

40 La Riviere Drive, Suite 350 • Buffalo, New York 14202 • (716) 541-0730 • Fax (716) 541-0760 • www.parsons.com

September 6, 2019

Joshua M. Vaccaro New York State Department of Environmental Conservation, Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203

RE: Annual Groundwater Monitoring Report, Honeywell Buffalo Research Laboratory

Dear Mr. Vaccaro:

Enclosed please find the 2019 Annual Groundwater Monitoring Report for the Honeywell Buffalo Research Laboratory in Buffalo, New York (see Figure 1). The report is a requirement of the Site Management Plan (SMP) (GHD, June 2019) for the facility. Monitoring wells MW-3 and MW-5 were redeveloped on July 19, 2019 and the annual groundwater monitoring event was conducted on July 29, 2019.

Based on the results of the annual groundwater monitoring over the last several years, including the current year, the monitoring will be continued on an annual schedule as defined in the SMP. The monitoring schedule will be re-evaluated as additional results are collected. The detailed rationale for these recommendations is provided in the Recommendations/Conclusions section of this report.

Well Redevelopment

Monitoring wells MW-3 and MW-5 were redeveloped on July 19, 2019. The wells were redeveloped in an effort to reduce turbidity in groundwater samples collected annually from the wells. Redevelopment was accomplished using Waterra brand inertial pumps with surge blocks. Waterra brand pumps are comprised of a stiff tubing with a foot-valve connected at the end which is raised and lowered either manually or by an electric motor. A surge block is optionally attached to the foot valve to assists in agitation of water in the screened zone of the well, facilitating the removal of fine sediments. New Waterra brand inertial pumps (tubing, foot valve, and surge block) were used at each well.

Redevelopment at MW-5 removed approximately 20 gallons of well water (approximately 13 well volumes) from the well. Turbidity during well development appeared to remain cloudy, above the range of measurement. At MW-3, approximately 7.5 gallons of water was removed from the well prior to it going dry. As with MW-5, turbidity remained over the range of measurement during development. Temperature, pH, specific conductivity, turbidity, and water level were recorded during well development.

Well Inspection

In accordance with the SMP, the depth to groundwater was measured and the condition of each monitoring well (MW-2, MW-3, MW-5, MW-6, MW-7, MW-8, MW-9, and MW-10) was inspected. MW-1 and MW-4 could not be found and may have been covered by asphalt, as noted in previous reports. The results of the well inspections are presented below. The well inspection records are included in Appendix A. Each of the wells that were inspected were in good condition with only minor issues, but none requiring maintenance.

MW-2, Stick-up Protective Casing

- Well was locked.
- Stick-up protective metal casing was in good condition.
- J-plug well cap was secure.
- Concrete pad was in good condition.

MW-3, Stick-up Protective Casing

- Well was locked.
- Stick-up protective metal casing was in good condition.
- J-plug well cap was secure.
- Concrete pad was in good condition.

MW-5, Flush-mounted Protective Casing

- Curb box and cover were in place and in good condition.
- Water-tight well cap was secure.
- Surrounding asphalt was in good condition.
- Curb box is painted green and labeled.

MW-6, Flush-mounted Protective Casing

- Curb box and cover were in place and in good condition.
- Water-tight well cap was secure.
- Surrounding asphalt was in good condition.

MW-7, Flush-mounted Protective Casing

- Curb box and cover were in place but in poor condition.
- Water-tight well cap was secure.
- Surrounding asphalt was in good condition.

MW-8, Stick-up Protective Casing

- Well was locked.
- Stick-up protective metal casing was in good condition.
- J-plug well cap was secure.
- Concrete pad was in good condition.

MW-9, Flush-mounted Protective Casing

- Curb box and cover were in place and in good condition.
- Water-tight well cap was secure.

• Surrounding asphalt was in good condition.

MW-10, Stick-up Protective Casing

- Well was locked.
- Stick-up protective metal casing was in good condition.
- J-plug well cap was secure.
- Concrete pad was in good condition.

Groundwater Sampling

Groundwater samples were collected from MW-3 and MW-5 for laboratory analysis, as specified in the SMP. During this sampling event, purging was conducted, and samples were collected using a peristaltic pump and HDPE tubing.

Prior to collecting groundwater samples, each well was purged of a minimum of three well volumes of groundwater and was purged until field parameters (pH, specific conductivity, turbidity, and temperature) were stable. During purging, field parameters, including pH, temperature, specific conductivity, and turbidity, were measured and recorded. Wells were purged at approximately 200 milliliters per min (ml/min).

Samples were submitted for analysis using Method EPA 8260 for volatile organic compounds (VOCs) and EPA 6010C for metals (total arsenic and barium and soluble arsenic and barium). Soluble arsenic and barium are analyzed if turbidity exceeds 50 NTU, which in 2019, neither sample did, and therefore soluble arsenic and barium were not analyzed. Turbidity is measure both in the field and at the laboratory. In addition to the two groundwater samples, the trip blank that accompanied the bottle set from the laboratory, into the field, and back to the laboratory, was submitted for VOC analysis. Field parameters and other monitoring data were recorded on the Well Sampling Records provided in Attachment A.

Summary of Analytical Results

Table 1 presents a summary of the detected chemical constituents for this sampling event, and Table 2 provides the historical analytical results from 1994 through the current (2019) annual sampling event. A data summary table and the laboratory data report for the current samples are provided in Attachment B. Sample results were compared to the NYSDEC Ambient Water Quality Standards and Guidance Values (AWQS), contained in 6 NYCRR Part 703.

VOCs

Five VOCs were identified in the groundwater sample from MW-3 (1,1,1-trichloroethane at 4.2 μ g/L, trichloroethane [TCE] at 0.90 μ g/L, 1,1-dichloroethane [1,1-DCE] at 2.4 μ g/L, chloroethane at 3.9 μ g/L, and 1,1- dichloroethane [1,1-DCA] at 22 μ g/L. Only 1,1-DCA exceeded the NYSDEC AWQS. No VOCs were identified in the groundwater sample from MW-5. The analytical results for the trip blank (VOCs) were all below the analytical detection limits.

Metals

Total arsenic exceeded the AWQS (25 μ g/L) in MW-3 (466 μ g/L) and was below the AWQS in MW-5 (7 μ g/L). Total barium was below the AWQS in both wells. Turbidity of both samples was below 50 NTUs and therefore, soluble arsenic and barium were not analyzed.

Discussion of Historical Analytical Results

VOCs

Table 2 provides a summary of the historical analytical results. Two VOCs were identified in the sample from MW-5 in 2016 that were not found in 2017 through 2019, or prior to 2016. VOCs have not typically been found in MW-5. Chloroform and dibromochloromethane were both identified in 2016 and both were below their respective NYSDEC AWQS. It is suspected that these two VOCs are the result of a water main break in the area of MW-5 in 2016. The water main break was repaired prior to the groundwater sampling in 2016. These two compounds are not expected to be identified in the future.

1,1,1-TCA and 1,1-DCA have typically been identified above the respective AWQS in groundwater from MW-3. The concentrations of 1,1-DCA ranged from below the analytical detection limits to 42 μ g/L between 1994 and July 2019. Although 1,1,1-TCA was below the analytical detection limit in July 2014, it was detected each year from 2015 and 2019 between 4.2 μ g/L to 9.8 μ g/L. The concentrations of 1,1,1-TCA have ranged from below the analytical detection limits to 36 μ g/L (1994) in MW-3. Since 1994 1,1,1-TCA has been 20 μ g/L or less, and has been less than 10 μ g/L for the last seven years. 1,1-DCE has occasionally been identified in MW-3, but is typically below the NYSDEC AWQS of 5 μ g/L during this time. 1,1-DCE last exceeded the AWQS in 2009. In 2019 TCE was detected for the first time since 2005 and chloroethane was detected for the first time. Both were below their respective NYSDEC AWQS.

In summary, the analytical results from the current sampling event showed one VOC (1,1-DCA) above the AWQS in a single well (MW-3). Additionally, 1,1,1-TCA, TCE, Chloroethane, and 1,1-DCE were observed below the AWQS in MW-3. 1,1-DCA is a common breakdown product of 1,1,1-TCA, when degraded through biotic processes such as reductive dechlorination, while 1,1-DCE is a common breakdown product of 1,1,1-TCA when degraded through abiotic processes. While VOCs have not typically been identified in MW-5, chloroform and dibromochloromethane were detected below their respective NYSDEC AWQS in 2016. It is suspected that these two compounds were associated with a water main break in the area of the well. These compounds were not detected between 2017 and 2019.

Metals

Over the past 20 years, total arsenic and total barium have been analyzed at least annually in the groundwater samples from MW-3 and MW-5. Total arsenic frequently exceeded the AWQS ($25 \mu g/L$) in the samples from MW-3 and occasionally in samples from MW-5. Total arsenic was above the AWQS in MW-3 during the current sampling event. Total barium did not exceed the AWQS in either well during this sampling event, nor in the previous sampling events.

As required in the SMP, soluble arsenic and barium are analyzed when the sample turbidity exceeds 50 NTUs. Historically, soluble arsenic and soluble barium have been below the AWQS in both wells when analyzed, except for MW-3 in 2013 and 2016 when soluble arsenic exceeded the AWQS. Soluble arsenic and soluble barium were not analyzed in 2019 due to measured turbidity levels below 50 NTUs. In the previous year, 2018, soluble arsenic was below the analytical detection limits in MW-3 and MW-5 and soluble barium was detected in both wells at levels below the AWQS.

