The elect ro nic version	of this	file/report	should	have	the:	file	name:
---------------------------------	---------	-------------	--------	------	------	------	-------

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

report. hw91500Z 1997 - 01-08 CORRECTIVE pdf
measures study

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b

Superfund - hw

Spills - sp

ERP - e

VCP - v

BCP - c

non-releasable - put .nf.pdf

Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

Engineering and Environmental Services

Corrective Measures Study AlliedSignal, Inc. **Buffalo Research Laboratory** (Permit No. NYD000632315)

Prepared for

AlliedSignal, Inc. Buffalo, New York

HLA Project No. 33753.6

Eric L. Reisinger Project Geologist II

Dayne M. Crowley, P.G. Senior Hydrogeologist

January 8, 1997

Honey well Correc. Measures Study 01/97

Harding Lawson Associates Engineering and Environmental Services 700 North Bell Avenue, Suite 200 Pittsburgh, PA 15106 - (412) 279-6661

Section ES Revision: 0 Date: January 8, 1997

Page: ES-1

EXECUTIVE SUMMARY

A RCRA Permit (Permit No. NYD000632315) was issued for the AlliedSignal Buffalo Research Laboratory on October 19, 1992 in accordance with Section 6 of the New York Codes, Rules and Regulations (6 NYCRR) Article 27, Title 9. In accordance with the conditions of that Permit, the facility's Hazardous Waste Container Storage Area has been identified as a Solid Waste Management Unit (SWMU) and other areas of the facility have been identified as Areas of Concern. Based on the requirements of the Permit, a RFA was conducted in 1993 to determine if a release had occurred from in any of the Areas of Concern or the SWMU. The findings of the RFA indicated low levels of certain hazardous constituents in the tested media, above background levels.

Following the completion of the RFA, a RFI was conducted that characterized the individual areas of the facility. Samples were collected and analyzed for constituents of interest to determine which constituents, if any, were present at levels that exceeded regulatory levels. The RFI was completed in 1996 and indicated that arsenic was the only constituent of concern. Based on the results of the RFI, the NYSDEC required AlliedSignal to complete this Corrective Measures Study (CMS).

This CMS was completed to identify, evaluate, and recommend corrective measures alternatives for the facility. The CMS is based on the results of the RFI and the results of the analyses of six additional soil samples, which were collected to evaluate the lateral extent of arsenic concentrations in one area of the facility. In general, the RFI concluded that arsenic concentrations in surface soil ranged from 0.6 to 343 mg/kg. The RFI also concluded that arsenic was not detectable in groundwater samples collected from monitoring wells at the site and that the concentrations of arsenic in subsurface soil indicated that site-specific background levels may be on the order of 18 mg/kg. The RFI also indicated that although surface soils contained levels of arsenic exceeding state cleanup criteria (24 mg/kg), the site was not expected to represent a risk, based on the site uses and lack of exposure pathways. In order to further evaluate this possibility, a site specific risk assessment was conducted for arsenic in surface soil at the facility.

The results of the risk assessment indicate that the arsenic concentrations in surface soil at the AlliedSignal facility do not pose an unacceptable risk nor noncancer hazard to site occupants current (occupational) or even the very unlikely (future) residential scenario. This conclusion is based on EPA arsenic cancer risk policy and current knowledge of arsenic's mechanism of action and arsenic's bioavailability in soils upon ingestion.

Even without consideration of the upcoming changes in the cancer risk assessment policy or the reduced bioavailability of arsenic in soil, the generic nonrestricted, risk-based soil concentrations do not apply to this site. The site-specific assumptions include:

- Industrial rather than residential receptors
- 180 (accounting for frozen ground or snow cover) rather than 250 days of exposure.

With consideration of the current EPA risk management policy for arsenic (<10⁻³ risk), the arsenic soil concentrations at the AlliedSignal site are well within the acceptable risk management range. Due to the uncertainty in the risk assessment process, EPA risk assessment guidelines and the default conservative exposure assumption overestimate risk. The current risk assessment indicates that noncancer hazards and cancer risks may be a concern using standard conservative default industrial exposure assumptions, when soil arsenic levels exceed 613 mg/kg. That level is approximately twice that found as the maximum concentration of arsenic in surface soil on the AlliedSignal site.

This CMS has evaluated corrective measures alternatives that include the following:

Section ES Revision: 0

Date: January 8, 1997

Page: ES-2

- No Acti**o**n
- Excavation and Disposal
- Containment by placement of top soil
- Containment by placement of asphalt pavement
- Isolation trough installation of a fence.

Each of the potential corrective measures alternatives was evaluated with respect to its technical merit, ability to meet the cleanup objectives, effect on human health, ability to be implemented at the facility, and the potential cost of implementation.

Based on the results of the evaluation of each of the above alternatives and the results of the risk assessment, which indicates that the levels of arsenic in surface soil do not pose an unacceptable risk or hazard, HLA has developed a recommendation for the site. This recommendation is that no action is required for the facility, providing that the current use of the property (industrial usage) does not change and that the areas of surface soil with elevated arsenic be maintained as they are currently. If work is to be undertaken in these areas, HLA believes that appropriate safe guards should be put in place to limit potential exposure, consistent with the assumptions of the risk assessment.

Section TOC

Revision: 0
Date: January 8, 1997
Page: TOC-iii

CONTENTS

EXECUTIVE SUMMARY	ES-1
1.0 INTRODUCTION	1-1
1.1 PROJEC T H IS TORY	1-1
1.2 CMS FORMAT	
2.0 CURRENT CONDITIONS	2-1
2.1 OBJECTIVES AND SCOPE OF THE RFI	
2.2 SOILS INVESTIGATION	
2.2.1 Geo log ic Conditions	
2.2.2 Soils Investigation Analytical Program	
2.2.3 Surface Soil Sample Analytical Results	
2.2.4 Subsurface Soil Analytical Results	
2.3 HYDROGEOLOGIC INVESTIGATION	
2.3.1 Hyd ro ge ol ogic Conditions	
2.3.2 Groundwater Analytical Program 2.3.3 Groundwater Analytical Results	
2.4 STORM SEWE R DISCHARGE INVESTIGATION	
2.4.1 Storm Sewer Analytical Program	
2.4.2 Storm Sewer Analytical Program 2.4.2 Storm Sewer Discharge Investigation Analytical Results	
2.4.2.1 Storm Sewer Sediments	
2.4.2.2 Storm Sewer Water Discharge	
2.5 ADDITIONAL ON-SITE SURFACE SOIL SAMPLING	
3.0 RISK ASSESSMENT	3-1
3.1 POTENTIAL MIGRATION PATHWAYS	3-1
3.1.1 Atm osp here	3-1
3.1.2 Surface Water	3-1
3.1.3 Gro un dw a ter	
3.1.4 Dire ct Contact/Ingestion	
3.2 BACKGROUND SOIL ARSENIC CONCENTRATIONS	
3.3 MECHANISM OF CARCINOGENIC ACTION	
3.4 EXPOSURE ASSUMPTIONS	
3.4.1 Rece pt or	
3.4.2 Clim at e	
3.4.3 Bioa va il ab ility	
3.4.4 Concentrations of Arsenic at Site	
3.5 SUMMARY OF RISK ASSESSMENT	
3.6 REMEDIAL ALTERNATIVES	
3.6.1 Exca v ation	
4.0 CORRECTIVE ACTION OBJECTIVES	
4.1 IDENTI FI CATION OF COCs	4-1
4.2 OBJECTIVES OF THE CMS	4-1

Section TOC Revision: 0

Date: January 8, 1997 Page: TOC-iv

5.0 SC	REENING OF CMTS AND IDENTIFICATION OF CM	As 5-1
5.1 SC	REEN ING O F CMTS	5-1
	l No A ct ion	
	? Rem ov al a nd Recovery Measures	
	3 Containment Measures	
	ENTIFICATION OF CORRECTIVE MEASURE ALTERNA	
	I No A ct ion 2 Exca va ti on and Disposal	
	3 Cont ai nment Alternatives	
	2.3.1 Top Soil Cover	
5.3	2.3.2 Asphalt Pavement Cover	5-5
5.2	2.3.3 Isolation through Fence Installation	5-6
6.0 RE	COMMENDED ACTION	6-1
FIGUE	RES	
1	Site L ocation Map	33753B10
2	Inv es tigation Locations	33753B12
3	Pot en ti om etric Surface Map, October 17, 1994	33753B13
4	Potentiometric Surface Map, January 17, 1995 Area of Potential Corrective Measure	33753B14
5	Area of Potential Corrective Measure	3 37 53B15
TABLI	ES	
2-1	Ino rg anic Results for Surface Soil Samples	
2-2	TCL Volatile Organic Compound Results for Surface	
2-3	Applicable Soil and Sediment Action Levels And Re	ecommended Soil Cleanup Objectives
2-4 2-5	Inorganic Results for Subsurface Soil Samples TCL Volatile Organic Compound results for Subsurf	agn Soil Samples
2-5 2-6	Potentiometric Surface Elevation Data	ace 5011 Samples
2-7	Aquifer Characteristics	
2-8	Inorganic Results for Groundwater Samples	
2-9	Target Compound List Volatile Organic Compound	Results for Groundwater Samples
2-10	Applicable Groundwater Action Levels and Maximu	
2-11 2-12	Inorganic and TCL Volatile Organic Compounds Res	suits for Storm Sewer Sediment Samples
2-12	Inorganic Results for Storm Sewer Water Samples TCL VOC Results for Storm Sewer Water Samples	
2-14	BPDES Daily Maximum Discharge Limits	
APPE	NDIX ES	
	A Analytical Results - Additional Surface Soil	
	B Summary of Equations and Input Data Risk C Remedial Alternatives Cost Estimate	Assessment
	C Remedial Alternatives Cost Estimate	

Section 1.0 Revision: 0 Date: January 8, 1997

Page: 1-1

1.0 INTRODUCTION

This Corrective Measures Study Report has been prepared by Harding Lawson Associates (HLA) under contract to AlliedSignal, Inc. (AlliedSignal) to satisfy the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit (No. NYD000632315) for the AlliedSignal Buffalo Research Laboratory (facility) in Buffalo, New York (Figure 1). The RCRA Facility Investigation (RFI) was initiated by Remcor, Inc. (Remcor) and completed by HLA on August 6, 1996. The following sections of this chapter present a chronological summary of the project.

1.1 PROJECT HISTORY

On October 19, 1992, the New York State Department of Environmental Conservation (NYSDEC) issued a RCRA Part B Permit (Permit) for the facility in accordance with Section 6 of the New York Codes, Rules and Regulations (6 NYCRR) Article 27, Title 9. Under the conditions of the Permit, the facility can operate a covered and diked pad for the storage of up to 8,800 gallons of containerized hazardous waste. The facility's Hazardous Waste Container Storage Area has been defined as a solid waste management unit (SWMU) consistent with the permit regulations.

Module II of the permit addresses the corrective action requirements for the SWMU and other areas of concern (AOCs) identified by the NYSDEC. In accordance with the terms of the permit, corrective action is required, when necessary, to protect human health and environment from releases or potential releases of hazardous wastes and constituents from such units.

In accordance with the Permit requirements (Module III A.2), a RCRA Facility Assessment¹ (RFA) was completed by Remcor in 1993 to determine if a release of hazardous constituents had occurred from any of four facility areas identified by the NYSDEC and U.S. Environmental Protection Agency (EPA). These areas include the following:

- The RCRA SWMU The Hazardous Waste Container Storage Area for which the RCRA Part B Permit was issued
- Three AOCs:
 - **A**OC-1 Storm Sewer System
 - AOC-2 Activated Carbon System
 - AOC-3 Drum Storage Area

The SWMU is located east of the Pilot Plant and north of Building 514. AOC-1 (storm sewer system) consists of storm water manholes located in the southeast and southwest portions of the facility as well as the sump in Building 513. AOC-2, the activated carbon system, is located at the southeast corner of the Pilot Plant. The Drum Storage Area (AOC-3) is located along the site's western boundary west of the Pilot Plant. The locations of the SWMU and AOCs are shown on Figure 2.

The findings of the RFA indicated the presence of certain hazardous constituents at low concentrations but above background in tested media samples collected from the facility. EPA and NYSDEC concluded² that an RFI was required pursuant to the Part B Permit (Module III A.2). Samples collected

Remcor, Inc., August 11, 1993, "Report, Field Sampling and Analysis Activities, RCRA Facility Assessment, Allied Signal Inc., Buffalo Research Laboratory, Buffalo, New York," prepared for Allied Signal, Inc., Buffalo, New York,

New York State Department of Environmental Conservation, Bureau of Western Hazardous Waste Programs, and U.S. Environmental Protection Agency Region II, December 7, 1993, "Notification to Conduct a RCRA Facility Investigation (RFI)," correspondence to Allied Signal Inc.

Date: January 8, 1997

Page: 1-2

in the RFI were tested for constituents of interest, which were determined based on the results of the RFA and the historic activities at the facility.

The Part B Permit identified seven Project Tasks to be implemented pursuant to completion of an RFI. These tasks included:

- Task I Description of Current Conditions
- Task II Pre-Investigation Evaluation of Corrective Measures Technologies
- Task III **R**FI Management **Plans**
- Task IV Facility Investigation (RFI Work Plan)
- Task V Investigation Analysis
- Task VI Laboratory and Bench-Scale Studies
- Task VII Reporting

The Current Conditions Report (CCR)³, completed as Project Task I, was submitted to NYSDEC and EPA Region II on March 7, 1994. The Pre-Investigation Evaluation of Corrective Measure Technologies⁴, Project Task II, was submitted concurrent wit the RFI Work Plan⁵. The RFI Work Plan satisfies the requirements of Tasks III, IV, and V.

The RFI Report ⁶, Project Task VII, was submitted to the NYSDEC and EPA on May 18, 1995. The NYSDEC and EPA reviewed the report and issued comments in a letter dated August 25, 1995. HLA responded to the NYSDEC comments in a letter dated December 19, 1995. NYSDEC reviewed HLA's response to comments and approved supplemental sampling activities in a letter dated January 22, 1996. HLA prepared a Supplemental Sampling and Analysis Plan¹⁰ to conduct additional sampling in accordance with the NYSDEC comments. The supplemental sampling was completed and a letter report¹¹ presenting the finding of the supplemental sampling and finalizing the RFI report was submitted to the NYSDEC on August 6, 1996. NYSDEC reviewed the results of the supplemental sampling and concluded, in a letter dated September 12, 1996. that a Corrective Measures Study (CMS) should be completed in accordance with the requirements of Module III Condition E.9. (a) of the RCRA Permit.

Remcor, Inc., March 7, 1994, "Current conditions Report, AlliedSignal Inc., Buffalo Research Laboratory," AlliedSignal Inc., Buffalo, New York.

Remcor, Inc., April 6, 1994, "Pre-Investigation Evaluation of Corrective Measures Technologies, AlliedSignal Inc., Buffalo research Laboratory," AlliedSignal Inc., Buffalo, New York.

Remcor, Inc., April 6, 1994, "RCRA Facility Investigation Work Plan, AlliedSignal Inc., Buffalo Research Laboratory," AlliedSignal Inc., Buffalo, New York.

Remcor, Inc., "RCRA Facility Investigation Report, AlliedSignal Inc., Buffalo Research Laboratory," AlliedSignal Inc., Buffalo, New York.

New York State Department of Environmental Conservation, August 25, 1995, "NYSDEC Comments, RCRA Facility Investigation Report, AlliedSignal, Inc., Buffalo Research Laboratory," correspondence to AlliedSignal, Inc., Buffalo, New York.

Harding Lawson Associates, December 19, 1995. "Response to NYSDEC Comments, RCRA Facility Investigation Report, AlliedSignal, Inc. Buffalo research Laboratory," correspondence to NYSDEC.

New York State Department of Environmental Conservation, January 22, 1996. "RCRA Facility Investigation Report - Comment Response," correspondence to AlliedSignal Inc.

Harding Lawson Associates. March 8, 1996. "Supplemental Sampling and Analysis Plan, RCRA Facility Investigation,

AlliedSignal, Inc., Buffalo Research Laboratory," prepared for AlliedSignal Inc., Buffalo, New York.

Harding Lawson Associates, August 6, 1996. "Completion of Supplemental Sampling and Analysis, RCRA Facility
Investigation - AlliedSignal, Inc., Buffalo Research Laboratory," correspondence to NYSDEC, prepared for AlliedSignal, Inc.,

Buffalo, New York.

New York State Department of Environmental Conservation. September 12, 1996, "Supplemental Sampling and Analysis - RCRA Facility Investigation." correspondence to AlliedSignal, Inc. Buffalo, New York.

Section 1.0 Revision: 0 Date: January 8, 1997

Page: 1-3

1.2 CMS FORMAT

Appendix III-C, Section II identifies four Project Tasks to be implemented pursuant to the completion of a CMS. These tasks include:

- Task I Identification and Development of the Corrective Measure Alternatives
 Task II Evaluation of the Corrective Measure Alternatives
- Task III Justification and Recommendation of the Corrective Measure or Measures
- Task IV Reports

This document has been prepared to fulfill the requirements of Project Tasks I through III. A description of the current conditions is presented in Chapter 2.0. A risk assessment addressing concentrations of arsenic in surface soil at the facility is presented in Chapter 3.0. The corrective action objectives are identified in Chapter 4.0. The screening of corrective measures technologies (CMT) and the identification of corrective measures alternatives (CMA) is presented in Chapter 5.0. Chapters 6.0 and 7.0 present an evaluation, justification, and recommendation of the CMAs, respectively.

Date: January 8, 1997 Page: 2-1

2.0 CURRENT CONDITIONS

The following sections of this chapter present a summary of the results of the RFI conducted at the AlliedSignal Buffalo Research Laboratory.

2.1 OBJECTIVES AND SCOPE OF THE RFI

In order to determine if hazardous constituents have been released from any of the three AOCs or the SWMU identified by the NYSDEC, the following five RFI objectives were identified:

- Characterization of the facility environmental setting
- Characterization and delineation of potential source areas
- Identification and characterization of Constituents of Interest (COIs)
- Identification, characterization, and delineation of impacted areas/media
- Identification of potential receptors

To accomplish these objectives, a scope of work was designed which included the completion of the following tasks:

- Data search and compilation
- Soils investigation
- Hydrogeologic investigation
- Storm sewer discharge investigation
- Potential receptor identification

The following sections of this chapter summarize the results of the RFI regarding the investigation of the site soils, hydrogeology, and storm sewer discharge and how they relate to the CMS.

2.2 SOILS INVESTIGATION

In order to characterize soils within and adjacent to the SWMU and AOCs, surface and subsurface soil samples were collected from 13 soil and well borings (Figure 2) and analyzed for select chemical and geotechnical parameters. Borings MW-1, MW-2, MW-3, and SB-3 were advanced in the vicinity of the SWMU. Soils in the vicinity of AOC-1 (Storm Sewer System) were characterized through the advancement of soil borings MW-4 and MW-5. Soil conditions in the vicinity of AOC-2 (Activated Carbon System) were evaluated through the advancement of boring MW-9. Five soil borings (SB-1, SB-2, MW-6, MW-7, and MW-8) were advanced in the vicinity of AOC-3 (Drum Storage Area) to evaluate soil conditions. A final boring (MW-10) was advanced outside the operations areas in a grassy open area located at the northern limits of the facility.

2.2.1 Geologic Conditions

The lithologic data generated during the RFI indicate three apparently continuous, unconsolidated units immediately underlying the facility. These units include:

- A heterogeneous fill
- A zone of lacustrine deposits consisting of interbedded layers of silt, clay, and very fine sand
- A third unit comprised of a homogenous glaciofluvial clay

The fill material extends from the ground surface to depths ranging from 2 to 7 feet below ground surface (ft-bgs) across the facility, and is predominately damp to moist. Perched, saturated zones

Date: January 8, 1997 Page: 2-2

approximately 1 foot thick were observed within the fill in the borings for MW-1, MW-3, MW-7, MW-8, and SB-1. The underlying interbedded lacustrine unit generally extends to a depth of approximately 10 ft-bgs and has been logged as damp to moist. The first continuous saturated zone encountered was observed in the basal glaciofluvial clay unit approximately one foot below that unit's upper surface. This unit was logged to a depth of approximately 34 ft-bgs at the location in which boring MW-10 was completed. Based on the relatively flat topography at the site and the interface between the lacustrine and glaciofluvial units, Remcor concluded that the bedrock surface is also anticipated to be relatively flat across the facility.

2.2.2 Soils Investigation Analytical Program

Surface soil samples for chemical analysis were collected from the ground surface to a depth of 2 ft-bgs, and subsurface samples were collected at a depth of 8 to 10 ft-bgs. All samples were analyzed for the following chemical parameters using the listed EPA methodologies:

- Target Compound List (TCL) volatile organic compounds (VOCs) <u>SW-846</u>¹³ Method 8240
- RCRA Metals¹⁴ EPA¹⁵ 7060, EPA 6010, and EPA 7740
- Mercury EPA 7471
- Cyanide (total) EPA 9011/9012

Select additional samples were also analyzed for cation exchange capacity (CEC) by EPA Method 9080 and total organic carbon by the American Society for Testing and Materials (ASTM) Method D-3176.

2.2.3 Surface Soil Sample Analytical Results

Several organic and inorganic compounds were detected in surface soil samples collected from the soil borings (Tables 2-1 and 2-2). When a COI was detected, the reported concentration was compared to state action levels ¹⁶ to identify Constituents of Concern (COC) in surface soils. NYSDEC action levels for soils are summarized in Table 2-3. Based on this comparison, surface soil samples from the ten following locations exceeded the state action level for arsenic of 24 milligrams per kilogram (mg/kg):

Bor in g	Location	Detected Arsenic Concentration (mg/kg)
SB-1	AOC-3 Drum Storage Area	70.3
SB-2	AOC-3 Drum Storage Area	67.2
SB-3	SWMU Hazardous Waste Container Storage Area	343
MW-1	SWMU Hazardous Waste Container Storage Area	180
MW-2	SWMU Hazardous Waste Container Storage Area	117
MW-3	SWMU Hazardous Waste Container Storage Area	46.8
MW-7	AOC-3 Drum Storage Area	113
MW-8	AOC-3 Drum Storage Area	26.4
MW-9	AOC-2 Activated Carbon System	97.2
MW-10	Outside Operations Areas	224

U.S. EPA, 1986, "Test Methods for Evaluating Solid Waste, Chemical/Physical Methods," <u>SW-846</u>, 3rd Edition as updated and revised.

The RCRA Metals include: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver.

U.S. EPA, 1983, "Methods for Chemical Analysis of water and Wastes," EPA 600/4-70-020.

Action Levels defined in: New York State Department of Environmental Conservation, October 31, 1994, "Contained -In Criteria for Environmental Media," Technical Administrative Guidance Memorandum (TAGM) 3028.

Section 2.0 Revision: 0 Date: January 8, 1997

Page: 2-3

Based on these results, arsenic has been identified as a COC with respect to surface soils. No other organic or inorganic compounds exceeded state action levels in surface soil samples.

2.2.4 Subsurface Soil Analytical Results

Several organic and inorganic compounds were detected in subsurface soil samples, collected from a depth of 8 to 10 ft-bgs from each soil boring (Tables 2-4 and 2-5). When detected, the reported concentration was compared to state action levels (Table 2-3) to identify COC in subsurface soils. Based on this comparison, none of the constituents detected in subsurface soil samples had concentrations in excess of the state guidelines for VOCs, RCRA metals, or cyanide. As a result, there are no COCs with respect to subsurface soils.

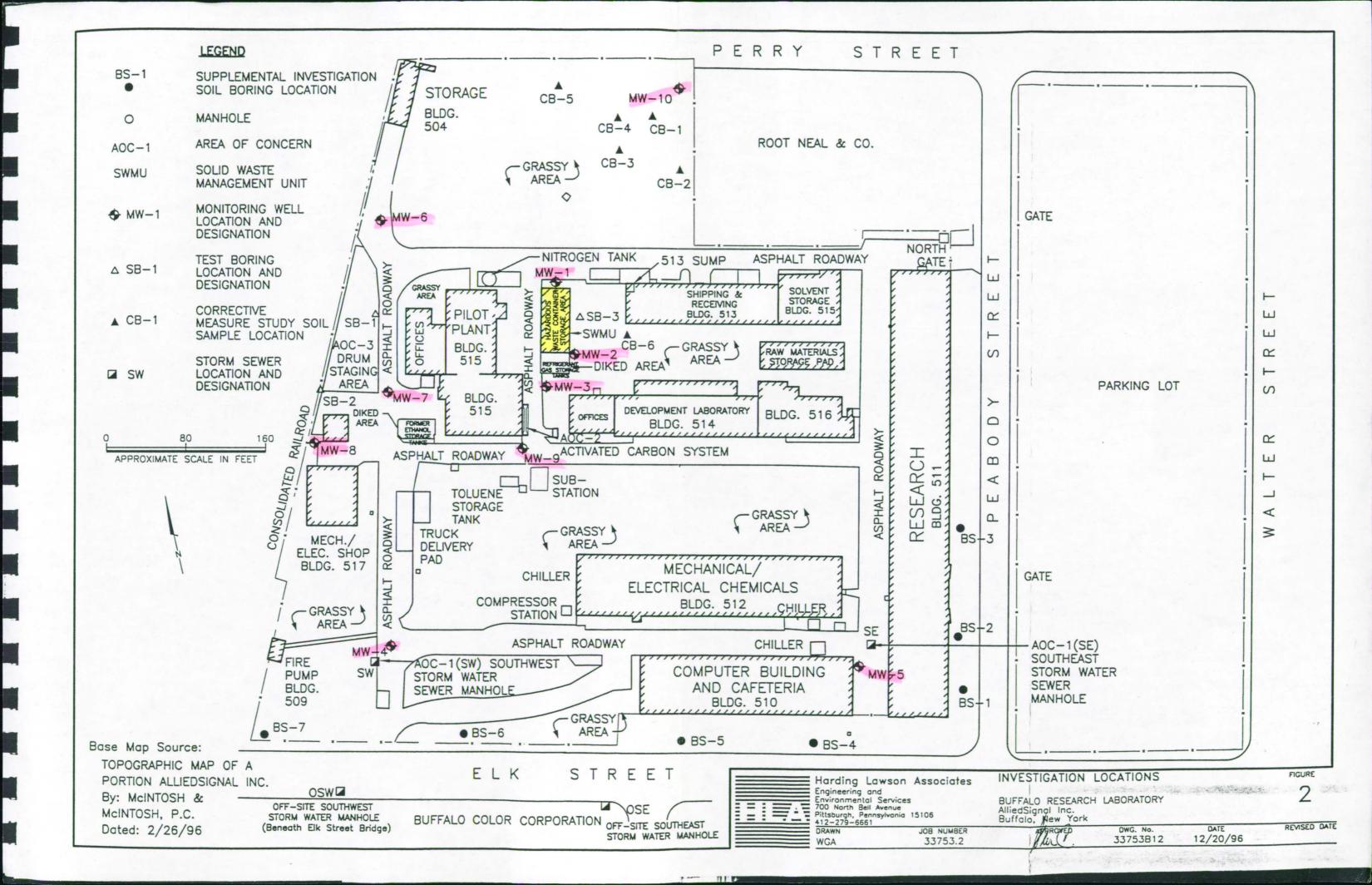
2.3 HYDROGEOLOGIC INVESTIGATION

A hydrogeologic investigation was conducted to evaluate the quality of the shallow groundwater underlying the facility, even though local groundwater is not used. Investigation activities included the installation of ten shallow groundwater monitoring wells (Figure 2), aquifer characterization through in situ permeability testing, evaluation of the groundwater flow direction and gradient, and an assessment of the groundwater quality through the collection and analysis of groundwater samples on two separate occasions.

2.3.1 Hydrogeologic Conditions

The first continuous saturated zone was encountered within the upper one foot of the basal clay unit (identified in section 2.2.1) at an approximate depth of 10 ft-bgs. In general, groundwater flow across the site is to the south, with a hydraulic gradient of 0.0067 to 0.0095 feet per foot as calculated between monitoring wells MW-10 and MW-5 in October 1994 and January 1995, respectively. A summary of the groundwater level data is presented in Table 2-6 and potentiometric surface maps for these dates are included as Figures 3 and 4, respectively. Analysis of the *in situ* permeability tests indicate values of transmissivity ranged from 1.5×10^{-5} to 2.8×10^{-9} square feet per second (ft²/sec) and assuming a saturated thickness of 24.5 feet, hydraulic conductivity values ranged from 1.9×10^{-5} to 3.5×10^{-9} centimeters per second (cm/sec). Storativity was also calculated and values range from 1×10^{-2} to 1×10^{-9} (Table 2-7).

2.3.2 Groundwater Analytical Program


Groundwater samples were collected from each monitoring well in October 1994 and January 1995 and submitted for laboratory analysis for the following compounds using the listed EPA methods:

- TCL VOCs SW-846 Method 8240
- Total RCRA Metals EPA 7060, 6010, 7740 and 7471
- Cyanide (total) EPA 9011/9012

Additional analyses included the determination of field pH, specific conductance, turbidity, and temperature, and laboratory determination of pH and specific conductance.

2.3.3 Groundwater Analytical Results

Tables 2-8 and 2-9 summarize the results of the groundwater sample analyses conducted at the facility. When detected, the constituent concentrations detected in samples from both rounds of groundwater

MEETING AGENDA

AlliedSignal, Buffalo Research Laboratory and NYS Department of Environmental Conservation

October 2, 1997 8:30 am

- 1. Corrective Measures Study Report/Risk Assessment
 - EPA's Review/Comments
 - NYS Department of Health's input
- 2. Department's Proposed Final Corrective Measures/Statement of Basis
 - Deed Restrictions/Notification
 - Soil Management Plan
 - Limited Groundwater Monitoring Program

- A so builter ivaluation / or remedeation

3. Next Steps

>SoB·	Letter of Agreement
-) agree w/ courterin.	Permit Modification
that no busilou color	Public Notice
of cus.	Public Participation and Comment
as cong as Allied Freguel remains welcount	Dean decomesses with well
MW-3 Emw- ANNUAL M	5 Dep. reserves right
	al al discount of the second

Date: January 8, 1997

Page: 2-4

sampling were compared to applicable state and federal regulations¹⁷ (Table 2-10) to identify facility-related COCs. Cadmium, 1,1-dichloroethane (1,1-DCA), 1,2-dichloropropane, and 1,1,1-trichloroethane (1,1,1-TCA) were each identified as facility related COCs based on concentrations reported in excess of NYSDEC groundwater action levels in samples collected from Wells MW-3 (SWMU) and/or MW-7 (AOC-3 Drum Storage Area). Barium was also reported in concentrations in excess of the Maximum Contaminant Level (MCL) in samples collected from MW-2 (SWMU), MW-4 (AOC-1 Storm Sewer System), and MW-7 (AOC-3 Drum Storage Area).

Remedial action is not warranted with respect to groundwater for the following reasons:

- The COCs were not identified at concentrations in excess of the regulatory limits in any other facility monitoring wells.
- Groundwater quality at the farthest downgradient monitoring wells (MW-4 and MW-5) does not exhibit concentrations of any of these constituents at or near the regulatory limits, except for barium in the sample collected from MW-4.
- The migration rates across the facility are slow¹⁸, 3.1 x 10^{-11} feet per second, or approximately 1×10^{-3} foot per year.
- There is no surface water discharge point proximate to the facility.
- Groundwater is not used as a drinking water source at the facility or in the greater Buffalo area.

For these reasons, groundwater impact at the site is not considered an issue at the facility and does not require additional evaluation or remedial measures.

2.4 STORM SEWER DISCHARGE INVESTIGATION

The storm sewer investigation was completed by collecting samples from five storm sewer locations to determine if storm sewer water and/or sediments were impacted above appropriate discharge standards by facility-related constituents, since the sewer lines could provide a potential off-site migration pathway. To determine the quality of the storm sewer water within the facility, samples were collected from three storm sewer locations within the facility. To assess the quality of storm sewer water off-site, samples were collected from two storm sewer manholes immediately "up stream" of the facility (Figure 2). The quality of the sediments within the storm sewers could only be characterized from one sewer located within the facility because the remaining sewers contained no sediments.

2.4.1 Storm Sewer Analytical Program

Storm sewer water and sediment (when present) samples were collected from each storm sewer identified in Figure 2 in October 1994 and January 1995 and submitted for laboratory analysis of the following compounds:

- TCL VOCs SW-846 Method 8240
- Total RCRA Metals EPA 7060, 6010, 7740 and 7471
- Cyanide (total) EPA 9011/9012

Groundwater concentrations were compared to NYSDEC TAGM no. 3028 and the National Primary and Secondary Drinking water Regulations, despite the fact neither facility groundwater, nor groundwater in the greater Buffalo area, is used as a source of potable water.

This velocity was calculated using the formula V=Ki/n, where V is groundwater velocity, K is hydraulic conductivity, i is the gradient (0.0095), and n is the porosity (40 percent).

Date: January 8, 1997

Page: 2-5

Storm sewer water samples were also analyzed for field pH, specific conductance, turbidity, and temperature, as well as the laboratory determination of pH and specific conductance.

2.4.2 Storm Sewer Discharge Investigation Analytical Results

The following sections present the results of the analytical testing conducted on the storm sewer water and sediment samples collected during the storm sewer discharge investigation.

2.4.2.1 Storm Sewer Sediments

Several metals and VOCs were detected in the sediment sample collected from the southwest storm sewer manhole in October 1994. The analytical results, presented in Table 2-11, were compared to the applicable state soil and sediment action levels and cleanup guidelines identified in Table 2-3 to determine if additional action was required. Based on that comparison, the sediment does not exceed the guidelines for any of the constituents detected; therefore, there were no identified potential storm sewer sediment COCs.

2.4.2.2 Storm Sewer Water Discharge

Storm sewer water samples were collected and analyzed from several storm sewers within and upgradient of the facility in October 1994 and January 1995. Several metals and VOCs were detected in the samples collected from the storm sewers (Tables 2-12 and 2-13). The concentrations reported were compared to the discharge requirements of the facility's existing Buffalo Sewer Authority (BSA) Permit (Table 2-14) to determine if the conditions of the permit had been met. Based on that comparison, it was determined that two of the detected VOCs (methylene chloride and acetone) were not addressed by the current BSA Permit and were therefore considered COCs. To address these COCs and account for the presence of methylene chloride and acetone, a new BSA Permit¹⁹ was issued. Therefore, there are no longer any COCs associated with the facility's storm sewer system.

2.5 ADDITIONAL ON-SITE SURFACE SOIL SAMPLING

At the conclusion of the RFI, arsenic in surface soil remained as the only COC requiring additional evaluation. Because this CMS would have to evaluate potential remedial measures, and the lateral limits of elevated arsenic concentrations in surface soil near well MW-10 had not been fully characterized in the RFI, additional surface soil samples were collected for the analysis of arsenic. At that time, an additional surface soil samples was also collected from the area of the SWMU.

A total of six surface soil samples were collected on October 10, 1996 from the locations illustrated on Figure 5 to delineate the limit of surface soils with elevated arsenic levels in the vicinity of Monitoring Well MW-10 and the SWMU. These two areas were chosen for additional characterization because surface soil samples collected in these areas during the RFI exhibited the highest reported arsenic concentrations on site. Samples collected during the RFI from these areas reported the following arsenic concentrations:

Buffalo Sewer Authority, March 1, 1996. "Revision of B.P.D.E.S. Permit." correspondence to AlliedSignal, Inc., Buffalo, New York.

Section 2.0 Revision: 0 Date: January 8, 1997

Page: 2-6

Boring	Location	Detected Arsenic Concentration (mg/kg)
SB-3	SWMU Hazardous Waste Container Storage Area	343
MW-1	SWMU Hazardous Waste Container Storage Area	180
MW-2	SWMU Hazardous Waste Container Storage Area	117
MW-3	SWMU Hazardous Waste Container Storage Area	46.8
MW-10	SWMU Outside Operations Area	224

After review of the analytical data, five additional surface soil samples were collected in the vicinity of MW-10 (CB-1 through CB-5) as illustrated in Figure 5. These samples were collected from depths ranging from 0.5 to 0.75 foot below ground surface from the fill material characterized during the RFI. In each case the fill was overlain by topsoil and grass was growing at the surface.

Surface soils in the vicinity of the SWMU were well characterized during the RFI (samples were collected from soil boring SB-3 as well as monitoring well borings MW-1, MW-2 and MW-3). As a result, only one additional surface soil sample was collected in this area (CB-6) as illustrated in Figure 3. This sample was also collected from the fill material at a depth of approximately 0.75-ft-bgs.

Each sample was submitted to Quanterra Environmental Services (Quanterra) of Pittsburgh, Pennsylvania and analyzed for arsenic using EPA Method 7060. Quanterra provided analytical support to this project during the RFI for the analysis of arsenic in surface soil samples. The data for this supplemental samples has not been validated; however, a Contract Laboratory Program data package was prepared by Quanterra and the data can be validated at a later date if necessary. See Appendix A for copies of the analytical data

Arsenic concentrations in surface soils in the vicinity of MW-10 ranged from 18.7 mg/kg (CB-5) to 86.7 mg/kg (CB-3). The surface soil sample collected from boring CB-6 in the vicinity of the SWMU had an arsenic concentration of 210 mg/kg. A summary of the surface soil sampling results is as follows:

Bo ri ng Identi ficati on	Dista nce fro m MW-10 (feet)	Arsenic Conc entration (mg/kg)
C B -1	45	48.7
C B -2	95	21.9
C B- 3	102	86.7
C B -4	70	54.9
C B -5	112	18.7
C B -6	Not app li cable	210

Equipment Blank

An equipment blank sample was collected by pouring deionized water over a freshly decontaminated hand auger to evaluate the effectiveness of the decontamination procedure. This sample (BRL-EB-1096) was also analyzed for arsenic by Quanterra. Arsenic was not detected in the sample in a concentration greater than the 1.8 micrograms per liter detection limit.

Date: January 8, 1997 Page: 3-1

3.0 RISK ASSESSMENT

The RFI concluded that the only COC at the facility which required further action was arsenic in surface soil. The concentrations of this COC in surface soil exceed the New York State action level. However, because the site is an industrial facility and because the RFI indicated that it is likely that the risk presented by this COC is small, a risk assessment has been included in this CMS. The objective of this risk assessment is to evaluate concentrations of arsenic and to assist in the determination of the most appropriate corrective action.

3.1 POTENTIAL MIGRATION PATHWAYS

Potential migration pathways have been identified for the facility on the basis of the characteristics of arsenic in surface soil. The migration pathways include:

- Atmosphere, via wind erosion
- Surface water, via stormwater runoff
- Groundwater, via transport of soluble constituents
- Surface soil, via direct contact

3.1.1 Atmosphere

Arsenic has been detected at elevated levels in surface soil samples collected at the site. The highest concentrations of arsenic were reported in samples from the SWMU at boring SB-3 and from the boring for Well MW-10. These samples were collected between 0 and 2 ft-bgs, therefore they are considered surface soil samples. The potential exists for migration of constituents via wind erosion. However, because the areas of the facility in which arsenic was detected are covered with pavement and/or grass, the potential for migration via wind is limited.

3.1.2 Surface Water

Due to the presence of arsenic in surface soil samples, the potential also exists for migration via surface water runoff. Because the site is covered with pavement and grassed areas, the potential for migration via surface water runoff is limited. Facility surface water drains to the southeast and southwest inlets in the facility's storm sewer system in accordance with the BPDES Permit, and then to the BSA for primary and secondary treatment. Treatment is performed at the publicly owned treatment works (POTW) at the foot of Ferry Street on an island in the Niagara River (4.8 miles from the facility). Treated water is subsequently discharged to the Niagara River. During 100-year storms, the combined sewer and sanitary systems bypass the treatment plant and discharge directly to the Niagara River through the BSA.

3.1.3 Groundwater

Because arsenic is present in surface soil, the soil to groundwater pathway could represent a potential migration pathway. However, subsurface soil samples that were collected from the same borings in which surface soil samples indicated elevated arsenic concentrations, indicated background levels of arsenic. Furthermore, analyses of groundwater samples collected from monitoring wells constructed in borings where elevated arsenic levels were detected in surface soil samples, did not detect elevated concentrations of arsenic. These factors indicate that it is not likely that surface soil acts as a significant source of arsenic to groundwater. Furthermore, because groundwater is not used at or near the site, a completed pathway to a receptor is not established.

Section 3.0 Revision: 0 Date: January 8, 1997

Page: 3-2

3.1.4 Direct Contact/Ingestion

The direct contact/ingestion pathway exists at the site because surface soil is impacted. This pathway is limited due to the fact that the facility is an active industrial site, with a fence to preclude inadvertent site access. The pathway is further limited by surface coverage of pavement, gravel, and grass in certain areas. This pathway is evaluated in detail in the site-specific risk assessment.

3.2 BACKGROUND SOIL ARSENIC CONCENTRATIONS

The NYSDEC's TAGM screening level for arsenic in soil is 7.5 mg/kg or site background. While TAGM for organics are risk-based for conservative residential exposures, those for inorganics are not. Recommended soil cleanup objectives for metals are either site background or the average background concentrations for the eastern United States as reported in a 1984 survey of reference material by E. Carol McGovern, NYSDEC.

Applying the standard residential exposure assumptions used by NYSDEC and USEPA, a risk-based soil concentration can be developed. These conservative default residential exposure assumptions are as follows:

Variable	Symbol	Defa ult Valu e
Risk mana ge ment level	RML	1 x 10 ⁻⁶
Exposure du ration, total	ED_{tot}	30 years
Exposure duration, child	$\mathrm{ED}_{\mathtt{c}}$	6 years
Exposure duration, adult	$\mathrm{ED}_\mathtt{a}$	24 years
Exposure freque ncy	EF	350 days/year
Body weig ht , ad ult	$\mathrm{BW_a}$	70 kg
Body weight, child	BW_c	15 kg
Soil ingestion rate, adult	IRS_a	100 mg/day
Soil ingest io n rate, child	IRS_c	200 mg/day
Fraction of contaminated soil ingested	FC	1 (100%)
Fraction of contaminant absorbed into the body	FA	1 (100%)
Average ti m e	AT	25,550 days (i.e., 70 years)
Arsenic (As) cancer slope factor	CSF	1.5 kg-day/mg

Because contact rates with residential soil are different for children and adults, carcinogenic risks during the first 30 years of life are calculated using age-adjusted soil ingestion factors (IFS_{adi}).

The default age-adjusted soil ingestion factor is defined by the following equation:

Section 3.0

Revision: 0

Date: January 8, 1997

Page: 3-3

Equation 1:

$$IFS_{adj} \frac{mg-y}{kg-d} = \frac{ED_c \times IRS_c}{BW_c} + \frac{(ED_{tot} - ED_c) \times IRS_a}{BW_a}$$

$$IFS_{adj} = 114.29 \frac{mg-y}{kg-d}$$

Using the age-adjusted soil ingestion factors, the risk-based concentration (RBC) for arsenic in soil as a carcinogen is calculated using the following equation:

Equation 2:

RBC
$$\frac{mg}{kg} = \frac{RML \times AT}{EF \times \frac{IFS_{adj}}{10^6 \frac{mg}{kg}} \times CSF}$$

$$\mathbf{R}BC = 0.43 \frac{mg}{kg}$$

In other words, based on conservative default risk assessment assumptions, a concentration of 0.43 mg/kg in soil, in a residential setting produces one excess cancer in a population of 1,000,000 similarly exposed individuals.

The NYSDEC established background for arsenic in the eastern United States is 3 - 12 mg/kg and the average is 7.5 mg/kg. In his December 3, 1996 letter to Mr. Dayne Crowley, Mr. DiGiulio acknowledged that the geologic background for arsenic at AlliedSignal "is above the EPA Region III Risk Based Concentration for residential and industrial soil ingestion" and indicated that a site background level of 18 mg/kg would be an acceptable target cleanup level for unrestricted use.

Because the RBC (i.e., 1×10^{-6} risk level) for arsenic exceeds the site background level, the risk associated with that concentration should be determined. To determine the risk posed by arsenic concentrations, the background concentration of arsenic in soil (C) is substituted for the RBC in Equation 2 and the equation is rearranged to solve for risk (R), which has been substituted for the RML. This increased cancer risk associated with 18 mg/kg of arsenic in residential surface soil is calculated as follows:

Equation 3:

$$\mathbf{R} = \frac{\mathbf{C} \times \mathbf{IFS}_{adj} \times \mathbf{CSF} \times \mathbf{EF}}{\mathbf{AT} \times 10^6 \frac{\mathbf{mg}}{\mathbf{kg}}}$$
$$\mathbf{R} = 4.2 \times 10^{-5}$$

Using the above standard default residential exposure assumptions, the resulting risk to background soil arsenic is summarized as follows:

Date: January 8, 1997 Page: 3-4

Arsenic Conc entration (m g/kg)	Description	Risk
3	Eastern United States - low background	7.1×10^{-6}
1 2	Eastern United States - high background	2.8×10^{-5}
7. 5	Eastern United States - average background	1.8×10^{-5}
18	Site unrestricted use (i.e., site geologic background)	4.2×10^{-5}

Each of these concentrations of arsenic in residential soil produce risks that are greater than the risk level of 1×10^{-6} . Therefore, the background concentrations of arsenic in eastern US soils pose an unacceptable cancer risk based on established residential soil ingestion assumptions. However, the USEPA acceptable risk range is at least 10^{-4} to 10^{-6} for all carcinogens and these risks are within that risk management range. Furthermore, due to the prevailing geologic conditions, NYSDEC has accepted the risk of 4.2×10^{-5} for residential (unrestricted) exposure to regional background of arsenic in soil (based on 18 mg/kg arsenic in soil).

This conservative method of assessing cancer risks for arsenic in soil is generally believed to be flawed for industrial sites. This is due primarily to three assumptions used in the carcinogenic risk assessment procedure. These assumptions are as follows:

- Assuming a nonthreshold mechanism of carcinogenic action for arsenic
- Estimating 100 percent availability of arsenic for absorption into the body
- Residential exposure scenario, which uses conservative standard defaults.

In addition to assessing the site specific conditions with a risk assessment, the impact of these assumptions is the overprediction of any risk associated with exposure to arsenic in soil. Each of these assumptions and the associated impact on the risk analysis will be discussed in detail below.

3.3 MECHANISM OF CARCINOGENIC ACTION

Arsenic is considered a human carcinogen based on human epidemiology studies; there is evidence for a link between nonoccupational exposures to arsenic and some cancer, most notably cancer of the skin. Nonoccupational arsenic exposures (drinking water and medicinal preparations) show a correlation between increased incidences of skin cancer and skin lesions thought to be preconditions for cancer or precancerous. These skin lesions serve as the basis for assessing noncancer hazards associated with arsenic exposure.

The current cancer slope factor for arsenic was derived according to old USEPA cancer risk policy²⁰. While currently being revised, the existing USEPA cancer risk policy assumes that all carcinogens act through the same nonthreshold mechanism. This mechanism implies that any exposure is associated with some degree of risk. For chemicals with no threshold, risk decreases as dose decreases, but never reaches zero.

In order to assess risk associated with nonthreshold chemicals, the human or experimental data requires downward extrapolation of the dose-response curve to exposure levels below those actually received. The downward extrapolation of the curve is accomplished through the use of mathematical models. The shape of the dose-response curve depends upon the model used. It is USEPA's cancer risk policy to apply the linearized multistage (LMS) model in developing the cancer slope factors for chemicals classified as carcinogens. This model is the most conservative model available (next to the

U.S. Environmental Protection Agency, 1986 Guidelines for Carcinogen Risk Assessment, September 24, 1996

Page: 3-5

one-hit model) and assumes linearity through zero. This model does not fit most environmental substances. Therefore, linearity provides conservative or overestimated extrapolated risk estimates. It has been USEPA cancer risk policy in developing risk estimates that are designed to be highly conservative where the true risk is almost certainly lower than the estimate.

