Bromodichloromethane	50	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
Methylene Chloride	5	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
1,4-Dichlorobenzene	3	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
Chloroform	7	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
Toluene	5	ND	1.00	ND	1	.00	ND	1.00	ND		1.00
Other VOCs	Various	ND	Various	ND	Va	rious	ND	Various	ND		Various
Technical Guidance and Operational Series - Table 1 New Y	ork State Ambient Water Quality										
Standards & Guidance Values and Table 5 New York State Gr											
(Class GA), June 1998.	oundwater Emident Emitations										
Above the GW Effluent Limitations											
NS = No Standard Available											
ND = Analyzed for but Not Detected at or above the MDL											
Bold concentrtion detected above MDL											
The chain of custody and subsequent laboratory results incorred	etly listed MW-2D as MW-12D										

Sample #:	TOGs - Table 5	FIELD	BLA	NK -1	FIELD	BLA	NK -2	TRIP BLANK			
	Groundwater										
	Effluent										
Date Sampled:	Limitations (Class GA)	08/1	08/	4/20	24						
	(ug/L)										
Volatiles (ug/L)		Conc	Q	RL	Conc	Q	RL	Conc	Q	RL	
Vinyl chloride	2	ND		1.00	ND		1.00	ND		1.00	
Chloroethane	5	ND		1.00	ND		1.00	ND		1.00	
1,1-Dichloroethene	5	ND		1.00	ND		1.00	ND		1.00	
1,1-Dichloroethane	5	ND		1.00	ND		1.00	ND		1.00	
cis-1,2-Dichloroethene	5	ND		1.00	ND		1.00	ND		1.00	
1,1,1-Trichloroethane	5	ND		1.00	ND		1.00	ND		1.00	
1,2-Dichloroethane (EDC)	0.6	ND		1.00	ND		1.00	ND		1.00	
1,1,2-Trichloroethane	1	ND		1.00	ND		1.00	ND		1.00	
1,2-Dichlorobenzene	3	ND		1.00	ND		1.00	ND		1.00	
Bromodichloromethane	50	ND		1.00	ND		1.00	ND		1.00	
Methylene Chloride	5	ND		1.00	ND		1.00	ND		1.00	
1,4-Dichlorobenzene	3	ND		1.00	ND		1.00	ND		1.00	
Chloroform	7	ND		1.00	ND		1.00	ND		1.00	
Toluene	5	ND		1.00	ND		1.00	ND		1.00	
Other VOCs	Various	ND		Various	ND		Various	ND		Various	
Technical Guidance and Operational Series - Table 1 New Yorl	k State Ambient Water Quality										
Standards & Guidance Values and Table 5 New York State Groun	ndwater Effluent Limitations										
(Class GA), June 1998.										-	
Above the GW Effluent Limitations											
NS = No Standard Available											
ND = Analyzed for but Not Detected at or above the MDL											
Bold concentrtion detected above MDL											
The chain of custody and subsequent laboratory results incorrectly	listed MW-2D as MW-12D				·						

NYSDEC	GWOS 5	5	3	2	5	0.6	5	5	5	1	1	50	5	3	50		I			
MW-1	5/23/2005 8/17/2006	BDL BDL		BDL BDL	210 85	9.15 3.6	370 190	BDL BDL	174 61	BDL BDL	BDL BDL	BDL BDL	-	-	-	763.2 339.6	174.0 61.0	589.2 278.6	0.0 0.0	0.0
	11/6/2006 4/18/2007	13.8 BDL		BDL BDL	16.6 BDL	BDL BDL	19.4 BDL	BDL BDL	5.34 BDL	BDL BDL	BDL	BDL	-	-	-	55.1 0	5.3 0.0	36.0 0.0	13.8 0.0	0.0
	6/2/2010	137		2.02	25.1	0.331	75.9	BDL	12.6	BDL	BDL	19.7	0.502	0.737	BDL	274	12.6	103.4	137.0	20.2
	6/30/2014 11/9/2015 BDL	1.2		BDL BDL	9 10.7	0.32 BDL	26 16.1	BDL BDL	0.53 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0.45 BDL	BDL BDL	47.42 28	0.5 0.0	35.3 26.8	11.0 1.2	0.0
	10/25/2016 BDL 9/12/2017 BDL	BDL BDL		BDL BDL	5.8 6.71	BDL BDL	10.7 11.4	BDL BDL	BDL 0.761	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	16.5 18.9	0.0 0.8	16.5 18.1	0.0 0.0	0.0
	9/6/2018 BDL 8/20/2019 BDL	BDL BDL		BDL BDL	2.7 BDL	BDL BDL	4.6 1.3	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	7.3 1.3	0.0 0.0	7.3 1.3	0.0 0.0	0.0
	8/26/2020 BDL 8/17/2021 BDL	BDL BDL		BDL BDL	BDL 3.3	2.9 BDL	5 5.9	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	7.9 9.2	0.0 0.0	7.9 9.2	0.0 0.0	0.0
	8/8/2022 BDL 8/8/2023 BDL	14.8 BDL	BDL	BDL BDL	8.8 1.1	BDL BDL	15.1 1.5	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	38.7 2.6	0.0 0.0	23.9 2.6	14.8 0.0	0.0
MW-2	8/14/2024 BDL 5/23/2005	BDL 1100	BDL	BDL BDL	BDL 81.2	BDL 3.92	BDL 68.3	BDL BDL	BDL 53.8	BDL BDL	BDL BDL	BDL 10.3	BDL -	BDL -	BDL -	0 1317.5	0.0 53.8	0.0 153.4	0.0 1100.0	10.3
	8/17/2006 11/6/2006	750 701		BDL BDL	82 18.6	7.3 9.06	86 6.8	2.6 2.68	42 BDL	BDL BDL	BDL BDL	BDL BDL	-	-	-	969.9 738.1	42.0 0.0	177.9 37.1	750.0 701.0	0.0 0.0
	4/18/2007 6/2/2010	760 1300		BDL BDL	19 27.2	6.8 BDL	8.4 27.6	3.2 BDL	BDL BDL	BDL BDL	- BDL	200	- BDL	- BDL	- BDL	799 1550	0.0 0.0	37.4 54.8	760.0 1300.0	0.0 200.0
	6/30/2014 11/9/2015 BDL	100 950		BDL BDL	11 16.4	0.55	2.5	0.4	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	114.45 979.1	0.0	14.5 29.1	100.0 950.0	0.0
	10/25/2016 BDL 9/12/2017 BDL	417 900		BDL BDL	6.4 28.1	BDL 0.85	3.8 7.65	1 1.08	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	428.2 946	0.0 0.0	11.2 37.7	417.0 900.0	0.0
	9/5/2018 BDL	347		BDL	46	BDL	5.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	398.3	0.0	51.3	347.0	0.0
	8/20/2019 BDL 8/26/2020 BDL	81.8 23.9		BDL BDL	27 29.3	BDL BDL	20.2 52.8	BDL BDL	5.9 27.8	BDL BDL	BDL BDL	BDL BDL	BDL BDL	1.8 5.1	BDL BDL	136.7 138.9	5.9 27.8	47.2 82.1	81.8 23.9	0.0
	8/17/2021 BDL 8/8/2022 BDL	8.6 4.7		BDL BDL	7.1 19.5	BDL BDL	14.2 39.8	BDL BDL	8 30.3	BDL BDL	BDL BDL	BDL BDL	BDL BDL	1.3 5.7	BDL BDL	39.2 100	8.0 30.3	21.3 59.3	8.6 4.7	0.0
	8/8/2023 BDL 8/13/2024 BDL	1.8 BDL	1.2 BDL	BDL BDL	12.5 3.5	BDL BDL	23.3 3.5	BDL BDL	11.9 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	3 BDL	BDL BDL	53.7 7	11.9 0.0	35.8 7.0	1.8 0.0	0.0
MW-2D	6/2/2010	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL.	BDL	BDL	0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
	6/30/2014 11/9/2015 BDL	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL -	BDL -	BDL BDL	BDL -	0	0.0 0.0	0.0	0.0 0.0	0.0
	10/25/2016 BDL 9/12/2017 BDL	BDL 4.45		BDL BDL	BDL 0.499	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0 4.95	0.0 0.0	0.0 0.5	0.0 4.5	0.0
	9/5/2018 BDL 8/20/2019 BDL	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0	0.0	0.0	0.0	0.0
	8/27/2020 BDL 8/17/2021 BDL	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0	0.0	0.0	0.0	0.0
	8/9/2022 BDL 8/9/2023 BDL	BDL BDL	BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 4.1	BDL BDL	BDL BDL	0 4.1	0.0	0.0 0.0	0.0 0.0	0.0 4.1
MW-3	8/14/2024 BDL 5/23/2005	BDL 15.3	BDL	BDL BDL	BDL 87.3	BDL 2.4	BDL 72.7	BDL BDL	BDL 98.9	BDL BDL	BDL 0.815	BDL 58.1	BDL -	BDL	BDL	0 335.5	0.0 98.9	0.0	0.0	0.0 58.9
	8/17/2006 11/6/2006	5.4 72.8		BDL BDL	35 34.1	BDL BDL	62 63.4	BDL BDL	43 22.1	BDL BDL	BDL BDL	BDL BDL		-	-	145.4 192.4	43.0 22.1	97.0 97.5	5.4 72.8	0.0
	4/18/2007 6/2/2010	72.8 BDL 31.1		BDL 1.23	4.1 BDL	BDL BDL BDL	6 41.6	BDL 10.3	1.8 BDL	BDL BDL	- BDL	4.96	BDL	BDL	- BDL	192.4 12 89.2	1.8 0.0	97.5 10.1 53.1	0.0 31.1	0.0 0.0 5.0
	6/30/2014 11/9/2015 BDL	31.1 16 57		1.23 0.7 2.5	60 58.5	0.68 1.8	41.6 74 152	10.3 0.46 BDL	17 BDL	BDL BDL	0.15 BDL	BDL BDL	BDL BDL BDL	10 3.1	BDL BDL BDL	89.2 178.84 272.4	17.0 0.0	53.1 135.8 214.8	31.1 16.0 57.0	0.2 0.0
	10/25/2016 BDL	21.7		BDL	28.2	BDL	89.5	BDL	BDL	BDL	BDL	BDL	BDL	2.3	BDL	141.7	0.0	117.7	21.7	0.0
	9/12/2017 BDL 9/5/2018 BDL	41.8 19.6		1.23 BDL	31.2 9.5	0.962 69.6	70.4 BDL	0.46 BDL	0.5 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	1.91 BDL	BDL BDL	150 79.1	0.5 0.0	104.3 79.1	41.8 19.6	0.0
	8/19/2019 BDL 8/26/2020 BDL	29.6 14.6		BDL 1.7	7.6 4.4	1 BDL	86.5 79.8	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	2.1 1.9	BDL BDL	126.8 102.4	0.0 0.0	95.1 85.9	29.6 14.6	0.0
	8/16/2021 BDL 8/8/2022 BDL	2.2 BDL		BDL 1.8	1.4 1.9	BDL BDL	19 36.7	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	22.6 40.4	0.0 0.0	20.4 40.4	2.2 0.0	0.0 0.0
	8/8/2023 BDL 8/13/2024 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	1.2 BDL	9.9 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	11.1 0	0.0	0.0	0.0	0.0
MW-4	5/23/2005 6/2/2010	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	12.7 BDL	BDL	BDL	- BDL	12.7 0	0.0 0.0	0.0 0.0	0.0 0.0	12.7 0.0
	7/1/2014 11/9/2015 BDL	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0	0.0 0.0	0.0 0.0	0.0	0.0
	10/26/2016 BDL 9/12/2017 BDL	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0	0.0 0.0	0.0 0.0	0.0	0.0
	9/5/2018 BDL 8/19/2019 BDL	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0	0.0 0.0	0.0 0.0	0.0	0.0
MW-5	8/1/2005 6/2/2010	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	- BDL	- BDL	- BDL	0.0	0.0	0.0	0.0	0.0
	6/30/2014 11/9/2015 BDL	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0	0.0	0.0	0.0	0.0
	10/25/2016 BDL 9/12/2017 BDL	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0	0.0	0.0	0.0	0.0
	9/6/2018 BDL 8/20/2019 1.5	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0 1.5	0.0 0.0 1.5	0.0	0.0	0.0
MW-5D		BDL BDI		BDL BDL	BDL BDI	BDL BDL	BDL BDL	BDL BDL	BDL BDI	BDL BDL	BDL BDL	BDL 5.23	BDI	- BDL	- BDL	0.0 5.23	0.0	0.0	0.0	0.0
184/0	6/30/2014	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.14	BDL	BDL	BDL	BDL	0.14	0.0	0.0	0.0	0.1
MW-6	8/1/2005 6/2/2010	BDL BDL		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL	BDL	0.0	0.0 0.0	0.0 0.0	0.0	0.0
MW-7	6/30/2014 8/1/2005	5.93		BDL BDL	BDL 34	BDL BDL	21.9	BDL BDL	8DL 42.4	BDL BDL	BDL BDL	BDL	BDL -	BDL -	BDL -	104.2	0.0 42.4	0.0 55.9	0.0 5.9	0.0
	8/17/2006 11/6/2006	3.3 17.2		BDL BDL	38 25.6	BDL BDL	49 70.9	BDL BDL	52 48.9	BDL BDL	BDL BDL	BDL BDL	-	-		142.3 162.6	52.0 48.9	87.0 96.5	3.3 17.2	0.0
	4/18/2007 6/2/2010	BDL 15.5		1.4 22.3	6 22.3	BDL 0.453	15 19.5	BDL BDL	8 BDL	BDL BDL	BDL	BDL.	BDL	- BDL	BDL	30 80.1	8.0 0.0	22.4 64.6	0.0 15.5	0.0 0.0
	7/1/2014 11/9/2015 BDL	11 5.3		9.2 9	20 12.8	0.33 BDL	35 10.7	0.27 BDL	0.32 BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	0.62 BDL	BDL BDL	79 28.8	0.3 0.0	64.8 32.5	11.0 5.3	0.0
	10/25/2016 BDL 9/12/2017 BDL	3.4 3.58		6.8 9.32	10.2 9.15	BDL BDL	9.5 5.18	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 0.482	BDL BDL	29.9 27.7	0.0 0.0	26.5 23.7	3.4 3.6	0.0
	9/5/2018 BDL 8/19/2019 BDL	5.6 BDL		BDL 2.1	5.6 BDL	BDL BDL	2.6 1.6	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	13.8 3.7	0.0 0.0	8.2 3.7	5.6 0.0	0.0
	8/27/2020 BDL 8/16/2021 BDL	BDL BDL		4.3 3.8	3.1 3.3	BDL BDL	2.1 3.7	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	9.5 10.8	0.0 0.0	9.5 10.8	0.0 0.0	0.0
	8/8/2022 BDL 8/8/2023 BDL	BDL BDL	BDL	2.3 3.2	1.9 1.9	BDL BDL	1.4 1.9	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	5.6 7	0.0 0.0	5.6 7.0	0.0 0.0	0.0
MW-8	8/13/2024 BDL 8/1/2005	BDL BDL	BDL	2 BDL	BDL 28.7	BDL BDL	1.4	BDL BDL	BDL 2.02	BDL 2.02	BDL	BDL BDL	BDL -	BDL -	BDL -	3.4 43.2	0.0 4.0	3.4 39.2	0.0	0.0
	8/17/2006 11/6/2006	BDL BDL		BDL BDL	14 15.3	BDL BDL	7.6 7.78	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	-	-	-	21.6	0.0	21.6 23.1	0.0	0.0
	4/19/2007 6/2/2010	BDL 1.08		1.5 0.631	7.9 36.2	BDL 0.587	3.8 61.2	BDL BDL	2.6 BDL	BDL BDL	- BDL	- BDL	BDL	BDL	- BDL	16 99.7	2.6 0.0	13.2 98.6	0.0 0.0 1.1	0.0
	7/1/2014 11/9/2015 BDL	BDL BDL		BDL BDL	390 7.1	11 BDL	410 13.9	BDL BDL	7.5 BDL	0.64 BDL	0.25 BDL	BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL BDL	819.39 21	8.1 0.0	811.0 21.0	0.0	0.0 0.3 0.0
	10/26/2016 BDL	BDL BDL BDL		BDL BDL	7.1 9.7 6.43	BDL BDL BDL	13.9 22.1 16.1	BDL BDL BDL	BDL BDL BDL	BDL BDL	BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL	BDL BDL BDL	31.8	0.0	31.8	0.0	0.0
	9/6/2018 BDL	BDL BDL BDL		BDL BDL	8.3	BDL BDL BDL	16.4	BDL BDL BDL	BDL BDL BDL	BDL BDL	BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL	BDL BDL BDL	22.5 24.7	0.0 0.0	22.5 24.7	0.0 0.0	0.0
	8/20/2019 BDL 8/27/2020 BDL	BDL		BDL	4.8 6.3	BDL	8.8 15.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	13.6 21.8	0.0	13.6 21.8	0.0	0.0
	8/16/2021 BDL 8/9/2022 BDL	BDL BDL		BDL BDL	6.7 3.8	BDL BDL	6.1	BDL BDL	BDL BDL	BDL BDL	1.4	BDL BDL	BDL BDL	BDL BDL	BDL BDL	12.8 12.1	0.0	12.8 10.7	0.0	0.0 1.4
	8/9/2023 BDL 8/14/2024 BDL	BDL BDL	BDL BDL	BDL BDL	4.9 3.6	BDL BDL	11.5 10.7	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	16.4 14.3	0.0 0.0	16.4 14.3	0.0 0.0	0.0
MW-9	8/1/2005 8/17/2006	BDL 18		BDL BDL	108 400	4.35 16	294 500	BDL BDL	19 42	BDL BDL	BDL BDL	BDL BDL	-		-	425.4 976	19.0 42.0	406.4 916.0	0.0 18.0	0.0 0.0
	11/6/2006 4/19/2007	BDL BDL		BDL 33	71.5 180	3.44 15	15 590	BDL BDL	6.92 43	BDL BDL	BDL -	BDL -	-	-	-	238.9 846	6.9 43.0	89.9 818.0	0.0 0.0	0.0
	6/2/2010 7/1/2014	BDL BDL		BDL BDL	346 15	11.4 0.27	788 36	BDL 0.33	BDL 0.21	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	1150 51.81	0.0 0.2	1145.4 51.6	0.0 0.0	0.0
	11/9/2015 BDL 10/26/2016 BDL	BDL BDL		BDL BDL	216 144	6.8 9.1	328 232	BDL BDL	17.6 10.6	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	568.4 395.7	17.6 10.6	550.8 385.1	0.0 0.0	0.0
	9/13/2017 BDL 9/6/2018 BDL	BDL BDL		BDL BDL	196 166	3.97 4.1	181 194	BDL BDL	11.2 7.8	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	392 371.9	11.2 7.8	381.0 364.1	0.0	0.0
	8/20/2019 BDL 8/27/2020 BDL	BDL BDL		BDL BDL	123 142	BDL 4.1	107 163	BDL BDL	BDL 8.2	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	230 317.3	0.0 8.2	230.0	0.0	0.0
	8/16/2021 BDL 8/9/2022 BDL	BDL BDL		BDL BDL	69.8 70.7	2 2.2	57.2 54.9	BDL BDL	1.9	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	130.9 129.7	1.9	129.0 127.8	0.0	0.0
		BDL	BDL	BDL	160 46.9	4.4 1.6	167 51	BDL BDL	3.9 3.9	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	335.3 103.4	3.9 3.9	331.4 99.5	0.0 0.0	0.0
	8/9/2023 BDL 8/14/2024 BDL	BDL	BDL	BDL																

Lexington Machining LLC 201 Winchester Road, Lakewood, NY Table 3 - Historic Groundwater Sample Data