Groundwater Flow Direction

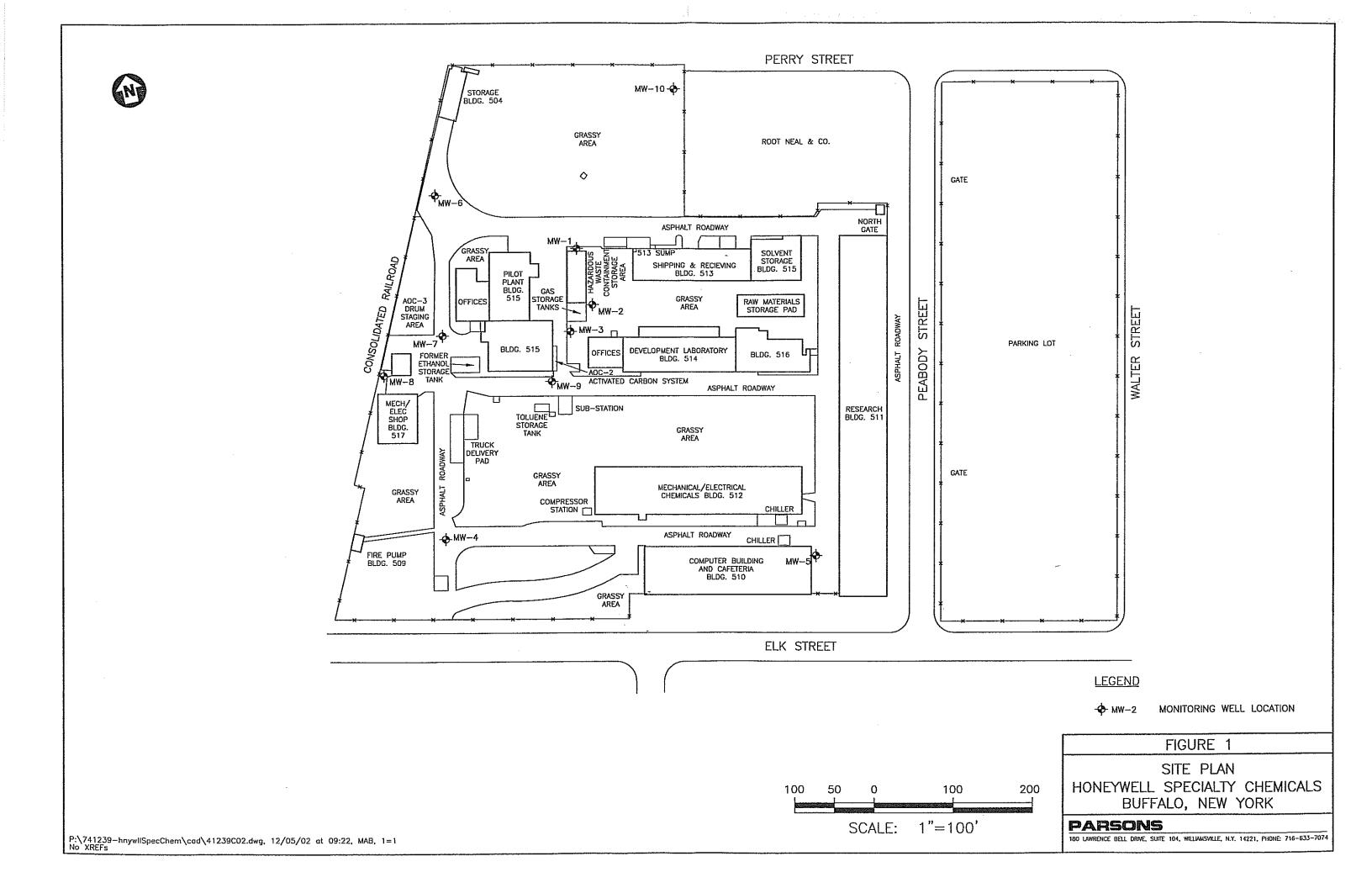
The water level measurements recorded on July 29, 2019 (see Table 3) are consistent with previous measurements. The groundwater elevation contour map (Figure 2) indicates that the groundwater flow direction is generally to the southeast across the Site, which is consistent with previously observed flow directions.

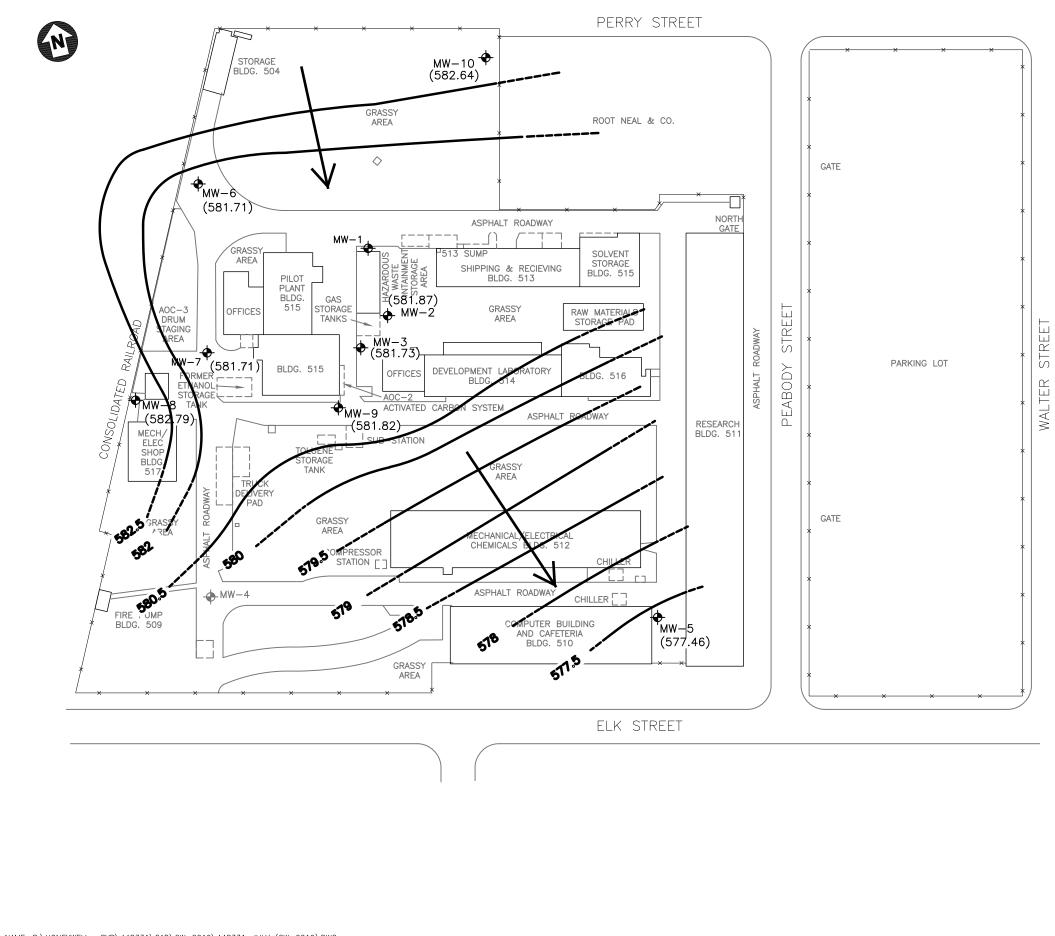
Recommendations/Conclusions

Based on the current sampling results, groundwater flow direction, and the following points, groundwater monitoring should continue on an annual schedule:

- The detected concentrations of one VOC (1,1-DCA) was low, although exceeding the AWQS in MW-3. Four other VOCs were detected (1,1,1-TCA, TCE, 1,1-DCE, and chloroethane) in MW-3, but each was below the AWQS;
- As shown by the lack of VOCs in MW-5, VOCs observed in onsite well (MW-3) will naturally attenuate prior to reaching the facility boundary;
- Total arsenic has been below the AWQS during six out of the last 20 sampling events in MW-3, and below the AWQS during 15 out of the last 20 sampling events in MW-5;
- Soluble arsenic, when analyzed, has typically been below the detection limits or the AWQS. The only two exceptions were in 2013 and 2016 in MW-3; and
- Total barium and soluble barium (when analyzed) have been below the AWQS during the current event and all previous sampling events in MW-3 and MW-5.

If you need additional information or would like to discuss the results of this Annual Groundwater Monitoring Report, please contact me at (716) 525-3425.

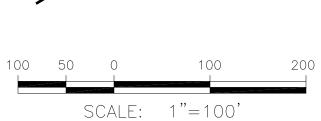

Sincerely,


Felte

Eric A. Felter Project Manager

Robert Sikorski

Site Leader – Honeywell Buffalo Research Laboratory



FILE
 NAME:
 P:\HONEYWELL
 SYR\448331\CAD\GW-2019\448331-JULY
 (GW-2019).DWG

 PLOT
 DATE:
 8/15/2019
 10:41
 AM
 PLOTTED
 BY:
 RUSSO,
 JILL

E 2	
	CHEMICALS
BUFFALO,	NEW YORK
20 20'	10)
23, 20	137
), NY 14202 * 716/	541-0730
	RE 2 SPECIALTY BUFFALO, EVATION 29, 20

580	GROUNDWATER ELEVATION CONTOUR LINE (CONTOUR INTERVAL = 0.5 FOOT)
(578.35)	GROUNDWATER ELEVATION
NM	WATER LEVEL UNABLE TO BE MEASURED
\rightarrow	DIRECTION OF GROUNDWATER FLOW

MONITORING WELL LOCATION

 $\frac{\text{LEGEND:}}{- - MW - 2}$

TABLE 1

Analytical Parameters NYSDEC MW-3 MW-5 Trip Blank AWOS μg /L μg /L μg /L μg /L **Total Arsenic** 25 466 7 NA 25 NA NA Soluble Arsenic NA Total Barium 1,000 425 209 NA 1,000 NA Soluble Barium NA NA Chloroethane 5 3.9 ND ND 5 ND Trichloroethene 0.90 ND 5 1,1-Dichloroethene 2.4 ND ND 1,1-Dichloroethane 5 22 ND ND 5 1,1,1-Trichloroethane 4.2 ND ND

Summary of Groundwater Analytical Results (7/29/19)

Note: Only detected analytes are shown.

Boxed and bold analytical results exceed NYSDEC Ambient Water Quality Standards (AWQS).

ND = Not detected.

NA = Not analyzed.