Recently, the proposed guidelines for carcinogen risk assessment have been released for public comment. Among the major changes from the 1986 guidelines²¹ is the recognition of differing mechanism of action among substances classified as carcinogens. The guidelines permit the development of a biologically based response model for the substance to replace the default conservative LMS model. Once in place the new cancer guidelines will result in a less conservative cancer slope factor for most regulated substances.

USEPA has also assessed the threshold response of arsenic. For many substances, the dose-response curves demonstrate an exposure below which no response can be detected. Unlike the downward extrapolation of the dose-response curve for carcinogens, the no observed adverse effect level (NOAEL) can be determined with some accuracy. Safety or uncertainty factors are applied to the NOAEL, including those to account for extrapolating among the population or data gaps. The result of this is the toxicity criteria for the most sensitive noncarcinogenic endpoint or the reference dose (RfD).

Using the oral RfD for arsenic and the same conservative default exposure assumptions, the health-based concentration (HBC) for arsenic in soil can be developed. The major difference from the RBC described above is that the exposure to noncarcinogens is not a probabilistic determination of cancer risk and the exposure is not averaged over lifetime. The noncancer management level is the target hazard quotient (THQ) of 1. As a conservative measure, the residential exposure scenario for noncarcinogenic effects is based on childhood exposures only. Based on a review of the integrated risk information system (IRIS) data base, the RfD for arsenic is 3 x 10⁻⁴ mg/kg/d. The HBC is calculated using the following equation:

Equation 4:

$$HBC = \frac{THQ \times RfD_{o} \times BW_{c} \times AT_{N}}{EF \times ED_{c} \times \frac{IRS_{c}}{10^{6} \frac{mg}{kg}}}$$

$$HBC = 23 \frac{mg}{kg}$$

U.S. Environmental Protection Agency, Proposed Guidelines for Carcinogen Risk Assessment, April 23, 1986.

Date: January 8, 1997 Page: 3-6

Variable	Sym bol	Defa ult Valu e
Target hazard quotient	THQ	1
Reference dose , oral	${ m RfD}_{ m o}$	3×10^{-4} mg/kg/day for arsenic
Body weig ht , child	BW_c	15 kg
Averaging time (non-carcinogen)	AT_N	2,190 days (6 years)
Exposure fre quency	EF	350 days/year
Exposure du ra ti on	ED_{c}	6 years
Soil ingest io n ra te, child	IRS_c	200 mg/day

Using the child residential exposure scenario and the NYSDEC established soil concentration range and average for the eastern United States, as well as the NYSDEC established background for the site, the resultant hazard quotients would be less than unity (i.e., acceptable hazards).

While it is not known what the specific results of the new cancer risk assessment guidance will have on arsenic, it will most likely result in a more realistic assessment of the risk posed by arsenic ingestion and a higher acceptable risk-based soil concentration for arsenic. Many states currently assess arsenic based on its noncarcinogenic potential rather than the carcinogenic potential. The basis for this is the precancerous skin lesions associated with arsenic exposure. It is thought that if one protects against the precancer condition, the cancer condition will be protected against as well. In other words, if exposure is not great enough to produce the precancer conditions, then cancer will not be produced.

USEPA and USEPA Region III have recognized the problem with assessing risks of exposures to arsenic in soil. In the USEPA Region III Risk Based Concentration table²², two soil concentrations are provided reflecting the noncancer and cancer toxicity criteria.

Contaminant	RBC residential (mg/kg)	
Arsenic (as no ncarcinogen) ^a	23	-
Arsenic (as carcinogen) ^b	0.43	

^a At the risk management screening level of 1

In the documentation that accompanies EPA Region III's RBC tables, EPA Region III addresses the rationale for arsenic appearing in the RBC table separately as a carcinogen and a noncarcinogen. EPA Region III provided both sets of values to "ensure that the risk assessor realizes that noncarcinogenic concerns are significant for arsenic." In addition, EPA Region III points out that "EPA has a little-known risk management policy for arsenic (dating from 1988²³) that suggests that arsenic related cancer risks of up to 1 x 10⁻³ can be accepted because the cancers are squamous cell carcinomas with a low mortality rate." Therefore, according to EPA arsenic risk management policy, acceptable residential soil concentrations would range up to 43 mg/kg. However, at that point the noncarcinogenic action must be

b At the risk management screening level of 10⁻⁶

Roy L. Smith, April 19, 1996, "Risk-Based Concentration Table, January-June 1996," U.S. Environmental Protection Agency, Region II, Philadelphia, PA.

U.S. Environmental Protection Agency, Recommended Agency Policy on the Carcinogenic Risk associated with the Ingestion of Inorganic Arsenic, Memorandum to Assistant Administrators, June 21, 1988.

Date: January 8, 1997

Page: 3-7

considered and would take precedence resulting in acceptable arsenic soil concentrations of 23 mg/kg for residential exposures.

In the interim, prior to the finalization of the new cancer policy, it is imperative that flaws in the current methodology be considered in environmental risk assessments. The impact of this conservatism in risk estimates can be demonstrated by comparing the method of assessing noncancer hazards associated with arsenic exposure.

3.4 EXPOSURE ASSUMPTIONS

The exposure conditions at the site differ from the conservative standard default assumptions. The receptors at the site that may come in contact with the material of concern were identified as occupational workers. The climatic conditions of the area reduce exposure potential from that assumed for standard default exposures.

A summary of the results of the health-related issues associated with arsenic discussed to this point, are shown below. Specifically, risk- or hazard-based arsenic soil concentrations associated with site background, standard default residential and industrial exposure assumptions, snow cover, EPA's generic and arsenic risk management range and noncancer hazard are shown. The site-specific exposure conditions will be discussed below.

Exposure	Risk-based (mg/kg)	Hazard-based (mg./kg)
Standard Default - Residential	0.43ª	23
Snow Cover - Residential	0.6 ^a	32^{b}
EPA Risk M a na ge ment Range		
- Residentia l (10 ⁻⁶ to 10 ⁻⁴)	0. 4 3 to 43	N/A
EPA Arseni c Risk -Residential (10 ⁻³)		
	430°	N/A ^b
Site Backgr ou n d- Residential Risk (4.2 x 10 ⁻⁵)	18	N /A
Standard Default - Occupational	3.8 ^a .	613 ^b
Snow Cover - Occupational	_	854 ^b
EPA Risk Management Range -		
Occupational $(10^{-6} \text{ to } 10^{-4})$	3.8 to 380	N/A.
	3800	N/A
	160	N/A
(4.2×10^{-5})		

a Risk level at 10-5

3.4.1 Receptor

The AlliedSignal site is currently industrial and this use is not expected to change in the future. Therefore, the more appropriate exposure scenario would be that associated with industrial activities. The USEPA default exposure assumptions for an industrial setting are as follows:

b Hazard Quotient at 1

Section 3.0 Revision: 0 Date: January 8, 1997

Page: 3-8

Equation 5 (for carcinogens):

$$RBC \frac{mg}{kg} = \frac{RML \times BW_a \times AT_c}{EF_o \times ED_o \times \frac{IRS_a}{10^6 \frac{mg}{kg}} \times FC \times CSF_{as}}$$

$$RBC = 3.8 \frac{mg}{kg}$$

Equation 6 (for noncarcinogens):

$$RBC \frac{mg}{kg} = \frac{THQ \times RfD_{o} \times BW_{a} \times AT_{n}}{EF_{o} \times ED_{o} \times \frac{IRS_{a}}{10^{6} \frac{mg}{kg}} \times FC}$$

$$RBC = 613 \frac{mg}{kg}$$

Variable	Symbol	Default Value
Risk man ag em e nt level	RML	1 x 10 ⁻⁶
Target Ha za rd Quotient	THQ	1
Exposure duration, occupational	ED_{\circ}	25 years
Exposure fr equency, occupational	\mathbf{EF}_{o}	250 days/year
Body wei gh t, ad ult	$\mathrm{BW}_{\mathtt{a}}$	70 kg
Soil inges tio n ra te, adult	IRS_a	100 mg/day
Arsenic cancer slope factor	CSF_{as}	1.5 kg-day/mg
Reference dose, oral	RfD_o	3×10^{-4} mg/kg/day
Fraction of c ontaminated soil ingested	FC	0.5 (50%)
Fraction of contaminant absorbed into the body	FA	1 (100%)
Averaging time (carcinogen)	${ m AT_c}$	25,550 days (70 years)
Average time (noncarcinogen)	AT_{n}	9,125 days (25 year s)

These exposure assumptions are used in Equations 5 and 6 (for an adult) to obtain the following industrial RBC.

Date: January 8, 1997

Page: 3-9

Contaminant	RBC Industrial (mg/kg)		
Arsenic (as noncarcinogen)	613		
Arsenic (a s ca rcinogen) ^a	3.8		

^a At the **ris**k management screening level of 10⁻⁶

Based on EPA's risk management policy for arsenic as a carcinogen, acceptable industrial soil concentrations would range up to 3,800 mg/kg (1 x 10⁻³ risk). However, at that point the noncarcinogenic action must be considered and would take precedence resulting in acceptable arsenic soil concentrations of 613 mg/kg for industrial exposures. Therefore, the risk-based concentration for arsenic in soil in an industrial setting should be 613 mg/kg.

3.4.2 Climate

Climatic conditions (snow cover) at the site influences exposure to the surface soil at the site. Conservative default exposure assumptions do not take into account the days in the year that snow would cover the soil and prevent exposures. It is reasonable to assume that the ground would be either covered by snow or frozen for 3 months out of the year, resulting in a reduction of the exposure frequency assumption from 250 days per year to 180. The risk- and hazard based soil concentrations were adjusted upward by a factor of 1.4 using this assumption resulting in concentrations of 0.6 and 5.4, respectively (at 10⁻⁶ risk).

3.4.3 Bioavailability

For arsenic, excess cancer risk and noncancer hazard is estimated by application of cancer slope factors and reference doses (RfD) from an epidemiological study^{24,25,26} of a Taiwanese population with elevated levels of arsenic in their drinking water. In contrast to soluble arsenic in drinking water, arsenic forms in soil will be incompletely solubilized or absorbed during transit through the gastrointestinal tract, therefore, downward adjustment to arsenic exposures representing the reduced bioavailability should be made to reflect the difference between arsenic in drinking water and in soil. Bioavailability from solids, as determined from soil, is between two and eight percent (Johnson et al., 1989²⁷). Conservatively using 10% or a 0.1 fraction available for absorption, the acceptable soil concentrations for arsenic are greater that those established previously. These values are shown in the table below.

Tseng, W.P., 1977, "Effects and Dose-Response Relationships of Skin Cancer and Blackfoot disease with Arsenic Environmental Health Perspective," 19:109-119.

Tseng, W.P., 1989, "Blackfoot Disease in Taiwan. A 30-year Follow-up Study." Angiology 40:547-558.

Tseng, W.P., Chu, H.M., How, S.W., et al, 1968 "Prevalence of Skin Cancer in an Endemic Area of Chronic Arsenicism in Taiwan." J. Natl. Cancer Inst. 40; 453-463.

Johnson, J.D., Freeman, G.B., and Killinger, J.M., "Pilot Bioavailability Study of Lead and Arsenic in Soil Following Oral Administration in Rabbits," Columbus, OH, Battelle, I.D. No. 965-2600 (1989).

Date: January 8, 1997 Page: 3-10

	Residential		Occupational	
Parameter	Risk	Hazard	Risk	Hazard
RML or THQ	10-6	1	10 ⁻⁶ /	1
ED (years)	30	1	25	1
EF (days)	350	365	2 50	250
BW (kg)	70; 15	15	70	230 70
IRS (mg)	200; 100	200	100	100
FC	1	1	0.5	0.5
FA	0.1	0.1	0.1	0.3

Both low bioavailability from soil and snow cover are characteristic of this site. Therefore, the more appropriate soil concentrations were obtained by adjusting the exposure for the limited bioavailability of the arsenic in soil and the lack of exposure during snow cover. The risk- and hazard-based soil concentrations of arsenic would increase by at an order of magnitude.

Expos ure	Risk-based (mg/kg)	Hazard-based (mg./kg)
Bioavailab ili ty /S tandard	4.3 ^è	240°
Default - R es idential		2.10
Bioavailab ili ty /S now Cover -		
Residential	6.0^{a}	320 ^b
Bioavailability/Standard		320
Default - Occupational	37.8 ^a	6039 ^b
Bioavailability/Snow Cover-		9009
Occupational	52.9 ^a	8 540 ^b
8 Dialala 1 -+ 40-6		80.10

ª Risk level **a**t 10⁻°

3.4.4 Concentrations of Arsenic at Site

In USEPA Risk Assessment Guidance, Part A²⁸ the concentration term is calculated for use in the exposure assessment step of the risk assessment. For risk assessments, the concentration term in the intake equations is an estimate of the arithmetic average concentration for a contaminant based on a set of site sampling results. Because of the uncertainty associated with estimating the true average concentrations at a site, the 95% upper confidence limit (UCL) of the arithmetic means is used as the concentration of a contaminant in a risk assessment. The 95% UCL is very conservative and provides reasonable confidence that the true site average will not be underestimated.

The estimate of an average concentration is used because carcinogenic and chronic noncarcinogenic toxicity criteria are based on lifetime average exposures and the average concentrations is most representative of the concentration that would be contacted at a site over time.

As with most site soil data, the distribution of soil arsenic concentrations at the AlliedSignal Buffalo site is lognormal. Using standard USEPA guidance to determine the exposure point concentration of arsenic in soil, the 95% UCL of the arithmetic mean of the sample concentrations was calculated. If the 95% UCL is greater than the maximum value then the maximum concentration is used in the risk assessment. The statistical evaluation of arsenic in soils across the AlliedSignal Buffalo site include the

^b Hazard Quotient at 1

U.S. Environmental Protection Agency, Supplemental Guidance to RAGS: Calculations the Concentration Term, May 1992.

Section 3.0 Revision: 0 Date: January 8, 1997

Page: 3-11

results of the analyses of each surface soil (i.e., collected between 0 and 2 ft-bgs) sample collected during the **RF**I as well as the results of the six additional surface soil samples discussed in Section 2.5 of this CMS. A statistical summary of these data is presented as follows:

Sam pl e Loca tio n	Mean Concentra tion (mg/kg)	Standard Deviation (mg/kg)	Num ber of Samples	95% UCL/Max Concentration (mg/kg)
Under asph al t	48.4	51.2	6	2539/97.2
Gravel or G ra ssy Area	106 .5	97.0	14	249.2 /343
All	89.1	88.8	20	4 99.4/ 343
Bold values used in risk		00.0	20	100.1/040

By evaluating exposures based on these statistical parameters, it is assumed that if an exposed individual moves randomly across an exposure area, then the spatially averaged soil concentrations can be used to estimate the true average concentration contacted over time. The average concentration contacted over time would therefore equal the spatially averaged concentration over the exposure area.

While an individual may not actually exhibit a truly random pattern of movement across an exposure area, the assumption of equal time spent in different parts of the area is a simple but reasonable approach. However, in a more desperate data set, the 95% UCL becomes higher, even exceeding the maximum concentration. In these cases, the maximum concentration is used, which essentially assumes that the individual receives all of the exposure from that one area. For the AlliedSignal Buffalo site this is an extremely conservative assumption based on the knowledge of the site and the soil analytical results because the highest arsenic concentrations at the site occur in very localized area(s) and are typically covered by gravel or grass, which would limit the actual direct contact exposure.

Exposure to soil is a function of the surface soils' susceptibility to wind erosion. Vegetative and other ground coverings inhibit and may even prevent the soil exposure pathway. For example, some of the site soil is underneath asphalt. Therefore, there is no completed exposure pathway from the soil to human receptors. This is an engineering control of exposure. It would be reasonable to only assess the areas not covered by asphalt as available for exposure to site occupants. However, both the overall and the exposed areas will be assessed in the following analysis.

A comparison of the RBC and HBC for the residential and industrial scenario are shown in the table below.

Page: 3-12

Date: January 8, 1997

Exposure	Risk-Based (mg/kg)	Hazard-Based (mg./kg)
Standard D efa u lt - Residential	0.43ª	23 ^b
Snow Cove r - R es idential	0.6ª	32 ^b
Bioavailabil ity /Snow Cover - Residential EPA Risk M an agement Range	6.0 ^a	320 ^b
- Residentia l (10⁻⁶ to 10⁻⁴)	0.43 to 43	N/A
EPA Arsenic Risk Management-Residential (10 ⁻³)	430 ^a	N/A ^b
Site Background-Residential Risk (4.2 x 10 ⁻⁵)	18	N/A
Standard Default - Occupational	3.8ª	613 ^b
Snow Cover - Occupational	5.4 ^a	854 ^b
Bioavailability/Snow Cover - Occupational	54 ^a	8540 ^b
EPA Risk Management - Occupational (10 6 to 10 4)	3.8 to 380	N/A
EPA Arsenic Risk Management - Occupational (10°3)	3800	N/A
Site-Background Occupational Risk (4.2 x 10 ⁻⁵)		N/A

Summary of Arsenic Concentrations	-
Under pavement - Max Conc. 30 30 30 30 97.2	•
Grassy/gra ve l - 95% UCL 249.2	
All - Max. Conc.	ì

a Risk level at 10-6

Setting the **acceptable** risk to that associated with residential exposures to regional background concentrations of arsenic in soil (4.2 x 10⁻⁵), the comparable occupational soil concentration for arsenic would be 160 mg/kg. Based on the current USEPA position on arsenic (10⁻³ risk management level), the acceptable RBC for residential and occupational exposure scenarios could be as high as 430 and 3800 mg/kg, respectively. Thus for occupational settings the acceptable RBC and HBC would be 3900 and 613 mg/kg, respectively. The noncarcinogenic HBC, being the more stringent, would take precedence. The 95% UCL and maximum concentrations in the gravel or grass areas and overall site do not exceed either of these health based concentrations.

Another climatic condition that influences exposure to the surface soil at the site is snow cover. Conservative default exposure assumptions do not take into account the days in the year that snow would cover the soil and prevent exposures. It is reasonable to assume that the ground would be either covered by snow or frozen for 3 months out of the year, resulting in a reduction of the exposure frequency assumption from 250 days per year to 180. This would result in an increase in the RBC for soil by a factor of 1.4. This factor would be applied to both carcinogenic and noncarcinogenic risk-based concentrations. Similarly, it is unlikely that all of the occupational soil exposure would come from the area of maximum concentration or the 95% UCL value for the noncovered areas. The comparison of the range of "acceptable values" is shown below.

Assessing the risk associated with exposure to the 95% UCL of the arithmetic mean and the maximum detected arsenic soil concentrations, the results are within the acceptable risk range. Using the standard default exposure assumptions for industrial land use, the resultant risks are 6.5×10^{-5} and 9.0×10^{-5} for exposure to the 95% UCL or the maximum arsenic concentration soil, respectively. These are in the same risk range as that deemed acceptable by NYSDEC (i.e., 10^{-5}). Accounting for lower exposures during the winter months, the resultant risk to the 95% UCL and maximum arsenic

^b Hazard Q**uo**tient at 1

Date: January 8, 1997 Page: 3-13

concentrations would be 4.6×10^{-5} and 6.5×10^{-5} , respectively. None of the detected concentrations of arsenic in soil at the site pose an unacceptable noncarcinogenic hazard.

3.5 SUMMARY OF RISK ASSESSMENT

As presented and discussed above, the arsenic concentrations in soils at the AlliedSignal Buffalo site do not pose and unacceptable risk nor noncancer hazard to site occupants current (occupational) or the unlikely future scenario (residential). This conclusion is based on EPA arsenic cancer risk policy and current knowledge of arsenic's mechanism of action as well as arsenic's bioavailability in soils upon ingestion.

Even without consideration of the upcoming changes in the cancer risk assessment policy or the reduced bioavailability of arsenic in soil, the generic nonrestricted, risk-based soil concentrations do not apply to this site. The site-specific assumptions include:

- Industrial rather than residential receptors; and
- 180 days of exposure (accounting for frozen ground or snow cover) rather than 250.

With consideration of the current EPA risk management policy for arsenic (<10⁻³ risk), the arsenic soil concentrations at the AlliedSignal Buffalo site are well within the acceptable range. Due to the uncertainty in the risk assessment process, EPA risk assessment guidelines and the default conservative exposure assumption overestimates risk. The current risk assessment indicates that noncancer hazards and cancer risks may be a concern using standard conservative default industrial exposure assumptions, when soil arsenic levels exceed 613 mg/kg. This level is approximately twice that found as the maximum concentration of arsenic in soil on the AlliedSignal Buffalo site.

3.6 REMEDIAL ALTERNATIVES

While the goal of remedial action is to prevent or reduce the risks to human health posed by contact with contaminants associated with the surface soil, the short- and long-term risk of the remedial alternatives must also be evaluated when selecting the best remedy for a site. In additional other important aspects must be considered as well including technical feasibility, costs and implementability.²⁹

Based on the risk assessment provided in this CMS, the concentrations of arsenic in soils across the AlliedSignal Buffalo site, do not pose an unacceptable cancer risk or noncancer hazard to site occupants (occupational) or unlikely more conservative future land use (residential). Therefore, the risk-based, proposed remedial alternative is no action. Two other remedial alternatives to reduce or eliminate exposure to arsenic in soil will be discussed: (1) excavation with removal, and (2) covering.

Using the same conservative default assumptions as provided above for deriving occupational soil concentration and risk from exposure to site background, the estimated risk to current occupants of the site is 6.2×10^{-5} for grassy and gravel areas and 9.0×10^{-5} for the entire site (based on maximum concentration of 343 mg/kg). The latter is the most conservative estimate since it reflects reasonable maximum exposure (RME) to the maximum concentration found on the site. This can be interpreted that the entire amount of soil that the individual ingests on-site is from the area of the highest arsenic concentrations, even though this is highly unlikely. However, even if it were the case, it would be within EPA's risk management range of 10^{-4} to 10^{-5} and is similar, from the statistical probability

U.S. Environmental Protection Agency, 1991, Human Health Evaluation Manual, Part C: Risk Evaluation of Remedial Alternatives, December 13, 1991.

Date: January 8, 1997

Page: 3-14

perspective, to the risk level deemed appropriate for residential exposures (and presumably occupational exposures) of 4.2 x 10⁻⁵.

3.6.1 Excavation

The removal of the soils containing arsenic at concentrations greater than the NYSDEC acceptable target cleanup level for unrestricted use (i.e., site background concentration of 18 mg/kg) would require removal of a considerable portion of the surface soil of the sampled area. In addition, the residual risk after remediation (long-term risk of remediation) to the NYSDEC acceptable cleanup level for unrestricted use (18 mg/kg) remains at 4.2×10^{-5} .

Alternatively, based on the acceptable risk level for nonrestricted use, the industrial exposure scenario resulting in the comparable generic or snow-covered risk-based soil concentration of arsenic would be 160 and 224 mg/kg, respectively. Only two areas on the site exceed this value. The act of removal results in a potential for greater exposures, albeit over shorter periods of times that would then be added to the existing "background" exposures. This can be demonstrated using standard exposure assumptions for a construction worker removing the surface soil containing arsenic at the maximum concentration of 343 mg/kg. The assumptions are shown below assuming no personal protection of the hazardous waste worker.

Short-term exposure health risks generally include any current baseline risks plus any new risks that would occur while implementing the remedy. While in practice, the Worker Protection Standards require that implementation of the selected remedy proceed with risk-related considerations including personal protection equipment, a baseline risk assessment can be conducted assuming no personal protective equipment. However, on-site remediation workers are most likely equipped with appropriate PPE and are required to use appropriate engineering controls, their risk generally should be minimal, Factors that affect the potential for exposure include the likelihood of PPE failure. In general, the more restrictive PPE is more likely to fail due to considerations such as worker mobility and visibility constraints and potential for worker heat stress.

Variable	Symbol	Default Value
Arsenic conc entration in soil	С	343 mg/kg
Exposur e d ur ation	ED	1 year
Exposure frequency	EF	60 days/year
Body weight	BW	70 kg
Soil ingestion	IRS	480 mg/day
Fraction of contaminated soil ingested	FC	1 (100%)
Fraction of contaminant absorbed into the	FA	1 (100%)
body		, ,
Average time	AT	25,550 days (70 years)
Cancer slope factor	CSF	1.5 kg/day/mg
Reference Dose (Oral)	RfD_{α}	3×10^{-4} mg/kg/dav
Average Time (noncarcinogenic-construction)	$AT_{\mathtt{N}}^{o}$	365 davs

Date: January 8, 1997

Page: 3-15

Equation 7 (for carcinogens):

$$R = \frac{C \times IRS \times CSF \times EF \times ED \times FC}{BW \times AT \times 10^6 \frac{mg}{kg}}$$

$$R = 8.3 \times 10^{-6}$$

When the above assumptions are used in Equation 3, the carcinogenic risk from this short term (less than life time) exposure is determined to be 8.3×10^{-6} . This would be added to the risk from industrial exposures to background concentrations (4.2×10^{-5}) resulting in a cumulative lifetime risk of 5.2×10^{-5} for that individual - an individual lifetime risk similar to than that of an individual exposure to the current site conditions (6.2×10^{-5} to 9.0×10^{-5}). In addition, the excavation and removal of the soil would increase the amount of dust and thus exposure to soil containing arsenic for on-site workers.

Equation 8 (for noncarcinogens):

$$HQ = \frac{C \times IRS \times EF \times ED \times FC}{BW \times AT_{N} \times RfD_{o} \times 10^{6} \frac{mg}{kg}}$$

$$HQ = 1.3$$

More importantly, the higher soil ingestion during excavation (assuming no personal protective equipment) produces an unacceptable hazard using Equation 4. Based on the above exposure assumptions, the hazard quotient is greater than 1 (1.3). The relatively high level limited exposure posed by excavation is hazard where no such unacceptable hazard exists for the current site conditions. Therefore, not only does the excavation scenario produce carcinogenic risks that must be added to that for background arsenic lifetime exposures, the soil removal poses a hazard for the excavation worker that would not exist for receptors at the site unless the soil was disturbed.

3.6.2 Engineered Control

As an alternative, routine exposure to the soils deemed to be in excess of NYSDEC's risk management level for the site could be provided with an engineered barrier, e.g., asphalt paving or placement of additional top soil. This would preclude exposures to those soils with arsenic concentrations in excess of what NYSDEC has deemed acceptable for unrestricted use (i.e., 4.2 x 10⁻⁵ risk).

Date: January 8, 1997

Page: 4-1

4.0 CORRECTIVE ACTION OBJECTIVES

The following sections define the objectives of the corrective action to be performed at the facility. The objectives identified are based on the results of the RFI Report, the risk assessment, and NYSDEC guidelines governing cleanup criteria associated with the elevated levels of arsenic in soil.

4.1 IDENTIFICATION OF COCs

As a result of the RFI, COCs were identified for surface soils and storm sewer water within the facility. The COCs associated with the storm sewer water (methylene chloride and acetone) were addressed by the issuance of a new BSA Permit; as a result no further action is required. Arsenic was identified as a COC with respect to surface soils in the ten locations identified in Chapter 2.0. It was determined by the NYSDEC that a CMS be performed to identify CMAs that can address the surface soils with elevated arsenic concentrations..

4.2 OBJECTIVES OF THE CMS

Based on the results of the RFI, the NYSDEC has determined a CMS is necessary in reference to arsenic concentrations in surface soils in the vicinity of the SWMU. The objectives of the CMS are as follows:

- Identify Corrective Measure Technologies (CMTs) that address concentrations of arsenic in surface soils that are greater than 18 mg/kg based on NYSDEC's perception of site background.
- Evaluate the potential CMTs and identify the Corrective Measure Alternatives (CMAs) which address arsenic in surface soils in the vicinity of the SWMU.
- Evaluate the CMAs identified with respect to the proposed alternatives:
 - technical merit
 - ability to meet environmental cleanup objectives identified by the risk assessment and NYSDEC guidelines
 - effect on human health of the facility worker and/or corrective action worker
 - ability to be employed at the facility
- Propose a CMA that can be employed at the facility and be protective of the environment and human health

These objectives are met through the completion of the following sections of the CMS.

Date: January 8, 1997

Page: 5-1

5.0 SCREENING OF CMTS AND IDENTIFICATION OF CMAS

An initial screening of the CMTs was performed by Remcor in the April 6, 1994 submittal entitled "Pre-Investigation Evaluation of Corrective Measure Technologies." The initial screening was done to identify the alternative technologies considered technically feasible and appropriate to address facility-specific constituent characteristics and conditions. The list of CMTs was developed based on the four general response actions including:

- No Action based on the concentrations detected which are typically below existing TAGM 4046 cleanup levels
- Removal and recovery measures to excavate media containing concentrations of facility-related constituents, classified as hazardous, that exceed TAGM 4046 cleanup levels
- Treatment and discharge measures to convert media of concern to a form that will have little or no adverse public health or environmental effects
- <u>Containment measures</u> to manage affected media on a long-term basis to limit their interaction with the environment and public.

These general response actions and how they relate to potential CMTs are discussed in greater detail in the following sections of this chapter.

5.1 SCREENING OF CMTS

There are a **numb**er of potential CMTs associated with the general response actions for this facility. The most appropriate CMTs were identified based on the following screening criteria:

- Facility **Chara**cteristics:
 - General working conditions within and adjacent to the facility
 - Facility configuration and accessibility
 - Climate
 - Soil characteristics
 - Constituent concentrations in soil
 - Potential migration pathways and receptors
- Media Characteristics:
 - Chemical composition and quantities
 - **Bi**odegradability
 - **So**lubility
 - Volatility
- Technology Limitations:
 - Applicability to the facility and area characteristics
 - Technical feasibility
 - Level of performance and risk reduction
 - Cost effectiveness

Potential CMTs for surface soils with arsenic levels of concern were evaluated using the screening criteria listed above.

Section 5.0 Revision: 0 Date: January 8, 1997

Page: 5-2

5.1.1 No Action

The No-Action CMT for surface soils remediation at the facility is based on the results of the risk assessment presented in Chapter 3.0 of this report. In the risk assessment, it was determined that arsenic concentrations reported in surface soils at the facility do not pose an unacceptable risk nor noncancer hazard to site occupants, either occupational or residential. As detailed in Chapter 3.0, the maximum arsenic concentration reported on site was 343 mg/kg (boring SB-3). Based on the results of the risk assessment, noncarcinogenic hazards are the determinant factors over carcinogenic risks. The noncarcinogenic hazard threshold value for arsenic cleanup at the site is 613 mg/kg.

The No-Action alternative would not alter the configuration, accessibility or general working conditions at the facility as the soil would be left in place. The facility currently operates in an industrial setting and access is limited to those employed by the facility. The general public has no access to the site; access is limited by fencing which surrounds the site and 24 - hour security personnel. The site has historically been used as an industrial facility, as has most of the properties which are nearby. AlliedSignal has no plans to convert this facility from an industrial setting at any time in the foreseeable future.

The extent of the arsenic impact at the facility (based on the 24 mg/kg NYSDEC action level) is limited to the surface soils in portions of the facility surrounding the SWMU, AOC-3 (the Drum Storage Area), and Monitoring Well MW-10. Arsenic was not detected in subsurface soil samples collected from 8 to 10 ft-bgs in concentrations greater than the NYSDEC action level. Likewise, the results of groundwater sampling conducted on two occasions did not indicate elevated concentrations of arsenic. Based on these findings, the soils with elevated arsenic concentrations can be left in place and not impact either the deeper subsurface soils or groundwater at the facility.

Based on the risk assessment, the noncarcinogenic hazard and the carcinogenic risk associated with the arsenic concentrations reported in surface soil samples collected at the facility do note present an unacceptable risk. As a result, the no action alternative is warranted regardless of whether the site is operated in an industrial setting as it is now or if it is converted to a residential setting. There is no cost associated with the No Action alternative.

5.1.2 Removal and Recovery Measures

The removal and recovery CMT results in the removal of soil with elevated arsenic concentrations for subsequent treatment and/or containment (i.e., off-site landfill) and backfilling of excavated areas with clean fill. This technology involves conventional excavation procedures to remove soils from the facility. The excavated soils are transported and disposed of in an off-site landfill in accordance with all regulatory requirements.

In a letter to Mr. Dayne Crowley of HLA from Mr. Tim DiGiulio of the NYSDEC dated December 3, 1996, the NYSDEC indicated an arsenic concentration of 18 mg/kg would be an acceptable target cleanup level for surface soils at the facility. This concentration is based on the NYSDEC's perception of background conditions at the facility and would be necessary for the NYSDEC to approve unrestricted use of the site.

The risk assessment evaluates the risk associated with the 18 mg/kg criteria and finds an exceedence of the 1×10^{-6} risk level for carcinogens. When an arsenic concentration of 18 mg/kg is inserted in the standard residential risk-based calculation employed by the NYSDEC, a risk of 4.2×10^{-5} was determined.

Section 5.0 Revision: 0 Date: January 8, 1997

Page: 5-3

Assuming a cleanup level of 18 mg/kg were employed, removal and recovery measures would significantly alter working conditions at the facility while excavation activities were being performed. As a result, access throughout most of the plant would be limited, in some cases making it difficult for the facility to conduct business (access to the Pilot Plant and its associated features would be limited). In addition, sections of asphalt roadway would need to be destroyed and later replaced to remove unexposed soils with arsenic concentrations greater than 18 mg/kg.

The technology exists and can be employed to excavate and dispose of all surface soils within the facility with concentrations greater than 18 mg/kg. However, the benefits of removing the assumed risk from the site are not justified by the cost associated with this technology. Based on the existing data, approximately 3,000 cubic yards of soil would need to be removed and disposed of as well as approximately 2,400 square feet of asphalt. The cost associated with the excavation and disposal of this volume of soil is approximately \$1,100,000. The concentrations of arsenic observed at this industrial site where access is limited, do not warrant an expenditure of this degree when other more cost-effective approaches exist.

In addition to the cost, there would be potential for significant hazard for any unprotected worker performing the excavation work. Furthermore, the removal activities would create dust that would increase exposures to arsenic above that currently existing at the site. The risk assessment states that unprotected workers performing excavation activities could be exposed to a degree which produces a hazard quotient greater than 1. The hazard quotient is not exceeded if the soil is left in place.

5.1.3 Containment Measures

Containment measures are employed to limit human health and environmental exposure (i.e., preclude human contact with the material of concern to limit potential health risks). Such modifications include covering of the media with top soil or pavement. On-site isolation can be completed using any of the options listed below:

- Cover the areas of concern with additional top soil and vegetative cover
- Cover the areas of concern with a low-permeability cap (i.e., asphalt pavement)
- Isolate the area with elevated arsenic levels with a chain-link fencing

Of these options, isolation through the use of additional top soil or asphalt would have the least adverse impact on site operations while effectively eliminating the risk of human exposure. Isolation by chain link fencing does not eliminate the risk associated with exposure to workers and would limit access to portions of the plant and potentially alter access to some plant buildings. The greatest arsenic impact is observed in landscaped areas of the plant; the placement of additional top soil and revegetation eliminates the risk while retaining the plant's configuration and surface water drainage patterns.

Each of the containment measures discussed above are technically feasible and could be employed at the facility to accomplish the objective of limiting human contact with surface soils of concern. Covering the areas of concern with either topsoil or asphalt would be more effective in reducing human contact as the soils with an elevated arsenic concentration would no longer be exposed. Isolating the areas of concern with fencing reduces human contact, however it does not eliminate it. The areas of impact are largely landscaped; these areas will need to be maintained and to do so a site worker will be exposed to the subject surface soil.

Section 5.0 Revision: 0 Date: January 8, 1997

Page: 5-4

The most cost-effective way to eliminate the risk associated with the surface soils containing arsenic is the placement of six inches of topsoil and vegetative cover. This alternative eliminates human contact with the soils containing arsenic while maintaining the current facility configuration and surface water drainage patterns. This technology can be employed for approximately \$31,500. The next most cost effective option is the placement of an asphalt cap over the appropriate areas. This alternative changes the configuration of the plant and substantially alters the surface water runoff pattern at the facility. This technology can be employed for approximately \$35,000. This cost does not reflect the additional costs associated with the maintenance of the asphalt. It is estimated the areas will need resurfaced every 3 to 5 years at a cost of approximately \$22,000 per event. The least effective option is the installation of chain link fence around the areas of elevated arsenic in soil. This alternative significantly alters the plant's configuration while reducing, not eliminating, the risks associated with the subject surface soils. The cost to implement this technology is approximately \$30,000.

5.2 IDENTIFICATION OF CORRECTIVE MEASURE ALTERNATIVES

The following sections will identify the CMAs which can be implemented at the facility to remediate the areas of concern at the facility. The estimated costs associated with implementing each CMA are presented in Appendix C.

5.2.1 No Action

Based on the risk assessment presented in Chapter 3.0, the concentrations of arsenic in surface soils across the facility do not pose an unacceptable cancer risk or noncancer hazard to site occupants (occupational) or the unlikely future land use (residential), when site-specific conditions are considered. This conclusion is based on the EPA cancer risk policy and current knowledge of arsenic's mechanism of action as well as arsenic's bioavailability in soils upon ingestion.

Even without consideration of the upcoming changes in the cancer risk assessment policy or the reduced bioavailability of arsenic in soil, the generic nonrestricted, risk-based soil concentrations do not apply to this site. The specific assumptions include:

- Industrial rather than residential receptors; and
- 180 (accounting for frozen and/or snow covered) rather than 250 days of exposure

With consideration of the current EPA risk management policy for arsenic (<10⁻³ risk), the concentrations of arsenic in surface soils at the facility are well within the acceptable range. Due to the uncertainty in the risk assessment process, EPA risk assessment guidelines and the default conservative exposure assumptions overestimate risk. The current risk assessment indicates that noncancer hazards and cancer risks may be a concern using standard conservative default industrial exposure assumptions when arsenic concentrations in surface soils exceed 613 mg/kg. The highest arsenic concentration detected at the facility was 343 mg/kg.

For this reason, the proposed CMA is No Action.

5.2.2 Excavation and Disposal

The NYSDEC has indicated that an arsenic concentration of 18 mg/kg would be an acceptable cleanup objective for unrestricted use of the property. To accomplish this, approximately 12 to 24 inches of soil would be removed and direct loaded into trucks for subsequent off-site disposal using conventional excavation techniques. The areas of the facility which would require excavation are illustrated in

Section 5.0 Revision: 0

Date: January 8, 1997

Page: 5-5

Figure 5. These areas encompass an approximate area of 40,500 square feet and represent approximately 3,000 cubic yards of soil.

It is estimated this work can be completed for approximately \$1,100,000.

The excavated soil will be directly loaded onto trucks and shipped to the disposal facility. Prior to initiating the project, the materials will be characterized for disposal and an appropriate landfill will be selected. It is estimated that transportation and disposal of the soils will cost approximately \$945,000.

Once excavation activities are completed, the areas will be landscaped to pre excavation conditions with the appropriate amount of top soil and vegetation. Asphalt will also need to be replaced in the vicinity of MW-9 and MW-7. It is estimated an area of approximately 2,400 square feet will need to be resurfaced following excavation activities. The cost associated with the completion of these tasks is estimated to be approximately \$95,000.

Excavation and disposal of surface soils at the facility with arsenic concentrations greater than the NYSDEC imposed cleanup objective of 18 mg/kg will cost approximately \$1,100,000. In doing so, the risk is removed from the site, however, the additional hazard associated with the workers performing the excavation activities exceeds the hazard quotient of 1.

5.2.3 Containment Alternatives

Two containment alternatives exist which eliminate the risk perceived by the NYSDEC associated with the surface soils with elevated levels of arsenic; these alternatives include covering the appropriate areas of the facility with either an additional six inches of top soil or asphalt pavement. The areas of concern are identified in Figure 5 and consist of approximately 28,700 square feet in the vicinity of Monitoring Well MW-10 and approximately 9,000 square feet east of the SWMU. These alternatives are described individually in the following sections.

5.2.3.1 Top Soil Cover

Each of the areas identified in Figure 5 are in areas of the plant which are currently landscaped. To eliminate human exposure to the soils areas with elevated arsenic, each of the areas illustrated will be landscaped by placing six inches of topsoil over the existing soil and planting grass. It is estimated approximately 705 cubic feet of top soil will be placed at an estimated cost of \$21,150. The areas will then be seeded for an additional cost of approximately \$5,000. The total cost associated with this alternative is approximately \$31,500.

There are no additional maintenance costs associated with this alternative as the areas are currently landscaped and AlliedSignal budgets for its maintenance. Additionally, as the areas are currently landscaped, there will be no alteration in surface water runoff patterns across the areas in question.

5.2.3.2 Asphalt Pavement Cover

Each of the areas identified in Figure 5 will be covered with an asphalt pavement consisting of a two inch thick layer of surface course (I-2 Mix). The areas to be paved would not be subjected to vehicular traffic; as a result a two inch layer would be sufficient to eliminate human contact with the soils of concern. The asphalt would also significantly limit infiltration from the surface.

Section 5.0 Revision: 0

Date: January 8, 1997

Page: 5-6

Maintenance of the paved area would be required if this alternative were selected. The paved areas would need to be inspected once a year and it is estimated the areas would need to be resurfaced with a one inch thick layer of surface course (I-2) every five years.

The two areas have a combined area of approximately 38,100 square feet. It is estimated it will cost approximately \$35,000 to cover these areas with asphalt.

There is also additional cost associated with the maintenance of the paved areas. The integrity of the paved surface should be inspected yearly and resurfaced every 5 years. The costs associated with the resurfacing is approximately \$21,100.

The asphalt pavement does eliminate the exposure to the soils but in doing so it alters the configuration of the plant as well as the current surface water runoff patterns. The two areas with elevated arsenic levels are currently landscaped. If they become paved, runoff from precipitation could cause problems in the vicinity of the SWMU and Shipping and Receiving Building.

5.2.3.3 Isolation through Fence Installation

This CMA is not as effective as either the soil or asphalt cover as the surface soils are still exposed and the potential for human contact exists. The areas to be isolated with chain link fence include the areas identified in Figure 5 and encompass a total area of approximately 38,100 square feet. To isolate these areas with fencing would cost approximately \$30,000. Once the fence is installed, the landscaped areas within the fence must still be maintained. This creates an exposure to the worker performing the landscaping. For this reason, this CMA is not as effective as either of the cover methods.

Section 6.0 Revision: 0 Date: January 8, 1997 Page: 6-1

6.0 RECOMMENDED ACTION

The risk assessment included in this CMS has concluded that the existing concentrations of arsenic in surface soil do not pose an unacceptable risk at an industrial site. Using standard conservative, default risk assessment exposure assumptions and the USEPA's risk policy for arsenic, noncarcinogenic hazards may be a concern when surface soil arsenic levels exceed 610 mg/kg. This threshold concentration nearly doubly exceeds any detected concentration of arsenic in soil at the site. The maximum detected arsenic concentration in soil was reported in the RFI as 343 mg/kg. When the risk assessment considered the risk associated with removal of the soil, it was concluded that a hazard level greater than unity was posed to the unprotected excavation workers, which represents an unacceptable and unnecessary risk.

Because the facility is an industrial site, and there appears to be no reason to discontinue such a usage of the property, HLA recommends that the no action alternative be implemented. Because arsenic concentrations will be present in soil that exceed background levels in the region, it will be necessary to ensure that the usage of the property will continue as industrial. Furthermore, AlliedSignal should maintain the areas with elevated arsenic concentrations as per their current status. If work is to be undertaken in these areas that requires excavation, proper safeguards should be put in place to limit the potential exposure of the workers, or the assumptions presented in this risk assessment should be reviewed to determine whether workers are likely to be subject to exposure to unacceptable risk.

DISTRIBUTION CORRECTIVE MEASURES STUDY ALLIEDSIGNAL, INC. BUFFALO RESEARCH LABORATORY

Prepared for AlliedSignal Inc.

1 copy Mr. William R. Hanavan

AlliedSignal, Inc. 20 Peabody Street

Buffalo, New York 14210

1 copy Mr. William E. Yanovitch

AlliedSignal, Inc.

4101 Bermuda Hundred Chester, Virginia 23831

1 copy Mr. Donald Hirshmann

AlliedSignal, Inc. 101 Columbia Road Morristown, NJ 07962

1 copy (original) Mr. Timothy I. DiGiulio, P.E.

NYSDEC 50 Wolf Road

Albany, New York 12233-7252

1 copy Mr. Nelson Schabel

NYSDEC Region 9 270 Michigan Avenue

Buffalo, New York 14203-2999

1 copy Mr. W. Palomino

Hazardous Waste Facilities Branch

U.S. EPA Region II 290 Broadway

New York, New York 10007-1866

1 copy Mr. Dayne Crowley

Harding Lawson Associates

1 copy Mr. Eric Reisinger

Harding Lawson Associates

1 copy Project file

Quality Assurance/Quality Control Reviewer:

Pat Pontoriero, P.G.

Managing Associate Geologist

This document was prepared for the sole use of AlliedSignal, Inc., and the NYSDEC, the only intended beneficiaries of our work. No other party shall rely on the information contained herein without the prior written consent of Harding Lawson Associates.