NYSDEC GWQS		5	3	2	5	0.6	5	5	5	1	1	50	5	3	50		1			
MW-10 8/1/2005		BDL		BDL	77	BDL	5.9	BDL	BDL	BDL	BDL	BDL		-	-	83	0.0	82.9	0.0	0.0
8/17/2006		BDL		BDL	110	1.6	14	BDL	3.5	3.4	BDL	BDL	-	-	-	132.5	6.9	125.6	0.0	0.0
6/2/2010		BDL		BDL	BDL	0.715	58.7	0.496	BDL	2.65	BDL	BDL	BDL	BDL	BDL	169	2.7	59.9	0.0	0.0
7/1/2014		BDL		BDL	44	BDL	8.2	BDL	0.18	1.8	0.11	BDL	BDL	BDL	BDL	55.1	2.0	52.2	0.0	0.1
11/9/2015	BDL	BDL		BDL	40	BDL	4.1	BDL	BDL	1.9	BDL	BDL	BDL	BDL	BDL	44.1	1.9	44.1	0.0	0.0
10/26/2016	BDL	BDL		BDL	44.7	1.7	9.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	55.8	0.0	55.8	0.0	0.0
9/13/2017	BDL	BDL		BDL	38.1	BDL	2.32	BDL	BDL	1.21	BDL	BDL	BDL	BDL	BDL	41.6	1.2	40.4	0.0	0.0
9/6/2018	BDL	BDL		BDL	61.1	BDL	10.6	BDL	BDL	2.2	BDL	BDL	BDL	BDL	BDL	73.9	2.2	71.7	0.0	0.0
8/20/2019	BDL	BDL		BDL	50.2	BDL	6.1	BDL	BDL	2.2	BDL	BDL	BDL	BDL	BDL	58.5	2.2	56.3	0.0	0.0
8/27/2020	BDL	BDL		BDL	59.7	BDL	9.6	BDL	BDL	2.1	BDL	BDL	BDL	BDL	BDL	71.4	2.1	69.3	0.0	0.0
8/16/2021	BDL	BDL		BDL	69	BDL	9.7	BDL	BDL	2.2	BDL	BDL	BDL	BDL	BDL	80.9	2.2	78.7	0.0	0.0
8/9/2022	BDL	BDL		BDL	54.6	BDL	7.6	BDL	BDL	2.4	1.4	BDL	BDL	BDL	BDL	66	2.4	62.2	0.0	1.4
8/9/2023	BDL	BDL	BDL	BDL	62.4	BDL	11.7	BDL	BDL	1.9	BDL	BDL	BDL	BDL	BDL	76	1.9	74.1	0.0	0.0
8/14/2024	BDL	BDL	BDL	BDL	56.8	BDL	7.7	BDL	BDL	1.9	BDL	BDL	BDL	BDL	BDL	66.4	1.9	64.5	0.0	0.0
MW-11 8/1/2005	-	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	-	-	-	-	-	0.0	0.0	0.0	0.0	0.0
4/19/2007		BDL		BDL	BDL	BDL	BDL	BDL	1.6	BDL						1.6	1.6	0.0	0.0	0.0
6/2/2010		BDL		BDL BDL	0.502 0.53	BDL BDL	0.572 BDI	BDL	BDL	BDL BDL	BDL BDI	3.79 BDI	BDL BDL	BDL	BDL BDI	4.86	0.0	1.1	0.0	3.8
7/1/2014 11/9/2015	BDL	BDL BDL		BDL	BDL	BDL	BDL	BDL BDL	1.1 1.3	BDL	BDL	BDL	BDL	BDL	BDL	1.63 3.2	1.1 1.3	0.5 0.0	0.0	0.0
10/26/2016	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
9/13/2017	BDL	BDL		BDL	1.24	BDL	1.35	BDL	1.4	BDL	BDL	BDL	BDL	BDL	BDL	3.99	1.4	2.6	0.0	0.0
9/5/2018	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
8/19/2019	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
8/26/2020	BDI	BDI		BDI	BDI	BDI	BDI	BDI	BDI	BDI	BDI	BDL	BDI	BDI	BDI	0	0.0	0.0	0.0	0.0
8/17/2021	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	ō	0.0	0.0	0.0	0.0
8/9/2022	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
8/9/2023	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	ō	0.0	0.0	0.0	0.0
8/13/2024	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
MW-11D 8/1/2005		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL			-		-	0.0	0.0	0.0	0.0	0.0
6/2/2010	-	BDL		BDL	0.999	BDL	BDL	BDL	BDL	BDL	0.458	58.2	BDL	BDL	3.13	62.8	0.0	1.0	0.0	61.8
7/1/2014	-	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.18	BDL	BDL	BDL	BDL	0.18	0.0	0.0	0.0	0.2
11/9/2015	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
10/26/2016	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
9/13/2017	BDL	BDL		BDL	1	BDL	1.51	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	2.51	0.0	2.5	0.0	0.0
9/5/2018	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
8/20/2019	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
MW-12 11/6/2006		19.2		BDL	7.5	BDL	14	BDL	3.4	BDL	-	-				44	3.4	7.5	0.0	0.0
4/19/2007		190		BDL	6.8	BDL	2.2	BDL	BDL	BDL	-	-	-	-	-	199	0.0	9.0	190.0	0.0
6/2/2010		851		BDL	20.9	BDL	28.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	900	0.0	49.0	851.0	0.0
6/30/2014		BDL		BDL	9.3	0.19	17	BDL	1	BDL	BDL	BDL	BDL	0.43	BDL	27.9	1.0	26.5	0.0	0.0
11/9/2015 10/26/2016								ocate Well - n ocate Well - n									0.0	0.0	0.0	0.0
																				0.0
9/12/2017	BDL	BDL		BDI	5.9	BDL	12.7	ocate Well - n BDL	o sample RDI	RDI	BDL	RDI	BDL	BDL	BDI	18.6	0.0	0.0 18.6	0.0	0.0
9/6/2018	BDL	BDL		BDL	BDI	BDI			BDI	BDI	BDI	BDL	BDI	BDI	BDI		0.0	18.6	0.0	0.0
8/20/2019 8/26/2020	BDL	3.3		BDL	2.5	BDL	1.8 3.4	BDL BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.8 9.2	0.0	1.8 5.9	3.3	0.0
8/17/2021	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
8/9/2022	BDI	41.8	1	BDL	2.9	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	44.7	0.0	2.0	41.8	0.0
8/8/2023	BDL	5.2	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	5.2	0.0	0.0	5.2	0.0
8/14/2024	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0	0.0	0.0	0.0	0.0
MW-13 11/6/2006	DDL	BDL	DUL	BDL	3.8	BDL	BDL	BDL	BDL	BDL		-	DDL	DDL	DDL	3.8	0.0	3.8	0.0	0.0
4/19/2007		BDI		BDI	BDI	BDI	BDI	BDI	BDI	BDI	_	_	_	_	_	0	0.0	0.0	0.0	0.0
6/2/2010		25.9		BDL	1.96	BDL	9.06	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	36.9	0.0	11.0	25.9	0.0
6/30/2014		1200		BDL	69	2.9	8.2	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1281	0.0	80.1	1200.0	0.0
11/9/2015	BDL	272		BDL	10.6	1	12.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	296.1	0.0	24.1	272.0	0.0
10/25/2016	BDL	44.5						BDL	BDL			BDL	BDL	BDL	BDL				44.5	
				BDL	3.4	BDL	4.5	BDL		BDL	BDL	BDL			BDL	52.5	0.0	7.9		0.0
9/12/2017	BDL	665		BDL BDL		BDL 0.955	4.5 11.7	0.96	BDL	BDL BDL	BDL BDL	BDL	BDL	BDL	BDL	52.5 699	0.0 0.0	7.9 26.8	665.0	
9/12/2017 9/5/2018					3.4															0.0
9/5/2018	BDL	665 430		BDL	3.4 13.2 27.6	0.955	11.7	0.96 BDL	BDL	BDL BDL	BDL BDL	BDL	BDL	BDL	BDL	699	0.0	26.8 36.5	665.0	0.0
	BDL BDL	665		BDL BDL	3.4 13.2	0.955 1.3	11.7 7.6	0.96	BDL BDL	BDL	BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	699 466.5	0.0 0.0	26.8	665.0 430.0	0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019	BDL BDL BDL	665 430 198		BDL BDL BDL	3.4 13.2 27.6 19.3	0.955 1.3 BDL	11.7 7.6 2.6	0.96 BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL BDL	699 466.5 219.9	0.0 0.0 0.0	26.8 36.5 21.9	665.0 430.0 198.0	0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020	BDL BDL BDL BDL	665 430 198 576		BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1	0.955 1.3 BDL 1.4	11.7 7.6 2.6 9.7	0.96 BDL BDL 1.3	BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	699 466.5 219.9 608.5	0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5	665.0 430.0 198.0 576.0	0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021	BDL BDL BDL BDL BDL	665 430 198 576 52.4	BDL	BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6	0.96 BDL BDL 1.3 BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3	0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9	665.0 430.0 198.0 576.0 52.4	0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022	BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7	BDL BDL	BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3	0.955 1.3 BDL 1.4 BDL BDL	11.7 7.6 2.6 9.7 1.6 3.9	0.96 BDL BDL 1.3 BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5	0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8	665.0 430.0 198.0 576.0 52.4 62.7	0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2023	BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL		BDL BDL BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL	0.955 1.3 BDL 1.4 BDL BDL BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6	0.96 BDL BDL 1.3 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5 267	0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0	665.0 430.0 198.0 576.0 52.4 62.7 259.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2023 8/13/2024	BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL BDL		BDL BDL BDL BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL BDL	0.955 1.3 BDL 1.4 BDL BDL BDL BDL BDL BDL BDL BDL BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL	0.96 BDL BDL 1.3 BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5 267	0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0	665.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2023 8/13/2024 MW-14 11/6/2006 4/18/2007 6/2/2010	BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL BDL 1.59		BDL BDL BDL BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL BDL 5.5 2.12	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL BDL 16 2.96	0.96 BDL BDL 1.3 BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 0 30 8.16	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 0.0 21.5 6.6	665.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2023 8/13/2024 MW-14 11/6/2006 4/18/2007	BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL BDL		BDL BDL BDL BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL BDL	0.955 1.3 BDL 1.4 BDL BDL BDL BDL BDL BDL BDL BDL BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL BDL	0.96 BDL BDL 1.3 BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL	BDL BDL BDL BDL BDL BDL BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5 267 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 21.5	665.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2023 8/13/2024 MW-14 11/6/2006 4/18/2007 6/2/2010 7/1/2014 11/9/2015	BDL BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL BDL 1.59 14		BDL BDL BDL BDL BDL BDL BDL BDL BDL 3.1	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL BDL 5.5 2.12 33 10.5	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL BDL 16 2.96 42	0.96 BDL BDL 1.3 BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL - - BDL BDL BDL BDL BDL BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL - - BDL 2.3 1.6	BDL BDL BDL BDL BDL BDL BDL - BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 0 30 8.16 99.68 12.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 21.5 6.6 78.5 13.5	665.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0 0.0 1.6 14.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2022 8/3/2024 MW-14 11/6/2006 4/18/2007 6/2/2010 7/1/2014 11/9/2015	BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL BDL 1.59 14 BDL		BDL BDL BDL BDL BDL BDL BDL BDL 1.49	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL BDL 5.5 2.12 33 10.5 5.8	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL BDL 16 2.96 4.2	0.96 BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL - - BDL BDL BDL BDL BDL BDL BDL BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL 2 1.6 BDL	BDL BDL BDL BDL BDL BDL BDL - BDL BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 0 30 8.16 99.68 12.3 13	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 0.0 21.5 6.6 78.5 13.5 11.3	665.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0 0.0 1.6 14.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2023 8/13/2024 MW-14 11/6/2006 6/2/2010 7/11/2014 11/9/2015 10/25/2016 9/12/2017	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL BDL 1.59 14 BDL 1.7 3.91		BDL BDL BDL BDL BDL BDL BDL BDL 1.49 3.1 1.2 1.1	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL BDL 5.5 2.12 33 10.5 5.8	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL 16 2.96 42 1.8 4.4	0.96 BDL	BDL BDL BDL BDL BDL BDL BDL BDL 3.2 BDL BDL BDL BDL BDL	BDL	BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL - - BDL 2.3 1.6 BDL 0.845	BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 30 8.16 99.68 12.3 13 46.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 3.2 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 21.5 6.6 78.5 13.5 11.3	665.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0 0.0 1.6 14.0 0.0 1.7 3.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2022 8/8/2023 6/13/2024 MW-14 11/6/2006 4/18/2007 6/2/2010 7/1/2014 11/9/2015 9/12/2017 9/5/2018	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL 1.59 14 BDL 1.7 3.91 BDL		BDL BDL BDL BDL BDL BDL BDL BDL 1.49 3.1 1.2 1.1	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL 5.5 2.12 33 10.5 5.8 19 6.1	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL 16 2.96 42 1.8 4.4 18.7 3.5	0.96 BDL	BDL	BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL - - BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL - - BDL 2.3 1.6 BDL 0.845 BDL	BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 30 8.16 99.68 12.3 13 46.8 9.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 21.5 6.6 78.5 13.5 11.3 42.0 9.6	665.0 430.0 188.0 576.0 52.4 62.7 259.0 0.0 0.0 1.6 14.0 0.0 1.7 3.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/8/2022 8/8/2023 MW-14 11/6/2006 6/2/2010 7/11/2014 11/9/2015 9/12/2017 9/5/2018 8/19/2019	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL BDL 1.59 14 BDL 1.7 3.91 BDL		BDL BDL BDL BDL BDL BDL BDL BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3 3.4 BDL BDL 5.5 2.12 33 10.5 5.8 19 6.1 BDL	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL 16 2.96 42 1.8 4.4 18.7 3.5 4.1	0.96 BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL 2.3 1.6 BDL 0.845 BDL BDL	BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 30 8.16 99.68 12.3 13 46.8 9.6 4.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 21.5 6.6 78.5 11.3 42.0 9.6 4.1	665.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0 0.0 1.6 14.0 0.0 1.7 3.9 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/26/2020 8/16/2021 8/8/2022 8/15/2024 MW-14 11/6/2000 6/2/2010 7/1/2014 11/9/2015 9/12/2017 9/5/2018 8/19/2019 8/26/2020	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL BDL 1.59 14 BDL 1.7 3.91 BDL		BDL BDL BDL BDL BDL BDL BDL BDL 1.49 3.1 1.2 1.1 4.33 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3 3.4 BDL 5.5 2.12 33 10.5 5.8 19 6.1 8DL 3.6	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL BDL 16 2.96 42 1.8 4.4 18.7 3.5 4.1 8.7	0.96 BDL BDL 1.3 BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL BDL 2.3 1.6 BDL 0.845 BDL BDL BDL	BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 0 30 8.16 99.68 12.3 46.8 9.6 4.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 8.0 0.0 21.5 6.6 78.5 13.5 11.3 42.0 9.6 4.1 12.3	665.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0 0.0 1.6 14.0 0.0 1.7 3.9 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 8/25/2020 8/16/2021 8/9/2022 8/9/2023 8/9/2023 MW-14 11/9/2006 6/2/2010 7/1/2014 11/9/2015 10/25/2016 9/12/2017 9/5/2018 8/19/2019 8/19/2029 8/19/2020	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL 1.59 14 BDL 1.7 3.91 BDL 1.7 3.91 BDL		BDL BDL BDL BDL BDL BDL BDL BDL 1.49 3.1 1.2 1.1 6.33 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3 3.4 BDL 5.5 2.12 33 10.5 5.8 19 6.1 BDL 3.6	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL 16 2.96 42 1.8 4.4 18.7 3.5 4.1 8.7	0.96 BDL BDL 1.3 BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL - BDL 2.3 1.6 BDL 0.845 BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL - - - BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 0 8.16 91.23 13 46.8 9.6 4.1 12.3 37.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 21.5 6.6 78.5 11.3 42.0 9.6 4.1 12.3 21.8	685.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0 1.6 14.0 0.0 1.7 3.9 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/14/2019 8/14/2020 8/14/2021 8/14/2021 8/14/2021 8/14/2021 MW-14 11/6/2007 8/12/2010 7/1/2014 11/6/2015 9/5/2018 8/14/2021 8/14/2021 8/14/2021	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL 1.59 14 BDL 1.7 3.91 BDL BDL 1.7 8.0 1.7 8.0 1.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	BDL	BDL	3.4 13.2 27.6 19.3 20.1 1.3 1.9 3.4 BDL 5.5 2.12 33 10.5 5.8 19 6.1 BDL 3.6 5.5	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL BDL 16 2.96 42 1.8 4.4 18.7 3.5 4.1 8.7	0.96 BDL 1.3 BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL - - - BDL 2.3 1.6 BDL 0.845 BDL BDL BDL BDL BDL BDL BDL	BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 30 8.16 99.68 12.3 146.8 9.6 4.1 12.3 37.1 12.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 21.5 6.6 78.5 13.5 11.3 42.0 9.6 4.1 12.3 21.8	665.0 430.0 198.0 576.0 62.4 62.7 259.0 0.0 0.0 1.6 14.0 0.0 1.7 3.9 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9/5/2018 8/19/2019 9/19/2022 8/19/2022 8/19/2022 8/19/2022 8/19/2023 8/19/2023 MW-14 11/9/2006 6/2/2010 7/1/2014 11/9/2005 10/25/2016 9/19/2017 9/5/2018 8/19/2019 8/19/2019 8/19/2019	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	665 430 198 576 52.4 62.7 259 BDL BDL 1.59 14 BDL 1.7 3.91 BDL 1.7 3.91 BDL		BDL BDL BDL BDL BDL BDL BDL BDL 1.49 3.1 1.2 1.1 6.33 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	3.4 13.2 27.6 19.3 20.1 1.3 3.4 BDL 5.5 2.12 33 10.5 5.8 19 6.1 BDL 3.6	0.955 1.3 BDL 1.4 BDL	11.7 7.6 2.6 9.7 1.6 3.9 4.6 BDL 16 2.96 42 1.8 4.4 18.7 3.5 4.1 8.7	0.96 BDL BDL 1.3 BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL BDL BDL BDL BDL - BDL 2.3 1.6 BDL 0.845 BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL - - - BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	699 466.5 219.9 608.5 55.3 68.5 267 0 0 8.16 91.23 13 46.8 9.6 4.1 12.3 37.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.8 36.5 21.9 32.5 2.9 5.8 8.0 0.0 21.5 6.6 78.5 11.3 42.0 9.6 4.1 12.3 21.8	685.0 430.0 198.0 576.0 52.4 62.7 259.0 0.0 1.6 14.0 0.0 1.7 3.9 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8/13/2024 BDL BDL BDL BDL 1.4 2.3 B

NYSDEC GWQS - New York State Department of Environmental conservation groundwater quality standards
**Not aniasyzed or sampled

BDL Below detection limit
Jr estimated concentration
FBr Also detected in field blank sample
11.*DCA 1.3-Linchioroethane
11.*DCA 1.3-Linchioroethane
11.*DCB 1.3-Linchioroethane
11.*DCB 1.3-Linchioroethane
11.*1CA 1.1.2-Trinchioroethane
11.*1CA 1.1.2-Trinchioroethane
11.*1CA 1.1.2-Trinchioroethane
11.*1CA 1.1.2-Trinchioroethane
11.*1CA 1.1.2-Trinchioroethane
15.*DCB 1.3-Linchioroethane
*

Appendix A SITE WIDE INSPECTION FORM

SITE-WIDE INSPECTION FORM

Inspection Period: September 2023 through September 2024
Reason for inspection: X Annual Severe Weather Event (Site-wide inspection required annually or following a severe weather event that may have damaged site engineering controls or monitoring wells)
Project location: 201 Winchester Road, Lakewood, New York
Inspection date / time: 8/13/24 4PM conducted by: Tim McCann Weather: Sunny 70s Site remains industrial/commercial use? X Yes No If no, what is the current use? Is site occupied and operational? Currently vacant
Are structures indicated on the Site Layout Map of SMP Figure 2 remaining? X Yes No If no, described current site conditions, specifically condition of the concrete floor of the existing / former structure
Are monitoring wells depicted on SMP Figure 8 in place and undamaged? X Yes No If no, described monitoring well conditions:
Has the annual groundwater monitoring program been implemented for the inspection period? X Yes No
Have monitoring results been reported to the NYSDEC as indicated in the SMP? X Yes No
Are records required by the SMP complete, current and available at the Site? X Yes No
If not available on-site are there records available elsewhere?
Have any reportable spills of regulated materials occurred or evidence of former spills be discovered?YesXNo . If Yes, describe:

Appendix B

SITE MANAGEMENT PERIODIC REVIEW REPORT, INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	907044	Site Details		Box 1	
Sit	e Name Le	exington Machining LLC				
City Co	e Address: y/Town: La unty: Chauta e Acreage:	auqua	Zip Code: 14750			
Re	porting Peri	od: September 18, 2023	to September 18, 2024			
					YES	NO
1.	Is the infor	mation above correct?			$X\square$	
	If NO, inclu	ude handwritten above or	on a separate sheet.			
2.		or all of the site property mendment during this Rep	been sold, subdivided, merged porting Period?	, or undergone a		$X\square$
3.		been any change of use a CRR 375-1.11(d))?	at the site during this Reporting	Period		$X\square$
4.		federal, state, and/or loca e property during this Rep	I permits (e.g., building, dischar porting Period?	rge) been issued		$X\square$
			s 2 thru 4, include documenta viously submitted with this c			
5.	Is the site	currently undergoing deve	elopment?			$X\square$
					Box 2	
					YES	NO
6.		ent site use consistent wit al and Industrial	h the use(s) listed below?		$X\square$	
7.	Are all ICs	in place and functioning	as designed?	\mathbf{X}		
	IF T		QUESTION 6 OR 7 IS NO, sign IE REST OF THIS FORM. Othe		ınd	
AC	Corrective N	leasures Work Plan must	be submitted along with this t	form to address th	nese iss	ues.
 Sig	nature of Ov	vner, Remedial Party or De	esignated Representative	 Date		

SITE NO. 907044 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

385.06-3-58 201 Winchester Road, LLC

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Building Use Restriction
Monitoring Plan
Site Management Plan
IC/EC Plan

• The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Management Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- Vegetable gardens and farming on the site are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

385.06-3-59 201 Winchester Road, LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan IC/EC Plan

- The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Management Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- · Vegetable gardens and farming on the site are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan IC/EC Plan

- The property may only be used for industrial or commercial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted and restricted residential use, without an evaluation of potential additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC:
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Management Plan;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified at concentrations that may pose a hazard must be mitigated;
- Vegetable gardens and farming on the site are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

385.06-3-58

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial/commercial use will be required. In conformance with the Site Management Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

385.06-3-59

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial/commercial use will be required. In conformance with the Site

Parcel

Engineering Control

Management Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

385.06-3-60

Vapor Mitigation

Monitored Natural Attenuation

Site groundwater investigation and monitoring indicate ongoing natural attenuation and degradation of VOC contaminants. Monitored natural attenuation effectiveness will be evaluated through a groundwater monitoring program that will be implemented to monitor groundwater plume characteristics, horizontal and vertical contaminant migration and related controlling processes. The groundwater monitoring program will be conducted on an annual basis and in accordance with the USEPA guidance for monitored natural attenuation.

Vapor Mitigation

Periodic certification of industrial/commercial use will be required. In conformance with the Site Management Plan, any future reuse of existing on-site buildings for uses other than industrial will require an updated soil vapor intrusion (SVI) assessment. If the updated SVI assessment determines SVI is occurring and the values pose a health risk for intended use of the building(s), a sub-slab depressurization system, or a similar engineered system, to prevent the migration of vapors into the building from soil and/or groundwater will be required.

R	ΛY	5

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO
	$\mathbf{X}\square$ \square
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	$\mathbf{X}\square$ \square
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 907044

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Physical Address

1 Allan B Steinberg at 201 Winchester Rd, Lakewood, NY, print name print business address

am certifying as Managing Member (Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

Date

Malling Address:

1888 DIAGARA FALLS Blud, SUAEL TONAMANDA, NY 14150

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Tim McCann at _A rint name	pex Companies LLC print business ad	dress	
am certifying as a Qualified LLC	Environmental Professional fo	r the <u>201 Winchester</u> (Owner or Reme	edial Party)
Tim McCann		······································	
	ronmental Professional, for	Stamp	Date

Enclosure 3

Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
- B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
 - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

- the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.

C. Future PRR Submittals

- 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

Appendix C GROUNDWATER SAMPLING LOGS

DEPTH TO WATER (FT): 10.78

WAS WELL PUMPED DRY?_____ YES X___NO

TOTAL GALLONS PURGED: ~0.8 GALLONS

PURGE METHOD: PERISTALTIC PUMP / LOW FLOW

TIME	DEPTH TO	Turbidity	Conductivity	Temp	DO	pН	ORP
	WATER (FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
800	11.51	715	0.07	20.22	0.45	9.58	-2
803	11.51	715	0.061	19.76	0	8.2	28
806	11.53	350	0.056	19.54	0	7.72	38
809	11.62	216	0.05	19.35	0	7.22	50
812	11.67	210	0.047	19.33	0	7.2	56
815	11.69	208	0.046	19.3	0	7.19	58

Comments:	clear, No odor, No Sheen
Concr	ete in tact, well casing in tact, cap in tact , screws in place

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-2
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/13/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 16:20 AMBIENT TEMP: 70s °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 10.38
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~1.0 GALLONS

TIME	DEPTH TO	Turbidity	Conductivity	Temp	DO	pН	ORP
	WATER (FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
1603	10.53	297	0.723	23.19	3	8.53	-7
1606	10.64	675	0.284	23.12	0	7.42	9
1609	10.71	368	0.289	22.93	0	7.26	11
1612	10.76	318	0.292	22.84	0	7.18	13
1615	10.81	319	0.292	22.81	0	7.19	14

Comments:	Clear, no odor. No sheen
Concr	ete in tact, well casing in tact, cap in tact , screws in tact

GROUNDWATER MONITORING WELL SAMPLING LOG

TOTAL GALLONS PURGED: ~0.8 GALLONS

WELL NO. MW-2D
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/14/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 9:15 AMBIENT TEMP: 70s °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.63
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
WAS WELL PUMPED DRY? YES XNO

TIME	DEPTH TO	Turbidity	Conductivity	Temp	DO	pН	ORP
	WATER (FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
857	11.76	1000+	0.248	17.32	0	7.18	4
900	11.91	1000+	0.253	17.17	0	7.16	-40
903	12.11	803	0.254	17.05	0	7.15	-75
906	12.18	571	0.254	17	0	7.19	-86
909	12.5	568	0.254	16.97	0	7.2	-96
912	12.55	565	0.253	17	0	7.21	-99

Comments:	Clear, No odor, No Sheen				
Concre	ete in tact, well casing in tac	t, cap in tact ,	screws in place	2	
	_	•	•		

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. <u>MW-3</u>
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/13/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 15:!5 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 10.43
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES X NO

TIME	DEPTH TO	Turbidity	Conductivity	Temp	DO	pН	ORP
	WATER (FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
1453	10.69	1000+	0.288	23.67	3.65	7.49	94
1456	10.81	838	0.274	23.25	4.34	6.89	106
1459	10.91	426	0.267	22.96	4.64	6.72	112
1502	11	146	0.268	22.68	4.76	6.65	118
1505	11.09	105	0.268	22.59	4.77	6.59	121
1508	11.12	101	0.268	22.57	4.8	6.56	124
1511	11.14	100	0.267	22.56	4.74	6.56	120

TOTAL GALLONS PURGED: ~1.0 GALLONS

Comments:	Light grey, No Odor, No Sheen	
Concre	rete in tact, well casing in tact, cap in tact & screws	
	- · · · · · · · · · · · · · · · · · · ·	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-7
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/13-24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 13:50 AMBIENT TEMP: 70s °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 14.01
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~0.8 GALLONS

TIME	DEPTH TO WATER	Turbidity	Conductivity	Temp	DO	pН	ORP
	(FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
1336	14.19	11.3	0.554	22.68	0.1	6.94	115
1339	14.19	6.6	0.556	23.01	0	6.17	88
1342	14.19	5.7	0.556	22.85	0	6.05	74
1345	14.19	5.7	0.558	22.81	0	6	62
1348	14.19	5.4	0.555	22.8	0	6.03	66

Comments:	Clear, Sulfur-like odor, No Sheen
	Concrete in tact, well casing in tact, cap good, screws present

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-8
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/14/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: <u>PERISTALTIC PUMP</u> WEATHER: <u>SUNNY</u>
SAMPLING TIME: 10:40 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 13.80
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES _XNO
TOTAL GALLONS PURGED: ~0.9 GALLON

TIME	DEPTH TO	Turbidity	Conductivity	Temp	DO	pН	ORP
	WATER (FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
1024	14.69	210	0.669	17.66	1.86	8.36	13
1027	14.8	141	0.686	17.49	1.41	7.6	38
1030	14.91	70	0.695	17.31	1.43	7.36	48
1033	4E 10	30	0.708	17.16	1.49	7.28	52
1033	15.12	30	0.700	17.10	1.49	1.20	32
1036	15.21	30	0.708	17.1	1.41	7.26	55
1039	15.3	28	0.708	17.11	1.41	7.24	56

Comments:	Clear, No odor, No Sheen
Concr	ete in tact, well casing in tact, cap in place, screws in place

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-9
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/14/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 9:50 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 11.72
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO

TIME	DEPTH TO	Turbidity	Conductivity	Temp	DO	pН	ORP
	WATER (FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
933	12.10	0	0.763	18.18	0.47	7.43	46
936	12.22	1000+	0.749	18.11	0	7.23	57
939	12.36	437	0.748	17.65	0	7.25	56
942	12.41	288	0.747	17.77	0	7.13	60
945	12.46	280	0.746	17.77	0	7.18	59
948	12.51	279	0,743	17.77	0	7.17	58

TOTAL GALLONS PURGED: 0.7 GALLONS

Comments:	Clear, No odor, No Sheen
Concr	ete in tact, well casing in tact, cap good, screws in tact

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-10
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/14/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 10:15 AMBIENT TEMP: 70S F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 10.74
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~0.7

TIME	DEPTH TO WATER	Turbidity	Conductivity	Temp	DO	pН	ORP
	(FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
955	11.11	252	0	17.99	9.78	7.89	110
958	11.16	252	0.501	17.47	9.78	7.89	107
1001	11.45	2.1	0.504	17.52	1.57	7.18	77
1004	11.68	1.7	0.987	17.54	0.94	6.61	89
1007	11.74	0.8	0.93	17.53	1.02	6.65	78
1010	12	0.9	0.981	17.52	1.02	6.71	79
1013	12.09	0.9	0.978	17.51	1.00	6.72	79

Comments:	Light gray, No odor, No Sheen	
Concre	ete in tact, screws in place, cap in place	

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. <u>MW-11</u>
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/13/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 1320 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 8.04
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES _XNO
TOTAL GALLONS PURGED: ~1.0 GALLONS

TIME	DEPTH TO WATER	Turbidity	Conductivity	Temp	DO	pН	ORP
	(FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
1305	9.12	19.9	0.431	23.74	2.71	7.9	130
1308	9.5	8.5	0.459	23.84	1.99	8.64	170
1311	9.7	4.6	0.485	23.88	1.79	7.95	205
1314	9.85	3.7	0.423	23.81	1.71	7.52	215
1317	10	3.6	0.42	23.83	1.7	7.5	220
1321	10.1	3.3	0.422	23.84	1.7	7.51	221

Comments:	Clear, no odor, no sheen	
Con	crete in tact, screws in place, cap in place	e

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. <u>MW-12</u>
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/14/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 840 AMBIENT TEMP: 705°F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 9.69
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~0.7 GALLONS

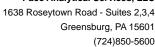
TIME	DEPTH TO	Turbidity	Conductivity	Temp	DO	pН	ORP
	WATER (FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
828	10.01	7.6	0.082	18.12	0	6.26	38
831	10.3	3.8	0.057	17.97	0	6.01	47
834	10.37	3.5	0.047	17.86	0	5.99	52
837	10.41	3.3	0.043	17.77	0	5.92	58
840	10.41	3.1	0.043	17.78	0	5.91	59

Comments:	Light Grey/clear, no sheen	
Concre	ete in tact, well casing in tact, cap in tact , screws in place	
_		

GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. MW-13
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/13/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 15:50 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA:
METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 9.86
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~0.9 GALLONS

TIME	DEPTH TO	Turbidity	Conductivity	Temp	DO	pН	ORP
	WATER (FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
1532	10.01	468	0.379	23.44	0.1	7.1	10
1535	10.25	294	0.385	23	0	7.17	-4
1538	10.28	263	0.386	22.85	0	7.21	-8
1541	10.31	230	0.388	22.68	0	7.23	-8
1544	10.35	228	0.389	22.6	0	7.22	-9
1547	10.38	225	0.387	22.61	0	7.2	-11

Comments:	Clear, Sulfur-type Odor, No Sheen
Concr	ete in tact, well casing in tact, cap in tact ,screws in place


GROUNDWATER MONITORING WELL SAMPLING LOG
WELL NO. <u>MW-14</u>
PROJECT: GW SAMPLING
LOCATION: 201 WINCHESTER RD, LAKEWOOD, NY
SAMPLING DATE: 8/13/24 SAMPLED BY: TIM MCCANN/LANA OSTRY
SAMPLING METHOD: PERISTALTIC PUMP WEATHER: SUNNY
SAMPLING TIME: 14:25 AMBIENT TEMP: 70S °F
WATER ELEVATION DATA: METHOD OF MEASUREMENT: DEPTH SOUNDER:
WATER LEVEL GAUGE: X
DEPTH TO WATER (FT): 10.49
PURGE METHOD: PERISTALTIC PUMP / LOW FLOW
DEPTH OF PUMP BELOW TOP OF CASING (FT):
WAS WELL PUMPED DRY? YES XNO
TOTAL GALLONS PURGED: ~0.9 GALLONS

TIME	DEPTH TO WATER	Turbidity	Conductivity	Temp	DO	pН	ORP
	(FEET)	(NTUs)	(mS)	(Celsius)	(mg/L)	(units)	(millivolts)
1406	10.69	936	0.42	23.58	0	6.89	-23
1409	10.83		0.421	23.34	0	6.41	-10
1412	10.95	570	0.421	22.74	0	6.28	-3
1415	10.95	311	0.411	22	0	5.97	16
1418	11.11	228	0.409	21.35	0	6.47	0
1421	11.19	164	0.407	21.4	0	6.51	0
1424	11.24	154	0.406	21.38	0	6.5	0

Comments:	Clear, No odor, No Sheen		
Conc	rete in tact, well casing in tact, cap in t	act	

Appendix D ANALYTICAL LABORATORY REPORT

August 22, 2024

Mr. Timothy McCann Apex Companies 520 South Main Street Suite 2444 Akron, OH 44311

RE: Project: VOC's

Pace Project No.: 30709721

Dear Mr. McCann:

Enclosed are the analytical results for sample(s) received by the laboratory on August 15, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

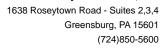
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Justin P. Horn justin.horn@pacelabs.com


Juster Hown

(724)850-5600 Project Manager

Enclosures

cc: Lana Ostry, Apex Companies, LLC

CERTIFICATIONS

Project: VOC's
Pace Project No.: 30709721

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Indiana Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

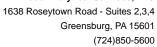
Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C


Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: VOC's
Pace Project No.: 30709721

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30709721001	MW-11	Water	08/13/24 13:20	08/15/24 09:30
30709721002	MW-7	Water	08/13/24 13:50	08/15/24 09:30
30709721003	MW-14	Water	08/13/24 14:25	08/15/24 09:30
30709721004	MW-3	Water	08/13/24 15:15	08/15/24 09:30
30709721005	MW-13	Water	08/13/24 15:50	08/15/24 09:30
30709721006	MW-2	Water	08/13/24 16:20	08/15/24 09:30
30709721007	FIELD BLANK	Water	08/13/24 16:00	08/15/24 09:30
30709721008	MW-1	Water	08/14/24 08:15	08/15/24 09:30
30709721009	MW-12	Water	08/14/24 08:40	08/15/24 09:30
30709721010	MW-12D	Water	08/14/24 09:15	08/15/24 09:30
30709721011	MW-9	Water	08/14/24 09:50	08/15/24 09:30
30709721012	MW-10	Water	08/14/24 10:15	08/15/24 09:30
30709721013	MW-8	Water	08/14/24 10:40	08/15/24 09:30
30709721014	FIELD BLANK 02	Water	08/14/24 11:00	08/15/24 09:30
30709721015	TRIP BLANK	Water	08/14/24 00:00	08/15/24 09:30

SAMPLE ANALYTE COUNT

Project: VOC's
Pace Project No.: 30709721

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30709721001	MW-11	EPA 8260C	AJC	52	PASI-PA
30709721002	MW-7	EPA 8260C	AJC	52	PASI-PA
30709721003	MW-14	EPA 8260C	AJC	52	PASI-PA
30709721004	MW-3	EPA 8260C	AJC	52	PASI-PA
30709721005	MW-13	EPA 8260C	AJC	52	PASI-PA
30709721006	MW-2	EPA 8260C	AJC	52	PASI-PA
30709721007	FIELD BLANK	EPA 8260C	AJC	52	PASI-PA
30709721008	MW-1	EPA 8260C	AJC	52	PASI-PA
30709721009	MW-12	EPA 8260C	AJC	52	PASI-PA
30709721010	MW-12D	EPA 8260C	AJC	52	PASI-PA
30709721011	MW-9	EPA 8260C	AJC	52	PASI-PA
30709721012	MW-10	EPA 8260C	AJC	52	PASI-PA
30709721013	MW-8	EPA 8260C	AJC	52	PASI-PA
30709721014	FIELD BLANK 02	EPA 8260C	AJC	52	PASI-PA
30709721015	TRIP BLANK	EPA 8260C	AJC	52	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-11	Lab ID:	30709721001	Collecte	d: 08/13/2	4 13:20	Received: 0	8/15/24 09:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical	Method: EPA 8	260C						
	-	lytical Services		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 12:34	67-64-1	1c,MH
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 12:34	71-43-2	·
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 12:34	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 12:34	75-27-4	
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 12:34	75-25-2	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 12:34	74-83-9	
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 12:34		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 12:34	78-93-3	
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 12:34	75-15-0	R1
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 12:34	56-23-5	
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 12:34		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 12:34	75-00-3	
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 12:34	67-66-3	
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 12:34	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 12:34	124-48-1	
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 12:34		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 12:34	541-73-1	R1
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 12:34	106-46-7	R1
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/19/24 12:34	75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 12:34	107-06-2	
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 12:34		
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/19/24 12:34	75-35-4	R1
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/19/24 12:34	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 12:34	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 12:34	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/19/24 12:34	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/19/24 12:34	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/19/24 12:34	100-41-4	
2-Hexanone	ND	ug/L	10.0	0.58	1		08/19/24 12:34	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/19/24 12:34	98-82-8	
Methylene Chloride	ND	ug/L	1.0	0.92	1		08/19/24 12:34		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/19/24 12:34		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/19/24 12:34	1634-04-4	
Naphthalene	ND	ug/L	4.0	2.1	1		08/19/24 12:34	91-20-3	
Styrene	ND	ug/L	1.0	0.33	1		08/19/24 12:34		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/19/24 12:34	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/19/24 12:34		R1
Toluene	ND	ug/L	1.0	0.32	1		08/19/24 12:34		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 12:34		R1
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 12:34		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 12:34		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 12:34		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 12:34		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 12:34		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 12:34		R1