Honeywell Specialty Chemicals Historical Analytical Results

Compound	NYSDEC AWQS (ug/L)	MW-1 10/17/94	MW-1 1/18/95	MW-2 10/17/94	MW-2 1/18/95	MW-2 5/27/03	MW-3 10/17/94	MW-3 1/18/95	MW-3 8/23/99	MW-3 10/19/00	MW-3 12/10/01	MW-3 11/19/02	MW-3 5/27/03	MW-3 11/13/03	MW-3 5/25/04	MW-3 4/28/05	MW-3 4/25/06	MW-3 5/1/07
Total Arsenic	25	3 B	-	-	2.9 B	8.80 J	-	3 B	18	34	23 J	63.3	13.2 J	13.4 J	8.38 J	33.0	39.0	39.0
Soluble Arsenic	25	NA	NA	NA	NA	6.41 J	NA	NA	NA	NA	13 J	16 J	9.2 J	13.1 J	NA	NA	24	-
Total Barium	1,000	102 B	67.6	197 B	157 B	130	111 B	129 B	166	135	140	194	197	262	279	357	302	394
Soluble Barium	1,000	NA	NA	NA	NA	129	NA	NA	NA	NA	140	177	191	245	NA	NA	361	324
Acetone	50	12	-	11	6 J	NA	7	59	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone	50	-	-	-	-	NA	-	6 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	-	-	-	-	-	36	10	20	17.1	7.62	16.2	12.3	-	-	-	10	12.3
Tetrachloroethene (PCE)	5	-	-	-	-	-	-	-	-	<10	-	-	-	-	-	2.11 J	-	-
Trichloroethene (TCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.20 J	-	-
1,1-Dichloroethene	5	-	-	-	-	-	4	-	-	<10	-	-	-	-	-	-	-	-
Methylene Chloride	5	11	-	8	-	-	8	-	-	<10	-	-	-	-	-	-	-	-
1,1-Dichloroethane	5	-	-	-	-	-	42	11	20	20.7	7.73	26.0	17.3	-	-	6.42 J	14	17.1
1,2-Dichloroethane	0.6	11	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	3	-	-	-	-	-	-	-	-	-	2.86	-	-	-	-	-	-	-
1,2-Dichloropropane	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	5	-	-	-	3 J	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bold data exceed NYSDEC Ambient Water

Quality Standards (AWQS).

- = Compound not detected above analytical

detection limits.

J = Analytical result is an estimate.

NA = Not analyzed.

Honeywell Specialty Chemicals Historical Analytical Results

Compound	NYSDEC AWQS (ug/L)	MW-3 5/6/08	MW-3 4/21/09	MW-3 4/29/10	MW-3 4/19/11	MW-3 4/17/12	MW-3 7/9/13	MW-3 7/9/14	MW-3 9/5/15	MW-3 8/16/16	MW-3 8/1/17	MW-3 6/26/18	MW-3 7/29/19	MW-4 10/17/94	MW-4 1/18/95	MW-5 10/17/94	MW-5 1/18/95	MW-5 8/23/99
Total Arsenic	25	34.0	13	58	20	36	145	44	90	176	54	150	466	-	5.6 B	-	-	113
Soluble Arsenic	25	13	NA	-	-	18	69	-	NA	43.7	15	-	NA	NA	NA	NA	NA	NA
Total Barium	1,000	361	206	147	313	204	289	203	455	446	215	246	425	183 B	243	71 B	74 B	170
Soluble Barium	1,000	360	NA	136	331	128	226	200	NA	508	244	180	NA	NA	NA	NA	NA	NA
Acetone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	-	NA	NA	6	-	5	-	NA
2-Butanone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	-	NA	NA	-	-	-	I	NA
Chloroform	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	11.2	17.7	8.22	7.3	11.4	5.9	-	9.2	4.7	9.0	9.8	4.2	-	-	-	-	-
Tetrachloroethene (PCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene (TCE)	5	-	-	-	-	-	-	-	-	-	-	-	0.90	-	-	-	-	-
1,1-Dichloroethene	5	-	23.3	-	-	2.54	2.1	2.3	3.3	1.6	4.4	4.1	2.4	-	-	-	-	-
Methylene Chloride	5	-	-	-	-	-	-	-	-	-	-	-	-	8	-	12	-	-
1,1-Dichloroethane	5	17.1	-	12.1	10.6	21.1	8.5	19.2	29	28	38	40	22	-	-	-	-	-
1,2-Dichloroethane	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	3	-	-	-	-	-	4.2	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	5	-	-	-	-	-	-	-	-	-	-	-	3.9	-	-	-	-	-
Vinyl chloride	2	-	-	-	-	13.7	-	4.4	-	-	2.6	-	-	-	-	-	-	-

Bold data exceed NYSDEC Ambient Water

Quality Standards (AWQS).

- = Compound not detected above analytical

detection limits.

J = Analytical result is an estimate.

NA = Not analyzed.

Honeywell Specialty Chemicals Historical Analytical Results

Compound	NYSDEC AWQS (ug/L)	MW-5 10/19/00	MW-5 12/10/01	MW-5 11/19/02	MW-5 5/27/03	MW-5 11/13/03	MW-5 5/25/04	MW-5 4/28/05	MW-5 4/25/06	MW-5 5/1/07	MW-5 5/6/08	MW-5 4/21/09	MW-5 4/29/10	MW-5 4/19/11	MW-5 4/17/12	MW-5 7/9/13	MW-5 7/9/14	MW-5 9/8/15
Total Arsenic	25	37	20 J	24.1 J	15.1 J	106	8.17 J	13.3 J	-	-	28.0	20	31	11	34	12	16	-
Soluble Arsenic	25	NA	6 J	14.0 J	8.18 J	9.1 J	NA	8.85	10	-	14	NA	19	-	17	-	-	NA
Total Barium	1,000	100	80	95.1	83.8	214	63.9	94.9	92	58	56	50	61	56	56	70	61	58
Soluble Barium	1,000	NA	80	76	70.2	63.8	NA	86.4	71	21	63	NA	57	71	67	57	51	NA
Acetone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene (PCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene (TCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	5	31.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bold data exceed NYSDEC Ambient Water

Quality Standards (AWQS).

- = Compound not detected above analytical

detection limits.

J = Analytical result is an estimate.

NA = Not analyzed.

Honeywell Specialty Chemicals Historical Analytical Results

Compound	NYSDEC AWQS (ug/L)	MW-5 8/16/16	MW-5 8/1/17	MW-5 6/26/18	MW-5 7/29/19	MW-6 10/17/94	MW-6 1/18/95	MW-6 5/27/03	MW-7 10/17/94	MW-7 1/18/95	MW-8 10/17/94	MW-8 1/18/95	MW-9 10/17/94	MW-9 1/18/95	MW-9 5/25/04	MW-10 10/17/94	MW-10 1/18/95	MW-10 5/27/03
Total Arsenic	25	6	19	122	7	-	-	5.64 J	-	2.7 B	-	-	-	-	28.1	4 B	-	19.7 J
Soluble Arsenic	25	-	-	-	NA	NA	NA	7.34 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Barium	1,000	169	137	254	209	84 B	61.5 B	65.2	176 B	204 B	90 B	77.2 B	149 B	134 B	205	33 B	22.3 B	16.5
Soluble Barium	1,000	108	124	165	NA	NA	NA	69.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	50	NA	-	NA	-	4	-	NA	9	-	6	-	27	18	NA	21	5 J	NA
2-Butanone	50	NA	-	NA	-	-	-	NA	-	-	-	-	-	-	NA	-	-	NA
Chloroform	7	6.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	5	1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene (PCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene (TCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	5	-	-	-	-	5	-	-	8	-	8	-	19	-	-	16	-	-
1,1-Dichloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	1	-	-	-	-	-	-	-	-	26	-	-	-	-	-	-	-	-
Toluene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bold data exceed NYSDEC Ambient Water

Quality Standards (AWQS).

- = Compound not detected above analytical

detection limits.

J = Analytical result is an estimate.

NA = Not analyzed.

Table 3Honeywell Specialty ChemicalsGroundwater Elevation Data

Monitoring	Water Level	Top of Well	Depth to	Water Table
Well	Measurement	Casing Elevation	Water	Elevation
ID	Date	(Feet AMSL)	(Feet TOC)	(Feet)
MW-1	10/17/1994	585.69	3.26	582.43
MW-1	11/8/1994	585.69	5.04	580.65
MW-1	11/15/1994	585.69	3.59	582.10
MW-1	1/17/1995	585.69	2.55	583.14
MW-2	10/17/1994	587.32	5.09	582.23
MW-2	11/8/1994	587.32	4.38	582.94
MW-2	11/15/1994	587.32	4.73	582.59
MW-2	1/17/1995	587.32	4.43	582.89
MW-2 MW-2	8/23/1999	587.32	5.95 5.05	581.37 582.27
MW-2	10/19/2000 12/10/2001	587.32 587.32	5.05 4.88	582.27
MW-2	11/19/2002	587.32	4.00	582.87
MW-2	5/27/2003	587.32	4.45	582.76
MW-2	11/13/2003	587.32	4.56	582.76
MW-2	5/25/2004	587.32	4.30	583.11
MW-2	4/28/2005	587.32	4.10	583.22
MW-2	4/25/2006	587.32	4.80	582.52
MW-2	5/1/2007	587.32	4.58	582.74
MW-2	5/6/2008	587.32	4.80	582.52
MW-2	4/21/2009	587.32	4.56	582.76
MW-2	4/29/2010	587.32	4.63	582.69
MW-2	4/19/2011	587.32	4.28	583.04
MW-2	4/17/2012	587.32	5.10	582.22
MW-2	7/9/2013	587.32	4.47	582.85
MW-2	7/9/2014	587.32	4.55	582.77
MW-2	9/8/2015	587.32	5.34	581.98
MW-2	8/16/2016	587.32	5.51	581.81
MW-2	8/1/2017	587.32	4.80	582.52
MW-2	6/26/2018	587.32	4.91	582.41
MW-2	7/29/2019	587.32	5.45	581.87
MW-3	10/17/1994	587.55	5.41	582.14
MW-3	11/8/1994	587.55	5.13	582.42
MW-3 MW-3	11/15/1994 1/17/1995	587.55 587.55	5.30 5.20	582.25 582.35
MW-3	8/23/1999	587.55	5.20	581.65
MW-3	10/19/2000	587.55	6.20	581.35
MW-3	12/10/2001	587.55	6.18	581.37
MW-3	11/19/2002	587.55	6.11	581.44
MW-3	5/27/2003	587.55	6.09	581.46
MW-3	11/13/2003	587.55	6.43	581.12
MW-3	5/25/2004	587.55	6.57	580.98
MW-3	4/28/2005	587.55	6.40	581.15
MW-3	4/25/2006	587.55	6.10	581.45
MW-3	5/1/2007	587.55	6.08	581.47
MW-3	5/6/2008	587.55	6.12	581.43
MW-3	4/21/2009	587.55	6.00	581.55
MW-3	4/29/2010	587.55	6.20	581.35
MW-3	4/19/2011	587.55	5.94	581.61
MW-3	4/17/2012	587.55	6.00	581.55
MW-3	7/9/2013	587.55	5.89	581.66
MW-3	7/9/2014	587.55	5.62	581.93
MW-3	9/8/2015	587.55	5.81	581.74
MW-3	8/16/2016	587.55	5.81	581.74
MW-3 MW-3	8/1/2017	587.55	5.52	582.03
MW-3	6/26/2018 7/29/2019	587.55 587.55	5.60 5.82	581.95 581.73
MW-4	10/17/1994	583.87	3.18	580.69
MW-4	11/8/1994	583.87	4.30	579.57
MW-4	11/15/1994	583.87	2.96	580.91
MW-4	1/17/1995	583.87	2.86	581.01
	., ., .,	500.01	2.00	