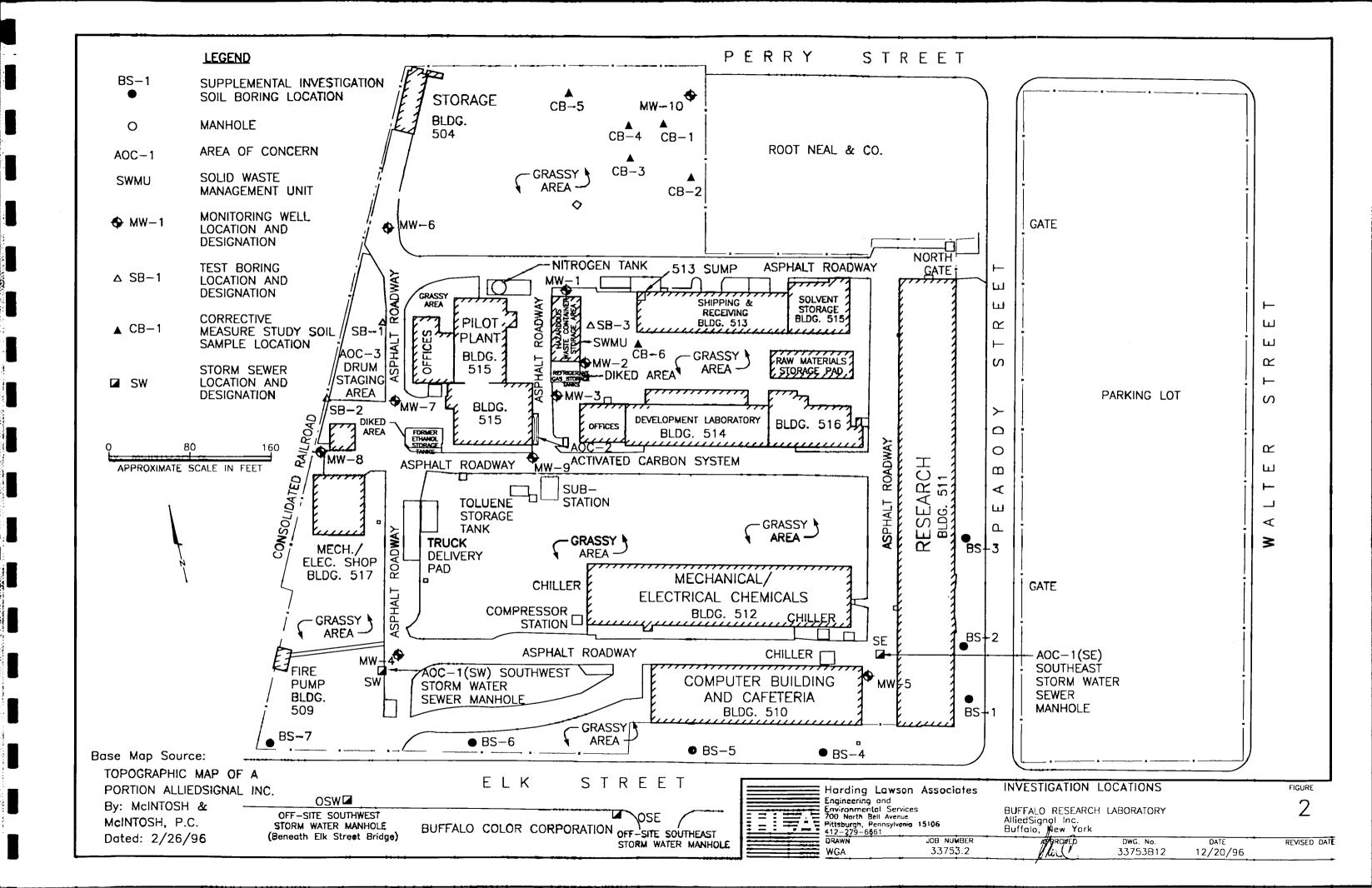
FIGURES

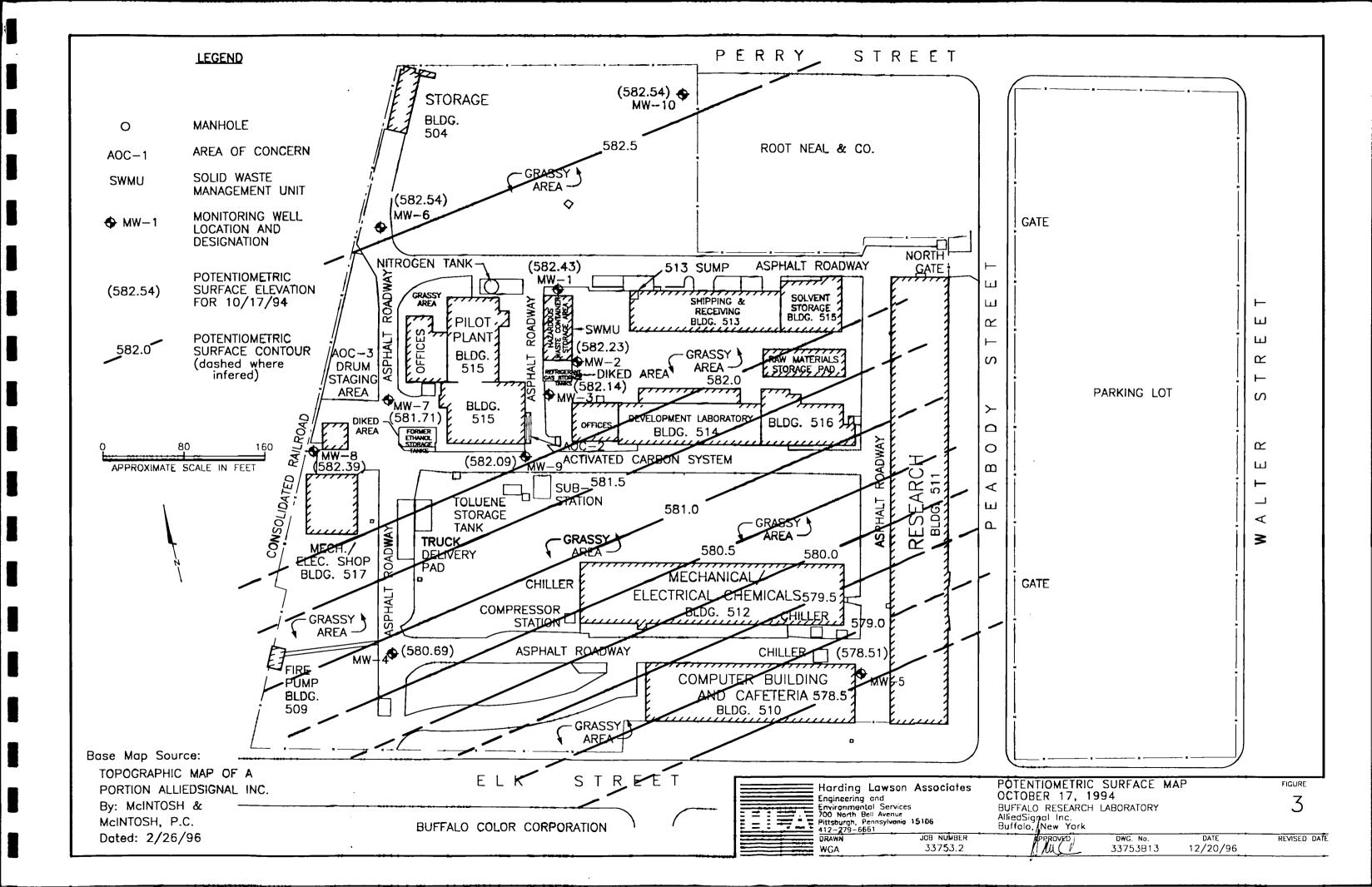
DRAWING NUMBER 33753A01

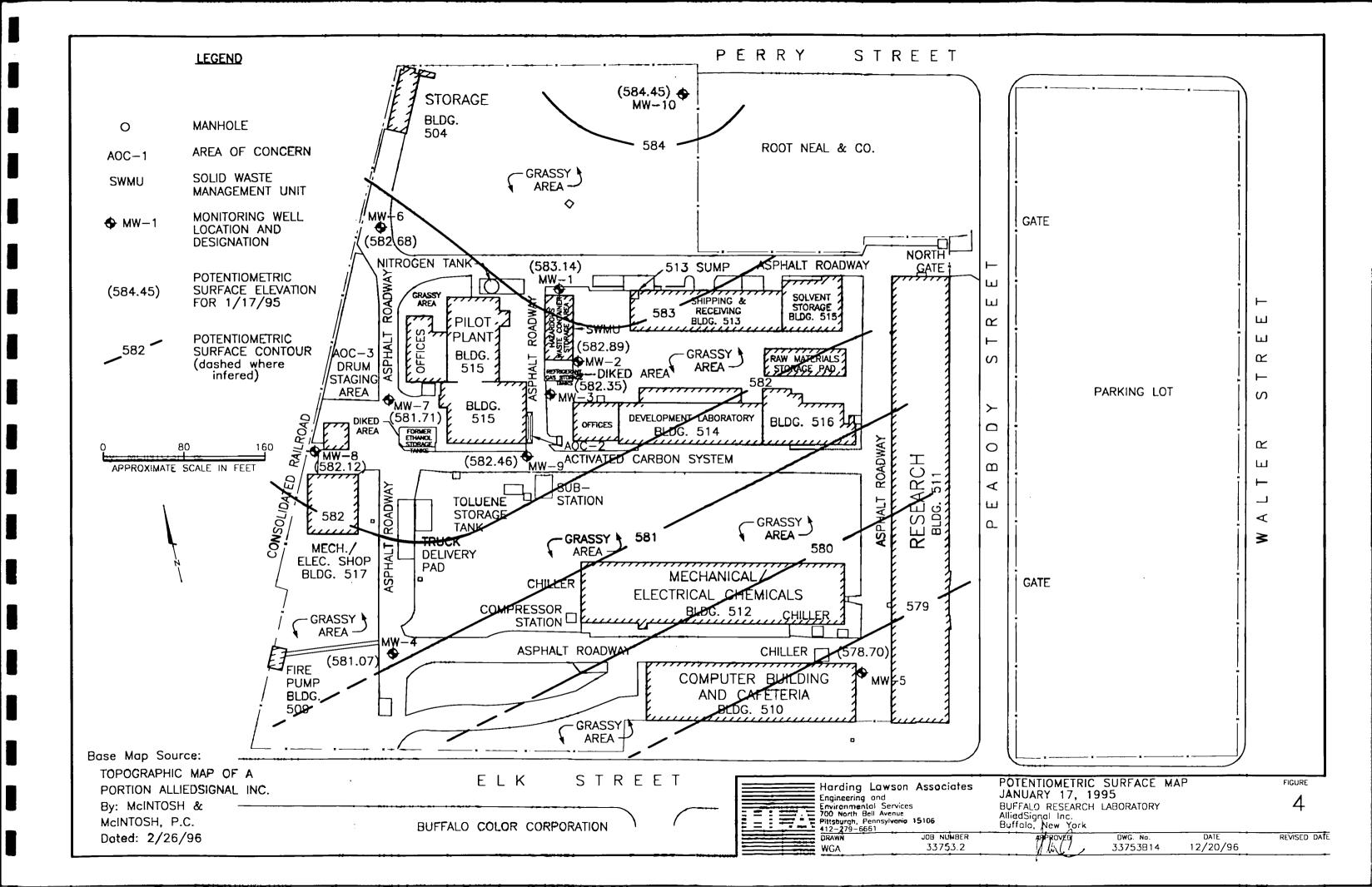
DATE

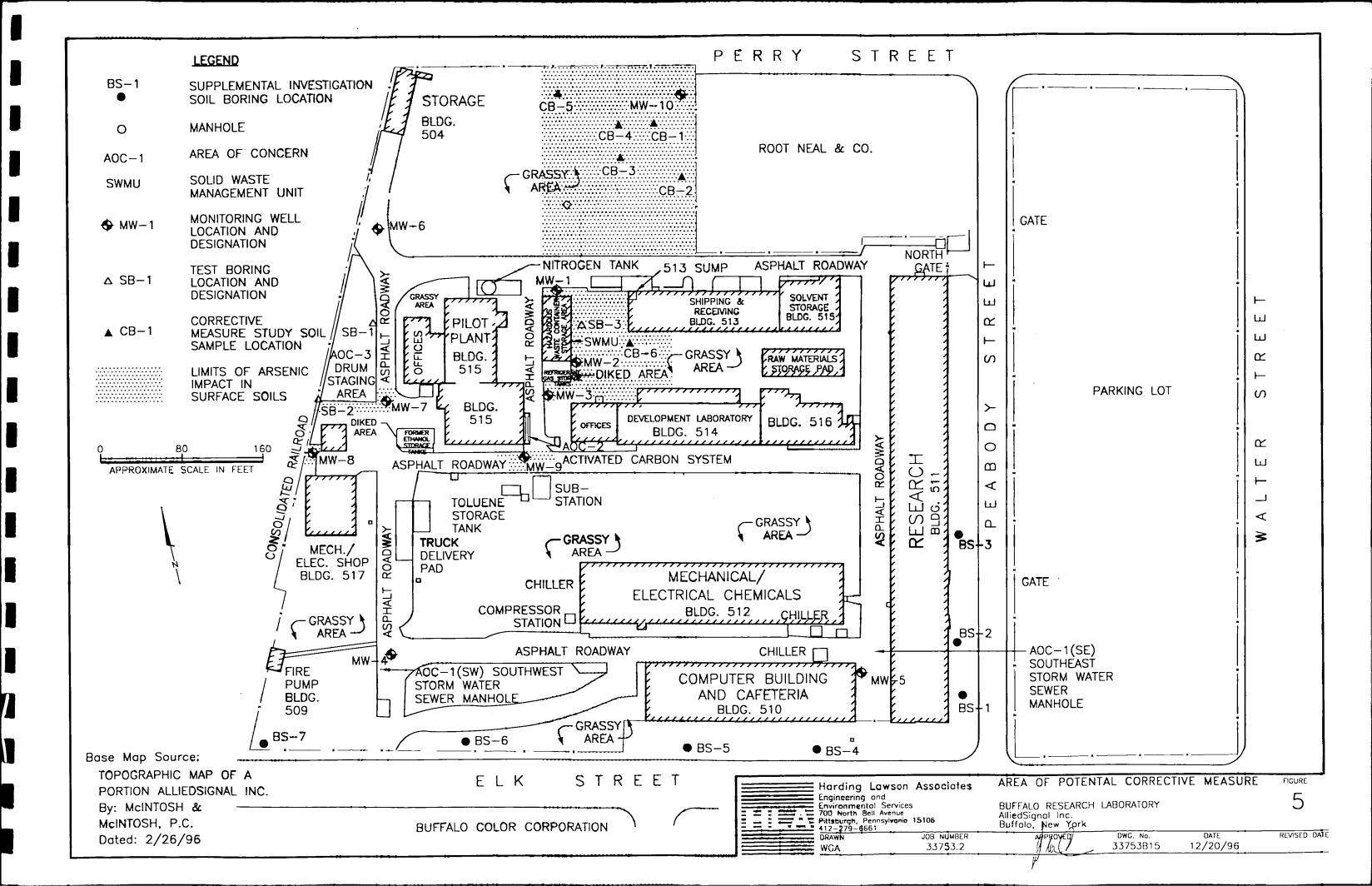
1/8/97

REVISED DATE




412-279-6661 DRAWN


BLA


JOB NUMBER

33753.6

Tables

TABLES

Table 2-1 Inorganic Results for Surface Soil Samples RCRA Facility Investigation AlliedSignal, Inc. Buffalo Research Laboratory Buffalo, New York

			anagement Unit				
			Sample ID, Interval and Collection Date				
Parameters	MDL ^(a)	Units	BRL-SS-MW1-0002 MW-1 0-2 ^(b) 09/26/94	BRL-SS-MW1-0002D MW-1 0-2 (duplicate) 09/26/94	BRL-SS-MW2-0002 MW-2 0-2 09/29/94	BRL-SS-MW3-0002 MW-3 0-2 09/29/94	
INORGANICS							
Arsenic	0.5	mg/kg ^(c)	180 J ^(d)	236 J	117 J	46.8 J	
Barium	0.1	mg/kg	42.9 J	79 J]	44.2 J	34.8 J	
Cadmium	0.2	mg/kg	4.5	6.1	2.8	1.1	
Chromium (total)	5	mg/kg	29	30.6	37	14	
Lead	10	mg/kg	111 J	174 J j	80 J	30 J	
Mercury	0.04	mg/kg	0.42 J	0.84 J	0.37 J	0.04 J	
Selenium	0.2	mg/kg	1.0 U ^(e)	1 U	1 U	1 U	
Silver	0.5	mg/kg	1.0 J	0.87 J	0.5 U	0.7 J	
Cyanide (total)	0.010	mg/kg	0.05 U	1.5 J	0.05 U	0.05 U	
MISCELLANEOUS							
Moisture content	0.1	percent	7.8	_ (f)	12	12	
Total Organic Carbon	500	mg/kg					

(a)

"MDL" indicates Method Detection Limit.
Sample interval is expressed in feet below ground surface,
"mg/kg" indicates milligrams per kilogram.
"J" indicates the value is estimated.
"U" indicates the compound was not detected.
"--" indicates not analyzed. (b)

(c)

(d)

(e) (f)

Prepared by: LH Checked by: ELR

Table 2-1 **Inorganic Results for Surface Soil Samples** RCRA Facility Investigation
AlliedSignal, Inc. Buffalo Research Laboratory
Buffalo, New York

			Solid Waste Management Unit		-Storm System	AOC-2 - Activated Carbon System
					l and Collection Date	
Parameters	MDL ^(a)	Units	BRL-SS-SB3-0002 SB3 0-2 09/29/94	BRL-SS-MW4-0002 MW-4 0-2 10/03/94	BRL-SS-MW5-0002 MW-5 0-2 10/04/94	BRL-SS-MW9-0002 MW-9 0-2 10/04/94
<u>INORGANICS</u>		:				
Arsenic Barium Cadmium Chromium (total) Lead Mercury Selenium Silver	0.5 0.1 0.2 5 10 0.04 0.2 0.5	mg/kg ^(c) mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	343 J 75.5 J 0.3 25 16 J 3.1 J 1.5 2.1 J	0.6 J 15.5 J 0.2 U 5 U 10 U 0.04 U 1 U 0.5 U	7.6 J 77.5 J 0.6 16 103 J 8.9 J 1 U 0.5 U	97.2 J 110 J 2.7 20 70 J 0.22 J 1 U 0.5 U
Cyanide (total) MISCELLANEOUS	0.010	mg/kg	0.05 U	0.05 U	0.05 U	0.05 U
Moisture content Total <u>Organic C</u> arbon	0.1 500	percent mg/kg	15	20 18000	20 15000	17

"MDL" indicates Method Detection Limit.

Sample interval is expressed in feet below ground surface.

"mg/kg" indicates milligrams per kilogram.
"J" indicates the value is estimated. (c)

"U" indicates the compound was not detected.

"-" indicates not analyzed.

Prepared by: LH Checked by: DR

Table 2-1 **Inorganic Results for Surface Soil Samples** RCRA Facility Investigation
AlliedSignal, Inc. Buffalo Research Laboratory Buffalo, New York

				AOC-3 - Drui	n Storage Area		
			Sample ID, Interval and Collection Date				
Parameters	MDL ^(a)	Units	BRL-SS-SB1-0002 SB1 0-2 09/29/94	BRL-SS-SB2-0002 SB-2 0-2 10/05/94	BRL-SS-MW6-0002 MW-6 0-2 09/27/94	BRL-SS-MW7-0002 MW-7 0-2 09/27/94	
INORGANICS							
Arsenic	0.5	mg/kg	70.3 J	67.2 J	1.8 J	113 J	
Barium	0.1	mg/kg	92.5 J	75.7 J	457 J	140 J	
Cadmium	0.2	mg/kg	3.1	2.0	1.9	4.2	
Chromium (total)	5	mg/kg	27	18	7.0	21	
Lead	10	mg/kg	112 J	207 J	50 J	227 J	
Mercury	0.04	mg/kg	0.04 U	0.23 J	0.04 U	0.81 J	
Selenium	0.2	mg/kg	1 U	1.6	3.3 U	2.6	
Silver	0.5	mg/kg	1.5 J	0.80 J	2.5 J	1.7 J	
Cyanide (total)	0.010	mg/kg	0.05 U	0.05 U	0.05 U	0.05 U	
MISCELLANEOUS							
Moisture content	0.1	percent	15	27	13	19	
Total Organic Carbon	500	mg/kg					

"MDL" indicates Method Detection Limit.

(b) Sample interval is expressed in feet below ground surface.

"mg/kg" indicates milligrams per kilogram.
"J" indicates the value is estimated.

"U" indicates the compound was not detected. (e)

"-" indicates not analyzed.

Prepared by: LH Checked by: EUR

Table 2-1 **Inorganic Results for Surface Soil Samples RCRA Facility Investigation** AlliedSignal, Inc. Buffalo Research Laboratory Buffalo, New York

			AOC-03 Drum Storage Area	Outside of Operations Area
				and Collection Date
Parameters	MDL ^[a]	Un its	BRL-SS-MW8-0002 MW-8 0-2	BRL-SS-MW10-0002 MW-10 0-2 09/28/94
INORGANICS			10/03/94	09/20/94
Arsenic	0.5	mg/kg	26.4 J	224 J
Barium	0.1	mg/kg	175 Ĵ	129 J
Cadmium	0.2	mg/kg	1.5	4.7
Chromium (total)	5	mg/kg	18	13
Lead	10	mg/kg	218 J	95 J
Mercury	0.04	mg/kg	0.83 J	0.34 J
Selenium	0.2	mg/kg	1.9	3.0
Silver	0.5	mg/kg	0.5 J	2.6 J
Cyanide (total)	0.010	mg/kg	0.05 U	0.05 U
MISCELLANEOUS				,
Moisture content	0.1	percent	21	25
Total Organic Carbon	500	mg/kg		

"MDL" indicates Method Detection Limit.

Sample interval is expressed in feet below ground surface. "mg/kg" indicates milligrams per kilogram.

"J" indicates the value is estimated.

"U" indicates the compound was not detected.
"--" indicates not analyzed.

Prepared by: LP

				Solid Waste M	Ianagement Unit	
					l and Collection Date	
Parameters	MDL ^(a)	Units	BRL-SS-MW1-0002 MW-1 0-2 ^(b) 09/26/94	BRL-SS-MW2-0002 MW-2 0-2 09/29/94	BRL-SS-MW2-0002 MW-2 0-2 09/29/94 Dilution ^(c)	BRL-SS-MW3-0002 MW-3 0-2 09/29/94
Target Compound List Volatile Organic Compounds						
Acetone	0.003	mg/kg ^(d)	0.53	0.74	2.7	0.15
Benzene	0.001	mg/kg	0.001 U ^(e)	0.014	0.12	0.001 U
Bromodichloromethane	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
Bromomethane	0.002	mg/kg	0.002 U	0.02 U	0.02 U	0.002 U
Bromoform	0.002	mg/kg	0.002 U	0.02 U	0.02 U	0.002 U
2-Butanone	0.602	mg/kg	0.002 U	0.02 U	0.02 U	0.002 U
Carbon Disulfide	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
Carbon Tetrachloride	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
Chlorobenzene	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
Chloroethane	0.001	mg/kg	0. 0 01 U	0.01 U	0.01 U	0.001 U
Chloroform	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
Chloromethane	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
Dibromochloromethane	0.001	mg/kg	0. 001 U	0.01 U	0. 01 U	0.001 U
1,1-Dichloroethane	0.001	mg/kg	0.001 U	0.01 U	0. 01 U	0.001 U
1,2-Dichloroethane	0.001	mg/kg	0.12	0.01 U	0.01 U	0.001 U
1,1-Dichloroethene	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
1,2-Dichloroethene (total)	0.001	mg/kg	0.001 U	0.01	0.01 U	0.001 U
1,2-Dichloropropane	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
cis-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
trans-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
Ethylbenzene	0.001	mg/kg	0.001 U	0.01 U	0.01 U	0.001 U
2-Hexanone	0.002	mg/kg	0.002 U	0.02 U	0.02 U	0.002 U

NOTES:

- "MDL" indicates Method Detection Limit
 Sample interval is expressed in feet below ground surface.
- The sample was diluted for analyis purposes
- "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: LH Checked by:

				Solid Waste M	lanagement Unit		
			Sample ID, Interval and Collection Date				
Parameters	MDL ^{{a)}	Units	BRL-SS-MW1-0002 MW-1 0-2 ^(b) 09/26/94	BRL-SS-MW2-0002 MW-2 0-2 09/29/94	BR ISS-MW2-0002 MW-2 0-2 09/29/94 Dilution ^(c)	BRL-SS-MW3-0002 MW-3 0-2 09/29/94	
Target Compound List Volatile Organic Compounds (continued)							
Methylene Chloride 4-Methyl-2-Pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichlorethane 1,1,2-Trichlorethane Trichloroethene Vinyl Chloride Xylene (total)	0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.15 0.001 U 0.001 U 0.001 U 0.12 0.006 0.008 0.001 U 0.011 0.001 U 0.001 U	0.49 0.01 U 0.01 U 13 0.037 0.01 U 0.01 U 0.083 0.01 U 0.080	10 0.01 U 0.01 U 0.01 U 12 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.1 0.001 U 0.001 U 0.001 U 0.008 0.005 0.001 U 0.001 U 0.001 U 0.001 U	
Miscellaneous	0.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.0	12	40		
Moisture Dilution Factor	0.1	percent	7.8 1.0	12 10.0	12 100.0	12 1.0	

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface.
- The sample was diluted for analyis purposes
- "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: _ Checked by:__

			Solid Waste Management Unit	Sewer	1 Storm System	AOC-2 Activated Carbon System
	·				l and Collection Date	
Parameters	MDL ^(a)	Units	BRL-SS-SB3-0002 SB-3 0-2 ^(b) 09/29/94	BRL-SS-MW4-0002 MW-4 0-2 10/03/94	BRL-SS-MW5-0002 MW-5 0-2 10/04/94	BRL-SS-MW9-0002 MW-9 0-2 10/04/94
Target Compound List Volatile Organic Compounds						70/0 // 01
Acetone	0.003	mg/kg ^(d)	0.31	0.083	0.042	0.093
Benzene	0.001	mg/kg	0.02	0.006	0.002	0.001 U
Bromodichloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U
Bromoform	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U
2-Butanone	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U
Carbon Disulfide	0.001	mg/kg	0.011	0. 001 U	0.001 U	0.001 U
Carbon Tetrachloride	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
Chlorobenzene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
Chloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
Chloroform	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
Chloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
Dibromochloromethane	0.001	mg/kg	0.001 U	0. 001 U	0.001 U	0.001 U
1,1-Dichloroethane	0.001	mg/kg	0.22	0. 001 U	0.001 U	0.001 U
1,2-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloroethene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichloroethene (total)	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichloropropane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
cis-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
trans-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U
Ethylbenzene	0.001	mg/kg	0.017	0.025	0.001 U	0.001 U
2-Hexanone	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface.
 The sample was diluted for analyis purposes
- (c)
- (d)
- "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: LH Checked by: ELR

			Solid Waste Management Unit	AOC-2 Activated Carbon System		
Parameters	MDL ^(a)	Units	BRL-SS-SB3-0002 SB-3 0-2 ^(b) 09/29/94	BRL-SS-MW4-0002 MW-4 0-2 10/03/94	l and Collection Date BRL-SS-MW5-0002 MW-5 0-2 10/04/94	BRL-SS-MW9-0002 MW-9 0-2 10/04/94
Target Compound List Volatile Organic Compounds (continued)				_		
Methylene Chloride 4-Methyl-2-Pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichlorethane 1,1,2-Trichlorethane Trichloroethene Vinyl Chloride Xylene (total)	0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.12 0.001 U 0.001 U 0.001 U 0.082 0.13 0.084 0.001 U 0.001 U 0.001 U 0.001 U	0.13 0.001 U 0.001 U 0.001 U 0.004 U 0.055 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.095 0.001 U 0.001 U 0.001 U 0.004 U 0.002 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.15 0.001 U 0.001 U 0.001 U 0.004 U 0.002 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U
<u>Miscellaneous</u> Moisture Dilution Factor	0.1	percent	15 1.0	20 1.0	20 1.0	17 1.0

NOTES:

- "MDL" indicates Method Detection Limit
- Sample intervel is expressed in feet below ground surface.
- The sample was diluted for analyis purposes (c)
- "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: LH Checked by: ELR

			AOC-3 Drum Storage Area Sample ID, Interval and Collection Date				
Parameters	MDL ^(a)	Units	BRL-SS-SB1-0002 SB-1 0-2 ^(b) 09/29/94	BRL-SS-SB2-0002 SB-2 0-2 10/ 05 /94	BRL-SS-MW6-0002 MW-6 0-2 09/27/94	BRL-SS-MW7-0002 MW-7 0-2 09/27/94	
Target Compound List Volatile Organic Compounds							
Acetone	0.003	mg/kg ^(d)	0.21	0.069	0.17	0.40	
Benzene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
Bromodichloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
Bromomethane	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U	
Bromoform	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U	
2-Butanone	0.002	mg/kg	0. 002 U	0. 002 U	0.002 U	0.002 U	
Carbon Disulfide	0.001	mg/kg	0. 001 U	0. 001 U	0.001 U	0.001 U	
Carbon Tetrachloride	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
Chlorobenzene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
Chloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
Chloroform	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
Chloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
Dibromochloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
1,1-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
1,2-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
1,1-Dichloroethene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
1,2-Dichloroethene (total)	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
1,2-Dichloropropane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
cis-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
trans-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
Ethylbenzene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U	
2-Hexanone	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U	

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface.
- The sample was diluted for analyis purposes
- "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: LH Checked by: ELR

			AOC-3 Drum Storage Area				
				Sample ID, Interva	l and Collection Date		
Parameters	MDL ^(a)	Units	BRL-SS-SB1-0002 SB-1 0-2 ^(b) 09/29/94	BRL-SS-SB2-0002 SB-2 0-2 10/0 5 /94	BRL-SS-MW6-0002 MW-6 0-2 09/27/94	BRL-SS-MW7-0002 MW-7 0-2 09/27/94	
Target Compound List Volatile Organic Compounds (continued)							
Methylene Chloride 4-Methyl-2-Pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichlorethane 1,1,2-Trichlorethane Trichloroethene Vinyl Chloride Xylene (total)	hloride 0.001 Pentanone 0.001 chloroethane 0.004 thene 0.001 rethane 0.001 rethane 0.001 rethane 0.001 ene 0.001 de 0.001	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.072 0.001 U 0.001 U 0.001 U 0.004 U 0.003 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.17 0.001 U 0.001 U 0.001 U 0.004 U 0.003 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.14 0.001 U 0.001 U 0.001 U 0.004 U 0.073 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.16 0.001 U 0.001 U 0.001 U 0.004 U 0.007 0.001 U 0.001 U 0.001 U 0.001 U	
Miscellaneous							
Moisture Dilution Factor	0.1	percent	15 1.0	27 1.0	13 1.0	19 1.0	

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface.
- The sample was diluted for analyis purposes
- "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: Checked by: ELR

			AOC-3 Drum Storage Area	Outside of Operations Area
			Sample ID, Interval	
Parameters	MDL ^(a)	Units	BRL-SS-MW8-0002 MW-8 0-2 ^(a) 10/03/94	BRL-SS-MW-10-0002 MW-10 0-2 09/28/94
Target Compound List Volatile Organic Compounds				24,25,52
Acetone	0.003	mg/kg ^(d)	0.40	0.27
Benzene	0.001	mg/kg	0.001 U	0.003
Bromodichloromethane	0.001	mg/kg	0.001 U	0.001 U
Bromomethane	0.002	mg/kg	0.002 U	0.002 U
Bromoform	0.002	mg/kg	0.002 U	0.002 U
2-Butanone	0.002	mg/kg	0.12	0.002 U
Carbon Disulfide	0.001	mg/kg	0.001 U	0.001 U
Carbon Tetrachloride	0.001	mg/kg	0.001 U	0.001 U
Chlorobenzene	0.001	mg/kg	0.001 U	0.001 U
Chloroethane	0.001	mg/kg	0.001 U	0.001 U
Chloroform	0.001	mg/kg	0.001 U	0.001 U
Chloromethane	0.001	mg/kg	0.001 U	0.001 U
Dibromochloromethane	0.001	mg/kg	0.001 U	0.001 U
1,1-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U
1,2-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U
1,1-Dichloroethene	0.001	mg/kg	0.001 U	0.001 U
1,2-Dichloroethene (total)	0.001	mg/kg	0.001 U	0.001 U
1,2-Dichloropropane	0.001	mg/kg	0.001 U	0.001 U
cis-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U
trans-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U
Ethylbenzene	0.001	mg/kg	0.001 U	0.001 U

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface.

- The sample was diluted for analyis purposes "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: LH Checked by: ELR

			AOC-3 Drum Storage Area	Outside of Operations Area
			Sample ID, Interval	
Parameters	MDL ^(a)	Units	BRL-SS-MW8-0002 MW-8 0-2 ^(a) 10/03/94	BRL-SS-MW-10-0002 MW-10 0-2 09/28/94
Target Compound List Volatile Organic Compounds (continued)				
2-Hexanone	0.002	mg/kg	0.002 U	0.002 U
Methylene Chloride	0.001	mg/kg	0.25	0.18
4-Methyl-2-Pentanone	0.001	mg/kg	0.001 U	0.001 U
Styrene	0.001	mg/kg	0.001 U	0.001 U
1,1,2,2-Tetrachloroethane	0.001	mg/kg	0.001 U	9.001 U
Tetrachloroethene	0.004	mg/kg	0.004 U	0. 004 U
Toluene	0.001	mg/kg	0.001 U	0.019
1,1,1-Trichlorethane	0.001	mg/kg	0.001 U	0.001 U
1,1,2-Trichlorethane	0.001	mg/kg	0.001 U	0.001 U
Trichloroethene	0.001	mg/kg	0.001 U	0.001 U
Vinyl Chloride	0.001	mg/kg	0.001 U	0.001 U
Xylene (total)	0.001	mg/kg	0.001 U	0.011
Miscellaneous				
Moisture	0.1	percent	21	25
Dilution Factor			1.0	1.0

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface. The sample was diluted for analysis purposes
- (c)
- "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.
- (e)

Prepared by: LH Checked by: ELR

Table 2-3 Applicable Soil and Sediment Action Levels and Recommended Soil Cleanup Objectives RCRA Facility Investigation AlliedSignal, Inc. Buffalo Research Laboratory Buffalo, New York

Parameters	New York State Soil/Sediment Action Level ⁽ⁿ⁾ (mg/kg) ^(b)	Eastern USA Background (mg/kg)	Cleanup Objectives ^(c) (mg/kg)
INORGANICS			
Arsenic	24	3-12	7.5 or site-specific background
Barium	4000	15 -600	300 or site-specific background
Cadmium	80 ^(d)	0.1 - 1	site specific background
Chromium (total)	(d)	1.5-40	10 or site-specific background
Lead	500	200 - 500	site-specifi c backgro und
Mercu r y	20	0.001 - 0.2	0.1
Selenium		0.1 - 3.9	2 or site specific background
Silver	200		site specific background
Cvanide (total) (e)	2000		

Parameters	New York State Soil/Sediment Action Level ^(a) (mg/kg) ^(c)	New York State Soil Cleanup Values Protective of Groundwater Quality ^(f) (mg/kg)	U.S. EPA Health Based Soil Cleanup Objectives ^[5] (mg/kg)
TARGET COMPOUND LIST		-	· · · · · · · · · · · · · · · · · · ·
VOLATILE ORGAN IC			
COMPOUNDS			
Acetone	8000	0.11	0.2
Ben zene	24	0.06	0.06
Bromodichloromethane	5.4	*	
Bromomethane	80	*=-	
Bromoform	89		
2-Butanone	4000	0.3	0.3
Carbon Disulfide	8000	2.7	2.7
Carbon Tetrachloride	5.4	0.6	0.6
Chloroben z ene	2000	1.7	1.7
Chloroethane	540	1.9	1.9
Chloro for m	110	0.3	0.3
Chloromethane			
Dibromochloromethane	8.3		
1,1-Dichloroethane	8000	0.2	0.2
1,2-Dichloroethane	7.7	0.1	0.1
1,1-Dichloroethene		0.4	0.4
1,2-Dichloroethene (tota l)	'	_	
1,2-Dichloropropane	10	_	<u></u>
cis-1,3-Dichloropropene			
trans-1,3-Dichloroprope ne		_	
Ethylbenzene	8000	5.5	5.5
2-Hexanone			
Methylene Chloride	93	0.1	0.1
4-Methyl-2-Pentanone	4000	1	1
Styrene	23		

NOTES:

- (a) As defined in NYSDEC TAGM #3028.
- (b) "mg/kg" indicates milligrams per kilogram.
- c) Recommended objectives are average background concentrations as reported in a 1984 survey of referenced material by E. Carol McGovern, NYSDEC, and as presented in TAGM #4060.
- (d) "--" indicates a concentration has not been defined.
- (e) Site-specific forms of cyanide are to be taken into consideration when establishing soil cleanup objectives.
- (f) As defined in NYSDEC TAGM #4046.
- (g) As defined in NYSDEC TAGM #4046. TAGM #4046 also requires the Total VOCs <10 mg/kg.

Prepared by: _	LH	
Checked by:	ELR	

Table 2-3 Applicable Soil and Sediment Acction Levels and Recommended Soil Cleanup Objectives RCRA Facility Investigation AlliedSignal, Inc. Buffalo Research Laboratory

Buffalo, New York

Parameters	New York State Soil/Sediment Action Level ^(a) (mg/kg) ^(c)	New York State Soil Cleanup Values Protective of Groundwater Quality ^(f) (mg/kg)	U.S. EPA Health Based Soil Cleanup Objectives ^(g) (mg/kg)
TARGET COMPOUND LIST	· ·		
VOLATILE ORGANIC			
COMPOUNDS (continued)			
1,1,2,2-Tetrachloroethane	35	0.6	
Tetrachloroethene	I	1.4	0.6 1.4
Toluene	20000	1.5	1.5
1,1,1-Trichlorethane	7000	0.76	0.8
1,1,2-Trichlorethane	120		-
Trichloroethene	64	0.7	0.7
Vinyl Chloride	0.36	0.12	0.2
Xylene (total)	200000	1.2	1.2

NOTES:

- (a) As defined in NYSDEC TAGM #3028.
 - mg/kg" indicates milligrams per kilogram.
- Recommended objectives are average background concentrations as reported in a 1984 survey of referenced material by E. Carol McGovern, NYSDEC, and as presented in TAGM #4060.
- (d) "--" indicates a concentration has not been defined.
- (e) Site-specific forms of cyanide are to be taken into consideration when establishing soil cleanup objectives.
- (f) As defined in NYSDEC TAGM #4046.
- (g) As defined in NYSDEC TAGM #4046. TAGM #4046 also requires the Total VOCs <10 mg/kg.

Prepared by: _	LH	
Checked by:	ER	

Table 2-4 **Inorganic Results for Subsurface Soil Samples** RCRA Facility Investigation
AlliedSignal, Inc. Buffalo Research Laboratory
Buffalo, New York

	Solid Waste Management Unit							
			Sample ID, Interval and Collection Date					
Parameters	MDL ^(a)	Units	BRL-SB-MW1-0810 MW-1 8-10 ^(b) 09/26/94	BRL-SB-MW2-0810 MW-2 8-10 09/29/94	BRL-SB-MW2-0810D MW-2 8-10 (duplicate) 09/29/94	BRL-SB-MW3-0810 MW-3 8-10 09/29/94		
INORGANICS								
Arsenic	0.5	mg/kg ^(c)	7.4 J ^(d)	13 Ј	7.3 J	4.7 J		
Barium	0.1	mg/kg	90.3 J	88.6 J	87.5 J	81.5 J		
Cadmium	0.2	mg/kg	0.8	0.6	0.5	0.2		
Chromium (total)	5	mg/kg	24	23	25	19		
Lead	10	mg/kg	14 J	15 J	14 J	14 J		
Mercury	0.04	mg/kg	0.04 U ^(e)	0.04 U	0.04 U	0.04 J		
Selenium	0.2	mg/kg	1.4	1.0 U	4.2	1 U		
Silver	0.5	mg/kg	2.1 J	0.8 J	2.4 J	0.9 J		
Cyanide (total)	0.010	mg/kg	0.05 U	0.06 U	0.065 U	0.05 U		
MISCELLANEOUS								
Moisture content	0.1	percent	22 ^{fg}	23	22	18		
Cation Exchange Capacity	1	meq/100g ^(f)	183	19	14			
Total Organic Carbon	500	mg/kg		12000	7400	, 		

- "MDL" indicates Method Detection Limit. (a)
- Sample interval is expressed in feet below ground surface. "mg/kg" indicates milligrams per kilogram.
 "J" indicates the value is estimated. (b)
- (c)
- (d)
- (e)
- "U" indicates the compound was not detected.
 "meq/100g" indicates milliequivalents per 100 grams.
 "--" indicates not analyzed. **(f)**
- (g)

Prepared by: LH Checked by: Eur

Table 2-4 **Inorganic Results for Subsurface Soil Samples** RCRA Facility Investigation
AlliedSignal, Inc. Buffalo Research Laboratory Buffalo, New York

			Solid Waste Management Unit		l-Storm System	AOC-2 - Activated Carbon System
				Sample ID, Interva	l and Collection Date	<u> </u>
Parameters	MDL ^(a)	Units	BRL-SB-SB3-0810 SB3 8-10 09/29/94	BRL-SB-MW4-0810 MW-4 8-10 10/04/94	BRL-SB-MW5-0810 MW-5 8-10 10/04/94	BRL-SB-MW9-0810 MW-9 8-10 10/04/94
INORGANICS						
Arsenic	0.5	mg/kg ^(c)	7.5 J	9.9 J	8.2 J	7.0 J
Barium	0.1	mg/kg	90.9 J	125 J	79.3 Ĵ	85.5 J
Cadmium	0.2	mg/kg	8.4	0.8	1.2	0.5
Chromium (total)	5	mg/kg	158	22	19	42
Lead	10	mg/kg	211 J	20 U	45 J	15 J
Mercury	0.04	mg/kg	0.04U	0.04 U	3.2 Ј	0.04 Ú
Selenium	0.2	mg/kg	1 U	1 U	1 Ü	1 U
Silver	0.5	mg/kg	0.7 J	0.7	2.6 J	0.5 U
Cyanide (total)	0.010	mg/kg	0.05 U	0.05 U	0.05 U	~ 0.05 U
MISCELLANEOUS						
Moisture content	0.1	percent	20	23	21	24
Cation Exchange Capacity	1	meq/ 100 g ^(f)	15			~~
Total Organic Carbon	500	mg/kg	7700	-m		⊬ -m

- "MDL" indicates Method Detection Limit.
- Sample interval is expressed in feet below ground surface. "mg/kg" indicates milligrams per kilogram. (b)
- "J" indicates the value is estimated.
- (e)
- "U" indicates the compound was not detected.
 "meq/100g" indicates milliequivalents per 100 grams.
 "--" indicates not analyzed. (f)

Prepared by: LH Checked by: ELR

Table 2-4 **Inorganic Results for Subsurface Soil Samples** RCRA Facility Investigation
AlliedSignal, Inc. Buffalo Research Laboratory
Buffalo, New York

				AOC-3 - Drum Storage Area			
				Sample	ID, Interval and Colle	ection Date	
Parameters	MDL ^(a)	Units	BRL-SB-SB1-0810 SB1 8-10 09/29/94	BRL-SB-MW6-0810 MW-6 8-10 09/27/94	BRL-SB-MW7-0810 MW-7 8-10 09/27/94	BRL-SB-MW8-0810 MW-8 8-10 10/03/94	BRL-SB-MW10-0810 MW-10 8-10 09/28/94
<u>INORGANICS</u>							
Arsenic	0.5	mg/kg ^(c)	4.4 J	8. 3 J	15.6 J	4.3 J	7.2 J
Barium	0.1	mg/kg	68.1 J	90.8 J	83.5 J	97.7 J	101 J
Cadmium	0.2	mg/kg	0.6	0.64	0.5	0.5	0.2
Chromium (total)	5	mg/kg	24	17.6	24	23	21
Lead	10	mg/kg	19 J	14.4]	13 J	21 J	19 J
Mercury	0.04	mg/kg	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Selenium	0.2	mg/kg	1 U	1.3	3.4	1 U	1 U
Silver	0.5	mg/kg	0.60 J	1.4 J	0.56 J	0.90 J	1.6 J
Cyanide (total)	0.010	mg/kg	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
MISCELLANEOUS							
Moisture content	0.1	percent	22	22	19	22	23
Cation Exchange Capacity	1	meq/100g ^(f)	19				
Total Organic Carbon	500	mg/kg	7100				

- "MDL" indicates Method Detection Limit.
- Sample interval is expressed in feet below ground surface. (b)
- "mg/kg" indicates milligrams per kilogram.
 "J" indicates the value is estimated.
 "U" indicates the compound was not detected. (c)
- (d)
- (e)
- "meq/100g" indicates milliequivelents per 100 grams.
 "--" indicates not analyzed. (f)
- (g)

Prepared by: LH Checked by: ER

Buffalo, New York

			Solid Waste Management Unit						
			Sam ple I D, Interval and Collection Date						
Parameters	MCL ^(a)	Units	BRL-SB-MW1-0810 MW-1 8-10 ^(b)	BRL-SB-MW2-0810 MW-2 8-10	BRL-SB-MW3-0810 MW-3 8-10	BRL-SB-SB3-0810 SB-3 8-10			
			09/26/94	09/29/94	09/29/94	09/29/94			
<u>Target Compound List</u> <u>Volatile Organic</u> <u>Compounds</u>									
Acetone	0.003	mg/kg ^(c)	2.1	0.22	0.62	0.1			
Benzene	0.001	mg/kg	0.005 U ^(d)	0.001 U	0.001 U	0.001 (
Bromodichloromethane	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
Bromomethane	0.002	mg/kg	0.01 단	0.001 U	0.002 U	0.002			
Bromoform	0.002	mg/kg	0.01 U	0.001 U	0.002 U	0.002			
2-Butanone	0.002	mg/kg	0.005 U	0.001 U	0.002 U	0.002			
Carbon Disulfide	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
Carbon Tetrachloride	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
Chlorobenzene	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
Chloroethane	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
Chlor oform	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
Chloromethane	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
Dibromochloromethane	0.001	mg/kg	0.005 U	0.0 0 1 U	0.001 U	0.001			
1,1-Dichloroethane	0.001	mg/kg	0.005 U	0.001 U	0.009	0.001			
1,2-Dichloroethane	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
1,1-Dichloroethene	0.001	mg/kg	0.00 5 U	0.001 U	0.001 U	0.001			
1,2-Dichloroethene (total)	0.001	mg/kg	0.00 5 U	0.001 U	0.001 U	0.001			
1,2-Dichloropropane	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
cis-1,3-Dichloropropene	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
rans-1,3-Dichloropropene	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
Ethylbenzene	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001			
2-Hexanone	0.002	mg/kg	0.01 U	0.002 U	0.002 U	0.002			
Methylene Chloride	0.001	mg/kg	0.69	0.059	0.15	0.00			

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface.
 "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: LIA Checked by: EUC

				Solid Waste M	anagement Unit			
			Sample ID, Interval and Collection Date					
			BRL-SB-MW1-0810	BRL-SB-MW2-0810	BRL-SB-MW3-0810	BRL-SB-SB3-0810		
į			MW-1	MW-2	MW-3	SB-3		
Parameters	MCL ^(a)	Units	8-10 ^(b)	8-10	8-10	8-10		
	_		09/26/94	09/29/94	09/29/94	09/29/94		
Target Compound List Volatile Organic Compounds (continued)								
4-Methyl-2-Pentanone	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001 U		
Styrene	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001 U		
1,1,2,2-Tetrachloroethane	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001 U		
Tetrachloroethene	0.004	mg/kg	0.02 U	0.004 U	0.004 U	0.004 U		
Toluene	0.001	mg/kg	0.012	0.001	0.005	0.002		
1,1,1-Trichlorethane	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001 U		
1,1,2-Trichlorethane	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001 U		
Trichloroethene	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001 U		
Vinyl Chloride	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001 U		
Xylene (totai)	0.001	mg/kg	0.005 U	0.001 U	0.001 U	0.001 U		
<u>Miscellaneous</u>								
Moisture	0.1	percent	22	23	18	20		
Dilution Factor			5,0	1.0	1.0	1.0		

NOTES:

- (a) "MDL" indicates Method Detection Limit
- (b) Sample interval is expressed in feet below ground surface.
- (c) "mg/kg" indicates milligrams per kilogram.
- (d) "U" indicates the compound was not detected.

Prepared by: LH Checked by: ER

Buffalo, New York

			Solid Waste AOC-1 Storm Management Unit Sewer System		System
			Sample I	ID, Interval and Collect	ion Date
Parameters	MCL ^(a)	Units	BRL-SB-MW4-0810 MW-4 8-10 10/03/94	BRL-SB-MW5-0810 MW-5 8-10 10/04/94	BRL-SB-MW9-0810 MW-9 8-10 10/04/94
Target Compound List Volatile Organic Compounds					
Acetone	0.003	nig/kg ^(c)	0.058	0.11	0.085
Benzene	0.001	mg/kg	0.005	0.0 01 U	0.001 U
Bromodichloromethane	0.001	mg/kg	0. 001 U	0. 001 U	0.001 U
Bromomethane	0.002	mg/kg	0.002 U	0.002 U	0.002 U
Bromoform	0.002	mg/kg	0.002 U	0.002 U	0.002 U
2-Butanone	0.002	mg/kg	0.002 U	0.002 U	0.002 U
Carbon Disulfide	0.001	mg/kg	0.001 U	0.001 U	0.001 U
Carbon Tetrachloride	0.001	mg/kg	0.001 U	0.001 U	0.001 U
Chlorobeuzene	0.001	mg/kg	0.001 U	0.001 U	0.001 U
Chloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U
Chloroform	0.001	mg/kg	0.001 U	0.001 U	0.001 U
Chloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U
Dibromochloromethane	0.001	mg/kg	0. 001 U	0.001 U	0.001 U
1,1-Dichloroethane	0.001	mg/kg	0. 001 U	0.001 U	0.001 U
1,2-Dichloroethaue	0.001	mg/kg	0.001 U	0.001 U	0.001 U
1,1-Dichloroethene	0.001	mg/kg	0.001 U	0.001 U	0.001 U
1,2-Dichloroethene (total)	0.001	mg/kg	0.001 U	0.001 U	0.001 U
1,2-Dichloropropane	0.001	mg/kg	0.001 U	0.001 U	0.001 U
cis-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U	0.001 U
trans-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U	0.001 U
Ethylbenzene	0.001	mg/kg	9.901 U	0.001 U	0.001 U
2-Hexanone	0.002	mg/kg	0.002 U	0.002 U	0.002 U

NOTES:

"MDL" indicates Method Detection Limit

Sample interval is expressed in feet below ground surface.. "mg/kg" indicates milligrams per kilogram.
"U" indicates the compound was not detected. (b)

(c)

Prepared by: LH Checked by: KM

Buffalo, New York

			Solid Waste Management Unit	AOC-1 Sewer	Storm System			
			Sample ID, Interval and Collection Date					
Parameters	MCL ^(a)	Units	BRL-SB-MW4-0810 MW-4 8-10 10/03/94	BRL-SB-MW5-0810 MW-5 8-10 10/04/94	BRL-SB-MW9-0810 MW-9 8-10 10/04/94			
Target Compound List Volatile Organic Compounds (continued)								
Methylene Chloride 4-Methyl-2-Pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichlorethane 1,1,2-Trichlorethane Trichloroethene Vinyl Chloride Xylene (total)	0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.14 0.001 U 0.001 U 0.001 U 0.004 U 0.002 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.17 0.001 U 0.001 U 0.001 U 0.004 U 0.005 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.16 0.001 U 0.001 U 0.001 U 0.004 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U			
<u>Miscellaneous</u>								
Moisture Dilution Factor	0.1	percent	23 1.0	21 1.0	24 1.0			

NOTES:

"MDL" indicates Method Detection Limit
Sample interval is expressed in feet below ground surface..
"mg/kg" indicates milligrams per kilogram.
"U" indicates the compound was not detected.