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-11	Lab ID:	30709721001	Collecte	d: 08/13/24	13:20	Received: 08	3/15/24 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical I	Method: EPA 8	260C						
	Pace Analy	tical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 12:34	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 12:34	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 12:34	95-47-6	
Surrogates		_							
4-Bromofluorobenzene (S)	92	%.	70-130		1		08/19/24 12:34	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%.	70-130		1		08/19/24 12:34	17060-07-0	
Toluene-d8 (S)	98	%.	70-130		1		08/19/24 12:34	2037-26-5	
Dibromofluoromethane (S)	97	%.	70-130		1		08/19/24 12:34	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-7	Lab ID:	30709721002	Collecte	d: 08/13/2	1 13:50	Received: 0	8/15/24 09:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytica	Method: EPA 8	260C						
	-	lytical Services		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 15:07	67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 15:07		
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 15:07		
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 15:07		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 15:07		
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 15:07		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 15:07		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 15:07		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 15:07		
Carbon tetrachloride	ND ND	ug/L	1.0	0.44	1		08/19/24 15:07		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 15:07		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 15:07		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 15:07		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 15:07		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 15:07		
1,2-Dichlorobenzene	ND ND	ug/L	1.0	0.43	1		08/19/24 15:07		
1,3-Dichlorobenzene	ND ND	ug/L	1.0	0.35	1		08/19/24 15:07		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 15:07		
1,1-Dichloroethane	ND ND	ug/L	1.0	0.50	1		08/19/24 15:07		
1,2-Dichloroethane	ND ND	ug/L	1.0	0.33	1		08/19/24 15:07		
1,2-Dichloroethene (Total)	ND ND	ug/L	2.0	0.66	1		08/19/24 15:07		
1,1-Dichloroethene	1.4	ug/L	1.0	0.49	1		08/19/24 15:07		
cis-1,2-Dichloroethene	ND	ug/L ug/L	1.0	0.49	1		08/19/24 15:07		
trans-1,2-Dichloroethene	ND ND	ug/L	1.0	0.59	1		08/19/24 15:07		
1,2-Dichloropropane	ND ND	ug/L	1.0	0.58	1		08/19/24 15:07		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	1.0	0.38	1		08/19/24 15:07		
trans-1,3-Dichloropropene	ND ND	ug/L ug/L	1.0	0.29	1		08/19/24 15:07		
Ethylbenzene	ND ND	ug/L ug/L	1.0	0.32	1		08/19/24 15:07		
2-Hexanone	ND ND	_		0.40	1		08/19/24 15:07		
	ND ND	ug/L	10.0 1.0	0.56	1		08/19/24 15:07		
Isopropylbenzene (Cumene)		ug/L							
Methylene Chloride	ND	ug/L	1.0	0.92	1		08/19/24 15:07		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1 1		08/19/24 15:07		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25			08/19/24 15:07		
Naphthalene	ND	ug/L	4.0	2.1	1		08/19/24 15:07		
Styrene	ND	ug/L	1.0	0.33	1		08/19/24 15:07		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/19/24 15:07		
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/19/24 15:07		
Toluene	ND	ug/L	1.0	0.32	1		08/19/24 15:07		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 15:07		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 15:07		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 15:07		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 15:07		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 15:07		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 15:07		
Vinyl chloride	2.0	ug/L	1.0	0.29	1		08/19/24 15:07	75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-7	Lab ID:	30709721002	Collecte	d: 08/13/24	13:50	Received: 08/15/24 09:30 Matrix: Wate			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Analy	tical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 15:07	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 15:07	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 15:07	95-47-6	
Surrogates		_							
4-Bromofluorobenzene (S)	90	%.	70-130		1		08/19/24 15:07	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%.	70-130		1		08/19/24 15:07	17060-07-0	
Toluene-d8 (S)	99	%.	70-130		1		08/19/24 15:07	2037-26-5	
Dibromofluoromethane (S)	98	%.	70-130		1		08/19/24 15:07	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-14	Lab ID:	30709721003	Collecte	d: 08/13/2	4 14:25	Received: 08/15/24 09:30 Matrix: Water			
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytica	Method: EPA 8	260C						
	-	lytical Services		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 17:39	67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 17:39		
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 17:39	_	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 17:39		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 17:39		
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 17:39		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 17:39		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 17:39		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 17:39		
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 17:39		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 17:39		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 17:39		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 17:39		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 17:39		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 17:39		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 17:39		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 17:39		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 17:39		
1,1-Dichloroethane	2.3	ug/L	1.0	0.50	1		08/19/24 17:39		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 17:39		
1,2-Dichloroethene (Total)	ND ND	ug/L	2.0	0.66	1		08/19/24 17:39		
1,1-Dichloroethene	8.0	ug/L	1.0	0.49	1		08/19/24 17:39		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/19/24 17:39		
trans-1,2-Dichloroethene	ND ND	ug/L	1.0	0.59	1		08/19/24 17:39		
1,2-Dichloropropane	ND ND	ug/L	1.0	0.58	1		08/19/24 17:39		
cis-1,3-Dichloropropene	ND ND	ug/L	1.0	0.30	1		08/19/24 17:39		
trans-1,3-Dichloropropene	ND ND	ug/L	1.0	0.29	1		08/19/24 17:39		
Ethylbenzene	ND ND	ug/L	1.0	0.32	1		08/19/24 17:39		
2-Hexanone	ND ND	ug/L	10.0	0.40	1		08/19/24 17:39		
Isopropylbenzene (Cumene)	ND ND	ug/L	1.0	0.30	1		08/19/24 17:39		
Methylene Chloride	ND ND	ug/L	1.0	0.47	1		08/19/24 17:39		
-	ND ND	•		0.92	1		08/19/24 17:39		
4-Methyl-2-pentanone (MIBK) Methyl-tert-butyl ether	ND ND	ug/L ug/L	10.0 1.0	0.42	1		08/19/24 17:39		
, ,	ND ND	-		2.1	1		08/19/24 17:39		
Naphthalene Styropo	ND ND	ug/L	4.0				08/19/24 17:39		
Styrene		ug/L	1.0	0.33	1				
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	ug/L	1.0	0.47	1		08/19/24 17:39 08/19/24 17:39		
	ND	ug/L	1.0	0.39	1				
Toluene	ND	ug/L	1.0	0.32	1		08/19/24 17:39		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 17:39		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 17:39		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 17:39		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 17:39		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 17:39		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 17:39		
Vinyl chloride	1.4	ug/L	1.0	0.29	1		08/19/24 17:39	75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-14	Lab ID:	30709721003	Collecte	d: 08/13/24	14:25	Received: 08/15/24 09:30 Matrix: Water			
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 17:39	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 17:39	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 17:39	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	94	%.	70-130		1		08/19/24 17:39	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%.	70-130		1		08/19/24 17:39	17060-07-0	
Toluene-d8 (S)	98	%.	70-130		1		08/19/24 17:39	2037-26-5	
Dibromofluoromethane (S)	96	%.	70-130		1		08/19/24 17:39	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-3	Lab ID:	30709721004	Collecte	d: 08/13/24	15:15	Received: 08	3/15/24 09:30 N	/latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
. Gramotoro									
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 15:3	2 67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 15:3		
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 15:3		
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 15:3		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 15:3		
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 15:3		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 15:3		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 15:3		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 15:3		
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 15:3		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 15:3		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 15:3		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 15:3		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 15:3		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 15:3		
1.2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 15:3		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 15:3		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 15:3		
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/19/24 15:3		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 15:3		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 15:3		
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/19/24 15:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/19/24 15:3		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 15:3		
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 15:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/19/24 15:3		
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/19/24 15:3		
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/19/24 15:3		
2-Hexanone	ND	ug/L	10.0	0.58	1		08/19/24 15:3		
sopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/19/24 15:3		
Methylene Chloride	ND	ug/L	1.0	0.92	1		08/19/24 15:3		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/19/24 15:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/19/24 15:3		
Naphthalene	ND	ug/L	4.0	2.1	1		08/19/24 15:3		
Styrene	ND	ug/L	1.0	0.33	1		08/19/24 15:3		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/19/24 15:3		
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/19/24 15:3		
Toluene	ND	ug/L	1.0	0.32	1		08/19/24 15:3		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 15:3		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 15:3		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 15:3		
Trichloroethene	ND ND	ug/L	1.0	0.64	1		08/19/24 15:3		
1,2,4-Trimethylbenzene	ND ND	ug/L	1.0	0.63	1		08/19/24 15:3		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 15:3		
Vinyl chloride	ND ND	ug/L	1.0	0.43	1		08/19/24 15:3		

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-3	Lab ID:	30709721004	Collecte	d: 08/13/24	15:15	Received: 08	3/15/24 09:30 Ma	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 15:32	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 15:32	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 15:32	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	92	%.	70-130		1		08/19/24 15:32	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%.	70-130		1		08/19/24 15:32	17060-07-0	
Toluene-d8 (S)	98	%.	70-130		1		08/19/24 15:32	2037-26-5	
Dibromofluoromethane (S)	97	%.	70-130		1		08/19/24 15:32	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-13	Lab ID:	30709721005	Collecte	d: 08/13/24	15:50	Received: 08	3/15/24 09:30 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical N	Method: EPA 82	260C						
	•	tical Services		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 19:2	1 67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 19:2		
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 19:2	_	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 19:2		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 19:2		
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 19:2		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 19:2		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 19:2		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 19:2		
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 19:2		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 19:2		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 19:2		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 19:2		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 19:2		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 19:2		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 19:2		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 19:2		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 19:2		
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/19/24 19:2		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 19:2		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 19:2		
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/19/24 19:2		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.43	1		08/19/24 19:2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 19:2		
1,2-Dichloropropane	ND	ug/L ug/L	1.0	0.58	1		08/19/24 19:2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/19/24 19:2		
trans-1,3-Dichloropropene	ND	ug/L ug/L	1.0	0.29	1		08/19/24 19:2		
Ethylbenzene	ND	ug/L ug/L	1.0	0.32	1		08/19/24 19:2		
2-Hexanone	ND	ug/L ug/L	10.0	0.40	1		08/19/24 19:2		
Isopropylbenzene (Cumene)	ND ND	ug/L ug/L	1.0	0.30	1		08/19/24 19:2		
Methylene Chloride	ND	ug/L ug/L	1.0	0.47	1		08/19/24 19:2		
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L ug/L	10.0	0.92	1		08/19/24 19:2		
Methyl-tert-butyl ether	ND ND	ug/L ug/L	1.0	0.42	1		08/19/24 19:2		
Naphthalene	ND ND	-		2.1	1				
	ND ND	ug/L	4.0	0.33			08/19/24 19:2		
Styrene		ug/L	1.0		1		08/19/24 19:21		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/19/24 19:2 ² 08/19/24 19:2 ²		
Tetrachloroethene	ND	ug/L	1.0	0.39	1				
Toluene	ND ND	ug/L	1.0	0.32	1		08/19/24 19:2° 08/19/24 19:2°		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1				
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 19:2		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 19:2		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 19:2		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 19:21		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 19:2		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 19:2	I 75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-13	Lab ID:	30709721005	Collecte	d: 08/13/2	15:50	Received: 08	3/15/24 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 19:21	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 19:21	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 19:21	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	92	%.	70-130		1		08/19/24 19:21	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%.	70-130		1		08/19/24 19:21	17060-07-0	
Toluene-d8 (S)	99	%.	70-130		1		08/19/24 19:21	2037-26-5	
Dibromofluoromethane (S)	96	%.	70-130		1		08/19/24 19:21	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-2	Lab ID:	30709721006	Collected: 08/13/24 16:20			Received: 0	atrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytica	Method: EPA 8	260C						
	-	lytical Services		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 17:14	67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 17:14	71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 17:14	_	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 17:14		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 17:14	-	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 17:14		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 17:14		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 17:14		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 17:14		
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 17:14		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 17:14		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 17:14		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 17:14		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 17:14		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 17:14		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 17:14	_	
1.3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 17:14		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 17:14		
1,1-Dichloroethane	3.5	ug/L	1.0	0.50	1		08/19/24 17:14		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 17:14		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 17:14		
1,1-Dichloroethene	3.5	ug/L	1.0	0.49	1		08/19/24 17:14		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/19/24 17:14		
trans-1,2-Dichloroethene	ND ND	ug/L	1.0	0.59	1		08/19/24 17:14		
1,2-Dichloropropane	ND ND	ug/L	1.0	0.58	1		08/19/24 17:14		
cis-1,3-Dichloropropene	ND ND	ug/L	1.0	0.30	1		08/19/24 17:14		
trans-1,3-Dichloropropene	ND ND	ug/L	1.0	0.29	1		08/19/24 17:14		
Ethylbenzene	ND ND	ug/L ug/L	1.0	0.32	1		08/19/24 17:14		
2-Hexanone	ND ND	ug/L	10.0	0.40	1		08/19/24 17:14		
Isopropylbenzene (Cumene)	ND ND	ug/L ug/L	1.0	0.38	1		08/19/24 17:14		
Methylene Chloride	ND ND	ug/L	1.0	0.47	1		08/19/24 17:14		
4-Methyl-2-pentanone (MIBK)	ND ND	•		0.92	1		08/19/24 17:14		
Methyl-tert-butyl ether	ND ND	ug/L ug/L	10.0 1.0	0.42	1		08/19/24 17:14		
, ,	ND ND	-		2.1	1		08/19/24 17:14		
Naphthalene Styropo	ND ND	ug/L	4.0				08/19/24 17:14		
Styrene		ug/L	1.0	0.33	1				
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/19/24 17:14		
Tetrachloroethene Toluene	ND ND	ug/L	1.0 1.0	0.39 0.32	1 1		08/19/24 17:14 08/19/24 17:14		
		ug/L							
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 17:14		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 17:14		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 17:14		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 17:14		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 17:14		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 17:14		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 17:14	75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-2	Lab ID:	Collected: 08/13/24 16:20			Received: 08	3/15/24 09:30 Ma	atrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical I	Method: EPA 8	260C						
	Pace Analy	tical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 17:14	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 17:14	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 17:14	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	92	%.	70-130		1		08/19/24 17:14	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%.	70-130		1		08/19/24 17:14	17060-07-0	
Toluene-d8 (S)	99	%.	70-130		1		08/19/24 17:14	2037-26-5	
Dibromofluoromethane (S)	95	%.	70-130		1		08/19/24 17:14	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: FIELD BLANK	Lab ID:	30709721007	Collected	d: 08/13/24	16:00	Received: 08	3/15/24 09:30 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical	Method: EPA 8	260C						
	•	ytical Services		rg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 13:5	0 67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 13:5	0 71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 13:5	0 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 13:5	0 75-27-4	
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 13:5	0 75-25-2	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 13:5	0 74-83-9	
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 13:5	0	
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 13:5	0 78-93-3	
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 13:5	0 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 13:5		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 13:5		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 13:5		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 13:5		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 13:5		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 13:5		
1.2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 13:5		
1.3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 13:5		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 13:5		
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/19/24 13:5		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 13:5		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 13:5		
1,1-Dichloroethene	ND	ug/L ug/L	1.0	0.49	1		08/19/24 13:5		
cis-1,2-Dichloroethene	ND	ug/L ug/L	1.0	0.43	1		08/19/24 13:5		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 13:5		
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 13:5		
cis-1,3-Dichloropropene	ND	ug/L ug/L	1.0	0.29	1			0 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L ug/L	1.0	0.23	1			0 10061-01-5	
Ethylbenzene	ND	ug/L ug/L	1.0	0.40	1		08/19/24 13:5		
2-Hexanone	ND ND	ug/L ug/L	10.0	0.58	1		08/19/24 13:5		
sopropylbenzene (Cumene)	ND ND	ug/L ug/L	1.0	0.47	1		08/19/24 13:5		
Methylene Chloride	ND ND	ug/L ug/L	1.0	0.47	1		08/19/24 13:5		
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L ug/L	10.0	0.92	1		08/19/24 13:5		
Methyl-tert-butyl ether	ND ND	ug/L ug/L	1.0	0.42	1		08/19/24 13:5		
•		- "					08/19/24 13:5		
Naphthalene Sturana	ND ND	ug/L	4.0 1.0	2.1 0.33	1		08/19/24 13:5		
Styrene 1,1,2,2-Tetrachloroethane		ug/L			1				
	ND	ug/L	1.0	0.47	1		08/19/24 13:5 08/19/24 13:5		
Tetrachloroethene	ND	ug/L	1.0	0.39	1			-	
Toluene	ND	ug/L	1.0	0.32	1		08/19/24 13:5		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 13:5		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 13:5		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 13:5		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 13:5		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 13:5		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 13:5		
√inyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 13:5	0 75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: FIELD BLANK	Lab ID:	Collected: 08/13/24 16:00			Received: 08	3/15/24 09:30 Ma	atrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 13:50	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 13:50	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 13:50	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	92	%.	70-130		1		08/19/24 13:50	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%.	70-130		1		08/19/24 13:50	17060-07-0	
Toluene-d8 (S)	99	%.	70-130		1		08/19/24 13:50	2037-26-5	
Dibromofluoromethane (S)	96	%.	70-130		1		08/19/24 13:50	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-1	Lab ID:	30709721008	Collected: 08/14/24 08:15			Received: 0	8/15/24 09:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytica	Method: EPA 8	260C						
	Pace Ana	lytical Services	- Greensbu	ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 15:57	67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 15:57	71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 15:57		
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 15:57		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 15:57	75-25-2	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 15:57		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 15:57		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 15:57		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 15:57		
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 15:57		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 15:57		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 15:57		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 15:57		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 15:57		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 15:57		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 15:57		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 15:57		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 15:57		
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/19/24 15:57		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 15:57		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 15:57		
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/19/24 15:57		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/19/24 15:57		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 15:57		
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 15:57		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/19/24 15:57		
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/19/24 15:57		
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/19/24 15:57		
2-Hexanone	ND	ug/L	10.0	0.58	1		08/19/24 15:57		
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/19/24 15:57		
Methylene Chloride	ND ND	ug/L	1.0	0.92	1		08/19/24 15:57		
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L	10.0	0.42	1		08/19/24 15:57		
Methyl-tert-butyl ether	ND ND	ug/L ug/L	1.0	0.42	1		08/19/24 15:57		
Naphthalene	ND ND	ug/L	4.0	2.1	1		08/19/24 15:57		
Styrene	ND ND	ug/L ug/L	1.0	0.33	1		08/19/24 15:57		
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	1.0	0.33			08/19/24 15:57		
T, 1,2,2-Tetrachioroethane Tetrachloroethene	ND ND	-			1 1		08/19/24 15:57		
Toluene	ND ND	ug/L ug/L	1.0 1.0	0.39 0.32	1		08/19/24 15:57		
1,2,4-Trichlorobenzene	ND ND	-	4.0	0.32			08/19/24 15:57		
1,2,4-Trichloropenzene 1,1,1-Trichloroethane		ug/L			1				
• •	ND	ug/L	1.0	0.38	1		08/19/24 15:57		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 15:57		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 15:57		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 15:57		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 15:57		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 15:57	75-01-4	

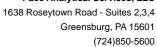
Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-1	Lab ID:	30709721008	Collecte	d: 08/14/24	08:15	Received: 08	3/15/24 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 15:57	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 15:57	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 15:57	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	91	%.	70-130		1		08/19/24 15:57	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%.	70-130		1		08/19/24 15:57	17060-07-0	
Toluene-d8 (S)	98	%.	70-130		1		08/19/24 15:57	2037-26-5	
Dibromofluoromethane (S)	97	%.	70-130		1		08/19/24 15:57	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM


Sample: MW-12	Lab ID:	30709721009	Collecte	d: 08/14/24	1 08:40	Received: 08	3/15/24 09:30 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical	Method: EPA 82	260C						
,	-	lytical Services -		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 16:23	67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 16:23		
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 16:23		
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 16:23		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 16:23		
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 16:23		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 16:23		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 16:23		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 16:23		
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 16:23		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 16:23		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 16:23		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 16:23		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 16:23		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 16:23		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 16:23		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 16:23		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 16:23	-	
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/19/24 16:23		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 16:23		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 16:23		
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/19/24 16:23		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/19/24 16:23		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 16:23		
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 16:23		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/19/24 16:23		
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/19/24 16:23		
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/19/24 16:23		
2-Hexanone	ND	ug/L	10.0	0.58	1		08/19/24 16:23		
sopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/19/24 16:23		
Methylene Chloride	ND	ug/L	1.0	0.92	1		08/19/24 16:23		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/19/24 16:23		
Methyl-tert-butyl ether	ND ND	ug/L	1.0	0.42	1		08/19/24 16:23		
Naphthalene	ND	ug/L	4.0	2.1	1		08/19/24 16:23		
Styrene	ND	ug/L	1.0	0.33	1		08/19/24 16:23		
1,1,2,2-Tetrachloroethane	ND	ug/L ug/L	1.0	0.33	1		08/19/24 16:23		
Tetrachloroethene	ND	ug/L ug/L	1.0		1		08/19/24 16:23		
Toluene	ND ND	ug/L ug/L	1.0	0.39 0.32	1		08/19/24 16:23		
1,2,4-Trichlorobenzene	ND ND	ug/L ug/L	4.0	0.32	1		08/19/24 16:23		
1,2,4-mchlorobenzene 1,1,1-Trichloroethane	ND ND	-	4.0 1.0	0.73	1		08/19/24 16:23		
		ug/L							
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 16:23		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 16:23		
1 2 4 Trimothylhonzona	NID.	110/	4 0	0.00	- 1		00/40/04 46:00	05 63 6	
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND ND	ug/L ug/L	1.0 1.0	0.63 0.45	1 1		08/19/24 16:23 08/19/24 16:23		

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-12	Lab ID:	30709721009	Collecte	d: 08/14/24	1 08:40	Received: 08	3/15/24 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Analy	ytical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 16:23	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 16:23	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 16:23	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	91	%.	70-130		1		08/19/24 16:23	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%.	70-130		1		08/19/24 16:23	17060-07-0	
Toluene-d8 (S)	97	%.	70-130		1		08/19/24 16:23	2037-26-5	
Dibromofluoromethane (S)	96	%.	70-130		1		08/19/24 16:23	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-12D	Lab ID:	30709721010	Collected	d: 08/14/24	09:15	Received: 08	3/15/24 09:30	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical	Method: EPA 8	260C						
	•	ytical Services		rg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 18:3	80 67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 18:3	30 71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 18:3	30 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 18:3	30 75-27-4	
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 18:3	30 75-25-2	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 18:3	30 74-83-9	
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 18:3	30	
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 18:3	30 78-93-3	
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 18:3	30 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 18:3		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 18:3		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 18:3		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 18:3		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 18:3		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 18:3		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 18:3		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 18:3		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 18:3		
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/19/24 18:3		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 18:3		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 18:3		
1,1-Dichloroethene	ND	ug/L	1.0	0.49	1		08/19/24 18:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.43	1		08/19/24 18:3		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 18:3		
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 18:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1			30 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.23	1			30 10061-01-5	
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/19/24 18:3		
2-Hexanone	ND	ug/L	10.0	0.58	1		08/19/24 18:3		
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/19/24 18:3		
Methylene Chloride	ND	ug/L	1.0	0.92	1		08/19/24 18:3		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/19/24 18:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.42	1			30 1634-04-4	
Naphthalene	ND ND		4.0	2.1	1		08/19/24 18:3		
Styrene	ND ND	ug/L ug/L	1.0	0.33	1		08/19/24 18:3		
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	1.0	0.33	1		08/19/24 18:3		
Tetrachloroethene	ND ND	-	1.0	0.47	1		08/19/24 18:3		
		ug/L							
Toluene 1,2,4-Trichlorobenzene	ND ND	ug/L ug/L	1.0 4.0	0.32 0.73	1 1		08/19/24 18:3 08/19/24 18:3		
		Ū							
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 18:3		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 18:3		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 18:3		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 18:3		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 18:3		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 18:3	su /5-01-4	

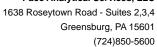
Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-12D	Lab ID:	30709721010	Collecte	d: 08/14/24	1 09:15	Received: 08/15/24 09:30 Matrix: Wa			
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical N	Method: EPA 8	260C						
	Pace Analy	tical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 18:30	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 18:30	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 18:30	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	92	%.	70-130		1		08/19/24 18:30	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%.	70-130		1		08/19/24 18:30	17060-07-0	
Toluene-d8 (S)	100	%.	70-130		1		08/19/24 18:30	2037-26-5	
Dibromofluoromethane (S)	97	%.	70-130		1		08/19/24 18:30	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM


Sample: MW-9	Lab ID:	30709721011	Collecte	d: 08/14/2	4 09:50	Received: 08	8/15/24 09:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytica	Method: EPA 8	260C						
	-	lytical Services		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 18:56	67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 18:56	71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 18:56	-	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 18:56		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 18:56		
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 18:56		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 18:56		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 18:56		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 18:56		
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 18:56		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 18:56		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 18:56		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 18:56		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 18:56		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 18:56		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 18:56		
1,3-Dichlorobenzene	ND ND	ug/L	1.0	0.45	1		08/19/24 18:56		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 18:56		
1,1-Dichloroethane	46.9	ug/L	1.0	0.50	1		08/19/24 18:56		
1,2-Dichloroethane	1.6	ug/L	1.0	0.33	1		08/19/24 18:56		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 18:56		
1,1-Dichloroethene	51.0	ug/L	1.0	0.49	1		08/19/24 18:56		
cis-1,2-Dichloroethene	ND	ug/L ug/L	1.0	0.49	1		08/19/24 18:56		
trans-1,2-Dichloroethene	ND ND	ug/L ug/L	1.0	0.59	1		08/19/24 18:56		
1,2-Dichloropropane	ND ND	ug/L ug/L	1.0	0.58	1		08/19/24 18:56		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	1.0	0.38	1		08/19/24 18:56		
· ·	ND ND	-		0.29	1		08/19/24 18:56		
trans-1,3-Dichloropropene Ethylbenzene	ND ND	ug/L ug/L	1.0 1.0	0.32	1		08/19/24 18:56		
2-Hexanone	ND ND	-		0.40	1		08/19/24 18:56		
	ND ND	ug/L	10.0 1.0	0.36	1		08/19/24 18:56		
Isopropylbenzene (Cumene)		ug/L							
Methylene Chloride	ND	ug/L	1.0	0.92	1		08/19/24 18:56		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1 1		08/19/24 18:56		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25			08/19/24 18:56		
Naphthalene	ND	ug/L	4.0	2.1	1		08/19/24 18:56		
Styrene	ND	ug/L	1.0	0.33	1		08/19/24 18:56		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/19/24 18:56		
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/19/24 18:56		
Toluene	ND	ug/L	1.0	0.32	1		08/19/24 18:56		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 18:56		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 18:56		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 18:56		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 18:56		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 18:56		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 18:56		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 18:56	75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-9	Lab ID:	30709721011	Collecte	d: 08/14/24	1 09:50	Received: 08	3/15/24 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical I	Method: EPA 8	260C						
	Pace Analy	tical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 18:56	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 18:56	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 18:56	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	89	%.	70-130		1		08/19/24 18:56	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%.	70-130		1		08/19/24 18:56	17060-07-0	
Toluene-d8 (S)	100	%.	70-130		1		08/19/24 18:56	2037-26-5	
Dibromofluoromethane (S)	96	%.	70-130		1		08/19/24 18:56	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-10	Lab ID:	30709721012	Collecte	d: 08/14/2	10:15	Received: 0	8/15/24 09:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytica	Method: EPA 8	260C						
	-	lytical Services		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 18:04	67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 18:04	71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 18:04		
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 18:04		
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 18:04	75-25-2	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 18:04		
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 18:04		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 18:04		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 18:04	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 18:04		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 18:04		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 18:04		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 18:04		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 18:04		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 18:04		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 18:04		
1.3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 18:04		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 18:04		
1,1-Dichloroethane	56.8	ug/L	1.0	0.50	1		08/19/24 18:04		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 18:04		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 18:04		
1,1-Dichloroethene	7.7	ug/L	1.0	0.49	1		08/19/24 18:04		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/19/24 18:04		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 18:04		
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 18:04		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/19/24 18:04		
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/19/24 18:04		
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/19/24 18:04		
2-Hexanone	ND	ug/L	10.0	0.58	1		08/19/24 18:04		
Isopropylbenzene (Cumene)	ND ND	ug/L	1.0	0.47	1		08/19/24 18:04		
Methylene Chloride	ND ND	ug/L	1.0	0.92	1		08/19/24 18:04		
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L	10.0	0.42	1		08/19/24 18:04		
Methyl-tert-butyl ether	ND ND	ug/L	1.0	0.42	1		08/19/24 18:04		
Naphthalene	ND ND	ug/L	4.0	2.1	1		08/19/24 18:04		
Styrene	ND ND	ug/L	1.0	0.33	1		08/19/24 18:04		
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	1.0	0.33	1		08/19/24 18:04		
T, 1,2,2- retrachioroethane Tetrachloroethene	ND ND	_			1		08/19/24 18:04		
Tetrachioroethene Toluene	ND ND	ug/L ug/L	1.0 1.0	0.39 0.32	1		08/19/24 18:04		
1,2,4-Trichlorobenzene	ND ND	_	4.0	0.32	1		08/19/24 18:04		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		ug/L							
• •	ND	ug/L	1.0	0.38	1		08/19/24 18:04		
1,1,2-Trichloroethane	1.9	ug/L	1.0	0.33	1		08/19/24 18:04		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 18:04		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 18:04		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 18:04		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 18:04	75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-10	Lab ID:	30709721012	Collecte	d: 08/14/24	10:15	Received: 08	Received: 08/15/24 09:30 Matrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 18:04	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 18:04	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 18:04	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	92	%.	70-130		1		08/19/24 18:04	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%.	70-130		1		08/19/24 18:04	17060-07-0	
Toluene-d8 (S)	99	%.	70-130		1		08/19/24 18:04	2037-26-5	
Dibromofluoromethane (S)	96	%.	70-130		1		08/19/24 18:04	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-8	Lab ID:	30709721013	Collecte	d: 08/14/2	1 10:40	Received: 0	8/15/24 09:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytica	Method: EPA 8	260C						
	-	lytical Services		ırg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 16:48	67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 16:48	71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 16:48	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 16:48	75-27-4	
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 16:48	75-25-2	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 16:48	74-83-9	
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 16:48	1	
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 16:48		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 16:48	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 16:48		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 16:48		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 16:48		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 16:48		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 16:48		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 16:48		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 16:48		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 16:48		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 16:48		
1,1-Dichloroethane	3.6	ug/L	1.0	0.50	1		08/19/24 16:48		
1,2-Dichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 16:48		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	0.66	1		08/19/24 16:48		
1,1-Dichloroethene	10.7	ug/L	1.0	0.49	1		08/19/24 16:48		
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		08/19/24 16:48		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59	1		08/19/24 16:48		
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 16:48		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1		08/19/24 16:48		
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1		08/19/24 16:48		
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/19/24 16:48		
2-Hexanone	ND	ug/L	10.0	0.58	1		08/19/24 16:48		
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/19/24 16:48		
Methylene Chloride	ND ND	ug/L	1.0	0.92	1		08/19/24 16:48		
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L	10.0	0.42	1		08/19/24 16:48		
Methyl-tert-butyl ether	ND ND	ug/L	1.0	0.42	1		08/19/24 16:48		
Naphthalene	ND ND	ug/L	4.0	2.1	1		08/19/24 16:48		
Styrene	ND ND	ug/L	1.0	0.33	1		08/19/24 16:48		
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	1.0	0.33			08/19/24 16:48		
Tetrachloroethene	ND ND	_			1 1		08/19/24 16:48		
Toluene	ND ND	ug/L	1.0 1.0	0.39 0.32	1		08/19/24 16:48		
1,2,4-Trichlorobenzene	ND ND	ug/L	4.0	0.32	1		08/19/24 16:48		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		ug/L							
• •	ND	ug/L	1.0	0.38	1		08/19/24 16:48		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 16:48		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 16:48		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 16:48		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 16:48		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 16:48	/5-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: MW-8	Lab ID:	30709721013	Collecte	d: 08/14/24	10:40	Received: 08/15/24 09:30 Matrix: Water			
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
	Pace Anal	ytical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 16:48	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 16:48	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 16:48	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	91	%.	70-130		1		08/19/24 16:48	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%.	70-130		1		08/19/24 16:48	17060-07-0	
Toluene-d8 (S)	99	%.	70-130		1		08/19/24 16:48	2037-26-5	
Dibromofluoromethane (S)	97	%.	70-130		1		08/19/24 16:48	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: FIELD BLANK 02	Lab ID:	30709721014	Collected	d: 08/14/24	11:00	Received: 08	3/15/24 09:30 N	//atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical	Method: EPA 8	260C						
	•	ytical Services		rg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 14:10	6 67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 14:10	6 71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 14:10	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 14:10	6 75-27-4	
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 14:10	6 75-25-2	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 14:10	6 74-83-9	
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 14:10	6	
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 14:10	6 78-93-3	
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 14:1	6 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 14:10		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 14:10		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 14:10		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 14:10		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 14:10		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 14:10		
I.2-Dichlorobenzene	ND	ug/L	1.0	0.38	1		08/19/24 14:10	-	
1,3-Dichlorobenzene	ND	ug/L	1.0	0.45	1		08/19/24 14:10		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.48	1		08/19/24 14:10		
1,1-Dichloroethane	ND	ug/L	1.0	0.50	1		08/19/24 14:10		
1,2-Dichloroethane	ND	ug/L ug/L	1.0	0.33	1		08/19/24 14:10		
1,2-Dichloroethene (Total)	ND	ug/L ug/L	2.0	0.66	1		08/19/24 14:10		
1,1-Dichloroethene	ND	ug/L ug/L	1.0	0.49	1		08/19/24 14:10		
cis-1,2-Dichloroethene	ND	ug/L ug/L	1.0	0.49	1		08/19/24 14:10		
trans-1,2-Dichloroethene	ND ND	ug/L ug/L	1.0	0.59	1		08/19/24 14:10		
1,2-Dichloropropane	ND ND	ug/L ug/L	1.0	0.58	1		08/19/24 14:10		
cis-1,3-Dichloropropene	ND	ug/L ug/L	1.0	0.30	1			6 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L ug/L	1.0	0.29	1			6 10061-01-5	
Ethylbenzene	ND ND	ug/L ug/L	1.0	0.32	1		08/19/24 14:10		
2-Hexanone	ND	ug/L ug/L	10.0	0.40	1		08/19/24 14:10		
sopropylbenzene (Cumene)	ND	ug/L ug/L	1.0	0.30	1		08/19/24 14:10		
Methylene Chloride	ND ND	ug/L ug/L	1.0	0.47	1		08/19/24 14:10		
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L ug/L	10.0	0.92	1		08/19/24 14:10		
Methyl-tert-butyl ether	ND ND	ug/L ug/L	1.0	0.42	1		08/19/24 14:10		
•		• "							
Naphthalene Sturana	ND ND	ug/L ug/L	4.0 1.0	2.1 0.33	1		08/19/24 14:10 08/19/24 14:10		
Styrene					1				
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	ug/L	1.0	0.47	1		08/19/24 14:10 08/19/24 14:10		
	ND	ug/L	1.0	0.39	1				
Toluene	ND	ug/L	1.0	0.32	1		08/19/24 14:10		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 14:10		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 14:10		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 14:10		
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 14:10		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 14:10		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 14:10		
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 14:1	6 75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: FIELD BLANK 02	Lab ID:	30709721014	Collecte	d: 08/14/24	11:00	Received: 08	3/15/24 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical I	Method: EPA 8	260C						
	Pace Analy	tical Services	- Greensbu	ırg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 14:16	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 14:16	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 14:16	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	94	%.	70-130		1		08/19/24 14:16	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%.	70-130		1		08/19/24 14:16	17060-07-0	
Toluene-d8 (S)	98	%.	70-130		1		08/19/24 14:16	2037-26-5	
Dibromofluoromethane (S)	97	%.	70-130		1		08/19/24 14:16	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: TRIP BLANK	Lab ID:	30709721015	Collected	d: 08/14/24	1 00:00	Received: 08	3/15/24 09:30 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical	Method: EPA 8	260C						
	•	ytical Services		rg					
Acetone	ND	ug/L	50.0	11.4	1		08/19/24 12:5	9 67-64-1	1c
Benzene	ND	ug/L	1.0	0.34	1		08/19/24 12:5	9 71-43-2	
Bromochloromethane	ND	ug/L	1.0	0.48	1		08/19/24 12:5	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.35	1		08/19/24 12:5	9 75-27-4	
Bromoform	ND	ug/L	4.0	1.5	1		08/19/24 12:5	9 75-25-2	
Bromomethane	ND	ug/L	10.0	2.5	1		08/19/24 12:5	9 74-83-9	
TOTAL BTEX	ND	ug/L	6.0	2.4	1		08/19/24 12:5		
2-Butanone (MEK)	ND	ug/L	10.0	1.5	1		08/19/24 12:5		
Carbon disulfide	ND	ug/L	1.0	0.32	1		08/19/24 12:5		
Carbon tetrachloride	ND	ug/L	1.0	0.44	1		08/19/24 12:5		
Chlorobenzene	ND	ug/L	1.0	0.26	1		08/19/24 12:5		
Chloroethane	ND	ug/L	4.0	0.64	1		08/19/24 12:5		
Chloroform	ND	ug/L	1.0	0.93	1		08/19/24 12:5		
Chloromethane	ND	ug/L	10.0	2.8	1		08/19/24 12:5		
Dibromochloromethane	ND	ug/L	1.0	0.43	1		08/19/24 12:5		
1.2-Dichlorobenzene	ND	ug/L	1.0	0.43	1		08/19/24 12:5		
1,3-Dichlorobenzene	ND ND	ug/L ug/L	1.0	0.36	1		08/19/24 12:5		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	1.0	0.43	1		08/19/24 12:5		
1,4-Dichloroethane	ND ND	ug/L ug/L	1.0	0.48	1		08/19/24 12:5		
	ND ND	_	1.0	0.33	1		08/19/24 12:5		
1,2-Dichloroethane 1,2-Dichloroethene (Total)	ND ND	ug/L	2.0	0.55	1		08/19/24 12:5		
1,1-Dichloroethene	ND ND	ug/L	1.0	0.66	1		08/19/24 12:5		
•	ND ND	ug/L	1.0	0.49	1		08/19/24 12:5		
cis-1,2-Dichloroethene		ug/L			1				
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.59			08/19/24 12:5		
1,2-Dichloropropane	ND	ug/L	1.0	0.58	1		08/19/24 12:5		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.29	1			59 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.32	1			59 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	0.40	1		08/19/24 12:5		
2-Hexanone	ND	ug/L	10.0	0.58	1		08/19/24 12:5		
sopropylbenzene (Cumene)	ND	ug/L	1.0	0.47	1		08/19/24 12:5		
Methylene Chloride	ND	ug/L	1.0	0.92	1		08/19/24 12:5		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	0.42	1		08/19/24 12:5		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.25	1		08/19/24 12:5		
Naphthalene	ND	ug/L	4.0	2.1	1		08/19/24 12:5		
Styrene	ND	ug/L	1.0	0.33	1		08/19/24 12:5		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.47	1		08/19/24 12:5		
Tetrachloroethene	ND	ug/L	1.0	0.39	1		08/19/24 12:5	-	
Toluene	ND	ug/L	1.0	0.32	1		08/19/24 12:5		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	0.73	1		08/19/24 12:5		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.38	1		08/19/24 12:5		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.33	1		08/19/24 12:5	9 79-00-5	
Trichloroethene	ND	ug/L	1.0	0.64	1		08/19/24 12:5		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	0.63	1		08/19/24 12:5	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	0.45	1		08/19/24 12:5	9 108-67-8	
Vinyl chloride	ND	ug/L	1.0	0.29	1		08/19/24 12:5	9 75-01-4	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Sample: TRIP BLANK	Lab ID:	30709721015	Collecte	d: 08/14/24	1 00:00	Received: 08	8/15/24 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical N	Method: EPA 8	260C						
	Pace Analy	tical Services	- Greensbu	irg					
Xylene (Total)	ND	ug/L	3.0	1.4	1		08/19/24 12:59	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.94	1		08/19/24 12:59	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.41	1		08/19/24 12:59	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	90	%.	70-130		1		08/19/24 12:59	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%.	70-130		1		08/19/24 12:59	17060-07-0	
Toluene-d8 (S)	99	%.	70-130		1		08/19/24 12:59	2037-26-5	
Dibromofluoromethane (S)	95	%.	70-130		1		08/19/24 12:59	1868-53-7	