Table 3Honeywell Specialty ChemicalsGroundwater Elevation Data

Monitoring	Water Level	Top of Well	Depth to	Water Table
Well	Measurement	Casing Elevation	Water	Elevation
ID	Date	(Feet AMSL)	(Feet TOC)	(Feet)
MW-5	10/17/1994	583.47	4.96	578.51
MW-5	11/8/1994	583.47	4.65	578.82
MW-5	11/15/1994	583.47	4.76	578.71
MW-5	1/17/1995	583.47	4.77	578.70
MW-5 MW-5	8/23/1999 10/19/2000	583.47 583.47	4.82 4.55	578.65 578.92
MW-5	12/10/2001	583.47	4.55	578.61
MW-5	11/19/2002	583.47	5.02	578.45
MW-5	5/27/2003	583.47	5.27	578.20
MW-5	11/13/2003	583.47	8.46	575.01
MW-5	5/25/2004	583.47	6.30	577.17
MW-5	4/28/2005	583.47	4.82	578.65
MW-5	4/25/2006	583.47	5.12	578.35
MW-5	5/1/2007	583.47	5.62	577.85
MW-5 MW-5	5/6/2008 4/21/2009	583.47 583.47	6.32 8.72	577.15 574.75
MW-5	4/29/2010	583.47	9.02	574.45
MW-5	4/19/2011	583.47	8.29	575.18
MW-5	4/17/2012	583.47	8.28	575.19
MW-5	7/9/2013	583.47	8.30	575.17
MW-5	7/9/2014	583.47	5.30	578.17
MW-5	9/8/2015	583.47	8.30	575.17
MW-5	8/16/2016	583.47	6.85	576.62
MW-5	8/1/2017	583.47	5.87	577.60
MW-5 MW-5	6/26/2018 7/29/2019	583.47	5.98 6.01	577.49 577.46
MW-6	10/17/1994	583.47 585.22	2.68	577.46 582.54
MW-6	11/8/1994	585.22	2.00	582.73
MW-6	11/15/1994	585.22	2.55	582.67
MW-6	1/17/1995	585.22	2.54	582.68
MW-6	5/27/2003	585.22	2.48	582.74
MW-6	10/17/1994	585.22	2.68	582.54
MW-6	11/8/1994	585.22	2.49	582.73
MW-6	11/15/1994	585.22	2.55	582.67
MW-6	1/17/1995	585.22	2.54	582.68
MW-6 MW-6	5/27/2003 7/9/2013	585.22 585.22	2.48 2.75	582.74 582.47
MW-6	7/9/2013	585.22	2.75	582.53
MW-6	9/8/2015	585.22	3.56	581.66
MW-6	8/16/2016	585.22	3.42	581.80
MW-6	8/1/2017	585.22	3.16	582.06
MW-6	6/26/2018	585.22	3.34	581.88
MW-6	7/29/2019	585.22	3.51	581.71
MW-7	10/17/1994	585.42	3.71	581.71
MW-7	11/8/1994	585.42	3.36	582.06
MW-7	11/15/1994	585.42 585.42	3.62 3.38	581.80
MW-7 MW-7	1/17/1995 7/9/2013	585.42	3.38	582.04 582.04
MW-7	7/9/2013	585.42	3.30	582.04
MW-7	9/8/2015	585.42	3.75	581.67
MW-7	8/16/2016	585.42	3.84	581.58
MW-7	8/1/2017	585.42	3.60	581.82
MW-7	6/26/2018	585.42	3.46	581.96
MW-7	7/29/2019	585.42	3.85	581.57
MW-8	10/17/1994	587.94	5.55	582.39
MW-8	11/8/1994	587.94	5.40	582.54
MW-8	11/15/1994	587.94	5.53	582.41
MW-8	1/17/1995	587.94	5.82	582.12
MW-8 MW-8	8/23/1999 10/19/2000	587.94 587.94	5.40 5.30	582.54 582.64
MW-8	12/10/2001	587.94	5.30	582.64
11111-0		501.07	0.00	302.00

Table 3Honeywell Specialty ChemicalsGroundwater Elevation Data

	Water Level	Top of Well	Depth to	Water Table
Well	Measurement	Casing Elevation	Water	Elevation
ID	Date	(Feet AMSL)	(Feet TOC)	(Feet)
MW-8	11/19/2002	587.94	5.25	582.69
MW-8	5/27/2003	587.94	5.21	582.73
MW-8	11/13/2003	587.94	5.09	582.85
MW-8	5/25/2004	587.94	4.91	583.03
MW-8	4/28/2005	587.94	4.99	582.95
MW-8 MW-8	4/25/2006	587.94	5.3 5.23	582.64
MW-8	5/1/2007 5/6/2008	587.94 587.94	5.25	582.71 582.69
MW-8	4/21/2009	587.94	4.68	583.26
MW-8	4/29/2010	587.94	5.32	582.62
MW-8	4/19/2011	587.94	5.12	582.82
MW-8	4/17/2012	587.94	5.43	582.51
MW-8	7/9/2013	587.94	4.86	583.08
MW-8	7/9/2014	587.94	4.82	583.12
MW-8	9/8/2015	587.94	5.46	582.48
MW-8	8/16/2016	587.94	5.05	582.89
MW-8 MW-8	8/1/2017	587.94	5.09 5.10	582.85
MW-8	6/26/2018 7/29/2019	587.94 587.94	5.10 5.15	582.84 582.79
MW-9	10/17/1994	584.48	2.39	582.09
MW-9	11/8/1994	584.48	1.83	582.65
MW-9	11/15/1994	584.48	2.09	582.39
MW-9	1/17/1995	584.48	2.02	582.46
MW-9	10/19/2000	584.48	0.00	584.48
MW-9	5/27/2003	584.48	1.91	582.57
MW-9	5/25/2004	584.48	2.90	581.58
MW-9	4/19/2011	584.48	2.26	582.22
MW-9	4/17/2012	584.48	1.86	582.62
MW-9	7/9/2013	584.48	2.26	582.22
MW-9	7/9/2014	584.48	2.50	581.98
MW-9 MW-9	9/8/2015 8/16/2016	584.48 584.48	2.45 2.10	582.03 582.38
MW-9	8/1/2017	584.48	1.68	582.80
MW-9	6/26/2018	584.48	2.76	581.72
MW-9	7/29/2019	584.48	2.66	581.82
MW-10	10/17/1994	587.85	5.31	582.54
MW-10	11/8/1994	587.85	3.44	584.41
MW-10	11/15/1994	587.85	3.98	583.87
MW-10	1/17/1995	587.85	3.40	584.45
MW-10	8/23/1999	587.85	7.83	580.02
MW-10	10/19/2000	587.85	5.01	582.84
MW-10	12/10/2001	587.85	4.13	583.72
MW-10 MW-10	11/19/2002 5/27/2003	587.85 587.85	4.23 3.85	583.62 584.00
MW-10 MW-10	11/13/2003	587.85	3.85	584.00
MW-10	5/25/2004	587.85	3.00	584.85
MW-10	4/28/2005	587.85	3.53	584.32
MW-10	4/25/2006	587.85	4.65	583.20
MW-10	5/1/2007	587.85	6.89	580.96
MW-10	5/6/2008	587.85	4.02	583.83
MW-10	4/21/2009	587.85	6.82	581.03
MW-10	4/29/2010	587.85	4.40	583.45
MW-10	4/19/2011	587.85	3.42	584.43
MW-10	4/17/2012	587.85	5.84	582.01
MW-10	7/9/2013	587.85	3.49	584.36
MW-10 MW-10	7/9/2014 9/8/2015	587.85 587.85	3.60 5.55	584.25 582.3
MW-10	8/16/2016	587.85	5.64	582.3
MW-10	8/1/2017	587.85	5.04	582.78
MW-10	6/26/2018	587.85	4.39	583.46
		001.00	1.00	582.64

ATTACHMENT A

Well Sampling Records

				<u>L(</u>	OW FLOW	WELL SA	MPLIN	<u>G RECORE</u>)		
Site Name:		Honeywe	ell BRL		_	Well ID:	MW-	3	Well Diame	ter:	2Inches
Samplers:		Dan Cham	berland		_	Monitored Na	tural Atte	enuation Sampl	e Set (Y/N)?		-
Purging D	ata									LUME CALCULA	
					Volume per Foot						
									Casing	Volumes (gal/ft.):	1
								1-inch=0.041	1.5-inch=0.092	2-inch=0.16	3-inch=0.36
Method:	Lo	w Flow		Date/Time:	7/29/201	9 11:30		4-inch=0.64	6-inch=1.4	8-inch=2.5	10-inch=4
Time	DTW	Pump Rate	Vol.	рН	Spec. Cond.	Turbidity	Tem	p.			Comments
24 hr.	ft.	ml/min.	gal.		mS/cm	NTU	°C				Comments
11:30	5.82	200	0.00	7.77	4.21	334.00	20.1	1			
11:35	6.82	200	0.20	7.28	3.94	97.10	16.0	7			
11:40	6.88	200	0.50	7.24	2.90	69.00	16.0	9			
11:45	6.93	200	0.70	7.10	2.49	14.30	16.1	4			
11:50	7.00	200	1.00	7.03	2.42	9.91	16.2	4			
11:55	7.08	200	1.20	6.95	2.41	7.79	16.4	0			
12:00	7.17	200	1.50	6.89	2.42	6.30	16.5	3			
12:05	7.21	200	1.70	6.85	2.49	6.40	16.7	2			
12:10	7.24	200	1.90	6.82	2.66	6.51	16.8	2			
12:15	7.22	200	2.20	6.80	2.94	4.45	16.8	6			
12:20	7.23	200	2.40	6.91	3.26	3.74	17.2	9			
12:25	7.24	200	2.60	7.05	3.73	2.42	17.5	3			
12:30	7.27	200	2.80	7.05	4.11	1.82	17.6	4			
12:35	7.28	200	3.10	7.05	4.27	1.58	17.7	8			

Sampling Data

Field Parameters

НОГ	HORRIBA										
рН	7.09										
Spec. Cond.(mS/cm)	6.01										
Turbidity (NTU)	3.63										
Temp.(°C)	17.88										

Method: Peristaltic Pump

Date/Time: 7/29/2019 13:20:00 PM

Total Volume of Water purged: 5.2

	SAMPLE	SAMPLE SET												
Parameter	Bottle	Pres.	Method											
Ar & Ba	250mL	HNO3												
Soluble Ar &Ba	250mL	NA												
Turbidity	250mL	NA												
VOC-TCL	3-40mL vial	HCL												

Comments: Page 1 of 2

PARSONS

LOW FLOW WELL SAMPLING RECORD

Site Name:	e: Honeywell BRL				-	Well ID:	MW-	3	Well Diame	ter:	2 Inches
Samplers:	Dan Chamberland				Monitored Natural Attenuation Sample Set (Y/N)?						-
Purging Da	ata						[LUME CALCULAT	
							-	= (Total Depth	of Well - Depth To	Water) x Casing	Volume per Foot
							-		Casing	Volumes (gal/ft.):	1
							_	1-inch=0.041	1.5-inch=0.092	2-inch=0.16	3-inch=0.36
Method:	Lo	w Flow		Date/Time:	7/29/201	9 11:30		4-inch=0.64	6-inch=1.4	8-inch=2.5	10-inch=4
Time	DTW	Pump Rate	Vol.	рH	Spec. Cond.	Turbidity	Tem	o.			
24 hr.	ft.	ml/min.	gal.	P	mS/cm	NTU	°C				Comments
12:40	7.28	200	3.30	7.05	4.62	1.60	17.7	5			
12:45	7.31	200	3.60	7.07	5.05	1.63	17.70	3			
12:50	7.31	200	3.80	7.07	5.29	2.04	17.7	5			
12:55	7.29	200	4.10	7.08	5.58	3.11	17.7	7			
13:00	7.30	200	4.30	7.08	5.78	3.82	17.79	Э			
13:05	7.30	200	4.50	7.08	5.85	3.71	17.82	2			
13:10	7.30	200	4.70	7.08	5.93	3.06	17.8	7			
13:15	7.31	200	5.00	7.08	5.98	3.19	17.8	5			
13:20	7.32	200	5.20	7.09	6.01	3.63	17.8	3			

Sampling Data

Field Parameters

Method: Peristaltic Pump

Date/Time: 7/29/2019 13:20:00 PM

Total Volume of Water purged: 5.2

HORRIBA						
рН	7.09					
Spec. Cond.(mS/cm)	6.01					
	0.01					
Turbidity (NTU)	3.63					
Temp.(°C)	17.88					

SAMPLE SET								
Bottle	Pres.	Method						
250mL	HNO3							
250mL	NA							
250mL	NA							
3-40mL vial	HCL							
	Bottle 250mL 250mL 250mL	Bottle Pres. 250mL HNO3 250mL NA 250mL NA						

Comments: Page 2 of 2

PARSONS

.						
Site Name	Honeywell S	Speciality Che	micals		Well ID	<i>MW-</i> 3
Samplers	Dan Chamb	erland				
Total Well D Initial Static Well Diamet	Water Level ((TOC)	18.66 5.82 2.0	feet		
Purging D	<u>Data</u>					
Method	Peristali	tic Pump	_	Date/Time	07/29/	19 11:30
Water Vo	_	Il Depth of We 18.66 gallons	II - Depth To - -		asing Volume x	e per Foot <i>0.16</i>
		Casing	y Volumes (g	al/ft.):		
4 1 1				,	2-inch	0.10
1-inch 3-inch 8-inch Volume of F	n 0.36	6 4-inch 5			6-inch 10 inch	1.4
3-inch 8-inch Volume of F <u>Sampling</u>	n 0.36 n 2.5 Purge Water F Data	6 4-inch 5 Removed	0.64	gallons	6-inch 10 inch	1.4
3-inch 8-inch Volume of F <u>Sampling</u> Method	n 0.36 n 2.5 Purge Water F Data Peristali	5 4-inch 5 Removed tic Pump	0.64 	gallons Date/Time	6-inch 10 inch 07/29/1	1.4
3-inch 8-inch Volume of F <u>Sampling</u> Method Parat	n 0.36 n 2.5 Purge Water F Data	6 4-inch 5 Removed	0.64 	gallons	6-inch 10 inch	1.4
3-inch 8-inch Volume of F Sampling Method Parat VOCs Tur	n 0.36 n 2.5 Purge Water F Data Peristali meters s - TCL bidity	6 4-inch 5 Removed <u>tic Pump</u> Bo <u>3- 40m</u> 1- 250mL P	0.64 <u>5.2</u> ttle hL vials lastic Bottle	gallons Date/Time Pres. <i>HCl</i> none	6-inch 10 inch 07/29/1 Method 8260	1.4
3-inch 8-inch Volume of F Sampling Method Parat VOCs Turn Ar of	n 0.36 Purge Water F Data Peristali meters s - TCL bidity & Ba	5 4-inch 5 Removed <u>tic Pump</u> Bo <u>3- 40m</u> <u>1- 250mL P</u> 1- 250mL P	0.64 <u>5.2</u> ttle <u>bL vials</u> lastic Bottle lastic Bottle	gallons Date/Time Pres. <i>HCl</i> none	6-inch 10 inch 07/29/1 Method	1.4
3-inch 8-inch Volume of F Sampling Method Parat VOCs Turn Ar of	n 0.36 n 2.5 Purge Water F Data Peristali meters s - TCL bidity	5 4-inch 5 Removed <u>tic Pump</u> Bo <u>3- 40m</u> <u>1- 250mL P</u> 1- 250mL P	0.64 <u>5.2</u> ttle hL vials lastic Bottle	gallons Date/Time Pres. HCl none HNO 3	6-inch 10 inch 07/29/1 Method 8260	1.4
3-inch 8-inch Volume of F Sampling Method Parat VOCs Turn Ar & Ba	n 0.36 n 2.5 Purge Water F Data Peristali meters s - TCL bidity & Ba (soluble)	6 4-inch 5 Removed tic Pump Bo 3- 40m 1- 250mL P 1- 250mL P 1- 250mL P	0.64 5.2 ttle L vials lastic Bottle lastic Bottle lastic Bottle	gallons Date/Time Pres. HCl none HNO 3 none	6-inch 10 inch 07/29/1 Method 8260 206.2/200.7	1.4
3-inch 8-inch Volume of F Sampling Method Parat VOCs Turn Ar of	n 0.36 n 2.5 Purge Water F Data Peristali meters s - TCL bidity & Ba (soluble)	5 4-inch 5 Removed <u>tic Pump</u> Bo <u>3- 40m</u> <u>1- 250mL P</u> 1- 250mL P	0.64 <u>5.2</u> ttle <u>bL vials</u> lastic Bottle lastic Bottle	gallons Date/Time Pres. HCl none HNO 3	6-inch 10 inch 07/29/1 Method 8260	1.4
3-inch 8-inch Volume of F Sampling Method Parau VOCs Turn Ar & Ba Field Para pH Temp. (C)	n 0.36 2.5 Purge Water F Data Peristali meters s - TCL bidity & Ba (soluble)	6 4-inch 5 Removed tic Pump Bo 3- 40m 1- 250mL P 1- 250mL P 1- 250mL P	0.64 5.2 ttle L vials lastic Bottle lastic Bottle lastic Bottle	gallons Date/Time Pres. HCl none HNO 3 none	6-inch 10 inch 07/29/1 Method 8260 206.2/200.7	1.4
3-inch 8-inch Volume of F Sampling Method Parat VOCs Turn Ar & Ba Field Para pH Temp. (C) Spec. Cond.	n 0.36 2.5 Purge Water F Data Peristali meters s - TCL bidity & Ba (soluble) meters (soluble)	6 4-inch 5 Removed tic Pump Bo 3- 40m 1- 250mL P 1- 250mL P 1- 250mL P	0.64 5.2 ttle L vials lastic Bottle lastic Bottle lastic Bottle	gallons Date/Time Pres. HCl none HNO 3 none	6-inch 10 inch 07/29/1 Method 8260 206.2/200.7	1.4
3-inch 8-inch Volume of F Sampling Method Parat VOCs Turn Ar & Ba Field Para pH Temp. (C) Spec. Cond. Turbidity (NT	n 0.36 2.5 Purge Water F Data Peristali meters s - TCL bidity & Ba (soluble) meters (soluble)	6 4-inch 5 Removed tic Pump Bo 3- 40m 1- 250mL P 1- 250mL P 1- 250mL P	0.64 5.2 ttle L vials lastic Bottle lastic Bottle lastic Bottle	gallons Date/Time Pres. HCl none HNO 3 none	6-inch 10 inch 07/29/1 Method 8260 206.2/200.7	1.4
3-inch 8-inch Volume of F Sampling Method Parat VOCs Turn Ar & Ba Field Para pH Temp. (C) Spec. Cond.	n 0.36 2.5 Purge Water F Data Peristali meters s - TCL bidity & Ba (soluble) meters (soluble)	6 4-inch 5 Removed tic Pump Bo 3- 40m 1- 250mL P 1- 250mL P 1- 250mL P	0.64 5.2 ttle L vials lastic Bottle lastic Bottle lastic Bottle	gallons Date/Time Pres. HCl none HNO 3 none	6-inch 10 inch 07/29/1 Method 8260 206.2/200.7	1.4

LOW FLOW WELL SAMPLING RECORD

Site Name:	Honeywell BRL			-	Well ID: <u>MW-5</u> Well Diameter:					ter:	2 Inches	
Samplers:	Dan Chamberland				-	Monitored Natural Attenuation Sample Set (Y/N)?						
Purging Da	ata						[LUME CALCULA	
								= (Tota	al Depth o	of Well - Depth To	Water) x Casing	Volume per Foot
									r	Casing	Volumes (gal/ft.):	
								1-inch	=0.041	1.5-inch=0.092	2-inch=0.16	3-inch=0.36
Method:	Lo	w Flow		Date/Time:	7/29/20	19 9:45	.	4-inch	n=0.64	6-inch=1.4	8-inch=2.5	10-inch=4
Time	DTW	Pump Rate	Vol.	рН	Spec. Cond.	Turbidity	Tem	p.				0
24 hr.	ft.	ml/min.	gal.		mS/cm	NTU	°C					Comments
9:45	6.01	200	0.00	6.17	14.10	392.00	19.6	8				
9:50	6.14	200	0.20	6.73	14.50	40.00	17.3	0				
9:55	5.99	200	0.50	6.90	14.90	82.30	16.6	9				
10:00	5.98	200	0.70	6.96	15.20	69.70	16.9	0				
10:05	6.02	200	0.90	7.02	15.50	70.30	16.9	0				
10:10	6.01	200	1.10	7.04	15.80	85.90	16.9	8				
10:15	6.00	200	1.30	7.08	15.90	72.70	17.1	3				
10:20	6.00	200	1.60	7.09	15.70	25.30	17.7	0				
10:25	6.00	200	1.80	7.12	15.50	19.70	17.8	0				
10:30	6.01	200	2.00	7.14	15.40	12.00	17.9	0				
10:35	5.99	200	2.30	7.17	15.30	9.85	17.9	5				
10:40	5.99	200	2.50	7.17	15.20	5.68	18.0	0				
10:45	5.98	200	2.80	7.18	15.20	4.94	18.0	1				
10:50	5.98	200	3.00	7.20	15.10	5.12	18.0	3				

Sampling Data

Field Parameters

Method: Peristaltic Pump

Date/Time: 7/29/2019 10:50 Total Volume of Water purged: 3

HORRIBA							
рН	7.20						
Spec. Cond.(mS/cm)	15.10						
Turbidity (NTU)	5.12						
Temp.(⁰C)	18.03						

SAMPLE SET								
Parameter	Bottle	Pres.	Method					
Ar & Ba	250mL	HNO3						
Soluble Ar &Ba	250mL	NA						
Turbidity	250mL	NA						
VOC-TCL	3-40mL vial	HCL						

Comments:

PARSONS

	W	ELL SAM	<u>IPLING</u>	RECO	<u>RD</u>	
Site Name	Honeywell S	Speciality Cher	nicals		Well ID	MW-5
Samplers	Dan Chamb	erland				
Total Well D Initial Static Well Diamet	Water Level (TOC)	15.69 6.01 2.0	feet		
Purging D	<u>Data</u>					
Method	Peristalt	ic Pump		Date/Time	07/29/1	0 09:45
Water Vo	=	I Depth of Wei 15.69 gallons	II - Depth To -	/	asing Volume x	e per Foot <i>0.16</i>
		Casing	Volumes (g	al/ft.):		
1-inch	0.041	-	0.092		2-inch	0.16
3-inch 8-inch			0.64		6-inch 10 inch	
8-inch	2.5 Purge Water F	Removed	0.64 	_gallons Date/Time		4
8-inch Volume of F <u>Sampling</u> Method	2.5 Purge Water F Data Peristalt	Removed ic Pump	3.0	gallons Date/Time	10 inch 07/29/1	4
8-inch Volume of F Sampling Method Parat	2.5 Purge Water F Data	Removed	<u>3.0</u>	gallons	10 inch	1.4 4 9 10:50
8-inch Volume of F Sampling Method Parat VOCs Ar of Tur	2.5 Purge Water F Data <u>Peristalt</u> meters	; Removed <i>ic Pump</i> Bot	3.0 tle L vials astic Bottle astic Bottle	gallons Date/Time Pres. <i>HCl</i>	10 inch 07/29/1 Method	4
8-inch Volume of F Sampling Method Parat VOCs Ar & Ar & Ba Field Para pH Temp. (C)	2.5 Purge Water F Data Peristalt meters s - TCL & Ba bidity (soluble) meters	Removed <u>ic Pump</u> Bot <u>3- 40m</u> <u>1- 250mL Pl</u> 1- 250mL Pl	3.0 tle L vials astic Bottle astic Bottle	gallons Date/Time Pres. HCl HNO 3 none	10 inch 07/29/1 Method 8260	4
8-inch Volume of F Sampling Method Para VOCs Ar & Tur Ar & Ba Field Para pH	2.5 Purge Water F Data Peristalt Meters S - TCL & Ba bidity (soluble) Meters (mS/cm)	Removed ic Pump Bot <u>3- 40m</u> <u>1- 250mL Pl</u> <u>1- 250mL Pl</u> <u>1- 250mL Pl</u>	3.0 tle L vials astic Bottle astic Bottle astic Bottle	gallons Date/Time Pres. HCl HNO 3 none none	10 inch 07/29/1 Method 8260 206.2/200.7	4

WELL INSPECTION FORM								
Site Name <u>Honeywell Specialty Chem</u>	Well ID	MW-2						
Personnel Daniel Chamberland								
Total Well Depth (TOC)	19.15 feet							
Initial Static Water Level (TOC)	5.45 feet							
Well Diameter	2.0 inches							
Condition of Pro-Cover	OK							
Well Locked	yes no							
Condition of J-Plug	Good							
Concrete Pad Condition	OK							
Asphalt Condition	NA							
Date of Inspection	07/29/2019							
Time of Inspection	14:00							
Time of Inspection 14:00 Comments: Stick up well. Fresh paint, hinge has been repaired.								

WELL INS	<u>M</u>							
Site Name Honeywell Specialty Chem	Well ID	MW-3						
Personnel <u>Dan Chamberland</u>								
Total Well Depth (TOC)	18.66 feet							
Initial Static Water Level (TOC)	5.82 feet							
Well Diameter	2.0 inches							
Condition of Pro-Cover	OK							
Well Locked	yes no							
Condition of J-Plug	Good							
Concrete Pad Condition	ОК							
Asphalt Condition	N/A							
Date of Inspection	07/29/2019							
Time of Inspection	11:30							
Comments: <u>Stick-up well. Hard bottom. Fresh paint and labeled</u>								

WELL INSPECTION FORM								
Site Name Honeywell Specialty Chem	Well ID	MW-5						
Personnel <u>Dan Chamberland</u>	Personnel Dan Chamberland							
Total Well Depth (TOC)	15.69 feet							
Initial Static Water Level (TOC)	6.01 feet							
Well Diameter	2.0 inches							
Condition of Pro-Cover	ОК							
Well Locked	yes no							
Condition of J-Plug	Good							
Concrete Pad Condition	None							
Asphalt Condition	ОК							
Date of Inspection	07/29/2019							
Time of Inspection	09:45							
Time of Inspection 09:45 Comments: No concrete, new pavement in area. Curb box painted green. Pavement does not hold curb box in ground.								

	WELL INS	<u>M</u>					
Site Name	Honeywell Specialty Chem	Well ID	MW-6				
Personnel	Dan Chamberland						
Total Well D	Pepth (TOC)	16.75	feet				
Initial Static	Water Level (TOC)	3.51	feet				
Well Diame	ter	2.0	inches				
Condition of	Pro-Cover	C	Ж				
Well Locked	ł	yes no					
Condition of	J-Plug	Good					
Concrete Pa	ad Condition	ОК					
Asphalt Con	dition	ОК					
Date of Insp	ection	07/29/2019					
Time of Insp	pection	14	:15				
Comments: <u>Flush-mount well. Soft bottom.</u>							

WELL INSPECTION FORM					
Site Name Honeywell Specialty Chem	nicals	Well ID	MW-7		
Personnel <u>Dan Chamberland</u>					
Total Well Depth (TOC)	13.16 feet				
Initial Static Water Level (TOC)	3.85 feet				
Well Diameter	2.0 inches				
Condition of Pro-Cover	Poor				
Well Locked	yes no				
Condition of J-Plug	Good				
Concrete Pad Condition Poor					
Asphalt Condition	ОК				
Date of Inspection	07/29/2019				
Time of Inspection 14:20					
Comments: <u>Flush-mount well. Soft bottom.</u>					

WELL INSPECTION FORM					
Site Name Honeywell Specialty Chem	nicals	Well ID	MW-8		
Personnel Dan Chamberland					
Total Well Depth (TOC)	19.30 feet				
Initial Static Water Level (TOC)	5.15 feet				
Well Diameter	2.0 inches				
Condition of Pro-Cover	ОК				
Well Locked	yes no				
Condition of J-Plug	Good				
Concrete Pad Condition OK					
Asphalt Condition	ОК				
Date of Inspection	07/29/2019				
Time of Inspection	14:30				
Comments: <u>Stick-up well. Soft bottom. Fresh paint and label.</u>					

WELL INSPECTION FORM					
Site Name <u>Honeywell Specialty Chem</u>	nicals	Well ID <u>MW-9</u>			
Personnel Dan Chamberland					
Total Well Depth (TOC)	16.45 feet				
Initial Static Water Level (TOC)	2.66 feet				
Well Diameter	2.0 inches				
Condition of Pro-Cover	ОК				
Well Locked	yes no				
Condition of J-Plug	ОК				
Concrete Pad Condition OK					
Asphalt Condition	ОК				
Date of Inspection	07/29/2019				
Time of Inspection	14:35				
Comments: <u>Flush mount well.</u> Soft bottom. Curb box and concrete pad are new.					

WELL INSPECTION FORM					
Site Name Honeywell Specialty Chemicals				Well ID	MW-10
Personnel	Daniel Chamberland				
Total Well D	Depth (TOC)	18.11	feet		
Initial Static	Water Level (TOC)	5.21	feet		
Well Diamet	er	2.0	inches		
Condition of	Pro-Cover	0	к		
Well Locked	I	yes	no		
Condition of	J-Plug	Go	od		
Concrete Pad Condition OK		К			
Asphalt Condition		ОК			
Date of Inspection 07/29/2019					
Time of Insp	me of Inspection 14:45				
Comments: Stick-up well. Hard bottom. Hinge repaired, fresh paint.					