Prepared by: LH Checked by: EN

			AOC-3 Drum Storage Area								
				Sample ID, Interval	l and Collection Date						
Parameters	MCL ^(a)	Units	BRL-SB-MW9-0810D MW-9 8-10 10/04/94	BRL-SB-SB1-0810 SB-1 8-10 09/29/94	BRL-SB-MW6-0810 MW-6 8-10 09/27/94	BRL-SB-MW7-0810 MW-7 8-10 09/27/94					
Target Compound List Volatile Organic Compounds											
Acetone	0.003	mg/kg ^(c)	0.10	0.20	0.15	0.17					
Benzene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Bromodichloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Bromomethane	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U					
Bromoform	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U					
2-Butanone	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U					
Carbon Disulfide	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Carbon Tetrachloride	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Chlorobenzene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Chloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Chloroform	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Chloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Dibromochloromethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
1,1-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
1,2-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
1,1-Dichloroethene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
1,2-Dichloroethene (total)	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
1,2-Dichloropropane	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
cis-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
trans-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
Ethylbenzene	0.001	mg/kg	0.001 U	0.001 U	0.001 U	0.001 U					
2-Hexanone	0.002	mg/kg	0.002 U	0.002 U	0.002 U	0.002 U					

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface..
 "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: Checked by: C42

			AOC-3 Drum Storage Area							
				Sample ID, Interval	and Collection Date					
Parameters	MCL ^(a)	Units	BRL-SB-MW9-0810D MW-9 8-10 10/04/94	BRL-SB-SB1-0810 SB-1 8-10 09/29/94	BRL-SB-MW6-0810 MW-6 8-10 09/27/94	BRL-SB-MW7-0810 MW-7 8-10 09/27/94				
Target Compound List Volatile Organic Compounds (continued)										
Methylene Chloride 4-Methyl-2-Pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichlorethane 1,1,2-Trichlorethane Trichloroethene Vinyl Chloride	0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.16 0.001 U 0.001 U 0.001 U 0.004 U 0.003 0.001 U 0.001 U 0.001 U 0.001 U	0.07 0.001 U 0.001 U 0.001 U 0.004 U 0.004 0.001 U 0.001 U 0.001 U 0.001 U	0.099 0.001 U 0.001 U 0.001 U 0.004 U 0.017 0.001 U 0.001 U 0.001 U 0.001 U	0.21 0.001 U 0.001 U 0.001 U 0.004 U 0.007 0.001 U 0.001 U 0.001 U 0.001 U				
Xylene (total) <u>Miscellaneous</u> Moisture Dilution Factor	0.001	mg/kg perc e nt	0.001 U 24 1.0	0.001 U 22 1.0	0.001 U 22 1.0	0.001 U 19 1.0				

NOTES:

- "MDL" indicates Method Detection Limit
- Sample interval is expressed in feet below ground surface..
 "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.

Prepared by: __ Checked by:__

			AOC-3 Drum Storage Are a	Outside of Op eratio ns Area
			Sample ID, Interval	and Collection Date
Parameters	MCL ^{a}	Units	BRL-SB-MW8-0810 MW-8 8-10 ^(b) 10/03/94	BRL-SB-MW-10-0810 MW-10 8-10 09/28/94
<u>Target Compound List</u> <u>Volatile Organic</u> <u>Compounds</u>				
Acetone	0.003	mg/kg ^(a)	0.10	0.81
Benzene	0.001	mg/kg	0.03	0.0010
Bromodichloromethane	0.001	mg/kg	0.001 U	0.001 U
Bromomethane	0.002	mg/kg	0.002 U	0.002 U
Bromoform	0.002	mg/kg	0.002 U	0.002 U
2-Butanone	0.002	mg/kg	0.002 U	0.002 U
Carbon Disulfide	0.001	mg/kg	0.001 U	0.001 U
Carbon Tetrachloride	0.001	mg/kg	0.001 U	0.001 U
Chlorobenzene	0.001	mg/kg	0.001 U	0.001 U
Chloroethane	0.001	mg/kg	0.001 U	0.001 U
Chloroform	0.001	mg/kg	0.001 U	0.001 U
Chloromethane	0.001	mg/kg	0.001 U	0.001 U
Dibromochloromethane	0.001	mg/kg	0.001 U	0.001 U
1,1-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U
1,2-Dichloroethane	0.001	mg/kg	0.001 U	0.001 U
1,1-Dichloroethene	0.001	mg/kg	0.001 U	0.001 U
1,2-Dichloroethene (total)	0.001	mg/kg	0.001 U	0.001 U
1,2-Dichloropropane	0.001	mg/kg	0.001 U	0.001 U
cis-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U
trans-1,3-Dichloropropene	0.001	mg/kg	0.001 U	0.001 U
Ethylbenzene	0.001	mg/kg	0.001 U	0.001 U

NOTES:

- "MDL" indicates Method Detection Limit
 Sample interval is expressed in feet below ground surface..
 "mg/kg" indicates milligrams per kilogram.
 "U" indicates the compound was not detected.
- (c)

Prepared by: LH Checked by:

			AOC-3 Drum Storage Area	Outside of Operations Area
			Sample ID, Interval	
Paramete rs	MCL ⁽ⁿ⁾	Units	BRL-SB-MW8-0810 MW-8 8-10 ^(e) 10/03/94	BRL-SB-MW-10-0810 MW-10 8-10 09/28/94
Target Compound List Volatile Organic Compounds (continued)				
2-Hexanone	0.002	mg/kg	0.002 ป	0.002 U
Methylene Chloride	0.001	mg/kg	0.12	0.20
4-Methyl-2-Pentanone	0.001	mg/kg	0.001 U	0.001 U
Styrene	0.001	mg/kg	0.001 U	0.001 U
1,1,2,2-Tetrachloroethane	0.001	mg/kg	0.001 U	0.001 U
Tetrachloroethene	0.004	mg/kg	0.004 U	0.004 U
Toluene	0.001	mg/kg	0.007	0.009
1,1,1-Trichlorethane	0.001	mg/kg	0.001 U	0.001 U
1,1,2-Trichlorethane	0.001	mg/kg	0.001 U	0.001 U
Trichloroethene	0.001	mg/kg	0.001 U	0.001 U
Vinyl Chloride	0.001	mg/kg	0.001 U	0.001 U
Xylene (total)	0.001	mg/kg	0.001 U	0.001 U
Miscellaneous				
Moisture	0.1	percent	22	23
Dilution Factor		-	1.0	1.0

NOTES:

"MDL" indicates Method Detection Limit

Sample interval is expressed in feet below ground surface..
"mg/kg" indicates milligrams per kilogram.
"U" indicates the compound was not detected.

Prepared by: LH Checked by: EUR

Table 2-6 **Potentiometric Surface Elevation Data RCRA Facility Investigation** AlliedSignal Inc., Buffalo Research Laboratory Buffalo, New York

		October	17, 1994	Novembe	er 8, 1994	Novembe	r 15, 1994	January	17, 1995
Well Identification	TOC ^(a) Elevation (ft-msl) ^(b)	Depth to Water (feet)	Grou ndwa ter Elevation (ft-msl)	Dept h to Water (feet)	Groundwater Elevation (ft-msl)	Dep th to Water (feet)	Gr oundw ater Elevation (ft-mst)	De pth to Water (feet)	Gr oundwater Elevation (ft-msl)
MW-1	585.69	3.26	582.43	5.04	580.65	3.59	582.10	2.55	583.14
MW-2	587.32	5.09	582.23	4.38	582.94	4.73	582.59	4.43	582.89
MW-3	587.55	5.41	582.14	5.13	582.42	5.30	582.25	5.20	582.35
MW-4	583.87	3.18	580.69	4.30	579.57	2.96	580.91	2.86	581.01
MW-5	583.47	4.96	578.51	4.65	578.82	4.76	578.71	4.77	578.70
MW-6	585.22	2.68	582.54	2.49	5 82.73	2.55	582.67	2.54	582.68
MW-7	585.42	3.71	581.71	3.36	582.06	3.62	581.80	3.38	582.04
MW-8	587.94	5.55	582.39	5.40	582.54	5.53	582.41	5.82	582.12
MW-9	584.48	2.39	582.09	1.83	582.65	2.09	582.39	2.02	582.46
MW-10	587. 85	5.31	582. 54	3.44	584.41	3.98	583.87	3.40	584.45
MW-10	587. 85	5.31					1		-

NOTES:

"TOC" indicates the marked top of well casing (riser) or top-of-casing. "ft-msl" indicates feet above mean sea level. (a)

(b)

Prepared by: LH Checked by: ELR

Table 2-7 **Aquifer Characteristics** RCRA Facility Investigation AlliedSignal, Inc. Buffalo Research Laboratory Buffalo, New York

Monito ri ng We ll	Transmissivity (ft²/sec) (b)	Hydraulic Conductivity ^(a) (cm/sec) ^(c)	Storativity
MW-1	2.8E-09	3.5 E -09	1.0E-02
MW-2	1.1E-06	1.4 E -96	1.0E-03
MW -3	(d)	-	
MW-4	1.5E-05	1.9 E- 05	1.0£-09
MW-5	1.1E-06	1.4 E -06	1.0E-03
MW -6	2.6E-06	3.2 E -9 6	1.0E-03
MW-7		-	
MW-8			
MW -9	8.7E-07	1.1E-06	1.0E-03
MW-10	1. 2 E-06	1.0E-05	

NOTES:

- Values of hydraulic conductivity were calculated from slug tests using the Cooper et. al. method. (a)
- "ft²/sec" indicates square feet per second.
 "cm/sec" indicates centimeters per second. (b)
- (c)
- "--" indicates the analysis was not performed because well construction altered the test performance. (d)

Prepared by: _ Checked by:_

Table 2-8 Inorganic Results for Groundwater Samples RCRA Facility Investigation AlliedSignal Inc., Buffalo Research Laboratory Buffalo, New York

				Solid Waste Ma	nagement Unit			AOC-1 Storm	Sewer System
Parameters	Units	BRL-MW1- 1094 MW-1 10/17/94	BRL-MW1- 01 95 MW-1 01/18/95	BRL-MW2- 1094 MW-2 10/17/94	BRL-MW2- 01 95 MW-2 01/18/95	BRL-MW3- 1094 MW-3 10/17/94	BRL-MW3- 01 95 MW-3 01/18/95	BRL-MW4- 1094 MW-4 10/17/94	BRL-MW4- 109 4D⁽¹⁾ MW-4 10/17/94
INORGANICS									
Arsenic Barium Cadmium Chromium (total) Lead Mercury Selenium Silver Cyanide (total)	mg/l ^(a) mg/l mg/l mg/l mg/l mg/l mg/l	0.003 B ^(b) 0.102 B 0.002 U 0.004 U 0.022 U 0.0005 U 0.002 U R ^(a) 0.002 U	0.0025 U ^(e) 0.0676 0.001 U 0.0014 J ^(d) 0.0040 J 0.0001 U 0.0036 U 0.0023 UJ ^(f) 0.0050 U	0.002 U 0.197 B 0.002 U 0.004 U 0.022 U 0.00005 U 0.002 U R 0.002 U	0.0029 B 0.157 B 0.0010 B 0.0010 U 0.0040 J 0.0001 U 0.0036 U 0.0023 UJ 0.0050 U	0.002 U 0.111 B 0.002 U 0.004 U 0.022 U 0.00005 U 0.005 B 0.026 J 0.002 B	0.003 B 0.129 B 0.0010 U 0.0010 U 0.0028 J 0.0001 U 0.0036 U 0.0023 UJ 0.0050 U	0.002 U 0.183 B 0.002 U 0.004 U 0.022 U 0.00005 U 0.002 U R 0.002 U	0.002 U 0.179 B 0.002 U 0.004 U 0.022 U 0.0005 U 0.003 B R 0.002 U
pH Conductivity Field pH Field Conductivity Turbidity	umhos/cm ^(g) umhos/cm NTU ^(h)	7,24 2000 7.1 970 3.8	7.00 2070 6.5 2190 39	7.36 1200 7.0 1070 2.8	7.10 1180 7.7 1450 38	7.24 1600 7.0 1220 2.97	7.20 1450 7.9 1900 36	7.46 1200 7.1 1180 4.19	7.52 1200 7.1 1180 4.19

NOTES:

- (a) "mg/l" indicates milligrams per liter.
- (b) "B" indicates compound was detected in a blank.
- (c) "U" indicates the compound was not detected.
- (d) "]" indicates the value is estimated.
- (e) "R" indicates the result is rejected and unusable.
- n "U]" indicates the reported quantitation limit is qualified as estimated.
- (g) "umhos/cm" indicates micro mhos per centimeter.
- (h) "NTU" indicates nephelometric units of turbidity.
- (i) "D" indicates duplicate sample.
- "--" indicates analysis not conducted.

Prepared by: LH Checked by: ELR

Table 2-8 Inorganic Results for Groundwater Samples RCRA Facility Investigation AlliedSignal Inc., Buffalo Research Laboratory Buffalo, New York

		AOC-1 Storm Sewer System AOC 3 Drum Storage Area						
	BRL-MW4-	BRL-MW4-	BRL-MW5-	BRL-MW5-	BRL-MW6-	BRL-MW6-	BRL-MW7-	BRL-MW7-
	0195	0195D	1094	0195	1094	0195	1094	0195
Units	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6	MW-7	MW-7
	01/18/95	01/18/95	10/17/94	01/18/95	10/17/94	01/18/95	10/17/94	01/18/95
mg/l	0.0025 U	0.0 05 6 B	0. 002 U	0.0025 U	0.002 U	0.0025 U	0.002 U	0.0027 B
mg/l	0.243	0.238			0.084 B	0.0615 B		0.204
mg/l	0.0010 U	0.0010 U	0.002 U	0.0010 U	0.002 U	0.0010 U	0.002 U	0.0294
mg/l	0.0010 U	0.0010 U	0.004 U	0.0010 U	0.004 U	0.0011 J	0.004 U	0.0010
mg/l	0.0012 U	0.0041 J	0.022 U	0.0057 J	0.022 U	0.0046 J	0.022 U	0.0062 J
mg/l	0.0001 U	0,0 001 U	0. 00 005 U	0.0001 U	0.00005 U	0.0001 U	0.00005 U	0.0001 U
mg/l	0.0036 U	0.0036 U	0.002 U	0.0036 U	0.003 B	0.0036 U	0.002 U	0.0036 U
mg/l	0.0023 UJ	0.0023 UJ	R	0.0023 UJ	R	0.0023 UJ	R	0.0023 UJ
mg/l	0.0050 U	0.00 50 U	0.002 U	0.0050 U	0.002 U	0.0050 U	0.002 U	0.0050 U
	7.80	7.30	7,53	7.60	7.45	7.30	7,30	6.70
umhos/cm	1020	1020	1300	1180	1400	1000	1400	1320
i	7.9	7.9	7.1	7.0	7.8	7.8	6.3	6.8
umhos/cm	4430	4430	11 70	1190	900	1080	950	990
NTU	27	27	2.99	15	3.21	27	5.31	15
	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Units	Units BRL-MW4- 0195	Units BRL-MW4- 0195 0195D 1094 MW-4 MW-4 MW-5 01/18/95 01/18/95 10/17/94 mg/l 0.0025 U 0.0056 B 0.002 U mg/l 0.0010 U 0.0010 U 0.002 U mg/l 0.0010 U 0.0010 U 0.004 U mg/l 0.0012 U 0.0041 J 0.022 U mg/l 0.0001 U 0.0001 U 0.0005 U mg/l 0.0036 U 0.0036 U 0.002 U mg/l 0.0036 U 0.0036 U 0.002 U mg/l 0.0050 U 0.0036 U 0.002 U mg/l 0.0050 U 0.0050 U 0.002 U	Units BRL-MW4- 0195 MW-4 01/18/95 BRL-MW4- 0195D MW-4 01/18/95 BRL-MW5- 1094 MW-5 10/17/94 BRL-MW5- 0195 MW-5 01/18/95 mg/l mg/l mg/l 0.0010 U mg/l 0.0010 U mg/l 0.0011 U mg/l 0.0001 U mg/l 0.0001 U mg/l 0.0003 U mg/l 0.0003 U mg/l 0.0003 U mg/l 0.0005 U 0.0005 U	Units BRL-MW4-	Units	Units BRL-MW4- 0195 MW-4 01/18/95 BRL-MW4- 0195 MW-4 01/18/95 BRL-MW5- 1094 MW-5 10/17/94 BRL-MW5- 0195 MW-6 01/18/95 BRL-MW6- 1094 MW-6 01/18/95 BRL-MW6- 1094 MW-6 01/18/95 BRL-MW7- 1094 MW-6 01/18/95 BRL-MW7- 1094 MW-6 01/18/95 BRL-MW7- 1094 MW-6 01/18/95 BRL-MW7- 1094 MW-7 10/17/94 mg/l 0.0018/95 0.0025 U 0.0025 U 0.0010 U 0.0010 U 0.0010 U 0.0010 U 0.0010 U 0.0010 U 0.0001 U 0.0001 U 0.0001 U 0.0001 U 0.00005 U 0.0005 U 0.0002 U 0.0005 U 0.0002 U 0.0005 U 0.0002 U 0.0005 U 0.0002 U 0.0005 U 0.0002 U 0.0000 U 0.0002 U 0.0002 U 0.0002 U 0.0002 U 0.0002 U 0.0002 U 0.0000 U 0.0002 U 0.00

NOTES:

(j)

- (a) "mg/l" indicates milligrams per liter.
- (b) "B" indicates compound was detected in a blank.
- (c) "U" indicates the compound was not detected.
- (d) "I" indicates the value is estimated.
- (e) "R" indicates the result is rejected and unusable.
- (f) "UJ" indicates the reported quantitation limit is qualified as estimated.
- (g) "umhos/cm" indicates micro mhos per centimeter.
- (h) "NTU" indicates nephelometric units of turbidity.
- (i) "D" indicates duplicate sample.
 - "--" indicates analysis not conducted.

Prepared by: LH Checked by: E4R

Table 2-8 Inorganic Results for Groundwater Samples RCRA Facility Investigation AlliedSignal Inc., Buffalo Research Laboratory Buffalo, New York

	AOC 3 Drum	Storage Area	AOC 2 ACTIV	ATED CARBON	BACKGF	ROUND	EQUIPMEN	T BLANKS
			SYS	TEM				
	BRL-MW8-	BRL-MW8-	BRL-MW9-	BRL-MW9-	BRL-MW10-	BRL-MW10	BRL-BB-EB	BRL-BB-EB
	1094	0195	1094	0195	1094	0195	1094	0195
Units	MW-8	MW-8	MW-9	MW-9	MW-10	MW-10	BB-EB	BB-EB
	10/17/94	01/18/95	10/17/94	01/18/95	/ 10/17/94	01/18/95	10/18/94	01/18/95
				-				
mg/l	0.002 U	0.0025 U	0.002 U	0.0025 U	0.004 B	0.0025 U	0.002 U	0.0025 U
mg/l	0.09 B	0.0772 B	0.149 B	0.134 B	0.033 B	0.0223 B	0.001 U	0.001 U
mg/l	0.002 U	0.0010 U	0.002 U	0.0010 U	0.002 U	0.0010 U	0.002 U	0.001 U
mg/l	0.004 U	0.0014 J	0.004 U	0.0010 U	0.004 U	0.0176 J	0.004 U	0.001 U
mg/l	0.022 U	0.0012 U	0.022 U	0.0012 U	0.022 U	0.0012 U	0.022 U	0.0514 J
	0.00005 U	0.0001 U	0.000 05 U	0.0001 U	0.00005 U	0.0001 U	0.00005 U	0.0001 U
	0.002 U	0.0036 U	0.002 B	0.0036 U	0.002 U	0.0036 U	0.002 U	0.0036 U
	R	0.0023 UJ	R	0.0023 UJ	R	0.0023 UJ	R	0.0023 UJ
.mg/l	0.002 U	0.0050 U	0.002 U	0.0050 U	0.002 U	0.0050 U	0.002 U	0.005 U
	7.61	7.30	7.47	7.00	7.13	6.90	(O	
umhos/cm	880	971	1500	1580	2900	3210		••
	7.7	7.6	6.9	6.8	6.67	6.27	••	••
umhos/cm	1080	1090	10 10	990	1020	3480	••	**
NTU	4.71	14	3.54	16	4.7	38	••	-•
	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Units BRL-MW8- 1094 MW-8 10/17/94 mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	Units	BRL-MW8- 1094 0195 1094 MW-8 MW-8 MW-8 10/17/94 01/18/95 10/17/94	Dilits BRL-MW8- BRL-MW8- 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0178/95 10/17/94 01/18/95 10/17/94 01/18/95 10/17/94 01/18/95	BRL-MW8- BRL-MW8- 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195 1094 0195	BRL-MW8-	SYSTEM SRL-MW8-

NOTES:

- (a) "mg/l" indicates milligrams per liter.
- (b) "B" indicates compound was detected in a blank.
- (c) "U" indicates the compound was not detected.
- (d) "J" indicates the value is estimated.
- (e) "R" indicates the result is rejected and unusable.
- f) "UJ" indicates the reported quantitation limit is qualified as estimated.
- (g) "umhos/cm" indicates micro mhos per centimeter.
- (h) "NTU" indicates nephelometric units of turbidity.
- (i) "D" indicates duplicate sample.
- (j) "--" indicates analysis not conducted.

Prepared by: LH Checked by: ECR

Table 2-9
Target Compound List Volatile Organic Compound Results for Groundwater Samples
RCRA Facility Investigation
AlliedSignal Inc., Buffalo Research Laboratory, Buffalo, New York

						AOC-1 Storm Sewer System			
Damanata	T 7 1 .	BRL-MW1- 1094	BRL-MW1- 0195 MW-1	BRL-MW2- 1094 MW-2	BRL-MW2- 0195	BRL-MW3- 1094	BRL-MW3- 0195	BRL-MW4- 1094	BRL-MW4- 1094D ^(d)
Parameters	Units	MW- 1 10/17/94	01/18/95	10/17/94	M W-2 01/18/95	MW-3 10/17/94	MW-3 01/18/95	MW-4 10/17/94	MW-4 10/17/94
Acetone	μg/L ^{(a).}	12	10 U ^[b]	10/17/34	6 I ^[c]	7	59	6	6
Benzene	μg/L	1 U	10 U	1 U	10 U	1 Ú	10 U	1 Ŭ	1 Ü
Bromodichloromethane	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	1 U
Bromomethane	μg/L	2 U	10 U	2 Ŭ	10 U	2 U	10 U	2 U	2 U
Bromoform	μg/L	2 U	10 U	2 U	10 U	2 U	10 U	2 U	2 U
2-Butanone	μg/L	2 U	10 U	2 U	10 U	2 U	6 J	2 U	2 U
Carbon Disulfide	μg/L μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	1 U
Carbon Tetrachloride	μg/L μg/L	1 U	10 U	1 Ŭ	10 U	1 U	10 U	1 U	1 U
Chlorobenzene	μg/L μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	1 U
Chloroethane	μg/L μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	1 U
Chloroform	μg/L μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	1 U
Chloromethane	μ g/ L μg/L	1 0	10 U	1 U	10 U	1 U	10 U	1 U	1 U
Dibromochloromethane	μg/L μg/L	1 0	10 U	1 U	10 U	1 U	10 U	1 0	1 U
1.1-Dichloroethane	μg/L μg/L	1 U	10 U	1 U	10 U	42		1 U	1 U
1,2-Dichloroethane	μg/L μg/L	11	10 U	1 U	10 U	1 U	10 U	1 U	1 U
1,1-Dichloroethene	μg/L	1 U	10 U	រ៉េប	10 U	4	10 U	1 U	1 U
1,2-Dichloroethene (total)	μg/L	រ៉េប៉	10 U	iU	10 U	1 Û	10 U	1 U	1 U
1,2-Dichloropropane	μg/L	iŭl	10 U	iÜ	10 U	iÜ	10 U	1 U	1 U
cis-1,3-Dichloropropene	μg/L	10	10 U	iŬ	10 U	1 U	10 U	10	1 U
trans-1,3-Dichloropropene	μg/L	1 U	10 U	iÜ	10 U	iŬ	10 U	า บ	10
Ethylbenzene	μg/L	10	10 U	์ เบ	10 U	10	10 U	1 0	10
2-Hexanone	μg/L	2 U	10 U	2 U	10 U	2 U	10 U	2 U	2 U
Methylene Chloride	μg/L	11	10 U	8	10 U	8	10 U	8	8
4-Methyl-2-Pentanone	μg/L	1 0	10 U	1 Ŭ	R	1 Ŭ	$R^{(0)}$	1 Ŭ	1 Ŭ
Styrene	μg/L	1 0	10 U	1 0	10 Ü	1 U	10 U	าบ โ	1 U
1,1,2,2-Tetrachloroethane	μg/L	1 Ŭ	10 U	10	10 U	iŭ	10 U	10	1 0
Tetrachloroethene	μg/L μg/L	4 U	10 U	4 U	10 U	4 U	10 U	4 U	4 U
Toluene	μg/L	10	10 U	iŭ	3]	iŬ	10 U	าบ	1 U
1,1,1.Trichlorethane	μg/L μg/L	1 0	10 U	10	10 U	→ 36.	100	10	1 U
1,1,2-Trichlorethane	μg/L	10	10 U	1 U	10 U	1 U	10 U	1 U	10
Trichloroethene	μg/L μg/L	10	10 U	1 U	10 U	10	10 U	1 U	10
Vinyl Chloride	μg/L μg/L	1 U	10 U	1 U	10 U	10	10 U	1 U	1 U
I -		10	10 U	1 U	10 U	10	10 U	10	10
Xylene (total)	μg/L	10	100	10	100	10	10 0	101	

⁽a) "μg/L" indicates micrograms per liter.

(c)

Prepared by: LH Checked by: ELR

⁽b) "U" indicates the compound was not detected.

[&]quot;J" indicates the value is estimated.

d) "D" indicates duplicate analysis.

⁽e) "R" indicates the result is rejected and unusable

Table 2-9 Target Compound List Volatile Organic Compound Results for Groundwater Samples RCRA Facility Investigation

AlliedSignal Inc., Buffalo Research Laboratory, Buffalo, New York

			AOC-1 Storm	Sewer System		AOC-3 Drum Storage Area			
		BRL-MW4- 0195	BRL-MW4- 0195D	BRL-MW5- 1094	BRL-MW5- 0195	BRL-MW6- 1094	BRL-MW6- 0195	BRL-MW7- 1094	BRL-MW7- 0195
Param eters	Units	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6	MW-7	MW-7
	Lal	01/18/95	01/18/95	10/17/94	01/18/95	10/17/94	01/18/95	10/17/94	01/18/95
Acetone	μg/L ^{[a].}	10 U	10 U	5	10 U	4	10 U	9	10 U
Benzene	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Bromodichloromethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Bromomethane	μg/L	10 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U
Bromoform	μg/L	10 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U
2-Butanone	μg/L	10 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U
Carbon Disulfide	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Carbon Tetrachloride	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Chlorobenzene	μg/L	10 U	10 U	1 U	10 U	1 U [10 U	1 U	10 U
Chloroethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Chlorof o rm	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Chloromethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Dibromochloromethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,1-Dichloroethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,2-Dichloroethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,1-Dichloroethene	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,2-Dichloroethene (total)	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,2-Dichloropropane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	267
cis-1,3-Dichloropropene	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
trans-1,3-Dichloropropene	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Ethylbenzene	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
2-Hexanone	μg/L	10 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U
Methylene Chloride	μg/L	10 U	10 U	12	10 U	5	10 U	8	10 U
4-Methyl-2-Pentanone	μg/L	R	10 U	1 U	R	1 U	10 U	1 U	10 U
Styrene	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,1,2,2-Tetrachloroethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Tetrachloroethene	μg/L	10 U	10 U	4 U	10 U	4 U	10 U	4 U	10 U
Toluene	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,1,1-Trichlorethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,1,2-Trichlorethane	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Trichloroethene	μg/L	10 U	10 U	1 ប	10 U	1 ป	10 U	1 U	10 U
Vinyl Chloride	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Xylene (total)	μg/L	10 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U

Prepared by: LH Checked by: EUR

[&]quot;µg/L" indicates micrograms per liter.
"U" indicates the compound was not detected.

[&]quot;J" indicates the value is estimated.

[&]quot;D" indicates duplicate analysis.

[&]quot;R" indicates the result is rejected and unusable

Table 2-9
Target Compound List Volatile Organic Compound Results for Groundwater Samples
RCRA Facility Investigation

AlliedSignal Inc., Buffalo Research Laboratory, Buffalo, New York

ACC 2 Drum Storage ACC-2 Activated Background Fauin

		AOC-3 Dru	ım Storage	AOC-2 A	ctivated	Backg	round	Equipment Blanks		Trip Blanks	
		Ar	ea	Carbon	System						
		BRL-MW8-	BRL-MW8-	BRL-MW9-	BRL-MW9-	BRL-MW-	BRL-MW-	BRL-BBEB	BRL-BBEB-	BRL-TB05	BRL-TB06
		1094	0195	1094	0195	10-1094	10-0195	1094	0195	1018	1095
Para mete rs	Units	MW-8	MW-8	MW-9	M W-9	MW-10	MW-10	BB-EB	B B-EB	TB05	TB0 6
		10/17/94	01/18/95	10/17/94	01/18/95	10/17/94	01/18/95	10/17/94	01/18/95	10/17/94	01/18/95
Acetone	μg/L ^{[a].}	6	10 U	27	18	21	5 J	3	10 U	28	10 U
Benzene	μg/L	1 U	10 U	1 U	10 U	1 U	10 Ú	1 U	10 U	1 U	10 U
Bromodichloromethane	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Bromomethane	μg/L	2 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U
Bromoform	μg/L	2 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U
2-Butanone	μg/L	2 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U
Carbon Disulfide	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	2	10 U
Carbon Tetrachloride	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Chlorobenzene	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Chloroethane	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Chlorof o rm	μg/L	1 U	10 U	1 U	1 0 U	1 U	10 U	1 U	10 U	1 U	10 U
Chloromethane	μg/L	1. U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Dibromochloromethane	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 Ų	10 U
1,1-Dichloroethane	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,2-Dichloroethane	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1.1-Dichloroethene	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,2-Dichloroethene (total)	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,2-Dichloropropane	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
cis-1,3-Dichloropropene	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
trans-1,3-Dichloropropene	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Ethylbenzene	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
2-Hexanone	μg/L	2 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U	2 U	10 U
Methylene Chloride	μg/L	8	10 U	19	10 U	16	10 U	22	3 J	17	3 J
4-Methyl-2-Pentanone	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	R ^(e)	1 U	10 U
Styrene	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,1,2,2-Tetrachloroethane	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Tetrachloroethene	μg/L	4 U	10 U	4 U	10 U	4 U	10 U	4 U	10 U	4 U	10 U
Toluene	μg/L	. 1ប	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
1,1,1-Trichlorethane	μg/L	1 U	10 U	1 U	19 U	1 U	10 U	1 U	10 U	1 U	10 U
1,1,2-Trichlorethane	μg/L	1 ป	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 ម	10 U
Trichloroethene	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Vinyl Chloride	μg/L	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U
Xylene (total)	μg/L	1 Ü	10 U	1 U	10 U	1 U	10 U	1 U	10 U	1 U	10 U

⁽a) "µg/L" indicates micrograms per liter.

Prepared by: LH Checked by: ELR

⁽b) "U" indicates the compound was not detected.

⁽c) "]" indicates the value is estimated.

⁽d) "D" indicates duplicate analysis.

⁽e) "R" indicates the result is rejected and unusable

Table 2-10 Applicable Groundwater Action Levels and Maximum Contaminant Levels **RCRA Facility Investigation**

AlliedSignal Inc., Buffalo Research Laboratory, Buffalo, New York

	Maximum Contaminant	New York State Groundwater
Param eters	Level (a)	Action Level (b)
Farameters	DCVC1	ACROR Devel
<u>INORGANICS</u>	(mg/l) ^(c)	(mg/l)
Arsenic	0.05	0.025
Barium	0.2	1
Cadmium	0.0	0.0
Chromium (total)	0.1	0.05
Lead	0.05	0.015
Mercury	0.002	0.0
Selenium	0.05	0.01
Silver	0.01 ^(d)	0.05
Cyanide (total)	(e)	<1
Cyamue (total)		`
TARGET COMPOUND LIST		
VOLATILE ORGANIC COMPOUNDS	(µg/L) ^(f)	(μg/L)
Acetone		3500
Benzene	5.0	0.7
Bromodichlor om ethane	_	50
Bromomethan e		5.0
Bromoform		50
2-Butanone		1800
Carbon Disulfide	<u></u>	3500
Carbon Tetrac hl oride	5.0	5.0
Chlorobenzene		5.0
Chloroethane		5.0
Chloroform		7.0
Chloromethan e		
Dibromochlor ometh ane		5.0
1,1-Dichloroet h an e	j	5.0
1,2-Dichloroet h ane	5.0	5.0
1,1-Dichloroet h ene		
1,2-Dichloroet hene (total)		
1,2-Dichloropropane	5.0	5.0
cis-1,3-Dichlo ro propene		5.0
trans-1,3-Dich lo ro pr opene		5.0
Ethylbenzene	700	5.0
2-Hexanone		50
Methylene Ch lo ride		5.0
4-Methyl-2-Pe nt an o ne	-	1800
Styrene	100	5.0
1,1,2,2-Tetrachloroethane		5.0
Tetrachloroeth e ne		-•
Toluene	1000	5.0
1,1,1-Trichlor eth a ne	200	5.0
1,1,2-Trichlorethane	5.0	5.0
Trichloroethe ne	5.0	5.0
Vinyl Chloride	2.0	2.0
Xylene (total)	10000	5.0

NOTES:

- (a) As promulgated by the U.S. EPA under the National Primary Drinking Water Regulations.
 (b) As defined in NYSDEC TAGM #3028.
- (c) "mg/l" indicates milligrams per liter.
- (d) National Secondary Drinking Water Regulations. Secondary Maximum Contaminant Level.
- (e) "--" indicates a concentration has not been defined.
- (f) "µg/L" indicates micrograms per liter.

Prepared by: __ Checked by:__

Table 2-11 Inorganic and TCL Volatile Organic Compounds Results for Storm Sewer Sediment Samples **RCRA** Facility Investigation

AlliedSignal Inc., Buffalo Research Laboratory, Buffalo, New York

		Sed	iments	Equipment	Trip Blank
	· · · · · · · · · · · · · · · · · · ·	BRL-SD-SW-	BRL-SD-SW-	BRL-SD-PSEB-	BRL-TBO5-
		1094	1094D	1094	1018
Donomatana	Units	SW	SW	Ponar Sampler	TB 05
Parameters	Units	10/17/94	10/17/94	10/17/94 (mg/l) [a]	10/18/94
WORGANICS.	-	10/17/94	10/17/94	10/17/94 (mg/l)	10/16/94
<u>INORGANIC</u> S	a (b)	•(c)		** (d)	(a)
Arsenic	mg/kg ^(b)	8.2 J ^(c)	6.5 J	0.002 U ^(d)	^(e)
Barium	mg/kg	71.1 J	95.5 J	0.0010 U	
Cadmium	mg/kg	22.2	1.6 U	0.0020 U	
Chromium (total)	mg/kg	16.0 J	11.0 J	0.0040 U	
Lead	mg/kg	29.0 J	17.0 J	0.0220 U	
Mercury	mg/kg	0.89 J	0.56 J	0.00005 U	}
Selenium	mg/kg	1.00 U	1.0 J	0.0020 댓 📗	
Silver	mg/kg	0.50 U	0.50 U	R ^(f)	
Cyanide (total)	mg/kg	0.05 U	0.05 U	0.0020 U (
TARGET COMPOUND LIST				(n)	
VOLATILE ORGANIC COMPOUNDS				μg/L ^(g)	μg/L
Acetone	mg/kg	0.036	0.036	4	28
Benzene	mg/kg	0.001 U	0.001 U	1 Ü	1 U
Bromodichlorometha ne	mg/kg	0.001 U	0.001 U	1 0 (1 U
Bromomethane	mg/kg	0.002 U	0.002 U	2 U	2 U
Bromoform	mg/kg	0.002 U	0.002 U	2 U	2 U
2-Butanone	mg/kg	0.002 U	0.002 U	2 U (2 U
Carbon Disulfide	mg/kg	0.001 U	0.001 U	1 U	2 0
Carbon Tetrachloride	mg/kg	0.001 U	0.001 U	1 U	1 Ū
Chlorobenzene	mg/kg	0.001 U	0.001 U	า บี เ	1 U
Chloroethane	mg/kg	0.001 U	0.001 U	1 0	1 U
Chloroform	mg/kg	0.001 U	0.001 U	1 Ŭ (1 U
Chloromethane	mg/kg	0.001 U	0.001 U	1 U	1 U
Dibromochlorometha ne	mg/kg	0.001 U	0.001 U	1 U	1 U
1.1-Dichloroethane	mg/kg	0.001 U	0.001 U	1 U	1 U
1,2-Dichloroethane	mg/kg	0.001 U	0.001 U	1 U	1 U
		0.001 U	0.001 U	1 U l	1 U
1,1-Dichloroethene	mg/kg	0.001 U	0.001 U	1 U (1 U
1,2-Dichloroethene (total)	mg/kg			1 U	1 U
1,2-Dichloropropane	mg/kg	0.001 U	0,001 U 0,001 U		1 U
cis-1,3-Dichloropropene	mg/kg	0.001 U		1 U (
trans-1,3-Dichloropropene	mg/kg	0.001 U	0.001 U	1 U (1 U (1 U 1 U
Ethylbenzene	mg/kg	0.001 U	0.001 U		1 U 2 U
2-Hexanone	mg/kg	0.002 U	0.002 U	2 U	
Methylene Chloride	mg/kg	0.2	0.19	21	17
4-Methyl-2-Pentanone	mg/kg	0.001 U	0.001 U	1 U (1 U
Styrene	mg/kg	0.001 U	0.001 U	1 U (1 U
1,1,2,2-Tetrachloroethane	mg/kg	0.001 U	0.001 U	1 U I	1 U
Tetrachloroethene	mg/kg	0.004 U	0.004 U	4 U (4 U
Toluene	mg/kg	0.001 U	0.001 U	1 U (1 U
1,1,1-Trichlorethane	mg/kg	0.001 U	0.001 U	1 U (1 U
1,1,2-Trichlorethane	mg/kg	0.001 U	0.001 U	1 U (1 U
Trichloroethene	mg/kg	0.001 U	0.001 U	1 U	1 U
Vinyl Chloride	mg/kg	0.001 U	0.001 U	1 U (1 U
Xylene (total)	mg/kg	0.001 U	0.001 U	1 ប (1 U
MISCELLANE OUS		•			
Moisture Content	percent	17	17	-	

NOTES:

- (a) "mg/l" indicates milligrams per liter.(b) "mg/kg" indicates milligrams per kilogram.
- (c) "J" indicates the value is estimated.
 (d) "U" indicates the compound was not detected.
- (e) "--"indicates the analysis was not performed.
- (f) "R" indicates the results is rejected and unusable.
 (g) "µg/L" indicates micrograms per liter.

Prepared by: ____ Checked by:____

Table 2-12 Inorganic Results for Storm Sewer Water Samples RCRA Facility Investigation AlliedSignal Inc., Buffalo Research Laboratory Buffalo, New York

			Southeast Sewers Ramp Drain				Sink RM 161	
		In Fa	cility	Off-	Site	In Facility		In Facility
		BRL-SW-SE- 1094	BRL-SW-SE- 0195	BR L-SW -OSE- 1094	BRL-SW-OSE- 0195	B RL-S W • RMP-1094	BRL-SW- RMP-0195	BR L-161 W-0 195 01/19/95
Parameters	Units	10/17/94	01/19/95	10/17/94	01/19/95	10/17/94	01/19/95	
INORGANICS								
Arsenic	mg/l ^(a)	0.002 U ^(b)	0.0025 U	0.004 B ^(c)	0.004 B	0.015	0.0184	0.0025 U
Barium	mg/l	0.01 B	0.0213 B	0.028 B	0.0238 B	0.066 B	0.0278 B	0.0191 B
Cadmium	mg/l	0.002 U	0.0010 U	0.002 U	0.0010 U	0.002 U	0.0010 U	0.0010 U
Chromium (total)	mg/l	0.004 U	0.0010 U	0.009 B	0.0016 J ^(d)	0.004 U	0.0010 U	0.0010 U
Lead	mg/l	0.022 U	0.0148 J	0.024	0.0181 J	0.022 U	0.0046 J	0.0031 J
Mercury	mg/l	0.00005 U	0.0001 U	0.00 005 U	0.0001 U	0.00 005 U	0.0001 U	0.0001 U
Selenium	mg/l	0.002 U	0.0036 U	0.00 3 B	0.0036 U	0.0 04 B	0.0036 U	0.0 036 U
Silver	mg/l	$\mathbb{R}^{(e)}$	0.0023 U J ^(f)	R	0.0023 UJ	R	0.0023 UJ	0.0023 UJ
Cyanide (total)	mg/l	0. 0 02 U	0.0050 U	0.002 U	0. 00 50 U	0.002 U	0.0050 U	0.0050 U
MISCELLANEOUS								
рН		8.01	7.40	8,12	7.50	7.27	7.80	7.50
Conductivity	umhos/cm ^(g)	280	330	350	351	2100	8 6 6	249

NOTES:

- (a) "mg/l" indicates milligrams per liter.
- (b) "U" indicates the compound was not detected.
 (c) "B" indicates compound was detected in a blank.
- (d) "J" indicates the value is estimated.
- (e) "R" indicates the result is rejected and unusable.
 (f) "U]" indicates the reported quantitation limit is qualified as estimated.
- "umhos/cm" indicates micro mhos per centimeter. (g)
- "D" indicates duplicate sample.

Prepared by:	LĤ
Checked by:	ELR

Table 2-12 Inorganic Results for Storm Sewer Water Samples RCRA Facility Investigation AlliedSignal Inc., Buffalo Research Laboratory Buffalo, New York

			Southwest Sewers								
			In Facility Off-Site						Pu mp B lank		
		BRL-SW-SW- 1094	BRL-SW-SW- 1094D ^(h)	BRL-SW-SW- 0195	BRL-SW-SW- 0195D	BRL-SW- OSW-1094	BRL-SW- OSW-0195	BRL-SW- BBEB-1094	BRL-SW- BBEB-0195		
Parameters	Units	10/17/94	10/17/94	01/19/95	01/19/95	10/17/94	01/19/95	10/17/94)	01/19/95		
INORGANICS											
Arsenic	mg/l ^(a)	0.01 B 0.076 B	0.013 0.085 B	0.0104 0.0434 B	0.0068 B 0.0417 B	0.002 B 0.014 B	0.0028 B 0.0193 B	0.002 U 0.003 B	0.0025 U 0.001 U		
Barium Cadmium	nıg/l mg/l	0.076 B 0.002 U	0.005 B 0.002 U	0.0434 B 0.0010 U	0.0417 B 0.0010 U	0.014 B 0.002 U	0.0193 B 0.0010 U	0.003 B 0.002 U	0.001 0		
Chromium (total)	mg/l	0.004 U	0.004 U	0.0023 J	0.0026 J	0.004 U	0.0012 J	0.004 U	0.001 U		
Lead	mg/l	0.022 U	0.022 U	0.033 J	0.0149 J	0.022 U	0.0246 J	0.022 U	0.0074 J		
Mercury	mg/l	0.00005 U	0.0005 U	0.0001 U	0.0001 U	0.00005 U	0.0001 U	0.00005 U	0.00 01 U		
Selenium	mg/l	0.002 U	0.003	0.003 U	0.0036 B	0.003 B	0.0036 U	0.0 02 U	0.0036 U		
Silver	mg/l	R ^(e)	0.044 J	0.0023 UJ ^(f)	0.0023 UJ	R	0.0023 UJ	R	0.0023 UJ		
Cyanide (total)	mg/l	0.002 U	0.0020	0.0050 U	0.0050 U	0.002 U	0.0050 U	0.0002 U	0.005 U		
MISCELLANEOUS							:				
pH	1	8.06	8.04	7.90	7.90	7.99	7.80				
Conductivity	umhos/cm ^(g)	2200	2300	1590	1640	300	303				

NOTES:

- (a) "mg/l" indicates milligrams per liter,
 (b) "U" indicates the compound was not detected.
 (c) "B" indicates compound was detected in a blank.
 (d) "J" indicates the value is estimated.
 (e) "R" indicates the result is rejected and unusable.
 (f) "UJ" indicates the reported quantitation limit is qualified as estimated.
- (g) "umhos/cm" indicates micro mhos per centimeter.
 (h) "D" indicates duplicate sample.