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

QC Batch: 690273 Analysis Method: EPA 8260C
QC Batch Method: EPA 8260C Analysis Description: 8260C MSV

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30709721001, 30709721002, 30709721003, 30709721004, 30709721005, 30709721006, 30709721007,

30709721015

METHOD BLANK: 3361329 Matrix: Water

Associated Lab Samples: 30709721001, 30709721002, 30709721003, 30709721004, 30709721005, 30709721006, 30709721007,

Blank

30709721008, 30709721009, 30709721010, 30709721011, 30709721012, 30709721013, 30709721014,

Reporting

30709721015

		DIAHK	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND ND	1.0	0.38	08/19/24 12:08	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	0.47	08/19/24 12:08	
1,1,2-Trichloroethane	ug/L	ND	1.0	0.33	08/19/24 12:08	
1,1-Dichloroethane	ug/L	ND	1.0	0.50	08/19/24 12:08	
1,1-Dichloroethene	ug/L	ND	1.0	0.49	08/19/24 12:08	
1,2,4-Trichlorobenzene	ug/L	ND	4.0	0.73	08/19/24 12:08	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	0.63	08/19/24 12:08	
1,2-Dichlorobenzene	ug/L	ND	1.0	0.38	08/19/24 12:08	
1,2-Dichloroethane	ug/L	ND	1.0	0.33	08/19/24 12:08	
1,2-Dichloroethene (Total)	ug/L	ND	2.0	0.66	08/19/24 12:08	
1,2-Dichloropropane	ug/L	ND	1.0	0.58	08/19/24 12:08	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	0.45	08/19/24 12:08	
1,3-Dichlorobenzene	ug/L	ND	1.0	0.45	08/19/24 12:08	
1,4-Dichlorobenzene	ug/L	ND	1.0	0.48	08/19/24 12:08	
2-Butanone (MEK)	ug/L	ND	10.0	1.5	08/19/24 12:08	
2-Hexanone	ug/L	ND	10.0	0.58	08/19/24 12:08	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	0.42	08/19/24 12:08	
Acetone	ug/L	ND	50.0	11.4	08/19/24 12:08	1c
Benzene	ug/L	ND	1.0	0.34	08/19/24 12:08	
Bromochloromethane	ug/L	ND	1.0	0.48	08/19/24 12:08	
Bromodichloromethane	ug/L	ND	1.0	0.35	08/19/24 12:08	
Bromoform	ug/L	ND	4.0	1.5	08/19/24 12:08	
Bromomethane	ug/L	ND	10.0	2.5	08/19/24 12:08	
Carbon disulfide	ug/L	ND	1.0	0.32	08/19/24 12:08	
Carbon tetrachloride	ug/L	ND	1.0	0.44	08/19/24 12:08	
Chlorobenzene	ug/L	ND	1.0	0.26	08/19/24 12:08	
Chloroethane	ug/L	ND	4.0	0.64	08/19/24 12:08	
Chloroform	ug/L	ND	1.0	0.93	08/19/24 12:08	
Chloromethane	ug/L	ND	10.0	2.8	08/19/24 12:08	
cis-1,2-Dichloroethene	ug/L	ND	1.0	0.38	08/19/24 12:08	
cis-1,3-Dichloropropene	ug/L	ND	1.0	0.29	08/19/24 12:08	
Dibromochloromethane	ug/L	ND	1.0	0.43	08/19/24 12:08	
Ethylbenzene	ug/L	ND	1.0	0.40	08/19/24 12:08	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	0.47	08/19/24 12:08	
m&p-Xylene	ug/L	ND	2.0	0.94	08/19/24 12:08	
Methyl-tert-butyl ether	ug/L	ND	1.0	0.25	08/19/24 12:08	
Methylene Chloride	ug/L	ND	1.0	0.92	08/19/24 12:08	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

METHOD BLANK: 3361329 Matrix: Water

Associated Lab Samples: 30709721001, 30709721002, 30709721003, 30709721004, 30709721005, 30709721006, 30709721007,

30709721008, 30709721009, 30709721010, 30709721011, 30709721012, 30709721013, 30709721014,

30709721015

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Naphthalene	ug/L	ND	4.0	2.1	08/19/24 12:08	
o-Xylene	ug/L	ND	1.0	0.41	08/19/24 12:08	
Styrene	ug/L	ND	1.0	0.33	08/19/24 12:08	
Tetrachloroethene	ug/L	ND	1.0	0.39	08/19/24 12:08	
Toluene	ug/L	ND	1.0	0.32	08/19/24 12:08	
TOTAL BTEX	ug/L	ND	6.0	2.4	08/19/24 12:08	
trans-1,2-Dichloroethene	ug/L	ND	1.0	0.59	08/19/24 12:08	
trans-1,3-Dichloropropene	ug/L	ND	1.0	0.32	08/19/24 12:08	
Trichloroethene	ug/L	ND	1.0	0.64	08/19/24 12:08	
Vinyl chloride	ug/L	ND	1.0	0.29	08/19/24 12:08	
Xylene (Total)	ug/L	ND	3.0	1.4	08/19/24 12:08	
1,2-Dichloroethane-d4 (S)	%.	99	70-130		08/19/24 12:08	
4-Bromofluorobenzene (S)	%.	93	70-130		08/19/24 12:08	
Dibromofluoromethane (S)	%.	95	70-130		08/19/24 12:08	
Toluene-d8 (S)	%.	101	70-130		08/19/24 12:08	

ABORATORY CONTROL SAMPLE	: 3361330					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
,1,1-Trichloroethane	ug/L	20	18.3	91	70-130	
,1,2,2-Tetrachloroethane	ug/L	20	17.6	88	70-130	
,1,2-Trichloroethane	ug/L	20	18.4	92	70-130	
,1-Dichloroethane	ug/L	20	17.9	90	70-130	
,1-Dichloroethene	ug/L	20	17.8	89	45-130	
,2,4-Trichlorobenzene	ug/L	20	19.8	99	61-151	
,2,4-Trimethylbenzene	ug/L	20	21.5	108	70-130	
,2-Dichlorobenzene	ug/L	20	19.2	96	70-130	
,2-Dichloroethane	ug/L	20	18.2	91	64-130	
,2-Dichloroethene (Total)	ug/L	40	36.3	91	70-130	
,2-Dichloropropane	ug/L	20	18.3	91	70-130	
,3,5-Trimethylbenzene	ug/L	20	22.0	110	70-130	
,3-Dichlorobenzene	ug/L	20	19.2	96	70-130	
,4-Dichlorobenzene	ug/L	20	20.3	101	70-130	
-Butanone (MEK)	ug/L	20	19.0	95	55-143	
-Hexanone	ug/L	20	16.9	84	56-138	
-Methyl-2-pentanone (MIBK)	ug/L	20	18.1	91	62-136	
cetone	ug/L	20	20.6J	103	10-175 1	С
Benzene	ug/L	20	18.2	91	70-130	
Bromochloromethane	ug/L	20	16.9	84	70-130	
Bromodichloromethane	ug/L	20	17.2	86	70-130	
Bromoform	ug/L	20	15.4	77	58-130	
Bromomethane	ug/L	20	20.2	101	10-151	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

ABORATORY CONTROL SAMPLE:	3361330	Spike	LCS	LCS	% Rec	
Parameter	Units	Spike Conc.	Result	% Rec	% Rec	Qualifiers
arbon disulfide	ug/L		11.6	58	46-156	
arbon tetrachloride	ug/L	20	17.3	86	70-130	
hlorobenzene	ug/L	20	19.4	97	70-130	
hloroethane	ug/L	20	22.0	110	36-168	
nloroform	ug/L	20	18.2	91	70-130	
hloromethane	ug/L	20	18.1	91	43-134	
s-1,2-Dichloroethene	ug/L	20	18.5	93	70-130	
s-1,3-Dichloropropene	ug/L	20	17.3	86	70-130	
promochloromethane	ug/L	20	16.7	84	70-130	
hylbenzene	ug/L	20	19.3	96	63-135	
propylbenzene (Cumene)	ug/L	20	21.8	109	70-130	
&p-Xylene	ug/L	40	41.3	103	70-130	
ethyl-tert-butyl ether	ug/L	20	17.2	86	63-130	
ethylene Chloride	ug/L	20	17.3	87	70-130	
ohthalene	ug/L	20	20.3	102	30-166	
ylene	ug/L	20	20.1	100	70-130	
rene	ug/L	20	19.4	97	70-130	
trachloroethene	ug/L	20	19.1	95	70-130	
uene	ug/L	20	19.0	95	70-130	
TAL BTEX	ug/L	120	118	98	70-130	
ns-1,2-Dichloroethene	ug/L	20	17.8	89	70-130	
ans-1,3-Dichloropropene	ug/L	20	17.4	87	70-130	
ichloroethene	ug/L	20	19.0	95	70-130	
nyl chloride	ug/L	20	20.9	104	56-132	
ene (Total)	ug/L	60	61.3	102	70-130	
-Dichloroethane-d4 (S)	%.			104	70-130	
romofluorobenzene (S)	%.			94	70-130	
romofluoromethane (S)	%.			96	70-130	
luene-d8 (S)	%.			99	70-130	

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 3361	331 MS	MSD	3361332							
	3	80709721001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	20	20	18.6	23.9	90	117	34-164	25	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	18.0	24.2	90	121	49-142	29	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	19.4	24.8	97	124	46-143	24	30	
1,1-Dichloroethane	ug/L	ND	20	20	18.9	24.0	93	118	10-130	24	30	
1,1-Dichloroethene	ug/L	ND	20	20	15.7	21.6	78	108	30-132	32	30	R1
1,2,4-Trichlorobenzene	ug/L	ND	20	20	14.6	21.2	72	105	36-130	37	30	R1
1,2,4-Trimethylbenzene	ug/L	ND	20	20	18.9	25.6	94	128	45-139	30	30	
1,2-Dichlorobenzene	ug/L	ND	20	20	17.5	23.6	87	118	50-130	30	30	
1,2-Dichloroethane	ug/L	ND	20	20	19.8	25.2	99	125	49-135	24	30	
1,2-Dichloroethene (Total)	ug/L	ND	40	40	35.2	45.0	88	113	10-175	24	30	
1,2-Dichloropropane	ug/L	ND	20	20	19.1	24.6	95	123	44-149	26	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

MATRIX SPIKE & MATRIX SP	PIKE DUPI	LICATE: 3361			3361332							
			MS	MSD								
Parameter	Units	30709721001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,3,5-Trimethylbenzene	ug/L	ND	20	20	18.8	25.1	94	125	45-134	29	30	
1,3-Dichlorobenzene	ug/L	ND	20	20	16.1	22.4	80	112	54-130	33		R1
1,4-Dichlorobenzene	ug/L	ND	20	20	16.5	22.9	82	114	49-130	32		R1
2-Butanone (MEK)	ug/L	ND	20	20	25.1	31.2	126	156	38-156	22		
2-Hexanone	ug/L	ND	20	20	22.0	26.7	110	133	39-162	19		
4-Methyl-2-pentanone (MIBK)	ug/L	ND	20	20	23.4	28.3	117	142	41-159	19		
Acetone	ug/L	ND	20	20	23.5J	28.7J	114	140	27-130		30	1c,MF
Benzene	ug/L	ND	20	20	18.3	23.3	91	117	17-162	24	30	•
Bromochloromethane	ug/L	ND	20	20	15.5	20.0	77	100	44-143	26	30	
Bromodichloromethane	ug/L	ND	20	20	17.5	22.2	87	111	50-139	24	30	
Bromoform	ug/L	ND	20	20	11.4	15.0	57	75	36-134	27	30	
Bromomethane	ug/L	ND	20	20	17.6	20.2	85	98	10-130	13	30	
Carbon disulfide	ug/L	ND	20	20	15.0	20.8	74	103	59-138	33	30	R1
Carbon tetrachloride	ug/L	ND	20	20	15.2	19.8	76	99	46-140	26	30	
Chlorobenzene	ug/L	ND	20	20	18.2	23.7	91	119	52-133	26	30	
Chloroethane	ug/L	ND	20	20	15.7	18.1	78	91	15-175	14	30	
Chloroform	ug/L	ND	20	20	18.9	24.1	95	120	46-131	24	30	
Chloromethane	ug/L	ND	20	20	22.8	26.6	114	133	28-152	15	30	
cis-1,2-Dichloroethene	ug/L	ND	20	20	19.1	23.9	96	120	10-175	22	30	
cis-1,3-Dichloropropene	ug/L	ND	20	20	17.4	22.2	87	111	42-137	24	30	
Dibromochloromethane	ug/L	ND	20	20	15.2	19.9	76	100	42-132	27	30	
Ethylbenzene	ug/L	ND	20	20	17.3	22.9	86	115	51-132	28	30	
sopropylbenzene (Cumene)	ug/L	ND	20	20	18.8	25.0	94	125	54-147	28	30	
m&p-Xylene	ug/L	ND	40	40	35.9	47.8	90	119	51-130	28	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	23.3	27.8	116	139	24-144	18	30	
Methylene Chloride	ug/L	ND	20	20	15.0	17.8	73	87	35-150	17	30	
Naphthalene	ug/L	ND	20	20	20.5	26.8	101	133	13-168	27	30	
o-Xylene	ug/L	ND	20	20	19.2	25.0	96	125	51-130	26	30	
Styrene	ug/L	ND	20	20	18.4	24.3	92	121	48-138	27	30	
Tetrachloroethene	ug/L	ND	20	20	14.4	20.4	72	102	10-175	35	30	R1
Toluene	ug/L	ND	20	20	18.0	23.5	90	117	52-131	26	30	
FOTAL BTEX	ug/L	ND	120	120	109	142	90	119	50-149	27	30	
rans-1,2-Dichloroethene	ug/L	ND	20	20	16.1	21.1	81	105	40-135	27	30	
rans-1,3-Dichloropropene	ug/L	ND	20	20	16.5	21.8	83	109	45-132	27	30	
richloroethene	ug/L	ND	20	20	17.0	22.8	85	114	10-175	29	30	
/inyl chloride	ug/L	ND	20	20	16.2	25.4	81	127	10-175	44	30	R1
Kylene (Total)	ug/L	ND	60	60	55.0	72.7	92	121	51-130	28	30	
1,2-Dichloroethane-d4 (S)	%.						105	99	70-130			
1-Bromofluorobenzene (S)	%.						91	92	70-130			
Dibromofluoromethane (S)	%.						97	97	70-130			
oluene-d8 (S)	%.						97	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: VOC's
Pace Project No.: 30709721

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Sample: 30709721001

[1] Residual Chlorine was present in the VOA vial used for analysis.

Sample: 30709721009

[1] Residual Chlorine was present in the VOA vial used for analysis.

Sample: 3361331

[1] Residual Chlorine was present in the VOA vial used for analysis.

Sample: 3361332

[1] Residual Chlorine was present in the VOA vial used for analysis.

ANALYTE QUALIFIERS

Date: 08/22/2024 08:50 AM

1c The analyte did not meet the method recommended minimum RF.

MH Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased

high.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: VOC's
Pace Project No.: 30709721

Date: 08/22/2024 08:50 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30709721001	MW-11	EPA 8260C	690273		
30709721002	MW-7	EPA 8260C	690273		
30709721003	MW-14	EPA 8260C	690273		
30709721004	MW-3	EPA 8260C	690273		
30709721005	MW-13	EPA 8260C	690273		
30709721006	MW-2	EPA 8260C	690273		
30709721007	FIELD BLANK	EPA 8260C	690273		
30709721008	MW-1	EPA 8260C	690273		
30709721009	MW-12	EPA 8260C	690273		
30709721010	MW-12D	EPA 8260C	690273		
30709721011	MW-9	EPA 8260C	690273		
30709721012	MW-10	EPA 8260C	690273		
30709721013	MW-8	EPA 8260C	690273		
30709721014	FIELD BLANK 02	EPA 8260C	690273		
30709721015	TRIP BLANK	EPA 8260C	690273		

135mL, (5) 100mL, (6) 500mL, (4) TerraCore, (9) 90mL, (10) Other *** Preservative Types; (1) None, (2) HNO3, (3) H350A, (4) HCI, (5) Na0H, (6) Zn Acetate, (7) Na4850A, (6) Sod. Thiosulate, (9) Ascorbic Acid, (10) MARSOA, (8) Sod. Thiosulate, (9) Ascorbic Acid, (10) MARSOA, (9) Sod. Thiosulate, (9) Ascorbic Acid, (10) Austin Horn AcctNum / Client ID: Table #: Profile / Template: Thiosulation Acid Acctor (10) Thiosulation Acid Acctor (10) Thiosulation Acid Acctor (10) Thiosulation Acid Acctor (10) Thiosulation Acctor (1
DI PI
ALTAT Analysis:
Requested: NOR MP
Requested: NORMGLTATT Requested: NORMGLTATT A * Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Waste Water (WW), Product (P),

Subering a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace* Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/

D

*** Preservative Types: (1) None, (2) HNO3, (3) H2SO4, (4) HCI, (5) NAOH, (6) Zn Acetate, (7) NAHSO4, (8) Sod. Thiosulfate, (9) Ascerbic Acid, (10) MeOH, (11) Other **Container Size: (1) 11, (2) 500ml, (3) 250ml, (4) 125ml, (5) 100ml, (6) 40ml, vial, (7) EnCore, (8) TerraCore, (9) 90ml, (10) Other n-conformance identified for On Ice: ENV-FRM-CORQ-0019_v02_110123@ [] FedEX [] UPS [] Other Delivered by: [] In- Person [] Courier Sample Comment Corrected Temp. (*C) Prelog / Bottle Ord. ID: 1182073 AcctNum / Client ID: Profile / Template: Due Date: 08/29/24 Justin Horn Proj. Mgr; Table #: 1293 0#:30709721 Obs. Temp. (°C) Page: CLIENT: BUREAUVERITA Correction Factor (*C): Identify Container Preservative Type*** Customer Remarks / Special Conditions / Possible Hazards: LAB USE ONLY- Affily 8-15-24-0930 valner Size ** Analysis Requested Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace* Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/ Thermometer ID: Date/Time: Date/Time: 9 4 100 PV 8260 # Coolers: 9 4 Trip Blank [JOther | Analysis: Requested: N さんれんし エク | Analysis: Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Waste Water (WW), Product (P), Soil/Soild (SS), Oil (OL), Wipe (WP), Tissue (TS), Bioassay Results Units Res. Chlorine CHAIN-OF-CUSTODY Analytical Request Document Invoice E-Mail: T) M. M. C.C. D. N. C. C. D. N. C. C. V. CO. M. DW PWSID # or WW Permit # as applicable: Field Filtered (if applicable): [| Yes | You Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields Cont. 3 M M ~ Collected By: CANG CS+M Collected or Composite End 081424 10950 08 In 24/04/0 0011 124180 7101/424/80 tonost Received by/Company: (Signature) Received by/Company: (Signature) Received by/Company: (Signature) | JYes |X|No Tim.McCann@apexcos.com Ohlo Involce TO: TIM MCCAPIN Date (330) 310-6327 Tim McCann Reportable County / State origin of sample(s): Signature: (116 60 Time B), Vapor (V), Surface Water (SW),Sediment (SED), Sludge (SU), Caulk (CK), Leachate (LL), Blosolid (BS), Other (OT) NY DEC Rush (Pre-approval required): [] Same Day [] 1 Day [] 2 Day [] other. Composite Start Contact/Report To: Regulatory Program (DW, RCRA, etc.) as applicable: applicable): Date Cc E-Mail: Phone #: Quote #: E-Mall: Matrix * Grab Date/Time: 9 NO Pace® Location Requested (City/State): <u>5</u> Date Results 1638 Roseytown Road, Suites 2,3,4 JM7 1383 College Street S.E., null Vorth Canton, OH 44720 Pace Analytical Pittsburgh Customer Sample ID Site Collection Info/Facility ID (as applicable): Greensburg, PA 15601 Time Zone Collected: [] AK [] PT []Levelii []Leveliii []Leveliv FIELD BLANK DZ TRIP BLANK 4dditional instructions from Pace": Relingue by/Company: (Signature) elinquished by/Company: (Signature) APEX VOCS MM-10 8 - MW 6-MW расе Customer Project #: Data Deliverables Company Name: Street Address: Project Name: [] Equis

,	DC#_Title: ENV-FRM	-GBL	JR-00	88 v0	7_Sample	Condition #	• 3070	59721
1	Greensburg					MOH	. 301	09/2
Pace AMUSTICAL SERVICES	Effective Date: 01/04/2024	1				PM: JPH	BUREAUVE	ue Date: 08/2 RITA
Client Name:	Apex					OLI-		
- · d- i	Ex UPS USPS Client	□ Cor	nmerc	ial 🗆 I	Pace 🗌 Other			Initial / Date
Courier: Fed	er: <u>2782 9833 6</u>	350)		000 = 0		Examined B	y: 538 15/24
Tracking Number	r: <u>0.700 1000 0</u>							588115124
Custody Seal on Thermometer U	sed: 17 Ty		ce: (V	Net P	lue None	Yes 🖺 No	Temped By:	1X 8-2-34
Cooler Tempera		2,2	_°C	Corre	ection Factor:	-0.3	_•C Final Te	mp:
Temp should be about								Chloring Lat #
•					pH paper L	ot#	D.P.D. Resid	ual Chlorine Lot #
Comments:		Yes	No	NA				
Chain of Custody	Present		1_		1.			
Chain of Custody					2.			
-Were client	corrections present on COC		/					
Chain of Custody		1	1		3.			
Sampler Name &	Signature on COC:				4.			
Sample Labels ma	atch COC:	/			5.			
-Includes dat	e/time/ID		M					
Matrix:				,				
Samples Arrived	within Hold Time:	/			6.			
Short Hold Time	Analysis (<72hr		11	1	7.			
remaining):			1					
Rush Turn Aroun	d Time Requested:		/	├	8.			
Sufficient Volume		V			9.			
Correct Container					10.			
-Pace Contair	ners Used	-	-		11.			
Containers Intact:			-	_	12.			
Orthophosphate 1	field filtered:		-	Y	13.			
Hex Cr Aqueous s	amples field filtered:	-	-	_	14:			
Organic Samples o	checked for dichlorination	-	-	1	15:			
Filtered volume re	eceived for dissolved tests:				16.			
	cked for preservation:	<u></u>			10.			4
exceptions: V	OA, coliform, TOC, O&G,				41			
	don, non-aqueous matrix				Initial when	-	Date/Time of	
All containers me	et method preservation	1			completed O		Preservation	
requirements	:				Lot# of added			
					Preservative			
B260C/D: Headspa	ace in VOA Vials (> 6mm)				17.			
	in VOA Vials (0mm)				- 18. 			
Radon: Headspace	e in RAD Vials (0mm)			1	- 19. 	المعادية الما	eal procest?	VES or NO
rip Blank Present	:		/				seal present?	
ALL STATE OF THE S	ened <.05 mrem/hr.	V			Initial when completed	C Date:	-15-24	Survey Meter SN: 350M380
Comments:								

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Qualtrax ID: 55680

Appendix E PURGE WATER MANIFEST

GENERATOR USEPA ID: cesqq GENERATOR STATE ID: MANIFEST#:

FORM CD : NR

SHIP# 243924176

TRANSPORTER 1 TXR000081205 Safety Kleen Address Transporter1: SAFETY - KLEEN SYSTEMS INC. 1722 COOPER CREEK RD Ste 100 DENTON , TX, U\$ PostalCode: 76208

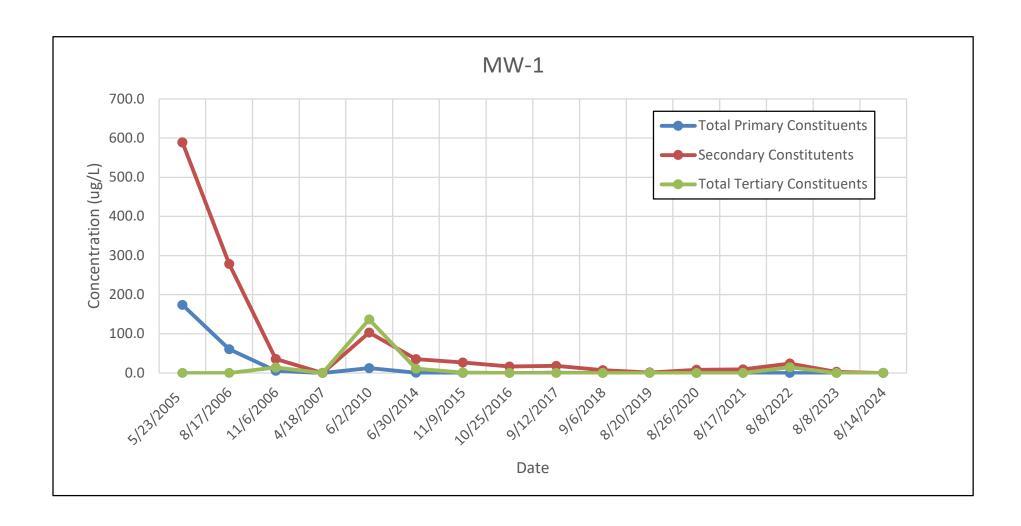
Phone: 800 - 669 - 5840 TRANSPORTER 2

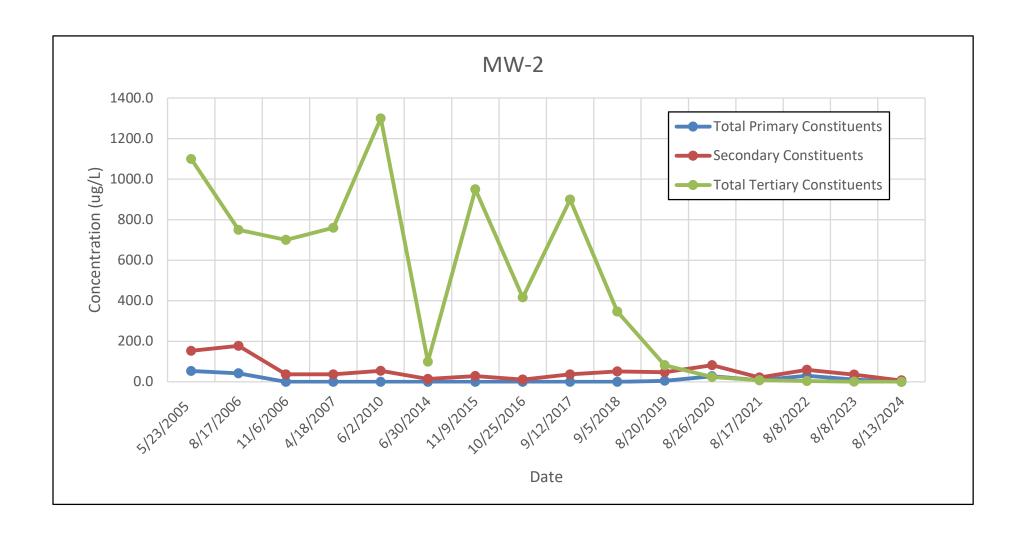
US DOT DESCRIPTION (INCLUDING PROPER SHIPPING NAME, HAZARD CLASS, AND ID) NONE, NON HAZARDOUS, NON D.O.T. REGULATED, N/A, WASTE FEDERAL WASTE CODES F001, F002, U043, U080, U220, U226, F005 STATE WASTE CODES TYPE: DM TOTAL CONT 1 WT/VOL P SKDOT 9866745 CNT# 240923376336 SZ: 55 GAL/205 L CONTAINERS OTY: 166 PROF# 2667507

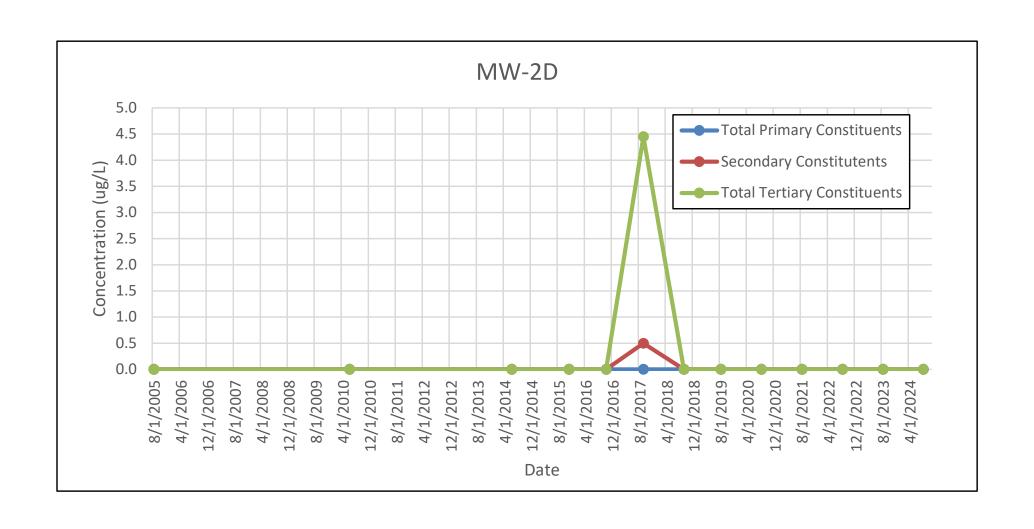
DESIGNATED FACILITY NAME/ADDRESS: SPRING GROVE RESOURCE RECOVERY INC 4879 SPRING GROVE AVE CINCINNATI OH 45232 TSD PHONE: 513 - 681 - 6242

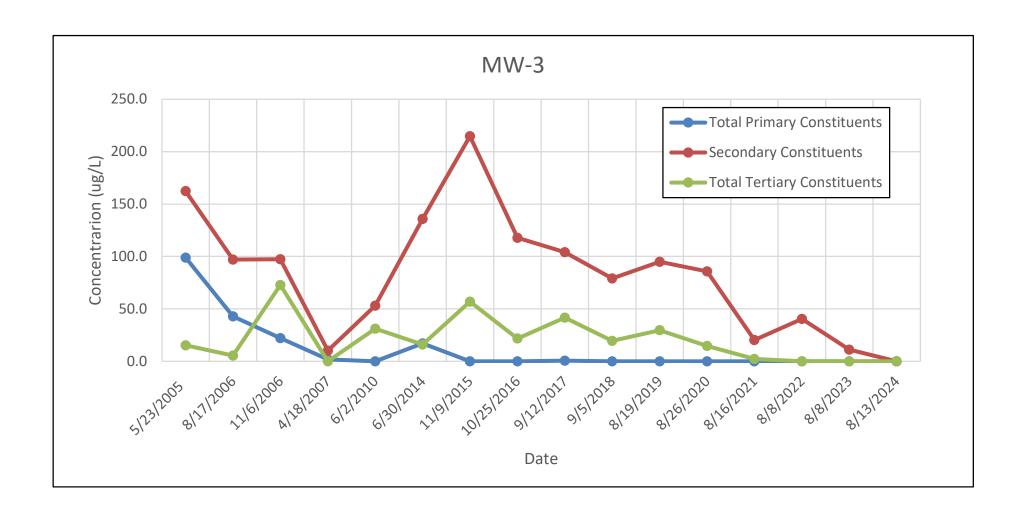
FACILITY USEPA ID NO OHDOO0816629 FACILITY STATE ID NO 9390610002

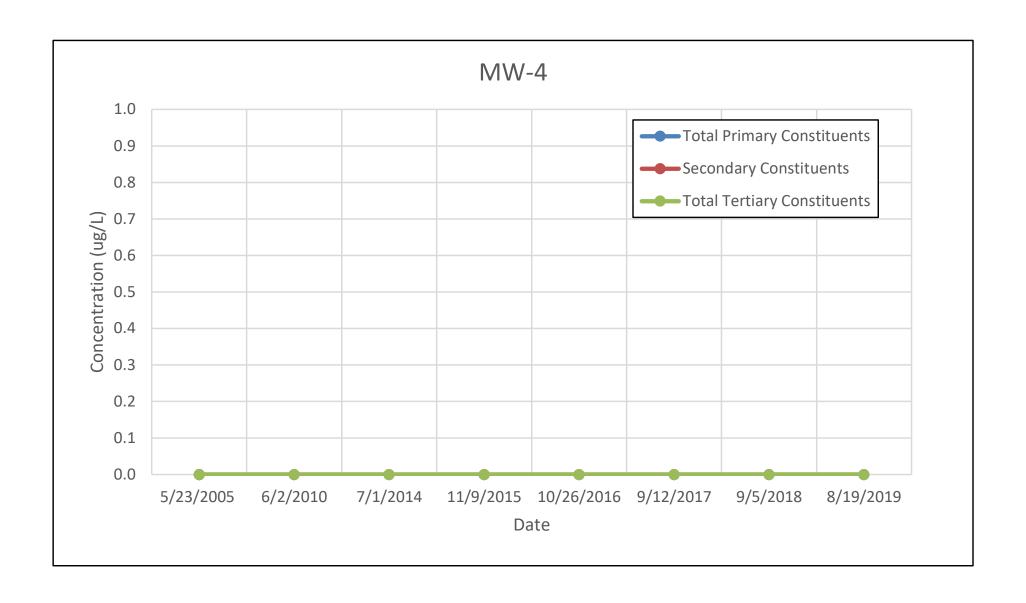
GENERATOR STATUS 0 - 220 lbs/month

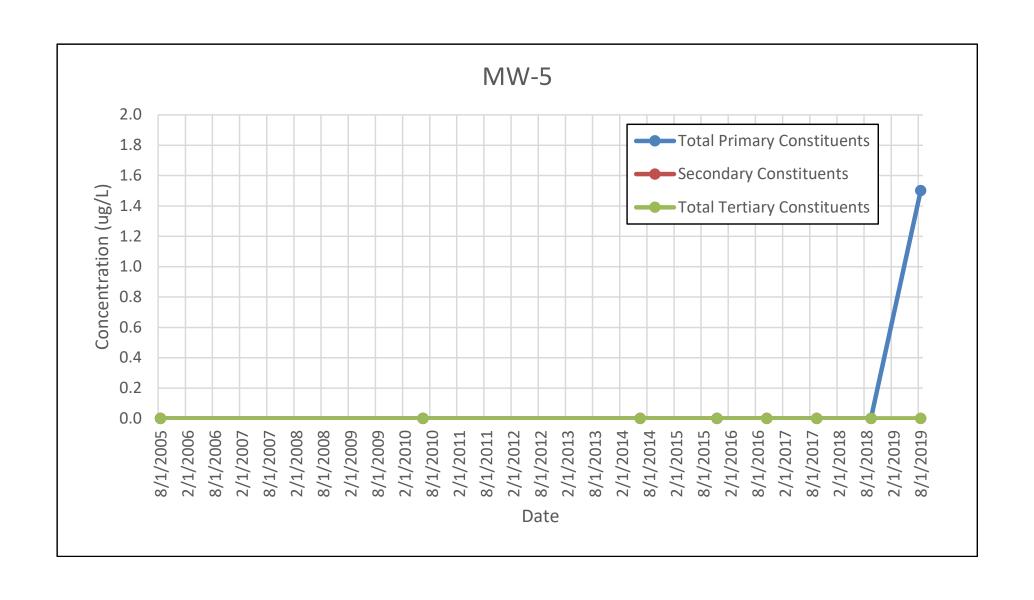

Jonet Glynn

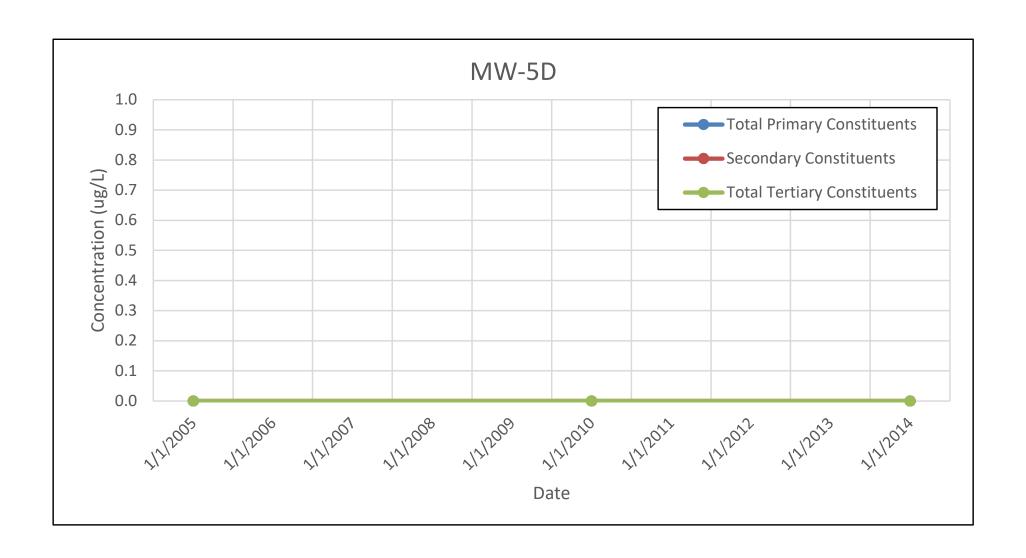

CUSTOMER / GENERATOR: Janet Glynn

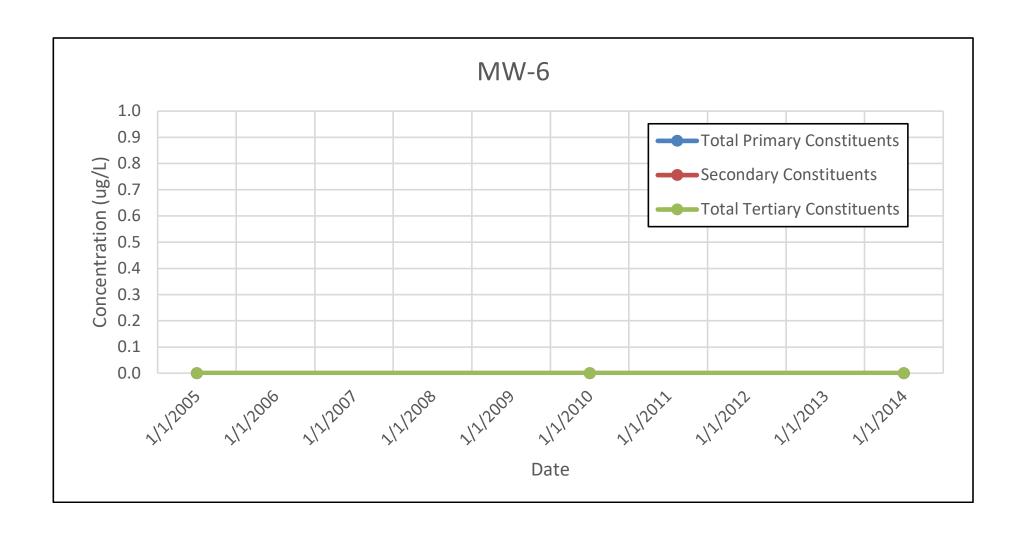

TRANSPORTER: Keenan, Shaun Christopher

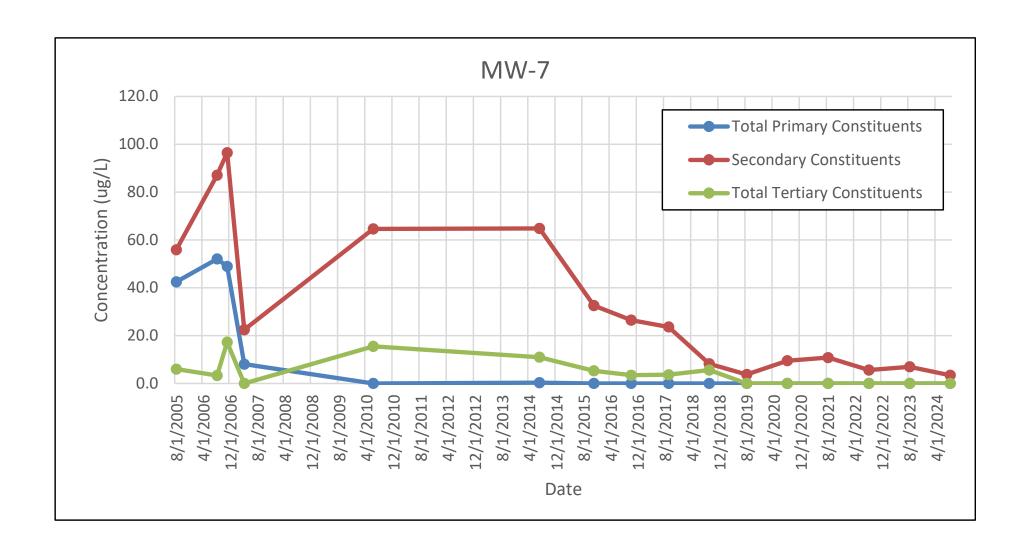


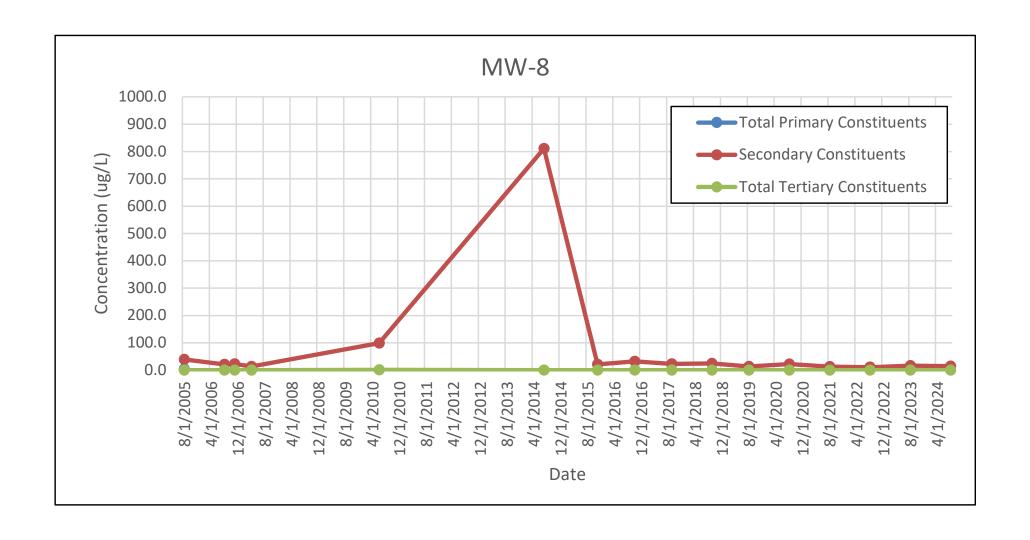

Appendix F VOC TRENDLINE GRAPHS

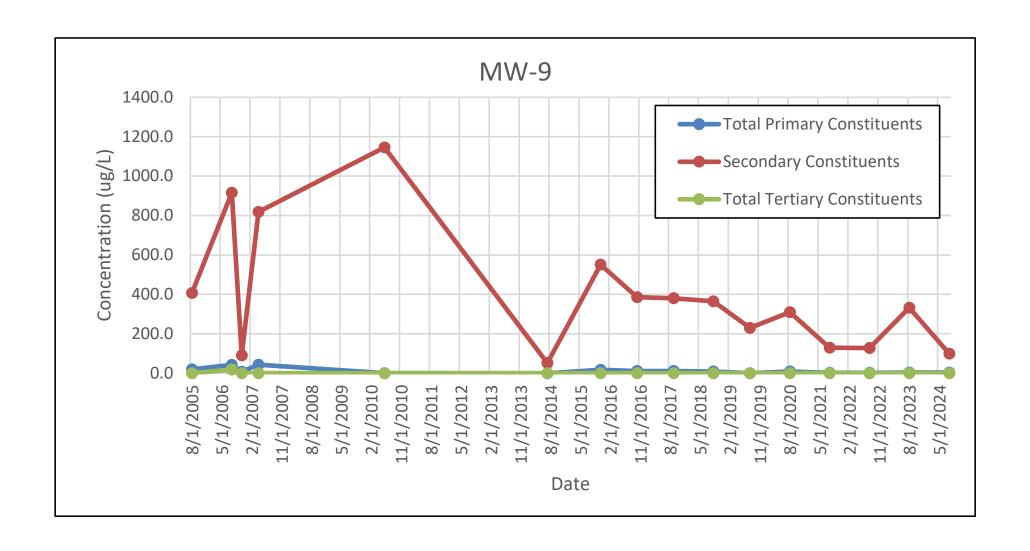


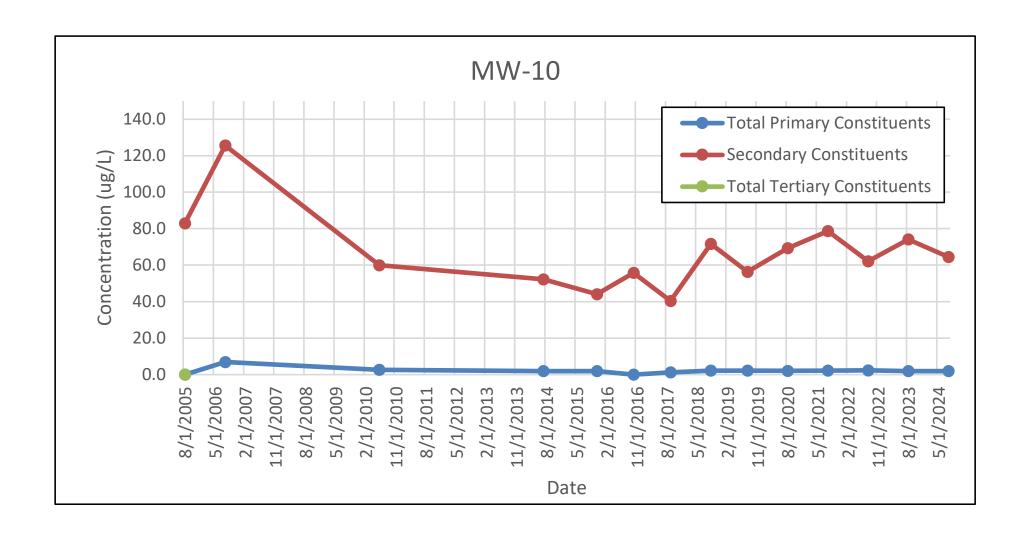


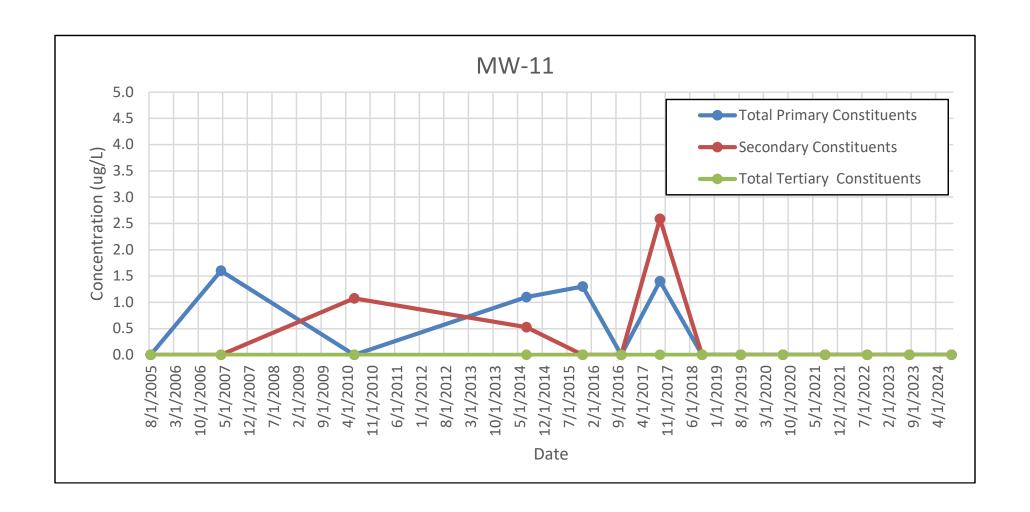


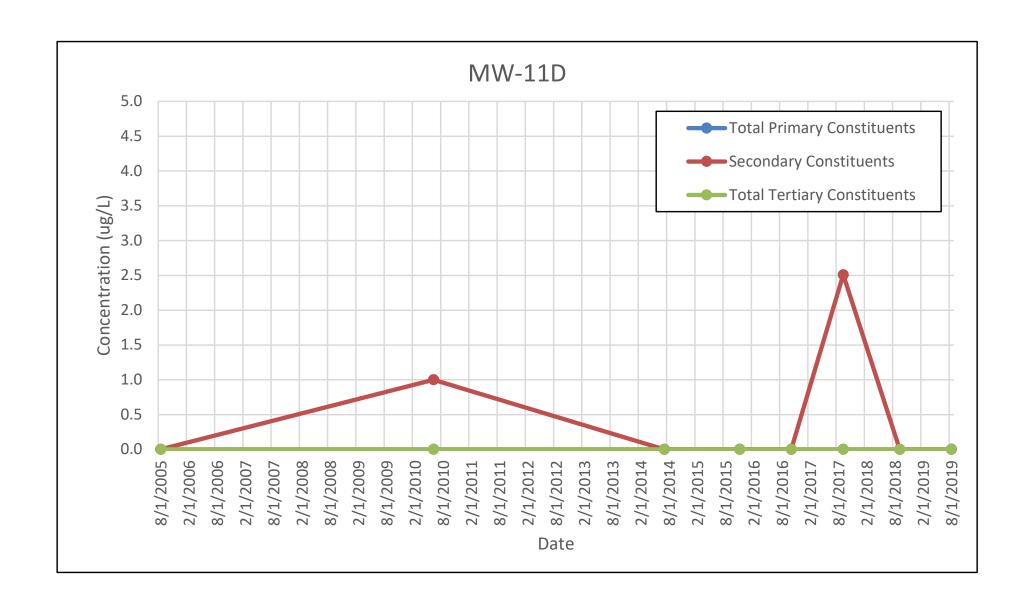


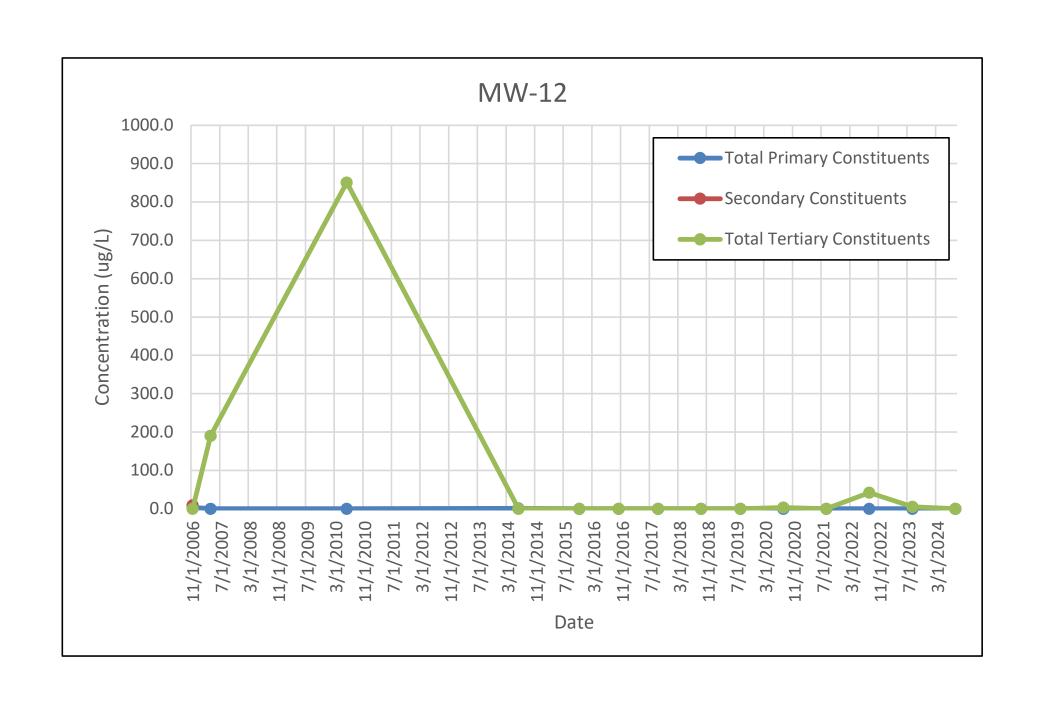


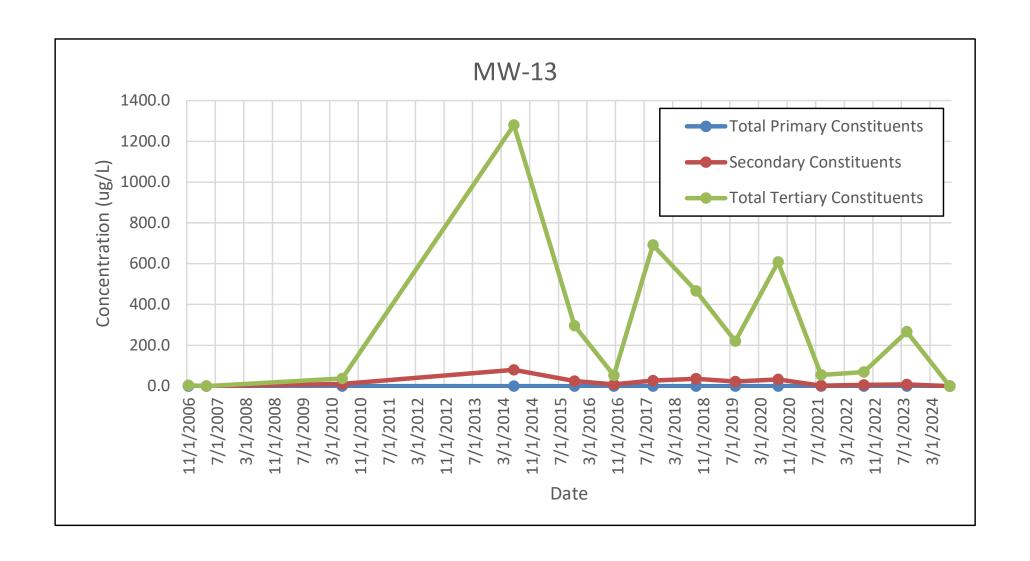


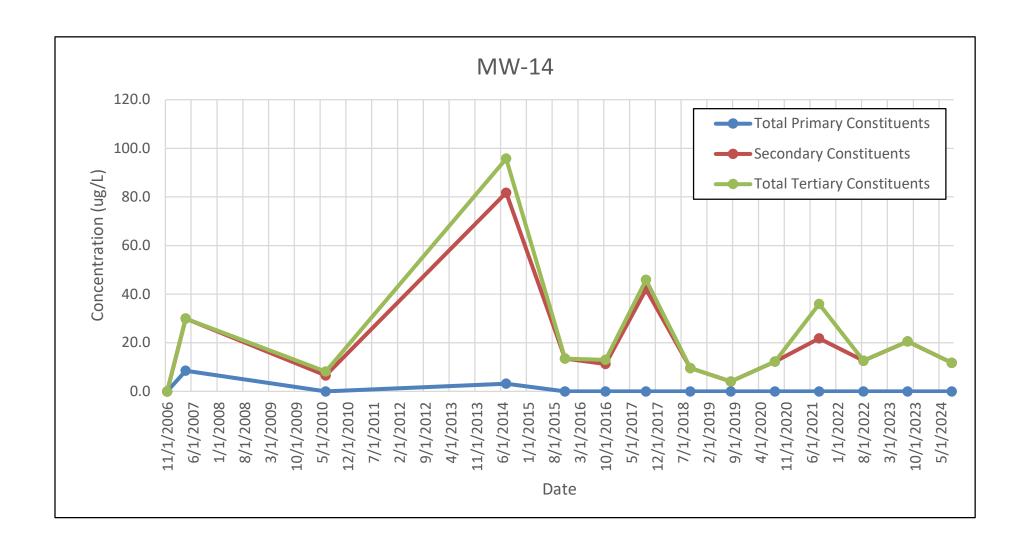










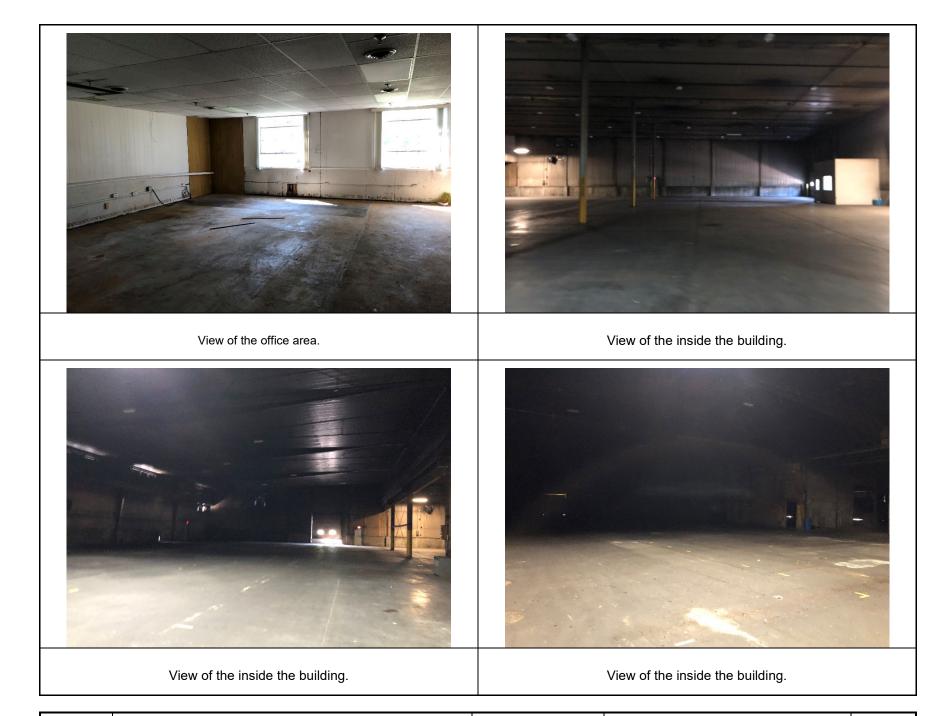


Appendix G SITE PHOTOGRAPHS

View of the northern exterior of the property.

View of the western exterior of the property.

View of the southern portion of the property.



View of the eastern portion of the property.

SITE:

Lexington Machining, Inc. 201 Winchester Road Lakewood, New York

Lexington Machining, Inc.
201 Winchester Road
Lakewood, New York