ATTACHMENT B

Groundwater Analytical Results

Sample ID: Monitoring Well 3 Sample Date: 07/29/19

Analytical Parameters	Analytical Results	Units	Practical Quantifiable Limits	Method
Total Arsenic	0.466	mg/L	0.025	EPA 6010
Soluble Arsenic	NA	mg/L	0.025	EPA 6010
Total Barium	0.425	mg/L	0.010	EPA 6010
Soluble Barium	NA	mg/L	0.010	EPA 6010
Chloromethane	ND	μg/L	10	SW 846 8260
Vinyl chloride	ND	μg/L	10	SW 846 8260
Bromomethane	ND	μg/L	10	SW 846 8260
Chloroethane	3.9	μg/L	10	SW 846 8260
Trichlorofluoromethane	ND	μg/L	10	SW 846 8260
1,1-Dichloroethene	2.4	μg/L	10	SW 846 8260
Methylene chloride	ND	μg/L	10	SW 846 8260
Trans-1,2-Dichloroethene	ND	μg/L	10	SW 846 8260
1,1-Dichloroethane	22	μg/L	10	SW 846 8260
Bromochloromethane	ND	μg/L	10	SW 846 8260
Chloroform	ND	μg/L	10	SW 846 8260
1,2-Dichloroethane	ND	μg/L	10	SW 846 8260
1,1,1-Trichloroethane	4.2	μg/L	10	SW 846 8260
Carbon tetrachloride	ND	μg/L	10	SW 846 8260
Benzene	ND	μg/L	10	SW 846 8260
1,2-Dichloropropane	ND	μg/L	10	SW 846 8260
Trichloroethene	0.90	µg/L	10	SW 846 8260
2-Chloroethylvinyl ether	ND	µg/L	10	SW 846 8260
Cis-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
Trans-1,3-Dichloropropene	ND	µg/L	10	SW 846 8260
1,1,2-Trichloroethane	ND	μg/L	10	SW 846 8260
Toluene	ND	µg/L	10	SW 846 8260
Dibromochloromethane	ND	μg/L	10	SW 846 8260
Tetrachloroethene	ND	μg/L	10	SW 846 8260
Chlorobenzene	ND	μg/L	10	SW 846 8260
Ethylbenzene	ND	μg/L	10	SW 846 8260
Bromoform	ND	μg/L	10	SW 846 8260
1,1,2,2-Tetrachloroethane	ND	μg/L	10	SW 846 8260
1,3-Dichlorobenzene	ND	μg/L	10	SW 846 8260
1,4-Dichlorobenzene	ND	μg/L	10	SW 846 8260
1,2-Dichlorobenzene	ND	µg/L	10	SW 846 8260

Sample ID: Monitoring Well 5 Sample Date: 07/29/19

Analytical Parameters	Analytical Results	Units	Practical Quantifiable Limits	Method
Total Arsenic	0.007	mg/L	0.025	EPA 6010
Soluble Arsenic	NA	mg/L	0.025	EPA 6010
Total Barium	0.209	mg/L	0.010	EPA 6010
Soluble Barium	NA	mg/L	0.010	EPA 6010
Chloromethane	ND	µg/L	10	SW 846 8260
Vinyl chloride	ND	µg/L	10	SW 846 8260
Bromomethane	ND	µg/L	10	SW 846 8260
Chloroethane	ND	µg/L	10	SW 846 8260
Trichlorofluoromethane	ND	µg/L	10	SW 846 8260
1,1-Dichloroethene	ND	µg/L	10	SW 846 8260
Methylene chloride	ND	µg/L	10	SW 846 8260
Trans-1,2-Dichloroethene	ND	µg/L	10	SW 846 8260
1,1-Dichloroethane	ND	µg/L	10	SW 846 8260
Chloroform	ND	µg/L	10	SW 846 8260
1,2-Dichloroethane	ND	µg/L	10	SW 846 8260
1,1,1-Trichloroethane	ND	µg/L	10	SW 846 8260
Carbon tetrachloride	ND	µg/L	10	SW 846 8260
Benzene	ND	µg/L	10	SW 846 8260
1,2-Dichloropropane	ND	µg/L	10	SW 846 8260
Trichloroethene	ND	µg/L	10	SW 846 8260
2-Chloroethylvinyl ether	ND	µg/L	10	SW 846 8260
Cis-1,3-Dichloropropene	ND	µg/L	10	SW 846 8260
Trans-1,3-Dichloropropene	ND	µg/L	10	SW 846 8260
1,1,2-Trichloroethane	ND	µg/L	10	SW 846 8260
Toluene	ND	µg/L	10	SW 846 8260
Dibromochloromethane	ND	µg/L	10	SW 846 8260
Tetrachloroethene	ND	µg/L	10	SW 846 8260
Chlorobenzene	ND	µg/L	10	SW 846 8260
Ethylbenzene	ND	µg/L	10	SW 846 8260
Bromoform	ND	µg/L	10	SW 846 8260
1,1,2,2-Tetrachloroethane	ND	µg/L	10	SW 846 8260
1,3-Dichlorobenzene	ND	µg/L	10	SW 846 8260
Acetone	ND	µg/L	10	SW 846 8260
2-Butanone	ND	µg/L	10	SW 846 8260
1,4-Dichlorobenzene	ND	µg/L	10	SW 846 8260
1,2-Dichlorobenzene	ND	µg/L	10	SW 846 8260

Sample ID: Trip Blank S<u>ample Date: 07/29/19</u>

Analytical Parameters	Analytical Results	Units	Practical Quantifiable Limits	Method
Chloromethane	ND	μg/L	10	SW 846 8260
Vinyl chloride	ND	μg/L	10	SW 846 8260
Bromomethane	ND	μg/L	10	SW 846 8260
Chloroethane	ND	μg/L	10	SW 846 8260
Trichlorofluoromethane	ND	μg/L	10	SW 846 8260
1,1-Dichloroethene	ND	μg/L	10	SW 846 8260
Methylene chloride	ND	μg/L	10	SW 846 8260
Trans-1,2-Dichloroethene	ND	μg/L	10	SW 846 8260
1,1-Dichloroethane	ND	μg/L	10	SW 846 8260
Bromochloromethane	ND	μg/L	10	SW 846 8260
Chloroform	ND	μg/L	10	SW 846 8260
1,2-Dichloroethane	ND	μg/L	10	SW 846 8260
1,1,1-Trichloroethane	ND	μg/L	10	SW 846 8260
Carbon tetrachloride	ND	μg/L	10	SW 846 8260
Benzene	ND	μg/L	10	SW 846 8260
1,2-Dichloropropane	ND	μg/L	10	SW 846 8260
Trichloroethene	ND	μg/L	10	SW 846 8260
2-Chloroethylvinyl ether	ND	μg/L	10	SW 846 8260
Cis-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
Trans-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
1,1,2-Trichloroethane	ND	µg/L	10	SW 846 8260
Toluene	ND	μg/L	10	SW 846 8260
Dibromochloromethane	ND	μg/L	10	SW 846 8260
Tetrachloroethene	ND	μg/L	10	SW 846 8260
Chlorobenzene	ND	μg/L	10	SW 846 8260
Ethylbenzene	ND	μg/L	10	SW 846 8260
Bromoform	ND	µg/L	10	SW 846 8260
1,1,2,2-Tetrachloroethane	ND	μg/L	10	SW 846 8260
1,3-Dichlorobenzene	ND	μg/L	10	SW 846 8260
Acetone	ND	µg/L	10	SW 846 8260
2-Butanone	ND	μg/L	10	SW 846 8260
1,4-Dichlorobenzene	ND	µg/L	10	SW 846 8260
1,2-Dichlorobenzene	ND	μg/L	10	SW 846 8260

ANALYTICAL REPORT

Lab Number:	L1933556
Client:	Honeywell 20 Peobody Street Buffalo, NY 14120
ATTN: Phone: Project Name: Project Number:	Frank Collis (716) 827-6318 GROUNDWATER MONITORING Not Specified
Report Date:	08/08/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:GROUNDWATER MONITORINGProject Number:Not Specified

 Lab Number:
 L1933556

 Report Date:
 08/08/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time Receive Date
L1933556-01	MW-3	WATER	BUFFALO, NY	07/29/19 13:20 07/29/19
L1933556-02	MW-5	WATER	BUFFALO, NY	07/29/19 10:50 07/29/19
L1933556-03	TRIP BLANK	WATER	BUFFALO, NY	07/29/19 00:00 07/29/19

Lab Number: L1933556 Report Date: 08/08/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L1933556

 Report Date:
 08/08/19

Case Narrative (continued)

Report Submission

Please note that this report format does not contain typical QC parameters that were performed with these samples. As such, any QC outliers or non-conformances can only be reviewed by accessing your Alpha Customer Center account at www.alphalab.com and building a Data Usability table (format 11) in our Data Merger tool.

Volatile Organics

L1933556-01, -02 and -03: The pH of the sample was less than two. It should be noted that 2-chloroethylvinyl ether breaks down under acidic conditions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Nails Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Date: 08/08/19

VOLATILES

			Serial_N	o:08081915:29
Project Name:	GROUNDWATER MON	NITORING	Lab Number:	L1933556
Project Number:	Not Specified		Report Date:	08/08/19
		SAMPLE RESULTS		
Lab ID:	L1933556-01		Date Collected:	07/29/19 13:20
Client ID:	MW-3		Date Received:	07/29/19
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/07/19 11:59			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5		1
1,1-Dichloroethane	22		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	2.5		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	4.2		ug/l	2.5		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	2.5		1
Ethylbenzene	ND		ug/l	2.5		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	2.5		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	3.9		ug/l	2.5		1
1,1-Dichloroethene	2.4		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	2.5		1
Trichloroethene	0.90		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

					S	erial_No	p:08081915:29
Project Name:	GROUNDWATER MO	ONITORING			Lab Nur	nber:	L1933556
Project Number:	Not Specified				Report I	Date:	08/08/19
		SAMP	LE RESULT	S			
Lab ID:	L1933556-01				Date Colle	ected:	07/29/19 13:20
Client ID:	MW-3				Date Rec	eived:	07/29/19
Sample Location:	BUFFALO, NY				Field Prep	D:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene		ND		ug/l	2.5		1
1,4-Dichlorobenzene		ND		ug/l	2.5		1
Bromochloromethane		ND		ug/l	2.5		1
Surrogate				% Recovery	Qualifie		ceptance Criteria

Carrogate	% Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	99	70-130	

		Serial_No:08081915:29
Project Name:	GROUNDWATER MONITORING	Lab Number: L1933556
Project Number:	Not Specified	Report Date: 08/08/19
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location:	L1933556-02 MW-5 BUFFALO, NY	Date Collected:07/29/19 10:50Date Received:07/29/19Field Prep:Not Specified
Sample Depth: Matrix:	Water	
Analytical Method: Analytical Date: Analyst:	1,8260C 08/07/19 11:31 PD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5		1
1,1-Dichloroethane	ND		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	2.5		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	2.5		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	2.5		1
Ethylbenzene	ND		ug/l	2.5		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	2.5		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.5		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	2.5		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

					S	erial_No	p:08081915:29
Project Name:	GROUNDWATER MO	ONITORING			Lab Nun	nber:	L1933556
Project Number:	Not Specified				Report I	Date:	08/08/19
		SAMP	LE RESULT	S			
Lab ID:	L1933556-02				Date Colle	ected:	07/29/19 10:50
Client ID:	MW-5				Date Rece	eived:	07/29/19
Sample Location:	BUFFALO, NY				Field Prep):	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene		ND		ug/l	2.5		1
1,4-Dichlorobenzene		ND		ug/l	2.5		1
Bromochloromethane		ND		ug/l	2.5		1
Surrogate				% Recovery	Qualifie		ceptance Criteria

Carrogate	% Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	99	70-130	

			Serial_N	p:08081915:29
Project Name:	GROUNDWATER MON	IITORING	Lab Number:	L1933556
Project Number:	Not Specified		Report Date:	08/08/19
		SAMPLE RESULTS		
Lab ID:	L1933556-03		Date Collected:	07/29/19 00:00
Client ID:	TRIP BLANK		Date Received:	07/29/19
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/07/19 11:03			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5		1
1,1-Dichloroethane	ND		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	2.5		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	2.5		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	2.5		1
Ethylbenzene	ND		ug/l	2.5		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	2.5		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.5		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	2.5		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

Surrogate				% Recovery	Qualifier		ceptance Criteria
Bromochloromethane		ND		ug/l	2.5		1
1,4-Dichlorobenzene		ND		ug/l	2.5		1
1,3-Dichlorobenzene		ND		ug/l	2.5		1
Volatile Organics b	oy GC/MS - Westboroug	jh Lab					
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BUFFALO, NY				Field Prep	:	Not Specified
Client ID:	TRIP BLANK				Date Rece		07/29/19
Lab ID:	L1933556-03				Date Colle	cted:	07/29/19 00:00
		SAMP	LE RESULT	S			
Project Number:	Not Specified				Report D	ate:	08/08/19
Project Name:	GROUNDWATER MO	ONITORING			Lab Num	ber:	L1933556
					Se	erial_No	p:08081915:29

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ontonia	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	97	70-130	

METALS

Vater										
BUFFALO, NY					Field Pr	ep:	Not Spe	ecified		
MW-3					Date Re	eceived:	07/29/1	07/29/19		
193355	6-01					Date Co	llected:	07/29/1	9 13:20	
			SAMPL	E RES	ULTS					
lot Spe	cified					Report	Date:	08/08/	19	
GROUN	DWATEF	R MONIT	ORING			Lab Nu	mber:	L1933	556	
	Not Spe 193355 /W-3	Not Specified 1933556-01 /W-3	Not Specified 1933556-01 /W-3	SAMPL 1933556-01 /W-3	Not Specified SAMPLE RES .1933556-01 /W-3	Not Specified SAMPLE RESULTS .1933556-01 /W-3	Not Specified Report SAMPLE RESULTS 1933556-01 Date Co IW-3 Date Result	Not Specified Report Date: SAMPLE RESULTS 1933556-01 Date Collected: WV-3 Date Received:	Not SpecifiedReport Date:08/08/SAMPLE RESULTS08/08/1933556-01Date Collected:07/29/1IW-3Date Received:07/29/1	Not Specified Report Date: 08/08/19 SAMPLE RESULTS Date Collected: 07/29/19 13:20 /W-3 Date Received: 07/29/19

Total Metals - N	lansfield Lab						
Arsenic, Total	0.466	mg/l	0.005	 1	08/04/19 18:00 08/05/19 18:44 EPA 3005A	1,6010D	AB
Barium. Total	0.425	ma/l	0.010	 1	08/04/19 18:00 08/05/19 18:44 EPA 3005A	1,6010D	AB

08/04/19 18:00 08/05/19 19:32 EPA 3005A

08/04/19 18:00 08/05/19 19:32 EPA 3005A

1,6010D

1,6010D

AB

AB

Project Name:	GROL	JNDWATE	R MONI	FORING			Lab Nu	mber:	L1933	556	
Project Number:	Not Sp	pecified					Report	Date:	08/08/	19	
				SAMPL	E RES	ULTS					
Lab ID:	L1933	556-02					Date Co	ollected:	07/29/1	9 10:50	
Client ID:	MW-5						Date Re	eceived:	07/29/1	9	
Sample Location:	BUFF	ALO, NY					Field Pr	ep:	Not Sp	ecified	
Sample Depth:											
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										

--

--

1

1

0.005

0.010

mg/l

mg/l

1	ADDIA
	ANALYTICAL

Arsenic, Total

Barium, Total

0.007

0.209

INORGANICS & MISCELLANEOUS

Serial No:08081915:29

Project Name: Project Number:	GROUNDWATER MONITORING Not Specified							L1933556 08/08/19		
				SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location:	L1933556-01 MW-3 BUFFALO, N\	ſ						Received:	07/29/19 13:20 07/29/19 Not Specified)
Sample Depth: Matrix:	Water					Dilution	Date	Date	Analytical	
Parameter	Result C	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analy
neral Chemistry - Wes	stborough Lab									
rbidity	13		NTU	0.20		1	-	07/30/19 21:3	5 121,2130B	AS

Project Name: Project Number:	GROUNDWATER MONITORING Not Specified						lumber: rt Date:	L1933556 08/08/19	
	·		SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location:	L1933556-02 MW-5 BUFFALO, NY						Received:	07/29/19 10:50 07/29/19 Not Specified)
Sample Depth: Matrix:	Water						·		
Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
urbidity	2.1	NTU	0.20		1	-	07/30/19 21:3	35 121,2130B	AS

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L1933556-01A	Vial HCl preserved	A	NA		3.8	Y	Absent		NYTCL-8260(14)
L1933556-01B	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
L1933556-01C	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
L1933556-01D	Plastic 250ml unpreserved	А	7	7	3.8	Y	Absent		TURB-2130(2)
L1933556-01E	Plastic 250ml unpreserved	А	7	7	3.8	Y	Absent		-
L1933556-01F	Plastic 250ml HNO3 preserved	А	<2	<2	3.8	Y	Absent		AS-TI(180),BA-TI(180)
L1933556-01X	Plastic 250ml HNO3 preserved Filtrates	А	NA		3.8	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1933556-02A	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
L1933556-02B	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
L1933556-02C	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
L1933556-02D	Plastic 250ml unpreserved	А	7	7	3.8	Y	Absent		TURB-2130(2)
L1933556-02E	Plastic 250ml unpreserved	А	7	7	3.8	Y	Absent		-
L1933556-02F	Plastic 250ml HNO3 preserved	А	<2	<2	3.8	Y	Absent		AS-TI(180),BA-TI(180)
L1933556-02X	Plastic 250ml HNO3 preserved Filtrates	А	NA		3.8	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1933556-03A	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
L1933556-03B	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)

Project Name: GROUNDWATER MONITORING

Project Number: Not Specified

Lab Number:	L1933556
-------------	----------

Report Date: 08/08/19

GLOSSARY

Acronyms

-	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Report Format: DU Report - No QC

Project Name: GROUNDWATER MONITORING

Project Number: Not Specified

Lab Number: L1933556 Report Date: 08/08/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

 Lab Number:
 L1933556

 Report Date:
 08/08/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Sulte 5			Page 1		-	Date Rec'd			See Hereine				
		Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			of			in Lab				121	lia	ALPHA Job #	
Westborough, MA 01581 Mansfield, MA 02048 8 Walkup Dr, 320 Forbes Blvd TEL: 506-898-9220 TEL: 508-822-9300												130	119	L1933556	
		Project Information					Del	iverab			-0	1:55		Billing Information	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name:		er Monitoring				ASI	P-A			ASP-	B	Same as Client Info	
Oliver Lat.		Project Location: Buffalo, NY						EQuIS (1 File)				EQui	S (4 File)	PO#	
Client Information		Project #						Oth	er						
Client: Honeywell		(Use Project name as Project #)						Regulatory Requirement						Disposal Site Information	
Address: 20 Peabody Street		Project Manager: Diana Overton						NY TOGS NY Part 375						Please identify below location of applicable disposal facilities.	
Buffalo, NY 14120		ALPHAQuote #:						AWQ Standards NY CP-51							
Phone: 716-827-6318		Turn-Around Time						NY Restricted Use Other						Disposal Facility:	
Fax: 716-827-62	221	Standard 🗹 Due Date:						NY Unrestricted Use							
Email: diana.over	ton@honeywell.com	Rush (only if pre approved) # of Days:						NYC Sewer Discharge						U NJ U NY	
These samples have b	een previously analyze	i or oujo.												Other:	
Other project specific	requirements/comm	ents:	a,						ANALYSIS					Sample Filtration	0
Soluble Metals to be filtered and preserved by the lab, Soluble Metals only need to NTU Please specify Metals or TAL.					Turbidity e	0C (lab filter)	As,Ba-6010C	NYTCL-8260 Client Speci	TURB-2130				☐ Done ✓ Lab to do <i>Preservation</i> ✓ Lab to do	✓ Lab to do t treservation ✓ Lab to do B	
							5	Ba	326	BR				(Dissas Creation Indust)	0
ALPHA Lab ID			ction 320 Sample Sampler's			Ba-6	As	13	F				(Please Specify below)	1	
(Lab Use Only)	Sa	mple ID	Date	Time	Sample Matrix	Sampler's Initials	As,E		Ĕ						1
33556-01	MW-3		10000 CONTRACTOR 100	15:20 05	120100000	1000 1000 C	_	-	-	-	-			Sample Specific Comments	e
	MW-5					DPC	X	X	X	X					6
	To3 Trip Blank		07/29/2019	10:50	ww	OPC	X	X	X	х					6
00	пр ыапк		07/29/2019		DI Water	DPG	_	_	X						2
			V.												
															Н
								1	1				-		-
								1	+			-	_		\vdash
A = None B = HCI	A = Amber Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015				ntainer Type	Р	P		Р				Please print clearly, legibly	
$D = H_2 SO_4$	V = Vial G = Glass B = Bacteria Cup		F								and completely. Samples can not be logged in and turnaround time clock will not				
F = MeOH	C = Cube	Relinquished	Time D.	1	A	A C H A						start until any ambiguities a			
	O = Other E = Encore	Suffich	Date/Time 1400			Recei	Received By:				Date/	and the second se	resolved. BY EXECUTING		
	D = BOD Bottle			-15-490	~	AAL					1400	THIS COC, THE CLIENT	1		
O = Other	1	7 1	7/29/19	1430	All	and				- 7130 ha 00:55			HAS READ AND AGREES TO BE BOUND BY ALPHA		
Form No: 01-25 (rev. 30-Sep	ot-2013)	1				-	_		$ \in $	\geq				TERMS & CONDITIONS.	