Prepared by:	LH
Checked by:	ELF

Table 2-13 TCL VOC Results for Storm Sewer Water Samples **RCRA Facility Investigation**

AlliedSignal Inc., Buffalo Research Laboratory, Buffalo, New York

		Southeast Sewers		Ramp l	Sink RM 161			
		In Fa	cility	Of	f-Site	In Fac	ility	In Facility
		BRL-SW-SE-	BRL-SW-SE-	BRL-SW-OSE-	BRL-SW-OSE-	BRL-SW-RMP-	BRL-SW-RMP-	BRL-161W-
		1094	0195	1094	0 195	1094	0195	0195
Parameters	Units	10/17/94	01/19/95	10/17/94	01/19/95	10/17/94	01/19/95	01/19/95
Target Compound List Volatile (Organic Cor	npounds					_	
Acetone	μg/l ^[a]	62	10 U ^(b)	12	8700	8	10 U	10 U
Benzene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Bromodichloromethane	μg/l	3	3 J ^(c)	2	1000 U	1 U	10 U	5 J
Bromomethane	μg/l	2 U	10 U	2 U	1000 U	2 U	10 U	10 Ú
Bromoform	μg/l	2 U	10 U	2 U	1000 U	2 U	10 U	10 U
2-Butanone	μg/l	2 U	10 U	2 U	1000 U	2 U	10 U	10 U
Carbon Disulfide	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Carbon Tetrachloride	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Chlorobenzene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Chloroethane	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Chloroform	μg/l	5	4 J	3	1000 U	1 U	10 U	5 J
Chlorometh ane	μ g /l	1 U	1 0 U	1 U	10 00 U	1 U	10 U	1 0 Ú
Dibromochloromethane	μg/l	2	3 J	1	1000 U	1 U	10 U	3 J
1,1-Dichloroethane	μg/l	1 Ų	10 U	1 U	1000 U	1	10 U	10 U
1,2-Dichloroethane	μg/l	1 U	10 U	2	1000 U	1 U	10 U	10 U
1,1-Dichloroethene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
1,2-Dichloroethene (total)	μ g/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
1,2-Dichloropropane	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
cis-1,3-Dichloropropene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
trans-1,3-Dichloropropene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Ethylbenzene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
2-Hexanone	μg/l	1 U	10 U	1 U	1000 U	2 U	10 U	10 U
Methylene Chloride	μg/l	21	10 U	12	1000 U	10	10 U	10 U
4-Methyl-2-Pentanone	μg/l	3	10 U	1 U	1000 U	1 U	10 U	10 U
Styrene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
1,1,2,2-Tetrachloroethane	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Tetrachloroethene	μg/l	4 U	10 U	4 U	1000 U	4 U	10 U	10 U
Toluene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
1,1,1-Trichlorethane	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
1,1,2-Trichlorethane	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Trichloroethene	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Vinyl Chloride	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U
Xylene (total)	μg/l	1 U	10 U	1 U	1000 U	1 U	10 U	10 U

NOTES: (a)

"µg/l" indicates micrograms per liter.
"U" indicates the compound was not detected. (b)

"J" indicates the value is estimated. (c)

(d) "D" indicates duplicate sample.

Prepared by:	CH	
Checked by:	er	_

Table 2-13 TCL VOC Results for Storm Sewer Water Samples RCRA Facility Investigation AlliedSignal Inc., Buffalo Research Laboratory, Buffalo, New York

					Equipment Blanks				
		In Facility			Off-	Site		p Blank	
		BRL-SW-SW-	BRL-SW-SW-	BRL-SW-SW-	BRL-SW-SW-	BRL-SW-	BRL-SW-	BRL-SW-	BRL-SW-BBEB-
		1094	1094D ^(d)	0195	0195D	OSW-1094	OSW-0195	BBEB-1094	0195
Parameters	Units	10/17/94	10/17/94	01/19/95	01/19/95	10/17/94	01/19/95	10/17/94	01/19/95
Target Compound List Volatile									
Organic Compounds									
Acetone	μg/l	39	21	12	8 J	10	10 U	2	10 U
Benzene	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
Bromodichloromethane	μg/l	1 U	1 U	10 U	10 U	2	10 U	1 U	10 U
Bromomethane	μg/l	2 U	2 U	10 U	10 U	2 U	10 U	2 U	10 U
Bromoform	μg/l	2 U	2 U	10 U	10 U	2 U	10 U	2 U	10 U
2-Butanone	μg/l	2 U	2 U	10 U	10 U	2 U	10 U	2 U	10 U
Carbon Disulfide	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
Carbon Tetrachloride	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
Chlorobenzene	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
Chloroethane	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
Chloroform	μ g/l	1 U	1 U	10 U	10 U	3	10 U	1 U	10 U
Chloromethane	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
Dibromochloromethane	$\mu g/l$	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
1,1-Dichloroethane	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
1,2.Dichloroethane	μg/l	1 U	1 U	10 U	10 U	1	10 U	1 U	10 U
1,1-Dichloroethene	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
1,2-Dichloroethene (total)	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
1,2-Dichloropropane	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
cis-1,3-Dichloropropene	μ g/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
trans-1,3-Dichloropropene	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U 1 U	10 U 10 U
Ethylbenz ene	μg/l	1 U	1 U	10 U	10 U	1 U	10 U 10 U	2 U	10 U
2-Hexanone	μg/l	2 U	2 U	10 U	10 U	2 U		26	10 U
Methylene Chloride	μg/l	12	14	10 U	10 U	9	10 U 10 U	1 U	10 U
4-Methyl-2-Pentanone	$\mu g/l$	1 U	1 U	10 U	10 U	1 U	10 U 10 U	1 U	10 U
Styrene	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
1.1.2.2-Tetrachloroethane	μg/Ι	1 U	1 U	10 U	10 U	1 U 4 U	10 U 10 U	4 U	10 U
Tetrachloroethene	μg/l	4 U	4 U	10 U	10 U	1 U	_	1 U	10 U
Toluene	$\mu g/l$	1 U	1 U	10 U	10 U	1 U	4 J 10 U	1 U	10 U
1,1,1-Trichlorethane	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
1,1,2-Trichlorethane	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
Trichloroethene	μg/l	1 U	1 U	10 U	10 U	1 U	10 U	1 U	10 U
Vinyl Chloride	μg/l	1 U	1 U	10 U 10 U	10 U 10 U	1 U	10 U 10 U	1 U	10 U
Xylene (total)	μg/l	1 U	1 U	10 U	10 0	10	10 0	10	100

NOTES:

"µg/l" indicates micrograms per liter.
"U" indicates the compound was not detected.
"J" indicates the value is estimated.
"D" indicates duplicate sample. (a) (b) (c) (d)

Prepared by:	LH
Checked by:	ELR

Table 2-13 TCL VOC Results for Storm Sewer Water Samples RCRA Facility Investigation
AlliedSignal Inc., Buffalo Research Laboratory, Buffalo, New York

		Trip Blanks				
Parameters	Units	BRL-TB05-1018 10/18/94	BRL-TB07-0119 01/19/95			
Target Compound List Volatile						
Organic Compounds			'			
Acetone	μgЛ	28	10 U			
Benzene	μg/l	1 Ü	10 U			
Bromodichloromethane	μ g/l	1 U	10 U			
Bromomethane	μ g/ 1	2 U	10 U			
Bromoform	μ g/ Ι	2 U	10 U			
2-Butanone	μg/l	2 U	10 U			
Carbon Disulfide	μg/l	2	10 U			
Carbon Tetrachloride	μg/l	1 U	10 U			
Chlorobenzene	μg/l	1U	10 U			
Chloroethane	μg/l	1 U	10 U			
Chloroform	$\mu \mathbf{g}/\mathbf{l}$	1 U	10 U			
Chloromethane	μg/l	1 U	10 U			
Dibromochloromethane	μg/l	1 U	10 U			
1.1-Dichloroethane	μg/l	1 U	10 U			
1,2-Dichloroethane	μg/l	1 U	10 U			
1,1-Dichloroethene	μg/l	1 U	10 U			
1,2-Dichleroethene (total)	μg/l	1 U	10 U			
1,2-Dichloropropane	μg/l	1 U	10 U			
cis-1,3-Dichloropropene	μg/l	1 U	10 U			
trans-1,3-Dichloropropene	μg/l	1 U	10 U			
Ethylbenzene	μg/l	1 U	10 U			
2-Hexanone	μg/l	2 U	10 U			
Methylene Chloride	μg/l	17	10 U			
4-Methyl-2-Pentanone	μg/l	1 U	10 U			
Styrene	μg/l	1 U	10 U			
1,1,2,2-Tetrachloroethane	μg/l	1 U	10 U			
Tetrachloroethene	μg/l	4 U	10 U			
Toluene	μ g/ l	1 U	10 U			
1,1,1-Trichlorethane	μg/l	1 U	10 U			
1,1,2-Trichlorethane	μg/l	1 U	10 U			
Trichloroethene	μ g/ l	1 U	10 U			
Vinyl Chloride	μ g/ l	1 U	10 U			
Xylene (total)	μ g/ l	1 U	10 U			

NOTES: (a)

"µg/l" indicates micrograms per liter.
"U" indicates the compound was not detected. (b)

"J" indicates the value is estimated. (c)

"D" indicates duplicate sample. (d)

Prepared by: __ Checked by:__

Table 2-14 BPDES Daily Maximum Discharge Limits RCRA Facility Investigation AlliedSignal, Inc., Buffalo Research Laboratory Buffalo, New York

Parameters	Daily Maximum (ug/l) ^(a)
INORGANICS	
Arsenic	(b)
Barium	
Chromium (total)	
Lead	690
Selenium	
Silver	
TARGET COMPOUND LIST VOLATILE ORGANIC COMPOUNDS	
Acetone	
Bromodichloromethane	
Chloroform	325
Dibromochloromethane	
1,2-Dichloroethane	
Methylene Chloride 4-Methyl-2-Pentanone	295
Toluene	 74 '
NOTES:	74

(a)

"ug/l" indicates micrograms per liter.
"--" indicates no limitation is specified in the permit. (b)

Prepared by: _ Checked by:__

APPENDIX A
ANALYTICAL RESULTS
ADDITIONAL SURFACE SOIL SAMPLES

Quanterra Incorporated 450 William **P**itt Way Pittsburgh, P**en**nsylvania 15238

412 820-8380 Telephone 412 820-208**0** Fax

ANALYTICAL REPORT

PROJECT NO. HARDING LAWSON

HARDING LAWSON

Lot #: C6J110114

ERIC REISINGER

Harding Lawson Associates

QUANTERRA INCORPORATED

Adrinnia Washington Project Manager

Mushington

October 31, 1996

CASE NARRATIVE Harding Lawson / Allied Signal-BRL

Quanterra Lot number: C6J110114

Shipment:

All sample were received in good condition and maintained at the proper temperature.

Metals:

Due to the limitation of the Ward software the sample identification numbers were truncated. The complete identification numbers are listed at the bottom of each Form I data sheet.

A matrix spike and duplicate were performed on sample BRL-CB1-0002. Due to the sample matrix, the percent recovery is outside QC limits.

Services

SAMPLE SUMMARY

C6J110114

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
C6775	001	BRL-CB1-0002	10/10/9	5 13:45
C6776	002	B R L-CB2-0002	10/10/9	5 13:55
C6777	003	BRL-CB3-0002	10/10/9	5 14:05
C6778	004	BRL-CB4-0002	10/10/9	5 14:10
C6779	005	BRL-CB5-0002	10/10/9	5 14:20
C677A	006	BRL-CB6-0002	10/10/98	5 14:30
C677C	007	BRL-EB-1096	10/10/9	5 00:00
NOTE (S	:) -			

NOTE(S)

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

METHODS SUMMARY

C6J110114

Environmental Services

ANALYTICAL PREPARATION METHOD METHOD

Arsenic (AA, Furnace Technique)
Total Residue as Percent Solids

ANALYTICAL PREPARATION METHOD

METHOD

MCAWW 160.3 MOD MCAWW 160.3 MOD

References:

ICLP USEPA Contract Laboratory Program Statement of Work for Inorganics Analysis, Multi-Media, Multi-Concentration.

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

Chain of Custody Record

QUA-4124-1													Service	5	
HALDHA CONSON ASSOCIATE	5	Project Man	Ţ.)	ر ا	W.E.	1			· · · · · · · · · · · · · · · · · · ·	Date IO ((96	Chain Oi	Custody Num	09
700 N BELL AVE		(412)			/	(41	ı) 1	79-	856	7	Ļab Number		Page	1	of
City State Zip C Project Name	5/06	Site Contact E. RESI			A A	Contact	3HV	467.01	7		Analysis (Atta more space is		· · ·		
Contract Purchase Order Outle No.	•	Çamier/Wayı	oill Number											Special	Instructions/
			۸	Matrix				ers & atives		7				Conditie	ons of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous	Soil	Unpres.	H2SO4 HNO3	HCI	NaOH	NaOH	Arsenic					
Bu-CBI-0002	10/11/96	1345		X	1					X					
Ber- CB2-0002	<u> </u>	1355		X	1					X					
BRL- CB3-0002		1405		X	1		ļ.,		_	X					
BU- CB4- 0002		1410	-	×	1	-	ļ		-	X				· 	
BU- CBb-0002		1420	 	<u> </u>	1	-	-		_	X					
BU- CBb- 000~	7	1430		X			-		-	X					
BU- EB-1096			×		2	-143	STE	8€		X					
						P 25	35	€ .	COK'						
				-	- -										
					++										
Possible Hazard Identification Non-Hazard Flammable Skin Imitant	Poison B U		ample Disp		nt [Dispo	sal By	Lab		rchive For_	Months	(A fee may be a longer than 3 n	assessed ii	samples are	etained
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Da	ys 21 Days	Other _				OC Requi		s (Sp eci	(b)	11					
1. Relinquished By		10/11/96	Tim	343)	. Receive		JV	1	4			Date /U	11196	U 435
		Date	Tim	10	2	. Receive	d By						Date	111/14	Time
3. Relinquished By		Date	Tim	10	3	. Ресвіче	d By						Date		Time
Comments WANT IMPLYONAL REPORTS FOR	"CB" /	W, "R	B" :	SAW	LES							·			<u> </u>
DISTRIBUTION: WHITE - Stays with the Sample; CAI	VARY - Returned	to C <u>lient w</u> il	h Repor	t; PINK	- Field	Сор <u>у</u>									

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lan Mame: GOAL	NTERRA_PITTSBURGH	Contract: HARDING_L	-A
Lab Code: GESF	PA_ Case No.: 16865	SAS No.:	SDG No.:HL1
SOW No.: ILMØ3	3. ∅		
	EPA Sample NoCB1002 _CB1002D _CB1002S _CB2002 _CB3002 _CB4002 _CB5002 _CB6002 _CB6002	_C6775 _C6775X _C67755 _C6776 _C6777 _C6778 _C6779 _C677A	
Were ICF inter	relement corrections app	lied ?	Yes/No YES
	round corrections applicated were raw data generated		Yes/No YES
	on of background correct		Yes/No NO_
Comments:			
I certify that conditions of	this data package is inthe contract, both technology	n compliance with the nically and for complove. Release of the the computer-readable	eteness, far

COVER PAGE - IN

ILMØ3.Ø

		INORGANIC	1 ANALYSES DATA	SHEET	EPA SAMPLE NO.
Lab Name: QUA N	NT E RRA_PITTS	BURGH	Contract: H	ARDING_L	
Lab Code: QE SF	PA_ Ca	se No.: 16	865_ SAS No.	:	SDG No.: HL1
Matrix (soil/w	vater): SOIL	_		Lab Sam	ple ID: C67 75
Level (low/med	l): LOW_			Date Red	reived: 10/11/96
% Solids:	_82.	7			
Co	In c entration	Units (ug	/L or mg/kg dr	y weight.): MG/KG
	 		1	1 1	1
		l	Concentration	1_1_	1 1
	17440-38-2 1	Arsenic 	+48.7	_	_iF_i _!!
		<u> </u>	1	_	
					- -
					_11
			1	_	_
		1	1	1_1	_1
				_	-
		1		_	_
]	1	_	_
			l	_	
			1	<u> </u>	_
Color Before:	BROWN	C lari	ty Before:		Texture: MEDIUM
Color After:	BROWN	Clari	ty After:		Artifacts: YES
Comments: BRL-CB1-ტს ტ C6J1101140 0	<u> </u>				
ARTIFACTS:_	STONES				

FORM I - IN

ILMØ3.Ø

		INORGANIC	1 ANALYSES DATA	SHEET	EPA SAMPLE NO.
Lab Name: QUAM	NTERRA_PITTS	BURGH	Contract: H	ARDING_L	
Lab Code: QES	PA_ Ca	se No.: 16	865_ SAS No.	:	SDG No.: HL1
Matrix (soil/	water): SOIL	· _		Lab Sam	ple ID: C6776
Level (low/med	i): ∟⊡W_			Date Re	ceived: 10/11/96
% Solids:	_80.	6			
Co	oncentration	Units (ug	/L or mg/kg dr	y weight): MG/KG
	ICAS No.	 Analyte	 Concentration	II ICI Q	
	1 <u></u>	 Arsenic	l21.9	_ _	_! <u></u> ! _!F_!
			1	1_1	
		1	1		
	1			ł _	
	1			i _ i	_
				_	_
				! -	_
				_	_
				! _	_
	1			_ _	_
		1]	_	
	1	1		_	
Color Before:	BROWN	Clarit	ty Before:		Texture: MEDIUM
Color After:	BROWN	Clarit	ty After:	· ·······	Artifacts: YES
	<u> </u>				

FORM I - IN

ILMØ3.0

		 INORGANIC A	1 ANALYSES DATA	SHEET	EPA SAMPL	E NO.
Lab Name: QUA n	NTERRA_PITTS	BURGH	Contract: H	HARDING_L£	 CB300 	E
Lab Code: QESF	PA_ Ca	se No.: 168	865_ SAS No.	:	SDG No.:	HL1
Matrix (soil/	water): SOIL	_		Lab Samp	ole ID: C677	7
Level (low/med	i): LOW_			Date Rec	reived: 10/1	1/96
% Solids:	_70.	6				
Cc	oncentration	Units (ug/	/L or mg/kg dr	y weight)	: MG/KG	
	1005 No	1	1	1 1		
	i	1	Concentration	1 1	M	
	1/440-38-2 1	Arsenic	86.7	'	_ F_ _	
	1			<u> </u>	_	
	1	1				
	1					
				_	_!!	
	1				_ _	
	<u> </u>			1_1		
Color Before:	BROWN	Elarit	y Before:		Texture:	MEDIUM
Coion Aften:	BROWN	Clarit	y After:		Artifacts:	YES
C6J11011400	13					

FORM I - IN

ILM@3.Ø

		INDRGANIC AN	1 IALYSES DATA	SHEE"	T	EPA SAMPLE	E NO.
Lab Name: QUA	NTERRA_PITTS	BURGH	Contract: H	ARDI	NG_LA	 CB4003 -	
Lab Code: QES							⊣∟1
Matrix (soil/	water): SOIL			Lab	Samp	le ID: C6778	3
Level (low/med	i): LOW_			Date	e Rec	eived: 10/1:	1/96
% Solids:	_81.	9					
Co	n c entration	Units (ug/L	or mg/kg dr	y wei	ight)	: MG/KG	
	I COS No		oncentration		<u>п</u>		
	1	1	54.9	1 1	<u> </u>	 	
				<u> </u>		! !	
				! _ !			
				<u> - -</u>		 	
		i		_		11	
		ļI		- -		1 <u> </u>	
				- -		·	
				- -		<u> </u>	
				<u> </u>		 	
				_ _		i i I i	
				_		ii	
				- -			
				I _ I		 	
Dolon Before:	HROWN	Claritu	Before:	_		T-14-1-1-1	MEDVI
Dolor After:			After:			Texture: Artifacts:	
Comments: BRL-CB4-ወ0 0 C 6J1101140 0	ව 4						

FORM I - IN

ILMØ3.0

		INORGANIC	1 ANALYSES DATA	SHEET	EPA SAMPL	E NO.
Lab Name: QUA n l	r e rra pitts	BURGH	Contract: A	HARDING LA	 CB500 	
Lab Code: QES P A						
Matrix (soil/wa	_		_		ole ID: C677	
Level (low/med)		_		,	ceived: 10/ 1	
% Solids:						
, Cor	•		/L or mg/kg dr	ry weight)	: MG/KG	
İ		1	1	1 1	<u> </u>	
!	CAS No.	l Analyte I	Concentration		M	
	7440-38-2	 Arsenic	18.7	7 _		
		1			- ' ' -	
				_ _	- ' '	
ļ				_ _ _	_	
1				_ _	_	
1				_ _	_	
				_ _	_!! _!!	
ļ				_ _	_	
j i		1	· . · · · · · · · · · · · · · · · · · ·		_	
ţ]				
					-	
 					-	
					-	
	n count	C.3 i		_	_''	
Color Before:					Texture:	
Color After:	BRUWIY	Liari	ty Arter:		Artifacts:	YES
Comments: BRL-CB5-00 0 8 C6J1101140 0 8	- -			····		
		JTS				

FORM I - IN

ILMØ3.Ø

	1 INORGANIC ANALYSES DATA SHEET	EFA SAMPLE NO.
Lab Name: QUANTERRA_PITT	SBURGH Contract: HARDING	
·	ase No.: 16865SAS No.:	
Matrix (soil/water): SOI		ample ID: C677A
Level (low/med): LOk	_	Received: 10/11/96
% Solids: _80		(ccc1vcc1 1e/11/36
•		13 145 145
Concentratio	n Units (ug/L or mg/kg dry weigh	it): MG/KG
CAS No.		
7440-38-2		 F
1		
1		
		1 1
		!!
<u> </u>		
Color Before: BROWN	· — — — — — — — — — — — — — — — — — — —	Texture: MEDIUM
Color After: . BROWN	Clarity After:	Artifacts: YES
ARTIFACTS:_STONES_&_R(DOTS	

FORM I - IN

ILMØ3.Ø

		INORGANIC	1 ANALYSES DA '	TA SHEET	EPA SAMPLE NO.
Lab Name: QUA h	NT E RRA_PITTS	BURGH	Contract	: HARDING_L	 EB1096 A
Lab Code: QES F	PA_ Ca	se No.: 16	865_ SAS 1	No.:	SDG No.: HL1
Matrix (soil/w	_		_		nple ID: C677C
Level (low/me c	j): LOW_				ceived: 10/11/96
% Solids:	Ø.				
۵	. — ncentration		/L or mg/kg	dry weight	:): UG/L
	1			, <u> </u>	
	I CA S No.	Analyte	Concentrati	ionICI Q	1 m 1
	17440-38-2 1	Arsenic]	L.BIUI_W_	 F
					_
					_!!
		i			
	i	l	l		
					
Color Before:	COLORLESS	Clarit	y Before: C	CLEAR_	Texture:
Color After:	COLORLESS	Clarit	y After: C	LEAR_	Artifacts:
Comments: BRL-EB-1ପ9 6 C6J11ଏ114ପ ଏ	7	W 11			

FORM I - IN

ILMØ3.0

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUA n terra_pit tsbu rgh				•	Contract: HARDING_LA				
Lab Code: (QES P A_	Cas	e No.:	16865_	SAS No.:		SDG	No.: HL	1
Initial Cal	lib rati on S	ource:	ULT	RA	_				
Continuing	Calibratio	n Sourc	e: ULTI	RA	_				
		Ca	ncentrai	tion Uni	ts: ug/L				
i	Initial	Caliba	intion		Castinui	C-14k		ì	
iAnalyte i	True	Found	%R(1)	True	Found	ng Calit %R(1)	Found	%R(1)	I M
Arsenic_							53.70	1107.4	 F_
1						<u> _</u>			_
								ļ	<u> </u>
			·						_
			_						
			-						
<u> </u>		·				i	· · · · · · · · · · · · · · · · · · ·		

(1) Control Limits: Mercury 8호-12호; Other Metals 9호-11호; Cyanide 85-115

FORM II (PART 1) - IN

U.S. EFA - CLF

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_PITTS	BBURGH	Contract: HARDING_LA					
Lab Code: QESPA_	Case No.: 16865_	SAS No.:	SDG No.: HL1				
Initial Calibration Source	e: ULTRA						
Continuing Calibration Sc	urce: ULTRA						

Concentration Units: ug/L

 	Initial T r ue	Calibra Found	ation %R(1)	True	Continuing Calibration True Found %R(1) Found				
i									1.1
Arsenic	4ଥ.ଥା_	41.50	103.8 	50.01	50.10	100.2 _ 	51.30	1102.6	HF_
				<u> </u>		ii _		<u>'</u>	::
l			!	!		!!_		1	\square
·	1		;' 			!!!			
	i			1				·	i i <u> </u>
				<u></u> !				!	
						' ——_	"	l	
]	1								i i
		·	I			!			
						· ·		 	<u> </u>
I]						
<u> </u>		······································		I				<u> </u>	! ! —
1						'		'	' '
				 				<u> </u>	
						' '			
		<u></u>	!						
!		·······························				<u></u>			!!

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_PITTSBURGH_	Contract: HARDING_LA					
Lab Code: QESFA_ Case N	io.: 16865_	SAS No.:	SI)G No.:	HL1	
Initial Calibration Source:	ULTRA	<u>.</u>				
Continuing Calibration Source:	ULTRA					

Concentration Units: ug/L

 Analyte	Initia T r u e	Initial Calibration True Found %R(1)			Continuing Calibration True Found %R(1) Found				
Arsenicl			· · · · · · · · · · · · · · · · · · ·	l	53.30				1 1
······································	i		<u> </u>			-	"		
			·			'			'
l				!!					
	<u> </u>	T.C.	<u> </u>	'					!
									:
					**	<u></u>			!!
									í
]		l _			
· · · · · · · · · · · · · · · · · · ·			i			_	 · 		' '
				!					
· · · · · · · · · · · · · · · · · · ·				11		<u> </u>			
			!						

	1			· ·				<u> </u>	
			!				1		
								!	!—

EA INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_PITTSBUR	SH	Contract: HARDING_LA				
Lab Code: QESPA_ Case	No.: 16865_	SAS No.:	SDG No.: HL1			
Initial Calibration Source:	ULTRA	-				
Continuing Calibration Source	: ULTRA					

Concentration Units: ug/L

Analyte	Initia T r u e	Initial Calibration True Found %R(1)			Continuin Found	ng Calibration // // // // // // // // // // // // /			l i	
Arsenic				50.0	51.80	1103.61_	49.40	98.8	; F_	
						·				
			· ·			'			!-	
			·						!	
									_	
						<u> </u>			<u> </u>	
l				l						
]						!			
l									<u>i</u> _	
							[]		
<u> </u>								!	<u> </u>	
				 			l	!	<u> _</u>	

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QU ANTE RRA_PITT SB U	RGH	Contract: HARDING_LA				
Lab Code: QE SF A_ Ca	se No.: 16865_	SAS No.:	SDG No.: HL1			
Initial Calibration Source:	ULTRA					
Continuing Calibration Sour	ce: ULTRA					

Concentration Units: ug/L

Analyte Ansenic	Initial T r u e 	Calibr Found	ation %R(1) 	Continuing Calibration						
	l			50.01	50.20	100.41_	47.80	95.6	i i F	
								'		
			 	I				 		
	·		 							
					!			<u></u>	1_	
i										
									; <u> </u>	
			· i						_	
			<u> </u>						_	
					!				-	
 			 						_	
			1				'		'	

U.S. EPA - CLF

CRDL STANDARD FOR AA AND ICP

Lab Name: QUANTERRA_PITTSBURGH	Contract: HARDING_LA				
Lab Code: QESPA_ Case No.: 16865_	SAS No.: SDG No.: HL1				
AA CRDL Standard Source: ULTRA					
ICP CRDL Standard Source: ULTRA					

Concentration Units: ug/L

	CRDL Standard for AA CRDL Standard for ICF									
	1		1.1		Initial		Fina	1		
Analyte	True	Found	%R	True	Found	%R	Found	√R		
Arsenic	10.01	9. ୨୯	' 99.0		1			1		
	ļ 							!		
	'		' ' '		1	-		¦		
	!! _		!!			!		i		
	! !							¦		
	ii		'		1	-		¦		
			!!							
	!! 	ļ.,] [<u> </u>		
		1			1			 		
			1.1			11				
		!				-				
			\		1	·		\		
			11							
	<u></u>	<u> </u>			!			<u> </u>		
			'		1	·				
	<u> </u>		11					1		
······································	! f	······································				·		!		
			!!!		! 	.''.		٠		

CRDL STANDARD FOR AA AND ICP

Lab Name: QUANTERRA_PITT	SBURGH	Contract: HARDING_LA				
Lab Code: QESPA_ C	ase No.: 16865_	SAS No.: _	SDG	No.: HL1		
AA CRDL Standard Source:	ULTRA					
ICF CRDL Standard Source	: ULTRA					

Concentration Units: ug/L

	CRDL Standard for AA !! CRDL Standard for ICP II Initial Final								
Analyte	i I True	Found	%R	True	Found	%R	Found	%R	
Arsenic	10.01_	9.701	97.01		ſ <u></u>	11		1	
	 	I	!		. l	<u> </u>		J	
						ii	<u> </u>	i	
								l	
		 				-		!	
			11						
								! 	
								!	
		·	'			\\		! 	
	<u> </u>		-						
						·		! 	
·		-				.			
]			 	
	'			· · · · · · · · · · · · · · · · · · ·	1			· — —	

.. 3 BLANKS

Lab Name: QUANTERRA_PITTSBURGH	Contract: HARDING_LA
Lab Code: QESPA_ Case No.: 16865_	SAS No.: SDG No.: HL1
Preparation Blank Matrix (soil/water): WAT	ER
Preparation Blank Concentration Units (ug/	L or mg/kg): UG/L_

Analyte	Initial Calib. Blank (ug/L)	C		g Calibration k (ug/L) æ C	n 	ration
Arsenic	1.8_	'_	1.8_ U	1.8_ U	!	_ 1.800 U F
	1	_1_1_				
		!!_	!!!!		III	_
		!!_				
		-!-!-	<u> </u>			
	·	-!-!-				<u> </u>
	1	-!-!-	!!			1_11_
	1	-!!-	<u> </u>	!!		
	1	-!-!-			!-!!	
		- ' '		<u> </u>	!!!	
		-;;	 '			
	İ	- i - i -	' '	· - '	· - · · · · · · · · · · · · · · · · · ·	
			1		· · · ·	1 1
		_			· · · · · · · · · · · · · · · · · · ·	1 11
	l	_ _ _				
		_1_1_			1_1	
		_ _ _	_			
	ļ	_			1	
		-!-!-				
	<u> </u>	-!-!-			1_1	
	l	-				
	l	_ _			_	

3 BLANKS

Lab N	Vame:	QUAN T ERRA	_PITTSBURGH		Contract:	HARDING_L	A	
Lab C	Code:	QESF A _	Case No.	: 16865_	SAS No.:		SDG No.:	HL1
F'r e pa	aratio	n Bl a n k M	atrix (soil/w	ater): SOI	_ _			
Prepa	aratio	n Blank C	oncentration	Units (um/	∟ or mo/ko)	: MG/KG		

Analyte	Initial Calib. Blank (ug/L)	C	Continuing Blank 1 C	g Calibration ((ug/L) 2 C	n	Prepa- II ration II Blank CII M
Arsenic_	1.8		1.8_[U]	1.8_ U	''. 1.8_ U	0.3601U11F_
		!!_				iii
	·	_! _! _				
			· · · · · · · · · · · · · · · · · · ·			
		_	i_i_		<u> </u>	
	1					
		!!_				
		-		!_!_!	!!!-	
	·	-¦-¦-				
***************************************		-i-i-	 '-'-			
		_			1 1	
	ļ	_ _ _	! <u>_</u>			
	.	-!-!-				iii
	. !	-!-!-				_ _ _
	·	-;-;-	' <u> </u>	· · · · · · · · · · · · · · · · · · ·		
					1 11	
	l	_1_1_	1_1_			
		_! _! _	<u> </u>			
	1	-¦-¦-				!_!!
		-¦-¦-				
	1	-;-;-	· · · · · · · · · · · · · · · · · · ·			, \

BLANKS

Lab Name: QUANTERRA_PITTS	BBURGH	Contract: HARDING_LA				
Lab Code: QESPA_ 0	Case No.: 16865_	SAS No.:	SDG No.: HL1			
Preparation Blank Matrix	(soil/water):					
Preparation Blank Concentration Units (ug/L or mg/kg):						

() = 1 . .	Initial Calib. Blank			Blar				11	Prepa- ration	 	
Analyte	(ug/L)	Ci	1	C	2 (С	3	CII	Blank	CI	! M
Ars eni c		 ;-	1.8	_101_	1.8_	UI	1.6	3_1U _		<u> </u>	iF_
		_ _ _				_ 1				-	i –
···	1	_1_1_		_ _ _		_					
	ļ	_! _! _		_ _ _	l	_		1_11_		_11	1
		_! _! _		_!_!_		_!		!_!!_		_ _	I
 	·	_		-!-!	!·	_!		!-!!-		_!!	!
	1	-¦¦-				_		!_!!_		-!!	!
	·	-¦¦-			I.			!-!!-		-!-!	ļ
<u> </u>		-		-;-;		-¦		!!!		-	¦
		-; -; -		-i-i-	' '.	-		''		-	<u> </u>
				_	·.	- ;	7	— <u>; </u>		-	<u>; —</u>
	1					_				- i — i	·
										1	i —
		_ _ _		_ _ _		_				1 = 1	
	l	_ _ _		_ _ _	I	_		_ _			\top
		_! _ ! _		_ _ _						1_1	T
		-!-!-		_! _! _		_1				_11	1
	1	-!-!-		-!-!	! .	_		!_!_	· · · · · · · · · · · · · · · · · · ·	_ _	
	1	-!-!-			·			!_!!		-! -!	!
		-		_	, I	_		!-!!-	······································	-!!	ļ
	1	-	······	-	,			!		-!!	
		-		- -		-¦				-¦¦	<u> </u>
		-		-;-;	······································	_				-¦¦	¦

3 BLANKS

Lab Name: (QUA N TERRA_PITI	rsburgh	Contract: H	ARDING_LA
Lab Code: (QES P A_	Case No.: 16865	_ SAS No.:	SDG No.: HL1
Freparation	n Blank Matrix	k (soil/water):		
Freparation	n B l ank Concer	ntration Units (ug/L or mg/kg):	
 Analyte	Initial	Blank	Calibration (ug/L) 2 C 3	
Arsenic				1_111111

U.S. EPA - CLF

		SPIKE	5A SAMPLE RECOVERY		SAMFILE	NO.
Lab Name: C	QUANTERRA	_PITTSBURGH	Contract: H		CB1002S	
Lab Code: G	RESPA_	Case No.: 16	865_ SAS No.	: SDG	No.: H	IL1
Matrix (soi	.l/water)	: SOIL		Level (low	/med):	LOW_
% Solids fo	or S ample	e: _82.7				
	Concentr	ation Units (ug/L	or mg/kg dry we	ight): MG/KG		
	Controll		Samole			
Analyte	%R	Spiked Sample Result (SSR) C	Result (SR) C	Added (SA)	% R	IQI M
Arsenic		54.2926_ _	48.73041_	9.67	57.5	;
	l		I			-'
	l		<u> </u>	ll		_
						-
						- - -
]]]		
						- - -
						-¦-¦
				 		_
 		_	<u> </u>	ll		_
						-
						-
1	<u> </u>		1_			_
Domments: BRL-CB1- C6J11011 ARTIFACT		S				

FORM V (Part 1) - IN

		6 DUPLICATES		EPA SAMPLE N	10.
Lab Name: QUA n t e rra_p	ITTSBURGH	Contract:	HARDING_LA	 CB1002D 	
Lab Code: QESPA_	Case No.:	16865_ SAS No).:	SDG No.: HL1	
Matrix (soil/water):	SDIL_		Level	(low/med): _L	.DW
% Solids for Sample:	_82.7	%	Solids for	Duplicate:	82.7

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit	 Sample (S)		Duplicate (D)	C I	I RFD		
Arsenic_		48.7304	'	45. 3446	<u> </u> !!	7. E		F_
			-		_ _	l		
		 	- -		1-1	l		
					<u>.</u>		 _	
			_		_			.
	1		-		<u> </u>		-	<u> </u>
			-'' <i>'</i>]	_ 	
	!		-		 	l	_	
			-'		<u>-</u>		_ _	
	1!		-1-11	-A-1	_		_	<u> </u>
							i	
			_ _					
	<u> </u>		- -					

		6 ICATES	EFA SAMPLE NO.
Lab Name: QUA nter ra_≸	PITTSBURGH	Contract: HARDING_LF	LCSWD
Lab Code: QESPA_	Case No.: 16865_	SAS No.:	SDG No.: HL1
Matrix (soil/water):	WATER	Level	. (low/med): _LGW
% Solids for Samp le:		% Solids for	Duplicate:0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

 Analyte 	Control Limit			Duplicate		RFD	
Arsenic_	10.0	42.000		42.7	<u>'000 _</u> ii_	1.7_	 -
	1 .		_!_!!		!!!		. _
			ii				·
 	1		_! _! !		!!! -		.!!-!!
			_ <u>'</u> _				
	1 1		_				!!-!!
	ii		_' _' ' _				·
	1		_! _! !				
			-'-'' -'-				·'
			_ _				
	1		_				
			_ _ .				!!=!=!
	1		-'-''- - -		!!		
	1		_ _ .				
	' 		_		!!!		
			_				
	!!		-		!!		

7 LABORATORY CONTROL SAMPLE

Lab Name:	QUANTERRA	_PITTSBURGH	Contract: HARDING	S_LA
Lab Code:	QESPA_	Case No.: 16865_	SAS No.:	SDG No.: HL1
Solid LCS	Source:	ERA		
Aqueous LC	S Source:	Aug		

Analyte	1 Aque 1 True	eous (ug/L Found) %R	i True	Solid Found C	(mg/kg) Lim	its	%R
Arsenic_	i			 		112.01	340.0	102.8
		'		' ' -	l			
	11			ii	<u> </u>	1		
		!		! I .		1		
	·	<u> </u>		<u></u>		11		
	ii			i i		·		
····	. !					11		
	·	·			·		<u> </u>	
	ii				· _ ·	'	!	
	!!							
	<u> </u>					1		
	íi				11	·	!	
	1						·	
					<u> </u>			
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>		1		
							!	
		· į.						
						1	<u> </u>	
		<u> </u>		<u> </u>		1		

7 LABORATORY CONTROL **SAMPLE**

Lab	Name:	QUA n terra_i	PITTSBURGH	Contract: HA	ARDING_LA	
Lab	Code:	QESPA_	Case No.: 16865_	SAS No.:	SDG No.:	HL1
Sol:	id LCS	Sou rc e:				
Aque	ous LC	S Source: t	ULTRA			

Analyte	i Aque i True	ous (ug/L Found	_)	True	Soli Fou nd	d (mg/k C	g) Limits	%R
Arsenic	40.01	42.00	105.0]	-		_!
			/		! !	_		
	1					_		_
					 			¦
			I			_		!
						_		
		<u> </u>				_		
	'' .					_		
	·	 						
						_		
			i			_	<u> </u>	
	_	<u> </u>	<u> </u>	·····		_		_
						_ '		
	_	l	<u> </u>	<u></u>	}	_		_
		· · · · · · · · · · · · · · · · · · ·						
	·				i1			

7 LABORATORY CONTROL SAMPLE

Lab Name: QUANTERRA_PITTSBURGH			Contract:	Contract: HARDING_LA				
Lab Code:	QESPA_	Case No.: 1686	5_ SAS No.: _	SDG	No.: HL1			
Solid LCS	Source: _							
Aqueous L	CS Source: UL	TRA						

Analyte	Aque	ous (ug/L) Found %R	i I True	Solid Foun d C	(mg/kg) Limits	%R
Arsenic_	40.01	42.70/106.	3			
	_			_		i
· · · · · · · · · · · · · · · · · · ·	<u> </u>	1		_		!
			_	_		
				_		
				_		
				-		_
				_		
				_		1
			1	- -	1	
				_	1	¦
	<u> </u>					
	í í -			- ' ' '		

8 STANDARD ADDITION RESULTS

Lab	_ab Name: QUANTERRA_PITTSBURGH				Contract:HARDING_LA			
Lab	Code:	QES P A_	Case No.:	16865_	SAS No.:	SDG No.:HL1		

Concentration Units: ug/L

						011 0111	-				
EFA Sample	l I An	I DADDI	1 A	D:D	1 1 2 A	DD	I I 3 A	חמ	 Final	 	
No.	<u> </u>	ABS I	CON	ABS	CON	ABS	CON	ABS	Conc.	l r	įQ
· · · · · · · · · · · · · · · · · · ·	<u> </u>			1	'	1	1	}	!	\ 	-¦-
	; — ;					·	' 	' 		\ <u></u>	
	1				1	1			·	·	- i -
	11	ll		1	1	1			1	l	_ _
				l	i	J	l		1		_
	!!	<u> </u>		<u> </u>	<u> </u>			1	!	l	_ _
	!!	!!		!	!	<u> </u>		<u> </u>	!		_1_
	!!				†						_! _
	¦¦	·		¦ ——	! 	1	·		<u> </u>	ļ	-¦-
	<u>'</u> '	 '		'	!	¦ 		!			-¦-
	; — ;	<u> </u>		·	' 	' 		' 	']	-¦-
	11	<u> </u>		l	1		·	i ——	i		
	l l			1]	1			l		_
					·	l	l				
	!!			!				l	l	1	_1
	!!			<u> </u>	ļ 		ļ ———	ļ	<u> </u>	!	_ _
	<u> </u>			·	!			<u> </u>		ļ	-!-
	¦¦			<u> </u>	! 	¦ ———	<u> </u>	·		!	-
	· — ·			' -	' 	¦	' 	 	l	! 	-!
	· :				' 		' 	' 	'		
	1 1						·	·	'	' 	-
	11									1	_ · ·
											_
											_ _
	! !						ļ			l	_ _
	! - <u></u>							<u> </u>			_
	'! 				-		1				_! _!
	; — ;	'				¦	<u> </u>			l	-
	. <u></u> .					'	'			' 	-
								·		' I	

U.S. EPA - CLF

10 Instrument Detection Limits (Quarterly)

Lab Name: QU	Contract: HARDING_LA							
Lab Code: QE	SFA_ C	ase No.:	16865_	SAS No.:		S	DG No.:	HL1
ICP ID Numbe	: יו			Date:	10/15/96	;		
Flame AA ID	Number :							
Furnace AA I	D Number	: PR5100						
! ! !	 		Back-	 CRDL (ug/L)		i M		
Í Ai	rsenic	_193.70_	BZ	10_	1.8	F_!		
· ·						!		
 	 					!		
\ 								
\				· ·				
\]							
	i							
						!		
' <u></u>		I				I		
Comments:	Comments:							

... 13 PREPARATION LOG

Lab Code: QESPA_ Case No.:_16865_ SAS No.: ____ SDG No.:HL1___

Method: F_

EFA Sample Preparation Weight Volume No. Date (gram) (mL)				
No.	I EFA	1		1
	·			
CB1002D	l No.	Date	(gram)	(加上)
CB1002D				!
CB1002S		-	1.00	12001
CB2002	CB1002D_	1_10/15/961	1.00	12001
CB3002	ICB1002S	_10/15/96 <u></u>	1.00	12001
CB4002	ICB2002	1_10/15/961	1.00	EØØ
CB5002	ICB3002	_10/15/96	1.00	200_1
CB6002	1CB4@@2	1_10/15/961	1.00	200_
LCSS	10B5002	1_10/15/961	1.00	200_1
		_10/15/96 <u></u>	1.00	200_1
FBS 10/15/96 1.00 E00		1_10/15/96!	1.00	200
	IPBS	1_10/15/961	1.00.	200_1
	1	1		
	1	ll		
	1	l		
			<u> </u>	
	1			
	1			
		[
]			}
	l			
]			
			j	
	j			
				1

13 PREPARATION LOG

Lab Name: QUANTERRA_PITTSBURGH_____ Contract: HARDING_LA

Lab Code: QESPA_ Case No.:_16865_ SAS No.: ____ SDG No.:HL1__

Method: F_

I EPA	j j		
i Sample	Freparation	Weight	! Volume !
l No.	Date	(gram)	(m上)
EB1Ø96	10/15/96		100
ILCSW	-, -, <u>-, , , </u>		
ILCSWD			100
I F'BW_	_1@/15/96 <u></u>		
	<u>- </u>		
1			
1			
)			·
			·
1			
1			
			-
1			
1			
		-	
			······································
	1		
			· · · · · · · · · · · · · · · · · · ·
	1		
]		
1			
1	1		
1	1		
	1		
	1		
1			
			· '

Lab Name: QUANTERRA_PITTSBURGH_____ Contract: HARDING LA

Instrument ID Number: PR5100

Method: F_

Start Date: 10/21/96

End Date: 10/21/96

1				,																						
I EPA I		1 1		1									Aı	na.	ĵУ.	te	S									
Sample	D/F	ı Time	% R	!_					1																	
l No. I	DZF	1 me		IA		1		I		!	1	!	l	!	1	1	!	1	l		1	1	Ì	 -	l	
1 140. 1		{		IS		1	!	1 .	!	!	,		!	ļ	!	1	1	}		1	1	}	ł	İ	!	
150	1 00	1 !		!-	! —	!-	! —	! — !	<u>'</u> —	! —	! _	! -	! —	! —	! —	!	!	<u> </u>	 	_	ا _	١	' <u> </u>	_	_	1-1-
		109231		ΙX	! —	!-	!	! -!		! —	! —	! —	<u> </u>	_	<u> </u>	<u> </u> _	_	_	_	_	_	ا	۱	_	_	
1510		109271		įΧ	! —	!-	! —	! —!	! -	<u>'</u> —	<u> </u>	_	<u> </u> _	<u> </u> _	۱	۱_	_	 	 _	_	_	l	_	 _	_	_! _!
1550		109311		ΙX	_	!_	! _	<u> </u>	_	<u> </u>	<u>'</u>		_	١	!	 _	١	_			_	١	1_	 _		-1-1
S100		109351		l X		!	!	<u> </u> _	_	¹ –	 _	_	۱_	l _	_	l	١	_	_	١	_	١	1_	 _	_	
IICV		109391		ΙX		!	<u>'</u> —	ا _ ا	_	l	 _	_	١_	_	١_	l	l		!	١	۱_	۱	_	 _	<u> </u>	
ICB		109431		١X		<u>ا</u> _	!	} <u> </u>	_	_	l _ l	_		_		_	۱	_	_	١_	١	۱	l	١	<u> </u>	_1_1
ICRAI		109461		ΙX		_	!	<u> </u> _	_		_	l	l	_	<u> </u>	_	_	_		_	_	_	_	l	_	11
ICCVI		09501		ΙX		_	۱_	_		_		_	I _	_		l _	<u> </u>	_	_	i _	1_	1	l _	1_	ا _ ا	$\equiv 1 \equiv 1$
ICCB		09541		łХ	٠	l !	' _	i _ l	_	l	l _ l		I _	_	I _	١	l	1		l	I _	1_	I _	ا _ ا	ا_ ا	
I F'BW		09581		١X	۱ _	J	' _	!		_	 _	J	۱_	l _	1_	 	_	<u>_</u>			_	I _	l	<u> </u>	<u> </u>	
FBWAI		1001	110.5	ΙX		<u> </u>		<u> </u> _			_	_	ا <u>_</u> ا	_		_				I		I _	ا _ ا		ا_ا	_1_1
ILCSW		10051		ΙX		<u> </u>		' _ i	_	_	1	_	ا ا	_	۱_	_	l			l	1_		ا ا	J !	<u> </u>	
ILCSWAI		10091	108.5	ΙX		_		l _ !	_	_	ا _ ا	_	_	_	_		ا ا				I	_		_	L_1	_1_1
ILCSWDI		10131		ΙX		_		i l			<u>_</u>			_ :	_		_			_	_	I _	I I	ا <u></u> ا	1 🗔	
ILCSWDAI		10161	110.0	ΙX	_	<u> </u> _	_	1_1	_	_	_		l _ l	_	l i	_	ا ا	_	_	l	<u> </u>	ı _	I I	ı _ l	_ I	
IEB10961		10201		ΙX		<u> </u>	_	i _ l				_	_		_	1	_	_1		اا	_	l	<u> </u>	_		$\Box \Box \Box$
EB1096A_		10241	116.0	ΙX	_	_		I _ I		_	_		_	_	1	l l	ا ا	_	_			l1		 		-1
100V1		10281		ΙX		_		1_1		!	<u>_</u>		_	_	l _ l		ا_ ا	1	1	I _ I	_	I _ I	I I	ا_ ا	- -	
ICCBI		10321		X]_	_	<u> </u>	1		_	_	_	<u>_</u>		_	اا			 	ı _ i	ا <u> </u>		, — 		
IPBS1		10351	· · · · · · · · · · · · · · · · · · ·	1	_	J _	_	_	1	_1	1	<u> </u>	_	<u>_</u>	ا ا	l!	<u> </u>			۱ <u> </u>	ı !		ı – i	- I	-1	
IPBSI		10471		i i	-	_	_	1_1		_1	_		<u> </u>			_ _		_ i		ı —	_	-				
IFBSAI	1. ଡ ଡ଼ା		121.0	_	_	_	_	ا <u></u> ا			_1	_ [<u></u>	ارا		-	I	_ ı				ı —	 	i		
IFBSI	1. ଏହା			I _ I	ا ا	<u> </u>		_	1	_ I			, - ,	- I	ı — I	, — 		_		_			i			-i-i
IPBSA	1. 0 0		109.5	_		_		I _ I	1	1	,		ı	· _]	ı _ ا	,	I		_	_			_ i			
10071		11211		_		1_1	_	,			_	_	- I	_ ı	ı — I		_ I	-1	_		_	_		i	·	
ICCB	1. ହାହା	11241		I _) — <u>J</u>		ı _ ı	1	_	_	_	I	_	_ I	i	_				;	-		i		
ILCSS1	25. ଉଡା			i		_			_	-	1		_I	_	_ i		_ i		_					_;	;	-i-i
ILCSSAI	25 .0 01	11361	122.5	i _ l		ı — I	_			_ ,	_	_ i	I	_ 1	_ I				_ i						;	-i-i
1CB10021	1 .ଡ ଡା	11391		1		ı [—] ı			-i	- 1			_ '	_ i		_;	·		-;				- <u>'</u>	-;	-;	-;-;
CB1002D_1	1.ଡଡା	11431		۱ _ ۱		1	-	- 1		_ i		_ i		i	_ i	i	_ i	_ i	- i	· '	_ '	'	'	<u> </u>	-:	-;-;
CB1002S_	1. 0 01	11471		-					i	_ '					_ <u> </u>	 I	_;		<u>-</u> ;	- 1	;	`';	-:	-;	- '	-;;
1CB10021	5.0 01	11491		_	_ i	, — ;	_ ·	<u>-</u> ;		i		_ í	;		_;	;	-;	-;	- '	'	;	_ 'i	-¦	- '	- '	-;-;
]		1		ı — i	-	1	- i	-;		_;	<u>-</u> ;		_;	'	- '	· '	-;	'	<u>'</u>	- '	-;	-:	-¦	-'	-;	-

Lab Name: QUANTERRA_PITTSBURGH____ Contract: HARDING_LA

Lab Code: QESPA_ Case No.: 16865_ SAS No.: ____ SDG No.:HL1___

Instrument ID Number: PR5100

Method: F_

Start Date: 10/22/96

End Date: 10/22/96

1		1		1									Ai	na	1 v	te	5									
I EFA I		1 1		1											- /		_									
Sample	D/F	Time	% R	IA	ı	Ī	ł)	ī	Ī			1	1]		}	I		Ī		1				
1 No. 1		1 1		15	1	1	ı	J	J	ļ	ĺ	ì	İ	i	ì	İ	,	i	ì		I	i		i i	· ·	i
11		l I		1	1	1	1	1	ì]	ì	Ì	l	1	Ì	İ	i)	Ì	i	1	I		I I	1	i
1501	1.00	1022		ΊX	, ⁻	, –	ı [—]	1	1	ı —	, _	ı [—]	1			1 -	1	-	_	_	· —	_				
IS10I	1.00	110251		LX	, _	1	1 _	i	1 _	1	1	ı —	i —	i	<u> </u>	_	i —	_	· –	<u> </u>	_	<u> </u>	_	;		
15501	1.00	10291		ΙX	1	1	1	1	1]	1		, _		, –		ı —	_	<u> </u>	_	· –				· i	
15100 1	_1.00	110331		ΙX	, –	, –	ı —	1	, –	1	<u> </u>	<u> </u>	·	i —	<u> </u>		i —	i —	<u> </u>	i –	· –		<u>'</u>			-;-
IICV I	1.00	10371		ΙX		1	-	<u> </u>	_	_	; —	· —	; —	 I	;	; —		·	· 	· —	·	_		;	`'	
IICB I	1.00	1041		١X		ı [—]		<u> </u>	<u> </u>	_	_	<u> </u>	· —	·	; 	; 	·	<u> </u>	· –	· –	· —		'		;	
ICRA	1.00	1045		ΙX	<u>, </u>	<u> </u>	i —	_	· —	` — I	<u> </u>	·	; -	<u> </u>	; -	·	. —	<u> </u>	·	· —	<u>'</u> —	_	-:	' - '	-;	-;-
1004	1.00	10481		X	1	1	<u> </u>	-	· —	<u> </u>	· —	· —	. -	, <u> </u>	· —	<u></u>	, <u> </u>	` 	·	<u>'</u> —	` -	_	'	- '	-'	-;-
ICCBI	1.00	10521		ΙX	; 	i —	` —	; —	<u> </u>	·	·	· -	· —		; —	, 	<u>'</u> —	<u>; </u>	<u>'</u> —	<u>'</u>	_	-	'	-'	-;	-;-
IPBS 1	1.00	1135		X	, –		1	1	i –	i —	·	<u> </u>	·	. — I	, <u> </u>	<u>i</u> –	, — I	í —	ʻ —	<u> </u>	' 	' ' 	_ <u> </u>	'	- '	- ' -
IPBSAI	1.00	11391	109.5	ΙX	-	ı [—]	_	ļ —	1 —		-	-	· —	_	` 	·	i —	· —	·	_	_			<u>-</u> ;	-;	-;-
ILCSS	2 5.00	11431		ΙX	١ –	ı —	-	, —	<u> </u>	_	1	· —	· — ·	<u> </u>	·	· —	;	·	_	_	_	-:		-;	-;	-;-
ILCSSA	2 5.00.	11461	120.0	ΙX	١ –	1	-	1	· —		· —	_	<u> </u>	_	<u> </u>	· —	·	·	· —	_	_		_;	<u>-</u> ;	<u>'</u>	-;-
ICB1002 T	1.00	11501		ì	ļ —	_	·	_	i —	i —	· —	· —	<u> </u>	·	<u> </u>			· —	· ˈ	_		- '	-;		~ ¦	-'-
ICB1002A_T	1.00	11541	97. Ü		, –	, _	_	1			<u> </u>		· '	, — I	·	· —	<u> </u>	· —	_			'	-:	- ;	'	-;-
ICB1002D_T	1.00	11581		_	1	ı —	i —	-	_	_	· ·	· —	· ˈ	· —	·	· —	<u> </u>	<u> </u>		_	_		-'	-;	-;	-;-
CB1002DA	1 . v ivi	12011	107.0	_	1	, –	_	i —	_	_	_	_	· '	' — I	' ì	· —	·	· ·		_			;	;	-;	'
ICCVT	1.00	12051		\overline{X}	1	1	1 —	-	_	_		_	_	_	i —	· '	I	_			'	-;	- '	-;	-;	
ICCBI	1.00	12091		ΙX	, —	, -		_	_	_	_	_	ı — i	_	_	_	· —	_		_		_;	-:	'	-;	
CB1002S_		12131		1	۱ –				_			_	_	_	_		<u> </u>	_ : _ :				<u> </u>	_ '	- <u>'</u>	'	-;-
ICB20021	1.00	12171		_	, –	ı [—]			_	_		_	, ,	_	_	_	_	_	_			-;	<u>'</u>		'	-;-
LOBEQQEA_1	1 . (2 10)	12201	107.0		į —	ı [—]	_	-	_	_	_		_	ı [—] ,		_		_		_	'			-1		
CB30021	1.00	12241		1		, — 	_	ı — ı	_		ı — ı	_	ı — ı			_	_		_			_;		-;		-;-
CB3002A_1	1. ଅ ପା	12281	65. Ø	_	١_	,		-	_	_	_		ı [—] ı		_						_ i			-	- <u>'</u>	-;-
ICB40021	1.00	12321		ı	_			۱ –	_	_						_ i				 [$-\dot{1}$	-:	
CB4002A_1	1.001	12351	90.0	1	1	ı [—] i	_	۱ – ۱			_	_	_ i			· ·				·	_ i	-	-;	-;	-;	-
1 CCV1	1.001	12391		١X	, –	ı [—] ı	_	, - 1			_					: 						-;	- i	-;	-;	- ' -
CCB1	1. ପ ଉଠା	13431		ΙX	, –	,	_) - 1		_						`						_ i	-;	'	-;	-;-
CB5002	1. 0 01	12471		X	, —	-	_	, — i				·	·			·	-;	'			'	-'i	-	- <u>'</u>	-'	-;-
CB5002A_1	1. ଅପୋ	1250)	114.2	IX.	ı	ı [—] ı		1			_ i			 I		;		;		'	<u> </u>	<u> </u>	-i	'	'	-;-
CB6002	1. 0 0	12541		l	. — ا	ı — I	_			-	i		_ ·	·				·	_;	— <u> </u>	_ i	-;	-;	- '	-;	-;-
CB600EA_1	1. 0 0	12581	ହ.ହ	I _	_ !	- I	_	-1		_ i	_ i		_ i			_ ·		<u> </u>		- <u>'</u>	_ '	- <u>'</u>	- <u>'</u>	-;	-;	-;-
11				_		_				_ i	_ i					;		_;	'	<u>'</u>	-;	-;	-;	- <u>'</u>	-;	-; - _i

Lab Name: QUANTERRA_PITTSBURGH_____ Contract: HARDING_LA

Instrument ID Number: PR51ชิช_____

Method: F_

Start Date: 10/22/96

End Date: 10/22/96

										_								e.				_					
1		ì	1	1									Ĥ١	na	l y	te	S										į
I EPA I		1	ì	1_				,																			1
Sample	D/F	Time		lΑ		1	1	1	1]	ļ		j	ţ	l	1	1		}	1	1		1	1	-	1	1
l No. I		1	l	I S	1	1	İ	1	i		1	1	Ì	1	l	Ì	l	ì	ł	l l]	1	l	1		1	1
1				1_	I _	1_	۱_	I _		١_	J	l _		۱_	١	١	l	1_	Ι_	1_	1	1	1	j	l	1 1	i
IZZZZZZ_I	1. 0 0	113021		1_	ļ _	I _	_ ا	I _		Ι_	I _	l		i	Ι_		1 _	1	1	1	1 _	1	, –	1	_	ı – ı	
IZZZZZZ_I		113061		1	۱ <u> </u>	!	1_	! _	1_	1_	Ι_	ι	1	1	1	1	1	1	1	, –	1	1	_	1	_	$_{1}$	-1
IZZZZZZ_I	1.20	13101	l	1	ļ	ļ	i	1	1	_	ı	1 _		, _	1	ı —	i	1	_	1	-	1		-	_	1	
IZZZZZZ_I	1.00	113131		1	, [_]	ı [—]	1	_	1	1	1	_	ı —	1			-	_	_		ı —	_	<u> </u>	<u> </u>	· —	i – i	-;
1CCV1	1. 2 00	1317	·	ιX	, -	ı _	1 -	1	, –	1		_	1	_	-	` -	<u> </u>	<u> </u>	i —	<u> </u>	i —	<u> </u>	; -	i —	· —	i – i	-;
ICCBI	1.00	1321		ΙX	, —	ı —	1	ı —	_	1	_	_	1	ı —	_	i —	1 —	<u> </u>	<u> </u>	<u> </u>	<u> </u>	· —	· —	<u> </u>	· –	, — <u>;</u>	-;
IZZZZZZ_I	1. 0 0	13251		ļ	,	, _	1	ı —	1 -	, –		_	ı —	-	ı —	1	_	1	<u> </u>	· —	i —	·	<u> </u>	<u> </u>	· - ˈ		- '
IZZZZZZ_I		113291		1	, —	1	1	ı —	1 —	1	1		ı — İ	ı —	1 —	_	<u> </u>	<u> </u>	<u> </u>	_	·	· —	· —	· —	· — ˈ	<u> </u>	-'
IZZZZZZ_I	1.00	13331		-	I _	1	i	, —	-	i			_	_	<u> </u>	` 	i —	; —	·	· —	· –	; -	` 	; —	· -	, — <u>;</u>	-;
IZZZZZZ_1	1.00	13371		1_	1	ļ —	ı —	ı —	1	1	_	-	i — i	i —	<u> </u>			i –	I	<u> </u>	i –	; -	ˈ - -	` —	<u> </u>	, -	
IZZZZZZ_I	1. @ Ø	13401		I		,	1 -	, [—]	1	ı [—]	-	ı [—] ı	ı — i	-	, –	ı —	_]	ı —	1 —	1	<u> </u>		· —	· :		
IZZZZZZ_I	1.ଫାଡା	13441		1 _	, <u> </u>	, –	ı —	1	1 -	١-	ı [—] ,	_	<u> </u>	_		· —	· –	. <u> </u>	; —			; —	· -	<u> </u>	<u> </u>	, 	;
1 Z Z Z Z Z Z 1	1.00	13481		ı _	, —	ı [—]	, —	 	ı [—]	, –	—	ı - ı	ı [—] ı	_		_	<u> </u>	<u> </u>	· –	· —	· -	i –	<u> </u>	<u> </u>	· '	ı÷i	-;
IZZZZZZ_1	1.00	13521			, —	ı —	_	1	1		ı —	_		_	<u> </u>	·	· —	_	; —	, — I	· —	; —	<u>'</u> —	·	· '	ı-i	-
1 CCV1	1.00	13561		ΙX	, —	ı —	_	1	_	1	ı — i		. — I	_	·	<u> </u>	_	<u> </u>	· —	· —	; —	· –	<u> </u>	I	· '	, - ;	-;
ICCBI	1.00	1400		ΙX	, —	ļ [—] ļ		1	1	1	_		_ i	_		_		<u> </u>		_	· —	· —	; -	<u> </u>		, - ;	
CB10021	5.0 0	14581		ìΧ	ı —	,	_	; —		-	_	_			_	· —	·	· —	·	_	<u> </u>	·	· –		' '	;	-;
TCB1002A_T	5.00	15021	104.5	ΙX	, —	ı [—] ,	_	1	_	_	ı — I	ı — j			-	· —	` —	· —	· —		<u> </u>	·	· —	_	—		-;
CB1002D_1	5. 0 0	15061		ìΧ	, —	ı [—] i	_	, —			ı — ı	_ I	- i			_	_	<u> </u>		_	_	·			' '	;	-;
ICB1002DAT	5. 00	15101	95.0	ΙX	, —	ı [—] i		_		_	1		_ i	_		<u> </u>	_		i —	_	·	· —	_	' 	'	;	-'
CB10025_1	5. 0 0	15131		X	,		_		1		_ I	_		_	_		· —	 			·		· 	_			-;
TCBEWWET	2.00	15171		X.	_	ı – ı	_		·	_	_ i	_	_ i	_	_		_	· —		_	i	_			·'	_;	- '
ICBEDUEA_1	2.00	15211	103.0	ΙXΙ	, –		, - ,	_			ı — j		_		_	_			· ·		_	 		· — ˈ			-;
10041	1.00	15251		I X	ı —	-		-	-		_ I	_ 1		_	_	_	_	· — ·		_	_	_	' '		- <u> </u>	-;	-¦
ICCB1	1. 0 01	15281		X		_	- i	_						_		_		· ·			_				-:		-;
1CB3ØØ21	5. ଉଡା	15321		X.	, ,	ı [—] ı		, - ,	 	- 1	_ i			_ i	_			· — i	_ i		_		_	' '	'	-;	-¦
ICB3002A_t	୍ଥି. ଅଧା	15361	93.5	ΙXΙ		1	_	1	·			_ i	i			·	_	í – í	_ i	-	_	_			;	-¦	;
1084002t		15401		X	_	-	_	·		_ i	_ i	_ i	 i			_ i	· '	· '	i	- '	_ <u> </u>		·	_ <u>`</u>	-;	-;	-¦
1084002A_1	5.0 01	15441	95.51	X		_ I		_	_		·		·					_ '	- 1	'	_	· '	· ˈ	- <u> </u>	-;	'	-¦
1086002t	10. ଉପା	15471	i			- 1		_	_ i	_			_ ;	_ i		_ i		í	;	- '	-	- '		- '		'	- '
ICB6002A_1	10.001	15511	94.0		_ [_ i	_ i	- i		_ i					_ i	-'	` '	·	'	-:	· '	_ ;		-'	-;	-;	-¦
IZZZZZZi		15551		_					- i		- i			- <u>'</u>	'	- '	'	_	- <u>'</u> 1	_ '	'	_ '	- 1	'	- '	;	-¦
		1		_		_ i		_;		_ i	·		-;	-;	'	;	— <u>'</u>		-'	- ;	'	- ;	-;	·	-:	; :	
					_		<u> </u>		— '	'	'	— '	— '	_ ′	'	— '	— '	· '	_ '	'	'	'	<u> </u>	'	_'	'	_ '

Lab Name: QUANTERRA_PITTSBURGH_____ Contract: HARDING_LA

Lab Code: QESPA_ Case No.: 16865_ SAS No.: ____ SDG No.:HL1___

Instrument ID Number: PR5100

Method: F_

Start Date: 10/22/96

End Date: 10/22/96

<u> </u>		1 1		1									Δ.		1 12	te											_
i EPA i		. , , ,		1									н	i i et	т Х	u E	⇒										
Sample	D/F	Time	% R	IA	1	1	ĺ	i	i i	1	1	1	1	i	1	1		1	ı	1	1	ı	1	1	ī	1 1	-
I No. I		1 1		IS	ļ		1	l	ł	İ	Ì	l	İ	i	i	ì	i	i	į	i	i	i		i	i	ii	
1		1 1		1		1	1		1	1	Ì		i	ì	1		i	1	i	1	i	i	I	ì	l l	 1 1	
IZZZZZZ	1.00	1559			_	-	_	, –	_	_		_	<u> </u>	;	; -	; -	;	; 	;	i^-	; -	; —	; -	'	; —	<u> </u>	_
ICCV I		116021		ΙX	<u>, </u>	<u> </u>	1	_	<u> </u>		<u> </u>	· 	i —	i —	; —	; -	; 	<u> </u>	; -	; -	·	; 	<u> </u>	; -	; 	; - ;	_
ICCB	1.00	116061		ΙX	ļ —	ı [—]	_	, –	i —		_	<u> </u>	_	i –	<u> </u>	_	<u> </u>	. —	·	i –	i —	;	i –	;	; 	; - ;	_
IZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	1.00	116221			ı —	, –	_	. –		i —	·	<u> </u>	; -	<u> </u>	i —	;	; -	; -	; -	<u> </u>	; —	; -	; -	<u> </u>	; —	; - ;	_
IZZZZZZ1 I		116241			1	i —	_		i —	_	<u> </u>	` 	i —	· –	· -	1	·	;	; -	·	i –	; -	; -	; -	ˈ - .	; – ;	_
IZZZZZZE		116261		1	<u> </u>	_		i —	_	<u> </u>	<u> </u>	· —	<u> </u>	· —	<u> </u>	;	<u> </u>	, 	; -	;	<u></u>	í –	; 	; —	; — ;	<u> </u>	_
IZZZZZZZ		116281				, –	_	ı —	_		-	<u> </u>	<u> </u>	· —	;	·	i –	;	; -	; -	<u> </u>	; -	; -	; 	· —	; - ;	_
ICB6002 TI	20.00			IX	} _	, — <u>i</u>	_	, —	1 - 1	_	_	, —	_	i —		i —	<u> </u>	· —	· —	; 	<u></u>	; -	; —	· —	; -	<u>'</u> — '	-
ICB600EA_I	20.00		101.5	ΙX		, — i	_	, — i	_	_	, —	_	_	·	;		· —	· —	I	; —	<u> </u>	;	; -	, I	_	<u>'</u>	_
IZZZZZZ1	1.202	17041		1_	,	-) —	-	_	_		<u> </u>	<u> </u>	· —	i —	; —	i –		;	; –	<u> </u>	<u> </u>	; —		<u>'</u> –	_ '
IZZZZZZ_I	1.00	117081			١	ı — ı	_		ı [—] .		1	_	ı —	_	1		1		_	_	_	<u> </u>	<u> </u>	·		<u> </u>	_
IZZZZZZt	1.00	17121		1	_	1			_	_		_	ı — ;	_	ı —	_	i —	<u> </u>	i —	·	i —	i —	; -	· —	i – i	. — . !	
IZZZZZZ_I		17161		1_	I	_			_			-	ı [—]	_	1	ı —		1	1	i —	-	_	<u> </u>	·	· ·	. — i	_ ;
IZZZZZZ_1	1.ହାହ	1720I		1	ا <u></u> ا	<u> </u>		ı _ !			l	ı	ı <u> </u>	_			_	1 -	1 —	-	i —	i —	i —	·	. — i		_ ;
ZZZZZZ_I	1. @ Ø	117241		1_	<u> </u>	<u> </u>		i 🗀	<u> </u>		ı ,	_	-		_	1	, -		_	1	i –			<u> </u>	 	-1	_
1 CCV1	1.ହାଡ	17271		LX		Ε_1		_	ا_ ا		ı ,	-	-		_	1	, –		ı —	1 -	ı —	1	_	<u> </u>	· _ ·		
11	1.00	17311		IXI		<u>ا _</u> ا	_,	. <u> </u>	_ i		ا <u></u> ا			_		1		, - ,	_	ı –	ı —	-	i —	_	. — i		_ i
1		l i		1_1	_	1	_	_1	I	_	<u> </u>	_	_		1	ı [—]	1 —	ı [—] ı	1	ı —	_	1	_	·	i – i		_ ;
		l l			_ 1	_1	_	_	<u> </u>	_	_ 		ı 🗀	ı	_	_					_	, –		, -	ı — i		
1				_	_	_			I	_	! <u> </u>) <u> </u>	<u> </u>		1	1 _			1	ı [—]	<u> </u>		-	· `		-
				1_1	1	_1	_ /	_		_	I		I _ I	_			ı	ı [—] I	ı —	1	1 -		1		1		-
				I _ I	_	_1		_!	-		I		l _ l			} _		ı — I			1 -	ı [—]	1	1			_
	· · · · · · · · · · · · · · · · · · ·			1_1	_	_	_	_1		_1	· _ I		[] _	_	_	_	i	_		_	_	1	_	١ -			- 1
<u> </u>				1_1	_	_	_		_	_,			I _ I	_	ا ا		i	_				-	_	<u> </u>			i
				1_1	_1	_1	_1	_1	_1	_	1		<u></u>		<u> </u>	ı _	Ι	I I	I		ı [—]			-			
<u> </u>				1_1]	_1	1	_	_1	1	_1	_	ı _ ı				_	I _ I	_		ı	_	1 _				_
	i			11	_]	_	_ !	_	_!	_	_1	_ !	_		ı _ l	I	ا _ ا	<u> </u>			ı _	١_	ı -		- 		~
1		1			_1	_ 1	_ 1		_1	1	_ 1	I	<u> </u>	_	_		ı _ i	_ I	_		_	ı	I				- 1
				_	_ 1	_1			_	1	_ 1	_	_1		1		<u> </u>		_		_	ı	ا_ ا				_
				1_1	_	_	_ 1	_1		_1	_ 1	_ 1	_1		i	_	<u> </u>		_	_	_	ı 🗌	_ 	i			<u>-</u> 1
<u> </u>	<u> </u>			1_1	_ 1	_	_	_ 1	_	_	_1	_ 1	_	_ 1		_	ا <u>_</u> ا				_	ı 🗌	ı _ ı				_ I
	<u> </u>			_	_	_	_	_ !	_ }	_	_!	_1	_1	_	1	_	ا <u>_</u> ا	<u> </u>			_	ı	ا <u></u> ا	_	_1		_1
				_	_	_		_1	_	_	_1	_1	1	_1	I			- 1	_	_	_	_	_	I	_		1

Element File: AS_FAST.GEL Element: As Wavelength: 193.7 Date: 10/21/96 Time: 09:21 Slit: 0.70 L Data File: 11021ASA.DAT ID/Wt File: ARSENIC. IDW Lamp Current: 0 Technique: HGA Calib. Type: Linear Energy: 45 Remark 1: QUANTERRA PITT 450 WILLIAM PITT WAY PITTSBURGH PA 15238 Remark 2: UNITS PPB BZ BACKGROUND, INST#10 RAW DATA/ RUN SEQUENCE LOG Remark 3: STDS:10(414-101-5) 50(414-101-6) 100(414-101-7) ITPA GFAA Remark 4: CCV: 50(414-101-8) PR5100 REVIEWED BY: 84 10-23-46 Remark 5: ICV:40(414-85-2) CRA(10):414-97-1 ANALYST(S):RJG ID: BLANK_ Seq. No.: 00001 A/S Pos.: 1 Date: 10/21/96 102196 FARE 29121 * CGTIVIA Wales Replicate Peak Area (A-8): -0.002 Peak Height (A): 0.013 Background Pk Area (A-s): 0.027 Background Pk Height (A): 0.019 Blank Corrected Pk Area (A-s): -0.002 Replicate 2 Time: 09:23 Peak Area (A-s): 0.005 Peak Height (A): 0.013 Background Pk Area (A-s): 0.036 Background Pk Height (A): 0.020 Blank Corrected Pk Area (A-s): 0.005 Mean Pk Area (A-s): 0.002 SD: 0.0052 RSD(X): 297.17 Auto-zero performed. ID: STANDARD 1 Seq. No.: 00002 A/S Pos.: 2 Date: 10/21/96 Replicate 1 Time: 09:25 Peak Area (A-g): 0.047 Peak Height (A): 0.058 Background Pk Area (A-a): 0.037 Background Pk Height (A): 6.020 Blank Corrected Pk Area (A-s): 0.045 Replicate 2 Time: 09:27 Peak Area (A-g): 0.046 Peak Height (A): 0.066 Background Pk Area (A-a): 0.036 Background Pk Height (A): 0.022 Blank Corrected Pk Area (A-a): 8.044 Mean Pk Area (A-g): SD: 0.0008 RSD(X): 1.76 Standard number 1 applied. [10.0] Correlation coefficient: 1.20000 Slope: 0.0044 ID: STANDARD 2 Seq. No.: 00003 A/S Pos.: 3 Date: 10/21/96 Replicate 1 Time: 09:29 Peak Area (A-a): 0.250 Peak Height (A): 0.258 Background Pk Area (A-s): 0.040 Background Pk Height (A): 0.029 Blank Corrected Pk Area (A-s): 0.248

Replicate 2
Peak Area (A-s): 0.253
Background Pk Area (A-s): 6.043
Blank Corrected Pk Area (A-s): 6.251

Concentration (ug/L): 55.9

Time: 09:31
Peak Height (A): 0.255
Background Pk Height (A): 43633

Concentration (ug/L): 56.7

Mean Cond (ug/L):

56.3

SD: 0.57

RSD(X): 1,00

Standard number 2 applied. [50.0]

Correlation coefficient: 0.99924

Slope: 0.0050

Time: 09:33

Time: 09:35

ID: STANDARD 3

Seg. No.: 00004

A/S Pos.: 4

Background Pk Height (A): 0.043

Background Pk Height (A): 0.053

Peak Height (A): 0.495

Peak Height (A): 0.680

Date: 10/21/96

Replicate 1

Feak Area (A-s): 0.478

Background Pk Area (A-a): 0.059

Blank Corrected Pk Area (A-s): 0.476

Concentration (ug/L): 95.7

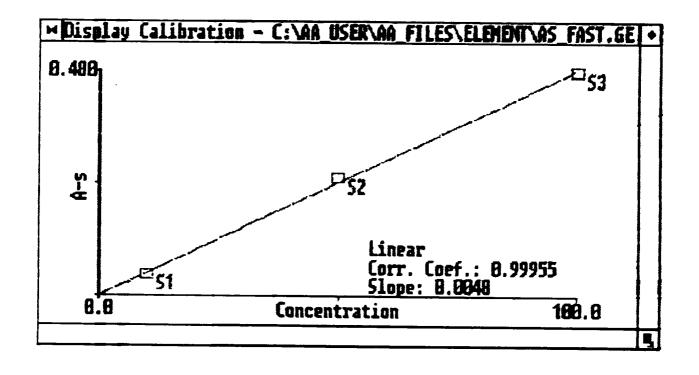
Replicate 2

Peak Area (A-a): 0.487

Background Pk Area (A-a): 0.048

Blank Corrected Pk Area (A-s): 0.485

Concentration (ug/L): 97.6


Mean Conc (ug/L): 96.6

SD: 1.31

RSD(X): 1.36

Standard number 3 applied. [100.0] Correlation coefficient: 0.99955

Slope: 0.0048

ID: ICV5-1 AB

Seq. No.: 00005

A/S Pos.: 5 Date: 10/21/96

Replicate 1

Peak Area (A-a): 0.195

Background Pk Area (A-a): 0.035

Blank Corrected Pk Area (A-s): 8.193

Time: 09:37

Peak Height (A): 0.249 Background Pk Height (A): 6.025

Concentration (ug/L): 39.9

Replicate 2

Peak Area (A-s): 0.194

Background Pk Area (A-s): 0.036

Blank Corrected Pk Area (A-s): 0.192

Concentration (ug/L): 39.7

Mean Conc (ug/L):

39. &

SD: 0.13

Time: 09:41

Time: 09:43

Time: 09:39

RSD(%): 0.34

As ID: ICB1

Background Pk Height (A): 0.021

Background Pk Height (A): 0.016

Background Pk Height (A): 0.026

Peak Height (A): 0.222

Peak Height (A): 0.013

Peak Height (A): 0.014

Peak Height (A): 0.067

Peak Height (A): 0.066

Seq. No.: 00006 A/S Pos.: 6 Date: 10/21/96

Replicate 1

Peak Area (A-a): 0.003

Background Pk Area (A-s): 0.031

Blank Corrected Pk Area (A-s): 0.001

Concentration (ug/L): 0.2

Replicate 2

Peak Area (A-2): 0.006

Background Pk Area (A-s): 0.023

Blank Corrected Pk Area (A-s): 0.004

Concentration (ug/L): 0.8

Mean Conc (ug/L):

0.5

SD: 0.44

Time: 09:44

Time: 09:46

RSD(X): 81.56

ID: CRA-1

Background Pk Height (A): 0.020

Background Pk Height (A): 0.018

Seq. No.: 00007 A/S Pos.: 7 Date: 10/21/96

Replicate 1

Peak Area (A-g): 0.051

Background Pk Area (A-s): 0.032

Blank Corrected Pk Area (A-a): 0.049

Concentration (ug/L): 10.1

Replicate 2

Peak Area (A-s): 0.048

Background Pk Area (A-s): 0.029

Blank Corrected Pk Area (A-s): 0.047

Concentration (ug/L): 9.6

Mean Conc (ug/L): 9.9 SD: 0.34

RSD(X): 3.40

ID: CCV5-1

Seq. No.: 00008

A/S Pos.: 8

Date: 10/21/96

Replicate 1

Peak Area (A-s): 0.259

Background Pk Area (A-s): 0.045

Blank Corrected Pk Area (A-s): 0.257

Concentration (ug/L): 53.2

Replicate 2

Peak Area (A-s): 0.254

Background Pk Area (A-s): 0.047
Blank Corrected Pk Area (A-s): 0.253

Concentration (ug/L): 52.2

Time: 09:48

Peak Height (A): 0.332

Background Pk Height (A): 0.030

Time: 09:50

Peak Height (A): 0.287

Background Pk Height (A): 0.030

0035

Mean Conc (ug/L): 52.7 8D: 0.68 RED(%): 1,29 As ID: CCB1 Seq. No.: 00009 A/S Pos.: 9 Date: 10/21/96 Replicate 1 Time: 09:52 Peak Area (A-s): -0.000 Peak Area (A-s): -0.000 Background Pk Area (A-s): 0.033 Peak Height (A): 0.011 Background Pk Height (A): 0.020 Blank Corrected Pk Area (A-s): -0.002 Concentration (ug/L): -0.4 Replicate 2 Time: 09:54 Peak Area (A-s): 0.004 Peak Height (A): 0.014 Background Pk Area (A-s): 0.029 Background Pk Height (A): 0.019 Blank Corrected Pk Area (A-s): 0.002 Concentration (ug/L): 0.4 Mean Conc (ug/L): -0.0 SD: 0.55 RSD(X): 2069.89 ID: PBW 10-15-2 Seq. No.: 00010 A/S Pos.: 10 Date: 10/21/96 Replicate 1 Time: 09:56 Peak Area (A-s): -0.001 Peak Height (A): 0.015 Rackground Pk Area (A-s): 0.029 Background Pk Height (A): 0.018 Blank Corrected Pk Area (A-s): -2.003 Concentration (ug/L): -0.6 Replicate 2 Time: 09:58 Peak Area (A-s): 0.004 Peak Height (A): 0.013 Background Pk Area (A-s): 0.027 Background Pk Height (A): 0.021 Blank Corrected Pk Area (A-s): 0.002 Concentration (ug/L): 0.5 Mean Conc (ug/L): -0.0 SD: 0.78 RSD(X): 1926,67 ID: PBWA 10-15-2 Seq. No.: 00011 A/S Pos.: 11 Date: 10/21/96 Replicate 1

Peak Area (A-s): 0.107

Background Pk Area (A-s): 0.037

Time: 10:00

Peak Height (A): 0.171

Background Pk Height (A): 0.025 Replicate 1 Blank Corrected Pk Area (A-s): 0.106 Concentration (ug/L): 21.8 Replicate 2 Time: 10:01 Peak Area (A-g): 0.110 Peak Height (A): 0.177 Blank Corrected Pk Area (A-s): 0.108 Concentration (ug/L): 22.3 Mean Cond (ug/L): 22.1 SD: 0.33 RSD(X): 1.49 50. Per: 110 As ID: LCSW 10-15-2 Seq. No.: 00012 A/S Pos.: 12 Date: 10/21/96 Peak Area (A-a): 0.207 Replicate 1 Time: 10:03

Background Pk Area (A-s): 0.047 Background Pk Height (A): 0.032

Peak Height (A): 0.345

Blank Corrected Pk Area (A-s): 0.205 Concentration (uq/L): 42.3

Replicate 2 Peak Area (A-s): 0.204 Background Pk Area (A-B): 0.047 Blank Corrected Pk Area (A-s): 0.202 Concentration (ug/L): 41.7

Time: 10:05 Peak Height (A): 0.304 Background Pk Height (A): 0.038

Mean Conc (ug/L):

42.0

SD: 0.45

RSD(X): 1.08

ID: LCSWA 10-15-2 Seq. No.: 00013

A/S Pos.: 13 Date: 10/21/95

Replicate 1

Peak Area (A-a): 0.314

Background Pk Area (A-s): 0.050 Blank Corrected Pk Area (A-s): 8.312 Concentration (ug/L): 64.5

Time: 10:07 Peak Height (A): 0.450 Background Pk Height (A): 0.040

Replicate 2

Peak Area (A-a): 0.306

Background Pk Area (A-s): 0.053 Blank Corrected Pk Area (A-a): 0.304

Concentration (ug/L): 62.8

Time: 10:09 Peak Height (A): 0.424 Background Pk Height (A): 0.041

Mean Conc (ug/L):

63.7

SD: 1.24

RSD(X): 1.94

As

ID: LCSW D 10-15-2 Seq. No.: 00014 A/S Pos.: 14

Date: 10/21/96

Replicate 1

Peak Area (A-s): 0.207

Background Pk Area (A-s): 0.049 Blank Corrected Pk Area (A-a): 2,205

Concentration (ug/L): 42.3

Time: 10:11

Peak Height (A): 0.305

Background Pk Height (A): 0.032

Replicate 2

Peak Area (A-s): 0.210

Background Pk Area (A-s): 0.045

Blank Corrected Pk Area (A-a): 0.208

Concentration (ug/L): 43.0

Time: 10:13

Peak Height (A): 0.412

Background Pk Height (A): 0.036

Mean Conc (ug/L): 42.7

SD: 0.51

RSD(X): 1,20

ID: LCSW DA 10-15-2 Seq. No.: 00015

A/S Pos.: 15 Date: 10/21/96

Replicate 1

Peak Area (A-s): 0.315

Background Pk Area (A-s): 0.052

Blank Corrected Pk Area (A-a): 8.313

Concentration (ug/L): 64.6

Time: 10:15

Peak Height (A): 0.514

Background Pk Height (A): 0.045

Replicate

Peak Area (A-s): 0.316 Background Pk Area (A-s): 0.047

Blank Corrected Pk Area (A-a): 0.314

Concentration (ug/L): 64.8

Time: 10:16

Peak Height (A): 0.481

Background Pk Height (A): 0.041

Mean Conc (ug/L): 64.7 SD: 0.14 RSD(%): 0.22 50.Pec:10'. Seq. No.: 00016 A/S Pos.: 16 Date: 10/21/96 As ID: C677C Replicate 1 Time: 10:18 Peak Area (A-s): -0.001 Peak Area (A-s): -0.001 Peak Height (A): 0.012
Background Pk Area (A-s): 0.034 Background Pk Height (A): 0.023 Blank Corrected Pk Area (A-s): -0.002 Concentration (ug/L): -0.5 Replicate 2 Time: 10:20 Peak Area (A-s): 0.003 Peak Height (A): 0.013 Background Pk Area (A-s): 0.033 Peak Height (A): 0.024 Blank Corrected Pk Area (A-s): 0.001 Concentration (ug/L): 0.2 Mean Conc (ug/L): -0.2 SD: 0.49 RSD(%): 289.19 . . Seq. No.: 00017 A/S Pos.: 17 Date: 10/21/96 ID: C67**7**CA Replicate 1 Time: 10:22 Peak Area (A-s): 0.115 Peak Height (A): 0.161 Peak Area (A-s): 0.115

Background Pk Area (A-s): 0.031

Peak Height (A): 0.161

Background Pk Height (A): 0.022 Blank Corrected Pk Area (A-s): 2.113 Concentration (ug/L): 23.4 Time: 10:24 Replicate 2 Peak Area (A-g): 0.113 Peak Area (A-s): 0.113

Background Pk Area (A-s): 0.039

Peak Height (A): 0.145

Background Pk Height (A): 0.023 Blank Corrected Pk Area (A-s): 0.111 Concentration (ug/L): 23.0 Mean Cond (ug/L): 23.2 SD: 0.28 RSD(X): 1.21 ID: CCV5-2 Seq. No.: 00018 A/S Pos.: 18 Date: 10/21/96 Replicate 1 Replicate 1 Time: 10:26

Peak Area (A-s): 0.262 Peak Height (A): 0.324

Background Pk Area (A-s): 0.044 Background Pk Height (A): 0.029 Time: 10:26 Blank Corrected Pk Area (A-s): 0.260 Concentration (ug/L): 53.7 Replicate 2 Time: 10:28 Peak Area (A-s): 0.262 Peak Area (A-s): 0.262
Background Pk Area (A-s): 0.046
Blank Corrected Pk Area (A-s): 0.260 Peak Height (A): 0.303 Background Pk Height (A): 0.032 Concentration (ug/L): 53.7 Mean Conc (ug/L): 53.7 SD: 0.01 RSD(X): 0.03 As ID: CCB2 Seq. No.: 00019 A/S Pos.: 19 Date: 10/21/96

Time: 10:30

Feak Area (A-s): 0.004

Background Pk Area (A-s): 0.032

Background Pk Height (A): 0.023

Replicate 1

Feak Area (A-g): 0.004

Blank Corrected Pk Area (A-s): 0.003 Concentration (ug/L): 0.5

Replicate 2 Peak Area (A-s): 0.004

Background Pk Area (A-s): 0.030

Blank Corrected Pk Area (A-s): 0.002

Concentration (ug/L): 0.4

Mean Conc (ug/L):

0.5

SD: 0.05

Time: 10:33

Time: 10:35

Time: 10:32

Peak Height (A): 0.011

Peak Height (A): 0.014

Peak Height (A): 0.011

Peak Height (A): 0.013

RSD(X): 11,11

ID: PBS 10-15-1 Seq. No.: 00020

. .

Background Pk Height (4): 0.020

Background Pk Height (A): 0.018

A/S Pos.: 20 Date: 16/21/96

Replicate 1

Peak Area (A-a): 0.001

Background Pk Area (A-s): 0.028

Blank Corrected Pk Area (A-s): -0.001

Concentration (ug/L): -0.2

Replicate 2

Peak Area (A-a): -0.004

Background Pk Area (A-s): 0.030

Blank Corrected Pk Area (A-a): -0.005

Concentration (ug/L): -1.1

Hean Conc (ug/L): -0.7

SD: 0.63

Time: 10:45

Time: 10:47

VOID: ANALYTICAL SAKE DOES NOT DUMEDIATELY

Background Pk Height (4): 0.022 RULW

(AUTUSAMPLEZ

MALFUNCTION

As ID: PBS 10-15-1

Background Pk Height (4): 0.014

Seq. No.: 00022 A/S Pos.: 20 1 Date: 10/21/96

Replicate 1

Peak Area (A-a): 0.006

Background Pk Area (A-E): 0.016

Blank Corrected Pk Area (A-s): 0.004

Concentration (ug/L): 0.8

Replicate 2

Peak Area (A-s): 0.007

Rackground Pk Area (A-s): 0.025

Blank Corrected Pk Area (A-s): 0.005

Concentration (ug/L): 1.1

Mean Conc (ug/L):

24 IN 14 IN 14 IN 14 IN IN IN IN IN 18 **66** IN **66** IN **66** IN 68

0.9

SD: 0.17

VOID: ANALYTICAL SAKE RECEVERY UF TREP BLANK Peak Height (A): 0.013 Background Pk Height (4): 0.018 EXCEEDS

-SAMPLE WILL BE RESAKEDE REPUL

RSD(X): 17.74 PR 10219

ID: PBSA 10-15-1

Seq. No.: 00023 A/S Pos.: 21

Date: 10/21/96

Replicate 1

Peak Area (A-a): 0,119

Background Pk Area (A-s): 0.014

Blank Corrected Pk Area (A-s): 0.117

Concentration (ug/L): 24.1

Replicate 2

Peak Area (A-s): 0.119

Background Pk Area (A-s): 0.026

Blank Corrected Pk Area (A-a): 0,117

Concentration (ug/L): 24.2

Time: 10:49

Peak Height (A): 0.311

Background Pk Height (4): 0.021

Time: 10:51

Peak Height (A): 0.214

Background Pk Height (4): 0.022

RAW DATA / RUN SEQUENCE LOG A VOD: SEE GFAA-AS

DOENIOUS PAGE PB 1021-96 , RBD(%); 0.15

Mean Conc (ug/L): 24.2 BD: 0.04

As ID: PBS 10-15-1 Seq. No.: 00024 A/S Pos.: 22 Date: 10/21/96

Replicate 1

Peak Area (A-s): 0.001

Background Pk Area (A-s): 0.028
Blank Corrected Pt 1 Blank Corrected Pk Area (A-s): -0.001

Concentration (ug/L): -0.1

Peak Area (A-s): 0.003

Background Pk Area (A-s): 0.020

Blank Corrected Pk Area (A-s): 0.002

Concentration (ug/L): 0.3

Mean Conc (ug/L): 0.1

Time: 11:11

Peak Height (A): 0.123

Peak Height (A): 0.175

Background Pk Height (A): 0.022

Peak Height (A): 0.014
Background Pk Height (A): 0.019

NOTE: PBS 10:15-1 WILL BE REPUNED WITH

Time: 11:13

Peak Height (A): 0.014 ASSOCIATED SAMPLE

Background Pk Height (A): 0.017 ()N

ANOTHER SAMPLE CUR

BB102190

SD: 0.30

Time: 11:15

Time: 11:17

RSD(X): 297.18

ID: PBSA 10-15-1 Seq. No.: 00025 A/S Pos.: 23 Date: 10/21/96

Replicate 1

Peak Area (A-m): 0.109

Background Pk Area (A-a): 0.034

Blank Corrected Pk Area (A-s): 0.107

Concentration (ug/L): 22.1

Replicate 2

Peak Area (A-a): 0.107

Background Pk Area (A-s): 0.025 Background Pk Height (A): 0.022

Blank Corrected Pk Area (A-s): 0.105

Concentration (ug/L): 21.7

Mean Cond (ug/L): 21.9 SD: 0.31

ID: CCV5-3 ۸a

Seq. No.: 00026 A/S Pos.: 24 Date: 10/21/96

Replicate 1

Peak Area (A-g): 0.267

Background Pk Area (A-a): 6.038

Blank Corrected Pk Area (A-a): 0.265

Concentration (ug/L): 54.7

Time: 11:19

Peak Height (A): 0.332

Background Pk Height (A): 0.032

Replicate 2

Peak Area (A-a): 0.252

Peak Area (A-a): 0.252 Background Pk Area (A-a): 0.047

Blank Corrected Pk Area (A-s): 0.250

Concentration (ug/L): 51.7

Time: 11:21

Peak Height (A): 0.312

Background Pk Height (A): 0.029

Mean Conc (ug/L): 53.2 SD: 2.13

RSD(X): 4.01

As ID: CCB3

Seq. No.: 00027 A/S Pos.: 25 Date: 10/21/96

Feak Area (A-g): 0.000

Background Pk Area (A-s): 0.030 Background Pk Height (A): 0.020

Time: 11:22

Peak Height (A): 0.015

Blank Corrected Pk Area (A-s): -0.002 Concentration (ug/L): -0.3 Replicate 2 Time: 11:24 Peak Area (A-s): 0.003 Peak Height (A): 0.016 Background Pk Area (A-s): 0.028 Background Pk Height (A): 0.017 Blank Corrected Pk Area (A-s): 0.001 Concentration (ug/L): 0.3 Hean Conc (ug/L): -0.0 SD: 0.44 RSD(X): 4354.80 A/S Pos.: 26 Date: 10/21/96 ID: LCSS 10-15-1x25 Seq. No.: 00028 Replicate 1 Time: 11:30 replicate 1 Feak Area (A-a): 0.252 Peak Height (A): 0.301 Background Pk Area (A-s): 0.051 Background Pk Height (4): 0.048 Blank Corrected Pk Area (A-s): 0.250 VOID: 00454 9 Concentration (ug/L): 51.7 CCB4 NOT Time: 11:32 Replicate 2 Peak Area (A-a): 0.239 Peak Height (A): 0.239 ANAUTED. DE Background Pk Area (A-s): 0.056 Background Pk Height (4): 0.044 TO Blank Corrected Pk Area (A-s): 0.237 AUTOSAMPLER Concentration (ug/L): 49.0 MALFUNCTION RSD(X): 3.79 6216 Mean Conc (ug/L): 50.3 SD: 1.91 As ID: LCSSA10-15-1x25 Seq. No.: 00029 A/S Pos.: 27 Date: 10/21/96 Replicate 1 Time: 11:34 Peak Area (A-g): 0.360 Peak Height (A): 0.427 Background Pk Area (A-E): 0.053 Background Pk Height (4): 6.051 Blank Corrected Pk Area (A-s): 0.358 Concentration (ug/L): 74.0 Replicate 2 Time: 11:36 Feak Area (A-a): 0.368 Peak Height (A): 0.390 Background Pk Area (A-s): 0.058 Background Pk Height (4): 6.048 Blank Corrected Pk Area (A-a): 0.366 Concentration (ug/L): 75.6 Nean Conc (ug/L): 74.8 SD: 1.16 RSD(%): 1.56 ID: C6775 Seg. No.: 00030 A/S Pos.: 28 | Date: 10/21/96 Sample abs. is greater than that of the largest standard. Replicate 1 Time: 11:38 Peak Area (A-g): 0.977 Peak Height (A): 1.017 Background Pk Area (A-s): 0.461 Background Pk Height (4): 0.434 Blank Corrected Pk Area (A-s): 0.975

Concentration (ug/L): 201.5

Peak Area (A-a): 0.986

Background Pk Area (A-a): 0.526

Sample abs. is greater than that of the largest standard. Replicate 2 Time: 11:39

Background Pk Height (4): 0.473

Peak Height (A): 1.053

Blank Corrected Pk Area (A-s): 0.984 Concentration (ug/L): 203.3 Sample abs. is greater than that of the largest standard. Mean Conc (ug/L): 202.4 5D: 1.28 RSD(%): 0.63 As ID: C6775D Seq. No.: 00031 A/S Pas.: 29 Date: 10/21/96 Sample abs. is greater than that of the largest standard. Replicate 1 Time: 11:41 Peak Area (A-s): 0.918 Peak Height (A): 1.050 Background Pk Area (A-s): 0.510 Background Pk Height (4): 0.507 Blank Corrected Pk Area (A-s): 0.916 VOID CEVS-48 CCI Concentration (ug/L): 189.4 NOT ANAUGED Sample abs. is greater than that of the largest standard. DUE TO AUTO-Replicate 2 Time: 11:43 Background Pk Height (A): 0.477 Peak Area (A-s): 0.921 Background Pk Area (A-s): 0.513 MAGUNCTION Blank Corrected Pk Area (A-s): 0.919 Concentration (ug/L): 190.0 PB 102196 Sample abs. is greater than that of the largest standard. RSD(%): 0.22 Mean Conc (ug/L): 189.7 SD: 0.42 ID: C6775S Seq. No.: 00032 A/S Pas.: 30 | Date: 10/21/96 Sample abs. is greater than that of the largest standard. Replicate 1 Time: 11:45 Peak Area (A-s): 1.058 Peak Height (A): 1.246 Background Pk Area (A-s): 0.573 Background Pk Height (A): 0.568 Blank Corrected Pk Area (A-s): 1.056 Concentration (ug/L): 218.1 Sample abs. is greater than that of the largest standard. Replicate 2 Time: 11:47 Peak Area (A-g): 1.071 Peak Height (A): 1.169 Background Pk Area (A-s): 0.576 Background Pk Height (4): 0.559 Blank Corrected Pk Area (A-s): 1.070 Concentration (ug/L): 221.0 Sample abs. is greater than that of the largest standard. Mean Conc (ug/L): 219.6 SD: 2.01 As ID: C6775 x5 Seq. No.: 00033 A/S Pos.: 31 Date: 10/21/96 Replicate 1 Time: 11:49 Peak Area (A-s): 0.218 Peak Height (A): 0.262 Background Pk Area (A-s): 0.169 Background Pk Height (4): 0.182 Blank Corrected Pk Area (A-s): 0.217 Concentration (ug/L): 44.7

> GND OF ANALYSIS 736 10:2196

0041-1

```
Element File: AS_FAST.GEL
                          Element: As
                                                      Wavelength: 193.7
                          Time: 10:20
Date: 10/22/96
                                                      Slit: 0.70 L
Data File: 11022ASA.DAT
                        ID/Wt File: ARSENIC.IDW
                                                     Lamp Current: 0
                          Calib. Type: Linear
Technique: HGA
                                                      Energy: 49
Remark 1: QUANTERRA PITT 450 WILLIAM PITT WAY PITTSBURGH PA 15238
Remark 2: UNITS PPB BZ BACKGROUND, INST#10 RAW DATA/ RUN SEQUENCE LOG
Remark 3: STDS:10(414-101-9) 50(414-101-10) 100(414-101-11) ITPA GFAA
                                          ANALYST (S) : EMF WHU DAUG 10%
Remark 4: CCV: 50(414-101-12) PR5100
Remark 5: ICV:40(414-85-2) CRA(10):414-97-1
ID: BLANK
                          Seq. No.: 00001
                                            A/S Pos.: 1
                                                          Date: 10/22/96
                                    *C6J110114 - CLPILLOSO
Replicate 1
Feak Area (A-s): 0.004
                                   Peak Height (A): 0.012
Background Pk Area (A-s): 0.033
                                    Background Pk Height (A): 0.032
Blank Corrected Fk Area (A-s): 0.004
                                    *COJIIOIIS -CUPTLMOSO
Replicate 2
                                    Time: 10:22
Feak Area (A-s): -0.001
                                   Peak Height (A): 0.009
Background Pk Area (A-s): 0.023
                                    Background Pk Height (A): 0.014
Blank Corrected Fk Area (A-s): -0.001
                                    *(6)100179 - 206.2
Mean Pk Area (A-s):
                      0.002
                                   SD: 0.0031
                                                         RSD(%): 192.47
Auto-zero performed.
    ID: STANDARD 1
                         Seq. No.: 00002
                                          A/S Pos.: 2
                                                          Date: 10/22/96
Replicate 1
                                   Time: 10:23
Peak Area (A-s): 0.050
                                   Peak Height (A): 0.056
Background Pk Area (A-s): 0.031
                                   Background Fk Height (A): 0.019
Blank Corrected Fk Area (A-s): 0.049
Replicate 2
                                   Time: 10:25
Peak Area (A-s): 0.050
                                   Peak Height (A): 0.055
Background Pk Area (A-s): 0.033
                                   Background Fk Height (A): 0.019
Blank Corrected Pk Area (A-s): 0.048
Mean Pk Area (A-s):
                      0.048
                                   SD: 0.0003
                                                         RSD(%): 0.65
Standard number 1 applied. [10.0]
Correlation coefficient: 1.00000
                                   Slope: 0.0048
ID: STANDARD 2
                         Seq. No.: 00003 A/S Pos.: 3
                                                         Date: 10/22/96
Replicate 1
                                   Time: 10:27
Peak Area (A-s): 0.235
                                   Peak Height (A): 0.244
Background Pk Area (A-s): 0.048
                                   Background Pk Height (A): 0.027
Blank Corrected Pk Area (A-s): 0.233
Concentration (ug/L ): 48.3
Replicate 2
                                   Time: 10:29
```

Peak Height (A): 0.390

Background Fk Height (A): 27829

Peak Area (A-s): 0.255

Background Pk Area (A-s): 0.036

Blank Corrected Pk Area (A-s): 0.253

Concentration (ug/L): 52.3

Mean Conc (ug/L):

50.3

SD: 2.88

RSD(%): 5.72

Standard number 2 applied. [50.0]

Correlation coefficient: 1.00000

Slope: 0.0049

ID: STANDARD 3

Seq. No.: 00004

A/S Pas.: 4

Date: 10/22/96

Replicate 1

Peak Area (A-s): 0.488

Background Pk Area (A-s): 0.059

Blank Corrected Fk Area (A-s): 0.486

Concentration (ug/L): 99.9

Time: 10:33

Time: 10:31

Peak Height (A): 0.541

Peak Height (A): 0.515

Background Pk Height (A): 0.047

Background Pk Height (A): 0.041

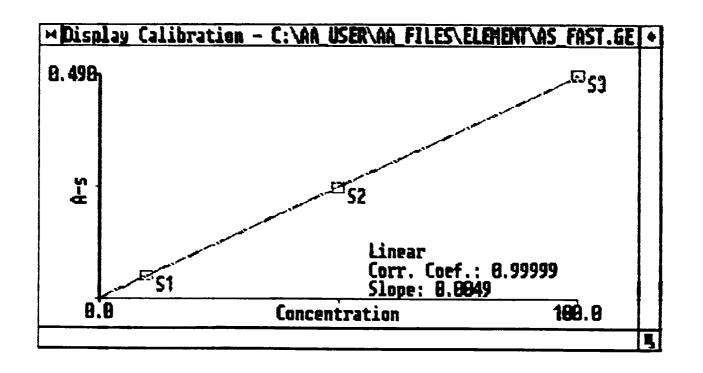
Replicate 2

Peak Area (A-s): 0.495

Background Pk Area (A-s): 0.061

Blank Corrected Pk Area (A-s): 0.494

Concentration (ug/L): 101.5


Mean Conc (ug/L): 100.7 SD: 1.12

RSD(%): 1.11

Standard number 3 applied. [100.0]

Correlation coefficient: 0.99999

Slope: 0.0049

As ID: ICV5-1 Seq. No.: 00005

A/S Pos.: 5

Date: 10/22/96

Replicate 1

Peak Area (A-s): 0.202

Background Pk Area (A-s): 0.041

Blank Corrected Pk Area (A-s): 0.201

Time: 10:35

Peak Height (A): 0.238 Background Fk Height (A): 0.028

Concentration (ug/L): 41.1 " Replicate 2 Time: 10:37 Peak Area (A-s): 0.207 Peak Height (A): 0.251 Background Pk Area (A-s): 0.038 Background Pk Height (A): 0.024 Blank Corrected Pk Area (A-s): 0.206 Concentration (ug/L): 42.0 Mean Conc (ug/L): 41.5 SD: 0.67 RSD(%): 1.62 ID: ICB1 Seq. No.: 00006 A/S Pos.: 6 Date: 10/22/96 Time: 10:39 Replicate 1 Fleak Area (A-s): 0.002 Peak Height (A): 0.011 Background Pk Area (A-s): 0.026 Background Pk Height (A): 0.014 Blank Corrected Fk Area (A-s): 0.001 Concentration (ug/L): 0.2 Time: 10:41 Replicate 2 Peak Area (A-s): 0.004 Peak Height (A): 0.009 Background Pk Area (A-s): 0.028 Background Pk Height (A): 0.018 Blank Corrected Pk Area (A-s): 0.002 Concentration (ug/L): 0.5 Mean Conc (ug/L): 0.3 SD: 0.22 RSD(%): 68.87 As ID: CRA-1 Seq. No.: 00007 A/S Pos.: 7 Date: 10/22/96 Replicate 1 Time: 10:43 Replicate 1
Peak Area (A-s): 0.049
Background Pk Area (A-s): 0.034 Peak Height (A): 0.052 Background Pk Height (A): 0.018 Blank Corrected Pk Area (A-s): 0.048 Concentration (ug/L): 9.7 Replicate 2 Time: 10:45 Feak Area (A-s): 0.049 Peak Height (A): 0.060 Background Pk Area (A-s): 0.030 Background Pk Height (A): 0.016 Blank Corrected Pk Area (A-s): 0.048 Concentration (ug/L): 9.8 Mean Conc (ug/L): 9.7 SD: 0.01 RSD(%): 0.10 As ID: CCV5-1 Seq. No.: 00008 A/S Pos.: 8 Date: 10/22/96 Replicate 1 Time: 10:46 Feak Area (A-s): 0.244 Peak Height (A): 0.269 Background Pk Area (A-s): 0.042 Background Pk Height (A): 0.029 Blank Corrected Pk Area (A-s): 0.242 Concentration (ug/L): 49.5

Replicate 2
Peak Area (A-s): 0.250
Background Pk Area (A-s): 0.041
Blank Corrected Pk Area (A-s): 0.248
Concentration (ug/L): 50.7

Time: 10:48
Peak Height (A): 0.331
Background Fk Height (A): 0.031

0044

SD: 0.84 50.1 Mean Conc (ug/L): RSD(%): 1.68 As ID: CCB1 Seq. No.: 00009 A/S Pos.: 9 Date: 10/22/96 Time: 10:50 Replicate 1 Peak Height (A): 0.010 Peak Area (A-s): 0.002 Background Pk Area (A-s): 0.036 Background Pk Height (A): 0.018 Blank Corrected Fk Area (A-s): -0.000 Concentration (ug/L): -0.0 Time: 10:52 Replicate 2 Feak Area (A-s): 0.004 Peak Height (A): 0.009 Background Pk Area (A-s): 0.025 Background Pk Height (A): 0.016 Blank Corrected Pk Area (A-s): 0.002 Concentration (ug/L): 0.4 Mean Conc (ug/L): Ø.2 SD: 0.30 RSD(%): 152.65 C6J10114, C6J110115 Seq. No.: 00010 A/S Pos.: 1 ID: PBS 10-15-1 Date: **10**/22/96 Replicate 1 Time: 11:33 Peak Area (A-s): -0.000 Peak Height (A): 0.009 Background Pk Area (A-s): 0.017 Background Pk Height (A): 0.012 Blank Corrected Pk Area (A-s): -0.002 Concentration (ug/L): -0.4 Replicate 2 Time: 11:35 Peak Area (A-s): 0.003 Peak Height (A): 0.010 Background Pk Area (A-s): 0.022 Background Pk Height (A): 0.014 Blank Corrected Pk Area (A-s): 0.001 Concentration (ug/L): 0.3 Mean Conc (ug/L): -0.1 SD: 0.48 RSD(%): 563.43 ID: PBSA 10-15-1 Seq. No.: 00011 A/S Pos.: 2 Date: 10/22/96 Replicate 1 Feak Area (A-s): 0.109 Background Fk Area (A-s): 0.026 Replicate 1 Time: 11:37 Peak Height (A): 0.178 Background Pk Height (A): 0.020 Blank Corrected Pk Area (A-s): 0.107 Concentration (ug/L): 21.9 Replicate 2 Time: 11:39 Feak Area (A-s): 0.109 Peak Height (A): 0.167 Background Pk Area (A-s): 0.026 Background Pk Height (A): 0.018 Blank Corrected Pk Area (A-s): 0.107 Concentration (ug/L): 21.9 Mean Conc (ug/L): 21.9 SD: 0.04 ID: LCSS 10-15-1x25 Seq. No.: 00012 A/S Pos.: 3 Date: 10/22/96

Time: 11:41

Peak Height (A): 0.315

Background Pk Height (A): 0.0365

Replicate 1

Peak Area (A-**s):** 0.237

Background Fk Area (A-s): 0.048

Blank Corrected Pk Area (A-s): 0.235 Concentration (ug/L): 48.1 Time: 11:43 Replicate 2 Peak Height (A): 0.223 Peak Area (A-s): 0.222 Background Pk Area (A-s): 0.051 Background Pk Height (A): 0.038 Blank Corrected Pk Area (A-s): 0.220 Concentration (ug/L): 45.0 Mean Conc (ug/L): 46.6 SD: 2.19 RSD(%): 4.71 ID: LCSSA10-15-1x25 Seq. No.: 00013 A/S Pos.: 4 Date: 10/22/96 Time: 11:44 Replicate 1 Peak Area (A-s): 0.344 Peak Height (A): 0.370 Background Pk Area (A-s): 0.059 Background Pk Height (A): 0.043 Blank Corrected Pk Area (A-s): 0.342 Concentration (ug/L): 69.9 Time: 11:46 Replicate 2 Peak Area (A-s): 0.351 Peak Height (A): 0.394 Background Pk Area (A-s): 0.059 Background Pk Height (A): 0.046 Blank Corrected Fk Area (A-s): 0.349 Concentration (ug/L): 71.3 Mean Conc (ug/L): 70.6 SD: 0.99 Seq. No.: 00014 A/S Pas.: 5 Date: 10/22/96 ID: C67**7**5 Sample abs. is greater than that of the largest standard. Replicate 1 Time: 11:48 Feak Area (A-s): 0.926 Peak Height (A): 0.712 Background Pk Area (A-s): 0.414 Background Pk Height (A): 0.332 Blank Corrected Pk Area (A-s): 0.925 VOID'See Concentration (ug/L): 189.0 printed message. Sample abs. is greater than that of the largest standard. EUF 10-22-96 Replicate 2 Time: 11:50 Peak Area (A-s): 0.922 Peak Height (A): 1.028 Background Pk Area (A-s): 0.473 Background Fk Height (A): 0.460 Blank Corrected Pk Area (A-s): 0.920 Concentration (ug/L): 188.1 Sample abs. is greater than that of the largest standard. SD: 0.69 Mean Conc (ug/L): 188.6 RSD(%): 0.37 ID: AC6**7**75 Seq. No.: 00015 A/S Pos.: 8 Date: 10/22/96 Sample abs. is greater than that of the largest standard. Replicate 1 Time: 11:52 Peak Area (A-s): 1.012 Peak Height (A): 0.708

Sample abs. is greater than that of the largest standard.

Background Fk Area (A-s): 0.489

Blank Corrected Fk Area (A-s): 1.010

Concentration (ug/L): 206.5

0046

Background Pk Height (A): 0.361

```
Replicate 2
                                   Time: 11:54
Peak Area (A-s): 1.026
                                   Peak Height (A): 1.072
Background Pk Area (A-s): 0.500
                                   Background Pk Height (A): 0.456
Blank Corrected Pk Area (A-s): 1.024
Concentration (ug/L ): 209.4
Sample abs. is greater than that of the largest standard.
                                  SD: 2.04
                                                         RSD(%): 0.98
Mean Conc (ug/L ):
                      208.0
                                                      RE( .= 971/.
Seq. No.: 00016
                                           A/S Pos.: 7
    ID: C6775D
                                                         Date: 10/22/96
Sample abs. is greater than that of the largest standard.
                                   Time: 11:56
Replicate 1
Freak Area (A-s): 0.860
                                   Peak Height (A): 0.946
                                   Background Pk Height (A): 0.473
Background Pk Area (A-s): 0.464
Blank Corrected Pk Area (A-s): 0.858
                                                       VOID: See
Concentration (ug/L ): 175.4
                                                        printed
Sample abs. is greater than that of the largest standard.
                                   Time: 11:58
Replicate 2
                                   Peak Height (A): 0.9$7 EUF 10-22-96
Fleak Area (A-s): 0.844
Background Pk Area (A-s): 0.455
                                   Background Pk Height (A): 0.472
Blank Corrected Pk Area (A-s): 0.842
Concentration (ug/L ): 172.2
Sample abs. is greater than that of the largest standard.
Mean Conc (ug/L ): 173.8
                                   SD: 2.29
                                                        RSD(%): 1.32
ID: 46.7730 EUF 10-22-96
                        Seq. No.: 00017 A/S Pos.: 8
                                                         Date: 10/22/96
        AC6775D
Sample abs. is greater than that of the largest standard.
Replicate 1
                                   Time: 12:00
Feak Area (A-s): 0.941
                                   Peak Height (A): 1.008
Background Pk Area (A-s): 0.457
                                   Background Pk Height (A): 0.471
Blank Corrected Pk Area (A-s): 0.939
Concentration (ug/L ): 192.0
Sample abs. is greater than that of the largest standard.
Replicate 2
                                   Time: 12:01
Feak Area (A-s): 0.972
                                   Peak Height (A): 0.945
Background Pk Area (A-s): 0.473
                                   Background Pk Height (A): 0.448
Blank Corrected Pk Area (A-s): 0.971
Concentration (up/L ): 198.4
Sample abs. is greater than that of the largest standard.
Mean Conc (ug/L ): 195.2
                                   SD: 4.57
                                                        RSD(%): 2.34
As
    ID: CCV5-2
                         Seq. No.: 00018 A/S Pos.: 9
                                                         Date: 10/22/96
                                                      NOT VOID EUF 10-22-
Replicate 1
                                   Time: 12:03
Peak Area (A-s): 0.247
                                   Peak Height (A): 0.274
Background Fk Area (A-s): 0.087
                                   Background Pk Height (A): 0.098
Blank Corrected Pk Area (A-s): 0.245
Concentration (ug/L ): 50.2
```

Time: 12:05

Replicate 2

0047

Peak Area (A-s): 0.258 Peak Height (A): 0.332 Background Pk Area (A-s): 0.035 Background Pk Height (A): 0.031 Blank Corrected Pk Area (A-s): 0.256 Concentration (ug/L): 52.4 SD: 1.57 Mean Conc (ug/L): 51.3 RSD(%): 3.06 ID: CCB2 Seq. No.: 00019 A/S Pos.: 10 Date: 10/22/96 Replicate 1 Time: 12:07 Peak Height (A): 0.010 Peak Area (A-s): 0.004 Background Pk Area (A-s): 0.022 Background Pk Height (A): 0.014 Blank Corrected Fk Area (A-s): 0.003 Concentration (ug/L): 0.6 Replicate 2 Time: 12:09 Peak Area (A-s): 0.004 Peak Height (A): 0.012 Background Pk Area (A-s): 0.023 Background Pk Height (A): 0.017 Blank Corrected Pk Area (A-s): 0.002 Concentration (ug/L): 0.4 Mean Conc (ug/L): 0.5 SD: 0.10 RSD(%): 20.57 As ID: C6779/55 Seq. No.: 00020 A/S Pos.: 11 Date: 10/22/96 84F10-2296 Sample abs. is greater than that of the largest standard. Replicate 1 Time: 12:11 Peak Area (A-s): 0.987 Feak Height (A): 1368 Background Fk Area (A-s): 0.458 Background Pk Height (A): 0.523 Blank Corrected Fk Area (A-s): 0.986 Concentration (ug/L): 201.5 VOID: See Sample abs. is greater than that of the largest standard. | Prince nussage. Replicate 2 Time: 12:13 Peak Height (A): 1/172 EUF (0-72-96 Freak Area (A-s): 1.006 Background Fk Area (A-s): 0.499 Background Pk Height (A): 0.507 Blank Corrected Fk Area (A-s): 1.005 Concentration (ug/L): 205.4 Sample abs. is greater than that of the largest standard. Mean Conc (ug/L): 203.5 SD: 2.75 RSD(%): 1.35 MAT SP. REC .= 37% ᠬ᠙᠙᠙᠙᠙᠙᠙᠙᠙᠙᠙᠙᠙ᡑ᠙᠒᠒᠒᠙ᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡡᡡᡡᡡᡡᡡᠳᡚᡚᡚᡚᡚᡚᡚᡚᡚᡚᡚᡚᡚᡚ ID: C6776 Seq. No.: 00021 A/S Pos.: 12 Date: 10/22/96 Replicate 1 Time: 12:15 Fleak Area (A-s): 0.425 Peak Height (A): 0.354 Background Pk Area (A-s): 0.426 Background Fk Height (A): 0.313 Blank Corrected Pk Area (A-s): 0.423 Concentration (ug/L): 86.6 Replicate 2 Time: 12:17 Feak Area (A-s): 0.440 Peak Height (A): 01508 Background Pk Area (A-s): 0.428 Background Pk Height (A): 0.350 Blank Corrected Pk Area (A-s): 0.438 Concentration (ug/L): 89.6

0048

```
SD: 2.13
                                                       RSD(%): 2.42
Mean Conc (ug/L ): 88.1
Seq. No.: 00022 A/S Pos.: 15 Date: 10/22/96
    ID: AC6776
Replicate 1
                                  Time: 12:18
Peak Area (A-s): 0.538
                                  Peak Height (A): 0.567
Background Pk Area (A-s): 0.428
                                  Background Pk Height (A): 0.351
Blank Corrected Pk Area (A-s): 0.537
                                                    VOID: Conc. of
Concentration (ug/L ): 109.7
                                                    analytical Spike is greater than
                                  Time: 12:20
Replicate 2
Feak Area (A-s): 0.536

Peak Height (A): 0.537 His Lougest Standa Background Pk Area (A-s): 0.425

Background Pk Height (A): 0.346
Blank Corrected Pk Area (A-s): 0.534
                                                       EUF 10-22-96
Concentration (ug/L ): 109.3
                                              SP. RED (%): 0.30
Mean Conc (ug/L ): 109.5 SD: 0.32
ID: C6777
                         Seq. No.: 00023
                                         A/S Pas.: $4
                                                       Date: 10/22/96
Sample abs. is greater than that of the largest standard.
Replicate 1
                                  Time: 12:22
Peak Area (A-s): 1.273
                                  Peak Height (A): 1.491
Background Pk Area (A-s): 0.454

Background Pk Height (A): 0.413
Blank Corrected Pk Area (A-s): 1.271
Concentration (ug/L ): 259.8
                                                    VOD:See
Sample abs. is greater than that of the largest standard. | Printed nesson.
                                 Time: 12:24
Replicate 2
                                  Peak Height (A): 1.488
Peak Area (A-s): 1.277
Background Pk Area (A-s): 0.437
                                 Background Pk Height (A): 0.39€
Blank Corrected Pk Area (A-s): 1.276
Concentration (ug/L ): 260.8
Sample abs, is greater than that of the largest standard.
Mean Conc (ug/L ): 260.3
                             SD: 0.69
                                                       RSD(%): 0.27
Seq. No.: 00024
                                         A/S Pos.: 15
    ID: AC6777
                                                       Date: 10/22/96
Sample abs. is greater than that of the largest standard.
Replicate 1
                                  Time: 12:26
Peak Area (A-s): 1.358
                                  Peak Height (A): 1.785
Background Pk Area (A-s): 0.454 Background Pk Height (A): 0.416
Blank Corrected Pk Area (A-s): 1.356
Concentration (ug/L ): 277.3
Sample abs. is greater than that of the largest standard.
Replicate 2
                                  Time: 12:28
Feak Area (A-s): 1.319
                                  Peak Height (A): 1.772
Background Pk Area (A-s): 0.446
                                 Background Pk Height (A): 0.420
Blank Corrected Pk Area (A-s): 1.317
Concentration (ug/L ): 269.3
Sample abs. is greater than that of the largest standard.
Mean Conc (ug/L ): 273.3 SD: 5.67
```

```
A/S Pos.: 16 Date: 10/22/96
                         Seq. No.: 00025
     ID: C6778
Sample abs. is greater than that of the largest standard.
                                  Time: 12:30
Replicate 1
                                 Peak Height (A): 1.444
Peak Area (A-s): 0.853
Background Pk Area (A-s): 0.404
                                Background Pk Height (A): 0.427
Blank Corrected Pk Area (A-s): 0.851
                                                    VOID: See
Concentration (ug/L ): 174.0
                                 e largest standard. Printed
Time: 12:32
Peak Height (A): 0.736
Background 50 15
Sample abs. is greater than that of the largest standard.
Replicate 2
Feak Area (A-s): 0.856
Background Pk Area (A-s): 0.421 Background Pk Height (A): 0.371 10-22-96
Blank Corrected Pk Area (A-s): 0.854
Concentration (ug/L ): 174.7
Sample abs. is greater than that of the largest standard.
Mean Conc (ug/L ): 174.3 SD: 0.46
                                                       RSD(%): 0.26
Seq. No.: 00026 A/S Pos.: 17
    ID: AC6778
                                                      Date: 10/22/96
Sample abs. is greater than that of the largest standard.
Replicate 1
                                 Time: 12:33
Peak Area (A-s): 0.937
                                 Peak Height (A): 1.108
Background Pk Area (A-s): 0.420
                                 Background Pk Height (A): 0.429
Blank Corrected Fk Area (A-s): 0.935
Concentration (ug/L ): 191.2
Sample abs. is greater than that of the largest standard.
                                 Time: 12:35
Replicate 2
Peak Area (A-s): 0.948
                                 Peak Height (A): 1.124
Background Pk Area (A-s): 0.424
                                Background Pk Height (A): 0.421
Blank Corrected Pk Area (A-s): 0.947
Concentration (ug/L ): 193.5
Sample abs. is greater than that of the largest standard.
Mean Conc (ug/L ): 192.4 SD: 1.62
                                                      RSD(%): 0.84
As ID: CCV5-3
                        Seq. No.: 00027 A/S Pos.: 18
                                                      Date: 10/22/96
Replicate 1
                                 Time: 12:37
Peak Area (A-s): 0.265
                                 Peak Height (A): 0.361
Background Fik Area (A-s): 0.076
                                 Background Pk Height (A): 0.085
Blank Corrected Fk Area (A-s): 0.263
Concentration (ug/L ): 53.8
Replicate 2
                                 Time: 12:39
Feak Area (A-s): 0.260
                                 Peak Height (A): 0.369
Background Pk Area (A-s): 0.035
                                 Background Fk Height (A): 0.031
Blank Corrected Pk Area (A-s): 0.259
Concentration (ug/L ): 52.9
Mean Conc (ug/L ): 53.3 SD: 0.68
                                                      RSD(%): 1.28
```

As ID: CCB3 Seq. No.: 00028 A/S Pos.: 19 Date: 10/22/96 Time: 12:41 Replicate 1 Peak Area (A-s): 0.005 Peak Height (A): 0.012 Background Pk Area (A-s): 0.026 Background Pk Height (A): 0.017 Blank Corrected Pk Area (A-s): 0.003 Concentration (ug/L): 0.6 Time: 12:43 Replicate 2 Peak Height (A): 0.011 Peak Area (A-s): 0.001 Background Pk Area (A-s): 0.023 Background Pk Height (A): 0.016 Blank Corrected Fk Area (A-s): -0.001 Concentration (up/L): -0.1 Mean Conc (ug/L): 0.3 SD: 0.52 RSD(%): 200.66 Seq. No.: 00029 A/S Pas.: 20 As ID: C67**7**9 Date: 10/22/96 Time: 12:45 Replicate 1 Peak Area (A-s): 0.357 Peak Height (A): 0.404 Background Pk Area (A-s): 0.377 Background Pk Height (A): 0.397 Blank Corrected Pk Area (A-s): 0.355 Concentration (ug/L): 72.7 Replicate 2 Time: 12:47 Peak Height (A): 0.487 Peak Area (A-s): 0.366 Background Pk Area (A-s): 0.429 Background Pk Height (A): 0.473 Blank Corrected Pk Area (A-s): 0.364 Concentration (ug/L): 74.4 73.5 SD: 1.24 Mean Conc (ug/L): RSD(%): 1.69 ID: AC6**7**79 Seq. No.: 00030 A/S Pos.: 21 Date: 10/22/96 Time: 12:49 Replicate 1 Fleak Area (A-s): 0.473 Peak Height (A): 0.723 Background Pk Area (A-s): 0.437 Background Pk Height (A): 0.494 Blank Corrected Pk Area (A-s): 0.472 Concentration (ug/L): 96.4 Time: 12:50 Replicate 2 Peak Area (A-s): 0.472 Peak Height (A): 0.583 Background Pk Area (A-s): 0.437 Background Pk Height (A): 0.458 Blank Corrected Fk Area (A-s): 0.470 Concentration (ug/L): 96.1 Mean Conc (ug/L): 96.3 SD: 0.22 RSD(%): 0.22 Seq. No.: 00031 A/S Pos.: 22 Date: 10/22/96 ID: C67**7**A 1 VOID: See printed Sample abs. is greater than that of the largest standard. Replicate 1 Time: 12:52 Time: 12:52

Feak Height (A): 2.258

message. guf Peak Area (A-s): 2.403 Background Fk Height (A): 000051 10-22-96 Background Fk Area (A-s): 0.631

Blank Corrected Pk Area (A-s): 2.401

VOD! See Concentration (ug/L): 490.9 printed message Sample abs. is greater than that of the largest standard. GUF 10-22-96 Replicate 2 Time: 12:54 Peak Area (A-s): 2.441 Peak Height (A): 2.488 Background Pk Height (A): 0.585 Background Pk Area (A-s): 0.623 Blank Corrected Pk Area (A-s): 2.440 Concentration (ug/L): 498.7 Sample abs. is greater than that of the largest standard. Mean Conc (ug/L): 494.8 SD: 5.50 RSD(%): 1.11 ID: AC6**7**7**A** Seq. No.: 00032 A/S Pas.: 23 Sample abs. is greater than that of the largest standard. Replicate 1 Time: 12:56 Peak Area (A-s): 2.491 Peak Height (A): 2.272 Background Pk Area (A-s): 0.628 Background Pk Height (A): 0.583 Blank Corrected Fk Area (A-s): 2.489 Concentration (up/L): 508.9 Sample abs. is greater than that of the largest standard. Replicate 2 Time: 12:58 Peak Area (A-s): 2.330 Peak Height (A): 2.159 Background Pk Area (A-s): 0.629 Background Pk Height (A): 0.639 Blank Corrected Pk Area (A-s): 2.328 Concentration (ug/L): 476.0 Sample abs. is greater than that of the largest standard. Mean Conc (ug/L): SD: 23.28 RSD(%): 4.73 492.4 SP. RE(.= 01/2 ID: C67**7**E Seq. No.: 00033 A/S Pas.: 24 Date: 10/22/96 Replicate 1 Time: 13:00 Peak Area (A-s): 0.514 Peak Height (A): 0.606 Background Pk Area (A-s): 0.398 Background Pk Height (A): 0.399 Blank Corrected Pk Area (A-s): 0.512 Concentration (ug/L): 104.7 Replicate 2 Time: 13:02 Peak Area (A-s): 0.505 Peak Height (A): 0.588 Background Pk Area (A-s): 0.393 Background Pk Height (A): 0.393 Blank Corrected Fk Area (A-s): 0.504 Concentration (ug/L): 102.9 Mean Conc (ug/L): 103.8 SD: 1.22 RSD(%): 1.18 As ID: AC6**7**7E Seq. No.: 00034 A/S Pos.: 25 Date: 10/22/96 Sample abs. is greater than that of the largest standard. Replicate 1 Time: 13:04 Peak Area (A-s): 0.591 Peak Height (A): 1.098

Background Pk Area (A-s): 0.408

Concentration (ug/L): 120.5

Blank Corrected Pk Area (A-s): 0.590

0052

Background Pk Height (A): 0.490

VOID: See printed Sample abs. is greater than that of the largest standard. Time: 13:06 WeSsage. Euf Peak Height (A): 0.720 10-22-96 Replicate 2 Peak Area (A-s): 0.615 Background Pk Area (A-s): 0.397 Background Pk Height (A): 0.388 Blank Corrected Fk Area (A-s): 0.613 Concentration (ug/L): 125.4 Sample abs. is greater than that of the largest standard. Mean Conc (ug/L): 123.0 SD: 3.45 Date: 10/22/96 Seq. No.: 00035 A/S Pas.: 26 ID: C67**7F** Time: 13:08 Replicate 1 Peak Height (A): 0.203 Freak Area (A-s): 0.181 Background Pk Height (A): 0.434 Background Pk Area (A-s): 0.364 Blank Corrected Fk Area (A-s): 0.179 Concentration (ug/L): 36.6 Time: 13:10 Replicate 2 Feak Area (A-s): 0.188 Peak Height (A): 0.226 Background Pk Area (A-s): 0.375 Background Pk Height (A): 0.447 Blank Corrected Pk Area (A-s): 0.186 Concentration (ug/L): 38.0 Mean Conc (ug/L): 37.3 SD: 1.01 RSD(%): 2.71 ID: AC6**7**7F Seq. No.: 00036 A/S Pos.: 27 Date: 10/22/96 Time: 13:12 Replicate 1 Peak Area (A-s): 0.287 Peak Height (A): 0.337 Background Pk Area (A-s): 0.370 Background Pk Height (A): 0.424 Blank Corrected Pk Area (A-s): 0.286 Concentration (ug/L): 58.4 Replicate 2 Time: 13:13 Peak Area (A-s): 0.292 Peak Height (A): 0.349 Background Pk Height (A): 0.417 Background Pk Area (A-s): 0.367 Blank Corrected Pk Area (A-s): 0.290 Concentration (ug/L): 59.3 Mean Conc (ug/L): 58.9 Seq. No.: 00037 A/S Pos.: 28 Date: 10/22/96 ID: CCV5-4 Replicate 1 Time: 13:15 Peak Area (A-s): 0.262 Peak Height (A): 0.398 Background Pk Area (A-s): 0.071 Background Pk Height (A): 0.122 Blank Corrected Pk Area (A-s): 0.260

> Time: 13:17 Peak Height (A): 0.343

Concentration (ug/L): 53.2

Concentration (ug/L): 51.9

Background Fik Area (A-s): 0.030

Blank Corrected Pk Area (A-s): 0.254

Peak Area (A-s): 0.256

Replicate 2

Background Pk Height (A): 0.026

0053

Mean Conc (ug/L): 52.5 SD: 0.87 RSD(%): 1.67 As ID: CCB4 Seq. No.: 00038 A/S Pas.: 29 Date: 10/22/96 Time: 13:19 Replicate 1 Peak Area (A-s): 0.001 Peak Height (A): 0.011 Background Pk Area (A-s): 0.012 Background Pk Height (A): 0.011 Blank Corrected Fk Area (A-s): -0.001 Concentration (ug/L): -0.2 Time: 13:21 Replicate 2 Peak Area (A-s): 0.003 Peak Height (A): 0.010 Background Pk Area (A-s): 0.016 Background Pk Height (A): 0.012 Blank Corrected Pk Area (A-s): 0.001 Concentration (ug/L): 0.2 Mean Conc (ug/L): 0.0 SD: 0.27 RSD(%): 1627.79 Seq. No.: 00039 A/S Pos.: 30 ID: C67**7**G Date: 10/22/96 Replicate 1 Time: 13:23 Peak Area (A-s): 0.215 Peak Height (A): 0.259 Background Pk Area (A-s): 0.345 Background Pk Height (A): 0.412 Blank Corrected Pk Area (A-s): 0.213 Concentration (ug/L): 43.6 Replicate 2 Time: 13:25 Peak Area (A-s): 0.235 Peak Height (A): 0.445 Background Pk Area (A-s): 0.424 Background Pk Height (A): 0.515 Blank Corrected Pk Area (A-s): 0.234 Concentration (ug/L): 47.7 Mean Conc (ug/L): 45.7 SD: 2.94 RSD(%): 6.43 ID: AC677G Seq. No.: 00040 A/S Pos.: 31 Date: 10/22/96 Replicate 1 Time: 13:27 Background Pk Area (A-s): 0.400
Blank Corrected Discourse Peak Height (A): 0.390 Background Pk Height (A): 0.442 Blank Corrected Pk Area (A-s): 0.326 Concentration (ug/L): 66.7 Replicate 2 Feak Area (A-s): 0.327 Time: 13:29 Peak Height (A): 0.390 Background Pk Area (A-s): 0.404 Background Pk Height (A): 0.437 Blank Corrected Pk Area (A-s): 0.325 Concentration (ug/L): 66.5 Mean Conc (ug/L): 66.6 SD: 0.12 RSD(%): 0.18 ID: C67**7H** Seq. No.: 00041 A/S Pas.: 32 Date: 10/22/96 Replicate 1 Time: 13:31

Feak Height (A): 0.688

Background Fik Height (A): 2.54

Feak Area (A-s): 0.395

Background Pk Area (A-s): 0.408

Blank Corrected Pk Area (A-s): 0.393 Concentration (ug/L): 80.3

Replicate 2 Peak Area (A-s): 0.393 Background Pk Area (A-s): 0.386 Blank Corrected Fk Area (A-s): 0.392 Concentration (ug/L): 80.1

Time: 13:33 Peak Height (A): 0.465 Background Pk Height (A): 0.416

Mean Conc (ug/L): 80.2 SD: 0.19

Time: 13:35

RSD(%): 0.23

ID: AC6**7**7H

Seq. No.: 00042 A/S Pos.: 33

Background Pk Height (A): 0.485

Date: 10/22/96

Replicate 1

Replicate 2

Feak Area (A-s): 0.490

Fleak Area (A-s): 0.492

Background Pk Area (A-s): 0.407

Blank Corrected Pk Area (A-s): 0.488

Concentration (up/L): 99.7

Time: 13:37

Peak Height (A): 0.551

Peak Height (A): 0.806

Background Pk Area (A-s): 0.395

Blank Corrected Pk Area (A-s): 0.490

Concentration (ug/L): 100.2

Background Pk Height (A): 0.412

Mean Conc (ug/L): 100.0 SD: 0.33 SP. RED(%): 0.33

ID: C67**7**J

Seq. No.: 00043

A/S Pas.: 34

Background Pk Height (A): 0.373

Date: 10/22/96

Replicate 1

Replicate 2

Peak Area (A-s): 0.321

Peak Area (A-s): 0.316

Background Pk Area (A-s): 0.345

Blank Corrected Fk Area (A-s): 0.319

Background Pk Area (A-s): 0.335

Concentration (ug/L): 65.3

Time: 13:38

Time: 13:40

Peak Height (A): 0.282

Peak Height (A): 0.337

Background Pk Height (A): 0.330

Blank Corrected Pk Area (A-s): 0.314 Concentration (ug/L): 64.2

Mean Conc (ug/L): 64.7 SD: 0.78

RSD(%): 1.21

As ID: AC677J

Seq. No.: 00044 A/S Pos.: 35 Date: 10/22/96

Replicate 1

Peak Area (A-s): 0.414

Background Pk Area (A-s): 0.358

Blank Corrected Fk Area (A-s): 2.413

Concentration (ug/L): 84.3

Time: 13:42

Peak Height (A): 0.735

Background Fk Height (A): 0.478

Replicate 2 Feak Area (A-s): 0.413

Background Fk Area (A-s): 0.337

Blank Corrected Pk Area (A-s): 0.411

Concentration (ug/L): 84.0

Time: 13:44

Peak Height (A): 0.495

Background Pk Height (A): 0.395

Mean Conc (ug/L): 84.2 SD: 0.23 RSD(%): 0.28 SP. REC-=981/. As ID: C677K Seq. No.: 00045 A/S Pos.: 36 Date: 10/22/96 Time: 13:46 Replicate 1 Peak Area (A-s): 0.136 Peak Height (A): 0.183 Background Pk Area (A-s): 0.307 Background Pk Height (A): 0.363 Blank Corrected Pk Area (A-s): 0.134 Concentration (ug/L): 27.5 Replicate 2 Time: 13:48 Feak Area (A-s): 0.131 Peak Height (A): 0.168 Background Pk Area (A-s): 0.305 Background Pk Height (A): 0.327 Blank Corrected Pk Area (A-s): 0.129 Concentration (ug/L): 26.4 Mean Conc (ug/L): 26.9 SD: 0.75 RSD(%): 2.79 ID: AC677K Seq. No.: 00046 A/S Pos.: 37 Date: 10/22/96 Replicate 1 Time: 13:50 Feak Area (A-s): 0.247 Peak Height (A): 0.504 Background Fk Area (A-s): 0.310 Background Pk Height (A): 0.513 Blank Corrected Pk Area (A-s): 0.246 Concentration (ug/L): 50.2 Replicate 2 Time: 13:52 Peak Area (A-s): 0.251 Peak Height (A): 0.323 Blank Corrected Pk Area (A-s): 0.249 Concentration (ug/L): 50.9 Mean Conc (ug/L): 50.6 SD: 0.51 RSD(%): 1.01 RE(= (18%, As ID: CCV5-5 Seq. No.: 00047 A/S Pos.: 38 Date: 10/22/96 Replicate 1 Time: 13:54 Peak Area (A-s): 0.256 Background Pk Area (A-s): 0.052
Blank Corported 5 Peak Height (A): 0.495 Background Fk Height (A): 0.082 Blank Corrected Pk Area (A-s): 0.255 Concentration (ug/L): 52.1 Replicate 2 Time: 13:56 Feak Area (A-s): 0.254 Peak Height (A): 0.399 Background Pk Area (A-s): 0.023 Background Pk Height (A): 0.033 Blank Corrected Pk Area (A-s): 0.252 Concentration (ug/L): 51.6 Mean Conc (ug/L): 51.8 SD: 0.35 RSD(%): 0.67 As ID: CCB5 Seq. No.: 00048 A/S Pos.: 39 Date: 10/22/96 Replicate 1 Time: 13:58 Feak Area (A-s): 0.003

Background Fk Area (A-s): 0.012 Background Fk Height (A): 0.010

Peak Height (A): 0.011

Background Pk Height (A): 0.010

Peak Height (A): 0.011

Peak Height (A): 0.378

Peak Height (A): 0.306

Blank Corrected Pk Area (A-s): 0.002 Concentration (ug/L): 0.3

Replicate 2 Peak Area (A-s): 0.003 Background Pk Area (A-s): 0.012

Blank Corrected Pk Area (A-s): 0.001 Concentration (ug/L): 0.2

Mean Conc (ug/L): 0.3 SD: 0.07

Time: 14:00

RSD(%): 25.75

Date: 10/22/96

As ID: C67**75**/5

Time: 14:56

Time: 14:58

Seq. No.: 00049 A/S Pos.: 1

Replicate 1 Fleak Area (A-s): 0.198

Background Pk Area (A-s): 0.068 Background Pk Height (A): 0.111

Blank Corrected Pk Area (A-s): 0.196 Concentration (ug/L): 40.1

Replicate 2 Feak Area (A-s): 0.199

Background Pk Area (A-s): 0.078 Blank Corrected Fk Area (A-s): 0.198

Concentration (ug/L): 40.4

Mean Conc (ug/L): 40.3 SD: 0.21

Time: 15:00

Time: 15:02

RSD(%): 0.53

ID: AC6**7**75/5

Seq. No.: 00050

A/S Pos.: 2

Background Pk Height (A): 0.105

Background Fk Height (A): 0.093

Peak Height (A): 0.437

Peak Height (A): 0.321

Background Pk Height (A): 0.103

Date: 10/22/96

Replicate 1

Replicate 2

Feak Area (A-s): 0.301

Background Pk Area (A-s): 0.089

Blank Corrected Pk Area (A-s): 0.300

Concentration (ug/L): 61.3

Peak Area (A-s): 0.300

Background Pk Area (A-s): 0.090

Blank Corrected Pk Area (A-s): 0.299

Concentration (ug/L): 61.1

As ID: C67**75**D/5

Seq. No.: 00051 A/S Pos.: 3 Date: 10/22/96

Replicate 1

Fleak Area (A-s): 0.188

Background Pk Area (A-s): 0.081

Blank Corrected Pk Area (A-s): 0.186

Concentration (ug/L): 38.0

Time: 15:04

Peak Height (A): 0.238

Background Pk Height (A): 0.093

Replicate 2

Peak Area (A-s): 0.183

Background Fk Area (A-s): 0.076

Blank Corrected Fk Area (A-s): 0.181

Concentration (ug/L): 37.1

Time: 15:06

Peak Height (A): 0.284

Background Pk Height (A): 0.097

Mean Conc (ug/L): 37.5 SD: 0.69 RSD(%): 1.84 Seq. No.: 00052 A/S Pas.: 4 ID: AC6**775D**/5 Date: 10/22/96 Time: 15:08 Replicate 1 Peak Height (A): 0.393 Peak Area (A-s): 0.276 Background Pk Area (A-s): 0.083 Background Pk Height (A): 0.099 Blank Corrected Pk Area (A-s): 0.275 Concentration (ug/L): 56.2 Time: 15:10 Replicate 2 Feak Area (A-s): 0.279 Peak Height (A): 0.375 Background Pk Area (A-s): 0.082 Background Pk Height (A): 0.091 Blank Corrected Pk Area (A-s): 0.278 Concentration (ug/L): 56.8 Mean Conc (ug/L): 56.5 SD: 0.46 RSD(%): 0.81 P. REC = 95% A/S Pas.: 5 ID: C67**75**S/5 Seq. No.: 00053 Date: 10/22/96 Replicate 1 Time: 15:12 Peak Area (A-s): 0.218 Peak Height (A): 0.226 Background Fik Area (A-s): 0.090 Background Pk Height (A): 0.093 Blank Corrected Fk Area (A-s): 0.217 Concentration (ug/L): 44.3 Replicate 2 Time: 15:13 Peak Area (A-s): 0.224 Peak Height (A): 0.317 Background Pk Area (A-s): 0.091 Background Fk Height (A): 0.110 Blank Corrected Pk Area (A-s): 0.222 Concentration (ug/L): 45.4 RSD (%): 1.70 Mean Conc (ug/L): 44.9 SD: 0.76 ID: C67**76/2** Seg. No.: 00054 A/S Pos.: 6 Date: 10/22/96 Replicate 1 Time: 15:15 Peak Area (A-s): 0.220 Peak Height (A): 0.219 Background Pk Area (A-s): 0.169 Background Pk Height (A): 0.152 Blank Corrected Pk Area (A-s): 0.218 Concentration (ug/L): 44.6 Replicate 2 Time: 15:17 Feak Area (A-s): 0.216 Peak Height (A): 0.210 Background Pk Area (A-s): 0.192 Background Pk Height (A): 0.172 Blank Corrected Pk Area (A-s): 0.214 Concentration (ug/L): 43.7 Mean Conc (ug/L): 44.2 SD: 0.57 RSD(%): 1.29 ID: AC6**77**6/2 Seq. No.: 00055 A/S Pos.: 7 Date: 10/22/96

Time: 15:19

Peak Height (A): 0.315

Background Pk Height (A): 0.158

Replicate 1

Peak Area (A-s): 0.319

Background Fk Area (A-s): 0.193

Background Pk Height (A): 0.174

Background Pk Height (A): 0.038

Background Pk Height (A): 0.026

Background Fk Height (A): 0.009

Background Pk Height (A): 0.011

Time: 15:21

Time: 15:23

Time: 15:25

Peak Height (A): 0.316

Peak Height (A): 0.294

Peak Height (A): 0.307

Peak Height (A): 0.011

Feak Height (A): 0.009

Blank Corrected Pk Area (A-s): 0.317 Concentration (ug/L): 64.8

Replicate 2 Peak Area (A-5): 0.319 Background Pk Area (A-s): 0.192 Blank Corrected Pk Area (A-s): 0.317

Concentration (ug/L): 64.8

Mean Conc (ug/L): 64.8 SD: 0.04

RSD(%): 0.06 SP. RE(.=1031/ Seq. No.: 00056 A/S Pos.: 8 Date: 10/22/96

Replicate 1 Peak Area (A-s): 0.242 Background Pk Area (A-s): 0.051 Blank Corrected Pk Area (A-s): 0.240

ID: CCV5-6

Concentration (up/L): 49.1

Replicate 2 Peak Area (A-s): 0.245 Background Fk Area (A-s): 0.029 Blank Corrected Pk Area (A-s): 0.243 Concentration (ug/L): 49.7

Mean Conc (ug/L): 49.4 SD: 0.40

^^^^^`

Seg. No.: 00057 A/S Pas.: 9 ID: CCB6 Date: 10/22/96 Replicate 1 Time: 15:27

Feak Area (A-s): 0.002 Background Pk Area (A-s): 0.014 Blank Corrected Fk Area (A-s): 0.001 Concentration (ug/L): 0.1

Replicate 2 Peak Area (A-s): 0.003 Background Pk Area (A-s): 0.015 Blank Corrected Fk Area (A-s): 0.001 Concentration (ug/L): 0.3

Mean Conc (ug/L): 0.2 SD: 0.11

Time: 15:28

RSD(%): 47.21

As ID: C6777/5 Seq. No.: 00058 A/S Pos.: 10 Date: 10/22/96 Replicate 1 Time: 15:30 Fleak Area (A-s): 0.300

Background Pk Area (A-s): 0.072 Blank Corrected Pk Area (A-s): 0.298

Concentration (ug/L): 60.9

Replicate 2 Fleak Area (A-s): 0.303 Background Pk Area (A-s): 0.066 Blank Corrected Pk Area (A-s): 0.301 Concentration (ug/L): 61.6

Time: 15:32

Peak Height (A): 0.342

Peak Height (A): 0.457

Background Fk Height (A): 0.080

Background Pk Height (A): 0.069

RSD(%): 0.81

61.2 Mean Conc (ug/L): SD: 0.45 RSD(%): 0.73 Seq. No.: 00059 A/S Pas.: 11 ID: AC6**7**7**7/**5 Date: 10/22/96 Replicate 1 Time: 15:34 Peak Area (A-s): 0.392 Peak Height (A): 0.595 Background Pk Area (A-s): 0.072 Background Pk Height (A): 0.084 Blank Corrected Pk Area (A-s): 0.390 Concentration (ug/L): 79.7 Replicate 2 Time: 15:36 Feak Area (A-s): 0.393 Peak Height (A): 0.537 Background Pk Area (A-s): 0.076 Background Pk Height (A): 0.083 Blank Corrected Pk Area (A-s): 0.391 Concentration (ug/L): 80.0 RSD(%): 0.26 SP. REC = 94'/ Mean Conc (ug/L): 79.9 SD: 0.21 ID: C67**78/5** A/S Pos.: 12 Seq. No.: 00060 Date: 10/22/96 Replicate 1 Time: 15:38 Feak Area (A-s): 0.220 Peak Height (A): 0.322 Background Pk Area (A-s): 0.075 Background Pk Height (A): 0.091 Blank Corrected Pk Area (A-s): 0.218 Concentration (ug/L): 44.5 Replicate 2 Time: 15:40 Feak Area (A-s): 0.224 Peak Height (A): 0.325 Background Pk Area (A-s): 0.083 Background Pk Height (A): 0.098 Blank Corrected Pk Area (A-s): 0.223 Concentration (ug/L): 45.5 Mean Conc (ug/L): 45.0 SD: 0.68 RSD(%): 1.51 As ID: AC6778/5 Seq. No.: 00061 A/S Pos.: 13 Date: 10/22/96 Replicate 1 Time: 15:42 Fleak Area (A-s): 0.316 Peak Height (A): 0.469 Background Pk Area (A-s): 0.082 Background Pk Height (A): 0.094 Blank Corrected Pk Area (A-s): 0.314 Concentration (ug/L): 64.3 Replicate 2 Time: 15:44 Feak Area (A-s): 0.315 Feak Height (A): 0.370 Background Pk Area (A-s): 0.083 Background Fk Height (A): 0.081 Blank Corrected Pk Area (A-s): 0.313 Concentration (ug/L): 64.0 Mean Conc (ug/L): 64.1 SD: 0.18 SP. REC = 96 1/2 ID: C67**7A**/10 Seq. No.: 00062 A/S Pos.: 14 Date: 10/22/96 Replicate 1 Time: 15:45

Feak Area (A-s): 0.405

Background Pk Area (A-s): 0.060

Peak Height (A): 0.653 VAID See next

Background Fix Height (A): 6. 878 Page.

SUF 10-22-96

GFAA-AS

RAW DATA / RUN SEQUENCE LOG Blank Corrected Pk Area (A-s): 0.403 VOID: Conc. of Analytic Concentration (up/L): 82.4 Time: 15:47

Peak Height (A): 0.609 largest Standard

Background Pk Height (A): 0.072 EUF 10-Z Replicate 2 Peak Area (A-s): 0.412 Background Pk Area (A-s): 0.059 Blank Corrected Pk Area (A-s): 0.410 Concentration (ug/L): 83.8 Mean Conc (ug/L): 83.1 SD: 1.03 RSD(%): 1.24 Seq. No.: 00063 A/S Pbs.: 15 ID: AC6**7**7A/10 Date: 10/22/96 Replicate 1 Time: 15:49 Peak Height (A): 0.756 Peak Area (A-s): 0.500 Background Pk Area (A-s): 0.064 Background Pk Height (A): 0.081 Blank Corrected Pk Area (A-s): 0.498 Concentration (ug/L): 101.9 Time: 15:51 Replicate 2 Peak Area (A-s): 0.500 Peak Height (A): 0.780 Background Pk Area (A-s): 0.067 Background Pk Height (A): 0.084 Blank Corrected Pk Area (A-s): 0.499 Concentration (ug/L): 101.9 Mean Conc (ug/L): 101.9 SD: 0.02 ID: C67**7**E/2 Seq. No.: 00064 A/S Pos.: 16 Date: 10/22/96 Replicate . 1 Time: 15:53 Peak Area (A-s): 0.246 Peak Height (A): 0.301 Background Pk Area (A-s): 0.147 Background Pk Height (A): 0.163 Blank Corrected Fk Area (A-s): 0.244 Concentration (ug/L): 50.0 Time: 15:55 Replicate 2 Peak Area (A-s): 0.245 Peak Height (A): 0.281 Background Pk Area (A-s): 0.167 Background Pk Height (A): 0.178 Blank Corrected Pk Area (A-s): 0.244 Concentration (ug/L): 49.8 Mean Conc (ug/L): 49.9 SD: 0.13 RSD(%): 0.26 As ID: AC677E/2 Seq. No.: 00065 A/S Pos.: 17 Date: 10/22/96 Replicate 1 Time: 15:57 Peak Area (A-s): 0.350 Peak Height (A): 0.398 Background Pk Area (A-s): 0.172 Background Pk Height (A): 0.184 Blank Corrected Pk Area (A-s): 0.348 Concentration (ug/L): 71.2

Replicate 2 Peak Area (A-s): 0.353 Background Fk Area (A-s): 0.171 Blank Corrected Pk Area (A-s): 0.351 Concentration (ug/L): 71.8

Time: 15:59 Peak Height (A): 0.432 Background Fk Height (A): 0.180 0061

Mean Conc (ug/L): 71.5 SD: 0.40 RSD(%): 0.56 Seq. No.: 00066 A/S Pos.: 18 ID: CCV5-7 Date: 10/22/96 Replicate 1 Time: 16:01 Peak Area (A-s): 0.248 Peak Height (A): 0.304 Background Pk Area (A-s): 0.047 Background Pk Height (A): 0.038 Blank Corrected Pk Area (A-s): 0.246 Concentration (ug/L): 50.4 Replicate 2 Feak Area (A-**s**): **0.247** Time: 16:02 Peak Height (A): 0.300 Background Fk Area (A-s): 0.032 Background Pk Height (A): 0.026 Blank Corrected Pk Area (A-s): 0.245 Concentration (ug/L): 50.1 Mean Conc (ug/L): 50.2 SD: 0.21 RSD(%): 0.43 $^{\circ}$ ID: CCB7 Seq. No.: 00067 A/S Pos.: 19 Date: 10/22/96 Replicate 1 Time: 16:04 Feak Area (A-s): 0.007 Peak Height (A): 0.010 Background Pk Area (A-s): 0.015 Background Pk Height (A): 0.013 Blank Corrected Pk Area (A-s): 0.005 Concentration (ug/L): 1.1 Replicate 2 Time: 16:06 Peak Area (A-s): 0.006 Peak Height (A): 0.011 Background Pk Area (A-s): 0.014 Background Pk Height (A): 0.012 Blank Corrected Fk Area (A-s): 0.004 Concentration (ug/L): 0.9 Mean Conc (ug/L): 1.0 SD: 0.11 RSD(%): 11.39 NOTE MSA SOLUTIONS +0=0FFB +1=100PPB(414-102-2) +2=250PPB(414-102-4) +3=400PPB(414-102-5) ID: C67**7**K +0 Seq. No.: 00068 A/S Pos.: 20 Date: 10/22/96 Replicate 1 Time: 16:22 Peak Area (A-s): 0.112 Peak Height (A): 0.134 Background Fk Area (A-s): 0.189 Background Pk Height (A): 0.223 Blank Corrected Fk Area (A-s): 0.110 Concentration (ug/L): 22.5 ID: C67**7**K +1 Seq. No.: 00069 A/S Pos.: 21 Date: 10/22/96 Replicate 1 Time: 16:24 Peak Area (A-s): 0.161 Peak Height (A): 0.193 Background Pk Area (A-s): 0.223 Background Pk Height (A): 0.245 Blank Corrected Pk Area (A-s): 0.159 Concentration (ug/L): 32.6

0062

Seq. No.: 00070 A/S Pos.: 22 Date: 10/22/96 ID: C677K +2 Replicate 1 Time: 16:26 Peak Area (A-s): 0.223 Peak Height (A): 0.293 Background Pk Area (A-s): 0.235 Background Pk Height (A): 0.266 Blank Corrected Pk Area (A-s): 0.221 Concentration (ug/L): 45.2 Seq. No.: 00071 A/S Pos.: 23 ID: C677K +3 Date: 10/22/96 Replicate 1 Time: 16:28 Peak Area (A-s): 0.301 Peak Height (A): 0.379 Background Pk Area (A-s): 0.241 Background Pk Height (A): 0.257 Blank Corrected Pk Area (A-s): 0.300 Concentration (ug/L): 61.2 CORRELATION COEFFICIENT=0.99880 X-INTERCEPT=-23,42388 Y-INTERCEPT=0.10969 SLOPE=0.00468 ID: C677A/20 Seq. No.: 00072 A/S Pos.: 24 Date: 10/22/96 Replicate 1 Time: 16:34 Peak Area (A-s): 0.211 Peak Height (A): 0.311 Background Fk Area (A-s): 0.062 Background Pk Height (A): 0.067 Blank Corrected Pk Area (A-s): 0.209 Concentration (ug/L): 42.7 Replicate 2 Time: 16:36 Peak Area (A-s): 0.206 Peak Height (A): 0.302 Background Pk Area (A-s): 0.035 Background Pk Height (A): 0.034 Blank Corrected Pk Area (A-s): 0.204 Concentration (ug/L): 41.8 Mean Conc (ug/L): 42.3 SD: 0.66 RSD(%): 1.57 ID: AC6**7**7A/20 Seq. No.: 00073 A/S Pos.: 25 Date: 10/22/96 Replicate 1 Time: 16:37 Feak Area (A-s): 0.310 Peak Height (A): 0.431 Background Pk Area (A-s): 0.040 Background Pk Height (A): 0.042 Blank Corrected Pk Area (A-s): 0.309 Concentration (ug/L): 63.1 Replicate 2 Time: 16:39 Peak Area (A-s): 0.306 Peak Height (A): 0.417 Background Pk Area (A-s): 0.039 Background Fk Height (A): 0.043 Blank Corrected Pk Area (A-s): 0.304 Concentration (ug/L): 62.2 Mean Conc (ug/L): 62.6 SD: 0.64 RSD(%): 1.03 SP. RE(.=1021/

Seq. No.: 00074 A/S Pos.: 20

ID: C68**C**7B

DAGE 30/22/96

Replicate 1 Time: 17:03 Peak Area (A-s): 0.004 Peak Height (A): 0.010 Background Pk Area (A-s): 0.011 Background Pk Height (A): 0.009 Blank Corrected Pk Area (A-s): 0.003 Concentration (up/L): 0.5 Time: 17:04 Replicate 2 Peak Height (A): 0.009 Peak Area (A-s): 0.004 Background Pk Area (A-s): 0.016 Background Pk Height (A): 0.011 Blank Corrected Pk Area (A-s): 0.002 Concentration (ug/L): 0.5 Mean Conc (ug/L): 0.5 SD: 0.01 RSD(%): 2.91 **ᠬ᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘** ID: AC6**8C**7B Seq. No.: 00075 A/S Pos.: 21 Date: 10/22/96 Replicate 1 Time: 17:06 Peak Area (A-s): 0.107 Peak Height (A): 0.158 Background Fk Area (A-s): 0.019 Background Pk Height (A): 0.016 Blank Corrected Pk Area (A-s): 0.105 Concentration (ug/L): 21.5 Time: 17:08 Replicate 2 Peak Area (A-s): 0.101 Peak Height (A): 0.132 Background Pk Area (A-s): 0.019 Background Pk Height (A): 0.016 Blank Corrected Pk Area (A-s): 0.099 Concentration (ug/L): 20.3 Mean Conc (ug/L): 20.9 SD: 0.91 RSD(%): 4.35 Seq. No.: 00076 A/S Pos.: 22 Date: 10/22/96 As ID: C68C7C Replicate 1 Time: 17:10 Peak Height (A): 0.276 Fleak Area (A-s): 0.196 Background Pk Area (A-s): 0.022 Background Pk Height (A): 0.021 Blank Corrected Pk Area (A-s): 0.194 Concentration (ug/L): 39.7 Replicate 2 Time: 17:12 Peak Area (A-s): 0.195 Peak Height (A): 0.260 Background Fk Area (A-s): 0.024 Background Pk Height (A): 0.023 Blank Corrected Pk Area (A-s): 0.193 Concentration (ug/L): 39.5 Mean Conc (ug/L): 39.6 SD: 0.12 RSD(%): 0.32 ID: C66WF Seq. No.: 00077 A/S Pas.: 23 Date: 10/22/96 Replicate 1 Time: 17:14 Feak Area (A-s): 0.005 Peak Height (A): 0.015 Background Pk Area (A-s): 0.019 Background Pk Height (A): 0.012 Blank Corrected Fk Area (A-s): 0.003 Concentration (ug/L): 0.7

Time: 17:16

Peak Height (A): 0.013

0064

Replicate 2

Feak Area (A-s): 0.004

Background Pk Area (A-s): 0.023 Blank Corrected Pk Area (A-s): 0.002

Concentration (ug/L): 0.5

Mean Conc (ug/L): 0.6

SD: 0.15

Time: 17:18

Time: 17:20

RSD(%): 26.53

ID: AC6**6**WP

Seq. No.: 00078

A/S Pas.: 24

Background Pk Height (A): 0.019

Background Pk Height (A): 0.022

Peak Height (A): 0.152

Peak Height (A): 0.142

Background Pk Height (A): 0.013

Date: 10/22/96

Replicate 1

Peak Area (A-s): 0.121

Background Pk Area (A-s): 0.026

Blank Corrected Pk Area (A-s): 0.120

Concentration (ug/L): 24.4

Replicate 2

Peak Area (A-s): 0.112

Background Pk Area (A-s): 0.027

Blank Corrected Pk Area (A-s): 0.110

Concentration (ug/L): 22.6

Mean Conc (ug/L): 23.5

SD: 1.33

RSD(%): 5.64

As ID: C66WFS

Seq. No.: 00079

A/S Pas.: 25

Background Pk Height (A): 0.024

Date: 10/22/96

Replicate 1

Feak Area (A-s): 0.188

Background Pk Area (A-s): 0.032

Blank Corrected Pk Area (A-s): 0.187

Concentration (ug/L): 38.1

Replicate 2

Peak Area (A-s): 0.194

Background Pk Area (A-s): 0.033

Blank Corrected Pk Area (A-s): 0.192

Concentration (ug/L): 39.2

Mean Conc (ug/L): 38.7 SD: 0.76

Time: 17:24

Time: 17:22

Peak Height (A): 0.236

Peak Height (A): 0.237

Background Pk Height (A): 0.024

RSD(%): 2.01

ID: CCV5-18 PUF Seq. No.: 00080 A/S Pos.: 26 Date: 10/22/96

Replicate 1

Feak Area (A-s): 0.239

Background Fk Area (A-s): 0.027

Blank Corrected Fk Area (A-s): 0.238

Concentration (ug/L): 48.6

Replicate 2

Peak Area (A-s): 0.232

Background Fk Area (A-s): 0.028

Blank Corrected Pk Area (A-s): 0.230

Concentration (ug/L): 47.0

Mean Conc (ug/L): 47.8

Time: 17:27

Time: 17:25

Peak Height (A): 0.276

Peak Height (A): 0.325

Background Pk Height (A): 0.022

Background Fk Height (A): 0.030

SD: 1.12 RSD(%): 2.33

0065

As ID: CCB78 EUF Seq. No.: 00081 A/S Pos.: 27 Date: 10/22/96 10-23-96 Replicate 1 Time: 17:29 Peak Area (A-s): 0.002 Peak Height (A): 0.009 Background Pk Area (A-s): 0.012 Background Pk Height (A): 0.010 Blank Corrected Pk Area (A-s): 0.000 Concentration (ug/L): 0.0 Time: 17:31 Replicate 2 Peak Area (A-s): 0.002 Peak Height (A): 0.008 Background Pk Area (A-s): 0.015 Background Fk Height (A): 0.011 Blank Corrected Pk Area (A-s): 0.000 Concentration (ug/L): 0.0 Mean Conc (ug/L): 0.0 SD: 0.00 RSD(%): 0.00 ID: C66WPD Seq. No.: 00082 A/S Pos.: 28 Date: 10/22/96 Replicate 1 Time: 17:33 Fleak Area (A-s): 0.188 Peak Height (A): 0.249 Background Pk Area (A-s): 0.030 Background Pk Height (A): 0.024 Blank Corrected Pk Area (A-s): 0.187 Concentration (ug/L): 38.1 Replicate 2 Time: 17:35 Peak Area (A-s): 0.192 Peak Height (A): 0.256 Background Fk Area (A-s): 0.031 Background Pk Height (A): 0.026 Blank Corrected Fk Area (A-s): 0.191 Concentration (ug/L): 39.0 Mean Conc (ug/L): 38.6 SD: 0.60 RSD(%): 1.55 REC. = 96% ID: C66WX Seq. No.: 00083 A/S Pas.: 29 Date: 10/22/96 Replicate 1 Time: 17:37 Fleak Area (A-s): 0.014 Peak Height (A): 0.017 Background Pk Area (A-s): 0.024 Background Pk Height (A): 0.015 Blank Corrected Pk Area (A-s): 0.013 Concentration (ug/L): 2.6 Replicate 2 Time: 17:39 Fleak Area (A-s): 0.008 Peak Height (A): 0.015 Background Pk Area (A-s): 0.029 Background Fk Height (A): 0.019 Blank Corrected Pk Area (A-s): 0.006 Concentration (ug/L): 1.2 Mean Conc (u**g**/L): 1.9 SD: Ø.93 RSD(%): 48.60 As ID: AC66WX Seq. No.: 00084 A/S Pos.: 30 Date: 10/22/96 Replicate 1 Time: 17:41 Feak Area (A-s): 0.123 Peak Height (A): 0.159 Background Pk Area (A-s): 0.032 Background Pk Height (A): 0.024

D066

Blank Corrected Fk Area (A-s): 0.121

Concentration (ug/L): 24.8

Time: 17:43 Replicate 2 Peak Area (A-s): 0.122 Peak Height (A): 0.162 Background Pk Height (A): 0.023 Background Pk Area (A-s): 0.032 Blank Corrected Pk Area (A-s): 0.120 Concentration (ug/L): 24.5 Mean Conc (ug/L): 24.7 SD: 0.19 RSD(%): 0.78 Seq. No.: 00085 A/S Pos.: 31 Date: 10/22/96 As ID: C66X4 Time: 17:45 Replicate 1 Feak Area (A-s): 0.050 Peak Height (A): 0.087 Background Pk Area (A-s): 0.034 Background Pk Height (A): 0.035 Blank Corrected Pk Area (A-s): 0.049 Concentration (ug/L): 10.0 Time: 17:46 Replicate 2 Peak Area (A-s): 0.051 Peak Height (A): 0.074 Background Pk Area (A-s): 0.037 Background Pk Height (A): 0.038 Blank Corrected Pk Area (A-s): 0.050 Concentration (ug/L): 10.1 Mean Conc (ug/L): 10.1 SD: 0.10 RSD(%): 0.96 Seq. No.: 00086 As ID: AC66X4 A/S Pos.: 32 Date: 10/22/96 Replicate 1 Time: 17:48 Peak Area (A-s): 0.152 Heak Area (A-s): 0.152

Background Pk Area (A-s): 0.044 Peak Height (A): 0.204 Background Pk Height (A): 0.041 Blank Corrected Pk Area (A-s): 0.150 Concentration (ug/L): 30.7 Replicate 2 Time: 17:50 Peak Area (A-s): 0.150 Peak Height (A): 0.198 Background Fk Area (A-s): 0.045 Background Pk Height (A): 0.040 Blank Corrected Pk Area (A-s): 0.148 Concentration (up/L): 30.3 Mean Conc (ug/L): 30.5 SD: 0.32 As ID: C66X5 Seq. No.: 00087 A/S Pas.: 33 Date: 10/22/96 Replicate 1 Time: 17:52 Feak Area (A-s): 0.015 Peak Height (A): 0.019 Background Pk Area (A-s): 0.024 Background Pk Height (A): 0.020 Blank Corrected Fk Area (A-s): 0.014 Concentration (ug/L): 2.8

Feak Area (A-s): 0.014 Peak Height (A): 0.016 Background Pk Area (A-s): 0.033 Blank Corrected Pk Area (A-s): 0.013

Background Pk Height (A): 0.017

Time: 17:54

Concentration (ug/L): 2.6

Replicate 2

Mean Conc (ug/L): 2.7 SD: 0.20

RSD(A):77.23

Seq. No.: 00088 A/S Pos.: 34 ID: AC66X5 As Date: 10/22/96 Replicate 1 Time: 17:56 Peak Area (A-s): 0.109 Peak Height (A): 0.123 Background Pk Area (A-s): 0.032 Background Pk Height (A): 0.024 Blank Corrected Pk Area (A-s): 0.107 Concentration (ug/L): 21.9 Replicate 2 Time: 17:58 Peak Area (A-s): 0.108 Peak Height (A): 0.131 Background Pk Area (A-s): 0.031 Background Pk Height (A): 0.025 Blank Corrected Pk Area (A-s): 0.106 Concentration (ug/L): 21.7 Mean Conc (ug/L): 21.8 SD: 0.15 RSD(%): 0.69 ID: CCV5-\$9 PUF Seq. No.: 00089 A/S Pos.: 35 Date: 10/22/96 Replicate 1 Time: 18:00 Peak Area (A-s): 0.231 Peak Height (A): 0.261 Background Pk Area (A-s): 0.027 Background Pk Height (A): 0.022 Blank Corrected Pk Area (A-s): 0.229 Concentration (ug/L): 46.9 Replicate Time: 18:02 Peak Area (A-s): 0.234 Peak Height (A): 0.295 Background Pk Area (A-s): 0.027 Background Pk Height (A): 0.025 Blank Corrected Pk Area (A-s): 0.233 Concentration (ug/L): 47.5 Mean Conc (ug/L): 47. E SD: 0.46 RSD(%): 0.98 ID: CCB\$9 EUF 10-23-96 Seq. No.: 00090 A/S Pos.: 36 Date: 10/22/96 Replicate Time: 18:04 Feak Area (A-s): 0.006 Peak Height (A): 0.012 Background Fk Area (A-s): 0.015 Background Pk Height (A): 0.013 Blank Corrected Fk Area (A-s): 0.004 Concentration (ug/L): 0.9 Replicate 2 Time: 18:06 Feak Area (A-s): 0.005 Peak Height (A): 0.011 Background Fk Area (A-s): 0.011 Background Pk Height (A): 0.009 Blank Corrected Pk Area (A-s): 0.003 Concentration (ug/L): 0.6

END OF ANALYSIS

SD: 0.22

Mean Conc (ug/L): 0.8

RSD(%): 28.71

Metals Preparation Log

Quanterra Incorporated 450 William Pitt Way Pittsburgh, Pennsylvania 15238 412/826-5477 FAX: 412/826-5571

Serial Number | Log Book Number | Reagent Used

Environmental Services

OUA-4179								Page			- "	3-MT-		eagent Use			
Analysi			-		Date		Lot Numl	Der T		Lab Lot No. (I		<u>J-IVII-</u> Line)					85-076-6 036 <u>EM SCIE</u> WC
Styllen a.	Huelo				10-15-86		CATA	เดเษ ้ <เมเ	0.115	185-03	14-7						<u> 17 KPBV CHEMPURE</u>
	Insir CAD		Method		Start Time		SDG, if a			MS			 '	<u> </u>	70 1130	<u> </u>	TKPP CHE-PARE
SOIL	Jep x	AH -15-76	ILMO	3.0	06:40				į	Q1M -7	sa .		1.				
Client i	D		Lab S	ample ID	Init Wt/Vol	Final Voi		Comment	s		olor	+	arity	+	exture		Artifacts
1. BRL - CBJ - 000		- -	6775		g/mL].00g	mL 200m 1		6-96		Pre BR	Post BR	Pre	Post	<u> </u>	Post		
2.BRL-CB1-000			67757	,	1.009)	WA	H 10:15-96		BR BR	BR		<u> </u>	m	m	STONE	-
3.BRL - CBI-poo			69755					50 QUM-75	,	BR	BR			m	m	STONE	
4.88L-<82-00		.]	6776					J. SPECE 190	· · · · · · · · · · /	BB	BR	<u> </u>	<u> </u>	m	m	1.	s Roots
5. BRL - CB3 - OL		1	c <i>6717</i>							GR	BA			Im	m	;	S, ROOLS, GCAST
6. BRL - CB4-00	102		6778					·		BR	BR		<u> </u>	m	M	•	s Roots grass
7 BRL - CB5 -00	200		6779							BR	BR_			m	M	i	s Roots
B. BRL - CBC-O	202		677A	4					<u>/</u>	BR.	BR		ļ	m	M	i i	s, Roots
9. BRL - RB1 - 0	002	1	677E			ļ. <u>.</u>				BR.	BR.			M	m	STONE	S
10. BRI - RRA-0	८०३		677E				<u> </u>	, ja/		BA	BR	ļ	<u> </u>	m_	m	STONE	3
11. BRL - RA3 - C		1 -	c6776							GR	BB_		ļ	m	<u>m</u>	STONE	s Roots
12. BRL - 884- 0			(677H			-	ļ		•	68	BA		<u> </u>	m.	m_	STOM	s, roots
13. BRL - RB5-0		1	6775					*		BB	BR	ļ	<u> </u>	m		STONE	§
14.BRL - RB6 - 0		,	677K		¥			/	<u> </u>	GR	BR			W	m	STANE	s, Roots
15.PBS 10-		1 -	<u>s c</u> (· I	1.00g DI H20		+ /	, 	···•			ļ —			Ţ	ļ	
16.1css.226 /	0-15-1	LCS	2.936	(68AXC	1.005			·	•	 -	ļ <u>. </u>	NA A	1 10-	13.96			
17. 10. WA	H 10-1	5-96					-//					- 4					
10.			Dige	estate(s) Receiv	ed	 	Digesta	ate(s) Relinquist	ned	T	exture		Clarity		_l	Co	tor
Digestate(s	,	Date	Time	Analyst	Location	Date	Time	Analyst	Location	F = Fi	• • • • • • • • • • • • • • • • • • • •	C = 1	Clear		R = Red		V = Violet
All BROYE	- L	. 15.9L	14:45	Williams March	CONTRACTOR OR P	10-15-91	14.60	William a Hoyle	met / n/		ledium	- 1	: Cloudy	'	BL = Blue	}	P = Pink
AllAbou	e							Einm Paud			oarse	O =	Opaque	1	BR = B row	t	W = White
All Anxue	الله	7196	18:4=	awith NI	WETIN.	107190	13:11)	Reput Yu	MPTA AL.	7				h -	BLK = Blac	.	GY = Gray
AR Ala	0 10							EnroMfaux							′ ≠ Y el low O = Orang	- 1	GN = Green C = Colorless
		.1\$2	41342	Parameter Any	A. 15. 25.1 11.3A.	1000		CANAL III CARRE	PART . I I I'V	7					9	-	
Ho t Rh jte Tempera	tures	1		2	3		4	5	6	_ '	7		. 8		9	;	10
Initial Temp (^O C)		950											95°				
Final Temp (°C)		950											95°				
Reviewed By	Mil	15	rid			-						Da	te CF:	-03°	₩		
¥	MAN	44	YUI!	•	.		·						بالــــا	12.	<u> </u>	·	~ ~ ~

Pago

Metals Preparation Log

Quanterra Incorporated 450 William Pitt Way Pittsburgh, Pennsylvania 15238 412/826-5477 FAX: 412/826-557

412/826-5477 FAX: 412/826-5571 Log Book Number Serial Number Reagent Used 026 QUA-4179 185-026-6 IM! 1:1 HNO2 Analyst Lot Number 2ml 30% H2Q2 MIST KPBY CHEMPURE 10-15-96 565110114 185-024-8 Method SDG, if applicable ILM03,0 07:30 water QIM - 751 Init Wt/Vol Final Vol Color Clarity Texture Client ID Lab Sample ID Comments Artifacts a/mL mL Pre Post Pre Post Pre Post WAH 10-15-96 1. BRL-EB 1096 C677C C 100ml 100ml C C 2. PBW 10-15-2 PBW C68C28 145 3.1cs 10-15-2 C68C2C +/m/ QIM:751 4.LC5 10-15-2 # 2 C68C3C + lm 1 Qim . 751 WHEN DIGESTING A BLANK WE ONLY DIGEST SAMPLE BLANK US BUT SAMPLE WAS ALSO LIMITED 11. 12. 13. 14. 15. 16. Digestate(s) Received Digestate(s) Relinguished Texture Clarity Color Digestate(s) Date Time Analyst Location Date Time Analyst Location F = Fine C = Clear R = RedV = Violet M = Medium CL = Cloudy 10.5.96 14:45 Williams Hoyle METALS PREP 10.5.96 14:50 BL = Blue P = PinkStilliona Hoyla mET-1 Ab ALL ABOVE 10189612:15 Parimfant METI 1AG 10 RG6 16:30 Enin METI METI 1AG 102196 13:00 Pakuta Aud METI NG 102196 13:00 Pakuta Aud METI NG C = Coarse Aboue O = Opaque BR = Brown W = White BLK ≠ Black GY = Grayall Abue Y = Yellow GN = Green O ≈ Orange C = Colorless Ho Pate Temperatures 2 3 10 Initial Temp (OC) 950 Final Temp (OC) CF-0

GPAA CLP Spike Summary

Project: Harding Lawson
Sam No.: Costicula, Rosticula Page _____ of ____ Case No.: Method: ILMO3.0 SDG No.: Arsenic Spike 20 ppb 10 ppb Sample ID 20 ppb Actual Actual Actual Value Recover Actual Reg. Value Recover Req. Value Recover Rea. Unspiked of An. Value Dilu Req. Unspiked Recover of An. Ditu-Reg. Unspiked of An. Dilu-Sample Req. Unspiked tion of An. Dilu-MSA Req. Sample tion MSA Sample tion MSA PBW 10-15-2 Sample tion MSA 21.8 110 USW 10-15-2 42.0 108 105W D 10152 421 110 Clone 41.8 <1.8 PBS 10-15-1 110 WS 1015.1 ¥25)46.6 120 Cons ×5)40.3 104 ×5)37.5 Con50 95 62)44.2 amo 103 (x5)61.2 (x5)45.0 94 ano Cona Cona 73.5 (x20) 42.3 102 COME (x2)49.9 108 Conf 37.3 108 Clore 45.7 104 COMH 80.2 99 06115 6A.7 Conk EUF) 9UF 10-2540 Matrix Spike Actual Value Percent (VM5/5) Percent Matrix Spike Acutal Value Spiked | Natrix Spike Percent Actual Value Percent Actual Value Matrix Spike Spiked Sample Matrix Spike BAS PI/08-94/0100/GFAASmry. SMP Reviewed by:

Date:

QUANTERRA ENVIRONMENTAL SERVICES TOTAL SOLIDS/PERCENT MOISTURE LOG SHEET

	Oven Temperate Calculations: 1. A - C = D 3. $\frac{D}{E} \times 100 =$	nițe: 10	2. B-C=	لا (E ک ^{رام} ۷ = G	1 10 15 1°	Date Batch	des attachmen vst: 1014 1015 No(s): 628	t(s) 6691 2 Jana 76 Tim 96 Tim	Page of T e in /OUO e out OSOO
	SAMPLE ID	TARE NO.	(A) DRIED SAMPLE + TARE	(B) SAMPLE +TARE	(C) TARE	(D) WEIGHT OF DRY SAMPLE IN GRAMS	(E) WEIGHT OF SAMPLE IN GRAMS	(F) PERCENT SOLIDS	(G) PERCENT MOISTURE
*	CG J HONG -001 - 001 - 007 - 003 - 004 - 003 - 004 - 003 - 004 - 004 - 005 - 005 - 005	100 101 102 103 104 105 107 108 109 110 111 112 113 114	674 693 554 692 7.75 590 5.74 663 7.73 664 5.69 5.49	735 445 735 445 735 745 745 745 745 745 745 745 745 745 74	1.10 1.11 1.18 1.06 1.02 1.07 1.07 1.09 1.03 1.09	5 64 5 82 4 36 5 97 5 93 4 97 5 100 5	5.9 \(\frac{1}{5.27} \) \(\frac{1}{5.27} \) \(\frac{1}{5.29} \) \(\frac{5}{5.41} \) \(\frac{7}{5.80} \) \(\frac{7}{31} \) \(\frac{1}{5.30} \) \(\frac{5}{3.2} \) \(\frac{5}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2} \) \(\frac{7}{9.5} \) \(\frac{7}{3.2}	9463 9463 9448 9661 9661 9652 9652 9659 9659 9659 9659 9659 9659	552 1727 1940 2939 1856 2948 1941 1946 1966 23.99

Quanterra PT/Jul-96/96-003/TSLOG.DOB

APPENDIX B
SUMMARY OF EQUATIONS AND
INPUT DATA RISK ASSESSMENT

This calculation **bri**ef summarizes the equations and input parameters used to conduct the risk assessment at the AlliedSignal Facility

Default input parameters for risk assessment and hazard evaluation

Variable Definitions:

_		default	units
RML	Risk management level	1.00E-06	
THQ	Target Hazard Quotient	1	
ED _{TOT}	Exposure duration - total	30	years
ED _c	Exposure duration - child	6	years
ED_AD	Exposure duration - adult	24	years
EDo	Exposure duration occupational	25	years
EF _R	Exposure frequency - residential	350	days/year
EFo	Exposure frequency - occupational	250	d/yr
BW_C	Body Weight - (child)	15	kg
BW_{AD}	Body weight - adult	70	Kg
IRS _c	Soil ingestion rate - child	200	mg/d
IRS _{AD}	Soil Ingestion rate - adult	100	md/d
FC	Fraction of contaminated soil ingested	1	(100 %)
FA	Fraction of contaminant absorbed into body		(100 %)
AT _C	Averaging time for carcinogen	25550	days
AT _{NC}	Averaging time for noncarcinogen		days
AT_N	Averaging Time - (Noncarcinogen)	2 190	
CSF _{As}	Cancer slope factor for Arsenic (As)	1.5	kg-d/mg
RfD_0	Reference dose (oral) for arsenic	3.00E-04	mg/kg/d
IFS _{ADJ}	Soil ingestion factor, age adjusted		mg-y/kg-d

Evaluation of Risk-based Concentration using default assumptions

RBC (mg/kg) = (RML * AT_C) / (EF_R * (IFS_{ADJ} /10
6
) * CSF_{As})

RBC = 0.43 mg/kg

Evaluation of Hazard-based Concentration using default assumptions

As HBC =
$$(THQ \times RfD_0 \times BW_C \times AT_N) / (EF_R \times ED_C \times (IRS_C / 1 \times 10^6 \text{ mg/kg}))$$

As HBC = 23.5 mg/kg

Prepared by:

Checked by: EUZ

File: G:/work/33753/riskcalc.xls

Evaluation of risk associated with background levels of arsenic, using default assumptions

Risk =
$$(C * (IFS_{ADJ}/10^6) * CSF_{As} * EF_R) / AT_C$$

C is the concentration of Arsenic in Soil =

18 mg/kg

Risk =

4.23E-05

Occupational assessment

Variable Definitions (USEPA default occupational exposure)

RML	Risk Management Lev el	1.00E-06	
THQ	Target Hazard Quotient	1	
EDo	Exposure Duration	25	years
EFo	Exposure Frequency	250	days/year
BW_A	Body Weight	70	kg
IRS_A	Soil ingestion rate	100	mg/day
FC	Fraction of contaminated soil ingested	0.5	50%
FA	Fraction of contaminant absorbed into body	1	100%
AT	Averaging time	25550	days
AT_N	Averaging time (noncarcinogen)	9125	days
RfD_o	Reference dose (oral)	3.00E-04	mg/kg/d
CSF _{As}	Cancer slope factor for Arsenic (As)	1.5	kg-d/mg

Evaluation of Occupational RBC at 1x10⁻⁶ risk level

RBC (mg/kg) =
$$(RML * BW_A * AT) / (EF_O * ED_O * (IRS_A / 10^5 mg/kg) * FC * CFS)$$

RBC = 3.8 mg/kg

Evaluation of Occupational RBC using same risk as presented to residential receptor by background concentration of arsenic of 18 mg/kg (4.23x10⁻⁵)

Risk level 4.23E-05

RBC (mg/kg) =
$$(4.23 \times 10^{-5} * BW_A * AT) / (EF_O * ED_O * (IRS_A / 10^6 mg/kg) * FC * CFS)$$

RBC = $161.3 mg/kg$

Evaluation of site Occupational Hazard using default assumptions

RBC (mg/kg) = (THQ * RfD * BW_A * AT_N) / (EF_O * ED_O * (IRS_A /
$$10^6$$
 mg/kg) * FC)

RBC = 613 mg/kg

File: G:/work/33753/riskcalc.xls

APPENDIX C
REMEDIAL ALTERNATIVES
COST ESTIMATE

CALCULATION OF IMPACTED SOIL VOLUME EVALUATION OF REMEDIAL ALTERNATIVES BUFFALO RESEARCH LABORATORY

ASSUMPTIONS

IMPACTED AREAS ARE DEFINED AS THOSE AREAS WITH CONCENTRATIONS OF ARSENIC IN SURFACE SOILS GREATER THAN 18 mg/kg AS ILLUSTRATED IN FIGURE 5.

FOR EXCAVATION AND DISPOSAL PURPOSES, IT IS ASSUMED THE TOP 2 FEET OF SOIL WILL NEED TO BE REMOVED.

AREA IDENTIFI C ATION	1	ENSI (feet)	ONS	EXCAVATION DEPTH (feet)	AREA (square feet)	VOLUME (cubic feet)	VOLUME (cubic yards)	WEIGHT (tons)
MW-10	155	x	185	2	2 8,67 5	57,350	2,124	3,186
SWMU	110 60	x ×	60 40	2 2	6,600 2 ,400	13,200 4,800	4 8 9 178	733 267
MVV-8	20	×	20	2	400	80 0	30	44
MW-9	60	x	20	2	1,200	2,400	89	133
MW-7	60	x	20	2	1,200	2,400	89	133

TOTAL IMPACTED AREA IN LANDSCAPED AREAS 38,075 SQUARE FEET

TOTAL IMPACT**E**D **A**REA BE**NEATH ASPHALT** 2,400 SQUARE FEET

TOTAL VOLUME OF SOIL TO BE EXCAVATED 2,998 CUBIC YARDS

TOTAL WEIGHT OF SOIL TO BE EXCAVATED 4,498 TONS

Prepared by: ELR Checked by:

VOLUME OF CLEAN BACKFILL REQUIRED IF EXCAVATION /DISPOSAL ALTERNATIVE IS SELECTED

AREA IDENTIFICATION		ENSI (feet)	_	FILL DEPTH (feet)	AREA (square feet)	VOLUME (cubic feet)	VOLUME (cubic yards)	WEIGHT (tons)
MW-10	15 5	x	185	1.5	28,675	43,013	1,593	2,390
SWMU	11 0 60	x x	60 40	1.5 1.5	6,600 2 ,400	9,90 0 3,60 0	367 1 3 3	550 200
MW-8	20	x	20	1.5	400	600	22	33
MW-9	60	x	20	1	1,200	1,200	44	67
MW-7	60	x	20	1	1,200	1,200	44	67

VOLUME OF TOP SOIL REQUIRED IF EXCAVATION/DISPOSAL OR ALTERNATIVE SELECTED TOP SOIL COVER ALTERNATIVE IS SELECTED

AREA IDENTIFICATION		ENSI (feet)		FILL DEPTH (feet)	AREA (square feet)	VOLUME (cubic feet)	VOL UME (cubic yards)	WEIGHT (tons)
MW-10	155	×	185	0.5	28,675	14,338	531	797
SWMU	11 0 60	x x	60 40	0.5 0.5	6,600 2 ,400	3,300 1,200	122 44	183 67
MW-8	20	x	20	0.5	400	200	7	1 1
MW-9	60	x	20	0	1,200	0	o	0
MW-7	60	×	20	0	1,200	0	0	0

EXCAVATION AND DISPOSAL ALTERNATIVE
TOTAL VOLUME OF BACKFILL MATERIAL REQUIRED
TOTAL VOLUME OF BACKFILL TOP SOIL REQUIRED

3,307 TONS 705 CUBIC YARDS

TOP SOIL COVER ALTERNATIVE
TOTAL VOLUME OF TOP SOIL REQUIRED

705 CUBIC YARDS

Prepared b ELR Checked by:

g:work/33753/cmacst.xls

COST ESTIMATE EXCAVATION, DISPOSAL AND SITE RESTORATION ALTERNATIVE BUFFALO RESEARCH LABORATORY

ASSUMPTIONS:

- 1.) WORK WILL BE COMPLETED IN 2 WEEKS
- 2.) WORK WILL BE DONE WITH A 3 MAN CREW
- 3.) EXCAVATE**D** MATERIAL WILL NOT BE STOCKPILED ON SITE, IT WILL BE TRUCKED TO DISPOSAL SITE UPON EXCAVATION
- 4.) MATERIAL WILL BE CONSIDERED HAZARDOUS FOR DISPOSAL PURPOSES
- 5.) THE TOP 2 FEET OF SOIL WILL BE REMOVED

LABOR			
HLA	RATE	HOURS	TOTAL
SENIOR GEOL O GIST STAFF GEOLO G IS T CLERICAL	\$90 \$65 \$40	40 1 40 10	\$3,600 \$9,100 \$400
SUBCONTRAC TOR	;		
FIELD SUPERI NTEN DENT FIELD TECHNI CIAN	\$40 \$30	100 200	\$4,000 \$6,000

EQUIPMENT/ EXPENSES			
HLA TRUCK LEVEL D PPE PER DIEM	\$80 \$20 \$75	10 10 10	\$800 \$200 \$750
SUBCONTRAC T OR			
EXCAVATOR ASPHALT CUT TE R TRUCK UTILITY TRAILER PER DIEM	\$1,500 \$200 \$60 \$100 \$75	2 1 10 10 30	\$3,000 \$200 \$600 \$1,000 \$2,250

Prepared by ELR Checked by:

COST ESTIMATE EXCAVATION, DISPOSAL AND SITE RESTORATION ALTERNATIVE BUFFALO RESEARCH LABORATORY

	RATE		UNITS	TOTAL
TRANSPORTATION AND DISPOSAL OF SOIL	\$210	TON	4498	\$944 ,580
WASTE CHARACTERIZATION SAMPLE	\$1,300	EACH	1	\$1,300
BACKFILL	\$20	TON	3307	\$ 66,140
TOP SOIL	\$30	ΥD³	705	\$21 ,150
ASPHALT	\$ 7	YD ²	267	\$1 ,869
LANDSCAPING	\$5,000	EACH	1	\$5,000
LABOR TOTAL				\$23,100
EQUIPMENT/EXPENSES TOTAL				\$8,800
ALTERNATIVE TOTAL				\$1,071,939

Prepared by ELR Checked by:

ASSUMPTIONS:

- 1.) ONLY THE LANDSCAPED AREAS OF THE SITE WILL BE COVERED WITH ASPHALT
- 2.) WORK WILL BE COMPLETED IN ONE WEEK
- 3.) IMPACTED AREAS WILL BE REPAVED EVERY 3 YEARS WITH A 1-IN LAYER OF ASPHALT

TOTAL IMPACTED AREA IN LANDSCAPED AREAS OF PLANT

38,075 FT²

REQUIRED VOLUME OF ASPHALT

4,230 YD²

LABOR	RATE	UNITS	TOTAL
SENIOR GEOL OG IST	\$90	10	\$900
STAFF GEOLO GI ST	\$65	50	\$3,250
CLERICAL	\$40	8	\$320
EQUIPMENT/EXPENSES			
TRUCK	\$80	5	\$400
LEVEL D PPE	\$2 0	5	\$100
PER DIEM	\$75	5	\$375

INITIAL PLACE ME NT OF ASPHALT	RATE \$7	UNITS 1 4230	TOTAL \$29,610
TOTAL LABOR / EXPENSES	. ;		\$5,345
INITIAL ALTER NATIV E TOTAL			\$34,955
RESURFACING EVERY 3 YEARS	\$5	4230	\$2 1, 1 50
100 YEAR ALTERNATIVE TOTAL			\$732,905

Prepared by: ELR Checked by:

COST ESTIMATE

COVER IMPACTED AREAS WITH 6 INCHES OF TOP SOIL AND VEGETATION ALTERNATIVE BUFFALO RESEARCH LABORATORY

ASSUMPTIONS:

- 1.) ONLY LANDSCAPED AREAS OF THE PLANT WILL BE COVERED
- 2.) WORK WILL BE PERFORMED IN 1 WEEK

TOTAL IMPACTED AREA IN LANDSCAPED AREAS OF PLANT

38,075 FT²

TOTAL VOLUME OF TOP SOIL REQUIRED

705 FT³

LABOR	RATE	UNITS	TOTAL
SENIOR GEOL O GIST	\$90	10	\$900
STAFF GEOLOGIST	\$65	50	\$3,250
CLERICAL	\$40	8	\$320
EQUIPMENT/EXPENSES			
TRUCK	\$80	5	\$400
LEVEL D PPE	\$20	5	\$100
PER DIEM	\$75	5	\$375

PLACEMENT OF TOP SOIL	RATE \$30	UNITS 705	TOTAL \$21,150
LANDSCAPING	\$5,000	1	\$5,000
TOTAL LABOR / EXPENSES	,		\$5 ,345
ALTERNATIVE T OTAL			\$31,495

Prepared by: ELR

Checked by: