

Direct: 315.451.9560

Response to NYSDEC Comments Dated November 30, 2021 Allied Chemical - Tonawanda, #915003 Tonawanda (T), Erie County Draft Site Investigation Summary Report Dated October 2021

- Comment 1. <u>Section 3, Stormwater Discharge</u>: the use of "stream" in this section should be replaced with "ditch" to better reflect the receiving waterbody.
- Response 1. The document will be revised as requested.
- Comment 2. Section 3, Till: it is not clear what 'till' this section is referring to, as most of the fill is on top of clay or silty clay based on this investigation and those at surrounding sites. The identification of till appears to have been in only soil borings completed in/near the western surface berm, which may not be indicative of native materials.
- Response 2. The document will be revised to provide clarity.
- Comment 3. Section 6.2, Western Area: Section 5.2 of the work plan included investigation of the western area to further investigate apparent coal tar observed by past Tonawanda Coke Corporation and Department staff. It appears that this part of the work plan was not implemented. The reason for this omission needs to be provided, and if necessary, the investigation of this area completed during future site activities.
- Response 3. The document will be revised to document that access issues associated with heavy vegetation prevented the further characterization of tar in this area. It will be included in the next phase of site investigation.
- Comment 4. Section 6.2, Benzene: the concentration of benzene at borings B-9, B-16, B-18, and B-30 warrant additional investigation. Considering the use of Section 7.2.11 of EPA Method 1311 in other reports, the soil/materials at these locations may be characteristically hazardous. Additionally, the thickness, depth, and analytical composition observed at B-9 were notably different than the other locations and may represent a different source of contamination than the presumed coal tar residuals at the other borings.
- Response 4. These areas will be evaluated further through test pitting in the next phase of site investigation.
- Comment 5. <u>Table 4. Commercial Footnote</u>: "Unrestricted" should be deleted from the blue commercial use footnote description.
- Response 5. The document will be revised as requested.
- Comment 6. <u>Appendix F, Waste Manifests</u>: the manifests provided are hard to read, and it is requested that fully legible copies of the waste manifests be provided.
- Response 6. The document will be revised as requested.
- Comment 7. Overall. Test Pits: it was previously agreed between Honeywell and the Department that a test

pit investigation would be completed at the site following the results of the soil boring investigation. This investigation should target, at a minimum, the boring locations identified in this investigation with notable impacts and the area of surficial tar boil(s) south of the former Tonawanda Coke water treatment tanks to provide for a larger assessment of subsurface conditions in these areas

- Response 7. These areas will be evaluated further through test pitting in the next phase of site investigation.
- Comment 8. A revised report addressing the above comments will be submitted to the Department by January 2, 2022. The Department also requests that a work plan to address Comments 3,4, and 7 be submitted to the Department by February 2, 2022, If you wish to discuss this matter in more detail feel free to contact me at 716-851-7220 or benjamin.mcpherson@dec.ny.gov.
- Response 8. Based on subsequent discussion with NYSDEC, it was agreed that the requested changes would be addressed in a revised report that will include the results from the next phase of site investigation. A Work Plan for the next phase of investigation will be submitted to NYSDEC by February 2, 2022.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

November 30, 2021

Rich Galloway Honeywell International, Inc. 115 Tabor Road Morris Plains, NJ 07950

> RE: Allied Chemical - Tonawanda, #915003 Tonawanda (T), Erie County Site Investigation Report

Dear Rich Galloway:

The Department has received the *Draft Site Investigation Summary Report* [October 2021] for the above referenced site, as prepared by Parsons. Based on our review of the report we have the following comments:

- 1) <u>Section 3, Stormwater Discharge</u>: the use of "stream" in this section should be replaced with "ditch" to better reflect the receiving waterbody;
- 2) <u>Section 3, Till</u>: it is not clear what 'till' this section is referring to, as most of the fill is on top of clay or silty clay based on this investigation and those at surrounding sites. The identification of till appears to have been in only soil borings completed in/near the western surface berm, which may not be indicative of native materials;
- 3) Section 6.2, Western Area: Section 5.2 of the work plan included investigation of the western area to further investigate apparent coal tar observed by past Tonawanda Coke Corporation and Department staff. It appears that this part of the work plan was not implemented. The reason for this omission needs to be provided, and if necessary, the investigation of this area completed during future site activities;
- 4) <u>Section 6.2, Benzene</u>: the concentration of benzene at borings B-9, B-16, B-18, and B-30 warrant additional investigation. Considering the use of Section 7.2.11 of EPA Method 1311 in other reports, the soil/materials at these locations may be characteristically hazardous. Additionally, the thickness, depth, and analytical composition observed at B-9 were notably different than the other locations and

may represent a different source of contamination than the presumed coal tar residuals at the other borings;

- 5) Table 4, Commercial Footnote: "Unrestricted" should be deleted from the blue commercial use footnote description;
- 6) Appendix F, Waste Manifests: the manifests provided are hard to read, and it is requested that fully legible copies of the waste manifests be provided; and
- 7) Overall, Test Pits: it was previously agreed between Honeywell and the Department that a test pit investigation would be completed at the site following the results of the soil boring investigation. This investigation should target, at a minimum, the boring locations identified in this investigation with notable impacts and the area of surficial tar boil(s) south of the former Tonawanda Coke water treatment tanks to provide for a larger assessment of subsurface conditions in these areas.

A revised report addressing the above comments will be submitted to the Department by January 2, 2022. The Department also requests that a work plan to address Comments 3,4, and 7 be submitted to the Department by February 2, 2022, If you wish to discuss matter in more detail feel free to contact me at 716-851-7220 or benjamin.mcpherson@dec.ny.gov.

Sincerely,

DN: cn=Benjamin McPherson, Berja- J. McAlean email-benjamin.mcpherson@dec.ny. gov, c=US
Date: 2021.11.30 13:48:24-05'00'

Benjamin McPherson, P.E.

Project Manager

Professional Engineer 1 (Environmental)

Chad Staniszewski - NYSDEC ec: Andrea Caprio – NYSDEC

Benjamin McPherson - NYSDEC

Teresa Mucha, Esq. - NYSDEC

Rich Galloway – Honeywell (<u>rich.galloway@honeywell.com</u>)

Edward Glaza – Parsons (edward.glaza@parsons.com)

George Moreau – Parsons (George.H.Moreau@parsons.com)

Dale Desnoyers, Esq. – Allen & Desnoyers (Dale@allendesnoyers.com)

DRAFT SITE INVESTIGATION SUMMARY REPORT

Tonawanda Plastics Site NYSDEC ID 915003

Prepared For:

Honeywell International Inc. 115 Tabor Road Morris Plains, NJ 09750

Prepared By:

40 La Riviere Drive, Suite 350 Buffalo, New York 14202

September 2021 Parsons PN 451244

TABLE OF CONTENTS

1	INTE	RODUCTION	1
2	BAC	CKGROUND	1
3	SITE	DESCRIPTION	2
	3.1	East Area	2
	3.2	West Area	3
	3.3	Center Area	3
4	SCO	PPE OF WORK	3
	4.1	Investigation Objectives	3
	4.2	Property Line Survey and Underground Utility Clearance	4
	4.3	Soil Borings	4
	4.4	Groundwater Monitoring Well Installation	4
	4.5	Well Development	5
	4.6	Surveying	5
	4.7	Groundwater Sampling	5
	4.8	Sewer Investigation	5
	4.9	Groundwater Elevation Measurements	6
	4.10	Waste Management	6
5	DAT	A VALIDATION	7
6	ANA	ALYTICAL RESULTS	7
	6.1	Storm Sewer Samples	7
	6.2	Soil Sample Results	7
	6.2.	1 Center Area Results	7
	6.2.	.2 East Area Results	8
	6.3	Observations of Tar	8
	6.4	Physical Properties of Subsurface	9
	6.5	Groundwater Samples	9
7		VCLUSIONS	
8		ERENCES	

LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 Site Plan and Investigation Locations
- Figure 3 Storm Sewer Location
- Figure 4 Site Groundwater Potentiometric Surface Map, February 2018
- Figure 5 Site Groundwater Potentiometric Surface Map, April 2018
- Figure 6 Site Groundwater Potentiometric Surface Map, July 2018
- Figure 7 Site Groundwater Potentiometric Surface Map, December 2020
- Figure 8 Site Groundwater Potentiometric Surface Map, January 2021
- Figure 9 Soil Sample Results
- Figure 10 Tar Locations

LIST OF TABLES

- Table 1 Sewer Investigation Weather Data
- Table 2 Groundwater Elevations
- Table 3 Sewer Sample Analytical Results
- Table 4 Soil Sample Analytical Results
- Table 5 Groundwater Analytical Results

LIST OF APPENDICES

- Appendix A Soil Boring Logs
- Appendix B Monitoring Well Construction Logs
- Appendix C Monitoring Well Development Logs
- Appendix D Site Survey Data
- Appendix E Groundwater Sampling Log
- Appendix F Waste Manifests
- Appendix G Data Quality Evaluation Reports
- Appendix H Laboratory Data Reports and Complete Data Tables

LIST OF ACRONYMS

Acronym	Definition / Description
Allied	Allied Fibers and Plastics Company (now Honeywell)
ASP	Analytical Services Protocol
BTEX	benzene, toluene, ethylbenzene, and xylene
COC	chemicals of concern
CRA	Conestoga-Rovers and Associates
CVOC	chlorinated volatile organic compounds
CY	cubic yard(s)
DQE	Data Quality Review
eV	Electronvolt
ft bgs	feet below ground surface
IDW	investigation-derived waste
NYSDEC	New York State Department of Environmental Conservation
PAHs	polycyclic aromatic hydrocarbons
PID	photoionization detector
ppm	parts per million
PVC	polyvinyl chloride
RCP	reinforced concrete pipe
Site	Tonawanda Plastics Site
SVI	soil vapor intrusion
SVOCs	semivolatile organic compounds
TAL	target compound list
TCC	Tonawanda Coke Corporation
TCL	Target compound list
VOCs	volatile organic compounds

1 INTRODUCTION

This report describes investigation activities completed at the Tonawanda Plastics Site (NYSDEC RCRA Site No. 915003) in Tonawanda, New York (Site) between 2018 and 2021. The work was completed consistent with two Work Plans approved by the New York State Department of Environmental Conservation (NYSDEC).

The Storm Sewer Investigation Work Plan (Parsons, 2017) was submitted by letter dated December 27, 2017 and approved by NYSDEC by letter dated January 31, 2018. The investigation was conducted between February 2018 and July 2018 and focused on the 36-inch storm sewer which traverses the western portion of the Site. The Investigation Areas Work Plan (Parsons, 2018) was submitted to NYSDEC by letter dated May 23, 2018. Also, by letter dated May 23, 2018, NYSDEC approved the work plan with no modifications to the scope. The investigation was conducted between October 2018 and March 2021 and included subsurface investigation work in the east and central parts of the Site.

Although there were 2 separate work plans, the reporting has been combined into this single document. A full description of the Site, investigation activities, and the investigation results are included in this report.

2 BACKGROUND

The Site encompasses approximately 17 acres, located at 3821 River Road in Tonawanda, New York (**Figure 1**). The Site was originally developed by Allied Fibers and Plastics Company (Allied, now Honeywell) in the early 1950s, and was operated as a manufacturing facility through 1982. Site operations included the polymerization of ethylene into low molecular weight polyethylene (trademark: A-C Polyethylene and Co-polymers), which was finished into powder, pelleted and solid forms. Allied sold the property to Rouse Breihan, Inc. in 1985. Several of the Site buildings were used for office and laboratory space, vehicle maintenance, and warehousing by the neighboring Tonawanda Coke Corporation (TCC) up until they shut down operations in October 2018. Currently, the buildings on the property are unused and unoccupied.

In summer 1981, approximately 500 cubic yards (CY) of coal tar and soils were excavated and removed from the eastern portion of the Site (NYSDEC 2018) (Figure 2). The Coal Tar Site (NYSDEC Inactive Hazardous Waste Site 915003B) consisted of an area of the plant property where pools of coal tar, from spillage and leakage during product-transfer operations, were located. The removal was completed by the Tonawanda Coke Corporation, under agreement with Allied, as part of the demolition of the idle tar storage terminal. Removal was completed down to the underlying clay layer. Analytical results of confirmatory soil samples collected following the excavation showed that chemicals of concern (COCs) were not detected or were in low parts per million (ppm) concentrations. In addition to the tar and soil removal, the buried pipeline used to transfer product coal tar from former coke operation to the Barrett Division paving material storage facility was also removed to the property limits, as was an underground tank which was used as a blowdown tank for the transfer line. NYSDEC informed Allied in October 1981 that no further remediation was necessary in this area.

In 1991, Allied excavated an area at the west end of the property where spent and off-specification batches of magnesium chromate catalyst were disposed (**Figure 2**). The excavation was completed under a Consent Order between Allied and NYSDEC. This area has historically been referenced as the blow-down pit (NYSDEC Inactive Hazardous Waste Site 915003C). NYSDEC notified Allied in May 1995 that the site was delisted from the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites.

In July of 1998, NYSDEC notified Allied that subsequent investigations had identified the presence of groundwater contamination upgradient of the chrome pit removal area, and that further site investigations would be required under the RCRA Corrective Action Program. In November 1998, NYSDEC acknowledged Allied's agreement to voluntarily proceed with additional investigations and identified specific investigation focus areas. Allied subsequently completed multiple rounds of investigation activities as well as cleaning and flushing of the onsite 36-inch and 48-inch storm sewers (O'Brien and Gere, 2002).

Based on their review of the 2002 investigation report, NYSDEC notified Honeywell in October 2013 that additional investigations would be required under the RCRA Corrective Action Program. Honeywell agreed to proceed with the investigations on a volunteer basis.

In December 2015, Honeywell submitted an *Investigation Summary Report* to NYSDEC (Parsons 2015). This report included the results of surface water, sediment, and groundwater monitoring and sampling from the western end of the Site near the former blow-down pit.

In October 2017, Honeywell submitted a second *Investigation Summary Report* to NYSDEC (Parsons 2017a). This report included the results of surface water and groundwater monitoring and sampling and a soil vapor intrusion (SVI) investigation completed for the building used as offices and laboratories.

3 SITE DESCRIPTION

The Site is located along River Road in the Town of Tonawanda, Erie County, New York. There are several other industrial facilities in the area including the former TCC facility north and east of the Site. River Road forms the western site boundary, and the Niagara Mohawk Power Corporation (now National Grid PLC) owns and maintains an electrical power transmission corridor to the south. Immediately south of the National Grid corridor is an Energy Transfer facility with bulk above ground petroleum storage tanks. The stormwater runoff from the Energy Transfer facility discharges to a series of concrete stormwater pipes that run under the Plastics Site and discharge to a stream on the Tonawanda Coke Site 109.

The closest surface water body to the Site is the Niagara River, which flows from south to north approximately 1,500 feet west of the Site.

Surficial geology at the Allied Chemical site is characterized by a dense, massive, reddish glaciolacustrine clay overlain by fill material, clay, sand, and gravel. The water-bearing fill unit is not a source of potable water and is not locally in hydraulic connection with the underlying bedrock aquifer (NYSDEC, 2021). Perched groundwater on top of the till has been observed within four feet of the ground surface. As reported in the *Remedial Investigation Summary Report Tonawanda Coke Corporation* (Conestoga-Rovers and Associates [CRA] May 1997) there is less than a foot of soil/fill at the surface at the east end of the Site, with the silty clay beneath.

Site COCs have been selected based on the results of previous investigations and historical operations at the Site. COCs include the VOCs benzene, toluene, ethylbenzene, and xylene (BTEX), chlorinated volatile organic compounds (CVOCs), polycyclic aromatic hydrocarbons (PAHs), chromium and cyanide.

For the purpose of this investigation summary, the Site was divided into three geographical areas (**Figure 2**): East Area, West Area, and Center Area. A description of each of the three investigation areas follows.

3.1 East Area

The East Area of the Site is east of the main access road (**Figure 2**). The approximately 4.2-acre area is currently undeveloped. Historically, railroad tracks traversed the area. Several above-ground storage tank foundation slabs are present and there is a former flare stack located in the far east end. There are several sections of railroad track in the area including along the southern edge and the northern limit of the area.

Information about the underlying geology of the area has been obtained from reports prepared for the former TCC property. Three historical test pits (TP-AA, BB, CC) were excavated near the eastern end of the Site on the former TCC side of the property line. The test pits were 1.8, 1.4, and 1.0 feet deep, respectively (CRA 2008). Approximately 0.8 to 1.6 feet of coal fines were described as lying on top of a native reddish-brown clay with traces of silt.

There is a well (MW16-89) on the former TCC side of the property line. The ground elevation at the well is 599.9 feet above mean sea level, with the top of clay at 599.0. The well is reportedly four feet deep.

During a site walk with NYSDEC in 2016, tar-like material was observed on the ground surface near the access road and the former TCC water treatment tanks. Approximately 500 cubic yards of material were removed from near a railroad/tank unloading area in this section of the Site in 1981, as discussed in Section 2.

3.2 West Area

The West Area of the Site (**Figure 2**) occupies approximately 3.3 acres and contains no buildings. The blow-down pit inactive hazardous waste site, which was remediated in 1991 and delisted as discussed in Section 2, is located in this portion of the Site Additionally, a soil berm, running parallel to River Road, was constructed near the western property boundary in approximately 2005. Several subsurface investigations have been conducted on the Site to support the remediation and subsequent groundwater investigation relating to the blow-down waste pit Site. There are 12 groundwater monitoring wells in the area. Drilling records indicated that there is fill overlying a silty clay layer. Groundwater was identified within 5 feet of the original ground surface. A 36-inch-diameter reinforced concrete pipe (RCP) storm sewer traverses the area from south to north, as shown in **Figure 3**. The storm sewer originates offsite (Inlet A) on the National Grid property, west of the Energy Transfer facility.

At the request of NYSDEC, Honeywell has voluntarily completed a series of investigations in this area related to the sewer and vicinity groundwater.

3.3 Center Area

The approximately 9.5-acre Center Area of the Site (**Figure 2**) is where historical plant operations were concentrated. Approximately 13 buildings and structures remain in this area. Following closure of the Plastics Plant, TCC had operations in some of the buildings up until the closure of the adjacent Coke Plant in October 2018. The TCC operations included laboratory and office space, storage areas, and equipment repair shops (NYSDEC, 2021).

There are several above-ground storage tanks in the area, which have been present since the late 1950s. The shape and construction of the tanks suggest they were utilized to store pressurized liquids or gases. There are several foundations slabs that are typical of large vertical tanks in the Center Area as well.

The only known environmental investigation work completed in the Center Area is a SVI study for the laboratory and office buildings completed in 2016 (Parsons 2017a). No COCs were detected in the office building indoor air at concentrations exceeding the USEPA regional screening levels. Although COCs were detected in the laboratory building indoor air, it is likely that these detections originated from activities conducted in the building, not from sub-slab vapor intrusion.

A 48-inch RCP storm sewer traverses the central area of the Site and includes several catch basins (**Figure 3**). This sewer outlet (Outlet B) has been identified directly east of the discharge from the 36-inch sewer (Outlet A). At the time of the investigation work, the discharge piping was completely submerged.

4 SCOPE OF WORK

4.1 Investigation Objectives

The primary objectives associated with the storm sewer investigation were to:

- Measure the volume of water flowing through the 36-inch sewer,
- Sample influent and effluent flow from the sewer, and
- Complete of groundwater level monitoring events, concurrent with each sampling event.

The primary objectives associated with the additional site characterization were to:

- Determine if previously unidentified waste material or grossly impacted soils remain on-site;
- Determine if COCs that may be present in soil, are impacting groundwater;
- Better define groundwater flow patterns across the Site.

4.2 Property Line Survey and Underground Utility Clearance

A property boundary survey was completed on July 18, 2018 by Wendel, Inc., a New York state licensed surveyor. The surveyor marked the property boundary prior to determining exact boring locations.

Prior to mobilizing to the Site for subsurface drilling, all soil borings and monitoring well locations were cleared for the presence of underground utilities by contacting Dig Safely New York. Additionally, New York Leak Detection, Inc., was retained to use ground-penetrating radar to screen the proposed drilling locations for underground hazards. All locations were cleared of both underground and overhead potential hazards prior to drilling. The top 5 feet of material in each of the well locations was excavated by hand to confirm that there were no underground utilities present.

4.3 Soil Borings

Soil borings B-1 through B-30 were completed in the East and Center Areas of the Site from November 9 through November 11, 2020. Soil boring locations are shown on **Figure 2**. Some of the locations were modified in the field from those proposed in the Work Plan based on observed site conditions. The boring locations in the East Area were distributed to cover the full area and targeted to areas where historical operations were identified, including the former tank locations, railroad areas, and the stack. Borings were not placed within areas where grossly contaminated material has been observed on the surface (i.e., tar) but were placed around those areas to define the lateral extent of the materials and related COCs. Borings in the Center Area were concentrated around the former gas holder foundation identified in the northeast corner of the area. No borings were completed in the West Area.

Borings B-1 through B-20 were advanced using a track-mounted, direct-push Geoprobe rig, while Borings B-21 through B-30 were completed using hand-augers as the terrain at those locations was inaccessible by the Geoprobe unit. A total of 9 soil borings were completed in the Center Area, and 21 soil borings were completed in the East Area. Boring logs for all soil borings can be found in **Appendix A**.

Geoprobe and hand-auger equipment was decontaminated prior to use, between borings, and prior to demobilizing from the Site. All downhole equipment was cleaned using an Alconox wash and clean water rinse prior to use and between boring locations. Disposable acetate liners were used for collection of soil cores in the Geoprobe borings.

All borings were advanced to a minimum of 6 inches into native soils. Soil samples were screened with a photoionization detector (PID) fitted with an 11.7 electronvolt (eV) lamp, and PID readings were recorded.

Soil samples that exhibited visible signs of potential contamination or strong odors were collected. Additional samples were collected for quality assurance/quality control purposes, including matrix spike/matrix spike duplicate and field duplicate samples. All soil samples were submitted for analysis to Eurofins TestAmerica Buffalo in Amherst, New York (ELAP No. 10026). Samples were analyzed for VOCs, semi-volatile organic compounds (SVOCs), and inorganic parameters.

Soil cuttings that showed visible indications of potential contamination, strong odors, or exhibited elevated PID readings were placed in a stainless-steel 55-gallon drum for disposal. Soil cuttings that showed no signs of potential contamination were returned to the borehole.

4.4 Groundwater Monitoring Well Installation

From November 11 through November 17, 2020, monitoring wells MW-13 and MW-14 were drilled and installed in the Eastern and Central Areas (**Figure 2**). Well borings were drilled using a track-mounted Geoprobe and the boring was advanced using hollow-stem auger drilling methods. Split-spoon samples were continuously collected for soil classification

by a Parsons geologist. All soil samples were screened for the presence of VOCs with a PID equipped with an 11.7 eV bulb. None of the soil samples at either well location had PID readings greater than 0.0 ppm.

Wells were installed to 10 feet below ground surface (ft bgs) and 11.5 ft bgs in MW-13 and MW-14, respectively. The monitoring wells were completed using 2-inch diameter, schedule 40 polyvinyl chloride (PVC) riser with 5 feet and 10 feet of 0.01-inch slotted screen respectively. Both wells were completed with stick-up protective casings. Well boring logs can be found in **Appendix A**, and well construction logs can be found in **Appendix B**.

At both monitoring well locations, there was a foot or less of unsaturated fill overlying the clay unit. Therefore, the wells provide information regarding the clay unit rather than the shallow zone of backfill represented by most of the other existing wells.

4.5 Well Development

Following installation, wells MW-13 and MW-14 were developed to remove fine-grained sediments from the vicinity of the well screen. Wells were developed by Parsons on November 19, 2020 using surging and bailing techniques with a weighted bailer. Purged water was drummed in 55-gallon steel drums for disposal. Well development logs are included in **Appendix C**.

4.6 Surveying

On March 11, 2021, survey work was completed by Wendel, Inc. Newly installed monitoring wells MW-13 and MW-14 were surveyed for northing and easting coordinates, ground surface and casing elevations. The 30 boring locations in the East and Central Areas were also surveyed for northing and easting coordinates and ground surface elevation. Horizontal datum is referenced to the North American Datum of 1983 (NAD83). Vertical elevations were measured with respect to the National Vertical Datum of 1988 to the nearest 0.01 foot. Survey data has been included in **Appendix D.**

4.7 Groundwater Sampling

Sampling of groundwater from monitoring well MW-14 occurred on December 10, 2020. A groundwater sample could not be collected from MW-13 as the well did not produce enough water for sampling. Prior to sampling, MW-14 was purged of stagnant water using a low-flow sampling method and field parameters were measured. Field parameters included pH, temperature, conductivity, turbidity, dissolved oxygen, oxidation reduction potential, and total dissolved solids. Once a sufficient volume of water had been removed and the field parameters had stabilized, the well was sampled. A purge log for MW-14 is included in **Appendix E**.

Samples were also collected for quality assurance/quality control purposes, including a field duplicate sample. The groundwater samples were submitted for analysis to Eurofins TestAmerica Buffalo in Amherst, New York (NELAP No. 10026). Samples were analyzed for VOCs, SVOCs, and inorganic parameters.

4.8 Sewer Investigation

The scope of work associated with the sewer investigation included measurement of water flow through the 36-inch sewer (**Figure 3**) and collection of influent and effluent water samples for laboratory analysis. The influent and effluent sampling points are designated on **Figure 3** as Inlet A and Outlet A, respectively. The scope of work associated with the sewer investigation also included completion of groundwater level monitoring from existing site wells, as discussed in Section 4.8.

Three measurement and sampling events were completed to quantify the volume of water flowing through the 36-inch sewer pipe, and to collect and analyze influent and effluent samples. Flow rates during each event were measured using weir plates. The three events targeted specific sewer flow conditions, and were completed as follows:

- High-flow event (February 16, 2018) monitoring and sampling were completed during a warming period following multiple snow-fall events. Temperature at the time of sampling was in the low 50s and there was snowpack on the ground, which included 5.98 inches of snow which fell on February 13. The measured rate of flow at the inflow and outfall at the time of sampling was approximately 74 gallons per minute at both monitoring points. There was no measurable difference in the rate of inflow or outflow of the pipe.
- Low-flow event (July 20, 2018) monitoring and sampling were completed during low flow conditions. There was no measurable flow through the sewer at the time of sampling; however, there was standing water within the pipe which was sampled. Prior to the sampling date, there had been no precipitation recorded at the National Weather Service metering station at the Niagara Falls International Airport (located approximately eight miles north of the site) for five days.
- Storm event (April 17, 2018) monitoring and sampling were completed on the day following a rainfall of 1.33 inches (April 16, 2018). A total of 2.09 inches of rainfall were recorded between April 15 through April 17. The measured rate of flow from the outfall at the time of sampling was approximately 60 gallons per minute.

A summary of precipitation during the three sampling periods is included in **Table 1**. During each event, water samples were collected from Inlet A and Outlet A of the 36-inch storm sewer. Samples were collected in accordance with the methods provided in DER-10.

Influent and effluent water samples were transported to TestAmerica Laboratory (NELAP No. 10026) in Amherst, New York and analyzed for target compound list (TCL) VOCs by Method 8260C, TCL semi-volatile organic compounds (SVOCs) by Method 8270D, target analyte list (TAL) metals by Method 6010C, mercury by Method 7470A and cyanide by Method 9012B.

4.9 Groundwater Elevation Measurements

Concurrent with each of the sewer sampling events (36-inch sewer) discussed in Section 4.7 above, groundwater elevation measurements were recorded from the 12 groundwater monitoring wells in the Western Area. Water levels measurements were completed on February 16, 2018, April 17, 2018, and July 20, 2018. In addition, on December 10, 2020, prior to sampling of new monitoring wells MW-13 and MW-14, and again on January 11, 2021, water level measurement and total well depth measurements were recorded from each existing and new Site monitoring well. The results from these measurement events are included in **Table 2**. Generally, groundwater flow direction is to the west or southwest toward River Road. Information provided in historical reports indicates that groundwater in the vicinity is perched in alluvial/lacustrine sediments, which primarily consist of graded silts and clays.

Groundwater water levels measured in wells in the vicinity of the former blow down pit and the 36-inch sewer were used to generate potentiometric surface maps for the localized area in the west part of the site (**Figures 4** through **8**).

These contours provide a theoretical image of the groundwater potentiometric surface and do not necessarily indicate the presence of groundwater especially in areas with shallow, unconfined, and perched groundwater. The presence of artificial subsurface features, buildings and reworked soils may also have an effect.

As described in previous investigation reports, the general groundwater flow across the site is to the west or northwest. Groundwater potentiometric surfaces localized to the 36-inch sewer indicate that portions of the sewer have the potential to be a groundwater sink with local flow toward the sewer.

4.10 Waste Management

Investigation-derived waste (IDW) including soil cuttings generated during soil boring and well installation, equipment decontamination rinse water, well development, purging and sampling and personal protective equipment and sampling materials was placed in UN1A2 drums and staged on-site for disposal.

The IDW materials were disposed of through Veolia North America at their facility in Middlesex, New Jersey. Copies of the completed waste manifests are included in **Appendix F**.

5 DATA VALIDATION

Data Quality Evaluation (DQE) Reports were completed for laboratory data from the storm sewer investigation as well as the site investigation. Data reviews were completed in accordance with NYSDEC's DUSR guidelines (DER-10).

Analytical results were validated and reviewed by Parsons for usability with respect to the requirements defined in the following documents:

- Work Plan
- July 2005 NYSDEC Analytical Services Protocol (ASP)
- USEPA Region Guidelines for Organic and Inorganic Data Review

The analytical laboratory for this project is Eurofins TestAmerica Buffalo (formally TestAmerica Buffalo) in Amherst, New York. This laboratory is certified to conduct project analyses through the New York State Department of Health (NYSDOH) and the National Environmental Laboratory Accreditation Program (NELAP).

The data submitted by the laboratory was reviewed and validated. The analytical data were found to be acceptable in terms of deliverable completeness, accuracy, precision, representativeness, completeness, and comparability. The DQE reports are included in **Appendix G**.

6 ANALYTICAL RESULTS

6.1 Storm Sewer Samples

A summary of the influent and effluent analytical results is included in **Table 3**. Consistent with prior reports, only detected compounds are listed on the tables. Laboratory data reports and completed data tables for all compounds are included in **Appendix H**.

There were no detections of VOCs or SVOCs above NYSDEC Class A Surface Water Standard in five of the six samples collected. The April 17, 2018 storm water outlet sample reported two compounds slightly above standards. Benzene and Naphthalene were detected with concentrations of 1.4 μ g/L (estimated) compared to a standard of 1 μ g/L and 23 μ g/L compared to a standard of 10 μ g/L, respectively.

There were several inorganics which were detected in both inlet and outlet samples with concentrations above the Standard. These include aluminum, iron, manganese, magnesium, sodium, vanadium and cyanide. Concentrations were typically higher in the outlet samples for those instances where there was an inorganic exceedance.

6.2 Soil Sample Results

Validated soil analytical results for detected compounds are summarized and compared to potentially applicable Soil Cleanup Objectives (SCOs). **Table 4** and **Figure 9** provide summaries of the soil analytical results where detections were identified. The full data tables and laboratory data reports are include in Appendix H.

6.2.1 CENTER AREA RESULTS

In the Center Area, soil samples were collected from borings B-1, B-4, B-5, B-7, B-8, and B-9 at depths corresponding to elevated PID readings or visible signs of contamination as well as from depths where there were no signs of contamination.

Two soil borings in the Center Area exhibited elevated PID readings:

- B-4 (1.2 ppm from 1.0 to 1.3 ft bgs)
- B-9 (a high of 2,000 ppm from 0.9 to 4.8 ft bgs)

Additionally, samples from B-9 exhibited a strong odor from 0.9 to 4.8 ft bgs and 5.0 to 10.0 ft bgs. All other soil samples exhibited no indications of VOCs using a PID or noticeable odor.

Analytical results for surface and subsurface soil samples show detections for:

- VOCs (primarily BTEX compounds) in 6 samples from 3 locations
- SVOCs in 5 samples from 3 locations
- Chromium in 9 samples from all 6 locations
- Cyanide in 1 sample from 1 location

The only exceedances of SCOs were for VOCs in all 3 samples from boring B-9, where concentrations for all BTEX compounds exceeded the SCOs for Commercial use.

6.2.2 EAST AREA RESULTS

In the East Area, soil samples were collected from B-12, B-14, B-15, B-16, B-17, B-18, B-19, B-20, B-29, and B-30 from various depths corresponding to elevated PID readings or visible signs of contamination as well as from depths where there were no signs of contamination.

Five soil borings in the East Area exhibited elevated PID readings:

- B-14 (1.2 ppm from 0.4 to 0.6 ft bgs)
- B-16 (75.3 ppm from 0.4 to 1.7 ft bgs)
- B-17 (1.2 ppm from 0.7 to 1.0 ft bgs)
- B-18 (35.2 ppm from 0.9 to 1.8 ft bgs)
- B-30 (53.2 ppm from 0.5 to 1.5 ft bgs)

Additionally, samples from borings B-14 (0.4 to 0.6 ft bgs), B-16 (0.4 to 1.7 ft bgs), and B-30 (0.5 to 1.5 ft bgs) exhibited a strong odor. All other soil samples exhibited no detections of VOCs using a PID or any noticeable odors during boring advancement.

Analytical results for surface and subsurface soil samples show detections for:

- VOCs (primarily BTEX compounds) in 10 samples from 7 locations
- SVOCs in all 15 samples from all 10 locations
- Chromium in 15 samples from all 10 locations
- Cyanide in 2 samples from 2 locations

VOCs (primarily BTEX compounds) exceeded Unrestricted SCOs in 4 samples at 4 locations, but were never detected at concentrations exceeding Commercial SCOs. Chromium exceeded the Unrestricted SCOs in 1 sample at 1 location. SVOCs were detected above the Industrial SCOs in 5 samples at 4 locations.

6.3 Observations of Tar

Based on site inspections and the results from the soil borings, surface and subsurface tar is present in the western end of the East Area. A summary of coal tar materials observed locations, depths, and details are provided on **Figure 10**. Detailed observations of tar are shown in boring logs in **Appendix A**.

Three borings with observed tar (B-16, B-18, B-30) are located along the railroad tracks at the southern property line in the East Area. One boring with observed tar was in the proximity of visible tar at the surface (B-14).

The tar at Tonawanda Plastics Site may be the result of local disposal and/or leaking tanks, rail cars or piping. When encountered, the tar was characterized as a pliable tar/fill mixture and located near process or storage areas.

Consistent with reporting for the ongoing investigations of the former TCC Site, the different varieties of coal tar material have been classified into the following categories, which are based on consistency and composition:

Tar Saturated

Low viscosity tar that moves from the matrix. This is the only category of tar that would be potentially mobile.

Coated Material

Low viscosity tar that does not move independently from the matrix and the matrix is not saturated.

Pliable Tar and Pliable Tar/Fill Mixture

Does not move freely but can be deformed by hand and will hold the shape.

Hardened Tar, Hardened Tar/Fill Mixture

Does not move freely and cannot be deformed by hand.

6.4 Physical Properties of Subsurface

In general, very little fill material was encountered in the Eastern Area and the investigated portion of the Central Area. For the majority of the area evaluated fill thicknesses were less than 12-inches and were associated with former roads and rail beds. The predominant subsurface material consisted of a red clay with mixed in gravel and sand.

6.5 Groundwater Samples

Validated groundwater sample results collected from MW-14 on December 10, 2020 are shown in **Table 5**. A groundwater sample could not be collected from MW-13 as the well did not produce a sufficient volume of water.

VOCs and SVOCs were not detected above the laboratory reporting limit in the sample collected from MW-14. Total cyanide was estimated at a concentration of 0.005 mg/L in the duplicate sample collected. Chromium was detected in the groundwater sample from MW-14 at 0.0094 mg/L. The detected concentrations of chromium and cyanide were below the NYSDEC Class GA Groundwater Standards.

7 CONCLUSIONS

The work completed documented in this report supports the following conclusions:

- Based on prior investigations, groundwater in the area of the storm sewers has been impacted by VOCs, potentially from upgradient sources in the vicinity of site operations in the West Area. There is a potential for groundwater to be migrating into the storm sewers based on groundwater elevation measurements. However, if this is occurring, sampling indicates that impacts to surface water are minor. Absent stormwater, the sewer flow was observed to stop, suggesting little sustained infiltration.
- Minimal fill material was encountered in the East Area and the investigated portion of the Central Area. Fill
 thicknesses were less than 12-inches for the majority of the area evaluated.
- Most of the borings indicated no field evidence of contamination or had no exceedances of SCOs. However, there
 were sporadic exceedances of commercial and/or industrial SCOs at some locations, as well as field observations of
 pliable or hardened tar at some locations on the East Area of the Site.
- At both MW-13 and WM-14 monitoring well locations, there was a foot or less of fill overlying the clay unit. Therefore, the wells provide information regarding the underlying clay unit rather than the shallow zone of backfill represented by most of the other existing wells on site. A groundwater sample could not be collected from MW-13 as it did not produce a sufficient volume of water. VOCs and SVOCs were not detected above the laboratory reporting

limit in the sample collected from MW-14. Total cyanide and chromium were detected at concentrations below the NYSDEC Class GA Groundwater Standard.

8 References

- CRA. 1997. Remedial Investigation Summary Report Tonawanda Coke Corporation. Conestoga-Rovers and Associates, May 1997.
- CRA. 2008. Final Supplemental Report, Revision 1 and Feasibility Study, Tonawanda Coke Corporation. Conestoga-Rovers and Associates, January 2008.
- O'Brien and Gere, 2002. Additional Investigation/IRM Activities Former Allied Specialty Chemical Site, Tonawanda, New York, February 2002.
- Parsons. 2015. Investigation Summary Report Tonawanda Plastics Site EPA ID NYD051816262. Parsons Inc., December 2015.
- Parsons. 2017a. Investigation Summary Report Tonawanda Plastics Site EPA ID NYD051816262. Parsons Inc., October 2017.
- Parsons. 2017b. Storm Sewer Investigation Work Plan 36-inch Storm Sewer, Tonawanda Plastics Site. Parsons Inc., December 2017.
- Parsons. 2018. Site Characterization Work Plan Tonawanda Plastics Site EPA ID NYD051816262. Parsons Inc., May 2018.
- NYSDEC. 2021. Environmental Site Remediation Database; Site Name Allied Chemical Special Chem Div., Sites No 915003, 915003B, 915003C.

FIGURES

TABLES

TABLE 1 TONAWANDA PLASTICS SEWER INVESTIGATION WEATHER DATA

Day	February 2018	February 2018	April 2018	June 2108
	Rainfall	Snow Depth	Rainfall	Rainfall
	(inches)	(inches)	(inches)	(inches)
1	-	4.02	0.26	-
2	-	-	-	0.77
3	-	-	-	-
4	0.08	-	0.54	0.04
5	0.13	0.98	0.03	0.09
6	0.06	2.01	-	-
7	0.02	2.01	0.13	-
8	0.26	5.98	-	-
9	-	5.00	-	-
10	0.24	7.99	-	-
11	0.18	7.99	-	-
12	0.07	5.98	-	-
13	-	5.98	0.04	0.04
14	-	5.00	0.02	0.06
15	-	2.01	0.28	-
16	0.02	-	1.19	-
17	0.01	-	0.62	-
18	-	-	-	-
19	-	-	-	-
20	-	-	-	-
21	0.32	-	-	-
22	0.20	-	-	-
23	-	-	-	0.09
24	0.17	-	-	0.04
25	0.22	-	0.26	0.16
26	0.05	-	0.20	-
27	-	-	-	0.14
28	-	-	-	0.06
29			0.24	-
30			-	-
31				

Precipitation data obtained Niagara Falls Airport Weather Station
Sample collection dates

TABLE 2 TONAWANDA PLASTICS **GROUNDWATER ELEVATIONS**

Monitoring Well	Top of PVC Casing Elevation (ft AMSL)	Ground Surface Elevation (ft AMSL)	NORTH COORDINATES	EAST COORDINATES	Measured Well Depth (feet BTOC)	Depth to Water (feet BTOC)	Groundwater Elevation (ft AMSL)								
	, ,	, ,				2/16/2018	2/16/2018	4/17/2018	4/17/2018	7/20/2018	7/20/2018	12/10/2020	12/10/2020	1/11/2021	1/11/2021
MW-1	585.60	583.00	1085637.70	1054763.10	11.58	7.58	578.02	5.50	580.10	9.48	576.12	8.32	577.28	8.41	577.19
MW-2	583.76	581.80	1085688.53	1054664.83	11.76	3.41	580.35	2.68	581.08	9.15	574.61	6.01	577.75	6.24	577.52
MW-3	582.65	581.30	1085727.38	1054643.48	11.40	2.22	580.43	1.47	581.18	7.70	574.95	5.53	577.12	5.73	576.92
MW-4	584.04	581.40	1085737.83	1054677.95	11.75	5.37	578.67	5.43	578.61	6.72	577.32	5.61	578.43	5.98	578.06
MW-5	587.00	584.60	1085573.26	1054850.05	10.90	6.94	580.06	5.05	581.95	8.25	578.75	6.74	580.26	6.93	580.07
MW-6	584.87	582.40	1085645.34	1054709.37	11.25	8.15	576.72	7.46	577.41	9.02	575.85	8.72	576.15	8.76	576.11
MW-7	586.21	582.10	1085610.85	1054724.96	11.60	10.84	575.37	8.04	578.17	10.31	575.90	9.95	576.26	9.90	576.31
MW-8	585.85	583.90	1085648.47	1054803.55	15.20	-	-	3.47	582.38	7.09	578.76	3.57	582.28	3.68	582.17
MW-9	585.30	582.30	1085615.55	1054691.81	12.65	7.52	577.78	5.80	579.50	8.40	576.90	8.29	577.01	7.61	577.69
MW-10	586.67	584.00	1085524.96	1054750.83	12.35	8.85	577.82	7.10	579.57	9.57	577.10	9.52	577.15	8.66	578.01
MW-11R	596.89	594.00	1085588.29	1054639.78	42.80	25.81	571.08	26.70	570.19	27.31	569.58	27.36	569.53	27.26	569.63
MW-12R	591.33	588.80	1085773.59	1054562.66	37.82	25.38	565.95	23.02	568.31	23.90	567.43	24.13	567.20	24.17	567.16
MW-13	598.73	595.40	1086188.4	1055422.1	13.33	-	-	-	-	-	-	DRY	-	6.69	592.04
MW-14	603.99	600.20	1086117.1	1055960.7	15.41	-	-	-	-	-	-	5.05	598.94	5.36	598.63

Notes:

 $MW-11R \ and \ MW-12R \ were \ installed \ on \ 10/5/2016 \ to \ replace \ decommissioned \ wells \ MW-11 \ and \ MW-12, \ respectively.$

All MW except MW-13 and MW-14 were surveyed by Wendel on 10/26/2016. MW-13 and MW-14 were surveyed by Wendel on 03/11/2021.

Horizontal control is referenced to the New York State Plane Coordinate System, North American Datum of 1983 (NAD83), Western Zone (US Survey Feet)

- = Not Measured

BTOC = Below Top of Casing

AMSL = Above Mean Sea Level

36-inch sewer influent invert elevation: 574.25

TABLE 3 TONAWANDA PLASTICS SEWER SAMPLE ANALYTICAL RESULTS

DETECTED COM	POUND SUMMARY						-					LOW FLOW EVENT			
			Location ID	SW-36INF (Inle	t A)	SW-36EFF (Outle	et A)	SW-36INF (Inle	et A)	SW-36EFF (Out	tlet A)	SW-36INF (Inl	et A)	SW-36EFF (O	utlet A)
			Field Sample ID	36 INLET-02162	36 INLET-02162018		36 OUTLET-02162018		36 INLET-04172018		72018	36 INLET_07202018		36 OUTLET_0720201	
		Class A	Date Sampled	02/16/2018		02/16/2018		04/17/2018		04/17/2018	3	07/20/2018	3	07/20/20	18
		Surface Water	SDG	480-131426-	1	480-131426-1		480-134303-	1	480-134303	-1	480-139309	-1	480-13930	9-1
		Standards/Guidance	Matrix	WATER		WATER		WATER		WATER		WATER		WATER	₹
CAS No.	PARAMETER	Values ⁽¹⁾	Units												
	SANIC COMPOUNDS														
	BENZENE	1	ug/l	1.0	U	0.6	J	2.0	U	1.4	J	2.0	U	2.0	U
75-15-0	CARBON DISULFIDE	NS	ug/l	1.0	U	0.7	J	2.0	U	1.7	J	2.0	U	2.0	U
156-59-2	CIS-1,2-DICHLOROETHENE	5	ug/l	1.0	U	1.4		2.0	U	2.0	U	2.0	U	2.6	
75-09-2	METHYLENE CHLORIDE	5	ug/l	1.0	U	1.0	U	1.8	J	1.4	J	1.2	J	2.0	U
79-01-6	TRICHLOROETHENE	5	ug/l	1.0	U	0.9	J	2.0	U	2.0	U	2.0	U	2.0	U
SEMI-VOLATILE	E ORGANIC COMPOUNDS														
91-57-6	2-METHYLNAPHTHALENE	NS	ug/l	5.0	U	0.7	J	5.0	U	1.5	J	5.0	U	5.0	U
86-73-7	FLUORENE	50 (G)	ug/l	5.0	U	5.0	U	5.0	U	0.4	J	5.0	U	5.0	U
91-20-3	NAPHTHALENE	10	ug/l	5.0	U	8.8		5.0	U	23.0		5.0	U	5.0	U
INORGANICS															
7429-90-5	ALUMINUM	0.1	mg/L	0.10	J	0.75		0.28		2.7		0.50		0.17	ſ
7440-39-3	BARIUM	1	mg/L	0.045		0.044		0.036		0.035		0.086		0.077	
7440-43-9	CADMIUM	0.005	mg/L	0.0005	U	0.0005	U	0.0005	U	0.00063	J	0.0005	U	0.00056	J
7440-70-2	CALCIUM	NS	mg/L	100		106		81		88		147		238	
7440-47-3	CHROMIUM	0.05	mg/L	0.001	U	0.0038	J	0.001	U	0.022		0.003	J	0.001	U
7440-48-4	COBALT	0.005	mg/L	0.00063	U	0.00063	J	0.00063	U	0.0035	J	0.00063	U	0.0029	J
7440-50-8	COPPER	200	mg/L	0.0025	J	0.0022	J	0.0031	J	0.0062	J	0.0026	J	0.0016	U
7439-89-6	IRON	0.3	mg/L	0.32		3.8		0.31		13.8		1.7		3.3	
7439-92-1	LEAD	0.05	mg/L	0.003	U	0.003	U	0.0039	J	0.029		0.003	U	0.003	U
7439-95-4	MAGNESIUM	35	mg/L	20.7		21.5		16.6		19.4		58.6		45.0	
7439-96-5	MANGANESE	0.3	mg/L	0.16		0.22		0.05		0.16		4.3		3.7	
7440-02-0	NICKEL	0.1	mg/L	0.0013	U	0.0066	J	0.0013	U	0.032		0.0022	J	0.022	
7440-09-7	POTASSIUM	NS	mg/L	5.5		5.5		5.4		5.4		8.6		6.4	
7440-23-5	SODIUM	20	mg/L	37.8		46.0		23.1		27.8		63.7		83.4	
7440-62-2	VANADIUM	0.015	mg/L	0.0015	U	0.0084		0.0015	U	0.056		0.0015	U	0.0015	U
7440-66-6	ZINC	2 (G)	mg/L	0.0064	J	0.025		0.01	U	0.083		0.01	U	0.14	
57-12-5	CYANIDE	0.2	mg/L	0.005	UJ	0.014		0.005	U	0.025		0.049		0.24	

Notes:

Only data for detected parameters are shown

BOLD Indicates concentration exceeds standard or guidance value.

(G) Indicates guidance value.

NS No standard or guidance value available.
U Indicates compound was not detected.
J Indicates an estimated concentration.

ug/L Micrograms per liter

(1) Taken from NYSDEC TOGs 1.1.1

TABLE 4 TONAWANDA PLASTICS SOIL SAMPLE ANALYTICAL RESULTS (detections only)

					Loc	ation ID	B-1	B-4	B-4	B-5
				B-1-11112020-1.5-2.0		B-4-11112020-1.5-2.0	_			
				1.5-2	0.8-1.3	1.5-2	0.6-1.1			
				CENTER AREA	CENTER AREA	CENTER AREA	CENTER AREA			
					Samı	ple Date	11/11/2020	11/11/2020	11/11/2020	11/11/2020
					•	Matrix	SOIL	SOIL	SOIL	SOIL
			UNRESTRICTED	COMMERCIAL	INDUSTRIAL					
Method	CAS_RN	Chemical Name	USE SCO	SCO	SCO	Unit				
SW8260	67-64-1	Acetone	50	500000	1000000	ug/kg	20 U	31 UJ	11 J	20 U
SW8260	71-43-2	Benzene	60	44000	89000	ug/kg	3.9 U	0.54 J	3.9 U	4 U
SW8260	100-41-4	Ethylbenzene	1000	390000	780000	ug/kg	3.9 U	6.2 UJ	3.9 U	4 U
SW8260	100-42-5	Styrene	NS	NS	NS	ug/kg	3.9 U	6.2 UJ	3.9 U	4 U
SW8260	108-88-3	Toluene	700	500000	1000000	ug/kg	3.9 U	1.2 J	3.9 U	4 U
SW8260	1330-20-7	Total Xylenes	260	500000	1000000	ug/kg	7.8 U	12 UJ	7.8 U	7.9 U
SW8270	83-32-9	Acenaphthene	20000	500000	1000000	ug/kg	200 U	180 U	200 U	200 U
	208-96-8	Acenaphthylene	100000	500000	1000000	ug/kg	200 U	180 U	200 U	200 U
	120-12-7	Anthracene	100000	500000	1000000	ug/kg	200 U	180 U	200 U	200 U
		Benzo(A)Anthracene	1000	5600	11000	ug/kg	21 J	26 J	200 U	200 U
	50-32-8	Benzo(A)Pyrene	1000	1000	1100	ug/kg	200 U	180 U	200 U	200 U
	205-99-2	Benzo(B)Fluoranthene	1000	5600	11000	ug/kg	200 U	180 U	200 U	200 U
	191-24-2	Benzo(G,H,I)perylene	100000	500000	1000000	ug/kg	200 U	180 U	200 U	200 U
	207-08-9	Benzo(K)Fluoranthene	800	56000	110000	ug/kg	200 U	180 U	200 U	200 U
	218-01-9	Chrysene	1000	56000	110000	ug/kg	200 U	180 U	200 U	200 U
	53-70-3	Dibenzo(a,h)Anthracene	330	560	1100	ug/kg	200 U	180 U	200 U	200 U
	206-44-0	Fluoranthene	100000	500000	1000000	ug/kg	23 J	58 J	200 U	200 U
	86-73-7	Fluorene	30000	500000	1000000	ug/kg	200 U	180 U	200 U	200 U
	193-39-5	Indeno(1,2,3-Cd)Pyrene	500	5600	11000	ug/kg	200 U	180 U	200 U	200 U
	91-20-3	Naphthalene	12000	500000	1000000	ug/kg	200 U	180	200 U	200 U
		Phenanthrene	100000	500000	1000000	ug/kg	200 U	91 J	200 U	200 U
SW8270	129-00-0	Pyrene	100000	500000	1000000	ug/kg	200 U	41 J	200 U	200 U
	7440-47-3	Chromium	30	1500	6800	mg/kg	22	6.7	24.2	26.6
SW9012	57-12-5	Cyanide, Total	27	27	10000	mg/kg	1.2 U	1 U	1.1 U	1.1 UJ

Notes:

Only data for detected parameters are shown

Indicates concentration exceeds Unrestricted Use SCO.

Indicates concentration exceeds Unrestricted Commercial SCO.

Indicates concentration exceeds Industrial Use SCO.

NS No standard or guidance value available.
U Indicates compound was not detected.

J Indicates an estimated concentration. ug/kg Micrograms per kilogram

TABLE 4 TONAWANDA PLASTICS SOIL SAMPLE ANALYTICAL RESULTS (detections only)

						ation ID	B-7	B-8	B-9	B-9
					B-7-11112020-1.7-2.2		B-9-11112020-0.5-1.0	B-9-11112020-2.0-2.5		
				epth (ft)	1.7-2.2	1.4-2.4	0.5-1	2-2.5		
					Area	CENTER AREA	CENTER AREA	CENTER AREA	CENTER AREA	
					Samı	ole Date	11/11/2020	11/11/2020	11/11/2020	11/11/2020
	1				-	Matrix	SOIL	SOIL	SOIL	SOIL
			UNRESTRICTED	COMMERCIAL	INDUSTRIAL					
Method	CAS_RN	Chemical Name	USE SCO	SCO	SCO	Unit				
	67-64-1	Acetone	50	500000	1000000	ug/kg	9.6 J	25 U	12000 U	12000 U
SW8260	71-43-2	Benzene	60	44000	89000	ug/kg	2 J	5 U	17000	66000
SW8260	100-41-4	Ethylbenzene	1000	390000	780000	ug/kg	4.1 U	5 U	17000	1500 J
SW8260		Styrene	NS	NS	NS	ug/kg	4.1 U	5 U	2400 U	2400 U
SW8260	108-88-3	Toluene	700	500000	1000000	ug/kg	4.1 U	5 U	14000	83000
SW8260	1330-20-7	Total Xylenes	260	500000	1000000	ug/kg	8.3 U	10 U	120000	9200
SW8270	83-32-9	Acenaphthene	20000	500000	1000000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	208-96-8	Acenaphthylene	100000	500000	1000000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	120-12-7	Anthracene	100000	500000	1000000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	56-55-3	Benzo(A)Anthracene	1000	5600	11000	ug/kg	200 U	190 U	120 J	190 U
SW8270	50-32-8	Benzo(A)Pyrene	1000	1000	1100	ug/kg	200 U	190 U	1100 U	190 U
SW8270	205-99-2	Benzo(B)Fluoranthene	1000	5600	11000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	191-24-2	Benzo(G,H,I)perylene	100000	500000	1000000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	207-08-9	Benzo(K)Fluoranthene	800	56000	110000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	218-01-9	Chrysene	1000	56000	110000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	53-70-3	Dibenzo(a,h)Anthracene	330	560	1100	ug/kg	200 U	190 U	1100 U	190 U
SW8270	206-44-0	Fluoranthene	100000	500000	1000000	ug/kg	200 U	190 U	170 J	190 U
SW8270	86-73-7	Fluorene	30000	500000	1000000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	500	5600	11000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	91-20-3	Naphthalene	12000	500000	1000000	ug/kg	200 U	190 U	8700	600
SW8270	85-01-8	Phenanthrene	100000	500000	1000000	ug/kg	200 U	190 U	1100 U	190 U
SW8270	129-00-0	Pyrene	100000	500000	1000000	ug/kg	200 U	190 U	1100 U	190 U
SW6010	7440-47-3	Chromium	30	1500	6800	mg/kg	23.7	22.8	20.3	22
SW9012	57-12-5	Cyanide, Total	27	27	10000	mg/kg	1.1 U	1.1 U	0.69 J	0.99 U

Notes:

Only data for detected parameters are shown

Indicates concentration exceeds Unrestricted Use SCO.

Indicates concentration exceeds Unrestricted Commercial SCO.

Indicates concentration exceeds Industrial Use SCO.

NS No standard or guidance value available.
U Indicates compound was not detected.
J Indicates an estimated concentration.

ug/kg Micrograms per kilogram

TABLE 4 TONAWANDA PLASTICS SOIL SAMPLE ANALYTICAL RESULTS (detections only)

					1	- ti TD	B-9	D 12	B-14	D 14
						ation ID		B-12	= = :	B-14
				mpie ID epth (ft)			B-14-11102020-0.3-0.8			
				9.5-10	1-1.5	0.3-0.8	4.5-5			
				CENTER AREA	EAST AREA	EAST AREA	EAST AREA			
					Sam	ple Date	11/11/2020	11/10/2020	11/10/2020	11/10/2020
		T	UNRESTRICTED	COMMERCIAL	INDUCTOIAL	Matrix	SOIL	SOIL	SOIL	SOIL
Mathaal	CAC DAI	Chamical Name			INDUSTRIAL	1.1				
Method	CAS_RN	Chemical Name	USE SCO	SCO	SCO	Unit	12000 11	24.11	E4000 II	250 11
		Acetone	50	500000	1000000	ug/kg	13000 U	21 U	51000 U	250 U
	71-43-2	Benzene	60	44000	89000	ug/kg	86000	4.2 U	8700 J	49 U
SW8260	100-41-4	Ethylbenzene	1000	390000	780000	ug/kg	1300 J	4.2 U	7100 J	49 U
SW8260	100-42-5	Styrene	NS	NS	NS	ug/kg	2500 U	4.2 U	10000 U	49 U
SW8260	108-88-3	Toluene	700	500000	1000000	ug/kg	54000	4.2 U	19000	49 U
	1330-20-7	Total Xylenes	260	500000	1000000	ug/kg	8100	8.4 U	37000	98 U
	83-32-9	Acenaphthene	20000	500000	1000000	ug/kg	200 U	210 U	790000	710 J
	208-96-8	Acenaphthylene	100000	500000	1000000	ug/kg	200 U	35 J	820000	590 J
	120-12-7	Anthracene	100000	500000	1000000	ug/kg	200 U	210 U	1500000	1100
	56-55-3	Benzo(A)Anthracene	1000	5600	11000	ug/kg	31 J	210 U	2000000	1600
	50-32-8	Benzo(A)Pyrene	1000	1000	1100	ug/kg	34 J	210 U	2000000	1700
	205-99-2	Benzo(B)Fluoranthene	1000	5600	11000	ug/kg	46 J	210 U	1700000	1300
	191-24-2	Benzo(G,H,I)perylene	100000	500000	1000000	ug/kg	200 U	210 U	930000	820 J
	207-08-9	Benzo(K)Fluoranthene	800	56000	110000	ug/kg	26 J	210 U	780000	600 J
	218-01-9	Chrysene	1000	56000	110000	ug/kg	200 U	210 U	2100000	1800
	53-70-3	Dibenzo(a,h)Anthracene	330	560	1100	ug/kg	200 U	210 U	300000	230 J
	206-44-0	Fluoranthene	100000	500000	1000000	ug/kg	46 J	210 U	4300000	3400
	86-73-7	Fluorene	30000	500000	1000000	ug/kg	200 U	26 J	2700000	2300
	193-39-5	Indeno(1,2,3-Cd)Pyrene	500	5600	11000	ug/kg	200 U	210 U	850000	610 J
	91-20-3	Naphthalene	12000	500000	1000000	ug/kg	950	1000	8800000	4900
	85-01-8	Phenanthrene	100000	500000	1000000	ug/kg	200 U	210 U	9100000	8500
	129-00-0	Pyrene	100000	500000	1000000	ug/kg	32 J	210 U	4200000	4200
	7440-47-3	Chromium	30	1500	6800	mg/kg	23.7	28.8	11.4	14.7
SW9012	57-12-5	Cyanide, Total	27	27	10000	mg/kg	1.1 U	1.2 UJ	1.2 UJ	1.1 UJ

Notes:

Only data for detected parameters are shown

Indicates concentration exceeds Unrestricted Use SCO.

Indicates concentration exceeds Unrestricted Commercial SCO.

Indicates concentration exceeds Industrial Use SCO.

NS No standard or guidance value available.
U Indicates compound was not detected.
J Indicates an estimated concentration.

ug/kg Micrograms per kilogram

TABLE 4 TONAWANDA PLASTICS SOIL SAMPLE ANALYTICAL RESULTS (detections only)

							= 1=	5.12		
						ation ID	B-15	B-16	B-16	B-17
									B-16-11102020-2.5-3.0	
					Sample De		1.3-1.8	0.9-1.4	2.5-3	0.7-1.2
						Area	EAST AREA	EAST AREA	EAST AREA	EAST AREA
					Samı	ple Date	11/10/2020	11/10/2020	11/10/2020	11/10/2020
	T					Matrix	SOIL	SOIL	SOIL	SOIL
			UNRESTRICTED	COMMERCIAL	INDUSTRIAL					
Method	CAS_RN	Chemical Name	USE SCO	SCO	SCO	Unit				
	67-64-1	Acetone	50	500000	1000000	ug/kg	26	29000 U	1200 U	21 J
	71-43-2	Benzene	60	44000	89000	ug/kg	4.5 U	17000	230 U	4.6 U
SW8260	100-41-4	Ethylbenzene	1000	390000	780000	ug/kg	4.5 U	15000	230 U	4.6 U
SW8260	100-42-5	Styrene	NS	NS	NS	ug/kg	4.5 U	30000	230 U	4.6 U
SW8260	108-88-3	Toluene	700	500000	1000000	ug/kg	4.5 U	36000	230 U	0.62 J
SW8260	1330-20-7	Total Xylenes	260	500000	1000000	ug/kg	9 U	140000	460 U	9.1 U
	83-32-9	Acenaphthene	20000	500000	1000000	ug/kg	200 U	670000	31 J	200 U
	208-96-8	Acenaphthylene	100000	500000	1000000	ug/kg	200 U	2100000	90 J	28 J
SW8270	120-12-7	Anthracene	100000	500000	1000000	ug/kg	200 U	14000000	310	200 U
SW8270	56-55-3	Benzo(A)Anthracene	1000	5600	11000	ug/kg	200 U	2100000	76 J	44 J
	50-32-8	Benzo(A)Pyrene	1000	1000	1100	ug/kg	200 U	1800000	85 J	62 J
SW8270	205-99-2	Benzo(B)Fluoranthene	1000	5600	11000	ug/kg	200 U	1800000	110 J	69 J
SW8270	191-24-2	Benzo(G,H,I)perylene	100000	500000	1000000	ug/kg	200 U	890000	47 J	38 J
SW8270	207-08-9	Benzo(K)Fluoranthene	800	56000	110000	ug/kg	200 U	970000	39 J	28 J
SW8270	218-01-9	Chrysene	1000	56000	110000	ug/kg	200 U	2000000	87 J	200 U
SW8270	53-70-3	Dibenzo(a,h)Anthracene	330	560	1100	ug/kg	200 U	310000	210 U	200 U
SW8270	206-44-0	Fluoranthene	100000	500000	1000000	ug/kg	55 J	6100000	200 J	80 J
SW8270	86-73-7	Fluorene	30000	500000	1000000	ug/kg	200 U	4400000	85 J	200 U
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	500	5600	11000	ug/kg	200 U	900000	46 J	34 J
SW8270	91-20-3	Naphthalene	12000	500000	1000000	ug/kg	60 J	10000000	1900	77 J
SW8270	85-01-8	Phenanthrene	100000	500000	1000000	ug/kg	35 J	11000000	230	200 U
SW8270	129-00-0	Pyrene	100000	500000	1000000	ug/kg	27 J	4100000	150 J	57 J
SW6010	7440-47-3	Chromium	30	1500	6800	mg/kg	21.3	17.7	22.8	23
SW9012	57-12-5	Cyanide, Total	27	27	10000	mg/kg	1 UJ	1 UJ	1.1 UJ	1.1 UJ

Notes:

Only data for detected parameters are shown

Indicates concentration exceeds Unrestricted Use SCO.

Indicates concentration exceeds Unrestricted Commercial SCO.

Indicates concentration exceeds Industrial Use SCO.

NS No standard or guidance value available.
U Indicates compound was not detected.
J Indicates an estimated concentration.

ug/kg Micrograms per kilogram

TABLE 4 TONAWANDA PLASTICS SOIL SAMPLE ANALYTICAL RESULTS (detections only)

_						1		5.40		
						ation ID	B-17	B-18	B-18	B-19
									B-18-11092020-4.5-5.0	
					Sample De	. ,	1.5-2	0.9-1.4	4.5-5	4.5-5
						Area	EAST AREA	EAST AREA	EAST AREA	EAST AREA
					Samı	ole Date	11/10/2020	11/9/2020	11/9/2020	11/9/2020
						Matrix	SOIL	SOIL	SOIL	SOIL
			UNRESTRICTED	COMMERCIAL	INDUSTRIAL					
Method	CAS_RN	Chemical Name	USE SCO	SCO	SCO	Unit				
	67-64-1	Acetone	50	500000	1000000	ug/kg	41	22000 U	22 U	22 U
SW8260	71-43-2	Benzene	60	44000	89000	ug/kg	4.2 U	27000	4.4 U	4.4 U
SW8260	100-41-4	Ethylbenzene	1000	390000	780000	ug/kg	4.2 U	4400 U	4.4 U	4.4 U
SW8260	100-42-5	Styrene	NS	NS	NS	ug/kg	4.2 U	3300 J	4.4 U	4.4 U
SW8260	108-88-3	Toluene	700	500000	1000000	ug/kg	4.2 U	19000	4.4 U	4.4 U
SW8260	1330-20-7	Total Xylenes	260	500000	1000000	ug/kg	8.4 U	23000	8.7 U	8.7 U
SW8270	83-32-9	Acenaphthene	20000	500000	1000000	ug/kg	200 U	450000	74 J	190 U
SW8270	208-96-8	Acenaphthylene	100000	500000	1000000	ug/kg	200 U	3200000	150 J	190 U
SW8270	120-12-7	Anthracene	100000	500000	1000000	ug/kg	200 U	3100000	380	190 U
SW8270	56-55-3	Benzo(A)Anthracene	1000	5600	11000	ug/kg	200 U	3000000	380	190 U
SW8270	50-32-8	Benzo(A)Pyrene	1000	1000	1100	ug/kg	200 U	2800000	340	190 U
SW8270	205-99-2	Benzo(B)Fluoranthene	1000	5600	11000	ug/kg	200 U	2900000	350	190 U
SW8270	191-24-2	Benzo(G,H,I)perylene	100000	500000	1000000	ug/kg	200 U	1600000	180 J	190 U
SW8270	207-08-9	Benzo(K)Fluoranthene	800	56000	110000	ug/kg	200 U	1300000	210	190 U
SW8270	218-01-9	Chrysene	1000	56000	110000	ug/kg	200 U	2300000	330	190 U
SW8270	53-70-3	Dibenzo(a,h)Anthracene	330	560	1100	ug/kg	200 U	380000	44 J	190 U
SW8270	206-44-0	Fluoranthene	100000	500000	1000000	ug/kg	200 U	8700000	1200	190 U
SW8270	86-73-7	Fluorene	30000	500000	1000000	ug/kg	200 U	3900000	300	190 U
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	500	5600	11000	ug/kg	200 U	1500000	170 J	190 U
SW8270	91-20-3	Naphthalene	12000	500000	1000000	ug/kg	38 J	9100000	840	130 J
SW8270	85-01-8	Phenanthrene	100000	500000	1000000	ug/kg	200 U	10000000	1100	190 U
SW8270	129-00-0	Pyrene	100000	500000	1000000	ug/kg	200 U	5600000	760	190 U
SW6010	7440-47-3	Chromium	30	1500	6800	mg/kg	21.3	3	26.5	21.5
SW9012	57-12-5	Cyanide, Total	27	27	10000	mg/kg	1.2 UJ	26.8	1.1 U	1.1 U

Notes:

Only data for detected parameters are shown

Indicates concentration exceeds Unrestricted Use SCO.

Indicates concentration exceeds Unrestricted Commercial SCO.

Indicates concentration exceeds Industrial Use SCO.

NS No standard or guidance value available.
U Indicates compound was not detected.
J Indicates an estimated concentration.

ug/kg Micrograms per kilogram

TABLE 4 TONAWANDA PLASTICS SOIL SAMPLE ANALYTICAL RESULTS (detections only)

					Loc	ation ID	B-20	B-29	B-30	B-30
								-		B-30-11102020-3.5-4.0
					Sample De		6.1-6.6	1.8-2.3	0.5-1	3.5-4
					oupio D	Area	EAST AREA	EAST AREA	EAST AREA	EAST AREA
					Sami	ple Date	11/9/2020	11/10/2020	11/10/2020	11/10/2020
					Sam	Matrix	SOIL	SOIL	SOIL	SOIL
			UNRESTRICTED	COMMERCIAL	INDUSTRIAL			5512	3012	3012
Method	CAS_RN	Chemical Name	USE SCO	SCO	SCO	Unit				
SW8260	67-64-1	Acetone	50	500000	1000000	ug/kg	6.1 J	27 U	68000 U	21 J
SW8260	71-43-2	Benzene	60	44000	89000	ug/kg	4.7 U	5.3 U	29000	4.8 U
SW8260	100-41-4	Ethylbenzene	1000	390000	780000	ug/kg	4.7 U	5.3 U	14000 U	4.8 U
SW8260	100-42-5	Styrene	NS	NS	NS	ug/kg	4.7 U	5.3 U	15000	4.8 U
SW8260	108-88-3	Toluene	700	500000	1000000	ug/kg	4.7 U	5.3 U	19000	4.8 U
SW8260	1330-20-7	Total Xylenes	260	500000	1000000	ug/kg	9.5 U	11 U	28000	9.7 U
SW8270	83-32-9	Acenaphthene	20000	500000	1000000	ug/kg	230 U	220 U	410000	190 U
SW8270	208-96-8	Acenaphthylene	100000	500000	1000000	ug/kg	33 J	40 J	3300000	120 J
	120-12-7	Anthracene	100000	500000	1000000	ug/kg	230 U	220 U	4200000	190 U
SW8270	56-55-3	Benzo(A)Anthracene	1000	5600	11000	ug/kg	180 J	100 J	3100000	190 U
	50-32-8	Benzo(A)Pyrene	1000	1000	1100	ug/kg	200 J	140 J	2800000	190 U
SW8270	205-99-2	Benzo(B)Fluoranthene	1000	5600	11000	ug/kg	190 J	180 J	3200000	190 U
SW8270	191-24-2	Benzo(G,H,I)perylene	100000	500000	1000000	ug/kg	130 J	75 J	1500000	190 U
	207-08-9	Benzo(K)Fluoranthene	800	56000	110000	ug/kg	120 J	55 J	1200000	190 U
	218-01-9	Chrysene	1000	56000	110000	ug/kg	180 J	96 J	3000000	190 U
	53-70-3	Dibenzo(a,h)Anthracene	330	560	1100	ug/kg	40 J	220 U	460000	190 U
	206-44-0	Fluoranthene	100000	500000	1000000	ug/kg	390	230	9400000	20 J
	86-73-7	Fluorene	30000	500000	1000000	ug/kg	230 U	220 U	3900000	83 J
	193-39-5	Indeno(1,2,3-Cd)Pyrene	500	5600	11000	ug/kg	120 J	74 J	1400000	190 U
	91-20-3	Naphthalene	12000	500000	1000000	ug/kg	44 J	440	11000000	3600
	85-01-8	Phenanthrene	100000	500000	1000000	ug/kg	200 J	54 J	13000000	74 J
SW8270	129-00-0	Pyrene	100000	500000	1000000	ug/kg	290	160 J	5900000	190 U
	7440-47-3	Chromium	30	1500	6800	mg/kg	28.6	37.6	8.4	23.3
SW9012	57-12-5	Cyanide, Total	27	27	10000	mg/kg	1.1 U	1.3 UJ	3.7 J-	1.1 UJ

Notes:

Only data for detected parameters are shown

Indicates concentration exceeds Unrestricted Use SCO.

Indicates concentration exceeds Unrestricted Commercial SCO.

Indicates concentration exceeds Industrial Use SCO.

NS No standard or guidance value available.
U Indicates compound was not detected.
J Indicates an estimated concentration.

ug/kg Micrograms per kilogram

TABLE 5 TONAWNADA PLASTICS GROUNDWATER ANALYTICAL RESULTS

			T	
			Location ID	MW-14
			Field Sample ID	MW-14_12102020
			Sampled	2020-12-10
			SDG	480-179236-1
			Medium	Water
			Matrix	GW
			NYSDEC Class	
Parameter Code	Parameter Name	Units	GA GW	
VOLATILE ORG	ANIC COMPOUNDS			
71-55-6	1,1,1-Trichloroethane	ug/l	5	1 U
79-34-5	1,1,2,2-Tetrachloroethane	ug/l	5	1 U
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	5	1 U
79-00-5	1,1,2-Trichloroethane	ug/l	1	1 U
75-34-3	1,1-Dichloroethane	ug/l	5	1 U
75-35-4	1,1-Dichloroethene	ug/l	5	1 U
120-82-1	1,2,4-Trichlorobenzene	ug/l	5	1 U
96-12-8	1,2-Dibromo-3-Chloropropane	ug/l	0.04	1 U
106-93-4	1,2-Dibromoethane	ug/l	0.0006	1 U
95-50-1	1,2-Dichlorobenzene	ug/l	3	1 U
107-06-2	1,2-Dichloroethane	ug/l	0.6	1 U
78-87-5	1,2-Dichloropropane	ug/l	1	1 U
541-73-1	1,3-Dichlorobenzene	ug/l	3	1 U
106-46-7	1,4-Dichlorobenzene	ug/l	3	1 U
78-93-3	2-Butanone	ug/l	50	10 U
591-78-6	2-Hexanone	ug/l	50	5 U
	4-Methyl-2-Pentanone		50	5 U
108-10-1 67-64-1	,	ug/l	50	10 U
	Acetone	ug/l		
71-43-2	Benzene	ug/l	1	1 U
75-27-4	Bromodichloromethane	ug/l	50	1 U
75-25-2	Bromoform	ug/l	50	1 U
74-83-9	Bromomethane	ug/l	5	1 U
75-15-0	Carbon Disulfide	ug/l	60	1 U
56-23-5	Carbon Tetrachloride	ug/l	5	1 U
108-90-7	Chlorobenzene	ug/l	5	1 U
75-00-3	Chloroethane	ug/l	5	1 U
67-66-3	Chloroform	ug/l	7	1 U
74-87-3	Chloromethane	ug/l	5	1 U
156-59-2	cis-1,2-Dichloroethene	ug/l	5	1 U
10061-01-5	cis-1,3-Dichloropropene	ug/l	0.4	1 U
110-82-7	Cyclohexane	ug/l		1 U
124-48-1	Dibromochloromethane	ug/l	50	1 U
75-71-8	Dichlorodifluoromethane	ug/l	5	1 U
100-41-4	Ethylbenzene	ug/l	5	1 U
98-82-8	Isopropylbenzene	ug/l	5	1 U
79-20-9	Methyl Acetate	ug/l		2.5 U
1634-04-4	Methyl Tert-Butyl Ether	ug/l	10	1 U
108-87-2	Methylcyclohexane	ug/l		1 U
75-09-2	Methylene Chloride	ug/l	5	1 U
100-42-5	Styrene	ug/l	5	1 U
127-18-4	Tetrachloroethene	ug/l	5	1 U
108-88-3	Toluene	ug/l	5	1 U
1330-20-7	Total Xylenes	ug/l	5	2 U
156-60-5	trans-1,2-Dichloroethene	ug/l	5	1 U
10061-02-6	trans-1,3-Dichloropropene	ug/l	0.4	1 U
79-01-6	Trichloroethene	ug/l	5	1 U
75-69-4	Trichlorofluoromethane	ug/l	5	1 U
75-01-4	Vinyl Chloride	ug/l	2	1 U

TABLE 5 TONAWNADA PLASTICS GROUNDWATER ANALYTICAL RESULTS

			MW-14
		Field Sample ID	MW-14_12102020
		Sampled	2020-12-10
		SDG	480-179236-1
		Medium	Water
		Matrix	GW
		NYSDEC Class	
Parameter Name	Units	GA GW	
ORGANIC COMPOUNDS (PAHs)			
Acenaphthene	ug/l	20	5 U
Acenaphthylene	ug/l		5 U
Anthracene	ug/l	50	5 U
Benzo(A)Anthracene	ug/l	0.002	5 U
Benzo(A)Pyrene	ug/l	ND	5 U
Benzo(B)Fluoranthene	ug/l	0.002	5 U
Benzo(G,H,I)perylene	ug/l		5 U
Benzo(K)Fluoranthene	ug/l	0.002	5 U
Chrysene	ug/l	0.002	5 U
Dibenzo(a,h)Anthracene	ug/l		5 U
Fluoranthene	ug/l	50	5 U
Fluorene	ug/l	50	5 U
Indeno(1,2,3-Cd)Pyrene	ug/l	0.002	5 U
Naphthalene	ug/l	10	5 U
Phenanthrene	ug/l	50	5 U
Pyrene	ug/l	50	5 U
Chromium	mg/L	0.05	0.0094
Cyanide, Total	mg/L	0.2	0.01 UJ
	Chromium	Chromium Acenaphthene ug/l Acenaphthylene ug/l Acenaphthylene ug/l Benzo(A)Anthracene ug/l Benzo(A)Pyrene ug/l Benzo(B)Fluoranthene ug/l Benzo(G,H,I)perylene ug/l Benzo(K)Fluoranthene ug/l Benzo(K)Fluoranthene ug/l Dibenzo(a,h)Anthracene ug/l Fluoranthene ug/l Chromium mg/L	Sampled SDG Medium Matrix

Notes:

(1)

	Indicates concentration exceeds standard or guidance value.
U	Indicates compound was not detected.
J	Indicates an estimated concentration.
mg/L	Miligrams per liter

Taken from NYSDEC TOGs 1.1.1

APPENDICES

Appendix A Soil Boring Logs

Contractor:		Cascade			_		DRILLING	RECORD	١	BORING/ WELL NO. MW-1	Sheet 1 of 1
Driller:		Todd Grossman, Lu			_				<u>L</u>	ocation Description:	
Inspector:		Tayler Schweigel, I	Dan Chamberlar	nd	_	PROJECT NAME:	Tonawanda Plastics			Northing:	1086188.42
Rig Type:		Geoprobe			_	PROJECT NUMBER:	451224.01102			Easting:	1055422.11
	GROUNDWATER OBSERVATIONS (ft AMSL)								Ground Surface Elevation (ft	AMSL): 595.4	
Water	GROUN	IDWATER OBSERVAT	IONS (IT AMSL)	1		- washen	: Warm, clear, calm		<u> </u>	ocation Plan	
	DRY	592.04				Weather	. warm, clear, cam			-0	MW-118
	12/10/2020	1/11/2021				Date/Time Start	: 11/17/2020	8:25			♥
Time		-,,									3 . 9
Top of Riser	-	98.73				Date/Time Finish	: 11/17/2020	8:35		The same	B-10 F
Elevation	5	98.73								er.	
Sample		ample	SPT	%	PID		FIELD IDENTIFICAT	ION OF MATERIAL		SCHEMATIC	COMMENTS
Depth (feet)		I.D.		Rec.	(ppm)						
0		NA	NA		0.0	Wet to moist soft brown to black SILT,	come fine SAND come fine o	coarse GRAVEL GM			
0.1		NA	NA		0.0	wet to moist soft brown to black Sici,	some fine SAND, some fine-c	.oaise GRAVEL. GIVI.			
0.1			NA		0.0						
3.5		NA	NA	70	0.0	Damp red brown med stiff CLAY, little	fine-coarse GRAVEL. CL.				
3.5					0.0						
		NA	NA			No Recovery.					
5.0			NA		0.0						
5.0		NA	NA		0.0	Damp red brown medium stiff CLAY, li	ttle fine-coarse GRAVEL. CL.				
9.5			NA	95	0.0	,					
9.5			NA	33		No Bossess		·			
10.0		NA	NA			No Recovery.					
1				l	I	COMMENTS:					
	SAMPLING METHOD										
	SS = SPLIT SPOON										
ĺ	A = AUGER CUTTINGS										
	GP = GEOPROBE - DIRE	CT PUSH									

PARSONS

SAMPLING METHOD

SS = SPLIT SPOON

A = AUGER CUTTINGS

GP = GEOPROBE - DIRECT PUSH

								BORING/	Sheet 1 of 1
Contractor:	Cascade					DRILLING I	RECORD	WELL NO. B-1	
Driller:	Todd Grossman, Luke	e Taylor		_			Location Description:		
Inspector:	Tayler Schweigel, Dar	n Chamberland		-	PROJECT NAME:	Tonawanda Plastics		Northing:	1086235.93
Rig Type:	Geoprobe			-	PROJECT NUMBER:	451224.01102		Easting:	1055200.77
				-				Ground Surface Elevation (fi	: AMSL): 593.6
	GROUNDWATER OBSERVATIONS (ft AMSL)							Location Plan	R.3
Water					Weather	Warm, clear, calm		D4	B-2
Level								6-1	R-5
Date					Date/Time Start	11/11/2020	11:05		B-6
Time								B	<u>-4</u>
TOC Elevation					Date/Time Finish	11/11/2020	11:15		<mark>- B</mark> -7
								- Bar	C. C
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION	ON OF MATERIAL	SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)					
0	NA	NA		0.0	Moist medium stiff to soft red brown CLA		T		
0.7	NA	NA		0.0	Woist medium stiff to soft red brown CD	r, some medium-coarse GRAV	EL, Some SIL1. GC.		
0.7		NA.	1	0.0					
_	NA				Moist medium stiff red brown and black	CLAY, some SILT, little fine SAN	D, little fine-coarse GRAVEL. GC.		
1.0		NA	100	0.0					
1.0	NA	NA		0.0	Damp medium dense tan to red to black	fino coarco GPAVEL (angular) e	ome fine coarse SAND, GW		
1.4	NA	NA		0.0	Damp medium dense tan to red to black	ine-coarse GNAVEL (angular) s	one me-coase sand. Gw.		
1.4		NA		0.0					
5.0	B-1_11112020_1.5-2.0			0.0	Damp medium stiff red brown CLAY, littl	medium-coarse GRAVEL. CL.			
5.0		NA		0.0					
					1			<u> </u>	
					COMMENTS:				
	SAMPLING METHOD								
	SS = SPLIT SPOON								
	HA = HAND AUGER								
	GP = GEOPROBE - DIRECT PUSH								

Contractor:	Cascade			_		DRILLING RECORD	BORING/ WELL NO. B-2	Sheet 1 of 1
Driller:	Todd Grossman, Luke			_			Location Description:	
Inspector:	Tayler Schweigel, Dan	Chamberland		_	PROJECT NAME:	Tonawanda Plastics	Northing:	1086250.70
Rig Type:	Geoprobe			_	PROJECT NUMBER: 4:	451224.01102	Easting:	1055250.70
							Ground Surface Elevation (ft	AMSL): 594.9
	GROUNDWATER OBSERVATIO	NS (ft AMSL)					Location Plan	B-3
Water					Weather	: Warm, clear, calm	D4	B-2
Level								B-5 ///
Date					Date/Time Start	: 11/11/2020 12:50		B-6
Time							B-4	190
TOC Elevation					Date/Time Finish	: 11/11/2020 12:55		B - 7
							2 63660	CV
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)				
0	NA	NA		0.0	Moist medium stiff to soft brown and red	SILT and CLAY, little fine-medium GRAVEL. SC.		
2.0	IVA	NA		0.0	Worst medium still to sort brown and red	SIET and CEAT, inthe fine-medium divaves. Sc.		
2.0		NA		0.0				
	NA		94		Damp soft to medium stiff red brown CLA	Y, little fine-coarse GRAVEL, trace fine-coarse SAND. CL.		
4.7		NA		0.0				
4.7	NA	NA			No Recovery.			
5.0	IVA	NA			No Recovery.			
					İ			
		1		1	COMMENTS:		<u> </u>	
	SAMPLING METHOD							
	SS = SPLIT SPOON				-			-
	A = AUGER CUTTINGS				-			
	GP = GEOPROBE - DIRECT PUSH							

								BORING/	Sheet 1 of 1
Contractor:	Cascade					DRILLING RECORD		WELL NO. B-3	
Driller:	Todd Grossman, Luke	Taylor		_				Location Description:	
Inspector:	Tayler Schweigel, Dan	Chamberland		_	PROJECT NAME:	Tonawanda Plastics		Northing:	1086263.11
Rig Type:	Geoprobe			_	PROJECT NUMBER:	451224.01102		Easting:	1055309.65
	•							Ground Surface Elevation (ft	AMSL): 595.4
	GROUNDWATER OBSERVATIONS (ft AMSL)							Location Plan	B-3
Water					Weather	Warm, clear, calm		R.1	B-2
Level									B-5 W
Date					Date/Time Start	11/11/2020 14:00			B-6
Time								B-4	
TOC Elevation					Date/Time Finish	11/11/2020 14:15		100 m	B-7
								2 5 7 100	The state of the s
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL		SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)					
0	NA	NA		0.0	Wet to moist soft SILT and CLAY, some fi	ne GRAVEL little fine-coarse SAND, GC			
0.5		NA		0.0					
0.5		NA		0.0					
1.1	NA	NA		0.0	Damp medium stiff to stiff red brown CL	Y, some medium-coarse GRAVEL. CL.			
-								1	
1.1	NA	NA	60	0.0	Dry loose gray-green medium-coarse GR	AVEL, some fine-medium SAND. GW.			
1.5		NA		0.0					
1.5		NA		0.0	D	CDAVEL AND COMMON OF			
3.0	NA	NA.		0.0	Damp medium stiff red brown CLAY, trac	e GRAVEL, trace ORGANICS. CL.			
3.0		NA NA						1	
	NA				No Recovery.				
5.0		NA							
					COMMENTS:	_	_		·
I	SAMPLING METHOD								
	SS = SPLIT SPOON								
1	A = AUGER CUTTINGS				-				
I	GP = GEOPROBE - DIRECT PUSH								

							BORING/	Sheet 1 of 1	
Cascade					DRILLING RE	CORD			
Todd Grossman, Luke	Taylor		-				Location Description:		
Tayler Schweigel, Dan	Chamberland		•	PROJECT NAME:	Tonawanda Plastics		Northing:	1086177.54	
Geoprobe			•	PROJECT NUMBER:	451224.01102		Easting:	1055238.02	
			-				Ground Surface Elevation (ft	AMSL): 594.2	
GROUNDWATER OBSERVATIO	NS (ft AMSL)						Location Plan	R.O.	
				Weather	Warm, clear, calm		B4	B-2	
							B-1	B-5	
				Date/Time Start	11/11/2020	11:55		B-6	
							B	4	
				Date/Time Finish	11/11/2020	11:55		B . 7	
								POP LANGE	
Sample	SPT	%	PID		FIELD IDENTIFICATION	OF MATERIAL	SCHEMATIC	COMMENTS	
I.D.		Rec.	(ppm)						
	NA	•	0.0						
NA	NA	U	0.0	Concrete slab.					
	NΔ		0.0						
NA				Dry medium dense gray fine-SAND, some	fine-coarse GRAVEL (concrete s	lab). GW.			
							4		
11112020 0.8-1.3	NA	100			•	e). Crumbles apart.			
	NA		0.0	(possibly old asphaltic base for former ga	s holder)				
	NA		0.0						
11112020_1.5-2.0	NA		0.0	Damp medium stiff to stiff red brown CL	AY, little fine-coarse GRAVEL. CL.				
							1		
			l	COMMENTS:			<u> </u>		
HOD				COMMENTS.					
				•				-	
				•				-	
				•				_	
	Todd Grossman, Luke Tayler Schweigel, Dan Geoprobe GROUNDWATER OBSERVATIO	Todd Grossman, Luke Taylor Tayler Schweigel, Dan Chamberland Geoprobe GROUNDWATER OBSERVATIONS (ft AMSL) Sample 1.D. NA NA NA NA 11112020_0.8-1.3 NA 11112020_1.5-2.0 NA NA NA NA NA NA NA NA NA N	Todd Grossman, Luke Taylor	Todd Grossman, Luke Taylor	Todd Grossman, Luke Taylor Tayler Schweigel, Dan Chamberland Geoprobe GROUNDWATER OBSERVATIONS (ft AMSL) Weather: Date/Time Start: Date/Time Finish: Sample LD. NA NA NA NA NA NA NA NA NA N	Todd Grossman, Luke Taylor Tayler Schweigel, Dan Chamberland Geoprobe GROUNDWATER OBSERVATIONS (ft AMSL) GROUNDWATER OBSERVATIONS (ft AMSL) Weather: Warm, clear, calm Date/Time Start: 11/11/2020 Date/Time Finish: 11/11/2020 Sample SPT % PID (ppm) I.D. Rec. (ppm) NA NA O O.O O.O O.O O.O O.O O.O O.O O.O O.O	Todd Grossman, Luke Taylor Taylor Schweigel, Dan Chamberland Geoprobe PROJECT NAME: Tonawanda Plastics PROJECT NAME: Tonawanda Plastics PROJECT NAME: Tonawanda Plastics PROJECT NAME: Tonawanda Plastics Tonawanda Plas	Cascade	

PARSONS

							BORING/	Sheet 1 of 1	
Contractor:	Cascade					DRILLING RECORD	WELL NO. B-5		
Driller:	Todd Grossman, Luke	Taylor		='			Location Description:		
Inspector:	Tayler Schweigel, Dan	Chamberland		='	PROJECT NAME:	Tonawanda Plastics	Northing:	1086213.07	
Rig Type:	Geoprobe			='	PROJECT NUMBER:	451224.01102	Easting:	1055258.28	
	•			-			Ground Surface Elevation (ft	AMSL): 593.8	
	GROUNDWATER OBSERVATIO	NS (ft AMSL)					Location Plan	B-3	
Water					Weather	: Warm, clear, calm	B-1	B+2	
Level								B-5	
Date					Date/Time Start	: 11/11/2020 13:15	B-6		
Time							B-4		
TOC Elevation					Date/Time Finish	: 11/11/2020 13:20	B=7		
							4 6 × 100 ×	The state of the s	
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS	
Depth (feet)	I.D.		Rec.	(ppm)					
0	NA	NA		0.0	Moist to wat madium dansa brown and a	gray GRAVEL, some fine-coarse SAND, little SILT. SW.			
0.5	NA .	NA		0.0	Worst to wet medium dense brown and g	ray dravel, some inte-coarse salvo, little sier. sw.			
0.5		NA		0.0					
4.5	B-5_11112020_0.6-1.1	NA	90	0.0	Damp stiff red brown CLAY, little fine-co	arse GRAVEL. CL.			
				0.0					
4.5	NA	NA			No Recovery.				
5.0		NA			•				
	_	-	-						
					COMMENTS:				
	SAMPLING METHOD								
	SS = SPLIT SPOON								
,	A = AUGER CUTTINGS								
	GP = GEOPROBE - DIRECT PUSH								

						BORING/ Sheet 1 of 1
Contractor:	Cascade				DRILLING RECORD	WELL NO. B-6
Driller:	Todd Grossman, Luk	e Taylor		_		Location Description:
Inspector:	Tayler Schweigel, Da	n Chamberland		_	PROJECT NAME: Tonawanda Plastics	Northing: 1086201.27
Rig Type:	Geoprobe			_	PROJECT NUMBER: 451224.01102	Easting: 1055301.40
	·					Ground Surface Elevation (ft AMSL): 594.7
	GROUNDWATER OBSERVATI	ONS (ft AMSL)				Location Plan
Water					Weather: Warm, clear, calm	B-1
Level						B-5
Date					Date/Time Start: 11/11/2020 13:50	B-0
Time		_				D-4 D-7
TOC Elevation					Date/Time Finish: 11/11/2020 13:55	
		SPT	%	PID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS
Sample Depth (feet)	Sample I.D.	SPI	% Rec.	(ppm)	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS
	1.5.	+	Nec.			
0	NA	NA		0.0	Moist medium dense black fine-ediumm SAND, some fine-medium GRAVEL, litle SILT. GM.	
0.7		NA		0.0		
0.7	NA	NA		0.0	Moist black SILT and CLAY, some ORGANICS. ML.	
1.9	NA	NA		0.0	MOIST DIACK SILT and CLAT, some ONGAINICS. ML.	
1.9		NA		0.0		
2.0	NA	NA	82	0.0	Dry loose gray coarse GRAVEL. GW.	
						
2.0	NA	NA		0.0	Damp medium stiff to stiff red brown CLAY, trace fine GRAVEL, trace ORGANICS.	
4.1		NA		0.0		
4.1	NA	NA			No Recovery.	
5.0	IVA	NA			no necovery.	
				1	COMMENTS:	
	SAMPLING METHOD					
	SS = SPLIT SPOON					
	A = AUGER CUTTINGS					
	GP = GEOPROBE - DIRECT PUSH					

PARSONS

							BORING/ Sheet 1 of 1
Contractor:	Cascade					DRILLING RECORD	WELL NO. B-7
Driller:	Todd Grossman, Luke	odd Grossman, Luke Taylor				Location Description:	
Inspector:	Tayler Schweigel, Dar	n Chamberland		_	PROJECT NAME:	Tonawanda Plastics	Northing: 1086152.79
Rig Type:	Geoprobe			-	PROJECT NUMBER:	451224.01102	Easting: 1055268.13
	<u></u>			-			Ground Surface Elevation (ft AMSL): 594.6
	GROUNDWATER OBSERVATION	ONS (ft AMSL)					Location Plan
Water					Weather	r: Warm, clear, calm	B-2 B-2
Level							B.6
Date					Date/Time Start	t: 11/11/2020 13:30	B-6
Time							B-4
TOGEL					Date/Time Finish	n: 11/11/2020 13:40	B-7
TOC Elevation							A STATE OF THE PARTY OF THE PAR
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)			
0		NA		0.0			
0.7	NA			0.0	Moist dense to medium dense black fine	e-coarse SAND and fine-medium GRAVEL, little SILT. GW.	
		NA	ł				
0.7	NA	NA		0.0	Moist medium dense to dense black and	gray fine-coarse-GRAVEL, little SILT. GW.	
1.6		NA	86	0.0		,	
1.6		NA	80	0.0			
4.3	B-7_11112020_1.7-2.2	NA		0.0	Damp medium stiff red brown CLAY, littl	le medium-coarse GRAVEL. CL.	
		+	ł	0.0			
4.3	NA	NA			No Recovery.		
5.0		NA					
	·						
		•		•	COMMENTS:		
	SAMPLING METHOD						
	SS = SPLIT SPOON				-		
	A = AUGER CUTTINGS				-		
	GP = GEOPROBE - DIRECT PUSH						
3	SS = SPLIT SPOON A = AUGER CUTTINGS						

						BORING/ Sheet 1 of 1
Contractor:	Cascade				DRILLING RECORD	WELL NO. B-8
Driller:	Todd Grossman, Luke	e Tavlor		_		Location Description:
Inspector:	Tayler Schweigel, Dar			_	PROJECT NAME: Tonawanda Plastics	Northing: 1086239.34
Rig Type:	Geoprobe			_	PROJECT NUMBER: 451224.01102	Easting: 1055418.49
0 //-				_		Ground Surface Elevation (ft AMSL): 595.2
	GROUNDWATER OBSERVATION	ONS (ft AMSL)				Location Plan
Water					Weather: Warm, clear, calm	B-8
Level						MW-68
Date					Date/Time Start: 11/11/2020 14:25	◆
Time						B.9
TOC Elevation					Date/Time Finish: 11/11/2020 14:30	B-10 B-11 B-12
Sample	Sample	SPT	%	PID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)		
0	NA	NA		0.0	Moist soft dark brown SILT, one clast of coarse GRAVEL. ML.	
0.5	NA	NA		0.0	WOIST SOIT DAIK DIOWIT SILT, OHE CLAST OF COATSE GRAVEL. WIL.	
0.5		NA		0.0		
1.6	NA			0.0	Moist soft brown and red SILT, some CLAY. ML.	
		NA				
1.6	NA	NA	92	0.0	Wood.	
1.7		NA	J_	0.0		
1.7		NA		0.0		
4.6	B-8_11112020_1.4-2.4	NA		0.0	Damp stiff red brown CLAY, trace ORGANICS, trace SILT. CL.	
				3.0		
4.6	NA	NA			No Recovery.	
5.0		NA				
		1				
					COMMENTS:	
	SAMPLING METHOD					
	SS = SPLIT SPOON					
	A = AUGER CUTTINGS					
	GP = GEOPROBE - DIRECT PUSH					

PARSON!	15
---------	----

						BORING/ Sheet 1 of 1
Contractor:	Cascade				DRILLING RECORD	WELL NO. B-9
Driller:	Todd Grossman, Luke	Taylor				Location Description:
Inspector:	Tayler Schweigel, Dan	Chamberland		_	PROJECT NAME: Tonawanda Plastics	Northing: 1086149.60
Rig Type:	Geoprobe				PROJECT NUMBER: 451224.01102	Easting: 1055385.85
	`			=' 		Ground Surface Elevation (ft AMSL): 593.4
	GROUNDWATER OBSERVATION	NS (ft AMSL)				Location Plan
Water					Weather: Warm, clear, calm	B-8
Level						MW498
Date					Date/Time Start: 11/11/2020 14:50	
Time						B9 9 @
TOC Elevation					Date/Time Finish: 11/11/2020 15:10	B-10 B-12
Sample	Sample	SPT	%	PID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)		
0	NA	NA		0.0	Wet dense black to brown GRAVEL and SILT, little fine-coarse SAND. GM.	
0.4	IVA	NA		0.0	wet delise black to blown dravite and sith, inche line-toalse salvb. dwi.	
0.4		NA		43.1		
	B-9_11112020_0.5-1.0				Moist stiff brown to black SILT, little CLAY. ML.	
0.9		NA	96	0.0		
0.9	B-9_11112020_2.0-2.5	NA		2000	Damp stiff red brown CLAY, little fine-coarse GRAVEL, trace SILT. Strong odor.	
4.8	B-5_11112020_2.0-2.5	NA		197	Sampsin red Brown cEA1, mae mie course diavez, auec sien strong odor.	
4.8		NA				
5.0	NA	NA			No Recovery.	
-						
5.0	B-9_11112020_9.5-10.0	NA	100	150	Damp stiff red brown CLAY, little fine-coarse GRAVEL, trace SILT. Strong odor.	
10.0		NA		220		
	·					
<u> </u>			1		COMMENTS:	· ·
	SAMPLING METHOD					
	SS = SPLIT SPOON					
	A = AUGER CUTTINGS					
1	GP = GEOPROBE - DIRECT PUSH					

_	

Contractor:	Cascade			-		DRILLING RECORD	WELL NO. B-10	Sheet 1 of 1	
Driller:	Todd Grossman, Luke			_			Location Description:		
Inspector:	Tayler Schweigel, Dan	Chamberland			PROJECT NAME:	Tonawanda Plastics	Northing:	1086109.33	
Rig Type:	Geoprobe			-	PROJECT NUMBER:	451224.01102	Easting:	1055477.50	
							Ground Surface Elevation (ft.	AMSL): 595.9	
	GROUNDWATER OBSERVATION	NS (ft AMSL)					Location Plan		
Water					Weather	: Warm, clear, calm	B-8		
Level							MIW+06		
Date					Date/Time Start	: 11/10/2020 11:10	*		
Time							B-9		
TOC Elevation					Date/Time Finish	:11/10/2020 11:15	B-10 B-11 B-12		
Sample Depth (feet)	Sample I.D.	SPT	% Rec.	PID (ppm)		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS	
0 0.3	NA	NA NA		0.0 0.0	Damp soft brown SILT, some fine-coarse	GRAVEL. GM.			
0.3		NA	100	0.0					
5.0	NA	NA		0.0	Damp to dry stiff to very stiff red brown	CLAY, little fine-coarse GRAVEL. CL.			
		•	•	•	COMMENTS:		•		
	SAMPLING METHOD								
	SS = SPLIT SPOON								
	A = AUGER CUTTINGS								
	GP = GEOPROBE - DIRECT PUSH				-				

PARSONS

								BORING/	Sheet 1 of 1	
Contractor:	Cascade				DRILLING RECORD			WELL NO. B-11	WELL NO. B-11	
Driller:	Todd Grossman, Luke	Taylor		_				Location Description:		
Inspector:	Tayler Schweigel, Dan	Chamberland		_	PROJECT NAME:	Tonawanda Plastics		Northing:	1086099.14	
Rig Type:	Geoprobe			_	PROJECT NUMBER:	451224.01102		Easting:	1055546.08	
	·							Ground Surface Elevation (ft AMSL): 596.4	
	GROUNDWATER OBSERVATION	ONS (ft AMSL)						Location Plan		
Water					Weather	: Warm, clear, calm		B-8	4	
Level								MV	ALE .	
Date					Date/Time Start	:: 11/10/2020	9:10			
Time					·			B:9	B40 B42	
TOC Elevation					Date/Time Finish	: 11/10/2020	9:25		B-11 B-12	
<u> </u>								EDON B. 1		
Sample Depth (feet)	Sample I.D.	SPT	% Rec.	PID (nnm)		FIELD IDENTIFICAT	ION OF MATERIAL	SCHEMATIC	COMMENTS	
	1.D.		nec.	(ppm)					-	
0	NA	NA		0.0	Damp loose dark brown GRAVEL, some f	ine-medium SAND. little SILT.	trace ORGANICS, well-graded, GW.			
0.2		NA		0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,				
0.2		NA		0.0						
0.8	NA	NA		0.0	Wood. Slight odor.					
0.8				0.0						
	NA	NA	92		Moist medium dense dark brown to blac	k fine-coarse SAND, some fine	-coarse GRAVEL, little SILT, well-graded. GM.			
1.5		NA		0.0						
1.5	NA	NA		0.0	Damp medium stiff to stiff red brown CL	AV torre for CDAVEL torre	W.T.			
4.6	NA	NA		0.0	Damp medium stiff to stiff red brown CL	AY, trace fine GRAVEL, trace S	ILI.			
4.6		NA								
	NA				No Recovery.					
5.0		NA								
					COMMENTS:					
	SAMPLING METHOD									
	SS = SPLIT SPOON									
	A = AUGER CUTTINGS									
	GP = GEOPROBE - DIRECT PUSH									

							BORING/ WELL NO B-12	Sheet 1 of 1		
Contractor:	Cascade			_		DRILLING RECORD	***************************************			
Driller:	Todd Grossman, Luke			_			Location Description:			
Inspector:	Tayler Schweigel, Dar	n Chamberland		_	PROJECT NAME:	Tonawanda Plastics	Northing:	1086109.94		
Rig Type:	Geoprobe				PROJECT NUMBER:	451224.01102	Easting:	1055646.15		
	•						Ground Surface Elevation (f	t AMSL): 598.1		
	GROUNDWATER OBSERVATION	ONS (ft AMSL)					Location Plan			
Water					Weather	: Warm, clear, calm	B:8			
Level							MXV-	1 13		
Date					Date/Time Start	: 11/10/2020 9:45	◆			
Time							□ B9	Anna Carrier and C		
TOC Elevation					Date/Time Finish	: 11/10/2020 9:55		B-10 B-11 B-12		
TOC Elevation										
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS		
Depth (feet)	I.D.		Rec.	(ppm)						
0		NA		0.0						
0.4	NA			0.0	Damp medium stiff brown SILT, some fin	e SAND, little ORGANICS, well-graded. CL.				
		NA								
0.4	NA	NA	100	0.0	Damp soft to medium stiff red brown CLA	AY and tan medium SAND, some coarse GRAVEL, well-graded. SM.				
0.9	TWES	NA	100	0.0		the distribution of the product course course and the graded of the				
0.9		NA		0.0						
	B-12_11102020_1.0-1.5				Damp medium stiff to stiff red brown CLA	AY and medium SAND, some coarse GRAVEL, well-graded. ML.				
5.0		NA		0.0						
	·		·		COMMENTS:			·		
	SAMPLING METHOD									
	SS = SPLIT SPOON									
	A = AUGER CUTTINGS						·			
	GP = GEOPROBE - DIRECT PUSH									

Contractor:	Cascade			_		DRILLING RECORD	BORING/ WELL NO. B-13	Sheet 1 of 1
Driller:	Todd Grossman, I						Location Description:	
Inspector:	Tayler Schweigel,	Dan Chamberland		- '	PROJECT NAME:	Tonawanda Plastics	Northing:	1086102.56
Rig Type:	Geoprobe				PROJECT NUMBER:	451224.01102	Easting:	1055793.86
							Ground Surface Elevation (ft A	AMSL): 598.6
	GROUNDWATER OBSERV	ATIONS (ft AMSL)					Location Plan	The state of the s
Water					Weather	: Warm, clear, calm	B-12	B-13
Level							No. of the last of	THE PARTY AND TH
Date					Date/Time Start	: 11/10/2020 10:05	The state of the s	P.40
Time							B-14	B-19
TOC Elevation					Date/Time Finish	: 11/10/2020 10:10	B-14)	East
TOC Lievation							The Party land	Last
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)				
0		NA		0.0	5 6	II - CDAVEL PUL C CAND - II I - I CA		
0.2	NA	NA		0.0	Damp soπ dark brown SILI, little fine-me	edium GRAVEL, little fine-coarse SAND, well-graded. SM.		
0.2			1	0.0				
_	NA	NA	100		Damp medium dense dark brown to blad	k fine-coarse SAND and fine-coarse GRAVEL, well-graded. GW.		
1.2		NA		0.0				
1.2		NA		0.0		AV Pul. Co P CRAVEL L C P CAND		
5.0	NA	NA		0.0	Damp medium stiff to stiff red brown CL	AY, little fine-medium GRAVEL, trace fine-medium SAND.		
	<u> </u>			1	COMMENTS:			
	SAMPLING METHOD				COMMENTS.			
					-			-
	SS = SPLIT SPOON							
	A = AUGER CUTTINGS							
	GP = GEOPROBE - DIRECT PUSH							

								BORING/	Sheet 1 of 1
Contractor:	Cascade					DRILLING RE	CORD	WELL NO. B-14	
Driller:	Todd Grossman, Luke	Taylor						Location Description:	
Inspector:	Tayler Schweigel, Dan	Chamberland			PROJECT NAME:	Tonawanda Plastics		Northing:	1086022.00
Rig Type:	Geoprobe			_	PROJECT NUMBER:	451224.01102		Easting:	1055617.75
								Ground Surface Elevation (ft	AMSL): 597.6
	GROUNDWATER OBSERVATION	ONS (ft AMSL)						Location Plan	The same of the sa
Water					Weath	er: Warm, clear, calm		B=12	B-13
Level									THE RESERVE OF THE PERSON OF T
Date					Date/Time Sta	rt: 11/10/2020	10:25	Project Contract Cont	P.40
Time					_			B-14	B-19
TOC Elevation					Date/Time Finis	h: 11/10/2020	10:35		East
								No. of Street,	
Sample	Sample	SPT	% Rec.	PID		FIELD IDENTIFICATION	I OF MATERIAL	SCHEMATIC	COMMENTS
Depth (feet)	I.D.		кес.	(ppm)					
0	NA	NA		0.0	Damp medium dense brown SILT, little	fine-coarse SAND, MI.			
0.2	190	NA		0.0	Jump mediam dense brown sizi, mene				
0.2		NA		0.0				1	
0.3	NA	NA NA		0.0	Dry coarse GRAVEL (one large clast).				
-								4	
0.3	NA	NA	100	0.0	Damp medium dense black fine-coarse	SAND some fine-coarse GRAVEL.	SP.		
0.4		NA		0.0	·				
0.4		NA		0.9					
0.6	B-14_11102020_0.3-0.8	NA		1.2	Black Fill - black fine-coarse SAND (Bre	ze). Strong odor.			
				-				_	
0.6	B-14_11102020_4.5-5.0	NA		0.5	Damp soft to medium stiff red brown C	LAY, trace fine-medium GRAVEL. C	L.		
5.0		NA		0.0				<u> </u>	
			•	-	COMMENTS:				
	SAMPLING METHOD								
	SS = SPLIT SPOON								
	A = AUGER CUTTINGS								
	GP = GEOPROBE - DIRECT PUSH				·		·	·	

					1		BORING/	Sheet 1 of 1
Contractor:	Cascade					DRILLING RECORD	WELL NO. B-15	
Driller:	Todd Grossman, Luke	Taylor		_			Location Description:	
Inspector:	Tayler Schweigel, Dan			-	PROJECT NAME:	Tonawanda Plastics	Northing:	1085962.18
Rig Type:	Geoprobe			-	PROJECT NUMBER:	451224.01102	Easting:	1055563.34
"				_			Ground Surface Elevation (ft	AMSL): 596
	GROUNDWATER OBSERVATIONS (ft AMSL)						Location Plan	B:15
Water					Weather	r: Warm, clear, calm		■ B-20
Level								
Date					Date/Time Start	t: 11/10/2020 8:40		B-17
Time							Put	A T GARAGE
TOC Elevation					Date/Time Finish	11/10/2020 9:00		
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)				
0		NA		0.0		ittle fine-medium SAND, trace ORGANICS. ML.		
0.5	NA	NA		0.0	Damp mediuim stiff to soft brown SILI, I	ITTIE TINE-MEGIUM SAND, Trace ORGANICS. ML.		
0.5				0.0				
	NA	NA			Damp medium stiff dark brown SILT and	fine-coarse SAND, little fine-medium GRAVEL, well-graded. CL.		
0.8		NA		0.0			_	
0.8	NA	NA		0.0	Moist dense dark brown fine-coarse SAN	ID, some fine-coarse GRAVEL, little SILT, well-graded. GM.		
1.5	194	NA		0.0	Worst dense dark brown mic-course san	some intercourse district, intic sizi, well-graded, divi.		
1.5		NA		0.0				
1.8	B-15_11102020_1.3-1.8	NA	74	0.0	Moist medium dense gray fine-coarse G	RAVEL and fine-coarse SAND, poorly-graded. GP.		
-				-				
1.8	NA	NA		0.0	Moist dense dark brown fine-coarse SAN	ID, some fine to medium GRAVEL, some SILT. GM.		
2.2		NA		0.0				
2.2	NA	NA		0.0	Moist to damp medium stiff red brown (NAV trace fine medium CDAVEL CL		
3.7	IVA	NA		0.0	ivioist to damp medium stiff red brown t	LAT, trace fille-filedium GRAVEL. CL.		
3.7		NA			İ		1	
	NA				No Recovery.			
5.0		NA					-	
					COMMENTS:			
	SAMPLING METHOD							
	SS = SPLIT SPOON							
	A = AUGER CUTTINGS							
	GP = GEOPROBE - DIRECT PUSH							

7	PARSONS

							BORING/	
Contractor:	Cascade					DRILLING RECORD	WELL NO. B-16	Sheet 1 of 1
Driller:	Todd Grossman, Luke	Taylor		_			Location Description:	
Inspector:	Tayler Schweigel, Dan	chweigel, Dan Chamberland		PROJECT NAME:	Tonawanda Plastics	Northing:	1085822.29	
Rig Type:	Geoprobe			_	PROJECT NUMBER:	451224.01102	Easting:	1055494.93
				_			Ground Surface Elevation (ft	AMSL): 596.2
	GROUNDWATER OBSERVATIO	NS (ft AMSL)					Location Plan	0.00
Water					Weather	: Warm, clear, calm	The state of the s	B=00
Level								
Date					Date/Time Start	: 11/10/2020 12:10		B-17
Time								
					Date/Time Finish	: 11/10/2020 12:20		B-16
TOC Elevation							A Sin	THE RESERVE
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)				
0		NA		0.0				
0.4	NA			0.0	Damp medium dense black SILT and fine	-coarse SAND, some fine-coarse GRAVEL. SM.		
		NA	ł					
0.4	B-16_11102020_0.9-1.4	NA	100	75.3	Pliable Tar and black fine-medium SAND	(Breeze),. Strong odor. Pliable Tar/		
1.7	2 10_11101010_013 111	NA		62.7	Fill Mixture.			
1.7		NA		0.6				
5.0	B-16_11102020_2.5-3.0			0.6	Damp medium stiff to stiff red brown CL	AY, little fine-medium GRAVEL. CL.		
5.0		NA		0.6				
					COMMENTS:			
	SAMPLING METHOD							
	SS = SPLIT SPOON							
	A = AUGER CUTTINGS							
	GP = GEOPROBE - DIRECT PUSH							

						BORING/ Sheet 1 of 1
Contractor:	Cascade				DRILLING RECORD	WELL NO. B-17
Driller:	Todd Grossman, Luke	e Taylor		_		Location Description:
Inspector:	Tayler Schweigel, Dan Chamberland		_	PROJECT NAME: Tonawanda Plastics	Northing: 1085868.28	
Rig Type:	Geoprobe			_	PROJECT NUMBER: 451224.01102	Easting: 1055623.47
	•					Ground Surface Elevation (ft AMSL): 595.7
	GROUNDWATER OBSERVATION	ONS (ft AMSL)				Location Plan
Water					Weather: Warm, clear, calm	B ₂₀
Level						
Date					Date/Time Start: 11/10/2020 8:20	B-17
Time						R-16
TOC Elevation					Date/Time Finish: 11/10/2020 8:40	
Sample	Sample	SPT	%	PID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)		
0	N/A	NA		0.0	December of the Control of the Contr	
0.2	NA	NA		0.0	Damp medium stiff brown SILT, little fine-medium SAND, trace ORGANICS, well-graded. ML.	
0.2		NA NA		0.0		
	NA				Dry loose light gray fine-coarse SAND and SILT, some fine-coarse GRAVEL, well-graded. SM. (concrete slab)	
0.7		NA		0.0		
0.7	B-17_11102020_0.7-1.2	NA	88	0.8	Damp to moist soft red brown CLAY and brown to black fine-coarse SAND (breeze), little fine-coarse GRAVEL. SC.	
1.0	b 1/_11102020_0;/ 1:2	NA	"	1.2	, and a second s	
1.0		NA		0.0		
4.4	B-17_11102020_1.5-2.0	NA		0.0	Dry to damp stiff red brown CLAY, little fine-coarse GRAVEL. CL.	
4.4				0.0		
	NA	NA			No Recovery.	
5.0		NA				
5.0	NA	NA	100	0.0	Dry to damp stiff red brown CLAY, little fine-coarse GRAVEL. CL.	
10.0	NA .	NA	100	0.0	bry to damp sun red brown CLAT, intue line-toalse GRAVEL. CL.	
						<u> </u>
		1	<u> </u>	<u> </u>	COMMENTS:	
	SAMPLING METHOD					
	SS = SPLIT SPOON					
	A = AUGER CUTTINGS					
	GP = GEOPROBE - DIRECT PUSH					

						BORING/	Sheet 1 of 1
Contractor:	Cascade				DRILLING RECORD	WELL NO. B-18	1 01 1
Driller:	Todd Grossman, Luke	Taylor		_		Location Description:	
Inspector:	Tayler Schweigel, Dar	Chamberland		_	PROJECT NAME: Tonawanda Plastics	Northing:	1085961.34
Rig Type:	Geoprobe			_	PROJECT NUMBER: 451224.01102	Easting:	1055848.79
	<u></u>			_		Ground Surface Elevation (ft.	AMSL): 599.2
	GROUNDWATER OBSERVATION	ONS (ft AMSL)				Location Plan	All the second
Water					Weather: Warm, clear, calm	B-19	B-21
Level						The state of	
Date					Date/Time Start: 11/9/2020 14:30	D.41	
Time						B-10	No. of the last of
TOC Elevation					Date/Time Finish: 11/9/2020 14:40		
Sample	Sample	SPT	%	PID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)			
0	NA	NA		0.0	Damp red brown CLAY, some SILT. ML.		
0.4	NA .	NA		0.0	Damp red brown CLAT, Some Sich Mc.		
0.4		NA		0.0			
_	NA			0.0	Damp medium dense black fine-coarse SAND and fine-coarse GRAVEL, well-graded. GM.		
0.9		NA					
0.9	B-18_11092020_0.9-1.4	NA	100	35.2	Pliable, shiny Tar, some fine SAND (Breeze").		
1.8	D 10_11032020_0.5 1.4	NA	100	7.4	, ray, same me s mo (see care)		
1.8		NA		1.5			
4.5	NA	NA		0.0	Damp soft medium stiff gray CLAY, little SILT, trace fine SAND. ML.		
4.5		NA NA		0.0			
	B-18_11092020_4.5-5.0				Damp medium stiff to stiff mottled red brown and gray CLAY, little SILT, trace fine GRAVEL. CL.		
5.0		NA		0.0			
					COMMENTS:		
	SAMPLING METHOD						
	SS = SPLIT SPOON					·	
	A = AUGER CUTTINGS					·	
1	GP = GEOPROBE - DIRECT PUSH						·

PARSONS

Contractor:	Cascade			-		DRILLING RECORD	BORING/ WELL NO. B-19	Sheet 1 of 1
Driller:	Todd Grossman, Luke			_			Location Description:	
Inspector:	Tayler Schweigel, Dar	n Chamberland		_	PROJECT NAME:	Tonawanda Plastics	Northing:	1086041.41
Rig Type:	Geoprobe			_	PROJECT NUMBER:	451224.01102	Easting:	1055826.84
							Ground Surface Elevation (ft A	MSL): 598.2
	GROUNDWATER OBSERVATION	ONS (ft AMSL)					Location Plan	1000
Water					Weather	: Warm, clear, calm	B-19	B-21
Level							Marie	
Date					Date/Time Start	: 11/9/2020 15:55	B.40	
Time							B-18	
TOGEL					Date/Time Finish	: 11/9/2020 16:05		
TOC Elevation								
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)				
0		NA		0.0				
0.3	NA	NA		0.0	Moist soft brown SILT, some fine-coarse	GRAVEL, little coarse SAND, trace ORGANICS, well-graded. SM.		
			100					
0.3	B-19_11092020_4.5-5.0	NA		0.0	Damp stiff red brown CLAY, little fine-co	arse GRAVEL, CL.		
5.0	2 15_11052020 0	NA		0.0				
			•		COMMENTS:		<u></u>	
1 ,	SAMPLING METHOD							
	SS = SPLIT SPOON				-			-
	A = AUGER CUTTINGS							
	GP = GEOPROBE - DIRECT PUSH							

PARSON!

						IR	ORING/	Sheet 1 of 1
Contractor:	Cascade				DRILLING RECORD		VELL NO. B-20	Sneet 1 of 1
Driller:	Todd Grossman, Luke	Taylor		_	J. II. L. II. L.		ocation Description:	
Inspector:	Tayler Schweigel, Dan			_	PROJECT NAME: Tonawanda Plastics		Northing:	1085936.61
Rig Type:	Geoprobe			_	PROJECT NUMBER: 451224.01102		Easting:	1055607.71
	ссорговс			-	1312 101102	G	Ground Surface Elevation (ft A	
	GROUNDWATER OBSERVATIONS (ft AMSL)						ocation Plan	8.8
Water		,			Weather: Warm, clear, calm			□ B+20
Level								
Date					Date/Time Start: 11/9/2020 9:20			B:17
Time								
TOC Elevation					Date/Time Finish: 11/9/2020 9:50		B-f	6
Sample	Sample	SPT	%	PID	FIELD IDENTIFICATION OF MATERIAL		SCHEMATIC	COMMENTS
Depth (feet)	I.D.		Rec.	(ppm)				
0		NA		0.0				
0.3	NA			0.0	amp medium stiff brown SILT, little organics, poorly graded. CL.			
-		NA						
0.3	NA	NA		0.0	amp medium dense dark brown to black fine-medium SAND and fine GRAVEL, some medium GRAV	/EL, well-graded. Large gravel clast at		
1.2		NA	62	0.0	ase. GM.			
1.2		NA	62	0.0				
1.7	B-20_11092020_6.1-6.6	NA		0.0	oist dense brown-gray fine-coarse GRAVEL, little fine-coarse SAND, trace SILT, well-graded. Fill. GV	N.		
		NA NA		0.0				
1.7	NA				loist medium dense brown medium-coarse SAND, some fine-coarse GRAVEL, well-graded. SW.			
2.7					••••••••••••••••••••••••••••••••••••••			
2.7								
5.0	NA				o Recovery.			
-		-						
5.0	NA				loist medium dense brown medium-coarse SAND, some fine-coarse GRAVEL, well-graded. SW.			
6.1								
6.1	NA							
10.0					amp medium stiff to very stiff red brown CLAY, trace fine-coarse GRAVEL. CL.			
10.0				+				
					COMMENTS:			
	AMPLING METHOD							
	S = SPLIT SPOON							
	= AUGER CUTTINGS							
G	P = GEOPROBE - DIRECT PUSH							

PARSONS	ì
---------	---

Contractor:	<u>Cascade</u> Todd Grossman, Luke	Tardan		-		DRILLING RECORD	BORING/ WELL NO. B-21		
Driller:	Tayler Schweigel, Dan			-	PROJECT NAME:	Tonawanda Plastics	Location Description: Northing:	1086021.35	
Inspector:	Geoprobe	Chamberiano		-	PROJECT NAME: PROJECT NUMBER:	451224.01102	Easting:	1055997.67	
Rig Type:	Geoprobe			-	PROJECT NOWIBER:	451224.01102	Ground Surface Elevation (ft.		
-	GROUNDWATER OBSERVATIO	NIC /f+ ANACI \					Location Plan	AIVISL). 399.2	
Water	GROUNDWATER OBSERVATIO	NS (IT AIVISE)		1	Wasthar	: Warm, clear, calm	Location Plan B-19		
Level					weather	variii, Clear, Caliii	-	B-21	
Date					Date/Time Start	: 11/9/2020 13:40			
Time					Dute, imie stare	12/3/2020 13:10	B÷	18	
					Date/Time Finish				
TOC Elevation					Date/Time Finish: 11/9/2020 13:50				
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS	
Depth (feet)	I.D.		Rec.	(ppm)					
0		NA		0.0					
1.1	NA	NA		0.0	Damp soft brown SILT, some fine-coarse-	GRAVEL, trace fine-coarse SAND, trace ORGANICS, well-graded. Fill. GM.			
			100						
1.1	NA	NA		0.0	Dry to damp stiff red brown CLAY, trace t	ine-medium GRAVEL. CL.			
2.0		NA		0.0					
					COMMENTS:		-		
	SAMPLING METHOD								
	SS = SPLIT SPOON								
	A = AUGER CUTTINGS								
	GP = GEOPROBE - DIRECT PUSH								

Contractor:	Cascade					DRILLING RECORD	BORING/ WELL NO. B-22	Sheet 1 of 1	
Driller:	Todd Grossman, Luke			_,			Location Description:		
Inspector:	Tayler Schweigel, Dan	Chamberland		_,	PROJECT NAME:	Tonawanda Plastics	Northing:	1086145.79	
Rig Type:	Geoprobe			-	PROJECT NUMBER:	451224.01102	Easting:	1056043.76	
							Ground Surface Elevation (ft	AMSL): 599.7	
	GROUNDWATER OBSERVATION	NS (ft AMSL)					Location Plan	B-22	
Water					Weather	Warm, clear, calm	MW-114 B-23		
Level							*		
Date					Date/Time Start	11/9/2020 13:15		B-30-2	
Time								B30=1*	
TOC Elevation					Date/Time Finish: 11/9/2020 13:30				
Sample Depth (feet)	Sample I.D.	SPT	% Rec.	PID (ppm)		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS	
0	NA	NA		0.0	186-6	fine-coarse-GRAVEL, some fine-coarse-SAND, some SILT, trace ORGANICS, well-graded. GM			
0.9	NA	NA	100	0.0	wet medium dense dark brown to black	ine-coarse-gravet, some fine-coarse-sand, some Sitt, trace Organics, well-graded. Givi			
0.9	NA	NA	100	0.0	Moist soft to medium stiff red brown CL/	V trace SILT trace GRAVEL CI			
1.8	THE STATE OF THE S	NA		0.0		, tide 312.1, tide 3.0.11 22. 32.			
		•	•	•	COMMENTS:		•	•	
	SAMPLING METHOD								
	SS = SPLIT SPOON				•				
	A = AUGER CUTTINGS				•				
	GP = GEOPROBE - DIRECT PUSH								

Contractor:	Cascade					DRILLING RECORD	BORING/ WELL NO. B-23	Sheet 1 of 1		
Driller:	Todd Grossman, Luk	o Taylor		-		DRIELING RECORD	Location Description:			
Inspector:	Tayler Schweigel, Da			-	PROJECT NAME:	Tonawanda Plastics	Northing:	1086120.86		
Rig Type:	Hand Auger	Criamberiana		-	PROJECT NUMBER:	451224.01102	Easting:	1056152.18		
	ridiid ridge.			-	THOSE OF HOMBER	13111 1131131	Ground Surface Elevation (ft .			
	GROUNDWATER OBSERVATI	ONS (ft AMSL)					Location Plan			
Water		1			Weath	er: Warm, clear, calm	MW-14	B=22		
Level							•			
Date					Date/Time Sta	rt: 11/9/2020 14:00	E	B-30-2		
Time								E3051		
TOC Elevation					Date/Time Fini	B-21	B-21			
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS		
Depth (feet)	I.D.		Rec.	(ppm)						
0	NA	NA		0.0	Mat madium dance dark brown and gr	ay SILT, some fine-coarse SAND, little fine-coarse GRAVEL, well-graded. GM.				
0.9	0.9		100	0.0	wet medium dense dark brown and gr	ay Sici, some intercoarse SAND, inthe line-coarse GRAVEL, well-graded. Givi.				
0.9		NA	100	0.0						
1.7	NA	NA		0.0	Damp medium stiff to stiff red-orange	brown CLAY, trace fine-medium SAND. CL.				
				3.0						
		ı	1		COMMENTS:					
	AMPLING METHOD				COMMENTS:					

PARSONS

SS = SPLIT SPOON
A = AUGER CUTTINGS
GP = GEOPROBE - DIRECT PUSH

DARGONE

Contractor:	Cascade			_		DRILLING RECORD	BORING/ WELL NO. B-24	Sheet 1 of 1	
Driller:	Todd Grossman, Luke	Taylor					Location Description:		
Inspector:	Tayler Schweigel, Dan	Chamberland		='	PROJECT NAME:	Tonawanda Plastics	Northing:	1086198.79	
Rig Type:	Hand Auger			='	PROJECT NUMBER:	451224.01102	Easting:	1056124.13	
	·			='			Ground Surface Elevation (fi	: AMSL): 599.6	
	GROUNDWATER OBSERVATION	ONS (ft AMSL)					Location Plan		
Water					Weather	: Warm, clear, calm		B±24	
Level							1		
Date					Date/Time Start	: 11/9/2020 13:00	B-22		
Time							} 📑	B-23	
TOC Elevation					Date/Time Finish: 11/9/2020 13:10				
Sample Depth (feet)	Sample I.D.	SPT	% Rec.	PID (ppm)		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS	
0		NA		0.0					
0.6	NA	NA		0.0	Wet medium dense dark brown to black	fine-coarse-SAND and fine-coarse GRAVEL, some ORGANICS, well-graded. GM.			
			100						
0.6	NA	NA		0.0	Moist medium stiff red brown CLAY, littl	e SILT. CL.			
1.4		NA		0.0	•				
		•	•	•	COMMENTS:		•	•	
I	SAMPLING METHOD								
I	SS = SPLIT SPOON				-				
I	A = AUGER CUTTINGS								
	GP = GEOPROBE - DIRECT PUSH							_	

Contractor:	Cascade			_		DRILLING RECORD	BORING/ WELL NO. B-25	Sheet 1 of 1	
Driller:	Todd Grossman, Luke			-			Location Description:		
Inspector:	Tayler Schweigel, Dan	Chamberland		_,	PROJECT NAME:	Tonawanda Plastics	Northing:	1086188.08	
Rig Type:	Hand Auger			_,	PROJECT NUMBER:	451224.01102	Easting:	1056349.59	
							Ground Surface Elevation (ft	: AMSL): 601.8	
	GROUNDWATER OBSERVATION	NS (ft AMSL)					Location Plan	26	
Water					Weather	: Warm, clear, calm		B-26	
Level								B-25	
Date					Date/Time Start	: 11/9/2020 10:10			
Time					1		D.C.		
TOC Elevation					Date/Time Finish	: 11/9/2020 10:20	B-29		
Sample Depth (feet)	Sample I.D.	SPT	% Rec.	PID (ppm)		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS	
0 1.9	NA	NA NA	100	0.0 0.0	Moist loose dark brown to black medium	-coarse SAND and fine-coarse GRAVEL, well-graded. Fill. GM.			
1.9	NA	NA	100	0.0	Moist soft to medium stiff red and gray (TAY trace fine-medium GRAVEL CL			
3.0	ING.	NA		0.0	inoist soft to inculain still rea and gray t	in in the medium directly of			
		•	•		COMMENTS:		•		
	SAMPLING METHOD								
I	SS = SPLIT SPOON				-				
I	A = AUGER CUTTINGS				-				
	GP = GEOPROBE - DIRECT PUSH								

Contractor:	Cascade			_		DRILLING RECORD	BORING/ WELL NO. B-26	Sheet 1 of 1		
Driller:	Todd Grossman, Luke	Taylor		='			Location Description:			
Inspector:	Tayler Schweigel, Dan	Chamberland		='	PROJECT NAME:	Tonawanda Plastics	Northing:	1086228.56		
Rig Type:	Hand Auger			-	PROJECT NUMBER:	451224.01102	Easting:	1056285.03		
				='			Ground Surface Elevation (ft	: AMSL): 601.3		
	GROUNDWATER OBSERVATIONS (ft AMSL)						Location Plan	63		
Water					Weather	: Warm, clear, calm	B	-26		
Level								B-25		
Date					Date/Time Start	: 11/9/2020 11:30				
Time					1	D.O.				
TOCEL					Date/Time Finish	: 11/9/2020 10:35	B-2	B-29		
TOC Elevation							1000	3 7		
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS		
Depth (feet)	I.D.		Rec.	(ppm)						
0		NA		0.0						
2.0	NA			0.0	Moist soft dark brown to black fine-coars	e-SAND and fine-coarse GRAVEL, little SILT, well-graded. GM.				
		NA	100							
2.0	NA	NA		0.0	Damp medium stiff to stiff red brown CL	AY. little SILT. CL.				
2.5		NA		0.0		.,,				
					COMMENTS:		_			
	SAMPLING METHOD									
	SS = SPLIT SPOON				-			_		
	A = AUGER CUTTINGS							-		
	GP = GEOPROBE - DIRECT PUSH				-			-		

Contractor:	Cascade			_		DRILLING RECORD	BORING/ WELL NO. B-27	Sheet 1 of 1	
Driller:	Todd Grossman, Luke	Taylor					Location Description:		
Inspector:	Tayler Schweigel, Dan	Chamberland		='	PROJECT NAME:	Tonawanda Plastics	Northing:	1086338.94	
Rig Type:	Hand Auger			='	PROJECT NUMBER:	451224.01102	Easting:	1056266.35	
				='			Ground Surface Elevation (ft	AMSL): 601.2	
	GROUNDWATER OBSERVATION	ONS (ft AMSL)					Location Plan	A STATE OF THE PARTY OF THE PAR	
Water					Weather	: Warm, clear, calm	CHARLES TO AN	B-27	
Level								B:28	
Date					Date/Time Start	: 11/9/2020 11:45			
Time									
TOC Elevation					Date/Time Finish: 11/9/2020 12:00				
Sample Depth (feet)	Sample I.D.	SPT	% Rec.	PID (ppm)		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS	
0		NA		0.0	Moist to wet black to dark brown loose t	o medium dense fine-coarse- SAND and fine-coarse GRAVEL, some SILT, trace organics, well-			
2.4	NA				graded. GM.	- · · · · · · · · · · · · · · · · · · ·			
		NA	100	0.0			4		
2.4	NA	NA		0.0	Damp red brown stiff CLAY, little gray fir	ne SAND. CL.			
3.1		NA		0.0	, , , , ,				
		•		•	COMMENTS:		•	•	
	SAMPLING METHOD								
	SS = SPLIT SPOON				-				
	A = AUGER CUTTINGS								
	GP = GEOPROBE - DIRECT PUSH								

Contractor:	Cascade					DRILLING RECORD	WELL NO. B-28	Sheet 1 of 1	
Driller:	Todd Grossman, Luke	Taylor		_			Location Description:		
Inspector:	Tayler Schweigel, Dan	Chamberland		_	PROJECT NAME:	Tonawanda Plastics	Northing:	1086311.74	
Rig Type:	Hand Auger			_	PROJECT NUMBER:	451224.01102	Easting:	1056190.39	
	•			-			Ground Surface Elevation (ft	AMSL): 600.4	
	GROUNDWATER OBSERVATIONS (ft AMSL)						Location Plan	A CONTRACTOR OF THE PARTY OF TH	
Water					Weather	: Warm, clear, calm	2000年10年1	B-27	
Level								3,28	
Date					Date/Time Start	: 11/9/2020 12:15		3/1/3/	
Time									
TOC Elevation					Date/Time Finish	: 11/9/2020 12:40	B-26		
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS	
Depth (feet)	I.D.		Rec.	(ppm)					
0		NA		0.0	Moist to wet black to dark brown loose t	o medium dense fine-coarse- SAND and fine-coarse GRAVEL, some SILT, trace organics, well-			
1.8	NA	NA			graded. GM.				
1.8		NA	100	0.0			1		
2.4	NA	NA		0.0	Moist medium stiff red brown CLAY, littl	e SILT. CL.			
		•	•		COMMENTS:				
	SAMPLING METHOD								
	SS = SPLIT SPOON								
	A = AUGER CUTTINGS								
	GP = GEOPROBE - DIRECT PUSH								

|--|

Contractor: Driller:	<u>Cascade</u> Todd Grossman, Luke	Taylor		-		DRILLING RECORD	BORING/ WELL NO. B-29 Location Description:	Sheet 1 of 1
	Tayler Schweigel, Dan			-	PROJECT NAME:	Tonawanda Plastics	Northing:	1086124.75
Inspector:		Chamberland		-	PROJECT NAME. PROJECT NUMBER:	451224.01102	Easting:	1056269.13
Rig Type:	Hand Auger			-	PROJECT NOWIBER.	451224.01102	Ground Surface Elevation (ft	
	GROUNDWATER OBSERVATION	NIC /ft ANACI \					Leasting Diag	Control of the Contro
Water	Water			1	Weather	: Warm, clear, calm	26	
Level					Weather	. Warm, cicar, cam	10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	B-25
Date					Date/Time Start	: 11/10/2020 12:45	A STATE OF THE PARTY OF THE PAR	
Time					,			A STATE OF THE PARTY OF THE PAR
TOC Elevation					Date/Time Finish	: 11/10/2020 13:00	B:29	
Sample Depth (feet)	Sample I.D.	SPT	% Rec.	PID (ppm)		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS
0		NA		0.0				
1.8	NA	NA		0.0	Damp to dry medium dense black fine-co	arse SAND, some fine-coarse GRAVEL.		
			100				_	
1.8	B-29_11102020_1.8-2.3	NA		0.0	Damp soft red brown CLAY, trace GRAVE	L. CL.		
2.5		NA		0.0				
					COMMENTS:			
	SAMPLING METHOD							
	SS = SPLIT SPOON							
	A = AUGER CUTTINGS							
	GP = GEOPROBE - DIRECT PUSH				·			

							BORING/ Sheet 1 of			
Contractor:	Cascade					DRILLING RECORD				
Driller:	Todd Grossman, Luke	e Taylor					Location Description:			
Inspector:	Tayler Schweigel, Dan Chamberland			_	PROJECT NAME:	Tonawanda Plastics	Northing: 1086063.96			
Rig Type:	Hand Auger			_	PROJECT NUMBER:	PROJECT NUMBER: 451224.01102				
							Ground Surface Elevation (ft AMSL): 599.2			
GROUNDWATER OBSERVATIONS (ft AMSL)							Location Plan			
Water	Water				Weather	: Warm, clear, calm	MW414 B23			
Level						<u> </u>	♠			
Date					Date/Time Start	: 11/10/2020 13:00	B-30-2			
Time							E#3041			
TOC Elevation					Date/Time Finish	: 11/10/2020 13:15	B-21			
TOC Elevation										
Sample	Sample	SPT	%	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS			
Depth (feet)	I.D.		Rec.	(ppm)						
0		NA		0.0						
0.5	NA	NA		0.0	Damp soft brown SILT, little fine-coarse	GRAVEL. GM.				
		1		-						
0.5	B-30_11102020_0.5-1.0	NA	100	53.2	Pliable Tar, black fine to coarse Sand an	d fine to medium Gravel. Strong Odor.				
1.5		NA		32.4		-				
1.5		NA		0.0						
4.0	B-30_11102020_3.5-4.0	NA		0.0	Damp soft to medium stiff red brown CL	AY, little fine-medium GRAVEL. CL.				
H				3.0						
		1	<u> </u>	<u> </u>	COMMENTS:					
	SAMPLING METHOD					and completed the boring to 4.0 feet bgs.				
						B-30-2 on map is the location to 4.0 feet bgs.				
	SS = SPLIT SPOON				p-50-1 oil map is location with refusal.	b-50-2 off friap is the location to 4.0 feet Dgs.				
	A = AUGER CUTTINGS GP = GEOPROBE - DIRECT PUSH									
. '	GP = GEUPKUBE - DIKECT PUSH									

Appendix B Monitoring Well Construction Logs

Honeywell

Contractor: Cascade						PARSONS DRILLING RECORD	BORING/ MW-13 Page 1 of 1 WELL NO.
Oriller:	Todd Grossman, Luke Taylor				_	**	Location Description:
Oversight	_	yler Schweig		mberland	-	PROJECT NAME: Tonawanda Plastics	
Rig Type:		ack mounted			-	PROJECT Location: Tonawanda NY	
		OUNDWATE	R OBSERVA		la		Location Plan
ipparent Neasure		ole DTW:		NA NA	ft bls ft bls	Date/Time Start: 11/17/2020 8:25	
otal Dep				NA	ft bls	Date/Time Finish: 11/17/2020 8:35	
dditiona	I Com	ments:					
Sample Type	SPT	Recovery (%)	PID (PPM)	USCS Symbol	Depth (ft bls)	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS Drawing Not to Scale
							SS Stick-up protective
							casing within cement pa 2" dia. PVC Stick-up inne casing
			0.0	GM		0.0 - 0.1: Wet-moist soft brown-black SILT, some fine SAND, some fine-coarse GRAVE	<u>.</u>
HC			0.0		1		Backfill of soil cuttings from 0-2' bgs
					2		
	NIA	70		CL		0.1 - 3.5: Damp red brown medium stiff CLAY, little fine-coarse GRAV	EL. Bentonite Grout from 2-3
	NA	70			3		bgs.
GP			0.0		4		2" Diameter Schedule 4
				NA		3.5 - 5.0: No Recovery.	PVC casing.
					5	,	
			0.0				
					6		#0 Sand from 3'-10' bgs
				01	7	50.05 D	-,
GP	NA	95		CL		5.0 - 9.5: Damp red brown medium stiff CLAY, little fine-coarse GRAV	0.01" Slotted PVC Scree
σ.					8		from 5-10' bgs
			0.0		9		
				NA		9.5 - 10.0: No Recovery.	
					10		Bottom of Boring at 10'
					11		
					12		
					13		
					14		
					15		
					16		
					17		
					18		
					19		
	SAME	LING METHO	OD			COMMENTS:	
		and Cleared				Sediment descriptions and recovery are based on the GP boring at the location of N	
	SS= Sp	lit Spoon			=	that there was native CLAY starting at 0.1 feet bgs, at which point a GP boring was reto auger to drill over the bornig location. For well drilling and installation: slow auger	

Contracto	or: Ca	ascade				PARSONS DRILLING RECORD	BORING/ WELL NO. MW-14	nge <u>1 of 1</u>
Driller:	_	odd Grossma	n, Luke Tayl	or			Location Description:	
Oversight	_	ayler Schweig			_	PROJECT NAME: Tonawanda Plastics	·	
Rig Type:	Tra	ack mounted	d Geoprobe		_	PROJECT Location: Tonawanda NY		
		ROUNDWATE	R OBSERVA	TIONS			Location Plan	
		hole DTW:	<u> </u>	-	ft bls			
Measured Total Dep				NA NA	ft bls	Date/Time Start: 11/10/2020 13:30 Date/Time Finish: 11/10/2020 13:35	-	
Additiona			<u> </u>	INA	It bis	Date/ Time Finish. 11/10/2020 13.33	-	
, , , , , , , , , , , , , , , , , , , ,								
Sample		Recovery		USCS	Depth		SCHEMATIC	COMMENTS
Туре	SPT	(%)	PID (PPM)	Symbol	(ft bls)	FIELD IDENTIFICATION OF MATERIAL	Drawing Not to Scale	CC Ctick up protective
								SS Stick-up protective casing within cement pad
								2" dia. Schedule 40 PVC
								Stick-up inner casing
			0.0	SP GM	-	Dry loose-medium dense light gray fine-coarse GRAVEL and SAND. SP. Wet medium dense fine-coarse GRAVEL, some fine-coarse SAND, little SILT. GM.	┤╙┤┈╏╏┈╠┸┤	Cement from 0-0.5' bgs
HC			0.0	GIVI	1	wet medium dense fine-coarse GRAVEL, some fine-coarse SAND, little SIL1. GM.	┥╿┈┨╏┈┾╗	
			0.0		2			Bentonite Grout from 0.5-
	NA	80		CL		Damp medium stiff to stiff red brown CLAY, trace fine-medium GRAVEL. CL.		1' bgs.
	INA	80		CL	3			
GP								
					4		+	
			0.0		5	No Recovery.		
			0.0					
					6			#0 Sand from 1'-11.5' bgs.
					7			0.01" Slotted PVC Screen
GP	NA	100		CL	8	Damp medium stiff to stiff red brown CLAY, trace fine-medium GRAVEL.		from 1.5-11.5' bgs
					9			
		<u> </u>	0.0		10			
			0.0		11			
								Bottom of Boring at 11.5'
					12			bgs
GP	NA	100		CL		Damp med stiff to stiff red brown CLAY, trace fine-medium GRAVEL.		
					13			
					14			
			0.0		15			
					4.0			
		 			16			
					17			
					<u> </u>			
					18			
		 			19			
:	SAME	<u>l</u> Pling meth	OD			COMMENTS:		
		land Cleared (ai				Sediment descriptions and recovery are based on the GP boring at the location of MW-14. Lo		
	SS= Sp	plit Spoon			=	that there was native CLAY starting at 1.0 feet bgs, at which point a GP boring was run offset to auger to drill over the bornig location. For well drilling and installation: slow augered to 5 fe		
							oc 550, c.o., continuou ac rogula	, pace.

Appendix C Monitoring Well Development Logs

			WELL DI	EVELOPMENT L	OG			
Date	11/19/20	120	Field Personnel			Weather	Mid 40s, clo	oudy, S 10-20 mph
Site Name	Tonawanda F		Contractor/Driller	n	a	- Well #	MW-14	
Site Location	Tonawanda	a NY	Evacuation Method	bai	ler	Date Installed:	11	/11/2020
Well information:								
Depth to bottom	. ,	15.36 ft		Measurements	taken from:	top of casing	-	
Depth to bottom	• •	15.38 ft		Well Diameter:			in.	
Depth to water	, ,	5.50 ft		Casing volume:		1.58	-	
Depth to water	(final)	5.49 f	ι.	Pump setting in	паке:	na	π.	
Start developmen	t time:	9:05						
End development	time:	10:05						
Total time:		1 hour		1		1	T	
	Cumulative					Approximate		
	Volume Water	Temp		Conductivity	Turbidity	Flow Rate	Depth to	Appearance of
Time	Removed (Gal)	(celsius)	pH (s.u)	(ms/cm)	(NTU)	(GPM)	Water (feet)	Water
9:05	< 1	10.51	6.18	1.06	>1000	-		cloudy red-brown
9:10	1.0	10.34	6.38	1	>1000	0.2		cloudy red-brown
9:15	2.5	10.03	6.64	0.931	>1000	0.3	6.40	cloudy red-brown
9:20	3.0	9.83	6.82	0.932	>1000	0.1		cloudy red-brown
9:25	4.8	9.87	6.92	0.901	>1000	0.36	8.10	cloudy red-brown
9:30	5.5	10.08	7.00	0.633	>1000	0.14		cloudy red-brown
9:35	7.0	10.12	7.05	0.799	>1000	0.3	9.58	cloudy red-brown
9:40	9.0	10.27	7.05	0.818	>1000	0.4		cloudy red-brown
9:50	12.0	9.81	7.10	0.692	>1000	0.6	0.22	cloudy red-brown
9:55 10:00	13.0 14.0	9.14 8.62	7.20 7.19	0.533 0.501	>1000 >1000	0.2	8.22	cloudy red-brown
10:05	15.0	8.17	7.12	0.496	>1000	0.2	5.49	cloudy red-brown
10.03	13.0	0.17	7.12	0.150	7 1000	0.2	3.13	cloudy red brown
Development wat								
Total volume of w		_1	.5.0	_				
Physical appearan		alaudu rad	braum	Physical appear	-	alaudurad brau		
		cloudy red- none	-DIOWII			cloudy red-brov	VII	
Shi	een/Free Product			Sheer	n/Free Product	•	-	
5111	een, rree rrouder			511001	i, i i ce i i oddet	попе	<u>-</u>	
Notes	Bailer initially sur	ged the entir	re length of the screen	prior to purging	any groundwat	ter.		
•	15 gallons is appr	oximately 10) well volumes		- · -			
								Daga 1 of 1
								Page 1 of 1

Appendix D Site Survey Data

Parsons. Honeywell International. Wendel Project No. 494802 Prepared By: R. Johnson 3/12/2021

WELL/ BORE DESIGNATION	NORTHING	EASTING	GROUND ELEVATION	TOP OF CASING	TOP OF PVC RISER
MW-13	1086188.4	1055422.1	595.4	598.87	598.73
MW-14	1086117.1	1055960.7	600.2	604.16	603.99
BORE - 1	1086235.9	1055200.8	593.6	-	-
BORE - 2	1086250.7	1055250.7	594.9	-	-
BORE - 3	1086263.1	1055309.6	595.4	-	-
BORE - 4	1086177.5	1055238.0	594.2	-	-
BORE - 5	1086213.1	1055258.3	593.8	-	-
BORE - 6	1086201.3	1055301.4	594.7	-	-
BORE - 7	1086152.8	1055268.1	594.6	-	-
BORE - 8	1086239.3	1055418.5	595.2	-	-
BORE - 9	1086149.6	1055385.9	593.4	-	-
BORE - 10	1086109.3	1055477.5	595.9	-	-
BORE - 11	1086099.1	1055546.1	596.4	-	-
BORE - 12	1086109.9	1055646.2	598.1	-	-
BORE - 13	1086102.6	1055793.9	598.6	-	-
BORE - 14	1086022.0	1055617.7	597.6	-	-
BORE - 15	1085962.2	1055563.3	596.0	-	-
BORE - 16	1085822.3	1055494.9	596.2	-	-
BORE - 17	1085868.3	1055623.5	595.7	-	-
BORE - 18	1085961.3	1055848.8	599.2	-	-
BORE - 19	1086041.4	1055826.8	598.2	-	-
BORE - 20	1085936.6	1055607.7	595.8	-	-
BORE - 21	1086021.4	1055997.7	599.2	-	-
BORE - 22	1086145.8	1056043.8	599.7	-	-
BORE - 23	1086120.9	1056152.2	599.7	-	-
BORE - 24	1086198.8	1056124.1	599.6	-	-
BORE - 25	1086188.1	1056349.6	601.8	-	-
BORE - 26	1086228.6	1056285.0	601.3	_	-
BORE - 27	1086338.9	1056266.3	601.2	-	-
BORE - 28	1086311.7	1056190.4	600.4	-	-
BORE - 29	1086124.7	1056269.1	601.3	-	-
BORE - 30-1	1086064.0	1056097.1	599.2	-	-
BORE - 30-2	1086069.5	1056093.4	599.1	-	-

- Information shown hereon was surveyed by Wendel on March 11, 2021.
- Horizontal control is referenced to the New York State Plane Coordinate System, North American Datum of 1983 (NAD83), Western Zone (US Survey Feet).
- Vertical control is referenced to a map provided by Parsons Titled "Figure 1 Ground Water Contour Map September 27, 1991.

Appendix E Groundwater Sampling Log

			Low Flow Groundy	vater Sampling I	Log			
Date	12/	/10/20	Personnel	Schweigel,	Buzzeo	Weather		35F
Site Name		nda Plastics	Evacuation Method	Bailer		Well #		MW-14
Site Location	Tonaw	awanda NY Sampling Method Low Flow		low	Project # 451244			
Well information	:							
Depth of Well	15.41	ft.		*Measurements	taken from:			
Depth to Water	5.05	ft.			Х	Top of Well	Casing	
H_{wc}	10.36	ft.				Top of Prote	ective Casin	ıg
Depth to Intake	n/a	ft.				(Other, Spec	cify)	
Start Purge Time:		9:39						
		10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/mir
Elapsed Time	Depth to	Temperature		Conductivity	Oxidation	Dissolved	Turbidity	Flow Rate
(min)	Water	(celsius)	pН	(ms/cm)	Reduction	Oxygen	(NTU)	(mL/min)
(IIIII)	(ft)			(III3/CIII)	Potential	(mg/L)	(1110)	
0	5.06	8.89	6.34	0.545	246	10.30	27.2	1 bailer every 5
5	5.06	8.28		0.507	215		156	
10	5.06	7.02		0.444	!			
15	5.06	6.25		0.403			371	
20	5.06	6.09		0.398			374	
25	5.07	5.19		0.399			388	
30	5.07	4.86		0.117			164	-
35	5.07	4.55		0.219		11.52	217	
40	5.07	4.23		0.232		10.62	235	
45	5.07	3.94		0.215		6.74	193	
50	5.07	3.71		0.204		7.76	185	
55	5.08	3.60		0.195	!		180	-
60	5.07	3.63	8.07	0.183	172	9.56	164	
								_
		10.20						
End Purge Time:		10:39						
Water Sample								
Time Collected:	10:45	-	Total volu	ne of purged wa		1.65		(gallons)
Physical appearar				Physical appear				
		cloudy	_			cloudy	<u>-</u>	
	Odor		-			none	<u>-</u>	
Sheer	n/Free Product	none	-	Sheen/	Free Product	none	<u>-</u>	
Samples:				Post sample DT	W: 5.189			
		D						
MW-14_12102020		Parent/MS/MSD						
MW-140_12102020	U	Dup @ 12:01						
			1	<u> </u>			l	
					-			

Appendix F Waste Manifests

Certificate of Disposition

Veolia ES Technical Solutions, L.L.C., West Carrollton Facility has a RCRA Part B Permit that allows the facility to commingle wastes, recycle, store and transfer waste for distillation, supplemental fuels for energy recovery, thermal treatment, and stabilization

Veolia ES Technical Solutions, L.L.C. certifies the waste which was received on Manifest Number: <u>ZZ00348130</u> Date Received: <u>08/02/2021</u> will be/was managed in accordance with all applicable federal state and local laws and regulations.

Generator: Honeywell

Generator EPA ID: NYD051816262

DATE CERTIFICATE ISSUED: 09/02/2021

SIGNATURE: Brittany Blankenship

TITLE: OPERATIONS COORDINATOR

Veolia ES Technical Solutions, L.L.C., 4301 INFIRMARY ROAD, WEST CARROLLTON, OH 45449, EPA ID# OHD093945293

251999

Form Approved, OMB No. 2050-0039 Please print or type. 4. Manifest Tracking Number 2 Page 1 of 13 Pinerpancy Response Phone 1 Generator 2 Number UNIFORM HAZARDOUS 0015618 WASTE MANIFEST (877) A34-0087 NYDD51116262 Generator's Site Andress (# different than mailing address) 6. Guin, rations Name and Mailing Address MARK SWITTING ÉANR HINEYWELL MALI SEVER ED TONAWANDA, NY 14150 Generators Phone 211 567-5488 6. Transporter 1 Company Name L.S. CPA D Number N J D D B D 6 3 1 3 6 9 VIOLIA DE TRUBRICAL BOLUTIONS U.S. FRAID Nimber 7. Transporter 2 Company Name NID054126164 PARTICULAR INC 9. Gesignated Facility Name and Site Address
VENUTA ER TECHNICAL BOLLSTICANS J.S. EPATO **Nu**mber LLC. 125 FACTORY LANE MIDTINLEREEX, NO 08846 N J D O O 2 4 5 4 5 4 4 Fadilitys Phone: 737 469-6106 9h. U.S. DOT Description (including Proper 8) upony Name, Hazard Class, ID Number, 10. Cortainers 11. Total 12 Unit Qq. 13. Whate Codes and Pasking Group (Bany)) Ouznilik WEARE No. Туре 내내 NASCIT, HAZARDOUS WASTE, SOLID, R.O.J., (HENZENE), 9. III DOLG ¥ GENERATOR a 200 DΜ P R 14. Special Handling Instructions and Additional into mation Handing instructions and Additional Information SIR Survivor Constructed by VESTS 💠 Construct relatived by generation confirm and confirmation of the survivor Construction on generating behalf. ∻ 1) EMG171 W1041660 AMARSONIO 15 DENERATOR'S CERTIFICATION: Thereby declare that the contents of this consignment are fit by and accumularly described above by the proper property name, and are classified, packaged. numbed and table explinionidant and are in all respects in proper condition for transport expecting to applicant aidment and and material governmental regulations. If expert shipment and I am the Primary Exporter I certify that the contents of this consignment conform to the name of the attached EPA Advisordecoment of Consent Locatify that the waste minimization statement dentitied in 40 CFB 282.27(a) (if Lamin large quantity generator) or (b) (if Lamin small quality generator) as true. Generator's/Offeror's Printed/Typed Name Nanth Day v_Ear ayler 15. International Stepments Export from U.S. Port of entrylexit Import to U.S. Date leaving U.S. Transporter signature (for expects only): 17. Transporter Ad-moutedgment of Receipt of Materials **TRANSPORTER** Transporter 1 Printed Typed Name Morth 0 7 2 3 THOMAS GILBERT Transporter 217anted Typed Herry Signature Marth Day Auc sta ent se 8 Distrepancy □_{1ype} Sa. Discrepancy is dication Space Part all Rejection _ Hull Rejection i Residua. Quantity Manifest Reference Number: U.S. EPA ID Number 18h. Atternate Facility (or Generalize) Facility's Phone: Hay Mandle 18c. Signature of Atternate Feoiley (or Generality) 19. Hazardous Wasse Report Memagement Method Codes (i.e., nodes for hazardous waste treatment, disposal, and recycling systems) 20, Designated Facility Owner or Operator, Certification of receipt of hazantous materials covered by the manifest except as noted in herm 18a. OBC Name 21 سراك الماريق

Certificate of Disposition

Veolia ES Technical Solutions, L.L.C., West Carrollton Facility has a RCRA Part B Permit that allows the facility to commingle wastes, recycle, store and transfer waste for distillation, supplemental fuels for energy recovery, thermal treatment, and stabilization

Veolia ES Technical Solutions, L.L.C. certifies the waste which was received on Manifest Number: <u>ZZ00348130</u> Date Received: <u>08/02/2021</u> will be/was managed in accordance with all applicable federal state and local laws and regulations.

Generator: Honeywell

Generator EPA ID: NYD051816262

DATE CERTIFICATE ISSUED: 09/02/2021

SIGNATURE: Brittany Blankenship

TITLE: OPERATIONS COORDINATOR

Veolia ES Technical Solutions, L.L.C., 4301 INFIRMARY ROAD, WEST CARROLLTON, OH 45449, EPA ID# OHD093945293

ŧ		HIPPING	1 Generator ID Number	2. Page 1 of		rgency Response	ePhone			Tracking Nui		$\overline{}$
lĺ	_	OCUMENT	11 1 2 4 4 4 4 0 7 0 3 0 3 1 1 1 fair) 474 mans					ZZ 00348130				
!		Senerator's Itame and Mašra	T) Address MARK SWILL TABLE				jf different th	en mailing addre	55)		•	
	34 TV	ONEYWELL E1 ELVER ED ONAWANDA, NY 14 HE3867'S Plone 1	4150 113 1 07-3-455	ı	SAME	5						
11	61	ransporter 1 Company Navy	Ne.					U S EPARO	Number			
$\ $	VERNICAL SCRIPTING N J D 0 8 0 6 3 1 3 6 9											
П	7 Transporter 2 Company Name U.S. EPA ID Number RESERVED CARTAGE INC. N. J. D. G. S. L. E. G. S. G. 4.											
H		REFOLD CARTAGE								4 1 2	5 1 (5 4
$\ \mathbf{I}\ $	6.0	Designated Facility Name and	d Sila Address VBIETA RETREMENTAL SEE LITE	1397%				u.s epaidi	Humber			
H			laldi,	•								
1			430) INVIEMABY BOAD WEST CARROLEUM, OR 45449					1088		194		!
11	_	ulity's Phone 937 1265	•			-1.5		_		J 7 4	3 4 3	" "—
1	9a.	1	on (including Proper Shipping Name, Hazard Glass, 10 Number 2049)		}	10 Contai No	Type	11. Total Quantity	12 Unit WUVol	13	Codes	
		· · · · · ·	ND DOT NON BRITE ATTO LIQUID, (WAT	TD \		MU	1 y per		11010	NONE	r	i I
GENERATOR						ર	DM	415	P	L		
		2										1
1												$\vdash \vdash \vdash$
IJ			· · · · · · · · · · · · · · · · · · ·	.	-							$\vdash \vdash \vdash$
П		ľ										L
П												
П	\vdash	4										i 🗆
Н												├ ──i
П												
H	14 Special Handling Instructions and Additional Information BR Setvice Constanted by VBSTS Contract related by generator confers											
Н		SHILPLEY-NH	u hilial transporter to aid or substitute addition	اسر عندنا آد		ا داخشهمس		1) W1541 6	A G			
П	DEGITATE ALL											
П	4.	DEVERTING PROTECTOR	IN 6 CERTIFICATION: Thereby declare that the contents of th		f. h	-d		. b. db.a			edfael Brok	omad
11	15	marked and labeled/placen	nted, and are in all respects in proper condition for transport so	o como grimani cord ing to ap pii	cabla nter	no securesiy co messonel and nal	sancon scove	a oy una propoeran Hentel regulations	ipping nam	0 3110 31 1 G.	called, pass	 69αγ
Ħ		-										
Н	Gar	normater's Officiar's Partled Typ	ped Name	Sig	nalur		$\overline{}$		1	Mod	nHn 13eary	Year
Ц	K	Taylor	Schweigel	6	<	eulen		in il		l e	7 2 3	ıbıl
ئے		Interretional Shorrants	□ Import to U.S		` &	Port of er	Wrytesh	1		, ,	. ,	
불	Ta	insporter signature flor south	rtsony). ⊏Nubout μο n. s	П Ежфокт воли с	18	Data leav						
	17.	Transporter Advancededgment	t of Receipt of Shipment			n //	11	6				
TRANSPORTER		rspaner 1 Printed/Typed Nan	ne	Sig	г <u>аћив</u> /	X X	177	/		Mor	nth Day	Year
SP	1	TERRITO SAMOR				<i>رد / ما</i>	$\sim \sigma$	_		0	7 Z 3	1 3 2
3] IB	nsporter 2 Perited/Typed Nan	7	ა გე 1		J //	1			Mai	nth Day コートクル	. I
É	1.	* *-	Re way		<u>ال</u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					/ 3/2	121
†	\vdash	Liscrapency										
H	188	a. Discrepancy Indication Spa	Guardiy Type		L	Residue		☐ ParSal Ro)	ection	I	Full Ray	есвоп
	Chamas Paras And Number											
_	Shipping Document Tracking Number: 13b Attende Facility (in Generator) U.S. EPA IC Number											
듩	the time time to the second to											
ĕ	Facility's Phone											
	146	. Signature of Alternate Facili	Lty (or Generator)	•						Mk	o nd n Da	y Year
DESIGNATED FACILITY	L											
198	19.	Report Management Method	Codes (i.e., codes for treatment, disposal, and recycling syste					1.				
闁	1.	الما	MA P	3.				⁴				l
h	L											
Ш	_	· .	v Operand Certification of receptor shipment 4:c4pt as noted		inature		$\overline{\mathcal{A}}$		_	100	nda Den	Year
Ш	F-1	Medi Tupretty Natinje	a Hallinghin	અ I	, ionalis	11	111-	12/		ı"Ŝ	ጂ፣ጛ	711
*	L		MARIONEN //			M	////	V V	ICNATE:		<u>기 노</u>	JEBATO?
			,			{	/	/ 023	IONA! E	C FACILITY	. IQ GET	1ERAIU1

Appendix G Data Quality Evaluation Reports

Honeywell Tonawanda Plastics Plant Strom Sewer Investigation - 2018 Data Quality Evaluation Report

Introduction

The objective of this data quality evaluation (DQE) report is to assess the data quality of analytical results for water samples collected at the Honeywell Tonawanda Plastics Plant site. Individual method requirements, guidelines from the the *Honeywell Syracuse Portfolio Site Investigations, Syracuse, New York, Quality Assurance Project Plan* (February 2011) (QAPP), the USEPA Region II Guidelines for Organic and Inorganic Data Review were used as the basis for this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers two water samples. Samples were collected between Febrauary 16 and July 20, 2018. A list of samples and collection dates is included in Attachment A at the end of this report. The sample results were reported under three sample delivery groups presented in Table 1.

Table 1 - Sample Delivery Groups								
480-131426-1								
480-134303-1								
480-139309-1								

The analyses were performed by TestAmerica Laboratories in Buffalo, New York (TAL-Buffalo). Samples were collected and delivered by courier to the laboratory. Selected samples were analyzed for one or more of the following analytes/methods presented in Table 2.

Table 2 – Analytical Parameters								
Parameter	Method							
Volatile Organic Compounds	SW8260C							
Semivolatile Organic Compounds	SW8270D							
Metals	SW6010C							
Mercury	SW7470A							
Total Cyanide	SW9012B							

The assessment of data included a review of: (1) the chain-of-custody (CoC) documentation; (2) holding-time compliance; (3) the required laboratory quality control (QC) samples; (4) flagging for method field blanks; (5) laboratory control sample/laboratory control sample duplicates (LCS/LCSD); (6) surrogate spike recoveries for organic analyses; and, (7) matrix spike sample (MS).

No field samples were reviewed in this event.

Data flags are assigned according to the USEPA Region II Guidelines. These flags, as well as the reason for each flag, are entered into the electronic database. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes blank sample impacts.

The data flags are defined below

- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The result is an estimated quantity, but the result may be biased high.
- J- = The result is an estimated quantity, but the result may be biased low.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numetical value represents its approximate concentration.
- UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R = The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample. Findings

Findings

The overall summaries of the data validation findings are contained in the following sections below and summarized in Attachment B.

Holding Times

All holding-time criteria were met.

Calibration

Initial and continuing calibration data were not supplied in the data packages and were not part of the routine validation performed. The laboratory did not report any exceedances in the case narratives that would effects the samples.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination with the following exceptions:

Zinc was detected below the reporting limit (RL) in a method blank for SW6010C. Two associated sample results were detected less than five times the blank concentration. Two results were qualified as not detected raised to the RL, and flagged "U".

Field Blanks

No filed blanks were collected with this event.

Matrix Spike Samples

The results of MS/MSD analyses provide information about the possible influence of the matrix on either accuracy or precision of the measurements. MS/MSD recoveries and the associated relative percent differences (RPD) met criteria with the following exception:

The recovery of cyanide was less than the lower control limit in the MS of sample 36 Intlet-02162018 for Method SW9012B, indicating the associated parent sample result is possibly biased low. One associated non-detected result in parent sample was qualified as estimated and flagged "UJ".

Field Duplicates

No field duplicates were collected for the event.

Surrogates

Surrogate spikes were analyzed in each sample as required. All acceptance criteria were met.

Internal Standards

Internal standard information was supplied in the data packages and was not part of the routine validation performed.

Laboratory Control Samples

LCS / LCSDs were analyzed as required and all accuracy and precision criteria were met.

Laboratory Duplicates

Laboratory duplicates were analyzed and all precision criteria were met.

Chain of Custody

All samples were received intact with correct CoC documentation.

Overall Assessment

The final activity in the data quality evaluation is an assessment of whether the data meets the data quality objectives (DQO). The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decisionmaking process. The following summary highlights the data evaluation findings for the above defined events:

- 1. The data completeness was 100 percent for all method/analyte combinations.
- 2. Less than one percent percent of the SW6010C data were qualified due to low-level method blank contamination. The degree to which blank contamination was observed is within reasonable method expectations.

- 3. MS recovery exceedance was observed for Method SW9012B; one result was qualified as estimated.
- 4. The precision and accuracy of the data, as measured by laboratory QC indicators, suggest that the DQOs were met.

Attachment A – Samples Associated with DQE

Samplle Delivery Group	Field Sample ID	Sample Date	Sample Purpose
480-131426-1	36 Intlet-02162018	02/16/2018	REG
480-131426-1	36 Outlet-02162018	02/16/2018	REG
480-134303-1	36 INLET-04172018	04/17/2018	REG
480-134303-1	36 OUTLET-04172018	04/17/2018	REG
480-139309-1	36INLET_07202018	07/20/2018	REG
480-139309-1	36OUTLET_07202018	07/20/2018	REG

Notes:

REG = regular sample

Attachment B – Validation Findings

Method	Field Sample ID	Analyte	Final Result	Units	Final Flag	Reason Code
SW9012	36 Intlet-02162018	Cyanide	0.0050	mg/L	UJ	MSL
SW6010	36 INLET-04172018	Zinc	0.010	mg/L	U	BL1
SW6010	36INLET_07202018	Zinc	0.010	mg/L	U	BL1

Notes:

BL1 = Result qualified due to laboratory blank
MSL = Matrix spike recovery less than the lower control limit
mg/l = milligrams per liter

Honeywell Tonawanda Plastics Plant Site Investigation - 2020 Data Quality Evaluation Report

Introduction

The objective of this data quality evaluation (DQE) report is to assess the data quality of analytical results for soil and water samples collected at the Honeywell Tonawanda Plastics Plant site. Individual method requirements, guidelines from the *Honeywell Syracuse Portfolio Site Investigations, Syracuse, New York, Quality Assurance Project Plan* (February 2011) (QAPP), the USEPA Region II Guidelines for Organic and Inorganic Data Review were used as the basis for this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers one groundwater sample, one field duplicate (FD) and twenty-four sediment samples. Samples were collected between November 9 and December 10, 2020. A list of samples and collection dates is included in Attachment A at the end of this report. The sample results were reported under four sample delivery groups presented in Table 1.

Table 1 – Sample Delivery Groups
480-177875-1
480-177968-1
480-178044-1
480-179236-1

The analyses were performed by TestAmerica Laboratories in Buffalo, New York (TAL-Buffalo). Samples were collected and delivered by courier to the laboratory. Selected samples were analyzed for one or more of the following analytes/methods presented in Table 2.

Table 2 – Analytical Parameters									
Parameter Method									
Volatile Organic Compounds	SW8260C								
Semi volatile Organic Compounds	SW8270D								
Chromium	SW6010C								
Total Cyanide	SW9012B								

The assessment of data included a review of: (1) the chain-of-custody (CoC) documentation; (2) holding-time compliance; (3) the required laboratory quality control (QC) samples; (4) flagging for method field blanks; (5) laboratory control sample/laboratory control sample duplicates (LCS/LCSD); (6) surrogate spike recoveries for organic analyses; and, (7) matrix spike sample (MS).

1

No field samples were reviewed in this event.

Data flags are assigned according to the USEPA Region II Guidelines. These flags, as well as the reason for each flag, are entered into the electronic database. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes blank sample impacts.

The data flags are defined below

- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The result is an estimated quantity, but the result may be biased high.
- J- = The result is an estimated quantity, but the result may be biased low.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R = The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample. Findings

Findings

The overall summaries of the data validation findings are contained in the following sections below and summarized in Attachment B.

Holding Times

All holding-time criteria were met.

Calibration

Initial and continuing calibration data were not supplied in the data packages and were not part of the routine validation performed. The laboratory did not report any exceedances in the case narratives that would effects the samples.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination.

Field Blanks

No filed blanks were collected with this event.

Matrix Spike Samples

The results of MS/MSD analyses provide information about the possible influence of the matrix on either accuracy or precision of the measurements. MS/MSD recoveries and the associated relative percent differences (RPD) met criteria with the following exception:

The recovery of cyanide was less than the lower control limit in the MS and/or MSD of samples B-17-11102020-0.7-1.2, B-5-11112020-0.6-1.1, MW-14_12102020 and MW-140_12102020 for Method SW9012B, indicating the associated parent sample result are possibly biased low. One associated detected result in the parent sample was qualified as estimated and flagged "J-"; three associated non-detected results in the parent sample were qualified as estimated and flagged "UJ".

Field Duplicates

No field duplicates were collected for the event.

Surrogates

Surrogate spikes were analyzed in each sample as required. All acceptance criteria were met with the following exceptions:

Surrogates recoveries of 1,2-dichloroethane-d4, dibromofluoromethane and toluene-d8 were above the upper control limit and 4-bromofluorobenzene was less than the lower control limit in sample B-4-11112020-0.8-1.3 for Method SW8260C, indicating associate sample results are possibly biased. Two associated detected results were qualified as estimated and flagged "J"; 46 associated non-detected results were qualified as estimated and flagged "UJ".

Internal Standards

Internal standard information was supplied in the data packages and was not part of the routine validation performed.

Laboratory Control Samples

LCS /LCSDs were analyzed as required and all accuracy and precision criteria were met with following exception:

The recovery of cyanide, total was less the lower control limit in a LCS for Method SW9012B, indicating the associated sample results are possibly biased low. One associated detected result was qualified as estimated and flagged "J-"; ten associated non-detected results were qualified as estimated and flagged "UJ".

Laboratory Duplicates

Laboratory duplicates were analyzed and all precision criteria were met.

Chain of Custody

All samples were received intact with correct CoC documentation.

Overall Assessment

The final activity in the data quality evaluation is an assessment of whether the data meets the data quality objectives (DQO). The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to

support the decisionmaking process. The following summary highlights the data evaluation findings for the above defined events:

- 1. The data completeness was 100 percent for all method/analyte combinations.
- 2. No data were qualified because of low-level blank contamination
- 3. MS/MSD recovery exceedances were observed for Method SW9012B; four results were qualified as estimated.
- 4. An LCS recovery exceedance was observed for Method SW9012B; 11 results were qualified as estimated.
- 5. Surrogate spike recovery exceedances was observed for Method SW8260C; 48 results were qualified as estimated
- 6. The precision and accuracy of the data, as measured by laboratory QC indicators, suggest that the DQOs were met.

Attachment A – Samples Associated with DQE

Sample Delivery Group	Field Sample ID	Sample Date	Sample Purpose	Sample Matrix
480-178044-1	B-1-11112020-1.5-2.0	11/11/2020	REG	SOIL
480-177968-1	B-12-11102020-1.0-1.5	11/10/2020	REG	SOIL
480-177968-1	B-14-11102020-0.3-0.8	11/10/2020	REG	SOIL
480-177968-1	B-14-11102020-4.5-5.0	11/10/2020	REG	SOIL
480-177968-1	B-15-11102020-1.3-1.8	11/10/2020	REG	SOIL
480-177968-1	B-16-11102020-0.9-1.4	11/10/2020	REG	SOIL
480-177968-1	B-16-11102020-2.5-3.0	11/10/2020	REG	SOIL
480-177968-1	B-17-11102020-0.7-1.2	11/10/2020	REG	SOIL
480-177968-1	B-17-11102020-1.5-2.0	11/10/2020	REG	SOIL
480-177875-1	B-18-11092020-0.9-1.4	11/9/2020	REG	SOIL
480-177875-1	B-18-11092020-4.5-5.0	11/9/2020	REG	SOIL
480-177875-1	B-19-11092020-4.5-5.0	11/9/2020	REG	SOIL
480-177875-1	B-20-11092020-6.1-6.6	11/9/2020	REG	SOIL
480-177968-1	B-29-11102020-1.8-2.3	11/10/2020	REG	SOIL
480-177968-1	B-30-11102020-0.5-1.0	11/10/2020	REG	SOIL
480-177968-1	B-30-11102020-3.5-4.0	11/10/2020	REG	SOIL
480-178044-1	B-4-11112020-0.8-1.3	11/11/2020	REG	SOIL
480-178044-1	B-4-11112020-1.5-2.0	11/11/2020	REG	SOIL
480-178044-1	B-5-11112020-0.6-1.1	11/11/2020	REG	SOIL
480-178044-1	B-7-11112020-1.7-2.2	11/11/2020	REG	SOIL
480-178044-1	B-8-11112020-1.9-2.4	11/11/2020	REG	SOIL
480-178044-1	B-9-11112020-0.5-1.0	11/11/2020	REG	SOIL
480-178044-1	B-9-11112020-20-25	11/11/2020	REG	SOIL
480-178044-1	B-9-11112020-9.5-10.0	11/11/2020	REG	SOIL
480-179236-1	MW-14_12102020	12/10/2020	REG	GW
480-179236-1	MW-140_12102020	12/10/2020	FD	GW

Notes:

REG = regular sample FD = field duplicate

Attachment B – Validation Findings

Method	Field Sample ID	Analyte	Final Result	Units	Lab qual	Final Flag	Reason Code
SW9012	B-12-11102020-1.0-1.5	Cyanide, Total	1.2	mg/kg	U*	UJ	LCSL
SW9012	B-14-11102020-0.3-0.8	Cyanide, Total	1.2	mg/kg	U*	UJ	LCSL
SW9012	B-14-11102020-4.5-5.0	Cyanide, Total	1.1	mg/kg	U*	UJ	LCSL
SW9012	B-15-11102020-1.3-1.8	Cyanide, Total	1.0	mg/kg	U*	UJ	LCSL
SW9012	B-16-11102020-0.9-1.4	Cyanide, Total	1.0	mg/kg	U*	UJ	LCSL
SW9012	B-16-11102020-2.5-3.0	Cyanide, Total	1.1	mg/kg	U*	UJ	LCSL
SW9012	B-17-11102020-1.5-2.0	Cyanide, Total	1.2	mg/kg	U*	UJ	LCSL
SW9012	B-29-11102020-1.8-2.3	Cyanide, Total	1.3	mg/kg	U*	UJ	LCSL
SW9012	B-30-11102020-0.5-1.0	Cyanide, Total	3.7	mg/kg	*	J-	LCSL
SW9012	B-30-11102020-3.5-4.0	Cyanide, Total	1.1	mg/kg	U*	UJ	LCSL
SW9012	B-17-11102020-0.7-1.2	Cyanide, Total	1.1	mg/kg	UF1*	UJ	LCSL,MSL
SW9012	MW-14_12102020	Cyanide, Total	0.010	mg/L	UF1	UJ	MSDL
SW9012	B-5-11112020-0.6-1.1	Cyanide, Total	1.1	mg/kg	UF1*	UJ	MSL
SW9012	MW-140_12102020	Cyanide, Total	0.0050	mg/L	JF1	J-	MSL
SW8260	B-4-11112020-0.8-1.3	Ethylbenzene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Styrene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	cis-1,3-Dichloropropene	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	trans-1,3-Dichloropropene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,4-Dichlorobenzene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,2-Dibromoethane	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,2-Dichloroethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	4-Methyl-2-pentanone (MIBK	31	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Methylcyclohexane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Chlorobenzene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Cyclohexane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,2,4-Trichlorobenzene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Dibromochloromethane	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Tetrachloroethene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Xylenes, Total	12	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	cis-1,2-Dichloroethene	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	trans-1,2-Dichloroethene	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Methyl tert-butyl ether	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,3-Dichlorobenzene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Carbon tetrachloride	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	2-Hexanone	31	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Acetone	31	ug/kg	U	UJ	SSL

Method	Field Sample ID	Analyte	Final Result	Units	Lab qual	Final Flag	Reason Code
SW8260	B-4-11112020-0.8-1.3	Chloroform	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,1,1-Trichloroethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Bromomethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Chloromethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Chloroethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Vinyl chloride	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Methylene Chloride	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Carbon disulfide	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Bromoform	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Bromodichloromethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,1-Dichloroethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,1-Dichloroethene	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Trichlorofluoromethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Dichlorodifluoromethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,1,2-Trichloro-1,2,2- trifluoroethane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,2-Dichloropropane	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	2-Butanone (MEK)	31	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,1,2-Trichloroethane	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Trichloroethene	6.2	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Methyl acetate	31	ug/kg	U	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,1,2,2-Tetrachloroethane	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,2-Dichlorobenzene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	1,2-Dibromo-3- Chloropropane	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Isopropylbenzene	6.2	ug/kg	U*3	UJ	SSL
SW8260	B-4-11112020-0.8-1.3	Toluene	1.2	ug/kg	J*3	J	SSL,SSH
SW8260	B-4-11112020-0.8-1.3	Benzene	0.54	ug/kg	J	J	SSL,SSH

Notes:

LCSL = Laboratory control sample recovery less than the lower limit MSL = Matrix spike recovery less than the lower control limit

MSDL = Matrix spike duplicate recovery less than the lower limit SSL = Surrogate recovery less than lower control limit

SSH = Surrogate recovery greater than upper control limit mg/kg = milligrams per kilogram ug/kg = micrograms per kilogram

Appendix H Laboratory Data Reports and Complete Data Tables

APPENDIX G COMPLETE SOIL ANALYTICAL RESULTS

				Location II	D B-1	B-4	B-4	B-5	B-7	B-8	B-9	B-9	B-9	B-12	B-14	B-14	B-15
					D B-1-11112020-1.5-2.0				B-7-11112020-1.7-2.2			-		B-12-11102020-1.0-1.5 E			
				Start Depth (FT	1.5	0.8	1.5	0.6	1.7	1.9	0.5	2	9.5	1	0.3	4.5	1.3
				End Depth (FT	2	1.3	2	1.1	2.2	2.4	1	2.5	10	1.5	0.8	5	1.8
				Sample Date SDO	e 11/11/2020 G 480-178044-1	11/11/2020 480-178044-1	11/10/2020 480-177968-1	11/10/2020 480-177968-1	11/10/2020 480-177968-1	11/10/2020 480-177968-1							
				Lab Sample II		480-178044-2	480-178044-3	480-178044-4	480-178044-5	480-178044-6	480-178044-7	480-178044-8	480-178044-9	480-177968-11	480-177968-4	480-177968-5	480-177968-3
				Sample Type Cod	e REG	REG	REG	REG	REG	REG	REG	REG	REG	REG	REG	REG	REG
		LINDECTRICTED	COMMEDICIAL	Matri	x SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Method CAS RN	Chemical Name	UNRESTRICTED USE SCO	COMMERCIAL	SCO Unit													
SW8260 71-55-6	1,1,1-Trichloroethane	680	500000	1000000 ug/kg	3.9 U	6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 79-34-5	1,1,2,2-Tetrachloroethane			ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U 4.5 U
SW8260 76-13-1 SW8260 79-00-5	1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane			ug/kg ug/kg		6.2 UJ 6.2 UJ	3.9 U 3.9 U	4 U 4 U	4.1 U 4.1 U	5 U 5 U	2400 U 2400 U	2400 U 2400 U	2500 U 2500 U	4.2 U 4.2 U	10000 U 10000 U	49 U 49 U	4.5 U
SW8260 75-34-3	1,1-Dichloroethane	270	240000	480000 ug/kg	,	6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 75-35-4	1,1-Dichloroethene	330	500000	1000000 ug/kg	3.9 U	6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 120-82-1	1,2,4-Trichlorobenzene			ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 96-12-8 SW8260 106-93-4	1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	+		ug/kg		6.2 UJ 6.2 UJ	3.9 U 3.9 U	4 U 4 U	4.1 U 4.1 U	5 U 5 U	2400 U 2400 U	2400 U 2400 U	2500 U 2500 U	4.2 U 4.2 U	10000 U 10000 U	49 U 49 U	4.5 U 4.5 U
SW8260 95-50-1	1,2-Dibromoediane	1100	500000	1000000 ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U		2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 107-06-2	1,2-Dichloroethane	20	30000	60000 ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 78-87-5	1,2-Dichloropropane			ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 541-73-1 SW8260 106-46-7	1,3-Dichlorobenzene	2400 1800	280000 130000	560000 ug/kg 250000 ug/kg		6.2 UJ 6.2 UJ	3.9 U 3.9 U	4 U 4 U	4.1 U 4.1 U	5 U 5 U	2400 U 2400 U	2400 U 2400 U	2500 U 2500 U	4.2 U 4.2 U	10000 U 10000 U	49 U 49 U	4.5 U 4.5 U
SW8260 106-46-7 SW8260 78-93-3	1,4-Dichlorobenzene 2-Butanone	120	500000	250000 ug/kg 1000000 ug/kg		6.2 UJ 31 UJ	3.9 U 19 U	20 U	4.1 U 21 U	25 U	12000 U	12000 U	13000 U	4.2 U 21 U	51000 U	250 U	4.5 U 22 U
SW8260 591-78-6	2-Hexanone	120	330000	ug/kg		31 UJ	19 U	20 U	21 U	25 U	12000 U	12000 U	13000 U	21 U	51000 U	250 U	22 U
SW8260 108-10-1	4-Methyl-2-Pentanone			ug/kg	20 U	31 UJ	19 U	20 U	21 U	25 U	12000 U	12000 U	13000 U	21 U	51000 U	250 U	22 U
SW8260 67-64-1	Acetone	50 60	500000 44000	1000000 ug/kg		31 UJ 0.54 J	11 J 3.9 U	20 U	9.6 J	25 U	12000 U	12000 U 66000	13000 U	21 U	51000 U	250 U 49 U	26 4.5 U
SW8260 71-43-2 SW8260 75-27-4	Benzene Bromodichloromethane	60	44000	89000 ug/kg ug/kg	7.7	0.54 J 6.2 UJ	3.9 U	4 U 4 U	2 J 4.1 U	5 U 5 U	17000 2400 U	2400 U	86000 2500 U	4.2 U 4.2 U	8700 J 10000 U	49 U	4.5 U
SW8260 75-25-2	Bromoform			ug/kg	,	6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 74-83-9	Bromomethane			ug/kg	3.9 U	6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 75-15-0	Carbon Disulfide	760	22000	ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U 4.5 U
SW8260 56-23-5 SW8260 108-90-7	Carbon Tetrachloride Chlorobenzene	760 1100	22000 500000	44000 ug/kg 1000000 ug/kg		6.2 UJ 6.2 UJ	3.9 U 3.9 U	4 U 4 U	4.1 U 4.1 U	5 U 5 U	2400 U 2400 U	2400 U 2400 U	2500 U 2500 U	4.2 U 4.2 U	10000 U 10000 U	49 U 49 U	4.5 U
SW8260 75-00-3	Chloroethane	1100	300000	ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U 4.5 U
SW8260 67-66-3	Chloroform	370	350000	700000 ug/kg	3.9 U	6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U 4.5 U
SW8260 74-87-3	Chloromethane			ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	
SW8260 156-59-2 SW8260 10061-01	cis-1,2-Dichloroethene -5 cis-1,3-Dichloropropene	250	500000	1000000 ug/kg ug/kg		6.2 UJ 6.2 UJ	3.9 U 3.9 U	4 U 4 U	4.1 U 4.1 U	5 U 5 U	2400 U 2400 U	2400 U 2400 U	2500 U 2500 U	4.2 U 4.2 U	10000 U 10000 U	49 U 49 U	4.5 U 4.5 U
SW8260 110-82-7	Cyclohexane			ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 124-48-1	Dibromochloromethane			ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 75-71-8	Dichlorodifluoromethane	1000		ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 100-41-4 SW8260 98-82-8	Ethylbenzene Isopropylbenzene	1000	390000	780000 ug/kg ug/kg		6.2 UJ 6.2 UJ	3.9 U 3.9 U	4 U 4 U	4.1 U 4.1 U	5 U 5 U		1500 J 2400 U	1300 J 2500 U	4.2 U 4.2 U	7100 J 10000 U	49 U 49 U	4.5 U 4.5 U
SW8260 79-20-9	Methyl Acetate			ug/kg ug/kg		31 UJ	19 U	20 U	4.1 U	25 U	12000 U	12000 U	13000 U	21 U	51000 U	250 U	22 U
SW8260 1634-04-4	Methyl Tert-Butyl Ether	930	500000	1000000 ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 108-87-2	Methylcyclohexane			ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 75-09-2 SW8260 100-42-5	Methylene Chloride	50	500000	1000000 ug/kg		6.2 UJ 6.2 UJ	3.9 U 3.9 U	4 U 4 U	4.1 U 4.1 U	5 U 5 U	2400 U 2400 U	2400 U 2400 U	2500 U 2500 U	4.2 U 4.2 U	10000 U 10000 U	49 U 49 U	4.5 U 4.5 U
SW8260 100-42-5	Styrene Tetrachloroethene	1300	150000	300000 ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 108-88-3	Toluene	700	500000	1000000 ug/kg	3.9 U	1.2 J	3.9 U	4 U	4.1 U	5 U	14000	83000	54000	4.2 U	19000	49 U	4.5 U
SW8260 1330-20-7	<u> </u>	260	500000	1000000 ug/kg		12 UJ	7.8 U	7.9 U	8.3 U	10 U		9200	8100	8.4 U	37000	98 U	9 U
SW8260 156-60-5 SW8260 10061-02	trans-1,2-Dichloroethene 6 trans-1,3-Dichloropropene	190	500000	1000000 ug/kg ug/kg		6.2 UJ 6.2 UJ	3.9 U 3.9 U	4 U 4 U	4.1 U 4.1 U	5 U 5 U	2400 U 2400 U	2400 U 2400 U	2500 U 2500 U	4.2 U 4.2 U	10000 U 10000 U	49 U 49 U	4.5 U 4.5 U
SW8260 10061-02 SW8260 79-01-6	Trichloroethene	470	200000	400000 ug/kg	,	6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 75-69-4	Trichlorofluoromethane	.,,,		ug/kg	,	6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8260 75-01-4		20	13000	27000 ug/kg		6.2 UJ	3.9 U	4 U	4.1 U	5 U	2400 U	2400 U	2500 U	4.2 U	10000 U	49 U	4.5 U
SW8270 83-32-9		20000	500000	1000000 ug/kg		180 U	200 U	200 U	200 U	190 U	1100 U	190 U	200 U	210 U	790000	710 J	200 U
SW8270 208-96-8 SW8270 120-12-7		100000 100000	500000 500000	1000000 ug/kg 1000000 ug/kg		180 U 180 U	200 U 200 U	200 U 200 U	200 U 200 U	190 U 190 U	1100 U 1100 U	190 U 190 U	200 U 200 U	35 J 210 U	820000 1500000	590 J 1100	200 U 200 U
SW8270 56-55-3		1000	5600	11000 ug/kg		26 J	200 U	200 U	200 U	190 U	120 J	190 U	31 J	210 U	2000000	1600	200 U
SW8270 50-32-8		1000	1000	1100 ug/kg	200 U	180 U	200 U	200 U	200 U	190 U	1100 U	190 U	34 J	210 U	2000000	1700	200 U
	Benzo(B)Fluoranthene	1000	5600	11000 ug/kg		180 U	200 U	200 U	200 U	190 U	1100 U	190 U	46 J	210 U	1700000	1300	200 U
SW8270 191-24-2 SW8270 207-08-9		100000 800	500000 56000	1000000 ug/kg 110000 ug/kg		180 U 180 U	200 U 200 U	200 U 200 U	200 U 200 U	190 U 190 U	1100 U 1100 U	190 U 190 U	200 U 26 J	210 U 210 U	930000 780000	820 J 600 J	200 U 200 U
SW8270 218-01-9		1000	56000	110000 ug/kg		180 U	200 U	200 U	200 U	190 U	1100 U	190 U	200 U	210 U	2100000	1800	200 U
SW8270 53-70-3	Dibenzo(a,h)Anthracene	330	560	1100 ug/kg	200 U	180 U	200 U	200 U	200 U	190 U	1100 U	190 U	200 U	210 U	300000	230 J	200 U
SW8270 206-44-0		100000	500000				200 U		200 U	190 U	170 J	190 U	46 J	210 U	4300000	3400	55 J
SW8270 86-73-7 SW8270 193-39-5	Fluorene Indeno(1,2,3-Cd)Pyrene	30000 500	500000 5600	1000000 ug/kg		180 U 180 U	200 U 200 U	200 U 200 U	200 U 200 U	190 U 190 U	1100 U 1100 U	190 U 190 U	200 U 200 U	26 J 210 U	2700000 850000	2300 610 J	200 U 200 U
SW8270 91-20-3	Naphthalene	12000	500000	10000 ug/kg		180	200 U	200 U	200 U	190 U	8700	600	950	1000	8800000	4900	60 J
SW8270 85-01-8	Phenanthrene	100000	500000	1000000 ug/kg	200 U	91 J	200 U	200 U	200 U	190 U	1100 U	190 U	200 U	210 U	9100000	8500	35 J
SW8270 129-00-0		100000	500000	1000000 ug/kg		41 J	200 U	200 U	200 U	190 U	1100 U	190 U	32 J	210 U	4200000	4200	27 J
SW6010 7440-47-3		30 27	1500	6800 mg/kg			24.2	26.6	23.7	22.8	20.3	22	23.7	28.8	11.4	14.7	21.3
SW9012 57-12-5	Cyaniue, rotai	27	27	10000 mg/kg	g 1.2 U	1 U	1.1 U	1.1 UJ	1.1 U	1.1 U	0.69 J	0.99 U	1.1 U	1.2 UJ	1.2 UJ	1.1 UJ	1 UJ

APPENDIX G COMPLETE SOIL ANALYTICAL RESULTS

							Ţ						<u>, </u>			T.	
						ation ID	B-16	B-16	B-17	B-17	B-18	B-18	B-19	B-20	B-29	B-30	B-30
					Start De		0.9	2.5	B-17-11102020-0.7-1.2 E 0.7	1.5	-18-11092020-0.9-1.4 0.9	8-18-11092020-4.5-5.0 4.5	4.5	6.1 6.1	1.8	0.5	B-30-11102020-3.5-4.0 3.5
					End De		1.4	3	1.2	2	1.4	5	5	6.6	2.3	1	4
						ole Date	11/10/2020	11/10/2020	11/10/2020	11/10/2020	11/9/2020	11/9/2020	11/9/2020	11/9/2020	11/10/2020	11/10/2020	11/10/2020
						SDG	480-177968-1	480-177968-1	480-177968-1	480-177968-1	480-177875-1	480-177875-1	480-177875-1	480-177875-1	480-177968-1	480-177968-1	480-177968-1
						mple ID	480-177968-6	480-177968-7	480-177968-1	480-177968-2	480-177875-2	480-177875-1	480-177875-4	480-177875-3	480-177968-8	480-177968-9	480-177968-10
					Sample Ty	De Code Matrix	REG SOIL	REG SOIL	REG SOIL	REG SOIL	REG SOIL	REG SOIL	REG SOIL	REG SOIL	REG SOIL	REG SOIL	REG SOIL
			UNRESTRICTED	COMMERCIAL	INDUSTRIAL	Mauix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	JOIL	SOIL	SOIL
Method	CAS_RN	Chemical Name	USE SCO	SCO	SCO	Unit											
SW8260	71-55-6	1,1,1-Trichloroethane	680	500000	1000000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260 SW8260	79-34-5	1,1,2,2-Tetrachloroethane				ug/kg	5800 U 5800 U	230 U 230 U	4.6 U 4.6 U	4.2 U 4.2 U	4400 U 4400 U	4.4 U 4.4 U	4.4 U 4.4 U	4.7 U 4.7 U	5.3 U 5.3 U	14000 U 14000 U	4.8 U 4.8 U
SW8260	76-13-1 79-00-5	1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane				ug/kg ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	75-34-3	1,1-Dichloroethane	270	240000	480000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	75-35-4	1,1-Dichloroethene	330	500000	1000000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	120-82-1	1,2,4-Trichlorobenzene				ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260 SW8260	96-12-8 106-93-4	1,2-Dibromo-3-Chloropropane				ug/kg	5800 U 5800 U	230 U 230 U	4.6 U 4.6 U	4.2 U 4.2 U	4400 U 4400 U	4.4 U 4.4 U	4.4 U 4.4 U	4.7 U 4.7 U	5.3 U	14000 U 14000 U	4.8 U 4.8 U
SW8260	95-50-1	1,2-Dibromoethane 1,2-Dichlorobenzene	1100	500000	1000000	ug/kg ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U 5.3 U	14000 U	4.8 U
SW8260	107-06-2	1,2-Dichloroethane	20	30000	60000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	78-87-5	1,2-Dichloropropane				ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	541-73-1	1,3-Dichlorobenzene	2400	280000	560000	ug/kg	5800 U	230 U	4.6 U 4.6 U	4.2 U	4400 U 4400 U	4.4 U 4.4 U	4.4 U 4.4 U	4.7 U	5.3 U	14000 U	4.8 U 4.8 U
SW8260 SW8260	106-46-7 78-93-3	1,4-Dichlorobenzene 2-Butanone	1800 120	130000 500000	250000 1000000	ug/kg ug/kg	5800 U 29000 U	230 U 1200 U	4.6 U 23 U	4.2 U 21 U	22000 U	4.4 U 22 U	4.4 U 22 U	4.7 U 24 U	5.3 U 27 U	14000 U 68000 U	4.8 U 24 U
SW8260	78-93-3 591-78-6	2-Hexanone	120	300000	1000000	ug/kg ug/kg	29000 U	1200 U	23 U	21 U	22000 U	22 U	22 U	24 U	27 U	68000 U	24 U
SW8260	108-10-1	4-Methyl-2-Pentanone				ug/kg	29000 U	1200 U	23 U	21 U	22000 U	22 U	22 U	24 U	27 U	68000 U	24 U
SW8260	67-64-1	Acetone	50	500000	1000000	ug/kg	29000 U	1200 U	21 J	41	22000 U	22 U	22 U	6.1 J	27 U	68000 U	21 J
SW8260	71-43-2	Benzene	60	44000	89000	ug/kg	17000	230 U	4.6 U	4.2 U	27000	4.4 U	4.4 U	4.7 U	5.3 U	29000	4.8 U
SW8260 SW8260	75-27-4 75-25-2	Bromodichloromethane Bromoform				ug/kg ug/kg	5800 U 5800 U	230 U 230 U	4.6 U 4.6 U	4.2 U 4.2 U	4400 U 4400 U	4.4 U 4.4 U	4.4 U 4.4 U	4.7 U 4.7 U	5.3 U 5.3 U	14000 U 14000 U	4.8 U 4.8 U
SW8260	74-83-9	Bromomethane				ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	75-15-0	Carbon Disulfide				ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	56-23-5	Carbon Tetrachloride	760	22000	44000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260 SW8260	108-90-7	Chlorobenzene	1100	500000	1000000	ug/kg	5800 U 5800 U	230 U 230 U	4.6 U 4.6 U	4.2 U 4.2 U	4400 U 4400 U	4.4 U 4.4 U	4.4 U 4.4 U	4.7 U 4.7 U	5.3 U 5.3 U	14000 U 14000 U	4.8 U 4.8 U
SW8260	75-00-3 67-66-3	Chloroethane Chloroform	370	350000	700000	ug/kg ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	74-87-3	Chloromethane	370	330000	7 00000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	156-59-2	cis-1,2-Dichloroethene	250	500000	1000000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	10061-01-5	cis-1,3-Dichloropropene				ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260 SW8260	110-82-7 124-48-1	Cyclohexane Dibromochloromethane				ug/kg ug/kg	5800 U 5800 U	230 U 230 U	4.6 U 4.6 U	4.2 U 4.2 U	4400 U 4400 U	4.4 U 4.4 U	4.4 U 4.4 U	4.7 U 4.7 U	5.3 U 5.3 U	14000 U 14000 U	4.8 U 4.8 U
SW8260	75-71-8	Dichlorodifluoromethane				ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	100-41-4	Ethylbenzene	1000	390000	780000	ug/kg	15000	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	98-82-8	Isopropylbenzene				ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260 SW8260	79-20-9 1634-04-4	Methyl Acetate Methyl Tert-Butyl Ether	930	500000	1000000	ug/kg ug/kg	29000 U 5800 U	1200 U 230 U	23 U 4.6 U	21 U 4.2 U	22000 U 4400 U	22 U 4.4 U	22 U 4.4 U	24 U 4.7 U	27 U 5.3 U	68000 U 14000 U	24 U 4.8 U
SW8260	108-87-2	Methylcyclohexane	930	300000	1000000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	75-09-2	Methylene Chloride	50	500000	1000000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	100-42-5	Styrene				ug/kg	30000	230 U	4.6 U	4.2 U	3300 J	4.4 U	4.4 U	4.7 U	5.3 U	15000	4.8 U
SW8260	127-18-4	Tetrachloroethene	1300	150000	300000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260 SW8260	108-88-3 1330-20-7	Toluene Total Xylenes	700 260	500000 500000	1000000 1000000	ug/kg ug/kg	36000 140000	230 U 460 U	0.62 J 9.1 U	4.2 U 8.4 U	19000 23000	4.4 U 8.7 U	4.4 U 8.7 U	4.7 U 9.5 U	5.3 U 11 U	19000 28000	4.8 U 9.7 U
SW8260	156-60-5	trans-1,2-Dichloroethene	190	500000	1000000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	10061-02-6	trans-1,3-Dichloropropene				ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260	79-01-6	Trichloroethene	470	200000	400000	ug/kg	5800 U	230 U	4.6 U	4.2 U	4400 U	4.4 U	4.4 U	4.7 U	5.3 U	14000 U	4.8 U
SW8260 SW8260	75-69-4 75-01-4	Trichlorofluoromethane Vinyl Chloride	20	13000	27000	ug/kg ug/kg	5800 U 5800 U	230 U 230 U	4.6 U 4.6 U	4.2 U 4.2 U	4400 U 4400 U	4.4 U 4.4 U	4.4 U 4.4 U	4.7 U 4.7 U	5.3 U 5.3 U	14000 U 14000 U	4.8 U 4.8 U
SW8270		Acenaphthene	20000	500000		ug/kg	670000	31 J	200 U	200 U	450000	74 J	190 U	230 U	220 U	410000	190 U
SW8270	208-96-8	Acenaphthylene	100000	500000	1000000	ug/kg	2100000	90 J	28 J	200 U	3200000	150 J	190 U	33 J	40 J	3300000	120 J
SW8270		Anthracene	100000	500000	1000000	ug/kg	14000000	310	200 U	200 U	3100000	380	190 U	230 U	220 U	4200000	190 U
SW8270 SW8270		Benzo(A)Purono	1000	5600		ug/kg	2100000 1800000	76 J 85 J	44 J 62 J	200 U 200 U	3000000 2800000	380 340	190 U 190 U	180 J 200 J	100 J 140 J	3100000 2800000	190 U 190 U
SW8270		Benzo(A)Pyrene Benzo(B)Fluoranthene	1000 1000	1000 5600	1100 11000	ug/kg ug/kg	1800000	110 J	69 J	200 U	2900000	350	190 U	190 J	180 J	3200000	190 U
SW8270	191-24-2	Benzo(G,H,I)perylene	100000	500000	1000000	ug/kg	890000	47 J	38 J	200 U	1600000	180 J	190 U	130 J	75]	1500000	190 U
SW8270		Benzo(K)Fluoranthene	800	56000	110000	ug/kg	970000	39 J	28 J	200 U	1300000	210	190 U	120 J	55 J	1200000	190 U
SW8270		Chrysene	1000	56000		ug/kg	2000000	87 J	200 U	200 U	2300000	330	190 U	180 J	96 J	3000000	190 U
SW8270 SW8270		Dibenzo(a,h)Anthracene Fluoranthene	330 100000	560 500000		ug/kg ug/kg	310000 6100000	210 U 200 J	200 U 80 J	200 U 200 U	380000 8700000	44 J 1200	190 U 190 U	40 J 390	220 U 230	460000 9400000	190 U 20 J
SW8270		Fluorene	30000	500000		ug/kg	4400000	85 J	200 U	200 U	3900000	300	190 U	230 U	220 U	3900000	83 J
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	500	5600	11000	ug/kg	900000	46 J	34 J	200 U	1500000	170 J	190 U	120 J	74 J	1400000	190 U
SW8270		Naphthalene	12000	500000		ug/kg	10000000	1900	77 J	38 J	9100000	840	130 J	44]	440	11000000	3600
		Phenanthrene	100000	500000		ug/kg	11000000	230	200 U	200 U	10000000	1100	190 U	200 J	54 J	1300000	74 J 190 U
SW8270 SW6010	7440-47-3	Pyrene Chromium	100000 30	500000 1500		ug/kg mg/kg	4100000 17.7	150 J 22.8	57 J 23	200 U 21.3	5600000	760 26.5	190 U 21.5	290 28.6	160 J 37.6	5900000 8.4	23.3
SW9012		Cyanide, Total	27	27		mg/kg	1 UJ	1.1 UJ	1.1 UJ	1.2 UJ	26.8	1.1 U	1.1 U	1.1 U	1.3 UJ	3.7 J-	1.1 UJ

					Location TD	MW-14		MW-14
					Location ID Field Sample ID	MW-14 MW-14 12102	020	MW-14 MW-140 12102020
					Sampled	12/10/2020		12/10/2020
					SDG	480-179236-		480-179236-1
					Lab Sample ID	480-179236-	1	480-179236-2
					Medium	Water		Water
					Sample Type Code	REG		FD
					Matrix	GW		GW
Makkad	Davanastav Cada	Davanahar Nama	Unite	Cus ation	NYSDEC Class GA			
	Parameter Code	Parameter Name		Fraction	GW			41
SW8260 SW8260		1,1,1-Trichloroethane	ug/l ug/l	T	<u>5</u> 5		U U	1 U 1 U
SW8260		1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane		T	5		U	1 U
SW8260		1,1,2-Trichloroethane		T	1		U	1 U
SW8260		1,1-Dichloroethane	ug/l	Ť	5		U	1 U
SW8260		1,1-Dichloroethene	ug/l	T	5		U	1 U
SW8260	120-82-1	1,2,4-Trichlorobenzene	ug/l	T	5	1	U	1 U
SW8260		1,2-Dibromo-3-Chloropropane	ug/l	T	0.04		U	1 U
SW8260		1,2-Dibromoethane	ug/l	T	0.0006	1	_	1 U
SW8260		1,2-Dichlorobenzene	ug/l	T	3	1		1 U
SW8260 SW8260		1,2-Dichloroethane	ug/l	T T	0.6		U	1 U
SW8260		1,2-Dichloropropane 1,3-Dichlorobenzene	ug/l ug/l	T	1 3		U	1 U 1 U
SW8260		1,4-Dichlorobenzene	ug/I ug/I	T T	3		U	1 U
SW8260		2-Butanone	ug/l	T T	50	10	_	10 U
SW8260		2-Hexanone	ug/l	Т	50	5		5 U
SW8260		4-Methyl-2-Pentanone	ug/l	T		5		5 U
SW8270		Acenaphthene	ug/l	Т	20	5		5.2 U
SW8270		Acenaphthylene	ug/l	T		5		5.2 U
SW8260		Acetone	ug/l	T	50	10		10 U
SW8270		Anthracene	ug/l	T	50		U	5.2 U
SW8260		Benzene	ug/l	T	1		U	1 U
SW8270		Benzo(A)Anthracene	ug/l	T	0.002		U	5.2 U
SW8270 SW8270		Benzo(A)Pyrene	ug/l ug/l	 -	ND 0.002	<u> </u>		5.2 U 5.2 U
SW8270		Benzo(B)Fluoranthene Benzo(G,H,I)pervlene	ug/l	T	0.002		U	5.2 U
SW8270		Benzo(K)Fluoranthene	ug/l	T	0.002		U	5.2 U
SW8260		Bromodichloromethane	ug/l	T	50		U	1 U
SW8260		Bromoform		T	50		U	1 U
SW8260	74-83-9	Bromomethane	ug/l	T	5	1	U	1 U
SW8260	75-15-0	Carbon Disulfide	ug/l	T	60	1	U	1 U
SW8260		Carbon Tetrachloride	ug/l	T	5		U	1 U
SW8260		Chlorobenzene	ug/l	T	5	1	_	1 U
SW8260		Chloroethane	ug/l	T	5		U	1 U
SW8260 SW8260		Chloroform	ug/l	T	7 5	1	U	1 U 1 U
	7440-47-3	Chloromethane Chromium	ug/l mg/L		0.05	0.0094	U	0.0069
SW8270		Chrysene		T	0.002		U	5.2 U
SW8260		cis-1,2-Dichloroethene	ug/l	Ť	5		U	1 U
	10061-01-5	cis-1,3-Dichloropropene	ug/l	T	0.4		U	1 U
SW9012		Cyanide, Total	mg/L	T	0.2	0.01		0.005 J-
SW8260		Cyclohexane	ug/l	T		1		1 U
SW8270		Dibenzo(a,h)Anthracene	ug/l	T		5		5.2 U
SW8260		Dibromochloromethane	ug/l	T	50		U	1 U
SW8260		Dichlorodifluoromethane	ug/l	T	5		U	1 U
SW8260 SW8270		Ethylbenzene Fluoranthene	ug/l ug/l	T T	5 50		U U	1 U 5.2 U
SW8270		Fluorene	ug/l	T T	50		U	5.2 U
SW8270		Indeno(1,2,3-Cd)Pyrene	ug/l	T	0.002		U	5.2 U
SW8260		Isopropylbenzene	ug/l	Т	5		U	1 U
SW8260		Methyl Acetate	ug/l	T		2.5		2.5 U
SW8260	1634-04-4	Methyl Tert-Butyl Ether	ug/l		10		U	1 U
SW8260		Methylcyclohexane	ug/l				U	1 U
SW8260		Methylene Chloride	ug/l		5		U	1 U
SW8270		Naphthalene	ug/l		10		U	5.2 U
SW8270		Phenanthrene	ug/l		50		U	5.2 U
SW8270		Pyrene Shrano	ug/l		50 5		U U	5.2 U
SW8260 SW8260		Styrene Tetrachloroethene	,	T	5		U	1 U 1 U
SW8260		Toluene		T	5		U	1 U
	1330-20-7	Total Xylenes		T	5		U	2 U
SW8260		trans-1,2-Dichloroethene	ug/l		5		U	1 U
	10061-02-6	trans-1,3-Dichloropropene		T	0.4		U	1 U
		Trichloroethene		Т	5		U	1 U
SW8260	79-01-6		ug/i					
SW8260 SW8260	75-69-4	Trichlorofluoromethane Vinyl Chloride		T	5 2	1	U U	1 U

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-177875-1

Client Project/Site: Honeywell - Tonawanda Plastics

For:

Parsons Corporation 180 Lawrence Bell Drive Suite 104 Williamsville, New York 14221

Attn: Mr. Jeff Poulsen

T

Authorized for release by: 11/23/2020 3:49:22 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

John Schove, Project Manager II (716)504-9838 John Schove @ Eurofinset.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

7

9

10

12

13

14

10

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	8
Surrogate Summary	16
	17
	24
Lab Chronicle	26
Certification Summary	28
·	29
Sample Summary	30
Chain of Custody	31
Receint Checklists	32

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Parsons Corporation Job ID: 480-177875-1

Project/Site: Honeywell - Tonawanda Plastics

Qualifier Description

Qualifiers

GC/MS VOA

Qualifier

*	LCS or LCSD is outside acceptance limits.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
-----------	------------------------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Surrogate recovery exceeds control limits

General Chemistry

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery Contains Free Liquid CFL CFU Colony Forming Unit Contains No Free Liquid **CNF**

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac Dilution Factor

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit **PQL**

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

Page 3 of 32

11/23/2020

Case Narrative

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177875-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-177875-1

Comments

No additional comments.

Receipt

The samples were received on 11/9/2020 5:05 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.2° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-558464 recovered above the upper control limit for Bromomethane. The sample(s) associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The associated samples are impacted: B-18-11092020-4.5-5.0 (480-177875-1), B-20-11092020-6.1-6.6 (480-177875-3) and B-19-11092020-4.5-5.0 (480-177875-4).

Method 8260C: The laboratory control sample (LCS) for preparation batch 480-558571 and analytical batch 480-558464 recovered outside control limits for the following analytes: Bromomethane and Chloroethane. These analytes were biased high in the LCS and were not detected in the associated sample(s); therefore, the data have been reported. The associated samples are: B-18-11092020-4.5-5.0 (480-177875-1), B-20-11092020-6.1-6.6 (480-177875-3) and B-19-11092020-4.5-5.0 (480-177875-4)

Method 8260C: The following sample was analyzed using medium level soil analysis and diluted to bring the concentration of target analytes within the calibration range: B-18-11092020-0.9-1.4 (480-177875-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-558565 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: B-18-11092020-0.9-1.4 (480-177875-2).

Method 8260C: The surrogate Dibromofluoromethane (SURR) was outside the 20%D limits on the continuing calibration verification (CCV) but was within laboratory limits. The following samples are impacted: B-18-11092020-0.9-1.4 (480-177875-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The following sample was diluted due to viscosity: B-18-11092020-0.9-1.4 (480-177875-2). Elevated reporting limits (RL) are provided.

Method 8270D: The following sample required a dilution due to sample viscosity: B-18-11092020-0.9-1.4 (480-177875-2). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3550C: Due to the matrix, the initial volume used for the following sample deviated from the standard procedure: B-18-11092020-0.9-1.4 (480-177875-2). The reporting limits (RLs) have been adjusted proportionately.

Method 3550C: Due to the matrix, the following sample could not be concentrated to the final method required volume: B-18-11092020-0.9-1.4 (480-177875-2). The reporting limits (RLs) are elevated proportionately.

Job ID: 480-177875-1

Case Narrative

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177875-1

Job ID: 480-177875-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

 $No\ additional\ analytical\ or\ quality\ issues\ were\ noted,\ other\ than\ those\ described\ above\ or\ in\ the\ Definitions/Glossary\ page.$

3

4

8

9

4 4

12

-

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177875-1

Client Sample ID: B-18-11092020-4.5-5.0

Lab Sample ID: 480-177875-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	74	J	200	30	ug/Kg	1	₩	8270D	Total/NA
Acenaphthylene	150	J	200	26	ug/Kg	1	₽	8270D	Total/NA
Anthracene	380		200	50	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	380		200	20	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	340		200	30	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	350		200	32	ug/Kg	1	₽	8270D	Total/NA
Benzo[g,h,i]perylene	180	J	200	22	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	210		200	26	ug/Kg	1	₽	8270D	Total/NA
Chrysene	330		200	46	ug/Kg	1	₽	8270D	Total/NA
Dibenz(a,h)anthracene	44	J	200	36	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	1200		200	22	ug/Kg	1	₽	8270D	Total/NA
Fluorene	300		200	24	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	170	J	200	25	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	840		200	26	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	1100		200	30	ug/Kg	1	₽	8270D	Total/NA
Pyrene	760		200	24	ug/Kg	1	₩	8270D	Total/NA
Chromium	26.5		0.62	0.25	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-18-11092020-0.9-1.4

Lab Sample ID: 480-177875-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Typ
Benzene	27000		4400	840	ug/Kg	50	₩	8260C	Total/NA
Toluene	19000		4400	1200	ug/Kg	50	₽	8260C	Total/NA
Xylenes, Total	23000		8900	2500	ug/Kg	50	₩	8260C	Total/NA
Styrene	3300	J	4400	1100	ug/Kg	50	₩	8260C	Total/NA
Acenaphthene	450000		380000	55000	ug/Kg	50	₩	8270D	Total/NA
Acenaphthylene	3200000		380000	49000	ug/Kg	50	₩	8270D	Total/NA
Anthracene	3100000		380000	93000	ug/Kg	50	₩	8270D	Total/NA
Benzo[a]anthracene	3000000		380000	38000	ug/Kg	50	₩	8270D	Total/NA
Benzo[a]pyrene	2800000		380000	55000	ug/Kg	50	₽	8270D	Total/NA
Benzo[b]fluoranthene	2900000		380000	60000	ug/Kg	50	₩	8270D	Total/NA
Benzo[g,h,i]perylene	1600000		380000	40000	ug/Kg	50	₩	8270D	Total/NA
Benzo[k]fluoranthene	1300000		380000	49000	ug/Kg	50	₽	8270D	Total/NA
Chrysene	2300000		380000	84000	ug/Kg	50	₩	8270D	Total/NA
Dibenz(a,h)anthracene	380000		380000	66000	ug/Kg	50	₽	8270D	Total/NA
Fluoranthene	8700000		380000	40000	ug/Kg	50	₩	8270D	Total/NA
Fluorene	3900000		380000	44000	ug/Kg	50	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1500000		380000	46000	ug/Kg	50	₽	8270D	Total/NA
Naphthalene	9100000		380000	49000	ug/Kg	50	₽	8270D	Total/NA
Phenanthrene	10000000		380000	55000	ug/Kg	50	₽	8270D	Total/NA
Pyrene	5600000		380000	44000	ug/Kg	50	₽	8270D	Total/NA
Chromium	3.0		0.61	0.24	mg/Kg	1	₽	6010C	Total/NA
Cyanide, Total	26.8		11.6	5.6	mg/Kg	10	₩.	9012B	Total/NA

Client Sample ID: B-20-11092020-6.1-6.6

Lab Sample ID: 480-177875-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	6.1	J	24	4.0	ug/Kg	1	₩	8260C	Total/NA
Acenaphthylene	33	J	230	29	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	180	J	230	23	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	200	J	230	33	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	190	J	230	36	ug/Kg	1	₽	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 6 of 32

2

3

5

7

9

11

12

14

Detection Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177875-1

Client Sample ID: B-20-11092020-6.1-6.6 (Continued)

Lab Sam	nle	ID:	480-1	77875-3
Lab Jaiii	DIE	ID.	TOU- I	11013-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[g,h,i]perylene	130	J	230	24	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	120	J	230	29	ug/Kg	1	₽	8270D	Total/NA
Chrysene	180	J	230	51	ug/Kg	1	₽	8270D	Total/NA
Dibenz(a,h)anthracene	40	J	230	40	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	390		230	24	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	120	J	230	28	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	44	J	230	29	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	200	J	230	33	ug/Kg	1	₽	8270D	Total/NA
Pyrene	290		230	27	ug/Kg	1	₽	8270D	Total/NA
Chromium	28.6		0.70	0.28	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-19-11092020-4.5-5.0

Lab Sample ID: 480-177875-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Naphthalene	130 J	190	25 ug/Kg	1 🌣	8270D	Total/NA
Chromium	21.5	0.60	0.24 mg/Kg	1 ☆	6010C	Total/NA

13

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-18-11092020-4.5-5.0 Lab Sample ID: 480-177875-1

Date Collected: 11/09/20 15:45

Date Received: 11/09/20 17:05

Matrix: Solid
Percent Solids: 81.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	4.4	U	4.4	0.32	ug/Kg	— <u></u>	11/11/20 11:37	11/11/20 14:03	
1,1,2,2-Tetrachloroethane	4.4	U	4.4	0.71	ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
1,1,2-Trichloro-1,2,2-trifluoroethane	4.4	U	4.4	0.99	ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
1,1,2-Trichloroethane	4.4	U	4.4	0.57	ug/Kg		11/11/20 11:37	11/11/20 14:03	
1,1-Dichloroethane	4.4	U	4.4	0.53	ug/Kg	₽	11/11/20 11:37	11/11/20 14:03	
1,1-Dichloroethene	4.4	U	4.4	0.53	ug/Kg	₽	11/11/20 11:37	11/11/20 14:03	
1,2,4-Trichlorobenzene	4.4	U	4.4	0.27	ug/Kg		11/11/20 11:37	11/11/20 14:03	
1,2-Dibromo-3-Chloropropane	4.4	U	4.4	2.2	ug/Kg	₽	11/11/20 11:37	11/11/20 14:03	
1,2-Dibromoethane	4.4	U	4.4	0.56	ug/Kg	₽	11/11/20 11:37	11/11/20 14:03	
1,2-Dichlorobenzene	4.4	U	4.4	0.34	ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
1,2-Dichloroethane	4.4	U	4.4	0.22	ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
1,2-Dichloropropane	4.4	U	4.4	2.2	ug/Kg	₽	11/11/20 11:37	11/11/20 14:03	
1,3-Dichlorobenzene	4.4	U	4.4	0.22	ug/Kg		11/11/20 11:37	11/11/20 14:03	
1,4-Dichlorobenzene	4.4		4.4	0.61	ug/Kg	₽	11/11/20 11:37	11/11/20 14:03	
2-Butanone (MEK)	22		22	1.6	ug/Kg	\$	11/11/20 11:37	11/11/20 14:03	
2-Hexanone	22	U	22	2.2	ug/Kg		11/11/20 11:37	11/11/20 14:03	
1-Methyl-2-pentanone (MIBK)	22	U	22		ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
Acetone	22	U	22	3.7	ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
Benzene	4.4		4.4	0.21	ug/Kg		11/11/20 11:37	11/11/20 14:03	
Bromodichloromethane	4.4		4.4	0.58	ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
Bromoform	4.4	U	4.4		ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
Bromomethane	4.4		4.4	0.39	ug/Kg		11/11/20 11:37	11/11/20 14:03	
Carbon disulfide	4.4		4.4		ug/Kg		11/11/20 11:37	11/11/20 14:03	
Carbon tetrachloride	4.4		4.4		ug/Kg		11/11/20 11:37	11/11/20 14:03	
Chlorobenzene	4.4		4.4	0.58	ug/Kg		11/11/20 11:37	11/11/20 14:03	
Chloroethane	4.4		4.4	0.99	ug/Kg		11/11/20 11:37	11/11/20 14:03	
Chloroform	4.4		4.4	0.27	ug/Kg		11/11/20 11:37	11/11/20 14:03	
Chloromethane	4.4		4.4	0.26	ug/Kg		11/11/20 11:37	11/11/20 14:03	
cis-1,2-Dichloroethene	4.4		4.4	0.56	ug/Kg ug/Kg	~ \$	11/11/20 11:37	11/11/20 14:03	
sis-1,3-Dichloropropene	4.4		4.4	0.63	ug/Kg ug/Kg	~ \$	11/11/20 11:37	11/11/20 14:03	
Cyclohexane	4.4		4.4	0.61	ug/Kg		11/11/20 11:37	11/11/20 14:03	
Dibromochloromethane	4.4		4.4	0.56	ug/Kg ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
Dichlorodifluoromethane	4.4		4.4		ug/Kg ug/Kg	~ \$	11/11/20 11:37	11/11/20 14:03	
Ethylbenzene	4.4		4.4	0.30	ug/Kg		11/11/20 11:37	11/11/20 14:03	
sopropylbenzene	4.4		4.4		ug/Kg ug/Kg	*	11/11/20 11:37	11/11/20 14:03	
Methyl acetate	22		22		ug/Kg ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
Methyl tert-butyl ether	4.4		4.4	0.43	ug/Kg		11/11/20 11:37	11/11/20 14:03	
Methylcyclohexane	4.4		4.4	0.66	ug/Kg ug/Kg	* \$	11/11/20 11:37	11/11/20 14:03	
Methylene Chloride	4.4		4.4	2.0	ug/Kg ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
Styrene	4.4		4.4		ug/Kg		11/11/20 11:37	11/11/20 14:03	
Fetrachloroethene	4.4		4.4	0.59	ug/Kg ug/Kg	~ \$	11/11/20 11:37	11/11/20 14:03	
Foluene	4.4		4.4		ug/Kg ug/Kg	₩	11/11/20 11:37	11/11/20 14:03	
rans-1,2-Dichloroethene	4.4		4.4		ug/Kg ug/Kg		11/11/20 11:37	11/11/20 14:03	
*	4.4					\$			
rans-1,3-Dichloropropene			4.4	1.9	ug/Kg		11/11/20 11:37	11/11/20 14:03	
Trichloroethene	4.4		4.4		ug/Kg		11/11/20 11:37	11/11/20 14:03	
Frichlorofluoromethane	4.4		4.4		ug/Kg	*	11/11/20 11:37	11/11/20 14:03	
/inyl chloride Kylenes, Total	4.4 8.7		4.4 8.7		ug/Kg ug/Kg	ф Ф	11/11/20 11:37 11/11/20 11:37	11/11/20 14:03 11/11/20 14:03	

Eurofins TestAmerica, Buffalo

Page 8 of 32

6

Job ID: 480-177875-1

3

4

6

Ö

10

12

1 /

Le

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-18-11092020-4.5-5.0 Lab Sample ID: 480-177875-1

Date Collected: 11/09/20 15:45 Matrix: Solid Date Received: 11/09/20 17:05 Percent Solids: 81.3

Surrogate	%Recovery	Qualifier Lim	its	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118	64 -	126	11/11/20 11:37	11/11/20 14:03	1
4-Bromofluorobenzene (Surr)	83	72 -	126	11/11/20 11:37	11/11/20 14:03	1
Dibromofluoromethane (Surr)	102	60 -	140	11/11/20 11:37	11/11/20 14:03	1
Toluene-d8 (Surr)	95	71 -	125	11/11/20 11:37	11/11/20 14:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	74	J	200	30	ug/Kg		11/16/20 07:58	11/17/20 19:25	1
Acenaphthylene	150	J	200	26	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Anthracene	380		200	50	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Benzo[a]anthracene	380		200	20	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Benzo[a]pyrene	340		200	30	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Benzo[b]fluoranthene	350		200	32	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Benzo[g,h,i]perylene	180	J	200	22	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Benzo[k]fluoranthene	210		200	26	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Chrysene	330		200	46	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Dibenz(a,h)anthracene	44	J	200	36	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Fluoranthene	1200		200	22	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Fluorene	300		200	24	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Indeno[1,2,3-cd]pyrene	170	J	200	25	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Naphthalene	840		200	26	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Phenanthrene	1100		200	30	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1
Pyrene	760		200	24	ug/Kg	₽	11/16/20 07:58	11/17/20 19:25	1

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl	94		60 - 120	11/16/20 07:58	11/17/20 19:25	1
	Nitrobenzene-d5 (Surr)	83		53 - 120	11/16/20 07:58	11/17/20 19:25	1
l	p-Terphenyl-d14 (Surr)	102		79 - 130	11/16/20 07:58	11/17/20 19:25	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	26.5		0.62	0.25	mg/Kg		11/18/20 15:33	11/20/20 14:39	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U	1.1	0.53	mg/Kg	#	11/11/20 17:09	11/12/20 16:03	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Percent Moisture	Result 18.7	Qualifier	——————————————————————————————————————	0.1		<u>D</u>	Prepared	Analyzed 11/11/20 16:59	Dil Fac

Job ID: 480-177875-1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-18-11092020-0.9-1.4 Lab Sample ID: 480-177875-2

Date Collected: 11/09/20 15:15

Date Received: 11/09/20 17:05

Matrix: Solid
Percent Solids: 85.0

Method: 8260C - Volatile Organ		-							
Analyte		Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	4400		4400	1200	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	5
1,1,2,2-Tetrachloroethane	4400		4400	720	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	5
1,1,2-Trichloro-1,2,2-trifluoroethane	4400	U	4400	2200	ug/Kg		11/10/20 12:31	11/11/20 23:01	5
,1,2-Trichloroethane	4400	U	4400	930	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	Ę
,1-Dichloroethane	4400	U	4400	1400	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	5
1,1-Dichloroethene	4400	U	4400	1500	ug/Kg		11/10/20 12:31	11/11/20 23:01	
,2,4-Trichlorobenzene	4400	U	4400	1700	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
,2-Dibromo-3-Chloropropane	4400	U	4400	2200	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
,2-Dichlorobenzene	4400	U	4400	1100	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
,2-Dichloroethane	4400	U	4400	1800	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
,2-Dichloropropane	4400	U	4400	720	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
,3-Dichlorobenzene	4400	U	4400	1200	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
,4-Dichlorobenzene	4400	U	4400	620	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
-Butanone (MEK)	22000	U	22000	13000	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
-Hexanone	22000	U	22000	9100	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
-Methyl-2-pentanone (MIBK)	22000	U	22000	1400	ug/Kg		11/10/20 12:31	11/11/20 23:01	
Acetone	22000	U	22000	18000	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
Benzene	27000		4400	840	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
romoform	4400		4400		ug/Kg		11/10/20 12:31	11/11/20 23:01	
romomethane	4400		4400	970	ug/Kg	*	11/10/20 12:31	11/11/20 23:01	
Carbon disulfide	4400		4400		ug/Kg	*	11/10/20 12:31	11/11/20 23:01	
Carbon tetrachloride	4400		4400		ug/Kg		11/10/20 12:31	11/11/20 23:01	
Chlorobenzene	4400		4400	580			11/10/20 12:31	11/11/20 23:01	
Dibromochloromethane	4400		4400		ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
Chloroethane	4400		4400		ug/Kg		11/10/20 12:31	11/11/20 23:01	
Chloroform	4400		4400			~	11/10/20 12:31	11/11/20 23:01	
Chloromethane	4400		4400	1100	ug/Kg ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
	4400		4400				11/10/20 12:31		
is-1,2-Dichloroethene				1200	ug/Kg	<u>*</u>		11/11/20 23:01	
Cyclohexane	4400		4400	980	ug/Kg	<u>*</u>	11/10/20 12:31	11/11/20 23:01	
Bromodichloromethane	4400		4400	890	ug/Kg	.	11/10/20 12:31	11/11/20 23:01	
Dichlorodifluoromethane	4400		4400	1900	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
Ethylbenzene	4400		4400	1300	ug/Kg	#	11/10/20 12:31	11/11/20 23:01	
,2-Dibromoethane	4400		4400	780	ug/Kg		11/10/20 12:31	11/11/20 23:01	
sopropylbenzene	4400		4400		ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
Methyl acetate	22000		22000	2100	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
Methyl tert-butyl ether	4400	U	4400		ug/Kg		11/10/20 12:31	11/11/20 23:01	
1ethylcyclohexane	4400	U	4400	2100	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
lethylene Chloride	4400	U	4400	880	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
etrachloroethene	4400	U	4400	600	ug/Kg	*	11/10/20 12:31	11/11/20 23:01	
oluene	19000		4400	1200	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
rans-1,2-Dichloroethene	4400	U	4400	1000	ug/Kg	☼	11/10/20 12:31	11/11/20 23:01	
ans-1,3-Dichloropropene	4400	U	4400	440	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
richloroethene	4400	U	4400	1200	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
richlorofluoromethane	4400	U	4400	2100	ug/Kg	₩	11/10/20 12:31	11/11/20 23:01	
inyl chloride	4400	U	4400	1500	ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
(ylenes, Total	23000		8900	2500	ug/Kg		11/10/20 12:31	11/11/20 23:01	
is-1,3-Dichloropropene	4400	U	4400		ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	
ityrene	3300		4400		ug/Kg	₽	11/10/20 12:31	11/11/20 23:01	

Job ID: 480-177875-1

2

3

6

8

10

. . 12

1 /

1.5

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-177875-2 Client Sample ID: B-18-11092020-0.9-1.4

Date Collected: 11/09/20 15:15 Matrix: Solid

Date Received: 11/09/20 17:05 Percent Solids: 85.0

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		53 - 146				11/10/20 12:31	11/11/20 23:01	50
4-Bromofluorobenzene (Surr)	112		49 - 148				11/10/20 12:31	11/11/20 23:01	50
Toluene-d8 (Surr)	105		50 - 149				11/10/20 12:31	11/11/20 23:01	50
Dibromofluoromethane (Surr)	116		60 - 140				11/10/20 12:31	11/11/20 23:01	50
Method: 8270D - Semivolatile Org	janic Compou	nds (GC/M	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	450000		380000	55000	ug/Kg	*	11/16/20 07:58	11/17/20 19:50	50
Acenaphthylene	3200000		380000	49000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Anthracene	3100000		380000	93000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Benzo[a]anthracene	3000000		380000	38000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Benzo[a]pyrene	2800000		380000	55000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Benzo[b]fluoranthene	2900000		380000	60000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Benzo[g,h,i]perylene	1600000		380000	40000	ug/Kg	₽	11/16/20 07:58	11/17/20 19:50	50
Benzo[k]fluoranthene	1300000		380000	49000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Chrysene	2300000		380000	84000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Dibenz(a,h)anthracene	380000		380000	66000	ug/Kg	₽	11/16/20 07:58	11/17/20 19:50	50
Fluoranthene	8700000		380000	40000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Fluorene	3900000		380000	44000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Indeno[1,2,3-cd]pyrene	1500000		380000	46000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Naphthalene	9100000		380000	49000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Phenanthrene	10000000		380000	55000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Pyrene	5600000		380000	44000	ug/Kg	₩	11/16/20 07:58	11/17/20 19:50	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	X	60 - 120				11/16/20 07:58	11/17/20 19:50	50
Nitrobenzene-d5 (Surr)	0	X	53 - 120				11/16/20 07:58	11/17/20 19:50	50
p-Terphenyl-d14 (Surr)	0	X	79 - 130				11/16/20 07:58	11/17/20 19:50	50
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	3.0		0.61	0.24	mg/Kg	₽	11/18/20 15:33	11/20/20 14:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	26.8		11.6	5.6	mg/Kg	₽	11/11/20 17:09	11/12/20 16:23	10
Analyte	Result	Qualifier	RL	RL		D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.0		0.1	0.1	%	_		11/11/20 16:59	1
Percent Solids	85.0		0.1	0.1	%			11/11/20 16:59	1

Job ID: 480-177875-1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-20-11092020-6.1-6.6

Lab Sample ID: 480-177875-3 Date Collected: 11/09/20 09:40 Date Received: 11/09/20 17:05

Matrix: Solid Percent Solids: 75.0

Job ID: 480-177875-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	4.7		4.7	0.34	ug/Kg	— -	11/11/20 11:37	11/11/20 14:28	
1,1,2,2-Tetrachloroethane	4.7	U	4.7	0.77	ug/Kg	₽	11/11/20 11:37	11/11/20 14:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	4.7	U	4.7	1.1	ug/Kg	₽	11/11/20 11:37	11/11/20 14:28	
1,1,2-Trichloroethane	4.7	U	4.7	0.62	ug/Kg		11/11/20 11:37	11/11/20 14:28	
1,1-Dichloroethane	4.7	U	4.7		ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
1,1-Dichloroethene	4.7	U	4.7		ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
1,2,4-Trichlorobenzene	4.7	U	4.7	0.29	ug/Kg		11/11/20 11:37	11/11/20 14:28	
1,2-Dibromo-3-Chloropropane	4.7	U	4.7		ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
1,2-Dibromoethane	4.7	U	4.7	0.61		₩	11/11/20 11:37	11/11/20 14:28	
1,2-Dichlorobenzene	4.7	U	4.7	0.37	ug/Kg		11/11/20 11:37	11/11/20 14:28	
1,2-Dichloroethane	4.7	U	4.7		ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
1,2-Dichloropropane	4.7		4.7		ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
1,3-Dichlorobenzene	4.7		4.7		ug/Kg		11/11/20 11:37	11/11/20 14:28	
1,4-Dichlorobenzene	4.7		4.7		ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
2-Butanone (MEK)	24		24	1.7	ug/Kg ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
2-Hexanone	24		24		ug/Kg		11/11/20 11:37	11/11/20 14:28	
4-Methyl-2-pentanone (MIBK)	24		24	1.6	ug/Kg ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Acetone	6.1		24	4.0	ug/Kg ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Benzene	4.7		4.7	0.23	ug/Kg		11/11/20 11:37	11/11/20 14:28	
Bromodichloromethane	4.7		4.7		ug/Kg ug/Kg	*	11/11/20 11:37	11/11/20 14:28	
Bromoform	4.7		4.7				11/11/20 11:37	11/11/20 14:28	
		U*			ug/Kg	.	11/11/20 11:37		
Bromomethane			4.7		0 0	₩		11/11/20 14:28	
Carbon disulfide	4.7		4.7		ug/Kg	₩.	11/11/20 11:37	11/11/20 14:28	
Carbon tetrachloride	4.7		4.7	0.46	ug/Kg	· · · · ·	11/11/20 11:37	11/11/20 14:28	
Chlorobenzene	4.7		4.7	0.63	ug/Kg	#	11/11/20 11:37	11/11/20 14:28	
Chloroethane		U *	4.7	1.1	ug/Kg	₽	11/11/20 11:37	11/11/20 14:28	
Chloroform	4.7		4.7	0.29	ug/Kg	 .	11/11/20 11:37	11/11/20 14:28	
Chloromethane	4.7		4.7	0.29	ug/Kg	₽	11/11/20 11:37	11/11/20 14:28	
cis-1,2-Dichloroethene	4.7		4.7	0.61	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
cis-1,3-Dichloropropene	4.7		4.7		ug/Kg	 .	11/11/20 11:37	11/11/20 14:28	
Cyclohexane	4.7		4.7		ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Dibromochloromethane	4.7		4.7	0.61	ug/Kg	₽	11/11/20 11:37	11/11/20 14:28	
Dichlorodifluoromethane	4.7	U	4.7	0.39	ug/Kg		11/11/20 11:37	11/11/20 14:28	
Ethylbenzene	4.7		4.7	0.33	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Isopropylbenzene	4.7	U	4.7	0.72	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Methyl acetate	24	U	24	2.9	ug/Kg		11/11/20 11:37	11/11/20 14:28	
Methyl tert-butyl ether	4.7	U	4.7	0.47	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Methylcyclohexane	4.7	U	4.7	0.72	ug/Kg	₽	11/11/20 11:37	11/11/20 14:28	
Methylene Chloride	4.7	U	4.7	2.2	ug/Kg	₽	11/11/20 11:37	11/11/20 14:28	
Styrene	4.7	U	4.7	0.24	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Tetrachloroethene	4.7	U	4.7	0.64	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Toluene	4.7	U	4.7	0.36	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
trans-1,2-Dichloroethene	4.7	U	4.7	0.49	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
trans-1,3-Dichloropropene	4.7	U	4.7	2.1	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Trichloroethene	4.7	U	4.7	1.0	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Trichlorofluoromethane	4.7	U	4.7	0.45	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Vinyl chloride	4.7	U	4.7	0.58	ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	
Xylenes, Total	9.5	U	9.5		ug/Kg	₩	11/11/20 11:37	11/11/20 14:28	

Eurofins TestAmerica, Buffalo

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-177875-3 Client Sample ID: B-20-11092020-6.1-6.6

Date Collected: 11/09/20 09:40 Matrix: Solid Date Received: 11/09/20 17:05 Percent Solids: 75.0

Surrogate	%Recovery Qua	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115	64 - 126	11/11/20 11:37	11/11/20 14:28	1
4-Bromofluorobenzene (Surr)	86	72 - 126	11/11/20 11:37	11/11/20 14:28	1
Dibromofluoromethane (Surr)	101	60 - 140	11/11/20 11:37	11/11/20 14:28	1
Toluene-d8 (Surr)	97	71 - 125	11/11/20 11:37	11/11/20 14:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	230	U	230	33	ug/Kg	<u></u>	11/16/20 07:58	11/17/20 20:14	1
Acenaphthylene	33	J	230	29	ug/Kg	₩	11/16/20 07:58	11/17/20 20:14	1
Anthracene	230	U	230	56	ug/Kg	₩	11/16/20 07:58	11/17/20 20:14	1
Benzo[a]anthracene	180	J	230	23	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Benzo[a]pyrene	200	J	230	33	ug/Kg	₩	11/16/20 07:58	11/17/20 20:14	1
Benzo[b]fluoranthene	190	J	230	36	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Benzo[g,h,i]perylene	130	J	230	24	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Benzo[k]fluoranthene	120	J	230	29	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Chrysene	180	J	230	51	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Dibenz(a,h)anthracene	40	J	230	40	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Fluoranthene	390		230	24	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Fluorene	230	U	230	27	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Indeno[1,2,3-cd]pyrene	120	J	230	28	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Naphthalene	44	J	230	29	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Phenanthrene	200	J	230	33	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1
Pyrene	290		230	27	ug/Kg	₽	11/16/20 07:58	11/17/20 20:14	1

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl	104		60 - 120	11/16/20 07:58	11/17/20 20:14	1
	Nitrobenzene-d5 (Surr)	86		53 - 120	11/16/20 07:58	11/17/20 20:14	1
l	p-Terphenyl-d14 (Surr)	107		79 - 130	11/16/20 07:58	11/17/20 20:14	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	28.6		0.70	0.28	mg/Kg	<u></u>	11/18/20 15:33	11/20/20 14:46	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U	1.1	0.55	mg/Kg	₽	11/11/20 17:09	11/12/20 16:06	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Percent Moisture	Result 25.0	Qualifier	0.1 —	0.1		<u>D</u>	Prepared	Analyzed 11/11/20 16:59	Dil Fac

Job ID: 480-177875-1

Client: Parsons Corporation

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Styrene

Toluene

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-19-11092020-4.5-5.0 Lab Sample ID: 480-177875-4

Date Collected: 11/09/20 16:05

Matrix: Solid

Date Received: 11/09/20 17:05

Percent Solids: 87.7

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 4.4 U 4.4 ₩ 11/11/20 11:37 1.1.1-Trichloroethane 0.32 ug/Kg 11/11/20 14:52 1,1,2,2-Tetrachloroethane 4.4 U 4.4 0.71 ug/Kg ₩ 11/11/20 11:37 11/11/20 14:52 1,1,2-Trichloro-1,2,2-trifluoroethane 4.4 U 4.4 1.0 ug/Kg ġ 11/11/20 11:37 11/11/20 14:52 4.4 U 1,1,2-Trichloroethane 4.4 0.57 ug/Kg 11/11/20 11:37 11/11/20 14:52 1,1-Dichloroethane 4.4 4.4 0.53 ug/Kg 11/11/20 11:37 11/11/20 14:52 11/11/20 14:52 1.1-Dichloroethene 44 U 4.4 0.53 ug/Kg 11/11/20 11:37 1,2,4-Trichlorobenzene 4.4 U 4.4 0.27 ug/Kg 11/11/20 11:37 11/11/20 14:52 1,2-Dibromo-3-Chloropropane 44 U 44 ug/Kg 11/11/20 11:37 11/11/20 14:52 2.2 ä 1.2-Dibromoethane 4.4 U 4.4 0.56 ug/Kg 11/11/20 11:37 11/11/20 14:52 4.4 U 4.4 0.34 ġ 11/11/20 11:37 11/11/20 14:52 1.2-Dichlorobenzene ug/Kg 4.4 U 4.4 11/11/20 11:37 11/11/20 14:52 1,2-Dichloroethane 0.22 ug/Kg 4.4 U 11/11/20 11:37 11/11/20 14:52 1.2-Dichloropropane 4.4 2.2 ug/Kg ₩ 1 1,3-Dichlorobenzene 4.4 U 4.4 ġ 11/11/20 11:37 11/11/20 14:52 ug/Kg 4.4 U 11/11/20 14:52 1.4-Dichlorobenzene 4.4 0.61 ug/Kg ť 11/11/20 11:37 2-Butanone (MEK) 22 LI 22 1.6 ug/Kg 11/11/20 11:37 11/11/20 14:52 2-Hexanone 22 U 22 2.2 ua/Ka 11/11/20 11:37 11/11/20 14:52 22 U 22 4-Methyl-2-pentanone (MIBK) 1.4 ug/Kg 11/11/20 11:37 11/11/20 14:52 22 22 Acetone U 3.7 ug/Kg 11/11/20 11:37 11/11/20 14:52 Benzene 44 U 44 0.21 ug/Kg ä 11/11/20 11:37 11/11/20 14:52 Bromodichloromethane 4.4 U 4.4 0.59 ug/Kg 11/11/20 11:37 11/11/20 14:52 44 11 4.4 Bromoform ť 11/11/20 11:37 11/11/20 14:52 2.2 ug/Kg 4.4 U ₽ 11/11/20 11:37 11/11/20 14:52 Bromomethane 4.4 0.39 ug/Kg Carbon disulfide 44 U 44 2.2 ug/Kg ġ 11/11/20 11:37 11/11/20 14:52 Carbon tetrachloride 4.4 U 4.4 0.42 11/11/20 11:37 11/11/20 14:52 ug/Kg 4.4 U 0.58 11/11/20 11:37 11/11/20 14:52 Chlorobenzene 4.4 ug/Kg Chloroethane 4.4 U ' 4.4 0.99 ug/Kg ₩ 11/11/20 11:37 11/11/20 14:52 Chloroform 4.4 4.4 0.27 ug/Kg ť 11/11/20 11:37 11/11/20 14:52 Chloromethane 4.4 U 4.4 0.26 ug/Kg ġ 11/11/20 11:37 11/11/20 14:52 cis-1,2-Dichloroethene 4.4 U 4.4 0.56 ä 11/11/20 11:37 11/11/20 14:52 ua/Ka 4.4 U cis-1,3-Dichloropropene 4.4 0.63 ug/Kg ď 11/11/20 11:37 11/11/20 14:52 4.4 U 4.4 0.61 ug/Kg ġ 11/11/20 11:37 11/11/20 14:52 Cyclohexane Dibromochloromethane 44 U 11/11/20 11:37 11/11/20 14:52 4.4 0.56 ug/Kg Dichlorodifluoromethane 4.4 0.36 ug/Kg 11/11/20 11:37 11/11/20 14:52 Ethylbenzene 44 11 44 0.30 ť 11/11/20 11:37 11/11/20 14:52 ug/Kg Isopropylbenzene 4.4 U 4.4 11/11/20 11:37 11/11/20 14:52 ug/Kg ₩ 22 U 22 11/11/20 11:37 11/11/20 14:52 Methyl acetate 2.6 ug/Kg ä Methyl tert-butyl ether 4.4 U 4.4 0.43 ug/Kg ġ 11/11/20 11:37 11/11/20 14:52 Methylcyclohexane 4.4 U 4.4 11/11/20 11:37 11/11/20 14:52 0.66 ug/Kg

Eurofins TestAmerica, Buffalo

11/11/20 14:52

11/11/20 14:52

11/11/20 14:52

11/11/20 14:52

11/11/20 14:52

11/11/20 14:52

11/11/20 14:52

11/11/20 14:52

11/11/20 14:52

11/11/20 14:52

4.4

4.4

4.4

4.4

4.4

4.4

44

4.4

4.4

8.7

2.0 ug/Kg

0.22

0.59

0.33

0.45

1.9 ug/Kg

0.96

0.41

0.53

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

0.73 ug/Kg

₩

ġ

ä

₿

11/11/20 11:37

11/11/20 11:37

11/11/20 11:37

11/11/20 11:37

11/11/20 11:37

11/11/20 11:37

11/11/20 11:37

11/11/20 11:37

11/11/20 11:37

11/11/20 11:37

4.4 U

4.4 U

44 U

4.4 U

4.4 U

44 U

4.4 U

4.4 U

8.7 U

4.4

Job ID: 480-177875-1

3

4

6

8

10

12

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-177875-4 Client Sample ID: B-19-11092020-4.5-5.0

Date Collected: 11/09/20 16:05 Matrix: Solid Date Received: 11/09/20 17:05 Percent Solids: 87.7

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	126	64 - 126	11/11/20 11:37	11/11/20 14:52	1
4-Bromofluorobenzene (Surr)	86	72 - 126	11/11/20 11:37	11/11/20 14:52	1
Dibromofluoromethane (Surr)	102	60 - 140	11/11/20 11:37	11/11/20 14:52	1
Toluene-d8 (Surr)	94	71 - 125	11/11/20 11:37	11/11/20 14:52	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	190	U	190	28	ug/Kg	<u></u>	11/16/20 07:58	11/17/20 20:39	1
Acenaphthylene	190	U	190	25	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Anthracene	190	U	190	48	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Benzo[a]anthracene	190	U	190	19	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Benzo[a]pyrene	190	U	190	28	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Benzo[b]fluoranthene	190	U	190	31	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Benzo[g,h,i]perylene	190	U	190	20	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Benzo[k]fluoranthene	190	U	190	25	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Chrysene	190	U	190	43	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Dibenz(a,h)anthracene	190	U	190	34	ug/Kg	₩	11/16/20 07:58	11/17/20 20:39	1
Fluoranthene	190	U	190	20	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Fluorene	190	U	190	23	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Indeno[1,2,3-cd]pyrene	190	U	190	24	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Naphthalene	130	J	190	25	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Phenanthrene	190	U	190	28	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1
Pyrene	190	U	190	23	ug/Kg	₽	11/16/20 07:58	11/17/20 20:39	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	90		60 - 120	11/16/20 07:58	11/17/20 20:39	1
Nitrobenzene-d5 (Surr)	80		53 - 120	11/16/20 07:58	11/17/20 20:39	1
p-Terphenyl-d14 (Surr)	104		79 - 130	11/16/20 07:58	11/17/20 20:39	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	21.5		0.60	0.24	mg/Kg	*	11/18/20 15:33	11/20/20 14:50	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U	1.1	0.52	mg/Kg	\$	11/11/20 17:09	11/12/20 16:07	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	12.3		0.1	0.1	%			11/11/20 16:59	1
Percent Solids	87.7		0.1	0.1	%			11/11/20 16:59	1

Job ID: 480-177875-1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Sur	rogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(64-126)	(72-126)	(60-140)	(71-125)
480-177875-1	B-18-11092020-4.5-5.0	118	83	102	95
480-177875-3	B-20-11092020-6.1-6.6	115	86	101	97
480-177875-4	B-19-11092020-4.5-5.0	126	86	102	94
LCS 480-558571/1-A	Lab Control Sample	105	98	93	96
MB 480-558571/2-A	Method Blank	120	84	104	95
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Sur	rogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(53-146)	(49-148)	(60-140)	(50-149)
480-177875-2	B-18-11092020-0.9-1.4	107	112	116	105
LCS 480-558324/1-A	Lab Control Sample	105	108	114	105
MB 480-558324/2-A	Method Blank	108	106	110	99
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

				Percent Surr	ogate Recovery (Acceptance Limits)
		FBP	NBZ	TPHd14	
Lab Sample ID	Client Sample ID	(60-120)	(53-120)	(79-130)	
480-177875-1	B-18-11092020-4.5-5.0	94	83	102	
480-177875-2	B-18-11092020-0.9-1.4	0 X	0 X	0 X	
480-177875-3	B-20-11092020-6.1-6.6	104	86	107	
480-177875-4	B-19-11092020-4.5-5.0	90	80	104	
LCS 480-559204/2-A	Lab Control Sample	99	89	103	
MB 480-559204/1-A	Method Blank	98	86	112	

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Page 16 of 32

Job ID: 480-177875-1

Client: Parsons Corporation Job ID: 480-177875-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-558324/2-A

Matrix: Solid

Analysis Batch: 558363

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 558324

9

10

12

13

Analyto	MB Posult		ы	MIDI	l Ini+	D	Dronarad	Analyzad	Dij E-
Analyte 1 1 1 Trichloroothane	Result 100	Qualifier	RL	MDL 28	ug/Kg	D	Prepared 11/10/20 12:31	Analyzed 11/10/20 21:50	Dil Fa
1,1,1-Trichloroethane	100		100				11/10/20 12:31		
1,1,2,2-Tetrachloroethane	100		100		ug/Kg			11/10/20 21:50	
1,1,2-Trichloro-1,2,2-trifluoroethane					ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,1,2-Trichloroethane	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,1-Dichloroethane	100		100	31	ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,1-Dichloroethene	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,2,4-Trichlorobenzene	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,2-Dibromo-3-Chloropropane	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,2-Dichlorobenzene	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,2-Dichloroethane	100		100	41	ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,2-Dichloropropane	100	U	100	16	ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,3-Dichlorobenzene	100	U	100	27	ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,4-Dichlorobenzene	100	U	100	14	ug/Kg		11/10/20 12:31	11/10/20 21:50	
2-Butanone (MEK)	500	U	500	300	ug/Kg		11/10/20 12:31	11/10/20 21:50	
2-Hexanone	500	U	500	210	ug/Kg		11/10/20 12:31	11/10/20 21:50	
4-Methyl-2-pentanone (MIBK)	500	U	500	32	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Acetone	500	U	500	410	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Benzene	100	U	100	19	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Bromoform	100	U	100	50	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Bromomethane	100	U	100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Carbon disulfide	100	U	100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Carbon tetrachloride	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Chlorobenzene	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Chloroethane	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Chloroform	100		100	69	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Chloromethane	100		100		ug/Kg ug/Kg		11/10/20 12:31	11/10/20 21:50	
cis-1,2-Dichloroethene	100		100		ug/Kg ug/Kg		11/10/20 12:31	11/10/20 21:50	
	100								
Bromodichloromethane			100	20	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Cyclohexane	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Dibromochloromethane	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
1,2-Dibromoethane	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Dichlorodifluoromethane	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Ethylbenzene	100		100	29	ug/Kg		11/10/20 12:31	11/10/20 21:50	
sopropylbenzene	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Methyl acetate	500	U	500	48	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Methyl tert-butyl ether	100	U	100	38	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Methylcyclohexane	100	U	100	47	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Methylene Chloride	100	U	100	20	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Tetrachloroethene	100	U	100	13	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Toluene	100	U	100	27	ug/Kg		11/10/20 12:31	11/10/20 21:50	
rans-1,2-Dichloroethene	100	U	100	24	ug/Kg		11/10/20 12:31	11/10/20 21:50	
rans-1,3-Dichloropropene	100	U	100	9.8	ug/Kg		11/10/20 12:31	11/10/20 21:50	
Trichloroethene	100	U	100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
cis-1,3-Dichloropropene	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Trichlorofluoromethane	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Styrene	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Vinyl chloride	100		100		ug/Kg		11/10/20 12:31	11/10/20 21:50	
Xylenes, Total	200		200		ug/Kg		11/10/20 12:31	11/10/20 21:50	

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-558324/2-A

Matrix: Solid

Analysis Batch: 558363

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-177875-1

Prep Batch: 558324

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		53 - 146	-	11/10/20 12:31	11/10/20 21:50	1
4-Bromofluorobenzene (Surr)	106		49 - 148		11/10/20 12:31	11/10/20 21:50	1
Toluene-d8 (Surr)	99		50 - 149		11/10/20 12:31	11/10/20 21:50	1
Dibromofluoromethane (Surr)	110		60 - 140		11/10/20 12:31	11/10/20 21:50	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-558324/1-A Matrix: Solid Prep Type: Total/NA Prep Batch: 558324 Analysis Batch: 558363

Analysis Batch: 558363	Spike	LCS	1.00				Prep Batch: 558324 %Rec.
Amalista	•			11		0/ Dag	Limits
Analyte 1,1,1-Trichloroethane	Added	3040	Qualifier	Unit	D	%Rec 122	68 - 130
	2500	2560		ug/Kg		102	73 ₋ 120
1,1,2,2-Tetrachloroethane				ug/Kg			
1,1,2-Trichloro-1,2,2-trifluoroetha	2500	2570		ug/Kg		103	10 _ 179
1,1,2-Trichloroethane	2500	2730		ug/Kg		109	80 - 120
1,1-Dichloroethane	2500	2790		ug/Kg		112	78 - 121
1,1-Dichloroethene	2500	2510		ug/Kg		100	48 - 133
1,2,4-Trichlorobenzene	2500	2990		ug/Kg		120	70 - 140
1,2-Dibromo-3-Chloropropane	2500	2450		ug/Kg		98	56 - 122
1,2-Dichlorobenzene	2500	2750		ug/Kg		110	78 ₋ 125
1,2-Dichloroethane	2500	2820		ug/Kg		113	74 - 127
1,2-Dichloropropane	2500	2850		ug/Kg		114	80 - 120
1,3-Dichlorobenzene	2500	2740		ug/Kg		110	80 ₋ 120
1,4-Dichlorobenzene	2500	2670		ug/Kg		107	80 - 120
2-Butanone (MEK)	12500	11900		ug/Kg		95	54 ₋ 149
2-Hexanone	12500	11900		ug/Kg		95	59 - 127
4-Methyl-2-pentanone (MIBK)	12500	12000		ug/Kg		96	74 - 120
Acetone	12500	11500		ug/Kg		92	47 - 141
Benzene	2500	2850		ug/Kg		114	77 ₋ 125
Bromoform	2500	2680		ug/Kg		107	48 - 125
Bromomethane	2500	2270		ug/Kg		91	39 - 149
Carbon disulfide	2500	2600		ug/Kg		104	40 - 136
Carbon tetrachloride	2500	2980		ug/Kg		119	54 - 135
Chlorobenzene	2500	2970		ug/Kg		119	76 ₋ 126
Chloroethane	2500	1820		ug/Kg		73	23 - 150
Chloroform	2500	2840		ug/Kg		114	78 - 120
Chloromethane	2500	2310		ug/Kg		93	61 - 124
cis-1,2-Dichloroethene	2500	2860		ug/Kg		115	79 - 124
Bromodichloromethane	2500	2770		ug/Kg		111	71 - 121
Cyclohexane	2500	2710		ug/Kg		108	49 - 129
Dibromochloromethane	2500	2810		ug/Kg		112	64 - 120
1,2-Dibromoethane	2500	2930		ug/Kg		117	80 - 120
Dichlorodifluoromethane	2500	2570		ug/Kg		103	10 - 150
Ethylbenzene	2500	2810		ug/Kg		112	78 ₋ 124
Isopropylbenzene	2500	2760		ug/Kg		110	76 - 120
Methyl acetate	5000	5280		ug/Kg		106	71 - 123
Methyl tert-butyl ether	2500	2710		ug/Kg		108	67 - 137
Methylcyclohexane	2500	2880		ug/Kg		115	50 - 130
Methylene Chloride	2500	2870		ug/Kg		115	75 ₋ 118
,		_0.0		-39			- ··-

Eurofins TestAmerica, Buffalo

Page 18 of 32

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177875-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-558324/1-A

Matrix: Solid

Analysis Batch: 558363

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 558324

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	2500	3180		ug/Kg		127	73 - 133	
Toluene	2500	2890		ug/Kg		115	75 - 124	
trans-1,2-Dichloroethene	2500	2980		ug/Kg		119	74 - 129	
Trichloroethene	2500	2910		ug/Kg		117	75 - 131	
cis-1,3-Dichloropropene	2500	2660		ug/Kg		107	75 ₋ 121	
Trichlorofluoromethane	2500	2850		ug/Kg		114	29 _ 158	
Styrene	2500	2940		ug/Kg		118	80 - 120	
Vinyl chloride	2500	2390		ug/Kg		96	59 - 124	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		53 - 146
4-Bromofluorobenzene (Surr)	108		49 - 148
Toluene-d8 (Surr)	105		50 - 149
Dibromofluoromethane (Surr)	114		60 - 140

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 558571

Lab Sample ID: MB 480-558571/2-A

Matrix: Solid

Analysis Batch: 558464

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.0	U	5.0	0.36	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.81	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0	U	5.0	1.1	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,1,2-Trichloroethane	5.0	U	5.0	0.65	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,1-Dichloroethane	5.0	U	5.0	0.61	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,1-Dichloroethene	5.0	U	5.0	0.61	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,2,4-Trichlorobenzene	5.0	U	5.0	0.30	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,2-Dichlorobenzene	5.0	U	5.0	0.39	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,2-Dichloroethane	5.0	U	5.0	0.25	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,2-Dichloropropane	5.0	U	5.0	2.5	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,3-Dichlorobenzene	5.0	U	5.0	0.26	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
1,4-Dichlorobenzene	5.0	U	5.0	0.70	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
2-Butanone (MEK)	25	U	25	1.8	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
2-Hexanone	25	U	25	2.5	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
4-Methyl-2-pentanone (MIBK)	25	U	25	1.6	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Acetone	25	U	25	4.2	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Benzene	5.0	U	5.0	0.25	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Bromoform	5.0	U	5.0	2.5	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Bromomethane	5.0	U	5.0	0.45	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Carbon disulfide	5.0	U	5.0	2.5	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Carbon tetrachloride	5.0	U	5.0	0.48	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Chlorobenzene	5.0	U	5.0	0.66	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Chloroethane	5.0	U	5.0	1.1	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Chloroform	5.0	U	5.0	0.31	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Chloromethane	5.0	U	5.0	0.30	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
cis-1,2-Dichloroethene	5.0	U	5.0	0.64	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
Bromodichloromethane	5.0	U	5.0	0.67	ug/Kg		11/11/20 11:37	11/11/20 12:32	1
					0 0				

Eurofins TestAmerica, Buffalo

Client: Parsons Corporation Job ID: 480-177875-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

мв мв

Lab Sample ID: MB 480-558571/2-A

Matrix: Solid

Analysis Batch: 558464

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 558571

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	5.0	U	5.0	0.70	ug/Kg		11/11/20 11:37	11/11/20 12:32	
Dibromochloromethane	5.0	U	5.0	0.64	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
1,2-Dibromoethane	5.0	U	5.0	0.64	ug/Kg		11/11/20 11:37	11/11/20 12:32	
Dichlorodifluoromethane	5.0	U	5.0	0.41	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
Ethylbenzene	5.0	U	5.0	0.35	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
Isopropylbenzene	5.0	U	5.0	0.75	ug/Kg		11/11/20 11:37	11/11/20 12:32	
Methyl acetate	25	U	25	3.0	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
Methyl tert-butyl ether	5.0	U	5.0	0.49	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
Methylcyclohexane	5.0	U	5.0	0.76	ug/Kg		11/11/20 11:37	11/11/20 12:32	
Methylene Chloride	5.0	U	5.0	2.3	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
Tetrachloroethene	5.0	U	5.0	0.67	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
Toluene	5.0	U	5.0	0.38	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
trans-1,2-Dichloroethene	5.0	U	5.0	0.52	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
trans-1,3-Dichloropropene	5.0	U	5.0	2.2	ug/Kg		11/11/20 11:37	11/11/20 12:32	
Trichloroethene	1.32	J	5.0	1.1	ug/Kg		11/11/20 11:37	11/11/20 12:32	
cis-1,3-Dichloropropene	5.0	U	5.0	0.72	ug/Kg		11/11/20 11:37	11/11/20 12:32	•
Trichlorofluoromethane	5.0	U	5.0	0.47	ug/Kg		11/11/20 11:37	11/11/20 12:32	
Styrene	5.0	U	5.0	0.25	ug/Kg		11/11/20 11:37	11/11/20 12:32	
Vinyl chloride	5.0	U	5.0	0.61	ug/Kg		11/11/20 11:37	11/11/20 12:32	
Xylenes, Total	10	U	10	0.84	ug/Kg		11/11/20 11:37	11/11/20 12:32	

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		64 - 126	11/11/20 11:37	11/11/20 12:32	1
4-Bromofluorobenzene (Surr)	84		72 - 126	11/11/20 11:37	11/11/20 12:32	1
Toluene-d8 (Surr)	95		71 - 125	11/11/20 11:37	11/11/20 12:32	1
Dibromofluoromethane (Surr)	104		60 - 140	11/11/20 11:37	11/11/20 12:32	1

Lab Sample ID: LCS 480-558571/1-A

Matrix: Solid

Analysis Batch: 558464

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 558571**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	48.0		ug/Kg		96	77 _ 121	
1,1,2,2-Tetrachloroethane	50.0	41.8		ug/Kg		84	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	48.6		ug/Kg		97	60 _ 140	
ne								
1,1,2-Trichloroethane	50.0	44.0		ug/Kg		88	78 - 122	
1,1-Dichloroethane	50.0	49.9		ug/Kg		100	73 - 126	
1,1-Dichloroethene	50.0	48.2		ug/Kg		96	59 - 125	
1,2,4-Trichlorobenzene	50.0	41.6		ug/Kg		83	64 - 120	
1,2-Dibromo-3-Chloropropane	50.0	42.6		ug/Kg		85	63 - 124	
1,2-Dichlorobenzene	50.0	43.7		ug/Kg		87	75 - 120	
1,2-Dichloroethane	50.0	50.4		ug/Kg		101	77 _ 122	
1,2-Dichloropropane	50.0	48.8		ug/Kg		98	75 ₋ 124	
1,3-Dichlorobenzene	50.0	45.2		ug/Kg		90	74 - 120	
1,4-Dichlorobenzene	50.0	44.6		ug/Kg		89	73 - 120	
2-Butanone (MEK)	250	248		ug/Kg		99	70 - 134	
2-Hexanone	250	247		ug/Kg		99	59 - 130	
4-Methyl-2-pentanone (MIBK)	250	242		ug/Kg		97	65 _ 133	

Eurofins TestAmerica, Buffalo

Page 20 of 32

Spike

LCS LCS

Job ID: 480-177875-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-558571/1-A

Matrix: Solid

Analysis Batch: 558464

Client: Parsons Corporation

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

Prep Batch: 558571

							,	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	250	304		ug/Kg		122	61 - 137	
Benzene	50.0	45.8		ug/Kg		92	79 - 127	
Bromoform	50.0	47.5		ug/Kg		95	68 - 126	
Bromomethane	50.0	85.7	*	ug/Kg		171	37 _ 149	
Carbon disulfide	50.0	56.5		ug/Kg		113	64 - 131	
Carbon tetrachloride	50.0	46.5		ug/Kg		93	75 ₋ 135	
Chlorobenzene	50.0	44.8		ug/Kg		90	76 - 124	
Chloroethane	50.0	76.3	*	ug/Kg		153	69 _ 135	
Chloroform	50.0	46.4		ug/Kg		93	80 - 120	
Chloromethane	50.0	60.0		ug/Kg		120	63 - 127	
cis-1,2-Dichloroethene	50.0	43.5		ug/Kg		87	81 _ 120	
Bromodichloromethane	50.0	53.7		ug/Kg		107	80 - 122	
Cyclohexane	50.0	44.2		ug/Kg		88	65 _ 120	
Dibromochloromethane	50.0	45.7		ug/Kg		91	76 ₋ 125	
1,2-Dibromoethane	50.0	41.8		ug/Kg		84	78 ₋ 120	
Dichlorodifluoromethane	50.0	42.8		ug/Kg		86	57 _ 142	
Ethylbenzene	50.0	46.1		ug/Kg		92	80 _ 120	
Isopropylbenzene	50.0	43.2		ug/Kg		86	72 _ 120	
Methyl acetate	100	108		ug/Kg		108	55 ₋ 136	
Methyl tert-butyl ether	50.0	47.7		ug/Kg		95	63 - 125	
Methylcyclohexane	50.0	44.8		ug/Kg		90	60 - 140	
Methylene Chloride	50.0	36.3		ug/Kg		73	61 - 127	
Tetrachloroethene	50.0	39.2		ug/Kg		78	74 - 122	
Toluene	50.0	44.8		ug/Kg		90	74 - 128	

50.0

50.0

50.0

50.0

50.0

50.0

44.9

47.1

50.0

62.0

46.4

61.6

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		64 - 126
4-Bromofluorobenzene (Surr)	98		72 - 126
Toluene-d8 (Surr)	96		71 - 125
Dibromofluoromethane (Surr)	93		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-559204/1-A

Matrix: Solid

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Styrene

Vinyl chloride

Analysis Batch: 559510

Client Sample ID: Method Blank
Prep Type: Total/NA

90

94

100

124

93

123

78 - 126

77 - 129

80 - 120

65 - 146

80 - 120

61 - 133

Prep Batch: 559204

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	170	U	170	25	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Acenaphthylene	170	U	170	22	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Anthracene	170	U	170	41	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Benzo[a]anthracene	170	U	170	17	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Benzo[a]pyrene	170	U	170	25	ug/Kg		11/16/20 07:58	11/17/20 16:31	1

Eurofins TestAmerica, Buffalo

11/23/2020

Page 21 of 32

6

3

5

6

8

10

40

13

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177875-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 480-559204/1-A

Matrix: Solid

Analysis Batch: 559510

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 559204

	IVID	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	170	U	170	27	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Benzo[g,h,i]perylene	170	U	170	18	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Benzo[k]fluoranthene	170	U	170	22	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Chrysene	170	U	170	38	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Dibenz(a,h)anthracene	170	U	170	30	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Fluoranthene	170	U	170	18	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Fluorene	170	U	170	20	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Indeno[1,2,3-cd]pyrene	170	U	170	21	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Naphthalene	170	U	170	22	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Phenanthrene	170	U	170	25	ug/Kg		11/16/20 07:58	11/17/20 16:31	1
Pyrene	170	U	170	20	ug/Kg		11/16/20 07:58	11/17/20 16:31	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	98	60 - 120	11/16/20 07:58	11/17/20 16:31	1
Nitrobenzene-d5 (Surr)	86	53 - 120	11/16/20 07:58	11/17/20 16:31	1
p-Terphenyl-d14 (Surr)	112	79 - 130	11/16/20 07:58	11/17/20 16:31	1

Lab Sample ID: LCS 480-559204/2-A

Matrix: Solid

Analysis Batch: 559510

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 559204

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	1650	1620		ug/Kg		98	62 - 120	
Acenaphthylene	1650	1710		ug/Kg		103	58 - 121	
Anthracene	1650	1800		ug/Kg		109	62 _ 120	
Benzo[a]anthracene	1650	1620		ug/Kg		98	65 _ 120	
Benzo[a]pyrene	1650	1850		ug/Kg		112	64 - 120	
Benzo[b]fluoranthene	1650	1910		ug/Kg		116	64 - 120	
Benzo[g,h,i]perylene	1650	1830		ug/Kg		111	45 - 145	
Benzo[k]fluoranthene	1650	1730		ug/Kg		105	65 _ 120	
Chrysene	1650	1600		ug/Kg		97	64 - 120	
Dibenz(a,h)anthracene	1650	1830		ug/Kg		110	54 - 132	
Fluoranthene	1650	1910		ug/Kg		115	62 _ 120	
Fluorene	1650	1730		ug/Kg		105	63 - 120	
Indeno[1,2,3-cd]pyrene	1650	1790		ug/Kg		108	56 ₋ 134	
Naphthalene	1650	1450		ug/Kg		88	55 _ 120	
Phenanthrene	1650	1720		ug/Kg		104	60 - 120	
Pyrene	1650	1590		ug/Kg		96	61 _ 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	99		60 - 120
Nitrobenzene-d5 (Surr)	89		53 - 120
p-Terphenyl-d14 (Surr)	103		79 - 130

Client: Parsons Corporation Job ID: 480-177875-1

RL

0.97

MDL Unit

0.47 mg/Kg

Project/Site: Honeywell - Tonawanda Plastics

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-558634/1-A **Matrix: Solid**

Analysis Batch: 558835

MB MB

Analyte Result Qualifier Cyanide, Total 0.97 U

Lab Sample ID: LCSSRM 480-558634/2-A ^5

Matrix: Solid Analysis Batch: 558835

Analyte Cyanide, Total

Spike Added 23.1

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 558634**

Client Sample ID: Method Blank

Analyzed

11/12/20 15:46

Prep Type: Total/NA

Prep Batch: 558634

LCSSRM LCSSRM %Rec. Result Qualifier Limits Unit D %Rec 16.63 mg/Kg 72.0 17.0 - 162.

8

Prepared

11/11/20 17:09

Dil Fac

Job ID: 480-177875-1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

GC/MS VOA

Prep Batch: 558324

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	5035A_H	
MB 480-558324/2-A	Method Blank	Total/NA	Solid	5035A_H	
LCS 480-558324/1-A	Lab Control Sample	Total/NA	Solid	5035A_H	

Analysis Batch: 558363

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-558324/2-A	Method Blank	Total/NA	Solid	8260C	558324
LCS 480-558324/1-A	Lab Control Sample	Total/NA	Solid	8260C	558324

Analysis Batch: 558464

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	8260C	558571
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	8260C	558571
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	8260C	558571
MB 480-558571/2-A	Method Blank	Total/NA	Solid	8260C	558571
LCS 480-558571/1-A	Lab Control Sample	Total/NA	Solid	8260C	558571

Analysis Batch: 558565

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	8260C	558324

Prep Batch: 558571

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	5035A_L	
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	5035A_L	
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	5035A_L	
MB 480-558571/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-558571/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	

GC/MS Semi VOA

Prep Batch: 559204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	3550C	
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	3550C	
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	3550C	
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	3550C	
MB 480-559204/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-559204/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Analysis Batch: 559510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	8270D	559204
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	8270D	559204
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	8270D	559204
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	8270D	559204
MB 480-559204/1-A	Method Blank	Total/NA	Solid	8270D	559204
LCS 480-559204/2-A	Lab Control Sample	Total/NA	Solid	8270D	559204

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177875-1

Metals

Prep Batch: 559773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	3050B	
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	3050B	
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	3050B	
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	3050B	

Analysis Batch: 560303

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	6010C	559773
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	6010C	559773
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	6010C	559773
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	6010C	559773

General Chemistry

Analysis Batch: 558630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	Moisture	
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	Moisture	
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	Moisture	
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	Moisture	

Prep Batch: 558634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	9012B	
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	9012B	
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	9012B	
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	9012B	
MB 480-558634/1-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 480-558634/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	

Analysis Batch: 558835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177875-1	B-18-11092020-4.5-5.0	Total/NA	Solid	9012B	558634
480-177875-2	B-18-11092020-0.9-1.4	Total/NA	Solid	9012B	558634
480-177875-3	B-20-11092020-6.1-6.6	Total/NA	Solid	9012B	558634
480-177875-4	B-19-11092020-4.5-5.0	Total/NA	Solid	9012B	558634
MB 480-558634/1-A	Method Blank	Total/NA	Solid	9012B	558634
LCSSRM 480-558634/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	558634

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-18-11092020-4.5-5.0

Lab Sample ID: 480-177875-1 Date Collected: 11/09/20 15:45

Matrix: Solid

Date Received: 11/09/20 17:05

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab GSR Total/NA Analysis Moisture 558630 11/11/20 16:59 TAL BUF

Client Sample ID: B-18-11092020-4.5-5.0 Lab Sample ID: 480-177875-1

Date Collected: 11/09/20 15:45 **Matrix: Solid** Date Received: 11/09/20 17:05 Percent Solids: 81.3

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number or Analyzed Analyst Туре Run Lab 5035A_L 558571 11/11/20 11:37 WJD TAL BUF Total/NA Prep Total/NA 8260C TAL BUF Analysis 558464 11/11/20 14:03 CDC 1 Prep 3550C VXF TAL BUF Total/NA 559204 11/16/20 07:58 8270D 559510 TAL BUF Total/NA Analysis 11/17/20 19:25 PJQ 1 Total/NA Prep 3050B 559773 11/18/20 15:33 ASD TAL BUF Total/NA Analysis 6010C 560303 11/20/20 14:39 TAL BUF AMH 9012B TAL BUF Total/NA Prep 558634 11/11/20 17:09 ALT TAL BUF Total/NA Analysis 9012B 1 558835 11/12/20 16:03 CRK

Client Sample ID: B-18-11092020-0.9-1.4 Lab Sample ID: 480-177875-2

Date Collected: 11/09/20 15:15 Matrix: Solid

Date Received: 11/09/20 17:05

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab GSR TAL BUF Total/NA Analysis Moisture 558630 11/11/20 16:59

Client Sample ID: B-18-11092020-0.9-1.4 Lab Sample ID: 480-177875-2

Date Collected: 11/09/20 15:15 **Matrix: Solid** Date Received: 11/09/20 17:05 Percent Solids: 85.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H			558324	11/10/20 12:31	AMM	TAL BUF
Total/NA	Analysis	8260C		50	558565	11/11/20 23:01	AMM	TAL BUF
Total/NA	Prep	3550C			559204	11/16/20 07:58	VXF	TAL BUF
Total/NA	Analysis	8270D		50	559510	11/17/20 19:50	PJQ	TAL BUF
Total/NA	Prep	3050B			559773	11/18/20 15:33	ASD	TAL BUF
Total/NA	Analysis	6010C		1	560303	11/20/20 14:43	AMH	TAL BUF
Total/NA	Prep	9012B			558634	11/11/20 17:09	ALT	TAL BUF
Total/NA	Analysis	9012B		10	558835	11/12/20 16:23	CRK	TAL BUF

Client Sample ID: B-20-11092020-6.1-6.6 Lab Sample ID: 480-177875-3

Date Collected: 11/09/20 09:40 **Matrix: Solid**

Date Received: 11/09/20 17:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	558630	11/11/20 16:59	GSR	TAL BUF

11/23/2020

Lab Chronicle

Client: Parsons Corporation Job ID: 480-177875-1

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-20-11092020-6.1-6.6

Lab Sample ID: 480-177875-3 Date Collected: 11/09/20 09:40 **Matrix: Solid**

Date Received: 11/09/20 17:05 Percent Solids: 75.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			558571	11/11/20 11:37	WJD	TAL BUF
Total/NA	Analysis	8260C		1	558464	11/11/20 14:28	CDC	TAL BUF
Total/NA	Prep	3550C			559204	11/16/20 07:58	VXF	TAL BUF
Total/NA	Analysis	8270D		1	559510	11/17/20 20:14	PJQ	TAL BUF
Total/NA	Prep	3050B			559773	11/18/20 15:33	ASD	TAL BUF
Total/NA	Analysis	6010C		1	560303	11/20/20 14:46	AMH	TAL BUF
Total/NA	Prep	9012B			558634	11/11/20 17:09	ALT	TAL BUF
Total/NA	Analysis	9012B		1	558835	11/12/20 16:06	CRK	TAL BUF

Client Sample ID: B-19-11092020-4.5-5.0 Lab Sample ID: 480-177875-4

Date Collected: 11/09/20 16:05 **Matrix: Solid**

Date Received: 11/09/20 17:05

Batch Dilution Batch Batch Prepared or Analyzed Prep Type Type Method Run Factor Number Analyst Lab Total/NA Analysis Moisture 558630 11/11/20 16:59 GSR TAL BUF

Client Sample ID: B-19-11092020-4.5-5.0 Lab Sample ID: 480-177875-4

Date Collected: 11/09/20 16:05 **Matrix: Solid** Date Received: 11/09/20 17:05

Percent Solids: 87.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			558571	11/11/20 11:37	WJD	TAL BUF
Total/NA	Analysis	8260C		1	558464	11/11/20 14:52	CDC	TAL BUF
Total/NA	Prep	3550C			559204	11/16/20 07:58	VXF	TAL BUF
Total/NA	Analysis	8270D		1	559510	11/17/20 20:39	PJQ	TAL BUF
Total/NA	Prep	3050B			559773	11/18/20 15:33	ASD	TAL BUF
Total/NA	Analysis	6010C		1	560303	11/20/20 14:50	AMH	TAL BUF
Total/NA	Prep	9012B			558634	11/11/20 17:09	ALT	TAL BUF
Total/NA	Analysis	9012B		1	558835	11/12/20 16:07	CRK	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Parsons Corporation Job ID: 480-177875-1

Project/Site: Honeywell - Tonawanda Plastics

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date
New York	NE	ELAP	10026	04-01-21
The following analytes the agency does not of	• •	t the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for
Analysis Method	Prep Method	Matrix	Analyte	
Analysis Method Moisture	Prep Method	Matrix Solid	Analyte Percent Moisture	

1

3

4

5

7

11

12

1/

Method Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Method **Method Description** Protocol Laboratory 8260C Volatile Organic Compounds by GC/MS SW846 TAL BUF TAL BUF 8270D Semivolatile Organic Compounds (GC/MS) SW846 6010C Metals (ICP) SW846 TAL BUF 9012B Cyanide, Total andor Amenable SW846 TAL BUF Moisture Percent Moisture EPA TAL BUF Preparation, Metals 3050B TAL BUF SW846 3550C Ultrasonic Extraction SW846 TAL BUF 5035A_H Closed System Purge and Trap SW846 TAL BUF 5035A L Closed System Purge and Trap SW846 TAL BUF 9012B SW846 TAL BUF Cyanide, Total and/or Amenable, Distillation

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-177875-1

2

3

4

6

8

9

10

12

16

Sample Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID Client Sample ID Matrix Collected Received Asset ID 480-177875-1 B-18-11092020-4.5-5.0 Solid 11/09/20 15:45 11/09/20 17:05 480-177875-2 B-18-11092020-0.9-1.4 Solid 11/09/20 15:15 11/09/20 17:05 480-177875-3 B-20-11092020-6.1-6.6 Solid 11/09/20 09:40 11/09/20 17:05 480-177875-4 B-19-11092020-4.5-5.0 Solid 11/09/20 16:05 11/09/20 17:05

Job ID: 480-177875-1

4

6

0

9

10

111

13

14

eurofins Environment Testing America

12 13

Eurofins TestAmerica, Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

	Sampler			Lab PM:	Λ:		Carrier Tracking No(s):			
Client Information				Scho	Schove, John R	~		480-15272	480-152727-33964.4	
Client Contact: Mr. Jeff Poulsen	Phone:			E-Mail: John.	Schove@	E-Mail: John.Schove@Eurofinset.com		Page: Page ♠ of	4	
Company: Parsons Corporation						Analy	Analysis Requested	"# qop		
Address: 180 Lawrence Bell Drive Suite 104	Due Date Requested:	:p:		u u				Preservation Codes:		
City: Williamsville	TAT Requested (days):	ıys):						A - HCL B - NaOH C - Zn Acetà		
State, Zip: NY, 14221	STANDARD	63						D - Nitric Acid E - NaHSO4	oid P - Na204S 4 Q - Na2SO3	
Phone:	Po #: Purchase Order Requested	Requested			(0			G - Amchlo G - Amchlo H - Ascorbic		hydrate
Email: jeffrey.poulsen@parsons.com	, MO #:				AND DESCRIPTION OF THE PERSON NAMED IN					
Project Name: Honeywell - Tonawanda Plastics	Project #: 48023001				AND DESCRIPTION OF THE PERSON NAMED IN	səlite		K-EDIA L-EDA	W - pH 4-5 Z - other (specify)	~
Site:	SSOW#:				SD (Y			of cor		
Samule Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (w=water, S=solid, O=waste/oil, BT=Tissue, A=Air)	Field Filtered S Perform MS/M B260C - TCL VO	8270D - PAH Se		TedmuM IstoT	Special Instructions/Note:	te:
	$\langle \rangle$	X		Preservation Code:	X	z				
B-18-11092020-45-50	11/9/2020	18:45	2	Solid		X				
B-18, 1(092020-0-9-1.4	11/4/2020	2	2	Solid		X				
B-20- 11092020-6.1-6.6	11/9/1220 09	04:40	9	Solid		XX				
B-19-1109220-4.5-5.0	11/9/2010	16:05	2	Solid	_	XX				
				Solid						
				Solid						
				Solid						
							480-177875	480-177875 Chain of Custon		
						+				
Possible Hazard Identification Non-Hazard Elammable Skin Irritant	Poison B Unknown	[]	Radiological		Sam	ple Disposal (A fe	e may be assessed if sam	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Month	r than 1 month)	
ested: I, II, III, IV, O					Spec	Special Instructions/QC Requirements	Requirements:			
Empty Kit Relinquished by:		Date:			Time:		Method	Method of Shipment:		
Relinquished by Tayler Schweige	0	1 seac	16.55	Company	N	Received by:	Bouer	Date/Time: Date/Time: 11 / 9 / 2020 17 :	:05 Company	
	Date/Time:			Company	LL.	Received by:		Date/Time:	Company	
Relinquished by:	Date/Time:			Company		Received by:		Date/Time:	Company	
Custody Seals Intact: Custody Seal No.:						Cooler Temperature(s) °C and Other Remarks	and Other Remarks:	1# 7.1		
									Ver: 01/16/2019	610

Client: Parsons Corporation

Job Number: 480-177875-1

Login Number: 177875

List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Answer	Comment
True	
True	4.2 #1 ICe
True	
	True True True True True True True True

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-177968-1

Client Project/Site: Honeywell - Tonawanda Plastics

For:

Parsons Corporation 180 Lawrence Bell Drive Suite 104 Williamsville, New York 14221

Attn: Mr. Jeff Poulsen

7

Authorized for release by: 11/25/2020 10:34:56 AM

Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

John Schove, Project Manager II (716)504-9838 John Schove @ Eurofinset.com

..... LINKS

Review your project results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

0

9

1 4

12

13

14

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	11
Surrogate Summary	33
QC Sample Results	35
QC Association Summary	48
Lab Chronicle	52
Certification Summary	58
Method Summary	59
Sample Summary	60
Chain of Custody	61
Receipt Checklists	62

3

4

6

8

46

11

13

14

Definitions/Glossary

Client: Parsons Corporation Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Qualifiers

G	CI	M	IS	V	Ö	A

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.
Χ	Surrogate recovery exceeds control limits

Metals

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

EDL

Siossary .		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC Decision Level Concentration (Radiochemistry)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Eurofins TestAmerica, Buffalo

Page 3 of 62 11/25/2020

Definitions/Glossary

Client: Parsons Corporation Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-177968-1

Comments

No additional comments.

Receipt

The samples were received on 11/10/2020 6:00 PM: the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

Method 8260C: The laboratory control sample duplicate (LCSD) for preparation batch 480-558857 and analytical batch 480-558860 recovered outside control limits for the following analyte: Chloroethane. Chloroethane has been identified as a poor performing analyte when analyzed using this method; therefore, re-analysis was not performed. Batch precision also exceeded control limits for these analyte. These results have been reported and qualified. The following samples are affected: B-17-11102020-0.7-1.2 (480-177968-1), B-17-11102020-1.5-2.0 (480-177968-2) and B-15-11102020-1.3-1.8 (480-177968-3).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-558981 recovered outside acceptance criteria, low biased, for 2-Hexanone, Chloromethane, 4-Methyl-2-pentanone (MIBK) and 2-Butanone (MEK). A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method 8260C: The following samples were analyzed using medium level soil analysis and diluted due to the abundance of non-target analytes: B-14-11102020-0.3-0.8 (480-177968-4), B-16-11102020-0.9-1.4 (480-177968-6) and B-30-11102020-0.5-1.0 (480-177968-9). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-559303 recovered above the upper control limit for Tetrachloroethene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: B-14-11102020-4.5-5.0 (480-177968-5).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-559303 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method 8260C: The following sample was analyzed using medium level soil analysis and diluted due to the abundance of non-target analytes: B-16-11102020-2.5-3.0 (480-177968-7). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was analyzed using medium level soil analysis due to the abundance of non-target analytes: B-14-11102020-4.5-5.0 (480-177968-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The following samples were diluted due to color, appearance, and viscosity: B-14-11102020-0.3-0.8 (480-177968-4), B-14-11102020-4.5-5.0 (480-177968-5), B-16-11102020-0.9-1.4 (480-177968-6) and B-30-11102020-0.5-1.0 (480-177968-9). Elevated reporting limits (RL) are provided.

Method 8270D: The following samples were diluted due to the nature of the sample matrix: B-14-11102020-0.3-0.8 (480-177968-4). B-16-11102020-0.9-1.4 (480-177968-6) and B-30-11102020-0.5-1.0 (480-177968-9). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method 8270D: The following samples were diluted to bring the concentration of target analytes within the calibration range: B-14-11102020-0.3-0.8 (480-177968-4), B-16-11102020-0.9-1.4 (480-177968-6) and B-30-11102020-0.5-1.0 (480-177968-9). Elevated reporting limits (RLs) are provided.

Job ID: 480-177968-1

Case Narrative

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Job ID: 480-177968-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

Method 8270D: The following samples were diluted due to the abundance of target analytes: B-14-11102020-0.3-0.8 (480-177968-4), B-16-11102020-0.9-1.4 (480-177968-6) and B-30-11102020-0.5-1.0 (480-177968-9). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method 9012B: The laboratory control sample (LCS) associated with preparation batch 480-560274 and analytical batch 480-560423 was outside acceptance criteria and is suspected to be bad. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3550C: Due to the matrix, the initial volume(s) used for the following samples deviated from the standard procedure: 8270 DB-14-11102020-0.3-0.8 (480-177968-4), B-16-11102020-0.9-1.4 (480-177968-6) and B-30-11102020-0.5-1.0 (480-177968-9). The reporting limits (RLs) have been adjusted proportionately.

Method 3550C: Due to the matrix, the following sample could not be concentrated to the final method required volume: B-14-11102020-0.3-0.8 (480-177968-4), B-16-11102020-0.9-1.4 (480-177968-6) and B-30-11102020-0.5-1.0 (480-177968-9). The reporting limits (RLs) are elevated proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

7

9

11

12

13

Н

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Client Sample ID: B-17-11102020-0.7-1.2

	_					
Lab	Sam	ple	ID:	480-1	77968-1	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	21	J –	23	3.8	ug/Kg	1	☼	8260C	Total/NA
Toluene	0.62	J	4.6	0.34	ug/Kg	1	₽	8260C	Total/NA
Acenaphthylene	28	J	200	26	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	44	J	200	20	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	62	J	200	30	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	69	J	200	32	ug/Kg	1	₽	8270D	Total/NA
Benzo[g,h,i]perylene	38	J	200	22	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	28	J	200	26	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	80	J	200	22	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	34	J	200	25	ug/Kg	1	☼	8270D	Total/NA
Naphthalene	77	J	200	26	ug/Kg	1	₽	8270D	Total/NA
Pyrene	57	J	200	24	ug/Kg	1	₽	8270D	Total/NA
Chromium	23.0		0.62	0.25	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-17-11102020-1.5-2.0

Lab Sample ID: 480-177968-2

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	41		21	3.5	ug/Kg	1	₽	8260C	Total/NA
Naphthalene	38	J	200	26	ug/Kg	1	₩	8270D	Total/NA
Chromium	21.3		0.60	0.24	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-15-11102020-1.3-1.8

Lab Sample ID: 480-177968-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	26		22	3.8	ug/Kg	1	₽	8260C	Total/NA
Fluoranthene	55	J	200	21	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	60	J	200	25	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	35	J	200	29	ug/Kg	1	₩	8270D	Total/NA
Pyrene	27	J	200	23	ug/Kg	1	₩	8270D	Total/NA
Chromium	21.3		0.60	0.24	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: B-14-11102020-0.3-0.8

Lab Sample ID: 480-177968-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	8700	J	10000	2000	ug/Kg	100	₩	8260C	Total/NA
Ethylbenzene	7100	J	10000	3000	ug/Kg	100	₽	8260C	Total/NA
Toluene	19000		10000	2800	ug/Kg	100	₽	8260C	Total/NA
Xylenes, Total	37000		21000	5700	ug/Kg	100	₩	8260C	Total/NA
Acenaphthene	790000		200000	29000	ug/Kg	20	₽	8270D	Total/NA
Acenaphthylene	820000		200000	26000	ug/Kg	20	₽	8270D	Total/NA
Anthracene	1500000		200000	49000	ug/Kg	20	₽	8270D	Total/NA
Benzo[a]anthracene	2000000		200000	20000	ug/Kg	20	₽	8270D	Total/NA
Benzo[a]pyrene	2000000		200000	29000	ug/Kg	20	₽	8270D	Total/NA
Benzo[b]fluoranthene	1700000		200000	32000	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	930000		200000	21000	ug/Kg	20	₩	8270D	Total/NA
Benzo[k]fluoranthene	780000		200000	26000	ug/Kg	20	₽	8270D	Total/NA
Chrysene	2100000		200000	44000	ug/Kg	20	₩	8270D	Total/NA
Dibenz(a,h)anthracene	300000		200000	35000	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	4300000		200000	21000	ug/Kg	20	₽	8270D	Total/NA
Fluorene	2700000		200000	23000	ug/Kg	20	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	850000		200000	25000	ug/Kg	20	₽	8270D	Total/NA
Pyrene	4200000		200000	23000	ug/Kg	20	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 7 of 62

9

5

7

9

11

12

14

15

13

11/25/2020

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Client Sample ID: B-14-11102020-0.3-0.8 (Continued)

Lab Sample ID: 480-177968-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene - DL	8800000		500000	64000	ug/Kg	50	₽	8270D	Total/NA
Phenanthrene - DL	9100000		500000	73000	ug/Kg	50	₩	8270D	Total/NA
Chromium	11.4		0.61	0.25	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: B-14-11102020-4.5-5.0

Lab Sample ID: 480-177968-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	710	J	980	140	ug/Kg	5	₩	8270D	Total/NA
Acenaphthylene	590	J	980	130	ug/Kg	5	₽	8270D	Total/NA
Anthracene	1100		980	240	ug/Kg	5	₽	8270D	Total/NA
Benzo[a]anthracene	1600		980	98	ug/Kg	5	₽	8270D	Total/NA
Benzo[a]pyrene	1700		980	140	ug/Kg	5	₽	8270D	Total/NA
Benzo[b]fluoranthene	1300		980	160	ug/Kg	5	₽	8270D	Total/NA
Benzo[g,h,i]perylene	820	J	980	100	ug/Kg	5	₽	8270D	Total/NA
Benzo[k]fluoranthene	600	J	980	130	ug/Kg	5	₽	8270D	Total/NA
Chrysene	1800		980	220	ug/Kg	5	₽	8270D	Total/NA
Dibenz(a,h)anthracene	230	J	980	170	ug/Kg	5	₽	8270D	Total/NA
Fluoranthene	3400		980	100	ug/Kg	5	₽	8270D	Total/NA
Fluorene	2300		980	120	ug/Kg	5	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	610	J	980	120	ug/Kg	5	₽	8270D	Total/NA
Naphthalene	4900		980	130	ug/Kg	5	₽	8270D	Total/NA
Phenanthrene	8500		980	140	ug/Kg	5	₽	8270D	Total/NA
Pyrene	4200		980	120	ug/Kg	5	₽	8270D	Total/NA
Chromium	14.7		0.59	0.24	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-16-11102020-0.9-1.4

Lab Sample ID: 480-177968-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	17000		5800	1100	ug/Kg	100	₩	8260C	Total/NA
Ethylbenzene	15000		5800	1700	ug/Kg	100	₩	8260C	Total/NA
Toluene	36000		5800	1500	ug/Kg	100	₽	8260C	Total/NA
Xylenes, Total	140000		12000	3200	ug/Kg	100	₩	8260C	Total/NA
Styrene	30000		5800	1400	ug/Kg	100	₽	8260C	Total/NA
Acenaphthene	670000		95000	14000	ug/Kg	10	₽	8270D	Total/NA
Acenaphthylene	2100000		95000	12000	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]anthracene	2100000		95000	9500	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	1800000		95000	14000	ug/Kg	10	₽	8270D	Total/NA
Benzo[b]fluoranthene	1800000		95000	15000	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	890000		95000	10000	ug/Kg	10	₩	8270D	Total/NA
Benzo[k]fluoranthene	970000		95000	12000	ug/Kg	10	₽	8270D	Total/NA
Chrysene	2000000		95000	21000	ug/Kg	10	₩	8270D	Total/NA
Dibenz(a,h)anthracene	310000		95000	17000	ug/Kg	10	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	900000		95000	12000	ug/Kg	10	₽	8270D	Total/NA
Anthracene - DL	14000000		470000	120000	ug/Kg	50	₽	8270D	Total/NA
Fluoranthene - DL	6100000		470000	50000	ug/Kg	50	₽	8270D	Total/NA
Fluorene - DL	4400000		470000	56000	ug/Kg	50	₽	8270D	Total/NA
Naphthalene - DL	10000000		470000	61000	ug/Kg	50	₽	8270D	Total/NA
Phenanthrene - DL	11000000		470000	70000	ug/Kg	50	₽	8270D	Total/NA
Pyrene - DL	4100000		470000	56000	ug/Kg	50	₽	8270D	Total/NA
Chromium	17.7		0.60	0.24	mg/Kg	1	₽	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Page 8 of 62

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Client Sample ID: B-16-11102020-2.5-3.0

Lab Sample ID: 480-177968-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	31	J	210	31	ug/Kg	1	₩	8270D	Total/NA
Acenaphthylene	90	J	210	28	ug/Kg	1	₽	8270D	Total/NA
Anthracene	310		210	53	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	76	J	210	21	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	85	J	210	31	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	110	J	210	34	ug/Kg	1	₽	8270D	Total/NA
Benzo[g,h,i]perylene	47	J	210	23	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	39	J	210	28	ug/Kg	1	₽	8270D	Total/NA
Chrysene	87	J	210	48	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	200	J	210	23	ug/Kg	1	₩	8270D	Total/NA
Fluorene	85	J	210	25	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	46	J	210	26	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	1900		210	28	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	230		210	31	ug/Kg	1	₩	8270D	Total/NA
Pyrene	150	J	210	25	ug/Kg	1	₽	8270D	Total/NA
Chromium	22.8		0.60	0.24	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: B-29-11102020-1.8-2.3

Lab Sample ID: 480-177968-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthylene	40	J	220	28	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	100	J	220	22	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	140	J	220	32	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	180	J	220	35	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	75	J	220	23	ug/Kg	1	₽	8270D	Total/NA
Benzo[k]fluoranthene	55	J	220	28	ug/Kg	1	₽	8270D	Total/NA
Chrysene	96	J	220	49	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	230		220	23	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	74	J	220	27	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	440		220	28	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	54	J	220	32	ug/Kg	1	₽	8270D	Total/NA
Pyrene	160	J	220	26	ug/Kg	1	₽	8270D	Total/NA
Chromium	37.6		0.63	0.25	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: B-30-11102020-0.5-1.0

Lab Sample ID: 480-177968-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	29000		14000	2600	ug/Kg	200	₩	8260C	Total/NA
Toluene	19000		14000	3600	ug/Kg	200	₽	8260C	Total/NA
Xylenes, Total	28000		27000	7500	ug/Kg	200	₽	8260C	Total/NA
Styrene	15000		14000	3300	ug/Kg	200	₩	8260C	Total/NA
Acenaphthene	410000		200000	29000	ug/Kg	20	₽	8270D	Total/NA
Acenaphthylene	3300000		200000	25000	ug/Kg	20	₽	8270D	Total/NA
Anthracene	4200000		200000	48000	ug/Kg	20	₽	8270D	Total/NA
Benzo[a]anthracene	3100000		200000	20000	ug/Kg	20	₽	8270D	Total/NA
Benzo[a]pyrene	2800000		200000	29000	ug/Kg	20	₽	8270D	Total/NA
Benzo[b]fluoranthene	3200000		200000	31000	ug/Kg	20	₽	8270D	Total/NA
Benzo[g,h,i]perylene	1500000		200000	21000	ug/Kg	20	₽	8270D	Total/NA
Benzo[k]fluoranthene	1200000		200000	25000	ug/Kg	20	₽	8270D	Total/NA
Chrysene	3000000		200000	44000	ug/Kg	20	⊅	8270D	Total/NA
Dibenz(a,h)anthracene	460000		200000	35000	ug/Kg	20	₽	8270D	Total/NA
Fluorene	3900000		200000	23000	ug/Kg	20	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 9 of 62

5

8

J 6

11

13

14

15

11/25/2020

Detection Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Client Sample ID: B-30-11102020-0.5-1.0 (Continued)

Lab Sample ID: 480-177968-9

Analyte	Result 0	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Indeno[1,2,3-cd]pyrene	1400000		200000	24000	ug/Kg		₩	8270D	Total/NA
Pyrene	5900000		200000	23000	ug/Kg	20	₽	8270D	Total/NA
Fluoranthene - DL	9400000		980000	100000	ug/Kg	100	₽	8270D	Total/NA
Naphthalene - DL	11000000		980000	130000	ug/Kg	100	₽	8270D	Total/NA
Phenanthrene - DL	13000000		980000	140000	ug/Kg	100	₽	8270D	Total/NA
Chromium	8.4		0.55	0.22	mg/Kg	1	₽	6010C	Total/NA
Cyanide, Total	3.7 *	· · · · · · · · · · · · · · · · · · ·	0.95	0.46	mg/Kg	1	₩	9012B	Total/NA

Client Sample ID: B-30-11102020-3.5-4.0

Lab Sample ID: 480-177968-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	21	J	24	4.1	ug/Kg	1	₩	8260C	Total/NA
Acenaphthylene	120	J	190	25	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	20	J	190	20	ug/Kg	1	₩	8270D	Total/NA
Fluorene	83	J	190	23	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	3600		190	25	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	74	J	190	28	ug/Kg	1	₩	8270D	Total/NA
Chromium	23.3		0.57	0.23	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-12-11102020-1.0-1.5

Lab Sample ID: 480-177968-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthylene	35	J	210	27	ug/Kg	1	₩	8270D	Total/NA
Fluorene	26	J	210	24	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	1000		210	27	ug/Kg	1	₽	8270D	Total/NA
Chromium	28.8		0.60	0.24	mg/Kg	1	₽	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

11/25/2020

5

7

9

10

12

13

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-17-11102020-0.7-1.2 Lab Sample ID: 480-177968-1

Date Collected: 11/10/20 08:35

Date Received: 11/10/20 18:00

Matrix: Solid
Percent Solids: 83.3

Method: 8260C - Volatile Organic		-							
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	4.6		4.6	0.33	ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
1,1,2,2-Tetrachloroethane	4.6		4.6	0.74	ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
1,1,2-Trichloro-1,2,2-trifluoroethane	4.6	U	4.6	1.0	ug/Kg	#	11/11/20 15:50	11/12/20 22:49	
1,1,2-Trichloroethane	4.6	U	4.6	0.59	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
1,1-Dichloroethane	4.6	U	4.6	0.56	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
1,1-Dichloroethene	4.6	U	4.6	0.56	ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
1,2,4-Trichlorobenzene	4.6	U	4.6	0.28	ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
1,2-Dibromo-3-Chloropropane	4.6	U	4.6	2.3	ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
1,2-Dibromoethane	4.6	U	4.6	0.58	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
1,2-Dichlorobenzene	4.6	U	4.6	0.36	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
1,2-Dichloroethane	4.6	U	4.6	0.23	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
1,2-Dichloropropane	4.6	U	4.6	2.3	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
1,3-Dichlorobenzene	4.6	U	4.6	0.23	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
1,4-Dichlorobenzene	4.6	U	4.6	0.64	ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
2-Butanone (MEK)	23	U	23	1.7	ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
2-Hexanone	23	U	23	2.3	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
1-Methyl-2-pentanone (MIBK)	23	U	23	1.5	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
Acetone	21	J	23	3.8	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
Benzene	4.6	U	4.6	0.22	ug/Kg		11/11/20 15:50	11/12/20 22:49	
Bromodichloromethane	4.6	U	4.6	0.61	ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
Bromoform	4.6	U	4.6	2.3	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
Bromomethane	4.6	U	4.6	0.41	ug/Kg		11/11/20 15:50	11/12/20 22:49	
Carbon disulfide	4.6	U	4.6	2.3	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
Carbon tetrachloride	4.6		4.6	0.44	ug/Kg	.	11/11/20 15:50	11/12/20 22:49	
Chlorobenzene	4.6		4.6	0.60	ug/Kg		11/11/20 15:50	11/12/20 22:49	
Chloroethane		U *	4.6	1.0	ug/Kg	#	11/11/20 15:50	11/12/20 22:49	
Chloroform	4.6		4.6	0.28	ug/Kg	₩.	11/11/20 15:50	11/12/20 22:49	
Chloromethane	4.6		4.6	0.28	ug/Kg		11/11/20 15:50	11/12/20 22:49	
cis-1,2-Dichloroethene	4.6		4.6	0.58	ug/Kg		11/11/20 15:50	11/12/20 22:49	
sis-1,3-Dichloropropene	4.6		4.6		ug/Kg		11/11/20 15:50	11/12/20 22:49	
Cyclohexane	4.6		4.6		ug/Kg		11/11/20 15:50	11/12/20 22:49	
Dibromochloromethane	4.6		4.6	0.58	ug/Kg ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
Dichlorodifluoromethane	4.6		4.6	0.38	ug/Kg ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
Ethylbenzene	4.6		4.6		ug/Kg ug/Kg	¥	11/11/20 15:50	11/12/20 22:49	
•	4.6		4.6	0.69	ug/Kg ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
sopropylbenzene Methyl acetate	23		4.6				11/11/20 15:50	11/12/20 22:49	
Methyl acetate					ug/Kg	.			
Methyl tert-butyl ether	4.6		4.6		ug/Kg		11/11/20 15:50	11/12/20 22:49	
Methylogo Chlorida	4.6		4.6	0.69	ug/Kg	*	11/11/20 15:50	11/12/20 22:49	
Methylene Chloride	4.6		4.6		ug/Kg	· · · · · ·	11/11/20 15:50	11/12/20 22:49	
Styrene	4.6		4.6		ug/Kg	₩.	11/11/20 15:50	11/12/20 22:49	
Tetrachloroethene	4.6		4.6		ug/Kg	*	11/11/20 15:50	11/12/20 22:49	
Toluene	0.62		4.6		ug/Kg	<u>.</u>	11/11/20 15:50	11/12/20 22:49	
rans-1,2-Dichloroethene	4.6		4.6		ug/Kg	#	11/11/20 15:50	11/12/20 22:49	
rans-1,3-Dichloropropene	4.6		4.6		ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
Trichloroethene	4.6		4.6		ug/Kg	.	11/11/20 15:50	11/12/20 22:49	
Trichlorofluoromethane	4.6		4.6		ug/Kg	₽	11/11/20 15:50	11/12/20 22:49	
Vinyl chloride	4.6	U	4.6	0.56	ug/Kg	₩	11/11/20 15:50	11/12/20 22:49	
Xylenes, Total	9.1	U	9.1	0.77	ug/Kg	≎	11/11/20 15:50	11/12/20 22:49	

Eurofins TestAmerica, Buffalo

Job ID: 480-177968-1

2

3

6

8

10

12

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-17-11102020-0.7-1.2 Lab Sample ID: 480-177968-1

Date Collected: 11/10/20 08:35 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 83.3

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118	64 - 126	11/11/20 15:50	11/12/20 22:49	1
4-Bromofluorobenzene (Surr)	84	72 - 126	11/11/20 15:50	11/12/20 22:49	1
Dibromofluoromethane (Surr)	99	60 - 140	11/11/20 15:50	11/12/20 22:49	1
Toluene-d8 (Surr)	94	71 - 125	11/11/20 15:50	11/12/20 22:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	200	U	200	30	ug/Kg		11/16/20 07:51	11/21/20 09:41	1
Acenaphthylene	28	J	200	26	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	1
Anthracene	200	U	200	50	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	1
Benzo[a]anthracene	44	J	200	20	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	1
Benzo[a]pyrene	62	J	200	30	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	1
Benzo[b]fluoranthene	69	J	200	32	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	•
Benzo[g,h,i]perylene	38	J	200	22	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	
Benzo[k]fluoranthene	28	J	200	26	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	•
Chrysene	200	U	200	46	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	
Dibenz(a,h)anthracene	200	U	200	36	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	
Fluoranthene	80	J	200	22	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	•
Fluorene	200	U	200	24	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	•
Indeno[1,2,3-cd]pyrene	34	J	200	25	ug/Kg	\$	11/16/20 07:51	11/21/20 09:41	
Naphthalene	77	J	200	26	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	•
Phenanthrene	200	U	200	30	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	
Pyrene	57	J	200	24	ug/Kg	₽	11/16/20 07:51	11/21/20 09:41	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	98		60 - 120	11/16/20 07:51	11/21/20 09:41	1
Nitrobenzene-d5 (Surr)	96		53 - 120	11/16/20 07:51	11/21/20 09:41	1
p-Terphenyl-d14 (Surr)	100		79 - 130	11/16/20 07:51	11/21/20 09:41	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	23.0		0.62	0.25	mg/Kg	<u></u>	11/23/20 08:35	11/24/20 00:32	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U F1 *	1.1	0.52	mg/Kg	₩	11/20/20 21:56	11/22/20 15:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Percent Moisture	Result 16.7	Qualifier		0.1		D	Prepared	Analyzed 11/11/20 17:51	Dil Fac

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-17-11102020-1.5-2.0 Lab Sample ID: 480-177968-2

Date Collected: 11/10/20 08:45 Date Received: 11/10/20 18:00

Matrix: Solid Percent Solids: 84.2

Job ID: 480-177968-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	4.2	U	4.2	0.31	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
1,1,2,2-Tetrachloroethane	4.2	U	4.2	0.68	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	4.2	U	4.2	0.96	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
1,1,2-Trichloroethane	4.2	U	4.2	0.55	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
1,1-Dichloroethane	4.2	U	4.2	0.51	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
1,1-Dichloroethene	4.2	U	4.2	0.51	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
1,2,4-Trichlorobenzene	4.2	U	4.2	0.26	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
1,2-Dibromo-3-Chloropropane	4.2	U	4.2	2.1	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
1,2-Dibromoethane	4.2	U	4.2	0.54	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
1,2-Dichlorobenzene	4.2	U	4.2	0.33	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
1,2-Dichloroethane	4.2	U	4.2	0.21	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
1,2-Dichloropropane	4.2	U	4.2	2.1	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
1,3-Dichlorobenzene	4.2	U	4.2	0.22	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
1,4-Dichlorobenzene	4.2	U	4.2	0.59	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
2-Butanone (MEK)	21	U	21	1.5	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
2-Hexanone	21	U	21	2.1	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
4-Methyl-2-pentanone (MIBK)	21	U	21	1.4	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
Acetone	41		21	3.5	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
Benzene	4.2	U	4.2	0.21	ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
Bromodichloromethane	4.2	U	4.2	0.56	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
Bromoform	4.2	U	4.2	2.1		₩	11/11/20 15:50	11/12/20 23:14	
Bromomethane	4.2	U	4.2	0.38	ug/Kg		11/11/20 15:50	11/12/20 23:14	
Carbon disulfide	4.2	U	4.2	2.1		₩	11/11/20 15:50	11/12/20 23:14	
Carbon tetrachloride	4.2	U	4.2	0.41		₩	11/11/20 15:50	11/12/20 23:14	
Chlorobenzene	4.2		4.2	0.55	ug/Kg		11/11/20 15:50	11/12/20 23:14	
Chloroethane	4.2	U *	4.2	0.95	ug/Kg	.	11/11/20 15:50	11/12/20 23:14	
Chloroform	4.2		4.2	0.26	ug/Kg		11/11/20 15:50	11/12/20 23:14	
Chloromethane	4.2		4.2	0.25	ug/Kg		11/11/20 15:50	11/12/20 23:14	
cis-1,2-Dichloroethene	4.2		4.2	0.54	ug/Kg		11/11/20 15:50	11/12/20 23:14	
cis-1,3-Dichloropropene	4.2		4.2	0.61			11/11/20 15:50	11/12/20 23:14	
Cyclohexane	4.2		4.2	0.59	ug/Kg		11/11/20 15:50	11/12/20 23:14	
Dibromochloromethane	4.2		4.2	0.54	ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
Dichlorodifluoromethane	4.2		4.2	0.35		₩	11/11/20 15:50	11/12/20 23:14	
Ethylbenzene	4.2		4.2	0.29	ug/Kg		11/11/20 15:50	11/12/20 23:14	
Isopropylbenzene	4.2		4.2		ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
Methyl acetate	21		21		ug/Kg	₽	11/11/20 15:50	11/12/20 23:14	
Methyl tert-butyl ether	4.2		4.2		ug/Kg		11/11/20 15:50	11/12/20 23:14	
Methylcyclohexane	4.2		4.2		ug/Kg		11/11/20 15:50	11/12/20 23:14	
Methylene Chloride	4.2		4.2		ug/Kg ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
Styrene	4.2		4.2		ug/Kg		11/11/20 15:50	11/12/20 23:14	
Tetrachloroethene	4.2		4.2		ug/Kg ug/Kg	₩	11/11/20 15:50	11/12/20 23:14	
Toluene	4.2		4.2		ug/Kg ug/Kg		11/11/20 15:50	11/12/20 23:14	
trans-1,2-Dichloroethene							11/11/20 15:50	11/12/20 23:14	
	4.2 4.2		4.2 4.2		ug/Kg ug/Kg	*			
trans-1,3-Dichloropropene Trichloroethene	4.2		4.2			‡ n	11/11/20 15:50	11/12/20 23:14	
					ug/Kg		11/11/20 15:50	11/12/20 23:14	
Trichlorofluoromethane	4.2		4.2		ug/Kg	*	11/11/20 15:50	11/12/20 23:14	
Vinyl chloride Xylenes, Total	4.2 8.4		4.2 8.4	0.51	ug/Kg ug/Kg	\$	11/11/20 15:50 11/11/20 15:50	11/12/20 23:14 11/12/20 23:14	

Eurofins TestAmerica, Buffalo

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-17-11102020-1.5-2.0 Lab Sample ID: 480-177968-2

Date Collected: 11/10/20 08:45 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 84.2

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117	64 - 126	11/11/20 15:50	11/12/20 23:14	1
4-Bromofluorobenzene (Surr)	85	72 - 126	11/11/20 15:50	11/12/20 23:14	1
Dibromofluoromethane (Surr)	103	60 - 140	11/11/20 15:50	11/12/20 23:14	1
Toluene-d8 (Surr)	92	71 - 125	11/11/20 15:50	11/12/20 23:14	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	200	U	200	29	ug/Kg	<u></u>	11/16/20 07:51	11/21/20 10:05	1
Acenaphthylene	200	U	200	26	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Anthracene	200	U	200	49	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Benzo[a]anthracene	200	U	200	20	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Benzo[a]pyrene	200	U	200	29	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Benzo[b]fluoranthene	200	U	200	31	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Benzo[g,h,i]perylene	200	U	200	21	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Benzo[k]fluoranthene	200	U	200	26	ug/Kg	₩	11/16/20 07:51	11/21/20 10:05	1
Chrysene	200	U	200	44	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Dibenz(a,h)anthracene	200	U	200	35	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Fluoranthene	200	U	200	21	ug/Kg	₩	11/16/20 07:51	11/21/20 10:05	1
Fluorene	200	U	200	23	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Indeno[1,2,3-cd]pyrene	200	U	200	24	ug/Kg	₩	11/16/20 07:51	11/21/20 10:05	1
Naphthalene	38	J	200	26	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Phenanthrene	200	U	200	29	ug/Kg	₽	11/16/20 07:51	11/21/20 10:05	1
Pyrene	200	U	200	23	ug/Kg	\$	11/16/20 07:51	11/21/20 10:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		60 - 120				11/16/20 07:51	11/21/20 10:05	1
Nitrobenzene-d5 (Surr)	80		53 - 120				11/16/20 07:51	11/21/20 10:05	1
p-Terphenyl-d14 (Surr)	87		79 - 130				11/16/20 07:51	11/21/20 10:05	1

motified: coros motals (ior)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	21.3		0.60	0.24	mg/Kg	<u></u>	11/23/20 08:35	11/24/20 00:36	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.2	U *	1.2	0.56	mg/Kg	*	11/20/20 21:56	11/22/20 15:31	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.8		0.1	0.1	%			11/11/20 17:51	1
Percent Solids	84.2		0.1	0.1	%			11/11/20 17:51	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-15-11102020-1.3-1.8 Lab Sample ID: 480-177968-3

Date Collected: 11/10/20 09:00 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 84.1

Method: 8260C - Volatile Organic		-					_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	4.5		4.5	0.33	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,1,2,2-Tetrachloroethane	4.5		4.5	0.73	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,1,2-Trichloro-1,2,2-trifluoroethane	4.5		4.5	1.0	ug/Kg		11/11/20 15:50	11/12/20 23:39	
1,1,2-Trichloroethane	4.5		4.5		ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
,1-Dichloroethane	4.5		4.5	0.55	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,1-Dichloroethene	4.5		4.5	0.55	ug/Kg		11/11/20 15:50	11/12/20 23:39	
1,2,4-Trichlorobenzene	4.5	U	4.5	0.27	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,2-Dibromo-3-Chloropropane	4.5	U	4.5	2.2	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,2-Dibromoethane	4.5	U	4.5	0.57	ug/Kg		11/11/20 15:50	11/12/20 23:39	
1,2-Dichlorobenzene	4.5	U	4.5	0.35	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,2-Dichloroethane	4.5	U	4.5	0.22	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,2-Dichloropropane	4.5	U	4.5	2.2	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,3-Dichlorobenzene	4.5	U	4.5	0.23	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1,4-Dichlorobenzene	4.5	U	4.5	0.63	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
2-Butanone (MEK)	22	U	22	1.6	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
2-Hexanone	22	U	22	2.2	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
1-Methyl-2-pentanone (MIBK)	22	U	22	1.5	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Acetone	26		22	3.8	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Benzene	4.5	U	4.5	0.22	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Bromodichloromethane	4.5	U	4.5	0.60	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Bromoform	4.5	U	4.5	2.2	ug/Kg	₽	11/11/20 15:50	11/12/20 23:39	
Bromomethane	4.5	U	4.5	0.40	ug/Kg		11/11/20 15:50	11/12/20 23:39	
Carbon disulfide	4.5	U	4.5	2.2	ug/Kg	₽	11/11/20 15:50	11/12/20 23:39	
Carbon tetrachloride	4.5	U	4.5	0.43	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Chlorobenzene	4.5	U	4.5	0.59	ug/Kg		11/11/20 15:50	11/12/20 23:39	
Chloroethane	4.5	U *	4.5	1.0	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Chloroform	4.5	U	4.5	0.28	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Chloromethane	4.5	U	4.5	0.27	ug/Kg		11/11/20 15:50	11/12/20 23:39	
sis-1,2-Dichloroethene	4.5		4.5	0.57	ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
sis-1,3-Dichloropropene	4.5		4.5		ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Cyclohexane	4.5		4.5		ug/Kg		11/11/20 15:50	11/12/20 23:39	
Dibromochloromethane	4.5		4.5		ug/Kg		11/11/20 15:50	11/12/20 23:39	
Dichlorodifluoromethane	4.5		4.5		ug/Kg	т Ф	11/11/20 15:50	11/12/20 23:39	
Ethylbenzene	4.5		4.5		ug/Kg		11/11/20 15:50	11/12/20 23:39	
sopropylbenzene	4.5		4.5		ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Methyl acetate	22		22		ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
Methyl tert-butyl ether	4.5		4.5		ug/Kg ug/Kg		11/11/20 15:50	11/12/20 23:39	
Methylcyclohexane	4.5		4.5		ug/Kg ug/Kg		11/11/20 15:50	11/12/20 23:39	
	4.5				ug/Kg ug/Kg	‡			
Methylene Chloride			4.5				11/11/20 15:50	11/12/20 23:39	
Styrene	4.5		4.5		ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
etrachloroethene	4.5		4.5		ug/Kg	*	11/11/20 15:50	11/12/20 23:39	
oluene	4.5		4.5		ug/Kg	· · · · · ·	11/11/20 15:50	11/12/20 23:39	
rans-1,2-Dichloroethene	4.5		4.5		ug/Kg	ф.	11/11/20 15:50	11/12/20 23:39	
rans-1,3-Dichloropropene	4.5		4.5		ug/Kg	\$	11/11/20 15:50	11/12/20 23:39	
Trichloroethene	4.5		4.5		ug/Kg	.	11/11/20 15:50	11/12/20 23:39	
Frichlorofluoromethane	4.5		4.5		ug/Kg	₩	11/11/20 15:50	11/12/20 23:39	
/inyl chloride	4.5	U	4.5	0.55	ug/Kg	⇔	11/11/20 15:50	11/12/20 23:39	

Eurofins TestAmerica, Buffalo

Limits

Client: Parsons Corporation

Surrogate

Percent Moisture

Percent Solids

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-15-11102020-1.3-1.8 Lab Sample ID: 480-177968-3

Date Collected: 11/10/20 09:00 Date Received: 11/10/20 18:00

%Recovery Qualifier

15.9

84.1

Matrix: Solid Percent Solids: 84.1

Analyzed

Prepared

Job ID: 480-177968-1

1,2-Dichloroethane-d4 (Surr)	123		64 - 126				11/11/20 15:50	11/12/20 23:39	1
4-Bromofluorobenzene (Surr)	85		72 - 126				11/11/20 15:50	11/12/20 23:39	1
Dibromofluoromethane (Surr)	100		60 - 140				11/11/20 15:50	11/12/20 23:39	1
Toluene-d8 (Surr)	95		71 - 125				11/11/20 15:50	11/12/20 23:39	1
– Method: 8270D - Semivolatile	Organic Compou	nds (GC/M	S)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	200	U	200	29	ug/Kg	-	11/16/20 07:51	11/21/20 10:29	1
Acenaphthylene	200	U	200	25	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Anthracene	200	U	200	49	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Benzo[a]anthracene	200	U	200	20	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Benzo[a]pyrene	200	U	200	29	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Benzo[b]fluoranthene	200	U	200	31	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Benzo[g,h,i]perylene	200	U	200	21	ug/Kg	\$	11/16/20 07:51	11/21/20 10:29	1
Benzo[k]fluoranthene	200	U	200	25	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Chrysene	200	U	200	44	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Dibenz(a,h)anthracene	200	U	200	35	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Fluoranthene	55	J	200	21	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Fluorene	200	U	200	23	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Indeno[1,2,3-cd]pyrene	200	U	200	24	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Naphthalene	60	J	200	25	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Phenanthrene	35	J	200	29	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Pyrene	27	J	200	23	ug/Kg	₽	11/16/20 07:51	11/21/20 10:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	88		60 - 120				11/16/20 07:51	11/21/20 10:29	1
Nitrobenzene-d5 (Surr)	83		53 - 120				11/16/20 07:51	11/21/20 10:29	1
p-Terphenyl-d14 (Surr)	88		79 - 130				11/16/20 07:51	11/21/20 10:29	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	21.3		0.60	0.24	mg/Kg	#	11/23/20 08:35	11/24/20 00:40	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.0	U *	1.0	0.49	mg/Kg	<u></u>	11/20/20 21:56	11/22/20 15:33	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
·									_

0.1

0.1

0.1 %

0.1 %

11/11/20 17:51

11/11/20 17:51

Dil Fac

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-14-11102020-0.3-0.8 Lab Sample ID: 480-177968-4

Date Collected: 11/10/20 10:55 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 83.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	10000	U	10000	2900	ug/Kg	<u></u>	11/11/20 19:48	11/13/20 21:16	10
,1,2,2-Tetrachloroethane	10000	U	10000	1700	ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	10
,1,2-Trichloro-1,2,2-trifluoroethane	10000	U	10000	5100	ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	10
,1,2-Trichloroethane	10000	U	10000	2200	ug/Kg		11/11/20 19:48	11/13/20 21:16	10
,1-Dichloroethane	10000	U	10000	3200	ug/Kg	₽	11/11/20 19:48	11/13/20 21:16	10
,1-Dichloroethene	10000	U	10000	3600	ug/Kg	₽	11/11/20 19:48	11/13/20 21:16	10
,2,4-Trichlorobenzene	10000	U	10000	3900	ug/Kg		11/11/20 19:48	11/13/20 21:16	10
,2-Dibromo-3-Chloropropane	10000	U	10000	5100	ug/Kg	₽	11/11/20 19:48	11/13/20 21:16	10
,2-Dichlorobenzene	10000	U	10000	2600	ug/Kg	₽	11/11/20 19:48	11/13/20 21:16	10
,2-Dichloroethane	10000	U	10000	4200	ug/Kg		11/11/20 19:48	11/13/20 21:16	10
,2-Dichloropropane	10000	U	10000	1700	ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	10
,3-Dichlorobenzene	10000	U	10000		ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	10
,4-Dichlorobenzene	10000	U	10000		ug/Kg		11/11/20 19:48	11/13/20 21:16	10
P-Butanone (MEK)	51000		51000	31000		₽	11/11/20 19:48	11/13/20 21:16	10
2-Hexanone	51000	U	51000	21000		₩	11/11/20 19:48	11/13/20 21:16	10
-Methyl-2-pentanone (MIBK)	51000	U	51000	3300			11/11/20 19:48	11/13/20 21:16	10
Acetone	51000		51000	42000	ug/Kg		11/11/20 19:48	11/13/20 21:16	10
Benzene	8700		10000	2000	ug/Kg		11/11/20 19:48	11/13/20 21:16	1
Bromoform	10000		10000	5100			11/11/20 19:48	11/13/20 21:16	1
Bromomethane	10000		10000	2300	ug/Kg	₩.	11/11/20 19:48	11/13/20 21:16	1
Carbon disulfide	10000		10000	4700	ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	1
Carbon tetrachloride	10000		10000		ug/Kg		11/11/20 19:48	11/13/20 21:16	
Chlorobenzene	10000		10000	1400			11/11/20 19:48	11/13/20 21:16	1
Dibromochloromethane	10000		10000		ug/Kg		11/11/20 19:48	11/13/20 21:16	1
Chloroethane	10000		10000		ug/Kg		11/11/20 19:48	11/13/20 21:16	
Chloroform	10000		10000			~ ⇔	11/11/20 19:48	11/13/20 21:16	1
Chloromethane	10000		10000	2400		☆	11/11/20 19:48	11/13/20 21:16	1
is-1,2-Dichloroethene	10000		10000	2800		`	11/11/20 19:48	11/13/20 21:16	
Cyclohexane	10000		10000	2300	ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	1
Bromodichloromethane	10000		10000	2100	ug/Kg		11/11/20 19:48	11/13/20 21:16	10
					ug/Kg	*			
Dichlorodifluoromethane	10000		10000	4500	ug/Kg	<u>*</u>	11/11/20 19:48	11/13/20 21:16	1
Ethylbenzene	7100		10000	3000	ug/Kg	<u>*</u>	11/11/20 19:48	11/13/20 21:16	1
,2-Dibromoethane	10000		10000	1800	ug/Kg	· . . ·	11/11/20 19:48	11/13/20 21:16	1
sopropylbenzene	10000		10000	1500	ug/Kg	<u>*</u>	11/11/20 19:48	11/13/20 21:16	1
Methyl acetate	51000		51000		ug/Kg	*	11/11/20 19:48	11/13/20 21:16	1
Nethyl tert-butyl ether	10000		10000		ug/Kg	.	11/11/20 19:48	11/13/20 21:16	1
Methylcyclohexane	10000		10000		ug/Kg	₩.	11/11/20 19:48	11/13/20 21:16	1
Methylene Chloride	10000		10000		ug/Kg	₽	11/11/20 19:48	11/13/20 21:16	1
etrachloroethene	10000		10000		ug/Kg		11/11/20 19:48	11/13/20 21:16	
oluene	19000		10000		ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	1
rans-1,2-Dichloroethene	10000		10000		ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	1
rans-1,3-Dichloropropene	10000		10000		ug/Kg		11/11/20 19:48	11/13/20 21:16	
richloroethene	10000		10000		ug/Kg	₽	11/11/20 19:48	11/13/20 21:16	1
richlorofluoromethane	10000		10000		ug/Kg	₽	11/11/20 19:48	11/13/20 21:16	1
/inyl chloride	10000	U	10000	3400	ug/Kg		11/11/20 19:48	11/13/20 21:16	
lylenes, Total	37000		21000	5700	ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	1
is-1,3-Dichloropropene	10000	U	10000	2500	ug/Kg	₩	11/11/20 19:48	11/13/20 21:16	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-177968-4

Job ID: 480-177968-1

Client Sample ID: B-14-11102020-0.3-0.8 Date Collected: 11/10/20 10:55 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 83.9

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		53 - 146	11/11/20 19:48	11/13/20 21:16	100
4-Bromofluorobenzene (Surr)	115		49 - 148	11/11/20 19:48	11/13/20 21:16	100
Toluene-d8 (Surr)	102		50 ₋ 149	11/11/20 19:48	11/13/20 21:16	100
Dibromofluoromethane (Surr)	114		60 - 140	11/11/20 19:48	11/13/20 21:16	100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	790000		200000	29000	ug/Kg	—	11/16/20 07:51	11/21/20 10:53	20
Acenaphthylene	820000		200000	26000	ug/Kg	₩	11/16/20 07:51	11/21/20 10:53	20
Anthracene	1500000		200000	49000	ug/Kg	₩	11/16/20 07:51	11/21/20 10:53	20
Benzo[a]anthracene	2000000		200000	20000	ug/Kg	₽	11/16/20 07:51	11/21/20 10:53	20
Benzo[a]pyrene	2000000		200000	29000	ug/Kg	₩	11/16/20 07:51	11/21/20 10:53	20
Benzo[b]fluoranthene	1700000		200000	32000	ug/Kg	₩	11/16/20 07:51	11/21/20 10:53	20
Benzo[g,h,i]perylene	930000		200000	21000	ug/Kg	₽	11/16/20 07:51	11/21/20 10:53	20
Benzo[k]fluoranthene	780000		200000	26000	ug/Kg	₽	11/16/20 07:51	11/21/20 10:53	20
Chrysene	2100000		200000	44000	ug/Kg	₽	11/16/20 07:51	11/21/20 10:53	20
Dibenz(a,h)anthracene	300000		200000	35000	ug/Kg	₽	11/16/20 07:51	11/21/20 10:53	20
Fluoranthene	4300000		200000	21000	ug/Kg	₩	11/16/20 07:51	11/21/20 10:53	20
Fluorene	2700000		200000	23000	ug/Kg	₩	11/16/20 07:51	11/21/20 10:53	20
Indeno[1,2,3-cd]pyrene	850000		200000	25000	ug/Kg	₽	11/16/20 07:51	11/21/20 10:53	20
Pyrene	4200000		200000	23000	ug/Kg	\$	11/16/20 07:51	11/21/20 10:53	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	0	X	60 - 120				11/16/20 07:51	11/21/20 10:53	20
Nitrobenzene-d5 (Surr)	0	X	53 - 120				11/16/20 07:51	11/21/20 10:53	20
p-Terphenyl-d14 (Surr)	0	X	79 - 130				11/16/20 07:51	11/21/20 10:53	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	8800000		500000	64000	ug/Kg	<u></u>	11/16/20 07:51	11/24/20 00:08	50
Phenanthrene	9100000		500000	73000	ug/Kg	₩	11/16/20 07:51	11/24/20 00:08	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	X	60 - 120				11/16/20 07:51	11/24/20 00:08	50
Nitrobenzene-d5 (Surr)	0	Χ	53 - 120				11/16/20 07:51	11/24/20 00:08	50
p-Terphenyl-d14 (Surr)	0	X	79 - 130				11/16/20 07:51	11/24/20 00:08	50
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	11.4		0.61	0.25	mg/Kg		11/23/20 08:35	11/24/20 00:44	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.2	U *	1.2	0.56	mg/Kg	₩	11/20/20 21:56	11/22/20 15:34	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	16.1		0.1	0.1	%			11/11/20 17:51	1
Percent Solids	83.9		0.1	0.1	%			11/11/20 17:51	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-14-11102020-4.5-5.0 Lab Sample ID: 480-177968-5

Date Collected: 11/10/20 11:00

Matrix: Solid

Date Received: 11/10/20 18:00

Percent Solids: 86.5

Method: 8260C - Volatile Organic (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	49	U	49	14	ug/Kg	— <u></u>	11/11/20 19:48	11/17/20 03:19	
1,1,2,2-Tetrachloroethane	49	U	49	8.0	ug/Kg	₽	11/11/20 19:48	11/17/20 03:19	
1,1,2-Trichloro-1,2,2-trifluoroethane	49	U	49	25	ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
1,1,2-Trichloroethane	49	U	49	10	ug/Kg		11/11/20 19:48	11/17/20 03:19	
1,1-Dichloroethane	49	U	49	15	ug/Kg	₽	11/11/20 19:48	11/17/20 03:19	
1,1-Dichloroethene	49	U	49	17	ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
1,2,4-Trichlorobenzene	49	U	49	19	ug/Kg		11/11/20 19:48	11/17/20 03:19	
1,2-Dibromo-3-Chloropropane	49	U	49	25	ug/Kg	₽	11/11/20 19:48	11/17/20 03:19	
1,2-Dichlorobenzene	49	U	49	13	ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
1,2-Dichloroethane	49	U	49		ug/Kg		11/11/20 19:48	11/17/20 03:19	
1,2-Dichloropropane	49	U	49		ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
1,3-Dichlorobenzene	49		49		ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
1,4-Dichlorobenzene	49		49		ug/Kg		11/11/20 19:48	11/17/20 03:19	
2-Butanone (MEK)	250		250	150	ug/Kg		11/11/20 19:48	11/17/20 03:19	
2-Hexanone	250		250	100	ug/Kg		11/11/20 19:48	11/17/20 03:19	
4-Methyl-2-pentanone (MIBK)	250		250	16	ug/Kg		11/11/20 19:48	11/17/20 03:19	
Acetone	250		250	200	ug/Kg	₩.	11/11/20 19:48	11/17/20 03:19	
Benzene	49		49	9.4		₩.	11/11/20 19:48	11/17/20 03:19	
Bromoform	49		49	25	ug/Kg		11/11/20 19:48	11/17/20 03:19	
Bromomethane	49		49	11	ug/Kg	т Ф	11/11/20 19:48	11/17/20 03:19	
Carbon disulfide	49		49		ug/Kg	Ψ.	11/11/20 19:48	11/17/20 03:19	
Carbon tetrachloride	49		49		ug/Kg		11/11/20 19:48	11/17/20 03:19	
Chlorobenzene	49		49		ug/Kg	~ \$	11/11/20 19:48	11/17/20 03:19	
Dibromochloromethane	49		49		ug/Kg ug/Kg	*	11/11/20 19:48	11/17/20 03:19	
Chloroethane	49		49		ug/Kg ug/Kg		11/11/20 19:48	11/17/20 03:19	
Chloroform	49				ug/Kg ug/Kg		11/11/20 19:48		
Chloromethane	49		49 49		ug/Kg ug/Kg	*	11/11/20 19:48	11/17/20 03:19 11/17/20 03:19	
						· · · · ·			
cis-1,2-Dichloroethene	49		49		ug/Kg	*	11/11/20 19:48	11/17/20 03:19	
Cyclohexane	49		49	11	ug/Kg	*	11/11/20 19:48	11/17/20 03:19	
Bromodichloromethane	49		49	9.8	ug/Kg	· · · · · ·	11/11/20 19:48	11/17/20 03:19	
Dichlorodifluoromethane	49		49	21	ug/Kg	#	11/11/20 19:48	11/17/20 03:19	
Ethylbenzene	49		49	14	ug/Kg	\$	11/11/20 19:48	11/17/20 03:19	
1,2-Dibromoethane	49		49	8.6	ug/Kg		11/11/20 19:48	11/17/20 03:19	
sopropylbenzene	49		49	7.4	ug/Kg	\$	11/11/20 19:48	11/17/20 03:19	
Methyl acetate	250		250	23	ug/Kg	*	11/11/20 19:48	11/17/20 03:19	
Methyl tert-butyl ether	49		49		ug/Kg	.	11/11/20 19:48	11/17/20 03:19	
Methylcyclohexane		U	49		ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
Methylene Chloride		U	49		ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
Tetrachloroethene _ :	49		49		ug/Kg	.	11/11/20 19:48	11/17/20 03:19	
Toluene	49		49		ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
trans-1,2-Dichloroethene		U	49		ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
trans-1,3-Dichloropropene	49		49		ug/Kg	.	11/11/20 19:48	11/17/20 03:19	
Trichloroethene	49		49		ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
Trichlorofluoromethane		U	49	23	ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
Vinyl chloride		U	49		ug/Kg	.	11/11/20 19:48	11/17/20 03:19	
Xylenes, Total	98		98	27	ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
cis-1,3-Dichloropropene	49	U	49	12	ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	
Styrene	49	U	49	12	ug/Kg	₩	11/11/20 19:48	11/17/20 03:19	

Eurofins TestAmerica, Buffalo

11/25/2020

Job ID: 480-177968-1

Δ

6

8

10

12

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-177968-5 Client Sample ID: B-14-11102020-4.5-5.0

Date Collected: 11/10/20 11:00 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 86.5

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	53 - 146	11/11/20 19:48	11/17/20 03:19	1
4-Bromofluorobenzene (Surr)	113	49 - 148	11/11/20 19:48	11/17/20 03:19	1
Toluene-d8 (Surr)	98	50 - 149	11/11/20 19:48	11/17/20 03:19	1
Dibromofluoromethane (Surr)	109	60 - 140	11/11/20 19:48	11/17/20 03:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	710	J	980	140	ug/Kg	<u></u>	11/16/20 07:51	11/21/20 11:17	5
Acenaphthylene	590	J	980	130	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Anthracene	1100		980	240	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Benzo[a]anthracene	1600		980	98	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Benzo[a]pyrene	1700		980	140	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Benzo[b]fluoranthene	1300		980	160	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Benzo[g,h,i]perylene	820	J	980	100	ug/Kg	\$	11/16/20 07:51	11/21/20 11:17	5
Benzo[k]fluoranthene	600	J	980	130	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Chrysene	1800		980	220	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Dibenz(a,h)anthracene	230	J	980	170	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Fluoranthene	3400		980	100	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Fluorene	2300		980	120	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Indeno[1,2,3-cd]pyrene	610	J	980	120	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Naphthalene	4900		980	130	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Phenanthrene	8500		980	140	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5
Pyrene	4200		980	120	ug/Kg	₽	11/16/20 07:51	11/21/20 11:17	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	104		60 - 120	11/16/20 07:51	11/21/20 11:17	5
Nitrobenzene-d5 (Surr)	99		53 - 120	11/16/20 07:51	11/21/20 11:17	5
p-Terphenyl-d14 (Surr)	105		79 - 130	11/16/20 07:51	11/21/20 11:17	5

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	14.7		0.59	0.24	mg/Kg	<u></u>	11/23/20 08:35	11/24/20 00:59	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U *	1.1	0.52	mg/Kg	₽	11/20/20 21:56	11/22/20 15:36	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	13.5		0.1	0.1	%			11/11/20 17:51	1
Percent Solids	86.5		0.1	0.1	%			11/11/20 17:51	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-16-11102020-0.9-1.4 Lab Sample ID: 480-177968-6

Date Collected: 11/10/20 12:20

Matrix: Solid

Date Received: 11/10/20 18:00

Percent Solids: 87.4

1,1,2,2-Tetrachloroethane 5800 U 5800 2900 1,1,2-Trichloro-1,2,2-trifluoroethane 5800 U 5800 2900 1,1,2-Trichloroethane 5800 U 5800 1200 1,1-Dichloroethane 5800 U 5800 2000 1,1-Dichloroethane 5800 U 5800 2200 1,2-Dichloroethane 5800 U 5800 2900 1,2-Dichlorobenzene 5800 U 5800 2900 1,2-Dichlorobenzene 5800 U 5800 2400 1,2-Dichloropenzene 5800 U 5800 2400 1,2-Dichloropenzene 5800 U 5800 350 1,2-Dichlorobenzene 5800 U 5800 350 1,2-Dichlorobenzene 5800 U 5800 350 1,2-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 2900 U 2900 1700 2-Hexanone 2900<	Unit D ug/Kg Prepared 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	Analyzed Di 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03	
1,1,2,2-Tetrachloroethane 5800 U 5800 2900 1,1,2-Trichloro-1,2,2-trifluoroethane 5800 U 5800 2900 1,1,2-Trichloroethane 5800 U 5800 1200 1,1-Dichloroethane 5800 U 5800 2000 1,1-Dichloroethane 5800 U 5800 2000 1,2-A-Trichlorobenzene 5800 U 5800 2200 1,2-Dichlorobenzene 5800 U 5800 2900 1,2-Dichlorobenzene 5800 U 5800 2400 1,2-Dichloropenzene 5800 U 5800 350 1,2-Dichloropenzene 5800 U 5800 350 1,2-Dichloropenzene 5800 U 5800 810 2-Butanone (MEK)	ug/Kg	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03
1,1,2-Trichloro-1,2,2-trifluoroethane 5800 U 5800 2900 1,1,2-Trichloroethane 5800 U 5800 1200 1,1-Dichloroethane 5800 U 5800 1800 1,1-Dichloroethane 5800 U 5800 2000 1,2-Hirchlorobenzene 5800 U 5800 2200 1,2-Dichlorobenzene 5800 U 5800 2900 1,2-Dichlorobenzene 5800 U 5800 2400 1,2-Dichlorobenzene 5800 U 5800 1500 1,3-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 290	ug/Kg	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03
1,1,2-Trichloroethane 5800 U 5800 1200 1,1-Dichloroethane 5800 U 5800 1800 1,1-Dichloroethane 5800 U 5800 2000 1,2-A-Trichlorobenzene 5800 U 5800 2200 1,2-Dichloropropane 5800 U 5800 2900 1,2-Dichlorobenzene 5800 U 5800 2900 1,2-Dichloropropane 5800 U 5800 2900 1,3-Dichlorobenzene 5800 U 5800 390 1,3-Dichlorobenzene 5800 U 5800 1500 1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 Acetone 29000 U 29000 1800 Benzene 17000 5800 1100 Bromoform 5800 U 5800 2	ug/Kg	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03
1,1-Dichloroethane 5800 U 5800 1800 1,1-Dichloroethene 5800 U 5800 2000 1,2-A-Trichloroethene 5800 U 5800 2200 1,2-Dichlorobenzene 5800 U 5800 2900 1,2-Dichloroethane 5800 U 5800 2900 1,2-Dichloropropane 5800 U 5800 2900 1,3-Dichlorobenzene 5800 U 5800 810 1,4-Dichlorobenzene 5800 U 5800 810 1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 Acetone 29000 U 29000 1800 Benzene 17000 5800 1100 Beromoform 5800 U 5800 2900 Bromodichide 5800 U 5800 2600	ug/Kg	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03
1,1-Dichloroethene 5800 U 5800 2000 1,2,4-Trichlorobenzene 5800 U 5800 2200 1,2-Dibromo-3-Chloropropane 5800 U 5800 2900 1,2-Dichlorobenzene 5800 U 5800 2400 1,2-Dichloroptopane 5800 U 5800 2400 1,2-Dichloropropane 5800 U 5800 930 1,3-Dichlorobenzene 5800 U 5800 930 1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 Acetone 29000 U 29000 24000 Benzene 17000 5800 1100 5800 1100 Beromoform 5800 U 5800 2900 Beromomethane 5800 U 5800 1300 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 1500 Chlororomochloromethane 5800 U 5800 1200 Chloroform 5800 U 5800 1200 Chlorodethane <t< td=""><td>ug/Kg</td><td>11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48</td><td>11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03</td></t<>	ug/Kg	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03
1,2,4-Trichlorobenzene 5800 U 5800 2200 1,2-Dibromo-3-Chloropropane 5800 U 5800 2900 1,2-Dichlorobenzene 5800 U 5800 2400 1,2-Dichlorobenzene 5800 U 5800 2400 1,2-Dichlorobenzene 5800 U 5800 930 1,3-Dichlorobenzene 5800 U 5800 1500 1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 Acetone 29000 U 29000 <td>ug/Kg</td> <td>11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48</td> <td>11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03</td>	ug/Kg	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03
1,2-Dibromo-3-Chloropropane 5800 U 5800 2900 1,2-Dichlorobenzene 5800 U 5800 1500 1,2-Dichlorobenzene 5800 U 5800 2400 1,2-Dichloropropane 5800 U 5800 930 1,3-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 2-Hexanone (MIBK) 29000 U 29000 1800 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 Benzene 17000 5800 1100 1800 Benzene 17000 5800 1100 Bromoform 5800 <t< td=""><td>ug/Kg</td><td>11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48</td><td>11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03</td></t<>	ug/Kg	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03
1,2-Dichlorobenzene 5800 U 5800 1500 1,2-Dichloroethane 5800 U 5800 2400 1,2-Dichloropropane 5800 U 5800 930 1,3-Dichlorobenzene 5800 U 5800 1500 1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 Berchote 17000 5800 U 5800 1900 <td>ug/Kg</td> <td>11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48</td> <td>11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03</td>	ug/Kg	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03 11/13/20 22:03 11/13/20 22:03
1,2-Dichloroethane 5800 U 5800 2400 1,2-Dichloropropane 5800 U 5800 930 1,3-Dichlorobenzene 5800 U 5800 1500 1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 4-Methyl-2-pentanone (MIBK) 29000 U 29000 24000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 Benzene 17000 5800 1100 Benzene 17000 5800 1300 Beromonform 5800 <	ug/Kg aug/Kg aug	11/11/20 19:48 11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03 11/13/20 22:03
1,2-Dichloropropane 5800 U 5800 930 1,3-Dichlorobenzene 5800 U 5800 1500 1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 Acetone 29000 U 29000 24000 Benzene 17000 5800 1100 Bromoform 5800 U 5800 2900 Bromomethane 5800 U 5800 2900 Bromomethane 5800 U 5800 2600 Carbon disulfide 5800 U 5800 2600 Carbon tetrachloride 5800 U 5800 2600 Chlorobenzene 5800 U 5800 2800 Chloroform 5800 U 5800 2800 Chloroform 5800 U 5800 1400 Chlo	ug/Kg ¤ ug/Kg ¤ ug/Kg ¤ ug/Kg ¤ ug/Kg ¤ ug/Kg ¤	11/11/20 19:48 11/11/20 19:48	11/13/20 22:03 11/13/20 22:03
1,3-Dichlorobenzene 5800 U 5800 1500 1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 24000 Acetone 29000 U 29000 24000 Benzene 17000 5800 2100 Beromoform 5800 U 5800 2900 Bromomethane 5800 U 5800 2900 Bromomethane 5800 U 5800 2900 Carbon disulfide 5800 U 5800 2600 Carbon tetrachloride 5800 U 5800 2600 Chlorobenzene 5800 U 5800 2600 Chlorochtane 5800 U 5800 2800 Chloroform 5800 U 5800 4000 Chlorochtane 5800 U 5800 1400 Cis-1,	ug/Kg # ug/Kg # ug/Kg # ug/Kg #	11/11/20 19:48	11/13/20 22:03
1,4-Dichlorobenzene 5800 U 5800 810 2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 1800 Acetone 29000 U 29000 24000 Benzene 17000 5800 1100 Beromoform 5800 U 5800 2900 Beromoform 5800 U 5800 1300 Carbon disulfide 5800 U 5800 1500 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 2800 Chlorobenzene 5800 U 5800 1200 Chlorothane 5800 U 5800 1400 Chlorothane 5800 U 5800 1400 Chlorothane 5800 U 5800 1400 Chlorothane 5800 U 5800 1500 Chlorothane 5800 U 5800 1400 Chlorothane 5800 U 5800 1200 Chlorothane 5800 U 5800 1500 Cyclohexane 5800 U 5800 1500 Ethylbenzene 15000 5800 1700 Ethylbenzene 5800 U 5800 1700 Ethylbenzene 5800 U 5800 1000 Esopropylbenzene 5800 U 5800 1000 Esopropylbenzene 5800 U 5800 1000	ug/Kg # ug/Kg # ug/Kg #		
2-Butanone (MEK) 29000 U 29000 17000 2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 24000 Acetone 29000 U 29000 24000 Benzene 17000 5800 1100 Bromoform 5800 U 5800 2900 Bromomethane 5800 U 5800 1300 Bromomethane 5800 U 5800 1500 Carbon disulfide 5800 U 5800 1500 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 2800 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 1400 Chloromethane 5800 U 5800 1400 Cisc-1,2-Dichloroethene 5800 U 5800 1300 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 1700 Ethylbenzene 15000 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg 🌣	11/11/20 19:48	11/13/20 22:03
2-Hexanone 29000 U 29000 12000 4-Methyl-2-pentanone (MIBK) 29000 U 29000 24000 Acetone 29000 U 29000 24000 Benzene 17000 5800 1100 Bromoform 5800 U 5800 2900 Bromomethane 5800 U 5800 1300 Carbon disulfide 5800 U 5800 2600 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 760 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 1200 Chloromethane 5800 U 5800 1400 Cis-1,2-Dichloroethene 5800 U 5800 1400 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 1200 Ethylbenzene 15000 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg 🌣	44/44/00 40 40	44/40/00 00 00
4-Methyl-2-pentanone (MIBK) 29000 U 29000 D 29000 D 29000 D 24000 D Acetone 29000 U 29000 D 24000 D 24000 D 24000 D Benzene 17000 S800 U 5800 D 1100 D Bromoform 5800 U 5800 D 2900 D Bromomethane 5800 U 5800 D 2600 D Carbon disulfide 5800 U 5800 D 2600 D Carbon tetrachloride 5800 U 5800 D 1500 D Chlorobenzene 5800 U 5800 D 760 D Dibromochloromethane 5800 U 5800 D 2800 D Chloroethane 5800 U 5800 D 1200 D Chloromethane 5800 U 5800 D 1400 D Cis-1,2-Dichloroethene 5800 U 5800 D 1300 D Cyclohexane 5800 U 5800 D 1200 D Bromodichloromethane 5800 U 5800 D 1700 D Ethylbenzene 15000 U 5800 D 1700 D Isopropylbenzene 5800 U 5800 D 1600 D		11/11/20 19:48	11/13/20 22:03
Acetone 29000 U 29000 24000 Benzene 17000 5800 1100 Bromoform 5800 U 5800 2900 Bromomethane 5800 U 5800 1300 Carbon disulfide 5800 U 5800 2600 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 760 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 cis-1,2-Dichloroethene 5800 U 5800 1300 Cyclohexane 5800 U 5800 1200 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 1700 1,2-Dibromoethane 5800 U 5800 1700 1sopropylbenzene 5800 U 5800 1000	un/Kn ∺	11/11/20 19:48	11/13/20 22:03
Benzene 17000 5800 1100 Bromoform 5800 U 5800 2900 Bromomethane 5800 U 5800 1300 Carbon disulfide 5800 U 5800 2600 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 760 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 Cis-1,2-Dichloroethene 5800 U 5800 1600 Cyclohexane 5800 U 5800 1200 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 1700 Ethylbenzene 15000 5800 1700 Isopropylb		11/11/20 19:48	11/13/20 22:03
Bromoform 5800 U 5800 2900 Bromomethane 5800 U 5800 1300 Carbon disulfide 5800 U 5800 2600 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 760 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 Cis-1,2-Dichloroethene 5800 U 5800 1600 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 1700 Ethylbenzene 15000 5800 1700 Isopropylbenzene 5800 U 5800 860 <td>ug/Kg ⇔</td> <td>11/11/20 19:48</td> <td>11/13/20 22:03</td>	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Bromomethane 5800 U 5800 1300 Carbon disulfide 5800 U 5800 2600 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 760 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 Cis-1,2-Dichloroethene 5800 U 5800 1600 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg 🌣	11/11/20 19:48	11/13/20 22:03
Carbon disulfide 5800 U 5800 2600 Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 760 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 Chloromethane 5800 U 5800 1400 Cis-1,2-Dichloroethene 5800 U 5800 1600 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Carbon tetrachloride 5800 U 5800 1500 Chlorobenzene 5800 U 5800 760 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 Chloromethane 5800 U 5800 1400 Chloromethane 5800 U 5800 1600 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 sopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Chlorobenzene 5800 U 5800 760 Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 Chloromethane 5800 U 5800 1600 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 sopropylbenzene 5800 U 5800 860	ug/Kg ♯	11/11/20 19:48	11/13/20 22:03
Dibromochloromethane 5800 U 5800 2800 Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 Chloromethane 5800 U 5800 1600 Cis-1,2-Dichloroethene 5800 U 5800 1300 Cyclohexane 5800 U 5800 1200 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 sopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Chloroethane 5800 U 5800 1200 Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 Chloromethane 5800 U 5800 1600 Cis-1,2-Dichloroethene 5800 U 5800 1300 Cyclohexane 5800 U 5800 1200 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Chloroform 5800 U 5800 4000 Chloromethane 5800 U 5800 1400 cis-1,2-Dichloroethene 5800 U 5800 1600 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Chloromethane 5800 U 5800 1400 cis-1,2-Dichloroethene 5800 U 5800 1600 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
cis-1,2-Dichloroethene 5800 U 5800 1600 Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Cyclohexane 5800 U 5800 1300 Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Bromodichloromethane 5800 U 5800 1200 Dichlorodifluoromethane 5800 U 5800 2500 Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Dichlorodifluoromethane 5800 U 5800 U 2500 U Ethylbenzene 15000 U 5800 U 1700 U 1,2-Dibromoethane 5800 U 5800 U 1000 U Isopropylbenzene 5800 U 5800 U 860 U	ug/Kg 🌣	11/11/20 19:48	11/13/20 22:03
Ethylbenzene 15000 5800 1700 1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
1,2-Dibromoethane 5800 U 5800 1000 Isopropylbenzene 5800 U 5800 860	ug/Kg 🌣	11/11/20 19:48	11/13/20 22:03
Sopropylbenzene 5800 U 5800 860	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
,	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
Methyl tert-butyl ether 5800 U 5800 2200		11/11/20 19:48	11/13/20 22:03
Methylcyclohexane 5800 U 5800 2700		11/11/20 19:48	11/13/20 22:03
Methylene Chloride 5800 U 5800 1100		11/11/20 19:48	11/13/20 22:03
Tetrachloroethene 5800 U 5800 770		11/11/20 19:48	11/13/20 22:03
	ug/Kg #	11/11/20 19:48	11/13/20 22:03
rrans-1,2-Dichloroethene 5800 U 5800 1400		11/11/20 19:48	11/13/20 22:03
	ug/Kg ☼	11/11/20 19:48	11/13/20 22:03
	ug/Kg 🌣	11/11/20 19:48	11/13/20 22:03
Trichlorofluoromethane 5800 U 5800 2700		11/11/20 19:48	11/13/20 22:03
Vinyl chloride 5800 U 5800 1900		11/11/20 19:48	11/13/20 22:03
Xylenes, Total 140000 12000 3200	ug/Kg ⇔	11/11/20 19:48	11/13/20 22:03
cis-1,3-Dichloropropene 5800 U 5800 1400		11/11/20 19:48	11/13/20 22:03

Eurofins TestAmerica, Buffalo

11/25/2020

Job ID: 480-177968-1

4

6

0

11

4.0

Client: Parsons Corporation

Date Collected: 11/10/20 12:20

Date Received: 11/10/20 18:00

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-16-11102020-0.9-1.4

Lab Sample ID: 480-177968-6

Matrix: Solid

Percent Solids: 87.4

Surrogate	%Recovery Quality	fier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		53 - 146	11/11/20 19:48	11/13/20 22:03	100
4-Bromofluorobenzene (Surr)	114	49 - 148	11/11/20 19:48	11/13/20 22:03	100
Toluene-d8 (Surr)	104	50 ₋ 149	11/11/20 19:48	11/13/20 22:03	100
Dibromofluoromethane (Surr)	117	60 - 140	11/11/20 19:48	11/13/20 22:03	100

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		53 - 146	11/11/20 19:48	11/13/20 22:03	100
4-Bromofluorobenzene (Surr)	114		49 - 148	11/11/20 19:48	11/13/20 22:03	100
Toluene-d8 (Surr)	104		50 - 149	11/11/20 19:48	11/13/20 22:03	100
Dibromofluoromethane (Surr)	117		60 - 140	11/11/20 19:48	11/13/20 22:03	100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	670000		95000	14000	ug/Kg	₩	11/16/20 07:51	11/21/20 11:41	10
Acenaphthylene	2100000		95000	12000	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Benzo[a]anthracene	2100000		95000	9500	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Benzo[a]pyrene	1800000		95000	14000	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Benzo[b]fluoranthene	1800000		95000	15000	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Benzo[g,h,i]perylene	890000		95000	10000	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Benzo[k]fluoranthene	970000		95000	12000	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Chrysene	2000000		95000	21000	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Dibenz(a,h)anthracene	310000		95000	17000	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Indeno[1,2,3-cd]pyrene	900000		95000	12000	ug/Kg	₽	11/16/20 07:51	11/21/20 11:41	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	34	X	60 - 120				11/16/20 07:51	11/21/20 11:41	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	34	X	60 - 120	11/16/20 07:51	11/21/20 11:41	10
Nitrobenzene-d5 (Surr)	154	X	53 - 120	11/16/20 07:51	11/21/20 11:41	10
p-Terphenyl-d14 (Surr)	0	Χ	79 - 130	11/16/20 07:51	11/21/20 11:41	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	14000000		470000	120000	ug/Kg		11/16/20 07:51	11/24/20 00:32	50
Fluoranthene	6100000		470000	50000	ug/Kg	₩	11/16/20 07:51	11/24/20 00:32	50
Fluorene	4400000		470000	56000	ug/Kg	₽	11/16/20 07:51	11/24/20 00:32	50
Naphthalene	10000000		470000	61000	ug/Kg	₽	11/16/20 07:51	11/24/20 00:32	50
Phenanthrene	11000000		470000	70000	ug/Kg	₽	11/16/20 07:51	11/24/20 00:32	50
Pyrene	4100000		470000	56000	ug/Kg	₩	11/16/20 07:51	11/24/20 00:32	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	X	60 - 120				11/16/20 07:51	11/24/20 00:32	50
Nitrobenzene-d5 (Surr)	0	X	53 - 120				11/16/20 07:51	11/24/20 00:32	50
p-Terphenyl-d14 (Surr)	0	X	79 - 130				11/16/20 07:51	11/24/20 00:32	50
- Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 6010C - Metals (ICP)						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	17.7		0.60	0.24	mg/Kg	₽	11/23/20 08:35	11/24/20 01:03	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.0	U *	1.0	0.50	mg/Kg	<u></u>	11/20/20 21:56	11/22/20 15:37	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	12.6		0.1	0.1	%			11/11/20 17:51	1
Percent Solids	87.4		0.1	0.1	%			11/11/20 17:51	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-16-11102020-2.5-3.0

Date Collected: 11/10/20 12:25

Lab Sample ID: 480-177968-7

Matrix: Solid

Percent Solids: 79.2

Job ID: 480-177968-1

ate Received: 11/10/20 18:00								Percent Soli	ds: 79.2
Method: 8260C - Volatile Organic (Compounds I	oy GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	230	U	230	64	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	4
1,1,2,2-Tetrachloroethane	230	U	230	37	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,1,2-Trichloro-1,2,2-trifluoroethane	230	U	230	120	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,1,2-Trichloroethane	230	U	230	48	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,1-Dichloroethane	230	U	230	71	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,1-Dichloroethene	230	U	230	80	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,2,4-Trichlorobenzene	230	U	230	87	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
1,2-Dibromo-3-Chloropropane	230	U	230	120	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,2-Dichlorobenzene	230	U	230	59	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,2-Dichloroethane	230	U	230	94	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
1,2-Dichloropropane	230	U	230	37	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,3-Dichlorobenzene	230	U	230	62	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	4
1,4-Dichlorobenzene	230	U	230	32	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	4
2-Butanone (MEK)	1200	U	1200	690	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	4
2-Hexanone	1200	U	1200	470	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	
4-Methyl-2-pentanone (MIBK)	1200	U	1200	74	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Acetone	1200	U	1200	950	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Benzene	230	U	230	44	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Bromoform	230	U	230	120	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Bromomethane	230	U	230	51	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Carbon disulfide	230	U	230	110	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Carbon tetrachloride	230	U	230	59	ug/Kg		11/11/20 19:48	11/17/20 03:42	
Chlorobenzene	230	U	230	30	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Dibromochloromethane	230	U	230	110	ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Chloroethane	230	U	230	48	ug/Kg		11/11/20 19:48	11/17/20 03:42	
Chloroform	230	U	230	160	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	
Chloromethane	230	U	230	55	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	
cis-1,2-Dichloroethene	230	U	230	64	ug/Kg		11/11/20 19:48	11/17/20 03:42	
Cyclohexane	230	U	230	51	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	
Bromodichloromethane	230	U	230	46	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	
Dichlorodifluoromethane	230	U	230	100	ug/Kg		11/11/20 19:48	11/17/20 03:42	
Ethylbenzene	230	U	230	67	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	
1,2-Dibromoethane	230	U	230		ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Isopropylbenzene	230		230		ug/Kg		11/11/20 19:48	11/17/20 03:42	
Methyl acetate	1200	U	1200		ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Methyl tert-butyl ether	230		230		ug/Kg	*	11/11/20 19:48	11/17/20 03:42	
Methylcyclohexane	230		230		ug/Kg		11/11/20 19:48	11/17/20 03:42	
Methylene Chloride	230		230	46	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	
Tetrachloroethene	230		230		ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
Toluene	230		230		ug/Kg		11/11/20 19:48	11/17/20 03:42	
trans-1,2-Dichloroethene	230		230		ug/Kg		11/11/20 19:48	11/17/20 03:42	,
trans-1,3-Dichloropropene	230		230		ug/Kg	~ \$	11/11/20 19:48	11/17/20 03:42	
Trichloroethene	230		230		ug/Kg		11/11/20 19:48	11/17/20 03:42	
Trichlorofluoromethane	230		230			<i>¥</i>	11/11/20 19:48	11/17/20 03:42	
Vinyl chloride	230		230		ug/Kg ug/Kg	₩	11/11/20 19:48	11/17/20 03:42	
	460								
Xylenes, Total			460 230		ug/Kg	‡	11/11/20 19:48	11/17/20 03:42	4
cis-1,3-Dichloropropene	230		230		ug/Kg	*	11/11/20 19:48	11/17/20 03:42	2
Styrene	230	U	230	56	ug/Kg	₽	11/11/20 19:48	11/17/20 03:42	

Eurofins TestAmerica, Buffalo

3

5

9

11

13

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-16-11102020-2.5-3.0 Lab Sample ID: 480-177968-7

Date Collected: 11/10/20 12:25 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 79.2

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		53 - 146				11/11/20 19:48	11/17/20 03:42	4
4-Bromofluorobenzene (Surr)	111		49 - 148				11/11/20 19:48	11/17/20 03:42	4
Toluene-d8 (Surr)	101		50 - 149				11/11/20 19:48	11/17/20 03:42	4
Dibromofluoromethane (Surr)	125		60 - 140				11/11/20 19:48	11/17/20 03:42	4
Method: 8270D - Semivolatile	Organic Compou	ınds (GC/M	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			240	24			44/40/00 07:54	44/04/00 40:00	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	31	J	210	31	ug/Kg	<u></u>	11/16/20 07:51	11/21/20 12:06	1
Acenaphthylene	90	J	210	28	ug/Kg	₽	11/16/20 07:51	11/21/20 12:06	1
Anthracene	310		210	53	ug/Kg	₽	11/16/20 07:51	11/21/20 12:06	1
Benzo[a]anthracene	76	J	210	21	ug/Kg	₩	11/16/20 07:51	11/21/20 12:06	1
Benzo[a]pyrene	85	J	210	31	ug/Kg	₩	11/16/20 07:51	11/21/20 12:06	1
Benzo[b]fluoranthene	110	J	210	34	ug/Kg	₩	11/16/20 07:51	11/21/20 12:06	1
Benzo[g,h,i]perylene	47	J	210	23	ug/Kg	₽	11/16/20 07:51	11/21/20 12:06	1
Benzo[k]fluoranthene	39	J	210	28	ug/Kg	₩	11/16/20 07:51	11/21/20 12:06	1
Chrysene	87	J	210	48	ug/Kg	₩	11/16/20 07:51	11/21/20 12:06	1
Dibenz(a,h)anthracene	210	U	210	38	ug/Kg	₽	11/16/20 07:51	11/21/20 12:06	1
Fluoranthene	200	J	210	23	ug/Kg	₽	11/16/20 07:51	11/21/20 12:06	1
Fluorene	85	J	210	25	ug/Kg	₩	11/16/20 07:51	11/21/20 12:06	1
Indeno[1,2,3-cd]pyrene	46	J	210	26	ug/Kg	₽	11/16/20 07:51	11/21/20 12:06	1
Naphthalene	1900		210	28	ug/Kg	₽	11/16/20 07:51	11/21/20 12:06	1
Phenanthrene	230		210	31	ug/Kg	₩	11/16/20 07:51	11/21/20 12:06	1
Pyrene	150	J	210	25	ug/Kg	₽	11/16/20 07:51	11/21/20 12:06	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		60 - 120	11/16/20 07:51	11/21/20 12:06	1
Nitrobenzene-d5 (Surr)	80		53 - 120	11/16/20 07:51	11/21/20 12:06	1
p-Terphenyl-d14 (Surr)	84		79 - 130	11/16/20 07:51	11/21/20 12:06	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	22.8		0.60	0.24	mg/Kg	₽	11/23/20 08:35	11/24/20 01:07	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U *	1.1	0.53	mg/Kg	*	11/20/20 21:56	11/22/20 15:42	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.8		0.1	0.1	%			11/11/20 17:51	1
Percent Solids	79.2		0.1	0.1	%			11/11/20 17:51	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-29-11102020-1.8-2.3 Lab Sample ID: 480-177968-8

Date Collected: 11/10/20 13:00

Matrix: Solid

Date Received: 11/10/20 18:00

Percent Solids: 75.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	5.3	U	5.3	0.39	ug/Kg	-	11/11/20 15:50	11/17/20 14:57	
1,1,2,2-Tetrachloroethane	5.3	U	5.3	0.87	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.3	U	5.3	1.2	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,1,2-Trichloroethane	5.3	U	5.3	0.69	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,1-Dichloroethane	5.3	U	5.3	0.65	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,1-Dichloroethene	5.3	U	5.3	0.65	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,2,4-Trichlorobenzene	5.3	U	5.3	0.32	ug/Kg		11/11/20 15:50	11/17/20 14:57	
1,2-Dibromo-3-Chloropropane	5.3	U	5.3	2.7	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,2-Dibromoethane	5.3	U	5.3	0.69	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,2-Dichlorobenzene	5.3	U	5.3	0.42	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,2-Dichloroethane	5.3	U	5.3	0.27	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,2-Dichloropropane	5.3	U	5.3	2.7	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,3-Dichlorobenzene	5.3	U	5.3	0.27	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
1,4-Dichlorobenzene	5.3	U	5.3	0.75	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
2-Butanone (MEK)	27	U	27	2.0	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
2-Hexanone	27	U	27	2.7	ug/Kg		11/11/20 15:50	11/17/20 14:57	
4-Methyl-2-pentanone (MIBK)	27	U	27	1.8	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Acetone	27	U	27	4.5	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Benzene	5.3	U	5.3	0.26	ug/Kg		11/11/20 15:50	11/17/20 14:57	
Bromodichloromethane	5.3	U	5.3	0.72	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Bromoform	5.3	U	5.3	2.7	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Bromomethane	5.3	U	5.3	0.48	ug/Kg		11/11/20 15:50	11/17/20 14:57	
Carbon disulfide	5.3	U	5.3	2.7	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Carbon tetrachloride	5.3	U	5.3	0.52	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Chlorobenzene	5.3	U	5.3	0.71	ug/Kg		11/11/20 15:50	11/17/20 14:57	
Chloroethane	5.3	U	5.3	1.2	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Chloroform	5.3	U	5.3	0.33		₽	11/11/20 15:50	11/17/20 14:57	
Chloromethane	5.3	U	5.3	0.32	ug/Kg		11/11/20 15:50	11/17/20 14:57	
cis-1,2-Dichloroethene	5.3	U	5.3	0.68	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
cis-1,3-Dichloropropene	5.3	U	5.3	0.77	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Cyclohexane	5.3	U	5.3	0.75	ug/Kg		11/11/20 15:50	11/17/20 14:57	
Dibromochloromethane	5.3	U	5.3	0.68	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Dichlorodifluoromethane	5.3	U	5.3	0.44	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Ethylbenzene	5.3	U	5.3	0.37	ug/Kg		11/11/20 15:50	11/17/20 14:57	
Isopropylbenzene	5.3	U	5.3	0.81	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Methyl acetate	27	U	27	3.2	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Methyl tert-butyl ether	5.3	U	5.3		ug/Kg		11/11/20 15:50	11/17/20 14:57	
Methylcyclohexane	5.3	U	5.3	0.81	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Methylene Chloride	5.3	U	5.3	2.5	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Styrene	5.3	U	5.3	0.27	ug/Kg		11/11/20 15:50	11/17/20 14:57	
Tetrachloroethene	5.3	U	5.3	0.72	ug/Kg	₽	11/11/20 15:50	11/17/20 14:57	
Toluene	5.3	U	5.3	0.40	ug/Kg	₩	11/11/20 15:50	11/17/20 14:57	
trans-1,2-Dichloroethene	5.3	U	5.3		ug/Kg	₩	11/11/20 15:50	11/17/20 14:57	
trans-1,3-Dichloropropene	5.3	U	5.3		ug/Kg	₩	11/11/20 15:50	11/17/20 14:57	
Trichloroethene	5.3	U	5.3		ug/Kg	₩	11/11/20 15:50	11/17/20 14:57	
Trichlorofluoromethane	5.3	U	5.3		ug/Kg	₩	11/11/20 15:50	11/17/20 14:57	
Vinyl chloride	5.3		5.3		ug/Kg	₩	11/11/20 15:50	11/17/20 14:57	
Xylenes, Total	11	U	11		ug/Kg	₩	11/11/20 15:50	11/17/20 14:57	

Eurofins TestAmerica, Buffalo

11/25/2020

Job ID: 480-177968-1

_

4

6

8

10

12

Client: Parsons Corporation

Date Received: 11/10/20 18:00

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-177968-8

Matrix: Solid Percent Solids: 75.8

Job ID: 480-177968-1

Client Sample ID: B-29-11102020-1.8-2.3 Date Collected: 11/10/20 13:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	64 - 126	11/11/20 15:50	11/17/20 14:57	1
4-Bromofluorobenzene (Surr)	101	72 - 126	11/11/20 15:50	11/17/20 14:57	1
Dibromofluoromethane (Surr)	107	60 - 140	11/11/20 15:50	11/17/20 14:57	1
Toluene-d8 (Surr)	98	71 - 125	11/11/20 15:50	11/17/20 14:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	220	U	220	32	ug/Kg	— <u>—</u>	11/16/20 07:51	11/21/20 12:30	-
Acenaphthylene	40	J	220	28	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	
Anthracene	220	U	220	54	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	
Benzo[a]anthracene	100	J	220	22	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	
Benzo[a]pyrene	140	J	220	32	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	
Benzo[b]fluoranthene	180	J	220	35	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	•
Benzo[g,h,i]perylene	75	J	220	23	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	
Benzo[k]fluoranthene	55	J	220	28	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	•
Chrysene	96	J	220	49	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	•
Dibenz(a,h)anthracene	220	U	220	39	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	
Fluoranthene	230		220	23	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	•
Fluorene	220	U	220	26	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	•
Indeno[1,2,3-cd]pyrene	74	J	220	27	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	
Naphthalene	440		220	28	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	•
Phenanthrene	54	J	220	32	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	•
Pyrene	160	J	220	26	ug/Kg	₽	11/16/20 07:51	11/21/20 12:30	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	90		60 - 120				11/16/20 07:51	11/21/20 12:30	
Nitrobenzene-d5 (Surr)	88		53 - 120				11/16/20 07:51	11/21/20 12:30	
p-Terphenyl-d14 (Surr)	90		79 - 130				11/16/20 07:51	11/21/20 12:30	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	37.6		0.63	0.25	mg/Kg	— <u></u>	11/23/20 08:35	11/24/20 01:11	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.3	U *	1.3	0.60	mg/Kg	₩	11/20/20 21:56	11/22/20 15:43	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	24.2		0.1	0.1	%			11/11/20 17:51	1
Percent Solids	75.8		0.1	0.1	%			11/11/20 17:51	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-30-11102020-0.5-1.0

Lab Sample ID: 480-177968-9 Date Collected: 11/10/20 13:20 Matrix: Solid Date Received: 11/10/20 18:00

Percent Solids: 87.5

	5

	_								
Method: 8260C - Volatile Organic (-	-				_			
Analyte		Qualifier	RL	MDL		— <u>T</u>	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	14000		14000	3800	ug/Kg	*	11/11/20 19:48	11/13/20 23:12	20
1,1,2,2-Tetrachloroethane	14000		14000	2200	ug/Kg	*	11/11/20 19:48	11/13/20 23:12	20
1,1,2-Trichloro-1,2,2-trifluoroethane	14000		14000	6800		÷	11/11/20 19:48	11/13/20 23:12	20
1,1,2-Trichloroethane	14000		14000		ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
1,1-Dichloroethane	14000		14000	4200	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
1,1-Dichloroethene	14000		14000		ug/Kg		11/11/20 19:48	11/13/20 23:12	20
1,2,4-Trichlorobenzene	14000		14000	5100	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
1,2-Dibromo-3-Chloropropane	14000		14000	6800	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
1,2-Dichlorobenzene	14000		14000	3500		.	11/11/20 19:48	11/13/20 23:12	20
,2-Dichloroethane	14000	U	14000	5600	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
1,2-Dichloropropane	14000	U	14000	2200	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
,3-Dichlorobenzene	14000	U	14000	3600	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
,4-Dichlorobenzene	14000	U	14000	1900	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
2-Butanone (MEK)	68000	U	68000	40000	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
2-Hexanone	68000	U	68000	28000	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
-Methyl-2-pentanone (MIBK)	68000	U	68000	4300	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
acetone	68000	U	68000	56000	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
Benzene	29000		14000	2600	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
romoform	14000	U	14000	6800	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
romomethane	14000	U	14000	3000	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	2
Carbon disulfide	14000	U	14000	6200	ug/Kg	₽	11/11/20 19:48	11/13/20 23:12	2
Carbon tetrachloride	14000	U	14000	3500	ug/Kg		11/11/20 19:48	11/13/20 23:12	2
Chlorobenzene	14000	U	14000	1800	ug/Kg	₽	11/11/20 19:48	11/13/20 23:12	2
Dibromochloromethane	14000	U	14000	6600	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
Chloroethane	14000	U	14000	2800		₩	11/11/20 19:48	11/13/20 23:12	20
Chloroform	14000	U	14000	9300	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	2
Chloromethane	14000		14000	3200	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	2
is-1,2-Dichloroethene	14000		14000	3700	ug/Kg		11/11/20 19:48	11/13/20 23:12	2
Cyclohexane	14000		14000	3000	ug/Kg		11/11/20 19:48	11/13/20 23:12	2
romodichloromethane	14000		14000		ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	2
Dichlorodifluoromethane	14000		14000		ug/Kg		11/11/20 19:48	11/13/20 23:12	. 2
ithylbenzene	14000		14000		ug/Kg	~ ☆	11/11/20 19:48	11/13/20 23:12	2
,2-Dibromoethane	14000		14000		ug/Kg ug/Kg	~ ☆	11/11/20 19:48	11/13/20 23:12	2
sopropylbenzene	14000		14000		ug/Kg		11/11/20 19:48	11/13/20 23:12	2
Methyl acetate	68000		68000		ug/Kg ug/Kg	*	11/11/20 19:48	11/13/20 23:12	2
•	14000		14000		ug/Kg ug/Kg		11/11/20 19:48	11/13/20 23:12	2
lethyl tert-butyl ether	14000					· · · · · · · · · · · · · · · · · · ·	11/11/20 19:48	11/13/20 23:12	
lethylcyclohexane			14000		ug/Kg				2
lethylene Chloride	14000		14000		ug/Kg		11/11/20 19:48	11/13/20 23:12	2
etrachloroethene	14000		14000		ug/Kg	.	11/11/20 19:48	11/13/20 23:12	2
oluene	19000		14000		ug/Kg	#	11/11/20 19:48	11/13/20 23:12	2
rans-1,2-Dichloroethene	14000		14000		ug/Kg	\$	11/11/20 19:48	11/13/20 23:12	2
ans-1,3-Dichloropropene	14000		14000		ug/Kg	.	11/11/20 19:48	11/13/20 23:12	2
richloroethene	14000		14000		ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	2
richlorofluoromethane	14000		14000		ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	2
finyl chloride	14000	U	14000		ug/Kg	.	11/11/20 19:48	11/13/20 23:12	2
Zylenes, Total	28000		27000	7500	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
is-1,3-Dichloropropene	14000	U	14000	3200	ug/Kg	₩	11/11/20 19:48	11/13/20 23:12	20
Styrene	15000		14000	3300	ug/Kg	☼	11/11/20 19:48	11/13/20 23:12	20

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-30-11102020-0.5-1.0

Lab Sample ID: 480-177968-9 Date Collected: 11/10/20 13:20 Matrix: Solid

Date Received: 11/10/20 18:00 Percent Solids: 87.5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		53 - 146				11/11/20 19:48	11/13/20 23:12	200
4-Bromofluorobenzene (Surr)	113		49 - 148				11/11/20 19:48	11/13/20 23:12	200
Toluene-d8 (Surr)	100		50 - 149				11/11/20 19:48	11/13/20 23:12	200
Dibromofluoromethane (Surr)	113		60 - 140				11/11/20 19:48	11/13/20 23:12	200
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	410000		200000	29000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Acenaphthylene	3300000		200000	25000	ug/Kg	≎	11/16/20 07:51	11/21/20 12:54	20
Anthracene	4200000		200000	48000	ug/Kg		11/16/20 07:51	11/21/20 12:54	20
Benzo[a]anthracene	3100000		200000	20000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Benzo[a]pyrene	2800000		200000	29000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Benzo[b]fluoranthene	3200000		200000	31000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Benzo[g,h,i]perylene	1500000		200000	21000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Benzo[k]fluoranthene	1200000		200000	25000	ug/Kg	₩	11/16/20 07:51	11/21/20 12:54	20
Chrysene	3000000		200000	44000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Dibenz(a,h)anthracene	460000		200000	35000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Fluorene	3900000		200000	23000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Indeno[1,2,3-cd]pyrene	1400000		200000	24000	ug/Kg	₽	11/16/20 07:51	11/21/20 12:54	20
Pyrene	5900000		200000	23000	ug/Kg	\$	11/16/20 07:51	11/21/20 12:54	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	X	60 - 120				11/16/20 07:51	11/21/20 12:54	20
Nitrobenzene-d5 (Surr)	0	X	53 - 120				11/16/20 07:51	11/21/20 12:54	20
p-Terphenyl-d14 (Surr)	0	X	79 - 130				11/16/20 07:51	11/21/20 12:54	20
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS) - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	9400000		000000				11/16/20 07:51	44/04/00 00 50	
Naphthalene			980000	100000	ug/Kg	₽	11/10/20 07.51	11/24/20 00:56	100
	11000000		980000	100000 130000	ug/Kg ug/Kg	₽	11/16/20 07:51	11/24/20 00:56	100
Phenanthrene	11000000 13000000								
	13000000 %Recovery		980000	130000	ug/Kg	\$	11/16/20 07:51	11/24/20 00:56	100
Surrogate	13000000		980000 980000	130000	ug/Kg	\$	11/16/20 07:51 11/16/20 07:51	11/24/20 00:56 11/24/20 00:56	100 100
Surrogate 2-Fluorobiphenyl	13000000 %Recovery		980000 980000 <i>Limits</i>	130000	ug/Kg	\$	11/16/20 07:51 11/16/20 07:51 Prepared	11/24/20 00:56 11/24/20 00:56 <i>Analyzed</i>	100 100 Dil Fac
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr)	13000000 %Recovery 0 0	X	980000 980000 <i>Limits</i> 60 - 120	130000	ug/Kg	\$	11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56	100 100 Dil Fac 100
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr)	13000000 **Recovery 0 0 0 0	x x x	980000 980000 <i>Limits</i> 60 - 120 53 - 120	130000 140000	ug/Kg ug/Kg	\$	11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51 11/16/20 07:51 11/16/20 07:51	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56 11/24/20 00:56	100 100 Dil Fac
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) Method: 6010C - Metals (ICP)	13000000 **Recovery 0 0 0 0	X X	980000 980000 <i>Limits</i> 60 - 120 53 - 120 79 - 130	130000 140000 MDL	ug/Kg ug/Kg	\$	11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51 11/16/20 07:51	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56 11/24/20 00:56	100 100 Dil Fac 100
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) Method: 6010C - Metals (ICP) Analyte	13000000 **Recovery 0 0 0 0	x x x	980000 980000 Limits 60 - 120 53 - 120 79 - 130	130000 140000 MDL	ug/Kg ug/Kg	*	11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51 11/16/20 07:51 11/16/20 07:51	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56 11/24/20 00:56 11/24/20 00:56	100 100 100 100 100
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) Method: 6010C - Metals (ICP) Analyte Chromium General Chemistry	13000000 %Recovery 0 0 0 Result 8.4	X X X Qualifier	980000 980000 Limits 60 - 120 53 - 120 79 - 130 RL 0.55	130000 140000 MDL 0.22	ug/Kg ug/Kg Unit mg/Kg		11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51 11/16/20 07:51 11/16/20 07:51 Prepared 11/23/20 08:35	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56 11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 01:15	100 100 100 100 100 100
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) Method: 6010C - Metals (ICP) Analyte Chromium General Chemistry Analyte	13000000 %Recovery 0 0 0 Result 8.4	X X X Qualifier	980000 980000 Limits 60 - 120 53 - 120 79 - 130 RL 0.55	130000 140000 MDL 0.22	ug/Kg ug/Kg Unit mg/Kg		11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51 11/16/20 07:51 11/16/20 07:51 Prepared 11/23/20 08:35	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56 11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 01:15	100 100 100 100 100 100 Dil Fac
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) Method: 6010C - Metals (ICP) Analyte Chromium General Chemistry Analyte	13000000 %Recovery 0 0 0 Result 8.4	X X X Qualifier	980000 980000 Limits 60 - 120 53 - 120 79 - 130 RL 0.55	130000 140000 MDL 0.22	ug/Kg ug/Kg Unit mg/Kg		11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51 11/16/20 07:51 11/16/20 07:51 Prepared 11/23/20 08:35	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56 11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 01:15	100 100 100 100 100 100
Phenanthrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) Method: 6010C - Metals (ICP) Analyte Chromium General Chemistry Analyte Cyanide, Total Analyte	13000000 %Recovery 0 0 0 Result 8.4 Result 3.7 Result	X X X Qualifier	980000 980000 Limits 60 - 120 79 - 130 RL 0.55	130000 140000 MDL 0.22 MDL 0.46 RL	ug/Kg ug/Kg Unit mg/Kg Unit mg/Kg Unit		11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51 11/16/20 07:51 11/16/20 07:51 Prepared 11/23/20 08:35	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56 11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 01:15 Analyzed 11/22/20 15:44 Analyzed	100 100 100 100 100 100 Dil Fac
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) Method: 6010C - Metals (ICP) Analyte Chromium General Chemistry Analyte Cyanide, Total	13000000 %Recovery 0 0 0 Result 8.4 Result 3.7	X X X Qualifier Qualifier *	980000 980000 Limits 60 - 120 79 - 130 RL 0.55	130000 140000 MDL 0.22 MDL 0.46	Unit mg/Kg Unit mg/Kg Unit mg/Kg Unit		11/16/20 07:51 11/16/20 07:51 Prepared 11/16/20 07:51 11/16/20 07:51 11/16/20 07:51 Prepared 11/23/20 08:35 Prepared 11/20/20 21:56	11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 00:56 11/24/20 00:56 11/24/20 00:56 Analyzed 11/24/20 01:15 Analyzed 11/22/20 15:44	100 100 100 100 100 100 100 100 100 100

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-30-11102020-3.5-4.0

Date Collected: 11/10/20 14:00

Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 87.4

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 4.8 4.8 ₩ 11/11/20 15:50 1.1.1-Trichloroethane 0.35 ug/Kg 11/19/20 00:57 1,1,2,2-Tetrachloroethane 4.8 U 4.8 0.78 ug/Kg ₩ 11/11/20 15:50 11/19/20 00:57 1,1,2-Trichloro-1,2,2-trifluoroethane 4.8 U 4.8 ug/Kg ġ 11/11/20 15:50 11/19/20 00:57 1.1 1,1,2-Trichloroethane 4.8 U 4.8 0.63 ug/Kg 11/11/20 15:50 11/19/20 00:57 1,1-Dichloroethane 4.8 U 4.8 0.59 ug/Kg 11/11/20 15:50 11/19/20 00:57 1.1-Dichloroethene 48 U 4.8 0.59 ug/Kg 11/11/20 15:50 11/19/20 00:57 1,2,4-Trichlorobenzene 4.8 U 4.8 0.29 ug/Kg 11/11/20 15:50 11/19/20 00:57 1,2-Dibromo-3-Chloropropane 48 U 48 11/11/20 15:50 11/19/20 00:57 2.4 ug/Kg ä 1.2-Dibromoethane 4.8 U 4.8 0.62 ug/Kg 11/11/20 15:50 11/19/20 00:57 1,2-Dichlorobenzene 4.8 U 0.38 ġ 11/11/20 15:50 4.8 ug/Kg 11/19/20 00:57 4.8 U 11/11/20 15:50 11/19/20 00:57 1,2-Dichloroethane 4.8 ug/Kg 4.8 U 11/11/20 15:50 1.2-Dichloropropane 4.8 2.4 ug/Kg ₩ 11/19/20 00:57 1 4.8 U 4.8 ġ 11/11/20 15:50 11/19/20 00:57 1.3-Dichlorobenzene ug/Kg 4.8 U 11/11/20 15:50 1.4-Dichlorobenzene 4.8 0.68 ug/Kg ť 11/19/20 00:57 2-Butanone (MEK) 24 U 24 1.8 ug/Kg 11/11/20 15:50 11/19/20 00:57 2-Hexanone 24 U 24 2.4 ua/Ka 11/11/20 15:50 11/19/20 00:57 4-Methyl-2-pentanone (MIBK) 24 П 24 1.6 ug/Kg 11/11/20 15:50 11/19/20 00:57 24 11/11/20 15:50 21 4.1 ug/Kg 11/19/20 00:57 Acetone Benzene 48 U 4.8 0.24 ug/Kg ä 11/11/20 15:50 11/19/20 00:57 Bromodichloromethane 4.8 U 4.8 0.65 ug/Kg 11/11/20 15:50 11/19/20 00:57 4.8 U Bromoform 4.8 ť 11/11/20 15:50 11/19/20 00:57 2.4 ug/Kg 4.8 U ₽ 11/11/20 15:50 11/19/20 00:57 Bromomethane 4.8 0.44 ug/Kg Carbon disulfide 48 U 4.8 2.4 ug/Kg ġ 11/11/20 15:50 11/19/20 00:57 Carbon tetrachloride 4.8 U 4.8 11/11/20 15:50 11/19/20 00:57 0.47 ug/Kg 4.8 U 11/11/20 15:50 Chlorobenzene 4.8 0.64 ug/Kg ä 11/19/20 00:57 Chloroethane 4.8 U 4.8 ua/Ka ₩ 11/11/20 15:50 11/19/20 00:57 Chloroform 4.8 U 4.8 0.30 ug/Kg ť 11/11/20 15:50 11/19/20 00:57 Chloromethane 4.8 U 4.8 0.29 ug/Kg ġ 11/11/20 15:50 11/19/20 00:57 cis-1,2-Dichloroethene 4.8 U 4.8 0.62 ä 11/11/20 15:50 11/19/20 00:57 ua/Ka cis-1,3-Dichloropropene 4.8 U 4.8 0.70 ug/Kg 11/11/20 15:50 11/19/20 00:57 4.8 U 4.8 0.68 ug/Kg ġ 11/11/20 15:50 11/19/20 00:57 Cyclohexane Dibromochloromethane 48 U 0.62 11/11/20 15:50 4.8 ug/Kg 11/19/20 00:57 Dichlorodifluoromethane 4.8 U 4.8 0.40 ug/Kg 11/11/20 15:50 11/19/20 00:57 11/11/20 15:50 Ethylbenzene 48 II 4.8 0.33 ť 11/19/20 00:57 ug/Kg Isopropylbenzene 4.8 U 4.8 0.73 11/11/20 15:50 11/19/20 00:57 ug/Kg ₩ U 24 11/11/20 15:50 11/19/20 00:57 Methyl acetate 24 2.9 ug/Kg ä Methyl tert-butyl ether 4.8 U 4.8 0.48 ug/Kg # 11/11/20 15:50 11/19/20 00:57 Methylcyclohexane 4.8 U 4.8 11/11/20 15:50 11/19/20 00:57 0.74 ug/Kg Methylene Chloride 4.8 U 4.8 2.2 ug/Kg ₩ 11/11/20 15:50 11/19/20 00:57 4.8 U 4.8 ġ 11/11/20 15:50 11/19/20 00:57 Styrene 0.24 ug/Kg Tetrachloroethene 4.8 U 4.8 0.65 ug/Kg 11/11/20 15:50 11/19/20 00:57 Toluene 48 U 4.8 0.37 ug/Kg 11/11/20 15:50 11/19/20 00:57 4.8 U trans-1,2-Dichloroethene 4.8 0.50 ug/Kg 11/11/20 15:50 11/19/20 00:57 trans-1,3-Dichloropropene 4.8 U 4.8 2.1 ug/Kg 11/11/20 15:50 11/19/20 00:57 Trichloroethene 48 U 4.8 ä 11/11/20 15:50 11/19/20 00:57 1.1 ug/Kg Trichlorofluoromethane 11/11/20 15:50 4.8 U 4.8 0.46 ug/Kg 11/19/20 00:57 Vinyl chloride 0.59 4.8 U 4.8 ug/Kg 11/11/20 15:50 11/19/20 00:57 Xylenes, Total 9.7 U 9.7 0.81 ug/Kg 11/11/20 15:50 11/19/20 00:57

Eurofins TestAmerica, Buffalo

11/25/2020

Job ID: 480-177968-1

Lab Sample ID: 480-177968-10

Client: Parsons Corporation

Surrogate

p-Terphenyl-d14 (Surr)

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-30-11102020-3.5-4.0 Lab Sample ID: 480-177968-10

Date Collected: 11/10/20 14:00 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 87.4

Limits

%Recovery Qualifier

104

1,2-Dichloroethane-d4 (Surr)			64 - 126				11/11/20 15:50	11/19/20 00:57	
4-Bromofluorobenzene (Surr)	97		72 ₋ 126				11/11/20 15:50	11/19/20 00:57	1
Dibromofluoromethane (Surr)	122		60 - 140				11/11/20 15:50	11/19/20 00:57	1
Toluene-d8 (Surr)	96		71 - 125				11/11/20 15:50	11/19/20 00:57	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/M	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	190	U	190	28	ug/Kg		11/16/20 07:51	11/21/20 13:18	1
Acenaphthylene	120	J	190	25	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Anthracene	190	U	190	48	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Benzo[a]anthracene	190	U	190	19	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Benzo[a]pyrene	190	U	190	28	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Benzo[b]fluoranthene	190	U	190	31	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Benzo[g,h,i]perylene	190	U	190	20	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Benzo[k]fluoranthene	190	U	190	25	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Chrysene	190	U	190	43	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Dibenz(a,h)anthracene	190	U	190	34	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Fluoranthene	20	J	190	20	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Fluorene	83	J	190	23	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Indeno[1,2,3-cd]pyrene	190	U	190	24	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Naphthalene	3600		190	25	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Phenanthrene	74	J	190	28	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Pyrene	190	U	190	23	ug/Kg	₽	11/16/20 07:51	11/21/20 13:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	101		60 - 120				11/16/20 07:51	11/21/20 13:18	1
Nitrobenzene-d5 (Surr)	98		53 - 120				11/16/20 07:51	11/21/20 13:18	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	23.3		0.57	0.23	mg/Kg	<u></u>	11/23/20 08:35	11/24/20 01:19	1
General Chemistry									

79 - 130

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U *	1.1	0.54	mg/Kg	<u></u>	11/20/20 21:56	11/22/20 15:46	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	12.6		0.1	0.1	%			11/11/20 17:51	1
Percent Solids	87.4		0.1	0.1	%			11/11/20 17:51	1

Job ID: 480-177968-1

Analyzed

Prepared

11/16/20 07:51

11/21/20 13:18

Dil Fac

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-12-11102020-1.0-1.5 Lab Sample ID: 480-177968-11 Matrix: Solid

Date Collected: 11/10/20 09:55 Date Received: 11/10/20 18:00 Percent Solids: 82.1

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4.2	U	4.2	0.30	ug/Kg	*	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.68	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.96	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.55	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.51	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.51	ug/Kg	₩	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.26	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	2.1	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.54	ug/Kg	₩	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.33	ug/Kg		11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.21	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	2.1	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.22	ug/Kg	₽	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.59		₽	11/11/20 15:50	11/17/20 15:22	1
21	U	21	1.5		₽	11/11/20 15:50	11/17/20 15:22	1
21	U	21				11/11/20 15:50	11/17/20 15:22	1
					₽		11/17/20 15:22	1
					₽			1
								1
								1
								1
								1
								· · · · · · · · · · · · · · · · · · ·
								1
								1
								· · · · · · · · · · · · · · · · · · ·
								1
								1
								· · · · · · · · · · · · · · · · · · ·
								1
								1
								'
•	_							1
								1
								1
								1
								1
								1
								1
								1
								1
								1
		4.2			₩	11/11/20 15:50	11/17/20 15:22	1
4.2	U	4.2	0.51	ug/Kg	₩	11/11/20 15:50	11/17/20 15:22	1
	4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	Result Qualifier 4.2 U 4.2 U 4.2 4.2 <t< td=""><td>4.2 U 4.2 0.30 4.2 U 4.2 0.68 4.2 U 4.2 0.96 4.2 U 4.2 0.55 4.2 U 4.2 0.51 4.2 U 4.2 0.26 4.2 U 4.2 0.26 4.2 U 4.2 0.54 4.2 U 4.2 0.33 4.2 U 4.2 0.21 4.2 U 4.2 0.25 4.1 U 21 1.5 21 U 21 1.5 21 U 21 3.5 4.2 U 4.2 0.21 4.2 U 4.2 0.21 4.2 U 4.2 0.38 4.2 U 4.2</td><td> 4.2 U</td><td> 4.2 U</td><td> 4.2 U</td><td> 4.2 U</td></t<>	4.2 U 4.2 0.30 4.2 U 4.2 0.68 4.2 U 4.2 0.96 4.2 U 4.2 0.55 4.2 U 4.2 0.51 4.2 U 4.2 0.26 4.2 U 4.2 0.26 4.2 U 4.2 0.54 4.2 U 4.2 0.33 4.2 U 4.2 0.21 4.2 U 4.2 0.25 4.1 U 21 1.5 21 U 21 1.5 21 U 21 3.5 4.2 U 4.2 0.21 4.2 U 4.2 0.21 4.2 U 4.2 0.38 4.2 U 4.2	4.2 U	4.2 U	4.2 U	4.2 U	

Eurofins TestAmerica, Buffalo

Client: Parsons Corporation

Naphthalene

Phenanthrene

Pyrene

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-12-11102020-1.0-1.5 Lab Sample ID: 480-177968-11

Date Collected: 11/10/20 09:55 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 82.1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		64 - 126				11/11/20 15:50	11/17/20 15:22	1
4-Bromofluorobenzene (Surr)	100		72 - 126				11/11/20 15:50	11/17/20 15:22	1
Dibromofluoromethane (Surr)	107		60 - 140				11/11/20 15:50	11/17/20 15:22	1
Toluene-d8 (Surr)	99		71 - 125				11/11/20 15:50	11/17/20 15:22	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	210	U	210	30	ug/Kg		11/16/20 07:51	11/21/20 13:42	1
Acenaphthylene	35	J	210	27	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Anthracene	210	U	210	51	ug/Kg	₩	11/16/20 07:51	11/21/20 13:42	1
Benzo[a]anthracene	210	U	210	21	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Benzo[a]pyrene	210	U	210	30	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Benzo[b]fluoranthene	210	U	210	33	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Benzo[g,h,i]perylene	210	U	210	22	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Benzo[k]fluoranthene	210	U	210	27	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Chrysene	210	U	210	46	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Dibenz(a,h)anthracene	210	U	210	36	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Fluoranthene	210	U	210	22	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Fluorene	26	J	210	24	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1
Indeno[1,2,3-cd]pyrene	210	U	210	25	ug/Kg	₽	11/16/20 07:51	11/21/20 13:42	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		60 - 120		1/16/20 07:51	11/21/20 13:42	1
Nitrobenzene-d5 (Surr)	96		53 - 120	11	1/16/20 07:51	11/21/20 13:42	1
p-Terphenyl-d14 (Surr)	100		79 - 130	11	1/16/20 07:51	11/21/20 13:42	1

210

210

210

27 ug/Kg

30 ug/Kg

24 ug/Kg

11/16/20 07:51

11/16/20 07:51

11/16/20 07:51

11/21/20 13:42

11/21/20 13:42

11/21/20 13:42

1000

210 U

210 U

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	28.8		0.60	0.24	mg/Kg	₩	11/23/20 08:35	11/24/20 01:23	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.2	U *	1.2	0.58	mg/Kg	₽	11/20/20 21:56	11/22/20 15:47	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.9		0.1	0.1	%			11/11/20 17:51	1
Percent Solids	82.1		0.1	0.1	%			11/11/20 17:51	1

Job ID: 480-177968-1 Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Sui	rrogate Recovery
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(64-126)	(72-126)	(60-140)	(71-125)
480-177968-1	B-17-11102020-0.7-1.2	118	84	99	94
480-177968-2	B-17-11102020-1.5-2.0	117	85	103	92
480-177968-3	B-15-11102020-1.3-1.8	123	85	100	95
480-177968-8	B-29-11102020-1.8-2.3	108	101	107	98
480-177968-10	B-30-11102020-3.5-4.0	112	97	122	96
480-177968-11	B-12-11102020-1.0-1.5	110	100	107	99
LCS 480-558857/1-A	Lab Control Sample	112	98	99	97
LCS 480-559289/1-A	Lab Control Sample	98	101	101	99
LCS 480-559506/1-A	Lab Control Sample	100	100	117	97
LCSD 480-558857/3-A	Lab Control Sample Dup	111	97	100	97
MB 480-558857/2-A	Method Blank	113	86	96	95
MB 480-559289/2-A	Method Blank	104	99	104	99
MB 480-559506/2-A	Method Blank	102	98	119	99

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Sur	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(53-146)	(49-148)	(60-140)	(50-149)
480-177968-4	B-14-11102020-0.3-0.8	104	115	114	102
480-177968-5	B-14-11102020-4.5-5.0	103	113	109	98
480-177968-6	B-16-11102020-0.9-1.4	113	114	117	104
480-177968-7	B-16-11102020-2.5-3.0	119	111	125	101
480-177968-9	B-30-11102020-0.5-1.0	106	113	113	100
LCS 480-558649/1-A	Lab Control Sample	102	112	110	101
MB 480-558649/2-A	Method Blank	105	108	113	103

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

				Percent Su
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(60-120)	(53-120)	(79-130)
480-177968-1	B-17-11102020-0.7-1.2	98	96	100
480-177968-2	B-17-11102020-1.5-2.0	85	80	87
480-177968-3	B-15-11102020-1.3-1.8	88	83	88
480-177968-4	B-14-11102020-0.3-0.8	0 X	0 X	0 X
480-177968-4 - DL	B-14-11102020-0.3-0.8	0 X	0 X	0 X

Eurofins TestAmerica, Buffalo

Page 33 of 62

Surrogate Summary

Client: Parsons Corporation Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate F	Recovery (Acceptance Limits)
		FBP	NBZ	TPHd14	
Lab Sample ID	Client Sample ID	(60-120)	(53-120)	(79-130)	
480-177968-5	B-14-11102020-4.5-5.0	104	99	105	
480-177968-6	B-16-11102020-0.9-1.4	34 X	154 X	0 X	
480-177968-6 - DL	B-16-11102020-0.9-1.4	0 X	0 X	0 X	
480-177968-7	B-16-11102020-2.5-3.0	85	80	84	
480-177968-8	B-29-11102020-1.8-2.3	90	88	90	
480-177968-9	B-30-11102020-0.5-1.0	0 X	0 X	0 X	
480-177968-9 - DL	B-30-11102020-0.5-1.0	0 X	0 X	0 X	
480-177968-10	B-30-11102020-3.5-4.0	101	98	104	
480-177968-11	B-12-11102020-1.0-1.5	95	96	100	
LCS 480-559203/2-A	Lab Control Sample	96	94	100	
MB 480-559203/1-A	Method Blank	94	88	96	

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

1

5

7

10

13

14

Client: Parsons Corporation Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-558649/2-A

Matrix: Solid

Xylenes, Total

Analysis Batch: 558981

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 558649

Analysis Butch. 000001	МВ	МВ						r rep Baten.	000043
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	100	U	100	28	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,1,2,2-Tetrachloroethane	100	U	100	16	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	100	U	100	50	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,1,2-Trichloroethane	100	U	100	21	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,1-Dichloroethane	100	U	100	31	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,1-Dichloroethene	100	U	100	35	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,2,4-Trichlorobenzene	100	U	100	38	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,2-Dibromo-3-Chloropropane	100	U	100	50	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,2-Dichlorobenzene	100	U	100	26	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,2-Dichloroethane	100	U	100	41	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,2-Dichloropropane	100	U	100	16	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,3-Dichlorobenzene	100	U	100	27	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,4-Dichlorobenzene	100	U	100	14	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
2-Butanone (MEK)	500	U	500	300	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
2-Hexanone	500	U	500		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
4-Methyl-2-pentanone (MIBK)	500	U	500	32	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Acetone	500	U	500		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Benzene	100	U	100	19			11/11/20 19:48	11/13/20 20:53	1
Bromoform	100	U	100	50	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Bromomethane	100	U	100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Carbon disulfide	100	U	100	46			11/11/20 19:48	11/13/20 20:53	1
Carbon tetrachloride	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Chlorobenzene	100		100	13			11/11/20 19:48	11/13/20 20:53	1
Chloroethane	100		100	21			11/11/20 19:48	11/13/20 20:53	1
Chloroform	100		100	69			11/11/20 19:48	11/13/20 20:53	1
Chloromethane	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
cis-1,2-Dichloroethene	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Bromodichloromethane	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Cyclohexane	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Dibromochloromethane	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
1,2-Dibromoethane	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Dichlorodifluoromethane	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Ethylbenzene	100		100	29	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Isopropylbenzene	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	·
Methyl acetate	500		500	48	ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Methyl tert-butyl ether	100		100	38			11/11/20 19:48	11/13/20 20:53	1
Methylcyclohexane	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	· · · · · · · · · · · · · · · · · · ·
Methylene Chloride	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Tetrachloroethene	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Toluene	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	· · · · · · · · · · · · · · · · · · ·
trans-1,2-Dichloroethene	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
trans-1,3-Dichloropropene	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Trichloroethene	100		100		ug/Kg		11/11/20 19:48	11/13/20 20:53	
cis-1,3-Dichloropropene	100		100		ug/Kg ug/Kg		11/11/20 19:48	11/13/20 20:53	1
Trichlorofluoromethane	100		100		ug/Kg ug/Kg		11/11/20 19:48	11/13/20 20:53	1
							11/11/20 19:48	11/13/20 20:53	
Styrene Vinyl chloride	100 100		100 100		ug/Kg ug/Kg		11/11/20 19:48	11/13/20 20:53	1
viriyi Gilloriue	100		100	34	ug/rtg		11/11/20 19.40	11/10/20 20:03	

Eurofins TestAmerica, Buffalo

11/13/20 20:53

11/11/20 19:48

Page 35 of 62

200

55 ug/Kg

200 U

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-558649/2-A

Matrix: Solid

Analysis Batch: 558981

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 558649

ΜВ	ΜВ

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	53 - 146	11/11/20 19:48	11/13/20 20:53	1
4-Bromofluorobenzene (Surr)	108	49 - 148	11/11/20 19:48	11/13/20 20:53	1
Toluene-d8 (Surr)	103	50 - 149	11/11/20 19:48	11/13/20 20:53	1
Dibromofluoromethane (Surr)	113	60 - 140	11/11/20 19:48	11/13/20 20:53	1

Lab Sample ID: LCS 480-558649/1-A	Client Sample ID: Lab Control Sample
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 559093	Prep Batch: 558649

Analysis Batch: 559093	Cmiles	Spike LCS LCS					Prep Batch: 55864
Ameliate	•			l lmi4	ь.	0/ Dag	%Rec. Limits
Analyte	Added	2850	Qualifier	Unit ug/Kg	D	%Rec 114	68 - 130
1,1,2,2-Tetrachloroethane	2500	2320		ug/Kg ug/Kg		93	73 ₋ 120
1,1,2-Trichloro-1,2,2-trifluoroetha	2500	2620		ug/Kg ug/Kg		105	10 - 179
ne	2300	2020		ug/Kg		103	10 - 179
1,1,2-Trichloroethane	2500	2510		ug/Kg		100	80 - 120
1,1-Dichloroethane	2500	2430		ug/Kg		97	78 - 121
1,1-Dichloroethene	2500	2730		ug/Kg		109	48 - 133
1,2,4-Trichlorobenzene	2500	2880		ug/Kg		115	70 - 140
1,2-Dibromo-3-Chloropropane	2500	2550		ug/Kg		102	56 ₋ 122
1,2-Dichlorobenzene	2500	2510		ug/Kg		101	78 ₋ 125
1,2-Dichloroethane	2500	2720		ug/Kg		109	74 - 127
1,2-Dichloropropane	2500	2510		ug/Kg		101	80 - 120
1,3-Dichlorobenzene	2500	2530		ug/Kg		101	80 - 120
1,4-Dichlorobenzene	2500	2490		ug/Kg		99	80 - 120
2-Butanone (MEK)	12500	11100		ug/Kg		89	54 ₋ 149
2-Hexanone	12500	10800		ug/Kg		86	59 - 127
4-Methyl-2-pentanone (MIBK)	12500	10500		ug/Kg		84	74 - 120
Acetone	12500	11400		ug/Kg		91	47 - 141
Benzene	2500	2510		ug/Kg		100	77 ₋ 125
Bromoform	2500	2850		ug/Kg		114	48 - 125
Bromomethane	2500	2610		ug/Kg		104	39 - 149
Carbon disulfide	2500	2320		ug/Kg		93	40 - 136
Carbon tetrachloride	2500	2870		ug/Kg		115	54 - 135
Chlorobenzene	2500	2650		ug/Kg		106	76 - 126
Chloroethane	2500	2170		ug/Kg		87	23 - 150
Chloroform	2500	2550		ug/Kg		102	78 - 120
Chloromethane	2500	1950		ug/Kg		78	61 - 124
cis-1,2-Dichloroethene	2500	2570		ug/Kg		103	79 - 124
Bromodichloromethane	2500	2670		ug/Kg		107	71 - 121
Cyclohexane	2500	2340		ug/Kg		93	49 - 129
Dibromochloromethane	2500	2750		ug/Kg		110	64 - 120
1,2-Dibromoethane	2500	2530		ug/Kg		101	80 - 120
Dichlorodifluoromethane	2500	2750		ug/Kg		110	10 - 150
Ethylbenzene	2500	2580		ug/Kg		103	78 ₋ 124
Isopropylbenzene	2500	2530		ug/Kg		101	76 - 120
Methyl acetate	5000	4260		ug/Kg		85	71 ₋ 123
Methyl tert-butyl ether	2500	2570		ug/Kg		103	67 ₋ 137
Methylcyclohexane	2500	2660		ug/Kg		106	50 - 130
Methylene Chloride	2500	2460		ug/Kg		98	75 ₋ 118

Eurofins TestAmerica, Buffalo

11/25/2020

Page 36 of 62

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-558649/1-A

Matrix: Solid

Analysis Batch: 559093

Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

Prep Batch: 558649

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Tetrachloroethene	2500	2870		ug/Kg		115	73 - 133
Toluene	2500	2560		ug/Kg		102	75 - 124
trans-1,2-Dichloroethene	2500	2590		ug/Kg		104	74 - 129
Trichloroethene	2500	2660		ug/Kg		107	75 _ 131
cis-1,3-Dichloropropene	2500	2700		ug/Kg		108	75 - 121
Trichlorofluoromethane	2500	3030		ug/Kg		121	29 _ 158
Styrene	2500	2680		ug/Kg		107	80 - 120
Vinyl chloride	2500	2140		ug/Kg		86	59 - 124

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		53 - 146
4-Bromofluorobenzene (Surr)	112		49 - 148
Toluene-d8 (Surr)	101		50 - 149
Dibromofluoromethane (Surr)	110		60 - 140

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 558857**

Lab Sample ID: MB 480-558857/2-A

Matrix: Solid

Analysis Batch: 558860

-	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.0	U	5.0	0.36	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.81	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0	U	5.0	1.1	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,1,2-Trichloroethane	5.0	U	5.0	0.65	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,1-Dichloroethane	5.0	U	5.0	0.61	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,1-Dichloroethene	5.0	U	5.0	0.61	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,2,4-Trichlorobenzene	5.0	U	5.0	0.30	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,2-Dichlorobenzene	5.0	U	5.0	0.39	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,2-Dichloroethane	5.0	U	5.0	0.25	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,2-Dichloropropane	5.0	U	5.0	2.5	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,3-Dichlorobenzene	5.0	U	5.0	0.26	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
1,4-Dichlorobenzene	5.0	U	5.0	0.70	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
2-Butanone (MEK)	25	U	25	1.8	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
2-Hexanone	25	U	25	2.5	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
4-Methyl-2-pentanone (MIBK)	25	U	25	1.6	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Acetone	25	U	25	4.2	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Benzene	5.0	U	5.0	0.25	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Bromoform	5.0	U	5.0	2.5	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Bromomethane	5.0	U	5.0	0.45	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Carbon disulfide	5.0	U	5.0	2.5	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Carbon tetrachloride	5.0	U	5.0	0.48	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Chlorobenzene	5.0	U	5.0	0.66	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Chloroethane	5.0	U	5.0	1.1	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Chloroform	5.0	U	5.0	0.31	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Chloromethane	5.0	U	5.0	0.30	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
cis-1,2-Dichloroethene	5.0	U	5.0	0.64	ug/Kg		11/12/20 19:00	11/12/20 21:27	1
Bromodichloromethane	5.0	U	5.0	0.67	ug/Kg		11/12/20 19:00	11/12/20 21:27	1

Client: Parsons Corporation Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-558857/2-A

Matrix: Solid

Analysis Batch: 558860

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 558857

•	МВ	МВ						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cyclohexane	5.0	U	5.0	0.70	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Dibromochloromethane	5.0	U	5.0	0.64	ug/Kg		11/12/20 19:00	11/12/20 21:27	
1,2-Dibromoethane	5.0	U	5.0	0.64	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Dichlorodifluoromethane	5.0	U	5.0	0.41	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Ethylbenzene	5.0	U	5.0	0.35	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Isopropylbenzene	5.0	U	5.0	0.75	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Methyl acetate	25	U	25	3.0	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Methyl tert-butyl ether	5.0	U	5.0	0.49	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Methylcyclohexane	5.0	U	5.0	0.76	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Methylene Chloride	5.0	U	5.0	2.3	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Tetrachloroethene	5.0	U	5.0	0.67	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Toluene	5.0	U	5.0	0.38	ug/Kg		11/12/20 19:00	11/12/20 21:27	
trans-1,2-Dichloroethene	5.0	U	5.0	0.52	ug/Kg		11/12/20 19:00	11/12/20 21:27	
trans-1,3-Dichloropropene	5.0	U	5.0	2.2	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Trichloroethene	5.0	U	5.0	1.1	ug/Kg		11/12/20 19:00	11/12/20 21:27	
cis-1,3-Dichloropropene	5.0	U	5.0	0.72	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Trichlorofluoromethane	5.0	U	5.0	0.47	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Styrene	5.0	U	5.0	0.25	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Vinyl chloride	5.0	U	5.0	0.61	ug/Kg		11/12/20 19:00	11/12/20 21:27	
Xylenes, Total	10	U	10	0.84	ug/Kg		11/12/20 19:00	11/12/20 21:27	

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	64 - 126	11/12/20 19:00	11/12/20 21:27	1
4-Bromofluorobenzene (Surr)	86	72 - 126	11/12/20 19:00	11/12/20 21:27	1
Toluene-d8 (Surr)	95	71 - 125	11/12/20 19:00	11/12/20 21:27	1
Dibromofluoromethane (Surr)	96	60 - 140	11/12/20 19:00	11/12/20 21:27	1

Lab Sample ID: LCS 480-558857/1-A

Matrix: Solid

Analysis Batch: 558860

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 558857**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	55.2		ug/Kg		110	77 - 121	
1,1,2,2-Tetrachloroethane	50.0	46.3		ug/Kg		93	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	46.5		ug/Kg		93	60 - 140	
ne								
1,1,2-Trichloroethane	50.0	48.4		ug/Kg		97	78 - 122	
1,1-Dichloroethane	50.0	53.1		ug/Kg		106	73 - 126	
1,1-Dichloroethene	50.0	44.9		ug/Kg		90	59 - 125	
1,2,4-Trichlorobenzene	50.0	45.5		ug/Kg		91	64 - 120	
1,2-Dibromo-3-Chloropropane	50.0	43.5		ug/Kg		87	63 - 124	
1,2-Dichlorobenzene	50.0	48.3		ug/Kg		97	75 - 120	
1,2-Dichloroethane	50.0	54.6		ug/Kg		109	77 - 122	
1,2-Dichloropropane	50.0	54.5		ug/Kg		109	75 - 124	
1,3-Dichlorobenzene	50.0	49.1		ug/Kg		98	74 - 120	
1,4-Dichlorobenzene	50.0	50.0		ug/Kg		100	73 - 120	
2-Butanone (MEK)	250	273		ug/Kg		109	70 - 134	
2-Hexanone	250	266		ug/Kg		107	59 - 130	
4-Methyl-2-pentanone (MIBK)	250	265		ug/Kg		106	65 - 133	

Page 38 of 62

Job ID: 480-177968-1

Client: Parsons Corporation Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-558857/1-A

Matrix: Solid

Analysis Batch: 558860

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 558857**

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Acetone 283 250 ug/Kg 113 61 - 137Benzene 50.0 50.0 ug/Kg 100 79 - 127 50.0 Bromoform 51.0 ug/Kg 102 68 _ 126 Bromomethane 50.0 67.2 ug/Kg 134 37 - 149 Carbon disulfide 50.0 49.2 98 64 - 131 ug/Kg Carbon tetrachloride 50.0 52.9 ug/Kg 106 75 - 135 Chlorobenzene 50.0 49.3 99 76 - 124 ug/Kg Chloroethane 50.0 61.0 ug/Kg 122 69 - 135Chloroform 50.0 49.9 ug/Kg 100 80 - 120 Chloromethane 50.0 45.4 ug/Kg 91 63 - 127 cis-1,2-Dichloroethene 50.0 47.1 ug/Kg 94 81 - 120 50.0 80 - 122 Bromodichloromethane 54.2 ug/Kg 108 50.0 Cyclohexane 54.0 ug/Kg 108 65 - 120 Dibromochloromethane 50.0 49.6 ug/Kg 99 76 - 125 1,2-Dibromoethane 50.0 46.1 92 78 - 120 ug/Kg Dichlorodifluoromethane 50.0 31.6 ug/Kg 63 57 - 142 Ethylbenzene 50.0 51.5 ug/Kg 103 80 - 120 50.0 49.5 99 72 - 120 Isopropylbenzene ug/Kg Methyl acetate 100 102 ug/Kg 102 55 - 136 50.0 Methyl tert-butyl ether 49.4 ug/Kg 99 63 - 125 Methylcyclohexane 50.0 52.9 ug/Kg 106 60 - 140Methylene Chloride 50.0 49.3 99 61 - 127 ug/Kg Tetrachloroethene 50.0 45.9 ug/Kg 92 74 - 122 50.0 100 Toluene 50.2 ug/Kg 74 - 128 50.0 47.6 95 trans-1,2-Dichloroethene ug/Kg 78 - 126 50.0 50.9 102 77 - 129 Trichloroethene ug/Kg cis-1,3-Dichloropropene 50.0 51.2 ug/Kg 102 80 - 120

50.0

50.0

50.0

55.8

50.1

50.4

ug/Kg

ug/Kg

ug/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			64 - 126
4-Bromofluorobenzene (Surr)	98		72 - 126
Toluene-d8 (Surr)	97		71 - 125
Dibromofluoromethane (Surr)	99		60 - 140

Lab Sample ID: LCSD 480-558857/3-A

Matrix: Solid

Trichlorofluoromethane

Styrene

Vinyl chloride

Analysis Batch: 558860

Client Sample ID: Lab Control Sample Dup

65 - 146

80 - 120

61 - 133

112

100

101

Prep Type: Total/NA **Prep Batch: 558857**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	55.5		ug/Kg		111	77 - 121	0	20
1,1,2,2-Tetrachloroethane	50.0	45.4		ug/Kg		91	80 - 120	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	49.8		ug/Kg		100	60 - 140	7	20
ne									
1,1,2-Trichloroethane	50.0	49.0		ug/Kg		98	78 - 122	1	20
1,1-Dichloroethane	50.0	54.8		ug/Kg		110	73 - 126	3	20
1,1-Dichloroethene	50.0	44.7		ug/Kg		89	59 - 125	1	20

Eurofins TestAmerica, Buffalo

Page 39 of 62

11/25/2020

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-558857/3-A

Matrix: Solid

Analysis Batch: 558860

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 558857

Allalysis Batch. 550000	Spike	LCCD	LCSD				%Rec.	erep Batch.	
Analyte	Added	Result		Unit	D	%Rec	MRec.	RPD	RPD Limit
1,2,4-Trichlorobenzene		46.8	- Quanner	ug/Kg		94	64 - 120	3	20
1,2-Dibromo-3-Chloropropane	50.0	46.8		ug/Kg		94	63 - 124	7	20
1,2-Dichlorobenzene	50.0	48.4		ug/Kg		97	75 ₋ 120	0	20
1,2-Dichloroethane	50.0	56.0		ug/Kg		112	77 ₋ 122	2	20
1,2-Dichloropropane	50.0	54.4		ug/Kg		109	75 - 124	0	20
1,3-Dichlorobenzene	50.0	50.0		ug/Kg		100	74 - 120	2	20
1,4-Dichlorobenzene	50.0	50.0		ug/Kg		100	73 - 120	0	20
2-Butanone (MEK)	250	269		ug/Kg		107	70 - 134	2	20
2-Hexanone	250	272		ug/Kg		109	59 ₋ 130	2	20
4-Methyl-2-pentanone (MIBK)	250	268		ug/Kg		107	65 - 133	<u>-</u>	20
Acetone	250	279		ug/Kg		112	61 - 137	1	20
Benzene	50.0	51.5		ug/Kg		103	79 - 127	3	20
Bromoform	50.0	51.7		ug/Kg		103	68 - 126	<u>.</u>	20
Bromomethane	50.0	74.2		ug/Kg		148	37 - 149	10	20
Carbon disulfide	50.0	51.3		ug/Kg		103	64 - 131	4	20
Carbon tetrachloride	50.0	54.7		ug/Kg		109	75 - 135	3	20
Chlorobenzene	50.0	50.4		ug/Kg		101	76 - 124	2	20
Chloroethane	50.0	67.9	*	ug/Kg		136	69 ₋ 135	11	20
Chloroform	50.0	51.5		ug/Kg		103	80 - 120	3	20
Chloromethane	50.0	46.3		ug/Kg		93	63 - 127	2	20
cis-1,2-Dichloroethene	50.0	48.7		ug/Kg		97	81 - 120	3	20
Bromodichloromethane	50.0	55.1		ug/Kg		110	80 - 122	2	20
Cyclohexane	50.0	53.4		ug/Kg		107	65 - 120	1	20
Dibromochloromethane	50.0	53.1		ug/Kg		106	76 ₋ 125	7	20
1,2-Dibromoethane	50.0	48.5		ug/Kg		97	78 - 120	5	20
Dichlorodifluoromethane	50.0	28.9		ug/Kg		58	57 ₋ 142	9	20
Ethylbenzene	50.0	52.4		ug/Kg		105	80 - 120	2	20
Isopropylbenzene	50.0	48.8		ug/Kg		98	72 - 120	1	20
Methyl acetate	100	100		ug/Kg		100	55 ₋ 136	1	20
Methyl tert-butyl ether	50.0	50.0		ug/Kg		100	63 - 125	1	20
Methylcyclohexane	50.0	52.7		ug/Kg		105	60 - 140	0	20
Methylene Chloride	50.0	50.7		ug/Kg		101	61 - 127	3	20
Tetrachloroethene	50.0	47.4		ug/Kg		95	74 - 122	3	20
Toluene	50.0	51.1		ug/Kg		102	74 - 128	2	20
trans-1,2-Dichloroethene	50.0	47.1		ug/Kg		94	78 ₋ 126	1	20
Trichloroethene	50.0	51.4		ug/Kg		103	77 - 129	1	20
cis-1,3-Dichloropropene	50.0	51.5		ug/Kg		103	80 - 120	1	20
Trichlorofluoromethane	50.0	57.8		ug/Kg		116	65 - 146	4	20
Styrene	50.0	52.0		ug/Kg		104	80 - 120	4	20
Vinyl chloride	50.0	51.3		ug/Kg		103	61 - 133	2	20

	LCSD	LCSD
--	------	------

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			64 - 126
4-Bromofluorobenzene (Surr)	97		72 - 126
Toluene-d8 (Surr)	97		71 - 125
Dibromofluoromethane (Surr)	100		60 140

Eurofins TestAmerica, Buffalo

2

3

8

10

12

1 /

Client: Parsons Corporation Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MD MD

Lab Sample ID: MB 480-559289/2-A

Matrix: Solid

Vinyl chloride

Xylenes, Total

Analysis Batch: 559476

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 559289

Analyte	MB	MB MB							
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.0	U	5.0	0.36	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.81	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0	U	5.0	1.1	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1,2-Trichloroethane	5.0	U	5.0	0.65	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1-Dichloroethane	5.0	U	5.0	0.61	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1-Dichloroethene	5.0	U	5.0	0.61	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2,4-Trichlorobenzene	5.0	U	5.0	0.30	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dichlorobenzene	5.0	U	5.0	0.39	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dichloroethane	5.0	U	5.0	0.25	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dichloropropane	5.0	U	5.0	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,3-Dichlorobenzene	5.0	U	5.0	0.26	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,4-Dichlorobenzene	5.0	U	5.0	0.70	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
2-Butanone (MEK)	25	U	25	1.8	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
2-Hexanone	25	U	25	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
4-Methyl-2-pentanone (MIBK)	25	U	25	1.6	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Acetone	25	U	25	4.2	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Benzene	5.0	U	5.0	0.25	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Bromoform	5.0	U	5.0	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Bromomethane	5.0	U	5.0	0.45	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Carbon disulfide	5.0	U	5.0	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Carbon tetrachloride	5.0	U	5.0	0.48	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Chlorobenzene	5.0	U	5.0	0.66	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Chloroethane	5.0	U	5.0	1.1	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Chloroform	5.0	U	5.0	0.31	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Chloromethane	5.0	U	5.0	0.30	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
cis-1,2-Dichloroethene	5.0	U	5.0	0.64	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Bromodichloromethane	5.0	U	5.0	0.67	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Cyclohexane	5.0	U	5.0	0.70	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Dibromochloromethane	5.0	U	5.0	0.64	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dibromoethane	5.0	U	5.0	0.64	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Dichlorodifluoromethane	5.0	U	5.0	0.41	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Ethylbenzene	5.0	U	5.0	0.35	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Isopropylbenzene	5.0	U	5.0	0.75	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Methyl acetate	25	U	25	3.0	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Methyl tert-butyl ether	5.0	U	5.0	0.49	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Methylcyclohexane	5.0	U	5.0	0.76	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Methylene Chloride	5.0	U	5.0		ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Tetrachloroethene	5.0	U	5.0	0.67	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Toluene	5.0	U	5.0	0.38	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.52	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
trans-1,3-Dichloropropene	5.0	U	5.0	2.2	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Trichloroethene	5.0	U	5.0	1.1	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
cis-1,3-Dichloropropene	5.0	U	5.0		ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Trichlorofluoromethane	5.0	U	5.0		ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Styrene	5.0	U	5.0		ug/Kg		11/16/20 11:57	11/17/20 13:32	1

Eurofins TestAmerica, Buffalo

Page 41 of 62

5.0

10

0.61 ug/Kg

0.84 ug/Kg

5.0 U

10 U

2

3

5

7

10

12

1 1

4 6

11/17/20 13:32

11/17/20 13:32

11/16/20 11:57

11/16/20 11:57

QC Sample Results

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-559289/2-A

Lab Sample ID: LCS 480-559289/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 559476

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-177968-1

Prep Batch: 559289

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	64 - 126	11/16/20 11:57	11/17/20 13:32	1
4-Bromofluorobenzene (Surr)	99	72 - 126	11/16/20 11:57	11/17/20 13:32	1
Toluene-d8 (Surr)	99	71 - 125	11/16/20 11:57	11/17/20 13:32	1
Dibromofluoromethane (Surr)	104	60 - 140	11/16/20 11:57	11/17/20 13:32	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 559476							Prep Batch: 55	928
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	48.6		ug/Kg		97	77 - 121	
1,1,2,2-Tetrachloroethane	50.0	46.9		ug/Kg		94	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	47.7		ug/Kg		95	60 - 140	
ne 1,1,2-Trichloroethane	50.0	45.1		ug/Kg		90	78 ₋ 122	
1,1-Dichloroethane	50.0	47.6		ug/Kg ug/Kg		95	73 - 126	
1,1-Dichloroethene	50.0	49.5		ug/Kg		99	59 ₋ 125	
1,2,4-Trichlorobenzene	50.0	52.1		ug/Kg		104	64 - 120	
1,2-Dibromo-3-Chloropropane	50.0	47.8		ug/Kg		96	63 - 124	
1,2-Dichlorobenzene	50.0	48.9		ug/Kg		98	75 ₋ 120	
1,2-Dichloroethane	50.0	47.3		ug/Kg		95	77 - 122	
1,2-Dichloropropane	50.0	47.6		ug/Kg		95	75 - 124	
1,3-Dichlorobenzene	50.0	49.2		ug/Kg		98	74 - 120	
1,4-Dichlorobenzene	50.0	48.5		ug/Kg		97	73 - 120	
2-Butanone (MEK)	250	221		ug/Kg		88	70 - 134	
2-Hexanone	250	229		ug/Kg		92	59 - 130	
4-Methyl-2-pentanone (MIBK)	250	227		ug/Kg		91	65 - 133	
Acetone	250	226		ug/Kg		91	61 - 137	
Benzene	50.0	48.4		ug/Kg		97	79 ₋ 127	
Bromoform	50.0	48.7		ug/Kg		97	68 - 126	
Bromomethane	50.0	44.3		ug/Kg		89	37 - 149	
Carbon disulfide	50.0	50.3		ug/Kg		101	64 - 131	
Carbon tetrachloride	50.0	51.0		ug/Kg		102	75 - 135	
Chlorobenzene	50.0	48.4		ug/Kg		97	76 - 124	
Chloroethane	50.0	45.7		ug/Kg		91	69 - 135	
Chloroform	50.0	48.1		ug/Kg		96	80 - 120	
Chloromethane	50.0	46.1		ug/Kg		92	63 - 127	
cis-1,2-Dichloroethene	50.0	48.6		ug/Kg		97	81 - 120	
Bromodichloromethane	50.0	48.1		ug/Kg		96	80 - 122	
Cyclohexane	50.0	47.8		ug/Kg		96	65 - 120	
Dibromochloromethane	50.0	48.8		ug/Kg		98	76 - 125	
1,2-Dibromoethane	50.0	45.2		ug/Kg		90	78 ₋ 120	
Dichlorodifluoromethane	50.0	46.9		ug/Kg		94	57 - 142	
Ethylbenzene	50.0	50.1		ug/Kg		100	80 - 120	
Isopropylbenzene	50.0	50.8		ug/Kg		102	72 - 120	
Methyl acetate	100	90.2		ug/Kg		90	55 ₋ 136	
Methyl tert-butyl ether	50.0	48.1		ug/Kg		96	63 - 125	
Methylcyclohexane	50.0	47.9		ug/Kg		96	60 - 140	
Methylene Chloride	50.0	47.6		ug/Kg		95	61 - 127	

Eurofins TestAmerica, Buffalo

Page 42 of 62

11/25/2020

QC Sample Results

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-559289/1-A

Matrix: Solid

Analysis Batch: 559476

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 559289

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	50.0	50.3		ug/Kg		101	74 - 122	
Toluene	50.0	47.3		ug/Kg		95	74 - 128	
trans-1,2-Dichloroethene	50.0	49.1		ug/Kg		98	78 ₋ 126	
Trichloroethene	50.0	49.6		ug/Kg		99	77 - 129	
cis-1,3-Dichloropropene	50.0	50.4		ug/Kg		101	80 _ 120	
Trichlorofluoromethane	50.0	46.8		ug/Kg		94	65 _ 146	
Styrene	50.0	48.8		ug/Kg		98	80 - 120	
Vinyl chloride	50.0	46.0		ug/Kg		92	61 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		64 - 126
4-Bromofluorobenzene (Surr)	101		72 - 126
Toluene-d8 (Surr)	99		71 - 125
Dibromofluoromethane (Surr)	101		60 - 140

Lab Sample ID: MB 480-559506/2-A

Matrix: Solid

Analysis Batch: 559841

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 559506

Analysis Batch: 559641								Prep Batch:	. ၁၁୬၁૫७
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.0	U	5.0	0.36	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.81	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0	U	5.0	1.1	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1,2-Trichloroethane	5.0	U	5.0	0.65	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1-Dichloroethane	5.0	U	5.0	0.61	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1-Dichloroethene	5.0	U	5.0	0.61	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2,4-Trichlorobenzene	5.0	U	5.0	0.30	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2-Dichlorobenzene	5.0	U	5.0	0.39	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2-Dichloroethane	5.0	U	5.0	0.25	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2-Dichloropropane	5.0	U	5.0	2.5	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,3-Dichlorobenzene	5.0	U	5.0	0.26	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,4-Dichlorobenzene	5.0	U	5.0	0.70	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
2-Butanone (MEK)	25	U	25	1.8	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
2-Hexanone	25	U	25	2.5	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
4-Methyl-2-pentanone (MIBK)	25	U	25	1.6	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Acetone	25	U	25	4.2	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Benzene	5.0	U	5.0	0.25	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Bromoform	5.0	U	5.0	2.5	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Bromomethane	5.0	U	5.0	0.45	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Carbon disulfide	5.0	U	5.0	2.5	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Carbon tetrachloride	5.0	U	5.0	0.48	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Chlorobenzene	5.0	U	5.0	0.66	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Chloroethane	5.0	U	5.0	1.1	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Chloroform	5.0	U	5.0	0.31	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Chloromethane	5.0	U	5.0	0.30	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
cis-1,2-Dichloroethene	5.0	U	5.0	0.64	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Bromodichloromethane	5.0	U	5.0	0.67	ug/Kg		11/17/20 13:39	11/19/20 00:07	1

Eurofins TestAmerica, Buffalo

Client: Parsons Corporation

мв мв

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-559506/2-A

Matrix: Solid

Analysis Batch: 559841

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 559506

Job ID: 480-177968-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	5.0	U	5.0	0.70	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Dibromochloromethane	5.0	U	5.0	0.64	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
1,2-Dibromoethane	5.0	U	5.0	0.64	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Dichlorodifluoromethane	5.0	U	5.0	0.41	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Ethylbenzene	5.0	U	5.0	0.35	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Isopropylbenzene	5.0	U	5.0	0.75	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Methyl acetate	25	U	25	3.0	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Methyl tert-butyl ether	5.0	U	5.0	0.49	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Methylcyclohexane	5.0	U	5.0	0.76	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Methylene Chloride	3.51	J	5.0	2.3	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Tetrachloroethene	5.0	U	5.0	0.67	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Toluene	5.0	U	5.0	0.38	ug/Kg		11/17/20 13:39	11/19/20 00:07	
trans-1,2-Dichloroethene	5.0	U	5.0	0.52	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
trans-1,3-Dichloropropene	5.0	U	5.0	2.2	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Trichloroethene	5.0	U	5.0	1.1	ug/Kg		11/17/20 13:39	11/19/20 00:07	
cis-1,3-Dichloropropene	5.0	U	5.0	0.72	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Trichlorofluoromethane	5.0	U	5.0	0.47	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Styrene	5.0	U	5.0	0.25	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Vinyl chloride	5.0	U	5.0	0.61	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Xylenes, Total	10	U	10	0.84	ug/Kg		11/17/20 13:39	11/19/20 00:07	

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 126	11/17/20 13:39	11/19/20 00:07	1
4-Bromofluorobenzene (Surr)	98		72 - 126	11/17/20 13:39	11/19/20 00:07	1
Toluene-d8 (Surr)	99		71 - 125	11/17/20 13:39	11/19/20 00:07	1
Dibromofluoromethane (Surr)	119		60 - 140	11/17/20 13:39	11/19/20 00:07	1

Lab Sample ID: LCS 480-559506/1-A

Matrix: Solid

Analysis Batch: 559841

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 559506

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	55.0		ug/Kg		110	77 - 121	
1,1,2,2-Tetrachloroethane	50.0	44.5		ug/Kg		89	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	55.0		ug/Kg		110	60 - 140	
ne								
1,1,2-Trichloroethane	50.0	46.7		ug/Kg		93	78 - 122	
1,1-Dichloroethane	50.0	49.7		ug/Kg		99	73 - 126	
1,1-Dichloroethene	50.0	55.6		ug/Kg		111	59 - 125	
1,2,4-Trichlorobenzene	50.0	50.2		ug/Kg		100	64 - 120	
1,2-Dibromo-3-Chloropropane	50.0	41.8		ug/Kg		84	63 - 124	
1,2-Dichlorobenzene	50.0	51.0		ug/Kg		102	75 - 120	
1,2-Dichloroethane	50.0	49.8		ug/Kg		100	77 - 122	
1,2-Dichloropropane	50.0	49.5		ug/Kg		99	75 - 124	
1,3-Dichlorobenzene	50.0	52.5		ug/Kg		105	74 - 120	
1,4-Dichlorobenzene	50.0	51.3		ug/Kg		103	73 - 120	
2-Butanone (MEK)	250	249		ug/Kg		100	70 - 134	
2-Hexanone	250	236		ug/Kg		94	59 - 130	
4-Methyl-2-pentanone (MIBK)	250	235		ug/Kg		94	65 _ 133	

Eurofins TestAmerica, Buffalo

Page 44 of 62

2

6

8

10

12

13

11/25/2020

Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-559506/1-A

Matrix: Solid

Analysis Batch: 559841

Client: Parsons Corporation

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 559506

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	250	254		ug/Kg		102	61 - 137	
Benzene	50.0	49.6		ug/Kg		99	79 - 127	
Bromoform	50.0	49.7		ug/Kg		99	68 - 126	
Bromomethane	50.0	53.1		ug/Kg		106	37 _ 149	
Carbon disulfide	50.0	50.6		ug/Kg		101	64 - 131	
Carbon tetrachloride	50.0	57.5		ug/Kg		115	75 ₋ 135	
Chlorobenzene	50.0	53.9		ug/Kg		108	76 - 124	
Chloroethane	50.0	52.8		ug/Kg		106	69 _ 135	
Chloroform	50.0	53.6		ug/Kg		107	80 - 120	
Chloromethane	50.0	48.3		ug/Kg		97	63 - 127	
cis-1,2-Dichloroethene	50.0	52.2		ug/Kg		104	81 - 120	
Bromodichloromethane	50.0	54.0		ug/Kg		108	80 - 122	
Cyclohexane	50.0	54.6		ug/Kg		109	65 _ 120	
Dibromochloromethane	50.0	55.0		ug/Kg		110	76 - 125	
1,2-Dibromoethane	50.0	47.8		ug/Kg		96	78 ₋ 120	
Dichlorodifluoromethane	50.0	47.5		ug/Kg		95	57 ₋ 142	
Ethylbenzene	50.0	51.5		ug/Kg		103	80 - 120	
Isopropylbenzene	50.0	49.5		ug/Kg		99	72 _ 120	
Methyl acetate	100	96.0		ug/Kg		96	55 - 136	
Methyl tert-butyl ether	50.0	49.2		ug/Kg		98	63 - 125	
Methylcyclohexane	50.0	55.6		ug/Kg		111	60 - 140	
Methylene Chloride	50.0	55.2		ug/Kg		110	61 - 127	
Tetrachloroethene	50.0	53.3		ug/Kg		107	74 - 122	
Toluene	50.0	49.6		ug/Kg		99	74 - 128	
trans-1,2-Dichloroethene	50.0	55.1		ug/Kg		110	78 - 126	
Trichloroethene	50.0	55.2		ug/Kg		110	77 - 129	
cis-1,3-Dichloropropene	50.0	51.4		ug/Kg		103	80 - 120	
Trichlorofluoromethane	50.0	56.7		ug/Kg		113	65 - 146	
Styrene	50.0	50.8		ug/Kg		102	80 - 120	
Vinyl chloride	50.0	49.0		ug/Kg		98	61 ₋ 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		64 - 126
4-Bromofluorobenzene (Surr)	100		72 - 126
Toluene-d8 (Surr)	97		71 - 125
Dibromofluoromethane (Surr)	117		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-559203/1-A

Matrix: Solid

Analysis Batch: 560143

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 559203

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	170	U	170	25	ug/Kg		11/16/20 07:51	11/21/20 04:27	1
Acenaphthylene	170	U	170	22	ug/Kg		11/16/20 07:51	11/21/20 04:27	1
Anthracene	170	U	170	42	ug/Kg		11/16/20 07:51	11/21/20 04:27	1
Benzo[a]anthracer	ne 170	U	170	17	ug/Kg		11/16/20 07:51	11/21/20 04:27	1
Benzo[a]pyrene	170	U	170	25	ug/Kg		11/16/20 07:51	11/21/20 04:27	1

Eurofins TestAmerica, Buffalo

Page 45 of 62

-

3

5

7

0

10

12

13

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 480-559203/1-A

Matrix: Solid

Analysis Batch: 560143

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 559203

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	170	U	170	27	ug/Kg		11/16/20 07:51	11/21/20 04:27	1
Benzo[g,h,i]perylene	170	U	170	18	ug/Kg		11/16/20 07:51	11/21/20 04:27	1
Benzo[k]fluoranthene	170	U	170	22	ug/Kg		11/16/20 07:51	11/21/20 04:27	1
Chrysene	170	U	170	38	ug/Kg		11/16/20 07:51	11/21/20 04:27	•
Dibenz(a,h)anthracene	170	U	170	30	ug/Kg		11/16/20 07:51	11/21/20 04:27	
Fluoranthene	170	U	170	18	ug/Kg		11/16/20 07:51	11/21/20 04:27	•
Fluorene	170	U	170	20	ug/Kg		11/16/20 07:51	11/21/20 04:27	•
Indeno[1,2,3-cd]pyrene	170	U	170	21	ug/Kg		11/16/20 07:51	11/21/20 04:27	
Naphthalene	170	U	170	22	ug/Kg		11/16/20 07:51	11/21/20 04:27	•
Phenanthrene	170	U	170	25	ug/Kg		11/16/20 07:51	11/21/20 04:27	•
Pyrene	170	U	170	20	ug/Kg		11/16/20 07:51	11/21/20 04:27	
I and the second second second second second second second second second second second second second second se									

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	94	60 - 120	11/16/20 07:51	11/21/20 04:27	1
Nitrobenzene-d5 (Surr)	88	53 - 120	11/16/20 07:51	11/21/20 04:27	1
p-Terphenyl-d14 (Surr)	96	79 - 130	11/16/20 07:51	11/21/20 04:27	1

Lab Sample ID: LCS 480-559203/2-A

Matrix: Solid

Analysis Batch: 560143

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 559203

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	1660	1600		ug/Kg		96	62 - 120	
Acenaphthylene	1660	1630		ug/Kg		98	58 - 121	
Anthracene	1660	1750		ug/Kg		106	62 _ 120	
Benzo[a]anthracene	1660	1650		ug/Kg		100	65 _ 120	
Benzo[a]pyrene	1660	1820		ug/Kg		110	64 - 120	
Benzo[b]fluoranthene	1660	1890		ug/Kg		114	64 - 120	
Benzo[g,h,i]perylene	1660	1820		ug/Kg		110	45 - 145	
Benzo[k]fluoranthene	1660	1760		ug/Kg		106	65 _ 120	
Chrysene	1660	1720		ug/Kg		104	64 - 120	
Dibenz(a,h)anthracene	1660	1870		ug/Kg		113	54 - 132	
Fluoranthene	1660	1720		ug/Kg		104	62 _ 120	
Fluorene	1660	1660		ug/Kg		100	63 - 120	
Indeno[1,2,3-cd]pyrene	1660	1840		ug/Kg		111	56 - 134	
Naphthalene	1660	1580		ug/Kg		95	55 - 120	
Phenanthrene	1660	1770		ug/Kg		107	60 _ 120	
Pyrene	1660	1700		ug/Kg		102	61 _ 133	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl	96	60 - 120
Nitrobenzene-d5 (Surr)	94	53 - 120
n-Ternhenyl-d14 (Surr)	100	79 130

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Prep Type: Total/NA

Prep Batch: 560357

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-560357/1-A

Matrix: Solid

Analysis Batch: 560671

Chromium

Analyte

Chromium

MB MB

Analyte

Result Qualifier 0.51 U

RL0.51 MDL Unit 0.20 mg/Kg

D

11/23/20 08:35

Prepared

Analyzed 11/23/20 23:11

Client Sample ID: Method Blank

Dil Fac

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 560357

Lab Sample ID: LCSSRM 480-560357/2-A **Matrix: Solid**

Analysis Batch: 560671

Spike Added 158

LCSSRM LCSSRM Result Qualifier 125.7

Unit mg/Kg

D %Rec

Limits 79.5 65.2 - 120.

9

%Rec.

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-560274/1-A

Matrix: Solid

Analysis Batch: 560423

мв мв

Sample Sample

Result Qualifier

1.1 U F1 *

Analyte Result Qualifier Cyanide, Total

0.90 U

0.90

Spike

Added

23.1

Spike

Added

1.38

MDL Unit 0.43 mg/Kg

LCSSRM LCSSRM

MS MS

0.981 JF1

DU DU

1.1 U*

Result Qualifier

Result Qualifier

Qualifier

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

Result

2.65

Prepared 11/20/20 21:56

D

%Rec

%Rec

11.5

Analyzed 11/22/20 15:24

Dil Fac

Lab Sample ID: LCSSRM 480-560274/2-A

Matrix: Solid

Cyanide, Total

Cyanide, Total

Matrix: Solid

Analysis Batch: 560423

Analyte

Lab Sample ID: 480-177968-1 MS **Matrix: Solid**

Analysis Batch: 560423

Analyte

Lab Sample ID: 480-177968-1 DU

Analysis Batch: 560423

Sample Sample Result Qualifier 1.1 U F1 * Cyanide, Total

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 560274

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 560274

%Rec. Limits 17.0 - 162.

8

Client Sample ID: B-17-11102020-0.7-1.2

Prep Type: Total/NA

Prep Batch: 560274

%Rec. Limits

85 - 115

Client Sample ID: B-17-11102020-0.7-1.2

Prep Type: Total/NA **Prep Batch: 560274**

RPD

Limit

Eurofins TestAmerica, Buffalo

Job ID: 480-177968-1

Client: Parsons Corporation Project/Site: Honeywell - Tonawanda Plastics

GC/MS VOA

Prep Batch: 558649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	5035A_H	
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	5035A_H	
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	5035A_H	
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	5035A_H	
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	5035A_H	
MB 480-558649/2-A	Method Blank	Total/NA	Solid	5035A_H	
LCS 480-558649/1-A	Lab Control Sample	Total/NA	Solid	5035A_H	

Prep Batch: 558857

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-1	B-17-11102020-0.7-1.2	Total/NA	Solid	5035A_L	
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	5035A_L	
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	5035A_L	
MB 480-558857/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-558857/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	
LCSD 480-558857/3-A	Lab Control Sample Dup	Total/NA	Solid	5035A_L	

Analysis Batch: 558860

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-1	B-17-11102020-0.7-1.2	Total/NA	Solid	8260C	558857
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	8260C	558857
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	8260C	558857
MB 480-558857/2-A	Method Blank	Total/NA	Solid	8260C	558857
LCS 480-558857/1-A	Lab Control Sample	Total/NA	Solid	8260C	558857
LCSD 480-558857/3-A	Lab Control Sample Dup	Total/NA	Solid	8260C	558857

Analysis Batch: 558981

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	8260C	558649
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	8260C	558649
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	8260C	558649
MB 480-558649/2-A	Method Blank	Total/NA	Solid	8260C	558649

Analysis Batch: 559093

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-558649/1-A	Lab Control Sample	Total/NA	Solid	8260C	558649

Prep Batch: 559289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	5035A_L	
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	5035A_L	
MB 480-559289/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-559289/1-A	Lab Control Sample	Total/NA	Solid	5035A L	

Analysis Batch: 559303

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	8260C	558649
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	8260C	558649

Eurofins TestAmerica, Buffalo

Page 48 of 62

QC Association Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

GC/MS VOA

Analysis Batch: 559476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	8260C	559289
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	8260C	559289
MB 480-559289/2-A	Method Blank	Total/NA	Solid	8260C	559289
LCS 480-559289/1-A	Lab Control Sample	Total/NA	Solid	8260C	559289

Prep Batch: 559506

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	5035A_L	
MB 480-559506/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-559506/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	

Analysis Batch: 559841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	8260C	559506
MB 480-559506/2-A	Method Blank	Total/NA	Solid	8260C	559506
LCS 480-559506/1-A	Lab Control Sample	Total/NA	Solid	8260C	559506

GC/MS Semi VOA

Prep Batch: 559203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-1	B-17-11102020-0.7-1.2	Total/NA	Solid	3550C	
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	3550C	
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	3550C	
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	3550C	
480-177968-4 - DL	B-14-11102020-0.3-0.8	Total/NA	Solid	3550C	
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	3550C	
480-177968-6 - DL	B-16-11102020-0.9-1.4	Total/NA	Solid	3550C	
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	3550C	
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	3550C	
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	3550C	
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	3550C	
480-177968-9 - DL	B-30-11102020-0.5-1.0	Total/NA	Solid	3550C	
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	3550C	
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	3550C	
MB 480-559203/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-559203/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Analysis Batch: 560143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-1	B-17-11102020-0.7-1.2	Total/NA	Solid	8270D	559203
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	8270D	559203
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	8270D	559203
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	8270D	559203
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	8270D	559203
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	8270D	559203
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	8270D	559203
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	8270D	559203
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	8270D	559203
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	8270D	559203
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	8270D	559203

Eurofins TestAmerica, Buffalo

Page 49 of 62

2

5

0

8

9

4

12

13

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

GC/MS Semi VOA (Continued)

Analysis Batch: 560143 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-559203/1-A	Method Blank	Total/NA	Solid	8270D	559203
LCS 480-559203/2-A	Lab Control Sample	Total/NA	Solid	8270D	559203

Analysis Batch: 560481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-4 - DL	B-14-11102020-0.3-0.8	Total/NA	Solid	8270D	559203
480-177968-6 - DL	B-16-11102020-0.9-1.4	Total/NA	Solid	8270D	559203
480-177968-9 - DL	B-30-11102020-0.5-1.0	Total/NA	Solid	8270D	559203

Metals

Prep Batch: 560357

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-1	B-17-11102020-0.7-1.2	Total/NA	Solid	3050B	<u> </u>
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	3050B	
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	3050B	
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	3050B	
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	3050B	
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	3050B	
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	3050B	
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	3050B	
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	3050B	
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	3050B	
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	3050B	
MB 480-560357/1-A	Method Blank	Total/NA	Solid	3050B	
LCSSRM 480-560357/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 560671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-1	B-17-11102020-0.7-1.2	Total/NA	Solid	6010C	560357
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	6010C	560357
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	6010C	560357
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	6010C	560357
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	6010C	560357
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	6010C	560357
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	6010C	560357
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	6010C	560357
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	6010C	560357
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	6010C	560357
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	6010C	560357
MB 480-560357/1-A	Method Blank	Total/NA	Solid	6010C	560357
LCSSRM 480-560357/2-A	Lab Control Sample	Total/NA	Solid	6010C	560357

General Chemistry

Analysis Batch: 558639

Lab Sample ID	Client Sample ID B-17-11102020-0.7-1.2	Prep Type	Matrix	Method	Prep Batch
480-177968-1		Total/NA	Solid	Moisture	
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	Moisture	
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	Moisture	
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	Moisture	
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	Moisture	

Eurofins TestAmerica, Buffalo

J

6

9

11

13

14

QC Association Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

General Chemistry (Continued)

Analysis Batch: 558639 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	Moisture	
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	Moisture	
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	Moisture	
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	Moisture	
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	Moisture	
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	Moisture	

Prep Batch: 560274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-1	B-17-11102020-0.7-1.2	Total/NA	Solid	9012B	
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	9012B	
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	9012B	
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	9012B	
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	9012B	
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	9012B	
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	9012B	
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	9012B	
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	9012B	
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	9012B	
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	9012B	
MB 480-560274/1-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 480-560274/2-A	Lab Control Sample	Total/NA	Solid	9012B	
480-177968-1 MS	B-17-11102020-0.7-1.2	Total/NA	Solid	9012B	
480-177968-1 DU	B-17-11102020-0.7-1.2	Total/NA	Solid	9012B	

Analysis Batch: 560423

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-177968-1	B-17-11102020-0.7-1.2	Total/NA	Solid	9012B	560274
480-177968-2	B-17-11102020-1.5-2.0	Total/NA	Solid	9012B	560274
480-177968-3	B-15-11102020-1.3-1.8	Total/NA	Solid	9012B	560274
480-177968-4	B-14-11102020-0.3-0.8	Total/NA	Solid	9012B	560274
480-177968-5	B-14-11102020-4.5-5.0	Total/NA	Solid	9012B	560274
480-177968-6	B-16-11102020-0.9-1.4	Total/NA	Solid	9012B	560274
480-177968-7	B-16-11102020-2.5-3.0	Total/NA	Solid	9012B	560274
480-177968-8	B-29-11102020-1.8-2.3	Total/NA	Solid	9012B	560274
480-177968-9	B-30-11102020-0.5-1.0	Total/NA	Solid	9012B	560274
480-177968-10	B-30-11102020-3.5-4.0	Total/NA	Solid	9012B	560274
480-177968-11	B-12-11102020-1.0-1.5	Total/NA	Solid	9012B	560274
MB 480-560274/1-A	Method Blank	Total/NA	Solid	9012B	560274
LCSSRM 480-560274/2-A	Lab Control Sample	Total/NA	Solid	9012B	560274
480-177968-1 MS	B-17-11102020-0.7-1.2	Total/NA	Solid	9012B	560274
480-177968-1 DU	B-17-11102020-0.7-1.2	Total/NA	Solid	9012B	560274

Date Received: 11/10/20 18:00

Date Collected: 11/10/20 08:35

Lab Sample ID: 480-177968-1

Client Sample ID: B-17-11102020-0.7-1.2

Date Collected: 11/10/20 08:35 Matrix: Solid

Job ID: 480-177968-1

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab GSR Total/NA Analysis Moisture 558639 11/11/20 17:51 TAL BUF

Client Sample ID: B-17-11102020-0.7-1.2 Lab Sample ID: 480-177968-1

Matrix: Solid

Date Received: 11/10/20 18:00 Percent Solids: 83.3

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number or Analyzed Analyst Туре Run Lab 5035A_L 558857 11/11/20 15:50 CDC TAL BUF Total/NA Prep Total/NA 8260C 558860 11/12/20 22:49 TAL BUF Analysis WJD 1 Prep 3550C TAL BUF Total/NA 559203 11/16/20 07:51 VXF 8270D 560143 TAL BUF Total/NA Analysis 11/21/20 09:41 JMM 1 Total/NA Prep 3050B 560357 11/23/20 08:35 ADM TAL BUF Total/NA Analysis 6010C 560671 11/24/20 00:32 TAL BUF LMH 9012B TAL BUF Total/NA Prep 560274 11/20/20 21:56 ALT TAL BUF Total/NA Analysis 9012B 1 560423 11/22/20 15:27 ALT

Client Sample ID: B-17-11102020-1.5-2.0 Lab Sample ID: 480-177968-2

Date Collected: 11/10/20 08:45 Matrix: Solid

Date Received: 11/10/20 18:00

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab GSR TAL BUF Total/NA Analysis Moisture 558639 11/11/20 17:51

Client Sample ID: B-17-11102020-1.5-2.0 Lab Sample ID: 480-177968-2

Date Collected: 11/10/20 08:45 **Matrix: Solid**

Date Received: 11/10/20 18:00 Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			558857	11/11/20 15:50	CDC	TAL BUF
Total/NA	Analysis	8260C		1	558860	11/12/20 23:14	WJD	TAL BUF
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		1	560143	11/21/20 10:05	JMM	TAL BUF
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 00:36	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:31	ALT	TAL BUF

Client Sample ID: B-15-11102020-1.3-1.8 Lab Sample ID: 480-177968-3

Date Collected: 11/10/20 09:00 **Matrix: Solid**

Date Received: 11/10/20 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	558639	11/11/20 17:51	GSR	TAL BUF

Eurofins TestAmerica, Buffalo

Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Client: Parsons Corporation

Client Sample ID: B-15-11102020-1.3-1.8

Lab Sample ID: 480-177968-3 Date Collected: 11/10/20 09:00 Date Received: 11/10/20 18:00

Matrix: Solid Percent Solids: 84.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			558857	11/11/20 15:50	CDC	TAL BUF
Total/NA	Analysis	8260C		1	558860	11/12/20 23:39	WJD	TAL BUF
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		1	560143	11/21/20 10:29	JMM	TAL BUF
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 00:40	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:33	ALT	TAL BUF

Client Sample ID: B-14-11102020-0.3-0.8

Lab Sample ID: 480-177968-4

Date Collected: 11/10/20 10:55 Date Received: 11/10/20 18:00

Matrix: Solid

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 558639 11/11/20 17:51 GSR TAL BUF

Client Sample ID: B-14-11102020-0.3-0.8 Lab Sample ID: 480-177968-4

Date Collected: 11/10/20 10:55 **Matrix: Solid** Date Received: 11/10/20 18:00 Percent Solids: 83.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H			558649	11/11/20 19:48	CDC	TAL BUF
Total/NA	Analysis	8260C		100	558981	11/13/20 21:16	LCH	TAL BUF
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		20	560143	11/21/20 10:53	JMM	TAL BUF
Total/NA	Prep	3550C	DL		559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D	DL	50	560481	11/24/20 00:08	JMM	TAL BUF
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 00:44	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:34	ALT	TAL BUF

Client Sample ID: B-14-11102020-4.5-5.0

Lab Sample ID: 480-177968-5 Date Collected: 11/10/20 11:00 **Matrix: Solid**

Date Received: 11/10/20 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	558639	11/11/20 17:51	GSR	TAL BUF

Client Sample ID: B-14-11102020-4.5-5.0 Lab Sample ID: 480-177968-5

Date Collected: 11/10/20 11:00 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 86.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H			558649	11/11/20 19:48	CDC	TAL BUF
Total/NA	Analysis	8260C		1	559303	11/17/20 03:19	AMM	TAL BUF

Eurofins TestAmerica, Buffalo

Page 53 of 62

10

11/25/2020

Client Sample ID: B-14-11102020-4.5-5.0

Date Collected: 11/10/20 11:00 Date Received: 11/10/20 18:00

Lab Sample ID: 480-177968-5

Matrix: Solid

Percent Solids: 86.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		5	560143	11/21/20 11:17	JMM	TAL BUF
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 00:59	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:36	ALT	TAL BUF

Client Sample ID: B-16-11102020-0.9-1.4

Date Collected: 11/10/20 12:20 Date Received: 11/10/20 18:00

Lab Sample ID: 480-177968-6

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	558639	11/11/20 17:51	GSR	TAL BUF

Client Sample ID: B-16-11102020-0.9-1.4

Date Collected: 11/10/20 12:20

Date Received: 11/10/20 18:00

Lab Sample ID: 480-177968-6

Matrix: Solid

Percent Solids: 87.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H			558649	11/11/20 19:48	CDC	TAL BUF
Total/NA	Analysis	8260C		100	558981	11/13/20 22:03	LCH	TAL BUF
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		10	560143	11/21/20 11:41	JMM	TAL BUF
Total/NA	Prep	3550C	DL		559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D	DL	50	560481	11/24/20 00:32	JMM	TAL BUF
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 01:03	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:37	ALT	TAL BUF

Client Sample ID: B-16-11102020-2.5-3.0

Date Collected: 11/10/20 12:25

Date Received: 11/10/20 18:00

Lab Sample ID: 480-177968-7

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			558639	11/11/20 17:51	GSR	TAL BUF

Client Sample ID: B-16-11102020-2.5-3.0

Date Collected: 11/10/20 12:25

Date Received: 11/10/20 18:00

Lab Sample ID: 480-177968-7

Matrix: Solid

Percent Solids: 79.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H			558649	11/11/20 19:48	CDC	TAL BUF
Total/NA	Analysis	8260C		4	559303	11/17/20 03:42	AMM	TAL BUF
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		1	560143	11/21/20 12:06	JMM	TAL BUF

Eurofins TestAmerica, Buffalo

Page 54 of 62

Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Client: Parsons Corporation

Client Sample ID: B-16-11102020-2.5-3.0

Lab Sample ID: 480-177968-7 Date Collected: 11/10/20 12:25 Date Received: 11/10/20 18:00

Matrix: Solid Percent Solids: 79.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 01:07	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:42	ALT	TAL BUF

Client Sample ID: B-29-11102020-1.8-2.3

Lab Sample ID: 480-177968-8

Date Collected: 11/10/20 13:00 Matrix: Solid Date Received: 11/10/20 18:00

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run Factor Number Analyst Lab

Total/NA Analysis Moisture 558639 11/11/20 17:51 GSR TAL BUF

Client Sample ID: B-29-11102020-1.8-2.3 Lab Sample ID: 480-177968-8 Date Collected: 11/10/20 13:00 **Matrix: Solid**

Date Received: 11/10/20 18:00 Percent Solids: 75.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			559289	11/11/20 15:50	WJD	TAL BUF
Total/NA	Analysis	8260C		1	559476	11/17/20 14:57	CDC	TAL BUF
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		1	560143	11/21/20 12:30	JMM	TAL BUF
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 01:11	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:43	ALT	TAL BUF

Client Sample ID: B-30-11102020-0.5-1.0 Lab Sample ID: 480-177968-9

Date Collected: 11/10/20 13:20 **Matrix: Solid**

Date Received: 11/10/20 18:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture			558639	11/11/20 17:51	GSR	TAL BUF	

Client Sample ID: B-30-11102020-0.5-1.0 Lab Sample ID: 480-177968-9

Date Collected: 11/10/20 13:20 Date Received: 11/10/20 18:00 Percent Solids: 87.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H			558649	11/11/20 19:48	CDC	TAL BUF
Total/NA	Analysis	8260C		200	558981	11/13/20 23:12	LCH	TAL BUF
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		20	560143	11/21/20 12:54	JMM	TAL BUF
Total/NA	Prep	3550C	DL		559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D	DL	100	560481	11/24/20 00:56	JMM	TAL BUF
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 01:15	LMH	TAL BUF

Eurofins TestAmerica, Buffalo

11/25/2020

Page 55 of 62

10

Matrix: Solid

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-30-11102020-0.5-1.0

Lab Sample ID: 480-177968-9 Date Collected: 11/10/20 13:20 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 87.5

		Batch	Batch		Dilution	Batch	Prepared		
P	гер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
To	otal/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
To	otal/NA	Analysis	9012B		1	560423	11/22/20 15:44	ALT	TAL BUF

Client Sample ID: B-30-11102020-3.5-4.0

Lab Sample ID: 480-177968-10 Date Collected: 11/10/20 14:00 **Matrix: Solid**

Date Received: 11/10/20 18:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	558639	11/11/20 17:51	GSR	TAL BUF	

Client Sample ID: B-30-11102020-3.5-4.0

Lab Sample ID: 480-177968-10 Date Collected: 11/10/20 14:00 **Matrix: Solid** Date Received: 11/10/20 18:00 Percent Solids: 87.4

Batch Batch Dilution Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab Prep Total/NA 5035A_L 559506 11/11/20 15:50 WJD TAL BUF Total/NA Analysis 8260C 559841 11/19/20 00:57 WJD TAL BUF 3550C VXF Total/NA Prep 559203 11/16/20 07:51 TAL BUF Total/NA 8270D 560143 TAL BUF Analysis 11/21/20 13:18 JMM Total/NA Prep 3050B 560357 11/23/20 08:35 ADM TAL BUF Total/NA Analysis 6010C 560671 11/24/20 01:19 TAL BUF LMH Total/NA Prep 9012B 560274 11/20/20 21:56 ALT TAL BUF

Analysis Client Sample ID: B-12-11102020-1.0-1.5

9012B

Lab Sample ID: 480-177968-11 Date Collected: 11/10/20 09:55 **Matrix: Solid**

560423

11/22/20 15:46

ALT

TAL BUF

Date Received: 11/10/20 18:00

Total/NA

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	558639	11/11/20 17:51	GSR	TAL BUF

Client Sample ID: B-12-11102020-1.0-1.5

Date Collected: 11/10/20 09:55 Matrix: Solid Date Received: 11/10/20 18:00 Percent Solids: 82.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			559289	11/11/20 15:50	WJD	TAL BUF
Total/NA	Analysis	8260C		1	559476	11/17/20 15:22	CDC	TAL BUF
Total/NA	Prep	3550C			559203	11/16/20 07:51	VXF	TAL BUF
Total/NA	Analysis	8270D		1	560143	11/21/20 13:42	JMM	TAL BUF
Total/NA	Prep	3050B			560357	11/23/20 08:35	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560671	11/24/20 01:23	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:47	ALT	TAL BUF

Lab Sample ID: 480-177968-11

Lab Chronicle

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-177968-1

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

Δ

5

8

46

10

12

1/

1!

Accreditation/Certification Summary

Client: Parsons Corporation Job ID: 480-177968-1

Project/Site: Honeywell - Tonawanda Plastics

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date 04-01-21	
New York	NI	ELAP	10026		
,		ut the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for wh	
the agency does not of	fer certification.				
Analysis Method	fer certification. Prep Method	Matrix	Analyte		
0 ,		Matrix Solid	Analyte Percent Moisture		

4

5

9

11

40

14

Method Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Laboratory Method **Method Description** Protocol 8260C Volatile Organic Compounds by GC/MS SW846 TAL BUF TAL BUF 8270D Semivolatile Organic Compounds (GC/MS) SW846 6010C Metals (ICP) SW846 TAL BUF 9012B Cyanide, Total andor Amenable SW846 TAL BUF Moisture Percent Moisture EPA TAL BUF Preparation, Metals 3050B TAL BUF SW846 3550C Ultrasonic Extraction SW846 TAL BUF 5035A_H Closed System Purge and Trap SW846 TAL BUF 5035A L Closed System Purge and Trap SW846 TAL BUF

Protocol References:

9012B

EPA = US Environmental Protection Agency

Cyanide, Total and/or Amenable, Distillation

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-177968-1

2

3

0

8

TAL BUF

SW846

4 4

12

4 /

Sample Summary

Client: Parsons Corporation

480-177968-11

Project/Site: Honeywell - Tonawanda Plastics

B-12-11102020-1.0-1.5

Lab Sample ID Client Sample ID Matrix Collected Received Asset ID 480-177968-1 B-17-11102020-0.7-1.2 Solid 11/10/20 08:35 11/10/20 18:00 480-177968-2 B-17-11102020-1.5-2.0 Solid 11/10/20 08:45 11/10/20 18:00 480-177968-3 B-15-11102020-1.3-1.8 Solid 11/10/20 09:00 11/10/20 18:00 480-177968-4 B-14-11102020-0.3-0.8 Solid 11/10/20 10:55 11/10/20 18:00 480-177968-5 B-14-11102020-4.5-5.0 Solid 11/10/20 11:00 11/10/20 18:00 B-16-11102020-0.9-1.4 11/10/20 12:20 11/10/20 18:00 480-177968-6 Solid 480-177968-7 B-16-11102020-2.5-3.0 Solid 11/10/20 12:25 11/10/20 18:00 11/10/20 18:00 480-177968-8 B-29-11102020-1.8-2.3 Solid 11/10/20 13:00 480-177968-9 B-30-11102020-0.5-1.0 Solid 11/10/20 13:20 11/10/20 18:00 B-30-11102020-3.5-4.0 11/10/20 18:00 480-177968-10 Solid 11/10/20 14:00

11/10/20 09:55

11/10/20 18:00

Solid

Job ID: 480-177968-1

3

4

5

_

8

9

10

12

Environment Testing

: eurofins

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Dodecahydrate one A 4-5 Ver: 01/16/2019 Special Instructions/Note: O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 12504 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon 480-152727-33964.3 Preservation Codes: Rad Page: Page 8 of 4 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4 Custody Total Number o 480-177968 Chain of Date/Time Aethod of Shipment Carrier Tracking No(s) 10,017 Analysis Requested Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: MA (WOM E-Mail: John.Schove@Eurofinset.com 3270D - PAH Semivolatiles Received by: Received by: Received by: Lab PM: Schove, John R - TCL VOCs ime (ON 10 seY) GSM/SM mnother (oN 10 self Filtered Sample (Yes or No) Compagy on Solid Solid Matrix (W=water, S=solid, O=waste/oil, Preservation Code Solid Solid Solid Solid Solid Solid Solid Solid Solid Company Company DAN CHAMPERIAM Radiological (C=comp, G=grab) Sample Type 0 0 0 0 0 18-289-0169 0 18:00 13:20 35:80 Purchase Order Requested 28:36 52.80 04:00 11/0/2020 14:00 Sample 00-11 000/11 11/10/2020 10:55 11/0/2020 (2:20 Time 1/10/2020 12:25 1/10/2010 (3:00 STRNORRD Date: Unknown 'AT Requested (days): Sate/Time: 102 Due Date Requested: 1110/2020 Molow 1110/2020 11/0/22 Sample Date 1110/1011 Project #: 48023001 Date/Time Jate/Time .hone. Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) -12,11(02020-1,0-1,5 B-14-1102020-0.3-0.8 111020211-3.5-4.6 Custody Seal No. 0-7-8-4-4102020-45-5.0 9-30-011020101-05-6 B-16_ [1102020 - 0.9-1.4 8-16-11102020-25-30 -29-11102020-1-8-2.3 87-87-PMDM-13-18 -17. 4(10 2020 -1.5-20 - Flammable 180 Lawrence Bell Drive Suite 104 Honeywell - Tonawanda Plastics Possible Hazard Identification 1102020-0 effrey.poulsen@parsons.com Empty Kit Relinquished by: Custody Seals Intact: △ Yes △ No Client Information Sample Identification Parsons Corporation Non-Hazard Mr. Jeff Poulsen nquished by: nquished by: Williamsville State, Zip: NY, 14221

Job Number: 480-177968-1

Client: Parsons Corporation

Login Number: 177968 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

C. Catter. Transcop California		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	FREEZE TIME 11/11/20 1550
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	PARSONS
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178044-1

Client Project/Site: Honeywell - Tonawanda Plastics

For:

Parsons Corporation 180 Lawrence Bell Drive Suite 104 Williamsville, New York 14221

Attn: Mr. Jeff Poulsen

Authorized for release by: 11/25/2020 1:52:12 PM

Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

John Schove, Project Manager II (716)504-9838 John.Schove@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	9
Surrogate Summary	27
QC Sample Results	29
QC Association Summary	41
Lab Chronicle	45
Certification Summary	49
Method Summary	50
Sample Summary	51
Chain of Custody	52
Receipt Checklists	53

3

4

6

8

9

11

12

14

Definitions/Glossary

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Qualifier Description

Qualifier Description

Indicates the analyte was analyzed for but not detected.

Qualifiers

	IS '		

Qualifier	Qualifier Description						
*3	ISTD response or retention time outside acceptable limits.						
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.						
U	Indicates the analyte was analyzed for but not detected.						
X	Surrogate recovery exceeds control limits						

GC/MS Semi VOA

Qualifier

Qualifier

U

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.
X	Surrogate recovery exceeds control limits
Metals	

General Chemistry

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Eurofins TestAmerica, Buffalo

Page 3 of 53 11/25/2020

Definitions/Glossary

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.							
TEF	Toxicity Equivalent Factor (Dioxin)							
TEQ	Toxicity Equivalent Quotient (Dioxin)							
TNTC	Too Numerous To Count							

Case Narrative

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-178044-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178044-1

Comments

No additional comments.

Receipt

The samples were received on 11/11/2020 5:12 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method 8260C: The following samples were analyzed using medium level soil analysis and diluted to bring the concentration of target analytes within the calibration range: B-9-11112020-0.5-1.0 (480-178044-7), B-9-11112020-20-25 (480-178044-8) and B-9-11112020-9.5-10.0 (480-178044-9). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-559102 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: B-9-11112020-0.5-1.0 (480-178044-7), B-9-11112020-20-25 (480-178044-8) and B-9-11112020-9.5-10.0 (480-178044-9).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-559102 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method 8260C: Surrogate recovery in the continuing calibration verification (CCV) was outside the 20%D recovery but within house limits. The following samples are impacted: B-9-11112020-0.5-1.0 (480-178044-7), B-9-11112020-20-25 (480-178044-8) and B-9-11112020-9.5-10.0 (480-178044-9).

Method 8260C: Internal standard (ISTD) and surrogate standard (SS) response for the following sample was outside control limits: B-4-11112020-0.8-1.3 (480-178044-2). The sample was re-analyzed and ISTD/SS response was outside control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: B-9-11112020-0.5-1.0 (480-178044-7). Elevated reporting limits (RL) are provided.

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 480-559708 was outside the method criteria for the following analyte(s): 2,4,6-Tribromophenol (Surr). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The laboratory control sample (LCS) for preparation batch 480-559530 and analytical batch 480-559708 recovered outside control limits for the following surrogate: 2,4,6-Tribromophenol. This surrogate is biased high and no detections were found for associated analytes in the following affected samples: B-1-11112020-1.5-2.0 (480-178044-1), B-4-11112020-0.8-1.3 (480-178044-2), B-4-11112020-1.5-2.0 (480-178044-3), B-5-11112020-0.6-1.1 (480-178044-4), B-7-11112020-1.7-2.2 (480-178044-5), B-8-11112020-1.9-2.4 (480-178044-6), B-9-11112020-0.5-1.0 (480-178044-7), B-9-11112020-20-25 (480-178044-8) and B-9-11112020-9.5-10.0 (480-178044-9). Therefore, the data has been reported.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: (480-178044-B-1-B MSD). These results have been reported and qualified.

Method 8270D: Three surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate

3

Job ID: 480-178044-1

4

6

8

9

11

12

14

Case Narrative

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-178044-1

Job ID: 480-178044-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

compounds outside limits: B-9-11112020-0.5-1.0 (480-178044-7). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method 9012B: The laboratory control sample (LCS) associated with preparation batch 480-560274 and analytical batch 480-560423 was outside acceptance criteria and is suspected to be bad. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-1-11112020-1.5-2.0 Lab Sample ID: 480-178044-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	21	J	200	20	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	23	J	200	21	ug/Kg	1	₩	8270D	Total/NA
Chromium	22.0		0.60	0.24	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: B-4-11112020-0.8-1.3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.54	J	6.2	0.30	ug/Kg	1	₩	8260C	Total/NA
Toluene	1.2	J *3	6.2	0.47	ug/Kg	1	₩	8260C	Total/NA
Benzo[a]anthracene	26	J	180	18	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	58	J	180	19	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	180		180	23	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	91	J	180	26	ug/Kg	1	₽	8270D	Total/NA
Pyrene	41	J	180	21	ug/Kg	1	₩	8270D	Total/NA
Chromium	6.7		0.55	0.22	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-4-11112020-1.5-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	11	J	19	3.3	ug/Kg	1	₽	8260C	Total/NA
Chromium	24.2		0.58	0.23	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-5-11112020-0.6-1.1

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fa	ic D	Method	Prep Type
Chromium	26.6		0.57	0.23	mg/Kg		1 🌣	6010C	Total/NA

Client Sample ID: B-7-11112020-1.7-2.2

ı	_									
	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Acetone	9.6	J	21	3.5	ug/Kg	1	₩	8260C	Total/NA
	Benzene	2.0	J	4.1	0.20	ug/Kg	1	₩	8260C	Total/NA
	Chromium	23.7		0.56	0.22	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: B-8-11112020-1.9-2.4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chromium	22.8	0.57	0.23 mg/Kg	1 🌣 6010C	Total/NA

Client Sample ID: B-9-11112020-0.5-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	17000		2400	450	ug/Kg	25	₽	8260C	Total/NA
Ethylbenzene	17000		2400	690	ug/Kg	25	₩	8260C	Total/NA
Toluene	14000		2400	640	ug/Kg	25	₩	8260C	Total/NA
Xylenes, Total	120000		4800	1300	ug/Kg	25	₩	8260C	Total/NA
Benzo[a]anthracene	120	J	1100	110	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	170	J	1100	120	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	8700		1100	140	ug/Kg	5	₩	8270D	Total/NA
Chromium	20.3		0.67	0.27	mg/Kg	1	₩	6010C	Total/NA
Cyanide, Total	0.69	J	1.1	0.54	mg/Kg	1	₽	9012B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

11/25/2020

Lab Sample ID: 480-178044-2

Lab Sample ID: 480-178044-3

Lab Sample ID: 480-178044-4

Lab Sample ID: 480-178044-5

Lab Sample ID: 480-178044-6

Lab Sample ID: 480-178044-7

Detection Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-178044-8

Client Sample ID: B-9-11112020-20-25

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	66000		2400	460	ug/Kg	50	₽	8260C	Total/NA
Ethylbenzene	1500	J	2400	710	ug/Kg	50	₩	8260C	Total/NA
Toluene	83000		2400	650	ug/Kg	50	₽	8260C	Total/NA
Xylenes, Total	9200		4900	1400	ug/Kg	50	₩	8260C	Total/NA
Naphthalene	600		190	25	ug/Kg	1	₽	8270D	Total/NA
Chromium	22.0		0.58	0.23	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: B-9-11112020-9.5-10.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	86000		2500	480	ug/Kg	50	₩	8260C	Total/NA
Ethylbenzene	1300	J	2500	730	ug/Kg	50	₽	8260C	Total/NA
Toluene	54000		2500	670	ug/Kg	50	₽	8260C	Total/NA
Xylenes, Total	8100		5000	1400	ug/Kg	50	₩	8260C	Total/NA
Benzo[a]anthracene	31	J	200	20	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	34	J	200	29	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	46	J	200	32	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	26	J	200	26	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	46	J	200	21	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	950		200	26	ug/Kg	1	₽	8270D	Total/NA
Pyrene	32	J	200	23	ug/Kg	1	₽	8270D	Total/NA
Chromium	23.7		0.60	0.24	mg/Kg	1	₩	6010C	Total/NA

Job ID: 480-178044-1

Lab Sample ID: 480-178044-9

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-1-11112020-1.5-2.0

Date Collected: 11/11/20 11:15 Date Received: 11/11/20 17:12 Perce

Lab Sample ID: 480-178044-1

Matrix: Solid

Job ID: 480-178044-1

Matrix. John	
ent Solids: 85.5	

6

Method: 8260C - Volatile Organic (=							
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	3.9	U	3.9	0.28	ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
1,1,2,2-Tetrachloroethane	3.9	U	3.9	0.63	ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
1,1,2-Trichloro-1,2,2-trifluoroethane	3.9	U	3.9	0.89	ug/Kg		11/12/20 13:30	11/17/20 19:03	
1,1,2-Trichloroethane	3.9	U	3.9	0.51	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
1,1-Dichloroethane	3.9	U	3.9	0.48	ug/Kg	≎	11/12/20 13:30	11/17/20 19:03	
1,1-Dichloroethene	3.9	U	3.9	0.48	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
1,2,4-Trichlorobenzene	3.9	U	3.9	0.24	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
1,2-Dibromo-3-Chloropropane	3.9	U	3.9	2.0	ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
1,2-Dibromoethane	3.9	U	3.9	0.50	ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
1,2-Dichlorobenzene	3.9	U	3.9	0.31	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
1,2-Dichloroethane	3.9	U	3.9	0.20	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
1,2-Dichloropropane	3.9	U	3.9	2.0	ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
1,3-Dichlorobenzene	3.9	U	3.9	0.20	ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
1,4-Dichlorobenzene	3.9	U	3.9	0.55	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
2-Butanone (MEK)	20	U	20		ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
2-Hexanone	20	U	20	2.0	ug/Kg		11/12/20 13:30	11/17/20 19:03	
4-Methyl-2-pentanone (MIBK)	20	U	20		ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
Acetone	20	U	20		ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Benzene	3.9		3.9		ug/Kg		11/12/20 13:30	11/17/20 19:03	
Bromodichloromethane	3.9		3.9		ug/Kg	₩.	11/12/20 13:30	11/17/20 19:03	
Bromoform	3.9		3.9		ug/Kg	₩.	11/12/20 13:30	11/17/20 19:03	
Bromomethane	3.9		3.9		ug/Kg		11/12/20 13:30	11/17/20 19:03	
Carbon disulfide	3.9		3.9	2.0	ug/Kg		11/12/20 13:30	11/17/20 19:03	
Carbon tetrachloride	3.9		3.9		ug/Kg		11/12/20 13:30	11/17/20 19:03	
Chlorobenzene	3.9		3.9				11/12/20 13:30	11/17/20 19:03	
Chloroethane	3.9		3.9		ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
Chloroform	3.9		3.9		ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
Chloromethane	3.9		3.9				11/12/20 13:30	11/17/20 19:03	
	3.9				ug/Kg				
cis-1,2-Dichloroethene			3.9		ug/Kg		11/12/20 13:30	11/17/20 19:03	
cis-1,3-Dichloropropene	3.9		3.9		ug/Kg		11/12/20 13:30	11/17/20 19:03	
Cyclohexane	3.9		3.9		ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Dibromochloromethane	3.9		3.9		ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Dichlorodifluoromethane	3.9		3.9		ug/Kg	 .	11/12/20 13:30	11/17/20 19:03	
Ethylbenzene	3.9		3.9		ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
sopropylbenzene	3.9		3.9		ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Methyl acetate	20		20		ug/Kg		11/12/20 13:30	11/17/20 19:03	
Methyl tert-butyl ether	3.9		3.9	0.38	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Methylcyclohexane	3.9	U	3.9	0.59	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Methylene Chloride	3.9	U	3.9	1.8	ug/Kg		11/12/20 13:30	11/17/20 19:03	
Styrene	3.9	U	3.9	0.20	ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	
Tetrachloroethene	3.9	U	3.9	0.52	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Toluene	3.9	U	3.9	0.30	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
rans-1,2-Dichloroethene	3.9	U	3.9	0.40	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
rans-1,3-Dichloropropene	3.9	U	3.9	1.7	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Trichloroethene	3.9	U	3.9	0.86	ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Trichlorofluoromethane	3.9	U	3.9		ug/Kg		11/12/20 13:30	11/17/20 19:03	
Vinyl chloride	3.9		3.9		ug/Kg	₽	11/12/20 13:30	11/17/20 19:03	
Xylenes, Total	7.8		7.8		ug/Kg	₩	11/12/20 13:30	11/17/20 19:03	

Client: Parsons Corporation

Date Received: 11/11/20 17:12

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-178044-1

Matrix: Solid Percent Solids: 85.5

Job ID: 480-178044-1

Client Sample ID: B-1-11112020-1.5-2.0 Date Collected: 11/11/20 11:15

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		64 - 126	11/12/20 13:30	11/17/20 19:03	1
4-Bromofluorobenzene (Surr)	97		72 - 126	11/12/20 13:30	11/17/20 19:03	1
Dibromofluoromethane (Surr)	106		60 - 140	11/12/20 13:30	11/17/20 19:03	1
Toluene-d8 (Surr)	97		71 - 125	11/12/20 13:30	11/17/20 19:03	1

1,2 Diomorodinano a 1 (Gan)	110		01-120				11112120 10.00	11717720 10.00	•
4-Bromofluorobenzene (Surr)	97		72 - 126				11/12/20 13:30	11/17/20 19:03	1
Dibromofluoromethane (Surr)	106		60 - 140				11/12/20 13:30	11/17/20 19:03	1
Toluene-d8 (Surr)	97		71 - 125				11/12/20 13:30	11/17/20 19:03	1
- Method: 8270D - Semivolatile Org	ganic Compou	nds (GC/MS	S)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	200	U	200	29	ug/Kg	<u></u>	11/17/20 15:12	11/19/20 07:23	1
Acenaphthylene	200	U	200	26	ug/Kg	₩	11/17/20 15:12	11/19/20 07:23	1
Anthracene	200	U	200	49	ug/Kg	₩	11/17/20 15:12	11/19/20 07:23	1
Benzo[a]anthracene	21	J	200	20	ug/Kg	₩	11/17/20 15:12	11/19/20 07:23	1
Benzo[a]pyrene	200	U	200	29	ug/Kg	₩	11/17/20 15:12	11/19/20 07:23	1
Benzo[b]fluoranthene	200	U	200	31	ug/Kg	₩	11/17/20 15:12	11/19/20 07:23	1
Benzo[g,h,i]perylene	200	U	200	21	ug/Kg	₩	11/17/20 15:12	11/19/20 07:23	1
Benzo[k]fluoranthene	200	U	200	26	ug/Kg	₩	11/17/20 15:12	11/19/20 07:23	1
Chrysene	200	U	200	44	ug/Kg	₽	11/17/20 15:12	11/19/20 07:23	1
Dibenz(a,h)anthracene	200	U	200	35	ug/Kg	₽	11/17/20 15:12	11/19/20 07:23	1
Fluoranthene	23	J	200	21	ug/Kg	₽	11/17/20 15:12	11/19/20 07:23	1
Fluorene	200	U	200	23	ug/Kg	₽	11/17/20 15:12	11/19/20 07:23	1
Indeno[1,2,3-cd]pyrene	200	U	200	24	ug/Kg	₩	11/17/20 15:12	11/19/20 07:23	1
Naphthalene	200	U	200	26	ug/Kg	₽	11/17/20 15:12	11/19/20 07:23	1
Phenanthrene	200	U	200	29	ug/Kg	₽	11/17/20 15:12	11/19/20 07:23	1
Pyrene	200	U	200	23	ug/Kg	\$	11/17/20 15:12	11/19/20 07:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	101		60 - 120				11/17/20 15:12	11/19/20 07:23	1
Nitrobenzene-d5 (Surr)	76		53 - 120				11/17/20 15:12	11/19/20 07:23	1
p-Terphenyl-d14 (Surr)	97		79 - 130				11/17/20 15:12	11/19/20 07:23	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	22.0		0.60	0.24	mg/Kg	#	11/23/20 18:12	11/24/20 13:52	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.2	U *	1.2	0.56	mg/Kg	*	11/20/20 21:56	11/22/20 15:52	1
Analyte	Result	Qualifier	RL	RL		D	Prepared	Analyzed	Dil Fac
Percent Moisture	14.5		0.1	0.1	%			11/19/20 16:57	1
Percent Solids	85.5		0.1	0.1	%			11/19/20 16:57	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-4-11112020-0.8-1.3 Lab Sample ID: 480-178044-2

Date Collected: 11/11/20 12:10

Matrix: Solid

Date Received: 11/11/20 17:12

Percent Solids: 96.1

Method: 8260C - Volatile Organic (-							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	6.2		6.2	0.45	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
1,1,2,2-Tetrachloroethane		U *3	6.2	1.0	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
1,1,2-Trichloro-1,2,2-trifluoroethane	6.2	U	6.2	1.4	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
1,1,2-Trichloroethane	6.2	U *3	6.2	0.80	ug/Kg	₽	11/12/20 13:30	11/19/20 00:32	
,1-Dichloroethane	6.2	U	6.2	0.75	ug/Kg	₽	11/12/20 13:30	11/19/20 00:32	
,1-Dichloroethene	6.2	U	6.2	0.76	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
,2,4-Trichlorobenzene	6.2	U *3	6.2	0.38	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
,2-Dibromo-3-Chloropropane	6.2	U *3	6.2	3.1	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
,2-Dibromoethane	6.2	U *3	6.2	0.79	ug/Kg	≎	11/12/20 13:30	11/19/20 00:32	
,2-Dichlorobenzene	6.2	U *3	6.2	0.48	ug/Kg	₽	11/12/20 13:30	11/19/20 00:32	
,2-Dichloroethane	6.2	U	6.2	0.31	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
,2-Dichloropropane	6.2	U	6.2	3.1	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
,3-Dichlorobenzene	6.2	U *3	6.2	0.32	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
,4-Dichlorobenzene	6.2	U *3	6.2	0.87	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
2-Butanone (MEK)	31	U	31	2.3	ug/Kg	₽	11/12/20 13:30	11/19/20 00:32	
2-Hexanone	31	U *3	31	3.1	ug/Kg		11/12/20 13:30	11/19/20 00:32	
-Methyl-2-pentanone (MIBK)	31	U *3	31	2.0	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Acetone	31	U	31		ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Benzene	0.54		6.2		ug/Kg		11/12/20 13:30	11/19/20 00:32	
Bromodichloromethane	6.2		6.2		ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Bromoform		U *3	6.2	3.1	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Bromomethane	6.2		6.2	0.56	ug/Kg		11/12/20 13:30	11/19/20 00:32	
Carbon disulfide	6.2		6.2	3.1	ug/Kg		11/12/20 13:30	11/19/20 00:32	
Carbon tetrachloride	6.2		6.2	0.60	ug/Kg ug/Kg		11/12/20 13:30	11/19/20 00:32	
Chlorobenzene		U *3	6.2		ug/Kg		11/12/20 13:30	11/19/20 00:32	
Chloroethane	6.2		6.2				11/12/20 13:30		
Chloroform	6.2		6.2	1.4	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
				0.38	ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/19/20 00:32	
Chloromethane	6.2		6.2	0.37	ug/Kg	₽	11/12/20 13:30	11/19/20 00:32	
sis-1,2-Dichloroethene	6.2		6.2	0.79	ug/Kg	*	11/12/20 13:30	11/19/20 00:32	
sis-1,3-Dichloropropene	6.2		6.2	0.89	ug/Kg	.	11/12/20 13:30	11/19/20 00:32	
Cyclohexane	6.2		6.2		ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Dibromochloromethane		U *3	6.2	0.79	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Dichlorodifluoromethane	6.2	U	6.2	0.51	ug/Kg		11/12/20 13:30	11/19/20 00:32	
Ethylbenzene		U *3	6.2		ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
sopropylbenzene	6.2	U *3	6.2	0.93	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Methyl acetate	31	U	31	3.7	ug/Kg		11/12/20 13:30	11/19/20 00:32	
Methyl tert-butyl ether	6.2	U	6.2	0.61	ug/Kg	₽	11/12/20 13:30	11/19/20 00:32	
Methylcyclohexane	6.2	U	6.2	0.94	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Methylene Chloride	6.2	U	6.2	2.8	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Styrene	6.2	U *3	6.2	0.31	ug/Kg	₽	11/12/20 13:30	11/19/20 00:32	
etrachloroethene	6.2	U *3	6.2	0.83	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
Toluene Toluene	1.2	J *3	6.2	0.47	ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
rans-1,2-Dichloroethene	6.2		6.2		ug/Kg		11/12/20 13:30	11/19/20 00:32	
rans-1,3-Dichloropropene		U *3	6.2		ug/Kg	₽	11/12/20 13:30	11/19/20 00:32	
richloroethene	6.2		6.2		ug/Kg	₩	11/12/20 13:30	11/19/20 00:32	
richlorofluoromethane	6.2		6.2		ug/Kg		11/12/20 13:30	11/19/20 00:32	
/inyl chloride	6.2		6.2		ug/Kg		11/12/20 13:30	11/19/20 00:32	
Xylenes, Total	12		12		ug/Kg		11/12/20 13:30	11/19/20 00:32	

Eurofins TestAmerica, Buffalo

Job ID: 480-178044-1

1

6

8

10

12

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-178044-2 Client Sample ID: B-4-11112020-0.8-1.3

Date Collected: 11/11/20 12:10 Matrix: Solid Date Received: 11/11/20 17:12 Percent Solids: 96.1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	138	X	64 - 126	11/12/20 13:30	11/19/20 00:32	1
4-Bromofluorobenzene (Surr)	34	*3 X	72 - 126	11/12/20 13:30	11/19/20 00:32	1
Dibromofluoromethane (Surr)	163	X	60 - 140	11/12/20 13:30	11/19/20 00:32	1
Toluene-d8 (Surr)	162	*3 <i>X</i>	71 - 125	11/12/20 13:30	11/19/20 00:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	180	U	180	26	ug/Kg	<u></u>	11/17/20 15:12	11/19/20 12:24	
Acenaphthylene	180	U	180	23	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Anthracene	180	U	180	43	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Benzo[a]anthracene	26	J	180	18	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Benzo[a]pyrene	180	U	180	26	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Benzo[b]fluoranthene	180	U	180	28	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Benzo[g,h,i]perylene	180	U	180	19	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Benzo[k]fluoranthene	180	U	180	23	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Chrysene	180	U	180	39	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Dibenz(a,h)anthracene	180	U	180	31	ug/Kg	₩	11/17/20 15:12	11/19/20 12:24	
Fluoranthene	58	J	180	19	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Fluorene	180	U	180	21	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Indeno[1,2,3-cd]pyrene	180	U	180	22	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Naphthalene	180		180	23	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	
Phenanthrene	91	J	180	26	ug/Kg	₩	11/17/20 15:12	11/19/20 12:24	
Pyrene	41	J	180	21	ug/Kg	₽	11/17/20 15:12	11/19/20 12:24	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		60 - 120	11/17/20 15:12	11/19/20 12:24	1
Nitrobenzene-d5 (Surr)	75		53 - 120	11/17/20 15:12	11/19/20 12:24	1
p-Terphenyl-d14 (Surr)	80		79 - 130	11/17/20 15:12	11/19/20 12:24	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	6.7		0.55	0.22	mg/Kg	₩	11/23/20 18:12	11/24/20 13:56	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.0	U *	1.0	0.50	mg/Kg	₽	11/20/20 21:56	11/22/20 15:53	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	3.9		0.1	0.1	%			11/13/20 09:34	1
Percent Solids	96.1		0.1	0.1	%			11/13/20 09:34	1

Job ID: 480-178044-1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-4-11112020-1.5-2.0 Lab Sample ID: 480-178044-3

Date Collected: 11/11/20 12:20 Date Received: 11/11/20 17:12

Matrix: Solid Percent Solids: 85.7

Job ID: 480-178044-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	3.9	U	3.9	0.28	ug/Kg	— <u></u>	11/12/20 13:30	11/17/20 19:52	
1,1,2,2-Tetrachloroethane	3.9	U	3.9	0.63	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
1,1,2-Trichloro-1,2,2-trifluoroethane	3.9	U	3.9	0.89	ug/Kg	₽	11/12/20 13:30	11/17/20 19:52	
1,1,2-Trichloroethane	3.9	U	3.9	0.51	ug/Kg		11/12/20 13:30	11/17/20 19:52	
1,1-Dichloroethane	3.9	U	3.9	0.48	ug/Kg	₽	11/12/20 13:30	11/17/20 19:52	
1,1-Dichloroethene	3.9	U	3.9	0.48	ug/Kg	₽	11/12/20 13:30	11/17/20 19:52	
1,2,4-Trichlorobenzene	3.9	U	3.9	0.24	ug/Kg		11/12/20 13:30	11/17/20 19:52	
1,2-Dibromo-3-Chloropropane	3.9	U	3.9	1.9	ug/Kg	₽	11/12/20 13:30	11/17/20 19:52	
1,2-Dibromoethane	3.9	U	3.9	0.50	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
1,2-Dichlorobenzene	3.9	U	3.9	0.30	ug/Kg		11/12/20 13:30	11/17/20 19:52	
1,2-Dichloroethane	3.9	U	3.9	0.20	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
1,2-Dichloropropane	3.9	U	3.9		ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
1,3-Dichlorobenzene	3.9		3.9	0.20	ug/Kg		11/12/20 13:30	11/17/20 19:52	
1,4-Dichlorobenzene	3.9		3.9	0.55	ug/Kg		11/12/20 13:30	11/17/20 19:52	
2-Butanone (MEK)	19		19	1.4	ug/Kg		11/12/20 13:30	11/17/20 19:52	
2-Hexanone	19		19	1.9	ug/Kg		11/12/20 13:30	11/17/20 19:52	
4-Methyl-2-pentanone (MIBK)	19		19	1.3	ug/Kg		11/12/20 13:30	11/17/20 19:52	
Acetone	11		19	3.3	ug/Kg		11/12/20 13:30	11/17/20 19:52	
Benzene	3.9		3.9	0.19	ug/Kg		11/12/20 13:30	11/17/20 19:52	
Bromodichloromethane	3.9		3.9	0.19	ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Bromoform	3.9		3.9	1.9	ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Bromomethane	3.9		3.9	0.35	ug/Kg ug/Kg		11/12/20 13:30	11/17/20 19:52	
Carbon disulfide	3.9		3.9	1.9	ug/Kg ug/Kg	₩		11/17/20 19:52	
	3.9						11/12/20 13:30		
Carbon tetrachloride Chlorobenzene	3.9		3.9	0.38	ug/Kg	.	11/12/20 13:30 11/12/20 13:30	11/17/20 19:52	
			3.9	0.51	ug/Kg	₩		11/17/20 19:52	
Chloroethane	3.9		3.9	0.88	ug/Kg	*	11/12/20 13:30	11/17/20 19:52	
Chloroform	3.9		3.9		ug/Kg	.	11/12/20 13:30	11/17/20 19:52	
Chloromethane	3.9		3.9	0.24	ug/Kg	*	11/12/20 13:30	11/17/20 19:52	
cis-1,2-Dichloroethene	3.9		3.9	0.50	ug/Kg	*	11/12/20 13:30	11/17/20 19:52	
cis-1,3-Dichloropropene	3.9		3.9	0.56	ug/Kg	.	11/12/20 13:30	11/17/20 19:52	
Cyclohexane	3.9		3.9	0.55	ug/Kg	#	11/12/20 13:30	11/17/20 19:52	
Dibromochloromethane	3.9		3.9	0.50	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Dichlorodifluoromethane	3.9		3.9	0.32			11/12/20 13:30	11/17/20 19:52	
Ethylbenzene	3.9		3.9	0.27	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Isopropylbenzene	3.9		3.9		ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Methyl acetate	19		19		ug/Kg		11/12/20 13:30	11/17/20 19:52	
Methyl tert-butyl ether	3.9		3.9		ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Methylcyclohexane	3.9	U	3.9	0.59	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Methylene Chloride	3.9	U	3.9		ug/Kg		11/12/20 13:30	11/17/20 19:52	
Styrene	3.9	U	3.9	0.19	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Tetrachloroethene	3.9	U	3.9	0.52	ug/Kg	₽	11/12/20 13:30	11/17/20 19:52	
Toluene	3.9	U	3.9	0.29	ug/Kg	*	11/12/20 13:30	11/17/20 19:52	
rans-1,2-Dichloroethene	3.9	U	3.9	0.40	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
rans-1,3-Dichloropropene	3.9	U	3.9	1.7	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Trichloroethene	3.9	U	3.9	0.86	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Trichlorofluoromethane	3.9	U	3.9	0.37	ug/Kg	₽	11/12/20 13:30	11/17/20 19:52	
Vinyl chloride	3.9	U	3.9	0.48	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	
Xylenes, Total	7.8	U	7.8	0.65	ug/Kg	₩	11/12/20 13:30	11/17/20 19:52	

Client: Parsons Corporation

Surrogate

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-4-11112020-1.5-2.0 Lab Sample ID: 480-178044-3

Limits

Date Collected: 11/11/20 12:20
Date Received: 11/11/20 17:12

%Recovery Qualifier

Matrix: Solid
Percent Solids: 85.7

Analyzed

Prepared

Job ID: 480-178044-1

Surrogate	/onecovery	Qualifier	Lililis				riepaieu	Allalyzeu	DII Fac
1,2-Dichloroethane-d4 (Surr)	107		64 - 126				11/12/20 13:30	11/17/20 19:52	1
4-Bromofluorobenzene (Surr)	100		72 - 126				11/12/20 13:30	11/17/20 19:52	1
Dibromofluoromethane (Surr)	105		60 - 140				11/12/20 13:30	11/17/20 19:52	1
Toluene-d8 (Surr)	100		71 - 125				11/12/20 13:30	11/17/20 19:52	1
- Method: 8270D - Semivolatile Org	ganic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	200	U	200	29	ug/Kg	-	11/17/20 15:12	11/19/20 12:49	1
Acenaphthylene	200	U	200	25	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Anthracene	200	U	200	48	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Benzo[a]anthracene	200	U	200	20	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Benzo[a]pyrene	200	U	200	29	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Benzo[b]fluoranthene	200	U	200	31	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Benzo[g,h,i]perylene	200	U	200	21	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Benzo[k]fluoranthene	200	U	200	25	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Chrysene	200	U	200	44	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Dibenz(a,h)anthracene	200	U	200	35	ug/Kg		11/17/20 15:12	11/19/20 12:49	1
Fluoranthene	200	U	200	21	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Fluorene	200	U	200	23	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Indeno[1,2,3-cd]pyrene	200	U	200	24	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Naphthalene	200	U	200	25	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Phenanthrene	200	U	200	29	ug/Kg	₩	11/17/20 15:12	11/19/20 12:49	1
Pyrene	200	U	200	23	ug/Kg	₽	11/17/20 15:12	11/19/20 12:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		60 - 120				11/17/20 15:12	11/19/20 12:49	1
Nitrobenzene-d5 (Surr)	69		53 - 120				11/17/20 15:12	11/19/20 12:49	1
p-Terphenyl-d14 (Surr)	83		79 - 130				11/17/20 15:12	11/19/20 12:49	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	24.2		0.58	0.23	mg/Kg	₽	11/23/20 18:12	11/24/20 14:00	1
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U *	1.1	0.54	mg/Kg	₽	11/20/20 21:56	11/22/20 15:55	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	14.3		0.1	0.1	%	_		11/13/20 09:34	1
Percent Solids	85.7		0.1	0.1	%			11/13/20 09:34	1

2

3

5

Dil Fac

46

11

13

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-5-11112020-0.6-1.1

Date Collected: 11/11/20 13:20 Date Received: 11/11/20 17:12

Job ID: 480-178044-1

Lab Sample ID: 480-178044-4

Matrix: Solid

Percent Solids: 86.6

Method: 8260C - Volatile Organic	Compounds I	by GC/MS							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	4.0	U	4.0	0.29	ug/Kg		11/12/20 13:30	11/17/20 20:16	
1,1,2,2-Tetrachloroethane	4.0	U	4.0	0.64	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
1,1,2-Trichloro-1,2,2-trifluoroethane	4.0	U	4.0	0.90	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
1,1,2-Trichloroethane	4.0	U	4.0	0.52	ug/Kg	₽	11/12/20 13:30	11/17/20 20:16	
1,1-Dichloroethane	4.0	U	4.0	0.48	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
1,1-Dichloroethene	4.0	U	4.0	0.49	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
1,2,4-Trichlorobenzene	4.0	U	4.0	0.24	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
1,2-Dibromo-3-Chloropropane	4.0	U	4.0	2.0	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
1,2-Dibromoethane	4.0	U	4.0	0.51	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
1,2-Dichlorobenzene	4.0	U	4.0	0.31	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
1,2-Dichloroethane	4.0	U	4.0	0.20	ug/Kg	₽	11/12/20 13:30	11/17/20 20:16	
1,2-Dichloropropane	4.0	U	4.0	2.0	ug/Kg	₽	11/12/20 13:30	11/17/20 20:16	
1,3-Dichlorobenzene	4.0	U	4.0	0.20	ug/Kg		11/12/20 13:30	11/17/20 20:16	
1,4-Dichlorobenzene	4.0	U	4.0	0.56	ug/Kg	₽	11/12/20 13:30	11/17/20 20:16	
2-Butanone (MEK)	20	U	20		ug/Kg	₽	11/12/20 13:30	11/17/20 20:16	
2-Hexanone	20	U	20	2.0	ug/Kg		11/12/20 13:30	11/17/20 20:16	
4-Methyl-2-pentanone (MIBK)	20	U	20	1.3	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
Acetone	20	U	20	3.3	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
Benzene	4.0		4.0	0.19	ug/Kg		11/12/20 13:30	11/17/20 20:16	
Bromodichloromethane	4.0		4.0			₩.	11/12/20 13:30	11/17/20 20:16	
Bromoform	4.0		4.0	2.0	ug/Kg	₩.	11/12/20 13:30	11/17/20 20:16	
Bromomethane	4.0		4.0		ug/Kg		11/12/20 13:30	11/17/20 20:16	
Carbon disulfide	4.0		4.0	2.0	ug/Kg		11/12/20 13:30	11/17/20 20:16	
Carbon tetrachloride	4.0		4.0		ug/Kg		11/12/20 13:30	11/17/20 20:16	
Chlorobenzene	4.0		4.0		ug/Kg		11/12/20 13:30	11/17/20 20:16	
Chloroethane	4.0		4.0		ug/Kg	~ \$	11/12/20 13:30	11/17/20 20:16	
Chloroform	4.0		4.0		ug/Kg ug/Kg	*	11/12/20 13:30	11/17/20 20:16	
Chloromethane	4.0		4.0				11/12/20 13:30	11/17/20 20:16	
cis-1,2-Dichloroethene	4.0		4.0	0.24	ug/Kg		11/12/20 13:30	11/17/20 20:16	
	4.0		4.0	0.57	ug/Kg	*	11/12/20 13:30	11/17/20 20:16	
cis-1,3-Dichloropropene					ug/Kg	· · · · ·			
Cyclohexane	4.0 4.0		4.0	0.56	ug/Kg		11/12/20 13:30	11/17/20 20:16	
Dibromochloromethane			4.0	0.51	ug/Kg	*	11/12/20 13:30	11/17/20 20:16	
Dichlorodifluoromethane	4.0		4.0	0.33	ug/Kg	<u>.</u>	11/12/20 13:30	11/17/20 20:16	
Ethylbenzene	4.0		4.0	0.27	ug/Kg	ψ.	11/12/20 13:30	11/17/20 20:16	
sopropylbenzene	4.0		4.0	0.60	ug/Kg	*	11/12/20 13:30	11/17/20 20:16	
Methyl acetate	20		20		ug/Kg		11/12/20 13:30	11/17/20 20:16	
Methyl tert-butyl ether	4.0		4.0		ug/Kg	.	11/12/20 13:30	11/17/20 20:16	
Methylcyclohexane	4.0		4.0		ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
Methylene Chloride	4.0		4.0		ug/Kg	.	11/12/20 13:30	11/17/20 20:16	
Styrene	4.0		4.0		ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
Tetrachloroethene	4.0		4.0		ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
Toluene	4.0		4.0		ug/Kg	.	11/12/20 13:30	11/17/20 20:16	
rans-1,2-Dichloroethene	4.0		4.0		ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
rans-1,3-Dichloropropene	4.0		4.0		ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
Trichloroethene	4.0	U	4.0	0.87	ug/Kg		11/12/20 13:30	11/17/20 20:16	
Trichlorofluoromethane	4.0		4.0		ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
Vinyl chloride	4.0	U	4.0	0.48	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	
Xylenes, Total	7.9	U	7.9	0.67	ug/Kg	₩	11/12/20 13:30	11/17/20 20:16	

11/25/2020

Client: Parsons Corporation

Date Collected: 11/11/20 13:20

Date Received: 11/11/20 17:12

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-5-11112020-0.6-1.1

Job ID: 480-178044-1

Lab Sample ID: 480-178044-4

Matrix: Solid Percent Solids: 86.6

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		64 - 126	11/12/20 13:30	11/17/20 20:16	1
4-Bromofluorobenzene (Surr)	98		72 - 126	11/12/20 13:30	11/17/20 20:16	1
Dibromofluoromethane (Surr)	103		60 - 140	11/12/20 13:30	0 11/17/20 20:16	1
Toluene-d8 (Surr)	97		71 - 125	11/12/20 13:30	0 11/17/20 20:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	200	U	200	29	ug/Kg		11/17/20 15:12	11/19/20 13:14	1
Acenaphthylene	200	U	200	25	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Anthracene	200	U	200	48	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Benzo[a]anthracene	200	U	200	20	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Benzo[a]pyrene	200	U	200	29	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Benzo[b]fluoranthene	200	U	200	31	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Benzo[g,h,i]perylene	200	U	200	21	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Benzo[k]fluoranthene	200	U	200	25	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Chrysene	200	U	200	44	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Dibenz(a,h)anthracene	200	U	200	34	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Fluoranthene	200	U	200	21	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Fluorene	200	U	200	23	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Indeno[1,2,3-cd]pyrene	200	U	200	24	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Naphthalene	200	U	200	25	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Phenanthrene	200	U	200	29	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Pyrene	200	U	200	23	ug/Kg	₽	11/17/20 15:12	11/19/20 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	91		60 - 120				11/17/20 15:12	11/19/20 13:14	1
Nitrobenzene-d5 (Surr)	73		53 - 120				11/17/20 15:12	11/19/20 13:14	1
p-Terphenyl-d14 (Surr)	85		79 - 130				11/17/20 15:12	11/19/20 13:14	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	91		60 - 120	_	11/17/20 15:12	11/19/20 13:14	1
Nitrobenzene-d5 (Surr)	73		53 - 120		11/17/20 15:12	11/19/20 13:14	1
p-Terphenyl-d14 (Surr)	85		79 - 130		11/17/20 15:12	11/19/20 13:14	1
_							

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	26.6		0.57	0.23	mg/Kg	<u></u>	11/23/20 18:12	11/24/20 14:04	1
Γο του τ									

1	General Chemistry									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Cyanide, Total	1.1	U F1 *	1.1	0.51	mg/Kg	\$	11/20/20 21:56	11/22/20 15:59	1
	Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Percent Moisture	13.4		0.1	0.1	%			11/13/20 09:34	1
L	Percent Solids	86.6		0.1	0.1	%			11/13/20 09:34	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-7-11112020-1.7-2.2 Lab Sample ID: 480-178044-5

Date Collected: 11/11/20 13:40

Date Received: 11/11/20 17:12

Matrix: Solid
Percent Solids: 86.3

nalyte	Docult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	4.1		4.1	0.30	ug/Kg	— -	11/12/20 13:30	11/17/20 20:41	Diria
,1,2,2-Tetrachloroethane	4.1		4.1	0.67	ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
,1,2-Trichloro-1,2,2-trifluoroethane	4.1		4.1	0.94	ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
,1,2-Trichloroethane	4.1		4.1		ug/Kg		11/12/20 13:30	11/17/20 20:41	
,1-Dichloroethane	4.1		4.1	0.50	ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
	4.1		4.1	0.51	ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
,1-Dichloroethene ,2,4-Trichlorobenzene	4.1		4.1	0.25		¥	11/12/20 13:30	11/17/20 20:41	
	4.1		4.1	2.1	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
,2-Dibromo-3-Chloropropane ,2-Dibromoethane	4.1				ug/Kg				
			4.1		ug/Kg	· · · · · ·	11/12/20 13:30	11/17/20 20:41	
,2-Dichlorobenzene	4.1		4.1		ug/Kg	₽	11/12/20 13:30	11/17/20 20:41	
,2-Dichloroethane	4.1		4.1	0.21	ug/Kg	*	11/12/20 13:30	11/17/20 20:41	
,2-Dichloropropane	4.1		4.1		ug/Kg	.	11/12/20 13:30	11/17/20 20:41	
,3-Dichlorobenzene	4.1		4.1	0.21	ug/Kg	₽	11/12/20 13:30	11/17/20 20:41	
,4-Dichlorobenzene	4.1		4.1		ug/Kg	₽	11/12/20 13:30	11/17/20 20:41	
-Butanone (MEK)	21		21		ug/Kg		11/12/20 13:30	11/17/20 20:41	
-Hexanone	21		21	2.1	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
-Methyl-2-pentanone (MIBK)	21	U	21	1.4	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
cetone	9.6	J	21	3.5	ug/Kg		11/12/20 13:30	11/17/20 20:41	
Benzene	2.0	J	4.1	0.20	ug/Kg	₽	11/12/20 13:30	11/17/20 20:41	
romodichloromethane	4.1	U	4.1	0.55	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
romoform	4.1	U	4.1	2.1	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
romomethane	4.1	U	4.1	0.37	ug/Kg		11/12/20 13:30	11/17/20 20:41	
arbon disulfide	4.1	U	4.1	2.1	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
arbon tetrachloride	4.1	U	4.1	0.40	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
thlorobenzene	4.1	U	4.1	0.55	ug/Kg		11/12/20 13:30	11/17/20 20:41	
Chloroethane	4.1	U	4.1	0.93	ug/Kg	₽	11/12/20 13:30	11/17/20 20:41	
Chloroform	4.1	U	4.1	0.26	ug/Kg	₽	11/12/20 13:30	11/17/20 20:41	
Chloromethane	4.1	U	4.1	0.25	ug/Kg		11/12/20 13:30	11/17/20 20:41	
is-1,2-Dichloroethene	4.1	U	4.1	0.53	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
is-1,3-Dichloropropene	4.1	U	4.1	0.60	ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
Cyclohexane	4.1		4.1	0.58	ug/Kg		11/12/20 13:30	11/17/20 20:41	
Dibromochloromethane	4.1		4.1	0.53	ug/Kg		11/12/20 13:30	11/17/20 20:41	
Dichlorodifluoromethane	4.1		4.1	0.34	ug/Kg		11/12/20 13:30	11/17/20 20:41	
thylbenzene	4.1		4.1	0.29	ug/Kg		11/12/20 13:30	11/17/20 20:41	
sopropylbenzene	4.1		4.1		ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
Methyl acetate	21		21		ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
Methyl tert-butyl ether				0.41			11/12/20 13:30		
•	4.1		4.1		ug/Kg	₩.		11/17/20 20:41	
Methylcyclohexane	4.1		4.1		ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
Methylene Chloride	4.1		4.1		ug/Kg	.	11/12/20 13:30	11/17/20 20:41	
Styrene	4.1		4.1	0.21	ug/Kg	*	11/12/20 13:30	11/17/20 20:41	
etrachloroethene	4.1		4.1		ug/Kg	‡	11/12/20 13:30	11/17/20 20:41	
oluene	4.1		4.1	0.31			11/12/20 13:30	11/17/20 20:41	
rans-1,2-Dichloroethene	4.1		4.1		ug/Kg	₩	11/12/20 13:30	11/17/20 20:41	
rans-1,3-Dichloropropene	4.1		4.1	1.8	ug/Kg	≎	11/12/20 13:30	11/17/20 20:41	
richloroethene	4.1		4.1	0.91	ug/Kg		11/12/20 13:30	11/17/20 20:41	
richlorofluoromethane	4.1		4.1	0.39	ug/Kg	₽	11/12/20 13:30	11/17/20 20:41	
'inyl chloride	4.1	U	4.1	0.50	ug/Kg	☼	11/12/20 13:30	11/17/20 20:41	

Eurofins TestAmerica, Buffalo

Job ID: 480-178044-1

3

4

6

0

11

12

Client: Parsons Corporation

Percent Moisture

Percent Solids

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-7-11112020-1.7-2.2 Lab Sample ID: 480-178044-5

Date Collected: 11/11/20 13:40 Matrix: Solid Date Received: 11/11/20 17:12 Percent Solids: 86.3

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		64 - 126	11/12/20 13:30	11/17/20 20:41	1
4-Bromofluorobenzene (Surr)	97		72 - 126	11/12/20 13:30	11/17/20 20:41	1
Dibromofluoromethane (Surr)	107		60 - 140	11/12/20 13:30	11/17/20 20:41	1
Toluene-d8 (Surr)	97		71 - 125	11/12/20 13:30	11/17/20 20:41	1

Dibromofluoromethane (Surr)	107		60 - 140				11/12/20 13:30	11/17/20 20:41	1
Toluene-d8 (Surr)	97		71 - 125				11/12/20 13:30	11/17/20 20:41	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/M	S)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	200	U	200	29	ug/Kg	— <u></u>	11/17/20 15:12	11/19/20 13:40	1
Acenaphthylene	200	U	200	25	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Anthracene	200	U	200	48	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Benzo[a]anthracene	200	U	200	20	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Benzo[a]pyrene	200	U	200	29	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Benzo[b]fluoranthene	200	U	200	31	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Benzo[g,h,i]perylene	200	U	200	21	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Benzo[k]fluoranthene	200	U	200	25	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Chrysene	200	U	200	44	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Dibenz(a,h)anthracene	200	U	200	34	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Fluoranthene	200	U	200	21	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Fluorene	200	U	200	23	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Indeno[1,2,3-cd]pyrene	200	U	200	24	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Naphthalene	200	U	200	25	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Phenanthrene	200	U	200	29	ug/Kg	₽	11/17/20 15:12	11/19/20 13:40	1
Pyrene	200	U	200	23	ug/Kg	\$	11/17/20 15:12	11/19/20 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	92		60 - 120				11/17/20 15:12	11/19/20 13:40	1
Nitrobenzene-d5 (Surr)	72		53 - 120				11/17/20 15:12	11/19/20 13:40	1
p-Terphenyl-d14 (Surr)	87		79 - 130				11/17/20 15:12	11/19/20 13:40	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	23.7		0.56	0.22	mg/Kg	<u></u>	11/23/20 18:12	11/24/20 14:08	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U	1.1	0.53	mg/Kg	₽	11/23/20 22:15	11/24/20 21:38	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
· · · · · · · · · · · · · · · · · · ·									

0.1

0.1

13.7

86.3

0.1

0.1 %

%

11/13/20 09:34

11/13/20 09:34

Job ID: 480-178044-1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-8-11112020-1.9-2.4 Lab Sample ID: 480-178044-6

Method: 8260C - Volatile Organic (-	•							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	5.0	U	5.0	0.36	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.81	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0	U	5.0	1.1	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
1,1,2-Trichloroethane	5.0	U	5.0	0.65	ug/Kg	₽	11/12/20 13:30	11/17/20 21:06	
,1-Dichloroethane	5.0	U	5.0	0.61	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
1,1-Dichloroethene	5.0	U	5.0	0.61	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
,2,4-Trichlorobenzene	5.0	U	5.0	0.31	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
,2-Dibromoethane	5.0	U	5.0	0.65	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
,2-Dichlorobenzene	5.0	U	5.0	0.39	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
1,2-Dichloroethane	5.0	U	5.0	0.25	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
,2-Dichloropropane	5.0	U	5.0	2.5	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
1,3-Dichlorobenzene	5.0	U	5.0	0.26	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
I,4-Dichlorobenzene	5.0	U	5.0	0.70	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
2-Butanone (MEK)	25	U	25	1.8	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
2-Hexanone	25	U	25	2.5	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
1-Methyl-2-pentanone (MIBK)	25	U	25	1.6	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Acetone	25	U	25	4.2	ug/Kg	₽	11/12/20 13:30	11/17/20 21:06	
Benzene	5.0	U	5.0	0.25	ug/Kg		11/12/20 13:30	11/17/20 21:06	
Bromodichloromethane	5.0	U	5.0	0.67	ug/Kg	₽	11/12/20 13:30	11/17/20 21:06	
Bromoform	5.0	U	5.0	2.5	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Bromomethane	5.0	U	5.0		ug/Kg		11/12/20 13:30	11/17/20 21:06	
Carbon disulfide	5.0	U	5.0		ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Carbon tetrachloride	5.0	U	5.0	0.49	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Chlorobenzene	5.0	U	5.0	0.66	ug/Kg		11/12/20 13:30	11/17/20 21:06	
Chloroethane	5.0	U	5.0	1.1	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Chloroform	5.0	U	5.0	0.31	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Chloromethane	5.0		5.0	0.30	ug/Kg		11/12/20 13:30	11/17/20 21:06	
sis-1,2-Dichloroethene	5.0		5.0	0.64	ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
sis-1,3-Dichloropropene	5.0		5.0		ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Cyclohexane	5.0		5.0		ug/Kg		11/12/20 13:30	11/17/20 21:06	
Dibromochloromethane	5.0		5.0		ug/Kg		11/12/20 13:30	11/17/20 21:06	
Dichlorodifluoromethane	5.0		5.0	0.41	ug/Kg		11/12/20 13:30	11/17/20 21:06	
Ethylbenzene	5.0		5.0		ug/Kg		11/12/20 13:30	11/17/20 21:06	
sopropylbenzene	5.0		5.0		ug/Kg	т Ф	11/12/20 13:30	11/17/20 21:06	
Methyl acetate	25		25		ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Methyl tert-butyl ether	5.0		5.0	0.49	ug/Kg ug/Kg		11/12/20 13:30	11/17/20 21:06	
Methylcyclohexane	5.0		5.0		ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Methylene Chloride	5.0		5.0		ug/Kg ug/Kg	₩	11/12/20 13:30	11/17/20 21:06	
Styrene	5.0		5.0		ug/Kg ug/Kg		11/12/20 13:30	11/17/20 21:06	
etrachloroethene	5.0		5.0		ug/Kg ug/Kg	ф ж	11/12/20 13:30	11/17/20 21:06	
oluene	5.0		5.0		ug/Kg ug/Kg	\$	11/12/20 13:30		
								11/17/20 21:06	
rans-1,2-Dichloroethene	5.0		5.0		ug/Kg	\$	11/12/20 13:30	11/17/20 21:06	
rans-1,3-Dichloropropene	5.0		5.0 5.0		ug/Kg	*	11/12/20 13:30	11/17/20 21:06	
Trichloroethene	5.0		5.0		ug/Kg	· · · · ·	11/12/20 13:30	11/17/20 21:06	
Frichlorofluoromethane	5.0		5.0		ug/Kg	*	11/12/20 13:30	11/17/20 21:06	
/inyl chloride Kylenes, Total	5.0 10		5.0	0.61	ug/Kg	₽	11/12/20 13:30	11/17/20 21:06	

Eurofins TestAmerica, Buffalo

Page 19 of 53

6

Job ID: 480-178044-1

3

4

6

8

10

12

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-178044-6

Matrix: Solid Percent Solids: 86.9

Job ID: 480-178044-1

Client Sample ID: B-8-11112020-1.9-2.4 Date Collected: 11/11/20 14:30 Date Received: 11/11/20 17:12

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	64 - 126	11/12/20 13:30	11/17/20 21:06	1
4-Bromofluorobenzene (Surr)	99	72 - 126	11/12/20 13:30	11/17/20 21:06	1
Dibromofluoromethane (Surr)	106	60 - 140	11/12/20 13:30	11/17/20 21:06	1
Toluene-d8 (Surr)	100	71 - 125	11/12/20 13:30	11/17/20 21:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	190	U	190	28	ug/Kg		11/17/20 15:12	11/19/20 14:05	1
Acenaphthylene	190	U	190	25	ug/Kg	₩	11/17/20 15:12	11/19/20 14:05	1
Anthracene	190	U	190	48	ug/Kg	₩	11/17/20 15:12	11/19/20 14:05	1
Benzo[a]anthracene	190	U	190	19	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Benzo[a]pyrene	190	U	190	28	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Benzo[b]fluoranthene	190	U	190	31	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Benzo[g,h,i]perylene	190	U	190	20	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Benzo[k]fluoranthene	190	U	190	25	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Chrysene	190	U	190	43	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Dibenz(a,h)anthracene	190	U	190	34	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Fluoranthene	190	U	190	20	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Fluorene	190	U	190	23	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Indeno[1,2,3-cd]pyrene	190	U	190	24	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Naphthalene	190	U	190	25	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Phenanthrene	190	U	190	28	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Pyrene	190	U	190	23	ug/Kg	₽	11/17/20 15:12	11/19/20 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl	94		60 - 120	11/17/20 15:12	11/19/20 14:05	1
	Nitrobenzene-d5 (Surr)	72		53 - 120	11/17/20 15:12	11/19/20 14:05	1
l	p-Terphenyl-d14 (Surr)	87		79 - 130	11/17/20 15:12	11/19/20 14:05	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	22.8		0.57	0.23	mg/Kg	*	11/23/20 18:12	11/24/20 14:12	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U	1.1	0.54	mg/Kg	₽	11/23/20 22:15	11/24/20 21:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	13.1		0.1	0.1	%			11/13/20 09:34	1

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-9-11112020-0.5-1.0

Lab Sample ID: 480-178044-7 Date Collected: 11/11/20 15:00 Matrix: Solid Date Received: 11/11/20 17:12 Percent Solids: 77.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	2400	U	2400	660	ug/Kg	— <u></u>	11/12/20 15:10	11/15/20 05:08	2
1,1,2,2-Tetrachloroethane	2400	U	2400	390	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	2
1,1,2-Trichloro-1,2,2-trifluoroethane	2400	U	2400	1200	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	2
1,1,2-Trichloroethane	2400	U	2400	500	ug/Kg		11/12/20 15:10	11/15/20 05:08	2
1,1-Dichloroethane	2400	U	2400	740	ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	2
1,1-Dichloroethene	2400	U	2400	830	ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	2
1,2,4-Trichlorobenzene	2400	U	2400	900	ug/Kg		11/12/20 15:10	11/15/20 05:08	2
1,2-Dibromo-3-Chloropropane	2400	U	2400	1200	ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	2
,2-Dichlorobenzene	2400	U	2400	610	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	:
I,2-Dichloroethane	2400	U	2400		ug/Kg		11/12/20 15:10	11/15/20 05:08	
1,2-Dichloropropane	2400	U	2400		ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	:
I,3-Dichlorobenzene	2400		2400		ug/Kg	*	11/12/20 15:10	11/15/20 05:08	:
I,4-Dichlorobenzene	2400		2400		ug/Kg		11/12/20 15:10	11/15/20 05:08	
2-Butanone (MEK)	12000		12000	7100	ug/Kg	.	11/12/20 15:10	11/15/20 05:08	:
2-Hexanone	12000		12000	4900	ug/Kg		11/12/20 15:10	11/15/20 05:08	:
I-Methyl-2-pentanone (MIBK)	12000		12000	760	ug/Kg		11/12/20 15:10	11/15/20 05:08	
Acetone	12000		12000	9800	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
Benzene	17000		2400	450	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
Bromoform	2400		2400	1200	ug/Kg		11/12/20 15:10	11/15/20 05:08	
Bromomethane	2400		2400	530	ug/Kg ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
Carbon disulfide	2400		2400	1100	ug/Kg ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
Carbon tetrachloride	2400		2400		ug/Kg ug/Kg		11/12/20 15:10	11/15/20 05:08	
Chlorobenzene	2400		2400	320		₩	11/12/20 15:10		
	2400		2400		ug/Kg			11/15/20 05:08	
Dibromochloromethane	2400			1200	ug/Kg	.	11/12/20 15:10	11/15/20 05:08	
Chloroethane			2400		ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
Chloroform	2400		2400	1600	ug/Kg	*	11/12/20 15:10	11/15/20 05:08	
Chloromethane	2400		2400	570		.	11/12/20 15:10	11/15/20 05:08	
sis-1,2-Dichloroethene	2400		2400	660	ug/Kg	#	11/12/20 15:10	11/15/20 05:08	
Cyclohexane	2400		2400	530	ug/Kg	#	11/12/20 15:10	11/15/20 05:08	
Bromodichloromethane	2400		2400	480	ug/Kg	.	11/12/20 15:10	11/15/20 05:08	
Dichlorodifluoromethane	2400	U	2400	1000	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
thylbenzene	17000		2400	690	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
,2-Dibromoethane	2400		2400	420			11/12/20 15:10	11/15/20 05:08	
sopropylbenzene	2400		2400	360	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
Methyl acetate	12000		12000	1100	ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	
Methyl tert-butyl ether	2400	U	2400	900	ug/Kg		11/12/20 15:10	11/15/20 05:08	
Methylcyclohexane	2400	U	2400	1100	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
Methylene Chloride	2400	U	2400	470	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
etrachloroethene	2400	U	2400	320	ug/Kg		11/12/20 15:10	11/15/20 05:08	
oluene	14000		2400	640	ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	
rans-1,2-Dichloroethene	2400	U	2400	560	ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	
rans-1,3-Dichloropropene	2400	U	2400	230	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
richloroethene	2400	U	2400	660	ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	
richlorofluoromethane	2400	U	2400	1100	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
/inyl chloride	2400	U	2400	800	ug/Kg	₩	11/12/20 15:10	11/15/20 05:08	
Kylenes, Total	120000		4800	1300	ug/Kg		11/12/20 15:10	11/15/20 05:08	
sis-1,3-Dichloropropene	2400	U	2400		ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	
Styrene	2400		2400		ug/Kg	₽	11/12/20 15:10	11/15/20 05:08	

11/25/2020

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-178044-7 Client Sample ID: B-9-11112020-0.5-1.0

Date Collected: 11/11/20 15:00 Matrix: Solid Date Received: 11/11/20 17:12 Percent Solids: 77.8

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	quamer	53 - 146				11/12/20 15:10	11/15/20 05:08	25
4-Bromofluorobenzene (Surr)	113		49 - 148				11/12/20 15:10	11/15/20 05:08	25
Toluene-d8 (Surr)	104		50 - 149				11/12/20 15:10	11/15/20 05:08	25
Dibromofluoromethane (Surr)	113		60 - 140				11/12/20 15:10	11/15/20 05:08	25
Method: 8270D - Semivolatile	Organic Compou	ınds (GC/M	S)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acananhthana		11	4400	400			11/17/00 15:10	11/10/00 11:01	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1100	U	1100	160	ug/Kg		11/17/20 15:12	11/19/20 14:31	5
Acenaphthylene	1100	U	1100	140	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Anthracene	1100	U	1100	270	ug/Kg	₩	11/17/20 15:12	11/19/20 14:31	5
Benzo[a]anthracene	120	J	1100	110	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Benzo[a]pyrene	1100	U	1100	160	ug/Kg	₩	11/17/20 15:12	11/19/20 14:31	5
Benzo[b]fluoranthene	1100	U	1100	170	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Benzo[g,h,i]perylene	1100	U	1100	120	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Benzo[k]fluoranthene	1100	U	1100	140	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Chrysene	1100	U	1100	240	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Dibenz(a,h)anthracene	1100	U	1100	190	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Fluoranthene	170	J	1100	120	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Fluorene	1100	U	1100	130	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Indeno[1,2,3-cd]pyrene	1100	U	1100	130	ug/Kg	₩	11/17/20 15:12	11/19/20 14:31	5
Naphthalene	8700		1100	140	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Phenanthrene	1100	U	1100	160	ug/Kg	₽	11/17/20 15:12	11/19/20 14:31	5
Pyrene	1100	U	1100	130	ug/Kg	₩	11/17/20 15:12	11/19/20 14:31	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		60 - 120	11/17/20 15:12	11/19/20 14:31	5
Nitrobenzene-d5 (Surr)	72		53 - 120	11/17/20 15:12	11/19/20 14:31	5
p-Terphenyl-d14 (Surr)	76	X	79 - 130	11/17/20 15:12	11/19/20 14:31	5

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	20.3		0.67	0.27	mg/Kg	₩	11/23/20 18:12	11/24/20 14:16	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.69	J	1.1	0.54	mg/Kg	₩	11/23/20 22:15	11/24/20 21:41	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22.2		0.1	0.1	%			11/13/20 09:34	1
Percent Solids	77.8		0.1	0.1	%			11/13/20 09:34	1

Job ID: 480-178044-1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-9-11112020-20-25

Lab Sample ID: 480-178044-8 Date Collected: 11/11/20 15:10 Matrix: Solid Date Received: 11/11/20 17:12

Percent Solids: 85.7

Job ID: 480-178044-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	2400		2400	680	ug/Kg	— <u> </u>	11/12/20 15:10	11/15/20 05:31	
1,1,2,2-Tetrachloroethane	2400	U	2400	400	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
,1,2-Trichloro-1,2,2-trifluoroethane	2400	U	2400	1200	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
,1,2-Trichloroethane	2400		2400		ug/Kg		11/12/20 15:10	11/15/20 05:31	
,1-Dichloroethane	2400		2400	750	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
,1-Dichloroethene	2400		2400	840	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
,2,4-Trichlorobenzene	2400		2400	920	ug/Kg		11/12/20 15:10	11/15/20 05:31	
I,2-Dibromo-3-Chloropropane	2400		2400	1200	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
I,2-Dichlorobenzene	2400		2400	620	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
,2-Dichloroethane	2400		2400	1000	ug/Kg		11/12/20 15:10	11/15/20 05:31	
,2-Dichloropropane	2400	U	2400	400	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
,3-Dichlorobenzene	2400	U	2400	650	ug/Kg		11/12/20 15:10	11/15/20 05:31	
,4-Dichlorobenzene	2400		2400	340	ug/Kg		11/12/20 15:10	11/15/20 05:31	
2-Butanone (MEK)	12000		12000	7200	ug/Kg ug/Kg	~ \$	11/12/20 15:10	11/15/20 05:31	
-Butanone (MER)	12000		12000	5000	ug/Kg ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
	12000								
-Methyl-2-pentanone (MIBK)			12000	780	ug/Kg	\$	11/12/20 15:10	11/15/20 05:31	
acetone	12000	U	12000	10000	ug/Kg	*	11/12/20 15:10	11/15/20 05:31	
Benzene	66000		2400	460	ug/Kg	.	11/12/20 15:10	11/15/20 05:31	
romoform	2400		2400	1200	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
romomethane	2400		2400	540	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
Carbon disulfide	2400		2400	1100	ug/Kg		11/12/20 15:10	11/15/20 05:31	
Carbon tetrachloride	2400		2400	620	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
Chlorobenzene	2400	U	2400	320	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
ibromochloromethane	2400	U	2400	1200	ug/Kg		11/12/20 15:10	11/15/20 05:31	
Chloroethane	2400	U	2400	510	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
Chloroform	2400	U	2400	1700	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
Chloromethane	2400	U	2400	580	ug/Kg		11/12/20 15:10	11/15/20 05:31	
is-1,2-Dichloroethene	2400	U	2400	670	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
Syclohexane	2400	U	2400	540	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
romodichloromethane	2400	U	2400	490	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
ichlorodifluoromethane	2400	U	2400	1100	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
thylbenzene	1500	J	2400	710	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
,2-Dibromoethane	2400	U	2400	430	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
sopropylbenzene	2400	U	2400	370	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
Methyl acetate	12000	U	12000	1200	ug/Kg	₽	11/12/20 15:10	11/15/20 05:31	
Nethyl tert-butyl ether	2400	U	2400	920	ug/Kg	₽	11/12/20 15:10	11/15/20 05:31	
Methylcyclohexane	2400	U	2400	1100	ug/Kg		11/12/20 15:10	11/15/20 05:31	
Nethylene Chloride	2400	U	2400	480	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
etrachloroethene	2400	U	2400	330	ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
oluene	83000		2400	650	ug/Kg		11/12/20 15:10	11/15/20 05:31	
ans-1,2-Dichloroethene	2400	U	2400	580	ug/Kg	₽	11/12/20 15:10	11/15/20 05:31	
rans-1,3-Dichloropropene	2400		2400				11/12/20 15:10	11/15/20 05:31	
richloroethene	2400		2400		ug/Kg		11/12/20 15:10	11/15/20 05:31	
richlorofluoromethane	2400		2400			₩	11/12/20 15:10	11/15/20 05:31	
/inyl chloride	2400		2400		ug/Kg ug/Kg	₩	11/12/20 15:10	11/15/20 05:31	
								11/15/20 05:31	
(ylenes, Total	9200 2400	11	4900 2400		ug/Kg	*	11/12/20 15:10		
is-1,3-Dichloropropene Styrene	2400		2400	580	ug/Kg ug/Kg	ф Ф	11/12/20 15:10 11/12/20 15:10	11/15/20 05:31 11/15/20 05:31	

Client: Parsons Corporation

Analyte

Percent Moisture

Percent Solids

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-9-11112020-20-25 Lab Sample ID: 480-178044-8

Date Collected: 11/11/20 15:10 Matrix: Solid Date Received: 11/11/20 17:12 Percent Solids: 85.7

s	urrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
1	,2-Dichloroethane-d4 (Surr)	106		53 - 146	11/12/20 1	15:10	11/15/20 05:31	50
4	-Bromofluorobenzene (Surr)	106		49 - 148	11/12/20 1	15:10	11/15/20 05:31	50
7	oluene-d8 (Surr)	99		50 - 149	11/12/20 1	15:10	11/15/20 05:31	50
D	ibromofluoromethane (Surr)	116		60 - 140	11/12/20 1	15:10	11/15/20 05:31	50

Dibromofluoromethane (Surr)	116		60 - 140				11/12/20 15:10	11/15/20 05:31	5
Method: 8270D - Semivolatile Or	ganic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	190	U	190	29	ug/Kg		11/17/20 15:12	11/19/20 14:56	
Acenaphthylene	190	U	190	25	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Anthracene	190	U	190	48	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Benzo[a]anthracene	190	U	190	19	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Benzo[a]pyrene	190	U	190	29	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Benzo[b]fluoranthene	190	U	190	31	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Benzo[g,h,i]perylene	190	U	190	21	ug/Kg	₽	11/17/20 15:12	11/19/20 14:56	
Benzo[k]fluoranthene	190	U	190	25	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Chrysene	190	U	190	43	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Dibenz(a,h)anthracene	190	U	190	34	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Fluoranthene	190	U	190	21	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Fluorene	190	U	190	23	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Indeno[1,2,3-cd]pyrene	190	U	190	24	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Naphthalene	600		190	25	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Phenanthrene	190	U	190	29	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Pyrene	190	U	190	23	ug/Kg	₩	11/17/20 15:12	11/19/20 14:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	100		60 - 120				11/17/20 15:12	11/19/20 14:56	
Nitrobenzene-d5 (Surr)	81		53 - 120				11/17/20 15:12	11/19/20 14:56	
p-Terphenyl-d14 (Surr)	88		79 - 130				11/17/20 15:12	11/19/20 14:56	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	22.0		0.58	0.23	mg/Kg	*	11/23/20 18:12	11/24/20 14:20	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cyanide, Total	0.99	U	0.99	0.48	mg/Kg	<u></u>	11/23/20 22:15	11/24/20 21:42	

RL

0.1

0.1

RL Unit

0.1 %

0.1 %

D

Prepared

Result Qualifier

14.3

85.7

Analyzed

11/13/20 09:52

11/13/20 09:52

Job ID: 480-178044-1

Dil Fac

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-9-11112020-9.5-10.0

Lab Sample ID: 480-178044-9 Date Collected: 11/11/20 15:30 Matrix: Solid Date Received: 11/11/20 17:12

Percent Solids: 84.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	2500	U	2500	690	ug/Kg	— <u></u>	11/12/20 15:10	11/15/20 05:54	
1,1,2,2-Tetrachloroethane	2500	U	2500	410	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	5
,1,2-Trichloro-1,2,2-trifluoroethane	2500	U	2500	1300	ug/Kg	₩	11/12/20 15:10	11/15/20 05:54	5
,1,2-Trichloroethane	2500	U	2500	530	ug/Kg		11/12/20 15:10	11/15/20 05:54	5
I,1-Dichloroethane	2500		2500	770	ug/Kg		11/12/20 15:10	11/15/20 05:54	5
I,1-Dichloroethene	2500		2500	870	ug/Kg	₩.	11/12/20 15:10	11/15/20 05:54	5
,2,4-Trichlorobenzene	2500		2500	950	ug/Kg		11/12/20 15:10	11/15/20 05:54	
,2-Dibromo-3-Chloropropane	2500		2500	1300	ug/Kg	₩.	11/12/20 15:10	11/15/20 05:54	
,2-Dichlorobenzene	2500		2500	640	ug/Kg		11/12/20 15:10	11/15/20 05:54	
,2-Dichloroethane	2500		2500	1000	ug/Kg ug/Kg		11/12/20 15:10	11/15/20 05:54	
	2500		2500				11/12/20 15:10		·
,2-Dichloropropane				410	ug/Kg	<u>*</u>		11/15/20 05:54	
,3-Dichlorobenzene	2500		2500	670	ug/Kg	.	11/12/20 15:10	11/15/20 05:54	
,4-Dichlorobenzene	2500		2500	350	ug/Kg	*	11/12/20 15:10	11/15/20 05:54	
-Butanone (MEK)	13000		13000	7400	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
-Hexanone	13000		13000	5100	ug/Kg		11/12/20 15:10	11/15/20 05:54	
-Methyl-2-pentanone (MIBK)	13000		13000	800	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
Acetone	13000	U	13000	10000	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
Benzene	86000		2500	480	ug/Kg		11/12/20 15:10	11/15/20 05:54	
Bromoform	2500	U	2500	1300	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
romomethane	2500	U	2500	550	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
Carbon disulfide	2500	U	2500	1100	ug/Kg	₩	11/12/20 15:10	11/15/20 05:54	
Carbon tetrachloride	2500	U	2500	640	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
Chlorobenzene	2500	U	2500	330	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
Dibromochloromethane	2500	U	2500	1200	ug/Kg	₩	11/12/20 15:10	11/15/20 05:54	
Chloroethane	2500	U	2500	520	ug/Kg		11/12/20 15:10	11/15/20 05:54	
Chloroform	2500	U	2500	1700	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
Chloromethane	2500	U	2500	600	ug/Kg	₩	11/12/20 15:10	11/15/20 05:54	
sis-1,2-Dichloroethene	2500	U	2500	690	ug/Kg		11/12/20 15:10	11/15/20 05:54	
Cyclohexane	2500		2500	560	ug/Kg		11/12/20 15:10	11/15/20 05:54	
Bromodichloromethane	2500		2500	500	ug/Kg	*	11/12/20 15:10	11/15/20 05:54	
Dichlorodifluoromethane	2500		2500	1100			11/12/20 15:10	11/15/20 05:54	
Ethylbenzene	1300		2500	730	ug/Kg	₩.	11/12/20 15:10	11/15/20 05:54	
,2-Dibromoethane	2500		2500	440	ug/Kg ug/Kg	~	11/12/20 15:10	11/15/20 05:54	
sopropylbenzene	2500		2500	380	ug/Kg		11/12/20 15:10	11/15/20 05:54	
Methyl acetate	13000		13000	1200		☆	11/12/20 15:10	11/15/20 05:54	
•	2500				ug/Kg				
Methyl tert-butyl ether			2500		ug/Kg	.	11/12/20 15:10	11/15/20 05:54	
Methylcyclohexane	2500		2500	1200	ug/Kg	*	11/12/20 15:10	11/15/20 05:54	
Methylene Chloride	2500		2500	500	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
etrachloroethene	2500	U	2500	340	ug/Kg		11/12/20 15:10	11/15/20 05:54	
oluene	54000		2500	670		₩	11/12/20 15:10	11/15/20 05:54	
rans-1,2-Dichloroethene	2500		2500	590	ug/Kg	₩	11/12/20 15:10	11/15/20 05:54	
ans-1,3-Dichloropropene	2500	U	2500	250	ug/Kg		11/12/20 15:10	11/15/20 05:54	
richloroethene	2500	U	2500	700	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	
richlorofluoromethane	2500	U	2500	1200	ug/Kg	☼	11/12/20 15:10	11/15/20 05:54	
inyl chloride	2500	U	2500	840	ug/Kg	₩	11/12/20 15:10	11/15/20 05:54	
ylenes, Total	8100		5000	1400	ug/Kg	*	11/12/20 15:10	11/15/20 05:54	
is-1,3-Dichloropropene	2500	U	2500	600	ug/Kg	₩	11/12/20 15:10	11/15/20 05:54	
Styrene	2500	U	2500	600	ug/Kg	₽	11/12/20 15:10	11/15/20 05:54	

11/25/2020

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-178044-9

Matrix: Solid Percent Solids: 84.0

Job ID: 480-178044-1

Client Sample ID: B-9-11112020-9.5-10.0 Date Collected: 11/11/20 15:30

Date Received: 11/11/20 17:12

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		53 - 146	11/12/20 15:10	11/15/20 05:54	50
4-Bromofluorobenzene (Surr)	112	49 - 148	11/12/20 15:10	11/15/20 05:54	50
Toluene-d8 (Surr)	104	50 - 149	11/12/20 15:10	11/15/20 05:54	50
Dibromofluoromethane (Surr)	111	60 - 140	11/12/20 15:10	11/15/20 05:54	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	200	U	200	29	ug/Kg	<u></u>	11/17/20 15:12	11/19/20 15:21	
Acenaphthylene	200	U	200	26	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Anthracene	200	U	200	49	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Benzo[a]anthracene	31	J	200	20	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Benzo[a]pyrene	34	J	200	29	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Benzo[b]fluoranthene	46	J	200	32	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Benzo[g,h,i]perylene	200	U	200	21	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Benzo[k]fluoranthene	26	J	200	26	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Chrysene	200	U	200	44	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Dibenz(a,h)anthracene	200	U	200	35	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Fluoranthene	46	J	200	21	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Fluorene	200	U	200	23	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Indeno[1,2,3-cd]pyrene	200	U	200	25	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	•
Naphthalene	950		200	26	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Phenanthrene	200	U	200	29	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	
Pyrene	32	J	200	23	ug/Kg	₽	11/17/20 15:12	11/19/20 15:21	

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl	95		60 - 120	11/17/20 15:12	11/19/20 15:21	1
	Nitrobenzene-d5 (Surr)	78		53 - 120	11/17/20 15:12	11/19/20 15:21	1
l	p-Terphenyl-d14 (Surr)	81		79 - 130	11/17/20 15:12	11/19/20 15:21	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	23.7		0.60	0.24	mg/Kg	₩	11/23/20 18:12	11/24/20 14:35	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.1	U	1.1	0.52	mg/Kg	₽	11/23/20 22:15	11/24/20 21:43	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	16.0		0.1	0.1	%			11/13/20 09:52	1
Percent Solids	84.0		0.1	0.1	%			11/13/20 09:52	1

Client: Parsons Corporation Job ID: 480-178044-1 Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Su	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(64-126)	(72-126)	(60-140)	(71-125)
480-178044-1	B-1-11112020-1.5-2.0	116	97	106	97
480-178044-2	B-4-11112020-0.8-1.3	138 X	34 *3 X	163 X	162 *3 X
480-178044-3	B-4-11112020-1.5-2.0	107	100	105	100
480-178044-4	B-5-11112020-0.6-1.1	107	98	103	97
480-178044-5	B-7-11112020-1.7-2.2	112	97	107	97
480-178044-6	B-8-11112020-1.9-2.4	109	99	106	100
LCS 480-559289/1-A	Lab Control Sample	98	101	101	99
LCS 480-559506/1-A	Lab Control Sample	100	100	117	97
MB 480-559289/2-A	Method Blank	104	99	104	99
MB 480-559506/2-A	Method Blank	102	98	119	99

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Ad						
		DCA	BFB	DBFM	TOL			
Lab Sample ID	Client Sample ID	(53-146)	(49-148)	(60-140)	(50-149)			
480-178044-7	B-9-11112020-0.5-1.0	107	113	113	104			
480-178044-8	B-9-11112020-20-25	106	106	116	99			
480-178044-9	B-9-11112020-9.5-10.0	100	112	111	104			
LCS 480-558812/1-A	Lab Control Sample	105	111	116	99			
LCSD 480-558812/2-A	Lab Control Sample Dup	107	116	116	103			
MB 480-558812/3-A	Method Blank	102	108	101	102			

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

				Percent Surre
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(60-120)	(53-120)	(79-130)
480-178044-1	B-1-11112020-1.5-2.0	101	76	97
480-178044-1 MS	B-1-11112020-1.5-2.0	90	72	91
480-178044-1 MSD	B-1-11112020-1.5-2.0	94	77	95
480-178044-2	B-4-11112020-0.8-1.3	95	75	80
480-178044-3	B-4-11112020-1.5-2.0	89	69	83
480-178044-4	B-5-11112020-0.6-1.1	91	73	85
480-178044-5	B-7-11112020-1.7-2.2	92	72	87
480-178044-6	B-8-11112020-1.9-2.4	94	72	87
480-178044-7	B-9-11112020-0.5-1.0	89	72	76 X

Page 27 of 53

Surrogate Summary

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limit						
		FBP	NBZ	TPHd14				
_ab Sample ID	Client Sample ID	(60-120)	(53-120)	(79-130)				
180-178044-8	B-9-11112020-20-25	100	81	88				
180-178044-9	B-9-11112020-9.5-10.0	95	78	81				
_CS 480-559530/2-A	Lab Control Sample	93	74	97				
MB 480-559530/1-A	Method Blank	96	72	95				

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

2

Л

5

8

3

44

12

14

Job ID: 480-178044-1 Client: Parsons Corporation

RL

100

MDL Unit

28 ug/Kg

46 ug/Kg

26 ug/Kg

13 ug/Kg

21 ug/Kg

24 ug/Kg

28 ug/Kg

20

22 ug/Kg

48 ug/Kg

18 ug/Kg

44 ug/Kg

29 ug/Kg

15 ug/Kg

48 ug/Kg

38 ug/Kg

47

20 ug/Kg

13 ug/Kg

27 ug/Kg

24 ug/Kg

9.8 ug/Kg

28 ug/Kg

24 ug/Kg

47 ug/Kg

24 ug/Kg

34 ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

D

Prepared

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

11/12/20 15:10

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

100 U

500 U

100 U

200 U

Lab Sample ID: MB 480-558812/3-A

Matrix: Solid

1,1,1-Trichloroethane

Carbon disulfide

Chlorobenzene

Chloromethane

Cyclohexane

Ethylbenzene

Methyl acetate

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

trans-1.2-Dichloroethene

trans-1,3-Dichloropropene

cis-1,3-Dichloropropene

Trichlorofluoromethane

Toluene

Styrene

Vinyl chloride

Xylenes, Total

cis-1,2-Dichloroethene

Bromodichloromethane

Dibromochloromethane

Dichlorodifluoromethane

1,2-Dibromoethane

Chloroethane

Chloroform

Carbon tetrachloride

Analyte

Analysis Batch: 559102

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

11/15/20 00:09

Prep Batch: 558812

Dil Fac

1,1,2,2-Tetrachloroethane	100 U	100	16 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,1,2-Trichloro-1,2,2-trifluoroethane	100 U	100	50 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,1,2-Trichloroethane	100 U	100	21 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,1-Dichloroethane	100 U	100	31 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,1-Dichloroethene	100 U	100	35 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,2,4-Trichlorobenzene	100 U	100	38 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,2-Dibromo-3-Chloropropane	100 U	100	50 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,2-Dichlorobenzene	100 U	100	26 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,2-Dichloroethane	100 U	100	41 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,2-Dichloropropane	100 U	100	16 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,3-Dichlorobenzene	100 U	100	27 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
1,4-Dichlorobenzene	100 U	100	14 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
2-Butanone (MEK)	500 U	500	300 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
2-Hexanone	500 U	500	210 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
4-Methyl-2-pentanone (MIBK)	500 U	500	32 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
Acetone	500 U	500	410 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
Benzene	100 U	100	19 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
Bromoform	100 U	100	50 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1
Bromomethane	100 U	100	22 ug/Kg	11/12/20 15:10 1	1/15/20 00:09	1

100

100

100

100

100

100

100

100

100

100

100

100

100

100

500

100

100

100

100

100

100

100

100

100

100

100

100

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-178044-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-558812/3-A

Lab Sample ID: LCS 480-558812/1-A

Matrix: Solid

Matrix: Solid

Methylcyclohexane

Methylene Chloride

Analysis Batch: 559102

Analysis Batch: 559102

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 558812

MB MB

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	53 - 146	11/12/20 15:10	11/15/20 00:09	1
4-Bromofluorobenzene (Surr)	108	49 - 148	11/12/20 15:10	11/15/20 00:09	1
Toluene-d8 (Surr)	102	50 - 149	11/12/20 15:10	11/15/20 00:09	1
Dibromofluoromethane (Surr)	101	60 - 140	11/12/20 15:10	11/15/20 00:09	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 558812

Analysis Batch. 555 102	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	2500	2960		ug/Kg		118	68 - 130
1,1,2,2-Tetrachloroethane	2500	2370		ug/Kg		95	73 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	2500	2660		ug/Kg		106	10 - 179
ne				-3.1.3			
1,1,2-Trichloroethane	2500	2520		ug/Kg		101	80 - 120
1,1-Dichloroethane	2500	2590		ug/Kg		104	78 - 121
1,1-Dichloroethene	2500	2760		ug/Kg		110	48 - 133
1,2,4-Trichlorobenzene	2500	2730		ug/Kg		109	70 - 140
1,2-Dibromo-3-Chloropropane	2500	2490		ug/Kg		99	56 - 122
1,2-Dichlorobenzene	2500	2470		ug/Kg		99	78 - 125
1,2-Dichloroethane	2500	2780		ug/Kg		111	74 - 127
1,2-Dichloropropane	2500	2490		ug/Kg		99	80 - 120
1,3-Dichlorobenzene	2500	2540		ug/Kg		101	80 - 120
1,4-Dichlorobenzene	2500	2480		ug/Kg		99	80 - 120
2-Butanone (MEK)	12500	11200		ug/Kg		90	54 ₋ 149
2-Hexanone	12500	10500		ug/Kg		84	59 - 127
4-Methyl-2-pentanone (MIBK)	12500	10400		ug/Kg		83	74 - 120
Acetone	12500	11300		ug/Kg		90	47 - 141
Benzene	2500	2560		ug/Kg		103	77 ₋ 125
Bromoform	2500	2930		ug/Kg		117	48 - 125
Bromomethane	2500	2480		ug/Kg		99	39 - 149
Carbon disulfide	2500	2380		ug/Kg		95	40 - 136
Carbon tetrachloride	2500	3020		ug/Kg		121	54 - 135
Chlorobenzene	2500	2660		ug/Kg		107	76 ₋ 126
Chloroethane	2500	2210		ug/Kg		89	23 _ 150
Chloroform	2500	2700		ug/Kg		108	78 - 120
Chloromethane	2500	1950		ug/Kg		78	61 - 124
cis-1,2-Dichloroethene	2500	2640		ug/Kg		106	79 ₋ 124
Bromodichloromethane	2500	2750		ug/Kg		110	71 _ 121
Cyclohexane	2500	2460		ug/Kg		98	49 - 129
Dibromochloromethane	2500	2820		ug/Kg		113	64 - 120
1,2-Dibromoethane	2500	2630		ug/Kg		105	80 - 120
Dichlorodifluoromethane	2500	2700		ug/Kg		108	10 - 150
Ethylbenzene	2500	2570		ug/Kg		103	78 ₋ 124
Isopropylbenzene	2500	2630		ug/Kg		105	76 - 120
Methyl acetate	5000	4470		ug/Kg		89	71 - 123
Methyl tert-butyl ether	2500	2720		ug/Kg		109	67 - 137
		 .					

Eurofins TestAmerica, Buffalo

11/25/2020

50 - 130

75 - 118

106

Page 30 of 53

2640

2480

ug/Kg

ug/Kg

2500

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-558812/1-A

Matrix: Solid

Analysis Batch: 559102

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 558812

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	2500	2870		ug/Kg		115	73 - 133	
Toluene	2500	2580		ug/Kg		103	75 - 124	
trans-1,2-Dichloroethene	2500	2670		ug/Kg		107	74 - 129	
Trichloroethene	2500	2690		ug/Kg		108	75 ₋ 131	
cis-1,3-Dichloropropene	2500	2670		ug/Kg		107	75 ₋ 121	
Trichlorofluoromethane	2500	3120		ug/Kg		125	29 _ 158	
Styrene	2500	2690		ug/Kg		107	80 - 120	
Vinyl chloride	2500	2270		ug/Kg		91	59 - 124	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		53 - 146
4-Bromofluorobenzene (Surr)	111		49 - 148
Toluene-d8 (Surr)	99		50 - 149
Dibromofluoromethane (Surr)	116		60 - 140

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 558812

Lab Sample ID: LCSD 480-558812/2-A

Matrix: Solid

Analysis Batch: 559102

Analysis Batch: 559102							Prep I	Batch: 5	58812
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	2500	2920		ug/Kg		117	68 - 130	1	20
1,1,2,2-Tetrachloroethane	2500	2290		ug/Kg		92	73 - 120	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	2500	2520		ug/Kg		101	10 - 179	5	20
ne									
1,1,2-Trichloroethane	2500	2500		ug/Kg		100	80 - 120	1	20
1,1-Dichloroethane	2500	2450		ug/Kg		98	78 - 121	5	20
1,1-Dichloroethene	2500	2620		ug/Kg		105	48 - 133	5	20
1,2,4-Trichlorobenzene	2500	2610		ug/Kg		105	70 - 140	4	20
1,2-Dibromo-3-Chloropropane	2500	2410		ug/Kg		96	56 - 122	3	20
1,2-Dichlorobenzene	2500	2380		ug/Kg		95	78 - 125	4	20
1,2-Dichloroethane	2500	2640		ug/Kg		106	74 - 127	5	20
1,2-Dichloropropane	2500	2430		ug/Kg		97	80 - 120	2	20
1,3-Dichlorobenzene	2500	2350		ug/Kg		94	80 - 120	8	20
1,4-Dichlorobenzene	2500	2320		ug/Kg		93	80 - 120	7	20
2-Butanone (MEK)	12500	10900		ug/Kg		87	54 - 149	3	20
2-Hexanone	12500	10700		ug/Kg		85	59 - 127	2	20
4-Methyl-2-pentanone (MIBK)	12500	10300		ug/Kg		83	74 - 120	1	20
Acetone	12500	11600		ug/Kg		93	47 - 141	3	20
Benzene	2500	2470		ug/Kg		99	77 - 125	4	20
Bromoform	2500	2800		ug/Kg		112	48 - 125	4	20
Bromomethane	2500	2530		ug/Kg		101	39 - 149	2	20
Carbon disulfide	2500	2270		ug/Kg		91	40 - 136	5	20
Carbon tetrachloride	2500	3070		ug/Kg		123	54 - 135	2	20
Chlorobenzene	2500	2600		ug/Kg		104	76 - 126	2	20
Chloroethane	2500	2100		ug/Kg		84	23 - 150	5	20
Chloroform	2500	2630		ug/Kg		105	78 - 120	3	20
Chloromethane	2500	1940		ug/Kg		77	61 - 124	0	20
cis-1,2-Dichloroethene	2500	2570		ug/Kg		103	79 - 124	2	20
Bromodichloromethane	2500	2650		ug/Kg		106	71 - 121	4	20

Eurofins TestAmerica, Buffalo

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-558812/2-A

Matrix: Solid

Analysis Batch: 559102

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 558812

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyclohexane	2500	2370		ug/Kg		95	49 - 129	4	20
Dibromochloromethane	2500	2650		ug/Kg		106	64 - 120	6	20
1,2-Dibromoethane	2500	2490		ug/Kg		100	80 - 120	6	20
Dichlorodifluoromethane	2500	2590		ug/Kg		103	10 - 150	4	20
Ethylbenzene	2500	2500		ug/Kg		100	78 - 124	3	20
Isopropylbenzene	2500	2440		ug/Kg		97	76 - 120	8	20
Methyl acetate	5000	4470		ug/Kg		89	71 - 123	0	20
Methyl tert-butyl ether	2500	2640		ug/Kg		106	67 - 137	3	20
Methylcyclohexane	2500	2560		ug/Kg		102	50 - 130	3	20
Methylene Chloride	2500	2410		ug/Kg		96	75 - 118	3	20
Tetrachloroethene	2500	2680		ug/Kg		107	73 - 133	7	20
Toluene	2500	2480		ug/Kg		99	75 - 124	4	20
trans-1,2-Dichloroethene	2500	2570		ug/Kg		103	74 - 129	4	20
Trichloroethene	2500	2670		ug/Kg		107	75 - 131	1	20
cis-1,3-Dichloropropene	2500	2620		ug/Kg		105	75 - 121	2	20
Trichlorofluoromethane	2500	3100		ug/Kg		124	29 - 158	1	20
Styrene	2500	2500		ug/Kg		100	80 - 120	7	20
Vinyl chloride	2500	2190		ug/Kg		88	59 - 124	4	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		53 - 146
4-Bromofluorobenzene (Surr)	116		49 - 148
Toluene-d8 (Surr)	103		50 - 149
Dibromofluoromethane (Surr)	116		60 - 140

Lab Sample ID: MB 480-559289/2-A

Matrix: Solid

Analysis Batch: 559476

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 559289

/ inalysis Datein coo ii c								op Batom	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.0	U	5.0	0.36	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.81	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0	U	5.0	1.1	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1,2-Trichloroethane	5.0	U	5.0	0.65	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1-Dichloroethane	5.0	U	5.0	0.61	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,1-Dichloroethene	5.0	U	5.0	0.61	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2,4-Trichlorobenzene	5.0	U	5.0	0.30	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dichlorobenzene	5.0	U	5.0	0.39	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dichloroethane	5.0	U	5.0	0.25	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dichloropropane	5.0	U	5.0	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,3-Dichlorobenzene	5.0	U	5.0	0.26	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,4-Dichlorobenzene	5.0	U	5.0	0.70	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
2-Butanone (MEK)	25	U	25	1.8	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
2-Hexanone	25	U	25	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
4-Methyl-2-pentanone (MIBK)	25	U	25	1.6	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Acetone	25	U	25	4.2	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Benzene	5.0	U	5.0	0.25	ug/Kg		11/16/20 11:57	11/17/20 13:32	1

Eurofins TestAmerica, Buffalo

Page 32 of 53

Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-559289/2-A

Matrix: Solid

Analysis Batch: 559476

Client: Parsons Corporation

Client Sample ID: Method Blank

						Prep Type: To		
MB	MB							
esult	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	5.0	U	5.0	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Bromomethane	5.0	U	5.0	0.45	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Carbon disulfide	5.0	U	5.0	2.5	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Carbon tetrachloride	5.0	U	5.0	0.48	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Chlorobenzene	5.0	U	5.0	0.66	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Chloroethane	5.0	U	5.0	1.1	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Chloroform	5.0	U	5.0	0.31	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Chloromethane	5.0	U	5.0	0.30	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
cis-1,2-Dichloroethene	5.0	U	5.0	0.64	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Bromodichloromethane	5.0	U	5.0	0.67	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Cyclohexane	5.0	U	5.0	0.70	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Dibromochloromethane	5.0	U	5.0	0.64	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
1,2-Dibromoethane	5.0	U	5.0	0.64	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Dichlorodifluoromethane	5.0	U	5.0	0.41	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Ethylbenzene	5.0	U	5.0	0.35	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Isopropylbenzene	5.0	U	5.0	0.75	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Methyl acetate	25	U	25	3.0	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Methyl tert-butyl ether	5.0	U	5.0	0.49	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Methylcyclohexane	5.0	U	5.0	0.76	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Methylene Chloride	5.0	U	5.0	2.3	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Tetrachloroethene	5.0	U	5.0	0.67	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Toluene	5.0	U	5.0	0.38	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.52	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
trans-1,3-Dichloropropene	5.0	U	5.0	2.2	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Trichloroethene	5.0	U	5.0	1.1	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
cis-1,3-Dichloropropene	5.0	U	5.0	0.72	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Trichlorofluoromethane	5.0	U	5.0	0.47	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Styrene	5.0	U	5.0	0.25	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Vinyl chloride	5.0	U	5.0	0.61	ug/Kg		11/16/20 11:57	11/17/20 13:32	1
Xylenes, Total	10	U	10	0.84	ug/Kg		11/16/20 11:57	11/17/20 13:32	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	64 - 126	11/16/20 11:5	7 11/17/20 13:32	1
4-Bromofluorobenzene (Surr)	99	72 - 126	11/16/20 11:5	7 11/17/20 13:32	1
Toluene-d8 (Surr)	99	71 - 125	11/16/20 11:5	7 11/17/20 13:32	1
Dibromofluoromethane (Surr)	104	60 - 140	11/16/20 11:5	7 11/17/20 13:32	1

Lab Sample ID: LCS 480-559289/1-A

Matrix: Solid

Analysis Batch: 559476

Prep Type: Total/NA Prep Batch: 559289

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	48.6		ug/Kg		97	77 - 121	
1,1,2,2-Tetrachloroethane	50.0	46.9		ug/Kg		94	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	47.7		ug/Kg		95	60 - 140	
ne								
1,1,2-Trichloroethane	50.0	45.1		ug/Kg		90	78 - 122	
1,1-Dichloroethane	50.0	47.6		ug/Kg		95	73 _ 126	
1,1-Dichloroethene	50.0	49.5		ug/Kg		99	59 - 125	

Eurofins TestAmerica, Buffalo

Page 33 of 53

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-559289/1-A

Matrix: Solid

Analysis Batch: 559476

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 559289

Job ID: 480-178044-1

Analysis Batom 500475	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
1,2,4-Trichlorobenzene	50.0	52.1	ug/Kg		104	64 - 120	
1,2-Dibromo-3-Chloropropane	50.0	47.8	ug/Kg		96	63 - 124	
1,2-Dichlorobenzene	50.0	48.9	ug/Kg		98	75 ₋ 120	
1,2-Dichloroethane	50.0	47.3	ug/Kg		95	77 - 122	
1,2-Dichloropropane	50.0	47.6	ug/Kg		95	75 ₋ 124	
1,3-Dichlorobenzene	50.0	49.2	ug/Kg		98	74 - 120	
1,4-Dichlorobenzene	50.0	48.5	ug/Kg		97	73 - 120	
2-Butanone (MEK)	250	221	ug/Kg		88	70 - 134	
2-Hexanone	250	229	ug/Kg		92	59 ₋ 130	
4-Methyl-2-pentanone (MIBK)	250	227	ug/Kg		91	65 - 133	
Acetone	250	226	ug/Kg		91	61 ₋ 137	
Benzene	50.0	48.4	ug/Kg		97	79 - 127	
Bromoform	50.0	48.7	ug/Kg		97	68 - 126	
Bromomethane	50.0	44.3	ug/Kg		89	37 ₋ 149	
Carbon disulfide	50.0	50.3	ug/Kg		101	64 - 131	
Carbon tetrachloride	50.0	51.0	ug/Kg		102	75 ₋ 135	
Chlorobenzene	50.0	48.4	ug/Kg		97	76 - 124	
Chloroethane	50.0	45.7	ug/Kg		91	69 - 135	
Chloroform	50.0	48.1	ug/Kg		96	80 - 120	
Chloromethane	50.0	46.1	ug/Kg		92	63 - 127	
cis-1,2-Dichloroethene	50.0	48.6	ug/Kg		97	81 - 120	
Bromodichloromethane	50.0	48.1	ug/Kg		96	80 - 122	
Cyclohexane	50.0	47.8	ug/Kg		96	65 - 120	
Dibromochloromethane	50.0	48.8	ug/Kg		98	76 ₋ 125	
1,2-Dibromoethane	50.0	45.2	ug/Kg		90	78 ₋ 120	
Dichlorodifluoromethane	50.0	46.9	ug/Kg		94	57 ₋ 142	
Ethylbenzene	50.0	50.1	ug/Kg		100	80 - 120	
Isopropylbenzene	50.0	50.8	ug/Kg		102	72 ₋ 120	
Methyl acetate	100	90.2	ug/Kg		90	55 ₋ 136	
Methyl tert-butyl ether	50.0	48.1	ug/Kg		96	63 - 125	
Methylcyclohexane	50.0	47.9	ug/Kg		96	60 - 140	
Methylene Chloride	50.0	47.6	ug/Kg		95	61 - 127	
Tetrachloroethene	50.0	50.3	ug/Kg		101	74 - 122	
Toluene	50.0	47.3	ug/Kg		95	74 - 128	
trans-1,2-Dichloroethene	50.0	49.1	ug/Kg		98	78 ₋ 126	
Trichloroethene	50.0	49.6	ug/Kg		99	77 ₋ 129	
cis-1,3-Dichloropropene	50.0	50.4	ug/Kg		101	80 - 120	
Trichlorofluoromethane	50.0	46.8	ug/Kg		94	65 - 146	
Styrene	50.0	48.8	ug/Kg		98	80 - 120	
Vinyl chloride	50.0	46.0	ug/Kg		92	61 - 133	
			5 0				

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		64 - 126
4-Bromofluorobenzene (Surr)	101		72 - 126
Toluene-d8 (Surr)	99		71 - 125
Dibromofluoromethane (Surr)	101		60 - 140

Eurofins TestAmerica, Buffalo

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-559506/2-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

repared	Analyzed	Dil Fac
7/20 13:39	11/19/20 00:07	1

Analysis Batch: 559841	МВ	MB						Prep Batch:	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.0		5.0	0.36	ug/Kg	— <u>-</u>	11/17/20 13:39	11/19/20 00:07	
1,1,2,2-Tetrachloroethane	5.0		5.0	0.81	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0		5.0	1.1	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1,2-Trichloroethane	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1-Dichloroethane	5.0		5.0	0.61	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,1-Dichloroethene	5.0		5.0	0.61	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2,4-Trichlorobenzene	5.0		5.0	0.30	ug/Kg		11/17/20 13:39	11/19/20 00:07	
1,2-Dibromo-3-Chloropropane	5.0		5.0		ug/Kg ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2-Dichlorobenzene	5.0		5.0	0.39	ug/Kg ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2-Dichloroethane	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	
	5.0		5.0		ug/Kg ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2-Dichloropropane 1,3-Dichlorobenzene	5.0		5.0		ug/Kg ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,4-Dichlorobenzene	5.0		5.0	0.70	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
2-Butanone (MEK)	25 25		25 25	1.8	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
2-Hexanone			25		ug/Kg		11/17/20 13:39	11/19/20 00:07	1
4-Methyl-2-pentanone (MIBK)	25		25	1.6	ug/Kg		11/17/20 13:39	11/19/20 00:07	,
Acetone	25		25		ug/Kg		11/17/20 13:39	11/19/20 00:07	
Benzene	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	
Bromoform	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	
Bromomethane	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Carbon disulfide	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	
Carbon tetrachloride	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Chlorobenzene	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Chloroethane	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Chloroform	5.0		5.0	0.31	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Chloromethane	5.0	U	5.0	0.30	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
cis-1,2-Dichloroethene	5.0	U	5.0	0.64	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Bromodichloromethane	5.0	U	5.0	0.67	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Cyclohexane	5.0	U	5.0	0.70	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Dibromochloromethane	5.0	U	5.0	0.64	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
1,2-Dibromoethane	5.0	U	5.0	0.64	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Dichlorodifluoromethane	5.0	U	5.0	0.41	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Ethylbenzene	5.0	U	5.0	0.35	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
Isopropylbenzene	5.0	U	5.0	0.75	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Methyl acetate	25	U	25	3.0	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Methyl tert-butyl ether	5.0	U	5.0	0.49	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Methylcyclohexane	5.0	U	5.0	0.76	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Methylene Chloride	3.51	J	5.0	2.3	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Tetrachloroethene	5.0	U	5.0	0.67	ug/Kg		11/17/20 13:39	11/19/20 00:07	•
Toluene	5.0	U	5.0	0.38	ug/Kg		11/17/20 13:39	11/19/20 00:07	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.52	ug/Kg		11/17/20 13:39	11/19/20 00:07	
trans-1,3-Dichloropropene	5.0	U	5.0	2.2	ug/Kg		11/17/20 13:39	11/19/20 00:07	
Trichloroethene	5.0	U	5.0	1.1	ug/Kg		11/17/20 13:39	11/19/20 00:07	
cis-1,3-Dichloropropene	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	
Trichlorofluoromethane	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	
Styrene	5.0	U	5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	
Vinyl chloride	5.0		5.0		ug/Kg		11/17/20 13:39	11/19/20 00:07	
Xylenes, Total	10		10		ug/Kg		11/17/20 13:39	11/19/20 00:07	1

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-178044-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-559506/2-A

Lab Sample ID: LCS 480-559506/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 559841

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 559506

MB I	M	В
------	---	---

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 126	11/17/20 13:39	11/19/20 00:07	1
4-Bromofluorobenzene (Surr)	98		72 - 126	11/17/20 13:39	11/19/20 00:07	1
Toluene-d8 (Surr)	99		71 - 125	11/17/20 13:39	11/19/20 00:07	1
Dibromofluoromethane (Surr)	119		60 - 140	11/17/20 13:39	11/19/20 00:07	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

on Batch: 559506

Analysis Batch: 559841							Prep Batch: 559500
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	55.0		ug/Kg		110	77 - 121
1,1,2,2-Tetrachloroethane	50.0	44.5		ug/Kg		89	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	55.0		ug/Kg		110	60 - 140
ne							
1,1,2-Trichloroethane	50.0	46.7		ug/Kg		93	78 - 122
1,1-Dichloroethane	50.0	49.7		ug/Kg		99	73 - 126
1,1-Dichloroethene	50.0	55.6		ug/Kg		111	59 - 125
1,2,4-Trichlorobenzene	50.0	50.2		ug/Kg		100	64 - 120
1,2-Dibromo-3-Chloropropane	50.0	41.8		ug/Kg		84	63 - 124
1,2-Dichlorobenzene	50.0	51.0		ug/Kg		102	75 - 120
1,2-Dichloroethane	50.0	49.8		ug/Kg		100	77 - 122
1,2-Dichloropropane	50.0	49.5		ug/Kg		99	75 - 124
1,3-Dichlorobenzene	50.0	52.5		ug/Kg		105	74 - 120
1,4-Dichlorobenzene	50.0	51.3		ug/Kg		103	73 - 120
2-Butanone (MEK)	250	249		ug/Kg		100	70 - 134
2-Hexanone	250	236		ug/Kg		94	59 - 130
4-Methyl-2-pentanone (MIBK)	250	235		ug/Kg		94	65 - 133
Acetone	250	254		ug/Kg		102	61 - 137
Benzene	50.0	49.6		ug/Kg		99	79 - 127
Bromoform	50.0	49.7		ug/Kg		99	68 - 126
Bromomethane	50.0	53.1		ug/Kg		106	37 - 149
Carbon disulfide	50.0	50.6		ug/Kg		101	64 - 131
Carbon tetrachloride	50.0	57.5		ug/Kg		115	75 - 135
Chlorobenzene	50.0	53.9		ug/Kg		108	76 - 124
Chloroethane	50.0	52.8		ug/Kg		106	69 - 135
Chloroform	50.0	53.6		ug/Kg		107	80 - 120
Chloromethane	50.0	48.3		ug/Kg		97	63 - 127
cis-1,2-Dichloroethene	50.0	52.2		ug/Kg		104	81 - 120
Bromodichloromethane	50.0	54.0		ug/Kg		108	80 - 122
Cyclohexane	50.0	54.6		ug/Kg		109	65 _ 120
Dibromochloromethane	50.0	55.0		ug/Kg		110	76 - 125
1,2-Dibromoethane	50.0	47.8		ug/Kg		96	78 - 120
Dichlorodifluoromethane	50.0	47.5		ug/Kg		95	57 - 142
Ethylbenzene	50.0	51.5		ug/Kg		103	80 - 120
Isopropylbenzene	50.0	49.5		ug/Kg		99	72 - 120
Methyl acetate	100	96.0		ug/Kg		96	55 - 136
Methyl tert-butyl ether	50.0	49.2		ug/Kg		98	63 - 125
Methylcyclohexane	50.0	55.6		ug/Kg		111	60 - 140
Methylene Chloride	50.0	55.2		ug/Kg		110	61 - 127

Eurofins TestAmerica, Buffalo

Page 36 of 53

11/25/2020

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: LCS 480-559506/1-A

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Solid

Analysis Batch: 559841

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 559506

Job ID: 480-178044-1

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	50.0	53.3		ug/Kg		107	74 - 122	
Toluene	50.0	49.6		ug/Kg		99	74 - 128	
trans-1,2-Dichloroethene	50.0	55.1		ug/Kg		110	78 ₋ 126	
Trichloroethene	50.0	55.2		ug/Kg		110	77 - 129	
cis-1,3-Dichloropropene	50.0	51.4		ug/Kg		103	80 - 120	
Trichlorofluoromethane	50.0	56.7		ug/Kg		113	65 _ 146	
Styrene	50.0	50.8		ug/Kg		102	80 - 120	
Vinyl chloride	50.0	49.0		ug/Kg		98	61 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		64 - 126
4-Bromofluorobenzene (Surr)	100		72 - 126
Toluene-d8 (Surr)	97		71 - 125
Dibromofluoromethane (Surr)	117		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-559530/1-A

Matrix: Solid

Analysis Batch: 559708

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 559530

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	170	U	170	25	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Acenaphthylene	170	U	170	22	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Anthracene	170	U	170	42	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Benzo[a]anthracene	170	U	170	17	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Benzo[a]pyrene	170	U	170	25	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Benzo[b]fluoranthene	170	U	170	27	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Benzo[g,h,i]perylene	170	U	170	18	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Benzo[k]fluoranthene	170	U	170	22	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Chrysene	170	U	170	38	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Dibenz(a,h)anthracene	170	U	170	30	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Fluoranthene	170	U	170	18	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Fluorene	170	U	170	20	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Indeno[1,2,3-cd]pyrene	170	U	170	21	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Naphthalene	170	U	170	22	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Phenanthrene	170	U	170	25	ug/Kg		11/17/20 15:12	11/19/20 05:43	1
Pyrene	170	U	170	20	ug/Kg		11/17/20 15:12	11/19/20 05:43	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	96		60 - 120	11/17/20 15:12	11/19/20 05:43	1
Nitrobenzene-d5 (Surr)	72		53 - 120	11/17/20 15:12	11/19/20 05:43	1
p-Terphenyl-d14 (Surr)	95		79 - 130	11/17/20 15:12	11/19/20 05:43	1

100 100

Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-559530/2-A

Matrix: Solid

Analysis Batch: 559708

Client: Parsons Corporation

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 559530

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	1640	1430		ug/Kg		88	62 - 120	
Acenaphthylene	1640	1410		ug/Kg		86	58 - 121	
Anthracene	1640	1510		ug/Kg		93	62 - 120	
Benzo[a]anthracene	1640	1460		ug/Kg		89	65 - 120	
Benzo[a]pyrene	1640	1600		ug/Kg		97	64 - 120	
Benzo[b]fluoranthene	1640	1590		ug/Kg		97	64 - 120	
Benzo[g,h,i]perylene	1640	1660		ug/Kg		101	45 - 145	
Benzo[k]fluoranthene	1640	1490		ug/Kg		91	65 - 120	
Chrysene	1640	1450		ug/Kg		89	64 - 120	
Dibenz(a,h)anthracene	1640	1790		ug/Kg		109	54 - 132	
Fluoranthene	1640	1470		ug/Kg		90	62 - 120	
Fluorene	1640	1370		ug/Kg		83	63 - 120	
Indeno[1,2,3-cd]pyrene	1640	1680		ug/Kg		103	56 - 134	
Naphthalene	1640	1360		ug/Kg		83	55 - 120	
Phenanthrene	1640	1470		ug/Kg		90	60 - 120	
Pyrene	1640	1410		ug/Kg		86	61 - 133	

Cnika

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	93		60 - 120
Nitrobenzene-d5 (Surr)	74		53 - 120
p-Terphenyl-d14 (Surr)	97		79 - 130

Lab Sample ID: 480-178044-1 MS

Matrix: Solid

Analysis Batch: 559708

Client Sample ID: B-1-11112020-1.5-2.0

Prep Type: Total/NA Prep Batch: 559530

Analysis Daton. 000100									i icp batci	1. 003000
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	200	U	1900	1650		ug/Kg	₩	87	60 - 120	
Acenaphthylene	200	U	1900	1650		ug/Kg	₽	87	58 ₋ 121	
Anthracene	200	U	1900	1740		ug/Kg	₩	92	62 - 120	
Benzo[a]anthracene	21	J	1900	1690		ug/Kg	₽	88	65 _ 120	
Benzo[a]pyrene	200	U	1900	1830		ug/Kg	₽	97	64 - 120	
Benzo[b]fluoranthene	200	U	1900	1820		ug/Kg	₩	96	10 - 150	
Benzo[g,h,i]perylene	200	U	1900	1980		ug/Kg	₽	104	45 _ 145	
Benzo[k]fluoranthene	200	U	1900	1620		ug/Kg	₩	85	23 - 150	
Chrysene	200	U	1900	1690		ug/Kg	₽	89	64 - 120	
Dibenz(a,h)anthracene	200	U	1900	2060		ug/Kg	₽	109	54 - 132	
Fluoranthene	23	J	1900	1780		ug/Kg	₩	93	62 _ 120	
Fluorene	200	U	1900	1650		ug/Kg	₽	87	63 _ 120	
Indeno[1,2,3-cd]pyrene	200	U	1900	1960		ug/Kg	₩	104	56 - 134	
Naphthalene	200	U	1900	1590		ug/Kg	₩	84	46 - 120	
Phenanthrene	200	U	1900	1720		ug/Kg	₽	91	60 - 122	
Pyrene	200	U	1900	1520		ug/Kg	₩	80	61 - 133	

		MS	MS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl	90	60 - 120
Nitrobenzene-d5 (Surr)	72	53 - 120
p-Terphenvl-d14 (Surr)	91	79 - 130

Eurofins TestAmerica, Buffalo

Page 38 of 53

3

7

10

12

1 *1*

Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: 480-178044-1 MSD

Matrix: Solid

Analysis Batch: 559708

Client: Parsons Corporation

Client Sample ID: B-1-11112020-1.5-2.0

Prep Type: Total/NA

Prep Batch: 559530

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	200	U	1950	1770		ug/Kg	-	91	60 - 120	7	35
Acenaphthylene	200	U	1950	1750		ug/Kg	₽	90	58 ₋ 121	6	18
Anthracene	200	U	1950	1830		ug/Kg	₩	94	62 - 120	5	15
Benzo[a]anthracene	21	J	1950	1820		ug/Kg	₽	93	65 - 120	8	15
Benzo[a]pyrene	200	U	1950	1980		ug/Kg	₽	102	64 - 120	8	15
Benzo[b]fluoranthene	200	U	1950	1990		ug/Kg	₽	102	10 - 150	8	15
Benzo[g,h,i]perylene	200	U	1950	2160		ug/Kg	₽	111	45 - 145	9	15
Benzo[k]fluoranthene	200	U	1950	1770		ug/Kg	₩	91	23 - 150	9	22
Chrysene	200	U	1950	1820		ug/Kg	₽	94	64 - 120	7	15
Dibenz(a,h)anthracene	200	U	1950	2260		ug/Kg	₽	116	54 - 132	9	15
Fluoranthene	23	J	1950	1880		ug/Kg	₽	96	62 - 120	6	15
Fluorene	200	U	1950	1700		ug/Kg	₽	88	63 - 120	3	15
Indeno[1,2,3-cd]pyrene	200	U	1950	2160		ug/Kg	₩	111	56 - 134	10	15
Naphthalene	200	U	1950	1690		ug/Kg	₩	87	46 - 120	7	29
Phenanthrene	200	U	1950	1800		ug/Kg	₽	92	60 - 122	4	15
Pyrene	200	U	1950	1660		ug/Kg	₩	85	61 - 133	9	35

MSD MSD

мв мв

Surrogate	%Recovery Qualifi	er Limits
2-Fluorobiphenyl	94	60 - 120
Nitrobenzene-d5 (Surr)	77	53 - 120
p-Terphenyl-d14 (Surr)	95	79 - 130

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-560556/1-A

Matrix: Solid

Analysis Batch: 560882

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 560556

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	l Analyzed	Dil Fac
Chromium	0.49	U	0.49	0.20	mg/Kg		11/23/20 18	:12 11/24/20 13:11	1

Lab Sample ID: LCSSRM 480-560556/2-A

Matrix: Solid

Analysis Batch: 560882

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 560556

		Spike	LCSSRM	LCSSRM				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Chromium	158	133.2		mg/Kg		84.3	65.2 - 120.	
ı								a	

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-560274/1-A

Matrix: Solid

Analysis Batch: 560423

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 560274

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.90	U	0.90	0.43	mg/Kg		11/20/20 21:56	11/22/20 15:24	1

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: LCSSRM 480-560274/2-A **Matrix: Solid**

Analysis Batch: 560423

Spike LCSSRM LCSSRM Limits Analyte Added Result Qualifier Unit %Rec Cyanide, Total 23.1 2.65 mg/Kg 11.5 17.0 - 162. 8

Lab Sample ID: 480-178044-4 MS

Matrix: Solid

Analysis Batch: 560423

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Cyanide, Total 1.1 U F1 * 1.28 0.772 J F1 mg/Kg 60 85 - 115

Lab Sample ID: MB 480-560608/1-A

Matrix: Solid

Analysis Batch: 560813

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cyanide, Total 0.97 U 0.97 0.47 mg/Kg 11/23/20 22:15 11/24/20 21:30

Lab Sample ID: LCSSRM 480-560608/2-A ^5

Matrix: Solid

Analysis Batch: 560813

Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 23.1 17.23 74.6 17.0 - 162. Cyanide, Total mg/Kg 8

Prep Type: Total/NA

Prep Batch: 560274

Prep Type: Total/NA

Prep Batch: 560274

Prep Type: Total/NA

Prep Batch: 560608

Prep Type: Total/NA **Prep Batch: 560608**

Client Sample ID: Lab Control Sample

Client Sample ID: B-5-11112020-0.6-1.1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

QC Association Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

GC/MS VOA

Prep Batch: 558812

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	5035A_H	
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	5035A_H	
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	5035A_H	
MB 480-558812/3-A	Method Blank	Total/NA	Solid	5035A_H	
LCS 480-558812/1-A	Lab Control Sample	Total/NA	Solid	5035A_H	
LCSD 480-558812/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A_H	

Analysis Batch: 559102

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	8260C	558812
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	8260C	558812
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	8260C	558812
MB 480-558812/3-A	Method Blank	Total/NA	Solid	8260C	558812
LCS 480-558812/1-A	Lab Control Sample	Total/NA	Solid	8260C	558812
LCSD 480-558812/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	558812

Prep Batch: 559289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	5035A_L	
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	5035A_L	
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	5035A_L	
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	5035A_L	
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	5035A_L	
MB 480-559289/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-559289/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	

Analysis Batch: 559476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	8260C	559289
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	8260C	559289
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	8260C	559289
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	8260C	559289
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	8260C	559289
MB 480-559289/2-A	Method Blank	Total/NA	Solid	8260C	559289
LCS 480-559289/1-A	Lab Control Sample	Total/NA	Solid	8260C	559289

Prep Batch: 559506

Lab Sample ID 480-178044-2	Client Sample ID B-4-11112020-0.8-1.3	Prep Type Total/NA	Matrix Solid	Method 5035A L	Prep Batch
MB 480-559506/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-559506/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	

Analysis Batch: 559841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-2	B-4-11112020-0.8-1.3	Total/NA	Solid	8260C	559506
MB 480-559506/2-A	Method Blank	Total/NA	Solid	8260C	559506
LCS 480-559506/1-A	Lab Control Sample	Total/NA	Solid	8260C	559506

Eurofins TestAmerica, Buffalo

_1

Job ID: 480-178044-1

3

6

8

11

12

. .

Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

GC/MS Semi VOA

Client: Parsons Corporation

Prep Batch: 559530

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	3550C	
480-178044-2	B-4-11112020-0.8-1.3	Total/NA	Solid	3550C	
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	3550C	
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	3550C	
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	3550C	
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	3550C	
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	3550C	
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	3550C	
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	3550C	
MB 480-559530/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-559530/2-A	Lab Control Sample	Total/NA	Solid	3550C	
480-178044-1 MS	B-1-11112020-1.5-2.0	Total/NA	Solid	3550C	
480-178044-1 MSD	B-1-11112020-1.5-2.0	Total/NA	Solid	3550C	

Analysis Batch: 559708

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	8270D	559530
480-178044-2	B-4-11112020-0.8-1.3	Total/NA	Solid	8270D	559530
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	8270D	559530
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	8270D	559530
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	8270D	559530
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	8270D	559530
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	8270D	559530
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	8270D	559530
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	8270D	559530
MB 480-559530/1-A	Method Blank	Total/NA	Solid	8270D	559530
LCS 480-559530/2-A	Lab Control Sample	Total/NA	Solid	8270D	559530
480-178044-1 MS	B-1-11112020-1.5-2.0	Total/NA	Solid	8270D	559530
480-178044-1 MSD	B-1-11112020-1.5-2.0	Total/NA	Solid	8270D	559530

Metals

Prep Batch: 560556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	3050B	
480-178044-2	B-4-11112020-0.8-1.3	Total/NA	Solid	3050B	
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	3050B	
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	3050B	
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	3050B	
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	3050B	
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	3050B	
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	3050B	
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	3050B	
MB 480-560556/1-A	Method Blank	Total/NA	Solid	3050B	
LCSSRM 480-560556/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 560882

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	6010C	560556
480-178044-2	B-4-11112020-0.8-1.3	Total/NA	Solid	6010C	560556
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	6010C	560556

Page 42 of 53

Client: Parsons Corporation Job ID: 480-178044-1

Metals (Continued)

Analysis Batch: 560882 (Continued)

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	6010C	560556
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	6010C	560556
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	6010C	560556
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	6010C	560556
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	6010C	560556
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	6010C	560556
MB 480-560556/1-A	Method Blank	Total/NA	Solid	6010C	560556
LCSSRM 480-560556/2-A	Lab Control Sample	Total/NA	Solid	6010C	560556

General Chemistry

Analysis Batch: 558942

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-2	B-4-11112020-0.8-1.3	Total/NA	Solid	Moisture	
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	Moisture	
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	Moisture	
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	Moisture	
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	Moisture	
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	Moisture	
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	Moisture	
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	Moisture	

Analysis Batch: 560032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	Moisture	

Prep Batch: 560274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	9012B	<u> </u>
480-178044-2	B-4-11112020-0.8-1.3	Total/NA	Solid	9012B	
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	9012B	
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	9012B	
MB 480-560274/1-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 480-560274/2-A	Lab Control Sample	Total/NA	Solid	9012B	
480-178044-4 MS	B-5-11112020-0.6-1.1	Total/NA	Solid	9012B	

Analysis Batch: 560423

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-1	B-1-11112020-1.5-2.0	Total/NA	Solid	9012B	560274
480-178044-2	B-4-11112020-0.8-1.3	Total/NA	Solid	9012B	560274
480-178044-3	B-4-11112020-1.5-2.0	Total/NA	Solid	9012B	560274
480-178044-4	B-5-11112020-0.6-1.1	Total/NA	Solid	9012B	560274
MB 480-560274/1-A	Method Blank	Total/NA	Solid	9012B	560274
LCSSRM 480-560274/2-A	Lab Control Sample	Total/NA	Solid	9012B	560274
480-178044-4 MS	B-5-11112020-0.6-1.1	Total/NA	Solid	9012B	560274

Prep Batch: 560608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	9012B	
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	9012B	
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	9012B	

Eurofins TestAmerica, Buffalo

Page 43 of 53

3

5

7

10

40

13

14

<u>I</u>k

QC Association Summary

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

General Chemistry (Continued)

Prep Batch: 560608 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	9012B	
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	9012B	
MB 480-560608/1-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 480-560608/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	

Analysis Batch: 560813

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178044-5	B-7-11112020-1.7-2.2	Total/NA	Solid	9012B	560608
480-178044-6	B-8-11112020-1.9-2.4	Total/NA	Solid	9012B	560608
480-178044-7	B-9-11112020-0.5-1.0	Total/NA	Solid	9012B	560608
480-178044-8	B-9-11112020-20-25	Total/NA	Solid	9012B	560608
480-178044-9	B-9-11112020-9.5-10.0	Total/NA	Solid	9012B	560608
MB 480-560608/1-A	Method Blank	Total/NA	Solid	9012B	560608
LCSSRM 480-560608/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	560608

4

5

Ω

9

10

12

13

14

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-1-11112020-1.5-2.0

Date Collected: 11/11/20 11:15
Date Received: 11/11/20 17:12

Lab Sample ID: 480-178044-1

. Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	560032	11/19/20 16:57	IMZ	TAL BUF

Client Sample ID: B-1-11112020-1.5-2.0

Date Collected: 11/11/20 11:15

Date Received: 11/11/20 17:12

Lab Sample ID: 480-178044-1

Matrix: Solid
Percent Solids: 85.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			559289	11/12/20 13:30	WJD	TAL BUF
Total/NA	Analysis	8260C		1	559476	11/17/20 19:03	CDC	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		1	559708	11/19/20 07:23	JMM	TAL BUF
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 13:52	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:52	ALT	TAL BUF

Client Sample ID: B-4-11112020-0.8-1.3

Date Collected: 11/11/20 12:10

Date Received: 11/11/20 17:12

Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Number or Analyzed Type Analyst Lab 558942 11/13/20 09:34 IMZ TAL BUF Total/NA Analysis Moisture

Client Sample ID: B-4-11112020-0.8-1.3

Date Collected: 11/11/20 12:10

Date Received: 11/11/20 17:12

Lab Sample ID: 480-178044-2

Lab Sample ID: 480-178044-2

Matrix: Solid

Matrix: Solid

Percent Solids: 96.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			559506	11/12/20 13:30	WJD	TAL BUF
Total/NA	Analysis	8260C		1	559841	11/19/20 00:32	WJD	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		1	559708	11/19/20 12:24	JMM	TAL BUF
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 13:56	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:53	ALT	TAL BUF

Client Sample ID: B-4-11112020-1.5-2.0

Date Collected: 11/11/20 12:20 Date Received: 11/11/20 17:12

-11112020-1.5-2.0 Lab Sample ID: 480-178044-3 2:20 Matrix: Solid

Batch Batch Dilution Batch Prepared Method Factor Number **Prep Type** Type Run or Analyzed Analyst Lab Total/NA Analysis Moisture 558942 11/13/20 09:34 IMZ TAL BUF 5

_

7

9

44

12

14

1

560423 11/22/20 15:55 ALT

10

Project/Site: Honeywell - Tonawanda Plastics Client Sample ID: B-4-11112020-1.5-2.0

Date Collected: 11/11/20 12:20 Date Received: 11/11/20 17:12

Client: Parsons Corporation

Lab Sample ID: 480-178044-3

Matrix: Solid Percent Solids: 85.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			559289	11/12/20 13:30	WJD	TAL BUF
Total/NA	Analysis	8260C		1	559476	11/17/20 19:52	CDC	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		1	559708	11/19/20 12:49	JMM	TAL BUF
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 14:00	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF

Analysis Client Sample ID: B-5-11112020-0.6-1.1

9012B

Date Collected: 11/11/20 13:20

Date Received: 11/11/20 17:12

Total/NA

Lab Sample ID: 480-178044-4

TAL BUF

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	558942	11/13/20 09:34	IMZ	TAL BUF

Client Sample ID: B-5-11112020-0.6-1.1

Date Collected: 11/11/20 13:20

Date Received: 11/11/20 17:12

Lab Sample ID: 480-178044-4

Matrix: Solid

Percent Solids: 86.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			559289	11/12/20 13:30	WJD	TAL BUF
Total/NA	Analysis	8260C		1	559476	11/17/20 20:16	CDC	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		1	559708	11/19/20 13:14	JMM	TAL BUF
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 14:04	LMH	TAL BUF
Total/NA	Prep	9012B			560274	11/20/20 21:56	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560423	11/22/20 15:59	ALT	TAL BUF

Client Sample ID: B-7-11112020-1.7-2.2

Date Collected: 11/11/20 13:40

Date Received: 11/11/20 17:12

Lab Sample I	ID: 480-178044-5
--------------	------------------

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture	-	1	558942	11/13/20 09:34	IMZ	TAL BUF	-

Client Sample ID: B-7-11112020-1.7-2.2

Date Collected: 11/11/20 13:40

Date Received: 11/11/20 17:12

Lab Sam	ple	ID:	480-1	1780)44-5
---------	-----	-----	-------	------	-------

Matrix: Solid

Percent Solids: 86.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			559289	11/12/20 13:30	WJD	TAL BUF
Total/NA	Analysis	8260C		1	559476	11/17/20 20:41	CDC	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		1	559708	11/19/20 13:40	JMM	TAL BUF

Eurofins TestAmerica, Buffalo

Page 46 of 53

Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-7-11112020-1.7-2.2

Date Collected: 11/11/20 13:40 Date Received: 11/11/20 17:12

Client: Parsons Corporation

Lab Sample ID: 480-178044-5

Matrix: Solid Percent Solids: 86.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 14:08	LMH	TAL BUF
Total/NA	Prep	9012B			560608	11/23/20 22:15	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560813	11/24/20 21:38	ALT	TAL BUF

Client Sample ID: B-8-11112020-1.9-2.4

Lab Sample ID: 480-178044-6 Date Collected: 11/11/20 14:30

Matrix: Solid

Date Received: 11/11/20 17:12

١		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	Moisture		1 -	558942	11/13/20 09:34	IMZ	TAL BUF

Client Sample ID: B-8-11112020-1.9-2.4

Lab Sample ID: 480-178044-6 Date Collected: 11/11/20 14:30 **Matrix: Solid**

Date Received: 11/11/20 17:12 Percent Solids: 86.9

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			559289	11/12/20 13:30	WJD	TAL BUF
Total/NA	Analysis	8260C		1	559476	11/17/20 21:06	CDC	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		1	559708	11/19/20 14:05	JMM	TAL BUF
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 14:12	LMH	TAL BUF
Total/NA	Prep	9012B			560608	11/23/20 22:15	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560813	11/24/20 21:39	ALT	TAL BUF

Client Sample ID: B-9-11112020-0.5-1.0

Lab Sample ID: 480-178044-7 Date Collected: 11/11/20 15:00 **Matrix: Solid**

Date Received: 11/11/20 17:12

Batch Batch Dilution Batch Prepared Method Number Prep Type Type Run Factor or Analyzed Analyst Lab 558942 11/13/20 09:34 IMZ TAL BUF Total/NA Analysis Moisture

Client Sample ID: B-9-11112020-0.5-1.0 Lab Sample ID: 480-178044-7

Date Collected: 11/11/20 15:00 Date Received: 11/11/20 17:12 Percent Solids: 77.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H		- -	558812	11/12/20 15:10	WJD	TAL BUF
Total/NA	Analysis	8260C		25	559102	11/15/20 05:08	LCH	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		5	559708	11/19/20 14:31	JMM	TAL BUF
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 14:16	LMH	TAL BUF
Total/NA	Prep	9012B			560608	11/23/20 22:15	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560813	11/24/20 21:41	ALT	TAL BUF

Eurofins TestAmerica, Buffalo

11/25/2020

Page 47 of 53

10

Matrix: Solid

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: B-9-11112020-20-25

Date Collected: 11/11/20 15:10 Date Received: 11/11/20 17:12

Lab Sample ID: 480-178044-8

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	558942	11/13/20 09:52	IMZ	TAL BUF

Client Sample ID: B-9-11112020-20-25

Lab Sample ID: 480-178044-8 Date Collected: 11/11/20 15:10 Matrix: Solid

Date Received: 11/11/20 17:12 Percent Solids: 85.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H			558812	11/12/20 15:10	WJD	TAL BUF
Total/NA	Analysis	8260C		50	559102	11/15/20 05:31	LCH	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		1	559708	11/19/20 14:56	JMM	TAL BUF
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 14:20	LMH	TAL BUF
Total/NA	Prep	9012B			560608	11/23/20 22:15	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560813	11/24/20 21:42	ALT	TAL BUF

Client Sample ID: B-9-11112020-9.5-10.0

Lab Sample ID: 480-178044-9 Date Collected: 11/11/20 15:30

Matrix: Solid

Date Received: 11/11/20 17:12

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	558942	11/13/20 09:52	IMZ	TAL BUF

Client Sample ID: B-9-11112020-9.5-10.0

Lab Sample ID: 480-178044-9 Date Collected: 11/11/20 15:30 **Matrix: Solid**

Date Received: 11/11/20 17:12 Percent Solids: 84.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_H			558812	11/12/20 15:10	WJD	TAL BUF
Total/NA	Analysis	8260C		50	559102	11/15/20 05:54	LCH	TAL BUF
Total/NA	Prep	3550C			559530	11/17/20 15:12	ATG	TAL BUF
Total/NA	Analysis	8270D		1	559708	11/19/20 15:21	JMM	TAL BUF
Total/NA	Prep	3050B			560556	11/23/20 18:12	ADM	TAL BUF
Total/NA	Analysis	6010C		1	560882	11/24/20 14:35	LMH	TAL BUF
Total/NA	Prep	9012B			560608	11/23/20 22:15	ALT	TAL BUF
Total/NA	Analysis	9012B		1	560813	11/24/20 21:43	ALT	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Parsons Corporation Job ID: 480-178044-1

Project/Site: Honeywell - Tonawanda Plastics

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NE	ELAP	10026	04-01-21
The following analytes	are included in this report by	it the laboratory is not cortifi	ied by the governing authority. This list ma	aviantuda analutaa far
the agency does not of	• •	it the laboratory is not certifi	ed by the governing admonty. This list his	ay include arialytes for
,	• •	Matrix	Analyte	ay include analytes for
the agency does not of	er certification.	•	, , ,	ay include analytes for

Method Summary

Client: Parsons Corporation

Job ID: 480-178044-1 Project/Site: Honeywell - Tonawanda Plastics

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF
3050B	Preparation, Metals	SW846	TAL BUF
3550C	Ultrasonic Extraction	SW846	TAL BUF
5035A_H	Closed System Purge and Trap	SW846	TAL BUF
5035A_L	Closed System Purge and Trap	SW846	TAL BUF
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID Client Sample ID Matrix Collected Received Asset ID 480-178044-1 B-1-11112020-1.5-2.0 Solid 11/11/20 11:15 11/11/20 17:12 480-178044-2 B-4-11112020-0.8-1.3 Solid 11/11/20 12:10 11/11/20 17:12 480-178044-3 B-4-11112020-1.5-2.0 Solid 11/11/20 12:20 11/11/20 17:12 480-178044-4 B-5-11112020-0.6-1.1 Solid 11/11/20 13:20 11/11/20 17:12 480-178044-5 B-7-11112020-1.7-2.2 Solid 11/11/20 13:40 11/11/20 17:12 480-178044-6 B-8-11112020-1.9-2.4 Solid 11/11/20 14:30 11/11/20 17:12 480-178044-7 B-9-11112020-0.5-1.0 Solid 11/11/20 15:00 11/11/20 17:12 B-9-11112020-20-25 11/11/20 17:12 480-178044-8 Solid 11/11/20 15:10 480-178044-9 B-9-11112020-9.5-10.0 Solid 11/11/20 15:30 11/11/20 17:12

Job ID: 480-178044-1

3

4

5

7

9

10

11

13

14

14

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Chair of Gastoay record

S - H2SO4 T - TSP Dodecahydrate Ver: 01/16/2019 Special Instructions/Note: ACAA pH 4-5 other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 Months - Acetone Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 480-152727-33964.1 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH Page: 20 8.7 Total Numb LIVOIN Date/Time: Date/Time: Method of Shipment **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements MY CE E-Mail: John.Schove@Eurofinset.com 8270D - PAH Semivolatiles Received by: Received by: Lab PM: Schove, John R 8260C - TCL VOCs Perform MS/MSD (Yes or No) PANSUNS PANSUNS Field Filtered Sample (Yes or No) BT=Tissue, A=Air) (W=water, S=solid, O=waste/oil, Solid Solid Preservation Code Solid Solid Solid Solid Matrix Solid Solid Solid Solid Solid Company DAN CHAMBERIAND Radiological (C=comp, G=grab) Sample Type 0 5 0 0 0 0 0 0 0 17:12 6910-687-916 Po#: Purchase Order Requested 14:30 15:00 15:30 Sample 12:10 13:40 15:10 111/2020 12:20 1/11/2020 13:20 Time Date: Unknown STANDARD 'AT Requested (days): Due Date Requested: IIIME IN 11/11/2020 11/11/2020 11/11/2020 WILLDAN 1/11/2020 Sample Date 11/11/2020 1/11/2020 Project #: 48023001 SSOW#: Date/Time Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. 1.1(112020-1.5-2.0 11112020-95-100 8-4 11112010 - 1.5-20 -1112020-015-1.0 [1112020-0,8-1.3 B-7-11112020-17-22 -1112020-20-2 - Flammable -8-11112020-1.9-2.4 B-5_ 11112020 - 0.6-1.1 180 Lawrence Bell Drive Suite 104 Possible Hazard Identification Honeywell - Tonawanda Plastics jeffrey.poulsen@parsons.com Empty Kit Relinquished by: Custody Seals Intact: Sample Identification Client Information Parsons Corporation Non-Hazard Mr. Jeff Poulsen A Yes nquished by: quished by: nquished by Williamsville State, Zip: NY, 14221 4-4 18-9 8-9

Client: Parsons Corporation Job Number: 480-178044-1

Login Number: 178044 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

rivity either was not measured or, if measured, is at or below and are susted to receive the property of the provided of the p	
er or samples do not appear to have been compromised or I with. were received on ice. In true emperature is acceptable. In true emperature is recorded. True liled out in ink and legible. In true liled out with all pertinent information. In true In	
were received on ice. True emperature is acceptable. True emperature is recorded. True resent. True Illed out in ink and legible. True Illed out with all pertinent information. True Ind Sampler's name present on COC? True In odiscrepancies between the sample IDs on the containers and True True True True True True True True	
emperature is acceptable. In the emperature is recorded. True resent. It is re	
resent. True Illed out in ink and legible. It is a legible in the sample information. If it is a legible in the sample information in the sample in the sample information in the sample information in the sample information in the sample information in the sample information in the sample information in the sample information in the sample information in the sample in the sample information in the sample information in the sample information in the sample i	
resent. True Illed out in ink and legible. True Illed out with all pertinent information. If ue Illed Sampler's name present on COC? In ue In o discrepancies between the sample IDs on the containers and True are received within Holding Time (Excluding tests with immediate True Finance on the containers have legible labels. True	
Illed out in ink and legible. True Illed out with all pertinent information. If ue Illed Sampler's name present on COC? In the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the sample IDs on the containers and the end discrepancies between the end discrepancies and the end discrepancies and the end discrepancies between the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end discrepancies and the end	
Illed out with all pertinent information. True Ind Sampler's name present on COC? In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the sample IDs on the containers and true In the end discrepancies between the end discrepancies be	
Id Sampler's name present on COC? In the end discrepancies between the sample IDs on the containers and the containers and are received within Holding Time (Excluding tests with immediate the containers have legible labels. True the containers have legible labels. True true true true true true true true t	
e no discrepancies between the sample IDs on the containers and are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time (Excluding tests with immediate are received within Holding Time	
are received within Holding Time (Excluding tests with immediate True Figure 1) True researce not broken or leaking.	
containers have legible labels. True rs are not broken or leaking. True	
rs are not broken or leaking.	REEZE TIME 11/12/20 1330
<u> </u>	
alloction data/times are provided	
ollection date/times are provided.	
ate sample containers are used.	
oottles are completely filled.	
Preservation Verified True	
sufficient vol. for all requested analyses, incl. any requested True	
pple vials do not have headspace or bubble is <6mm (1/4") in	
ary, staff have been informed of any short hold time or quick TAT True	
sic samples are not present.	
do not require splitting or compositing.	
Company provided. True	
received within 48 hours of sampling.	
requiring field filtration have been filtered in the field.	
Residual checked. N/A	

2

e

1

9

11

1

a i

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-179236-1

Client Project/Site: Honeywell - Tonawanda Plastics

For:

Parsons Corporation 180 Lawrence Bell Drive Suite 104 Williamsville, New York 14221

Attn: Mr. Jeff Poulsen

Authorized for release by: 12/24/2020 1:33:16 PM

Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

John Schove, Project Manager II (716)504-9838

John.Schove@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	24
Lab Chronicle	26
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

Definitions/Glossary

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Qualifiers

G	CI	M	IS	V	Ö	A

Qualifier

*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Metals

U Indicates the analyte was analyzed for but not detected.

General Chemistry

F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

Page 3 of 31 12/24/2020

Case Narrative

Client: Parsons Corporation

Job ID: 480-179236-1 Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-179236-1

Laboratory: Eurofins TestAmerica, Buffalo

Job Narrative 480-179236-1

Comments

No additional comments.

Receipt

The samples were received on 12/10/2020 1:00 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.2° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-563012 recovered above the upper control limit for Carbon tetrachloride and Dibromochloromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-14 12102020 (480-179236-1) and MW-140 12102020 (480-179236-2).

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-563012 recovered outside control limits for the following analyte: 1,2-Dibromo-3-Chloropropane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: MW-14_12102020

Lab Sample ID: 480-179236-1

Job ID: 480-179236-1

_						
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chromium	0.0094	0.0040	0.0010 mg/L		6010C	Total/NA

Client Sample ID: MW-140_12102020 Lab Sample ID: 480-179236-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0069		0.0040	0.0010	mg/L	1	_	6010C	Total/NA
Cyanide, Total	0.0050	J F1	0.010	0.0050	mg/L	1		9012B	Total/NA

5

6

9

11

13

14

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: MW-14_12102020

Lab Sample ID: 480-179236-1 Date Collected: 12/10/20 10:45

Matrix: Water

Method: 8260C - Volatile Organic	-	•							
Analyte		Qualifier	RL		Unit	<u>D</u> _	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		U F1	1.0		ug/L			12/12/20 16:49	,
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			12/12/20 16:49	,
1,1,2-Trichloro-1,2,2-trifluoroethane		U F2	1.0		ug/L			12/12/20 16:49	
1,1,2-Trichloroethane	1.0		1.0		ug/L			12/12/20 16:49	•
1,1-Dichloroethane		U F1	1.0		ug/L			12/12/20 16:49	
1,1-Dichloroethene		U F1 F2	1.0		ug/L			12/12/20 16:49	
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			12/12/20 16:49	•
1,2-Dibromo-3-Chloropropane		U * F1	1.0		ug/L			12/12/20 16:49	•
1,2-Dibromoethane		U F1	1.0		ug/L			12/12/20 16:49	
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			12/12/20 16:49	•
1,2-Dichloroethane	1.0	U	1.0	0.21	ug/L			12/12/20 16:49	•
1,2-Dichloropropane	1.0	U F1	1.0	0.72	ug/L			12/12/20 16:49	
1,3-Dichlorobenzene	1.0	U F1	1.0	0.78				12/12/20 16:49	•
1,4-Dichlorobenzene	1.0	U	1.0	0.84	ug/L			12/12/20 16:49	•
2-Butanone (MEK)	10	U	10	1.3	ug/L			12/12/20 16:49	
2-Hexanone	5.0	U	5.0	1.2	ug/L			12/12/20 16:49	•
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	2.1	ug/L			12/12/20 16:49	•
Acetone	10	U	10	3.0	ug/L			12/12/20 16:49	•
Benzene	1.0	U F1 F2	1.0	0.41	ug/L			12/12/20 16:49	
Bromodichloromethane	1.0	U F1	1.0	0.39	ug/L			12/12/20 16:49	•
Bromoform	1.0	U F1	1.0	0.26	ug/L			12/12/20 16:49	•
Bromomethane	1.0	U	1.0	0.69	ug/L			12/12/20 16:49	
Carbon disulfide	1.0	U F2	1.0	0.19	ug/L			12/12/20 16:49	•
Carbon tetrachloride	1.0	U F1	1.0	0.27	ug/L			12/12/20 16:49	•
Chlorobenzene	1.0	U	1.0	0.75	ug/L			12/12/20 16:49	
Chloroethane	1.0	U	1.0	0.32	ug/L			12/12/20 16:49	
Chloroform	1.0	U	1.0	0.34	ug/L			12/12/20 16:49	•
Chloromethane	1.0	U	1.0	0.35	ug/L			12/12/20 16:49	•
cis-1,2-Dichloroethene	1.0	U F1	1.0	0.81	ug/L			12/12/20 16:49	
cis-1,3-Dichloropropene	1.0	U F1	1.0	0.36	ug/L			12/12/20 16:49	
Cyclohexane	1.0	U	1.0	0.18	ug/L			12/12/20 16:49	
Dibromochloromethane	1.0	U F1	1.0	0.32	ug/L			12/12/20 16:49	
Dichlorodifluoromethane	1.0	U	1.0	0.68	ug/L			12/12/20 16:49	
Ethylbenzene	1.0	U F1	1.0	0.74	ug/L			12/12/20 16:49	
Isopropylbenzene	1.0	U F1	1.0	0.79				12/12/20 16:49	
Methyl acetate	2.5		2.5		ug/L			12/12/20 16:49	
Methyl tert-butyl ether	1.0		1.0		ug/L			12/12/20 16:49	
Methylcyclohexane	1.0		1.0		ug/L			12/12/20 16:49	
Methylene Chloride		U F1	1.0		ug/L			12/12/20 16:49	
Styrene		U F1	1.0		ug/L			12/12/20 16:49	
Tetrachloroethene		U F1	1.0		ug/L			12/12/20 16:49	
Toluene	1.0		1.0		ug/L			12/12/20 16:49	
trans-1,2-Dichloroethene		U F1 F2	1.0		ug/L			12/12/20 16:49	,
trans-1,3-Dichloropropene		U F1	1.0		ug/L			12/12/20 16:49	,
Trichloroethene		U F1	1.0		ug/L			12/12/20 16:49	,
Trichlorofluoromethane	1.0		1.0		ug/L ug/L			12/12/20 16:49	,
Vinyl chloride	1.0		1.0		ug/L ug/L				
Xylenes, Total		U F1	2.0		ug/L ug/L			12/12/20 16:49 12/12/20 16:49	,

Eurofins TestAmerica, Buffalo

12/24/2020

Page 6 of 31

Client: Parsons Corporation

Surrogate

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: MW-14_12102020

%Recovery Qualifier

Lab Sample ID: 480-179236-1 Date Collected: 12/10/20 10:45 **Matrix: Water**

Date Received: 12/10/20 13:00

Limits

darrogate	Miccovery	Quanner	Lillies				rrepared	Analyzea	Diriac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					12/12/20 16:49	1
4-Bromofluorobenzene (Surr)	108		73 - 120					12/12/20 16:49	1
Dibromofluoromethane (Surr)	109		75 - 123					12/12/20 16:49	1
Toluene-d8 (Surr)	102		80 - 120					12/12/20 16:49	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	3)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.0	U	5.0	0.41	ug/L		12/15/20 14:54	12/17/20 13:39	1
Acenaphthylene	5.0	U	5.0	0.38	ug/L		12/15/20 14:54	12/17/20 13:39	1
Anthracene	5.0	U	5.0	0.28	ug/L		12/15/20 14:54	12/17/20 13:39	1
Benzo[a]anthracene	5.0	U	5.0	0.36	ug/L		12/15/20 14:54	12/17/20 13:39	1
Benzo[a]pyrene	5.0	U	5.0	0.47	ug/L		12/15/20 14:54	12/17/20 13:39	1
Benzo[b]fluoranthene	5.0	U	5.0	0.34	ug/L		12/15/20 14:54	12/17/20 13:39	1
Benzo[g,h,i]perylene	5.0	U	5.0	0.35	ug/L		12/15/20 14:54	12/17/20 13:39	1
Benzo[k]fluoranthene	5.0	U	5.0	0.73	ug/L		12/15/20 14:54	12/17/20 13:39	1
Chrysene	5.0	U	5.0	0.33	ug/L		12/15/20 14:54	12/17/20 13:39	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		12/15/20 14:54	12/17/20 13:39	1
Fluoranthene	5.0	U	5.0	0.40	ug/L		12/15/20 14:54	12/17/20 13:39	1
Fluorene	5.0	U	5.0	0.36	ug/L		12/15/20 14:54	12/17/20 13:39	1
Indeno[1,2,3-cd]pyrene	5.0	U	5.0	0.47	ug/L		12/15/20 14:54	12/17/20 13:39	1
Naphthalene	5.0	U	5.0	0.76	ug/L		12/15/20 14:54	12/17/20 13:39	1
Phenanthrene	5.0	U	5.0	0.44	ug/L		12/15/20 14:54	12/17/20 13:39	1
Pyrene	5.0	U	5.0	0.34	ug/L		12/15/20 14:54	12/17/20 13:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	98		48 - 120				12/15/20 14:54	12/17/20 13:39	
Nitrobenzene-d5 (Surr)	97		46 - 120				12/15/20 14:54	12/17/20 13:39	1
p-Terphenyl-d14 (Surr)	94		60 - 148				12/15/20 14:54	12/17/20 13:39	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.0094		0.0040	0.0010	mg/L		12/14/20 10:39	12/14/20 20:10	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.010	U F1	0.010	0.0050	mg/L		12/11/20 19:25	12/12/20 12:23	1

Job ID: 480-179236-1

Analyzed

Prepared

Dil Fac

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: MW-140_12102020

Date Collected: 12/10/20 12:01 Date Received: 12/10/20 13:00

Matrix: Water

Lab Sample ID: 480-179236-2

Method: 8260C - Volatile Organic (-	•			11!4	_	D !	A! !	D.: -
Analyte	1.0	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane			1.0		ug/L			12/12/20 17:13 12/12/20 17:13	,
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L				,
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			12/12/20 17:13	
1,1,2-Trichloroethane	1.0		1.0		ug/L			12/12/20 17:13	
1,1-Dichloroethane	1.0		1.0		ug/L 			12/12/20 17:13	•
1,1-Dichloroethene	1.0		1.0		ug/L			12/12/20 17:13	
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			12/12/20 17:13	
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			12/12/20 17:13	
1,2-Dibromoethane	1.0		1.0		ug/L			12/12/20 17:13	
1,2-Dichlorobenzene	1.0		1.0		ug/L			12/12/20 17:13	
1,2-Dichloroethane	1.0		1.0	0.21	ug/L			12/12/20 17:13	
1,2-Dichloropropane	1.0	U	1.0		ug/L			12/12/20 17:13	
1,3-Dichlorobenzene	1.0	U	1.0	0.78	ug/L			12/12/20 17:13	
1,4-Dichlorobenzene	1.0	U	1.0	0.84	ug/L			12/12/20 17:13	
2-Butanone (MEK)	10	U	10	1.3	ug/L			12/12/20 17:13	
2-Hexanone	5.0	U	5.0	1.2	ug/L			12/12/20 17:13	
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	2.1	ug/L			12/12/20 17:13	
Acetone	10	U	10	3.0	ug/L			12/12/20 17:13	
Benzene	1.0	U	1.0	0.41	ug/L			12/12/20 17:13	
Bromodichloromethane	1.0	U	1.0	0.39	ug/L			12/12/20 17:13	
Bromoform	1.0	U	1.0	0.26	ug/L			12/12/20 17:13	
Bromomethane	1.0	U	1.0	0.69	ug/L			12/12/20 17:13	
Carbon disulfide	1.0	U	1.0	0.19	ug/L			12/12/20 17:13	
Carbon tetrachloride	1.0	U	1.0	0.27	ug/L			12/12/20 17:13	
Chlorobenzene	1.0	U	1.0	0.75	ug/L			12/12/20 17:13	
Chloroethane	1.0	U	1.0		ug/L			12/12/20 17:13	
Chloroform	1.0		1.0		ug/L			12/12/20 17:13	
Chloromethane	1.0		1.0		ug/L			12/12/20 17:13	
cis-1,2-Dichloroethene	1.0		1.0		ug/L			12/12/20 17:13	
cis-1,3-Dichloropropene	1.0		1.0		ug/L			12/12/20 17:13	
Cyclohexane	1.0		1.0		ug/L			12/12/20 17:13	
Dibromochloromethane	1.0		1.0		ug/L			12/12/20 17:13	
Dichlorodifluoromethane	1.0		1.0		ug/L			12/12/20 17:13	
	1.0		1.0		ug/L			12/12/20 17:13	
Ethylbenzene	1.0		1.0		ug/L ug/L			12/12/20 17:13	
Isopropylbenzene									
Methyl acetate	2.5		2.5		ug/L			12/12/20 17:13	
Methyl tert-butyl ether	1.0		1.0		ug/L			12/12/20 17:13	
Methylcyclohexane	1.0		1.0		ug/L			12/12/20 17:13	
Methylene Chloride	1.0		1.0		ug/L			12/12/20 17:13	
Styrene	1.0		1.0		ug/L			12/12/20 17:13	
Tetrachloroethene	1.0		1.0		ug/L			12/12/20 17:13	
Toluene	1.0	U	1.0		ug/L			12/12/20 17:13	
trans-1,2-Dichloroethene	1.0		1.0		ug/L			12/12/20 17:13	
trans-1,3-Dichloropropene	1.0		1.0		ug/L			12/12/20 17:13	
Trichloroethene	1.0		1.0		ug/L			12/12/20 17:13	
Trichlorofluoromethane	1.0		1.0	0.88	ug/L			12/12/20 17:13	
Vinyl chloride	1.0	U	1.0	0.90	ug/L			12/12/20 17:13	
Xylenes, Total	2.0	U	2.0	0.66	ug/L			12/12/20 17:13	1

Page 8 of 31

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: MW-140_12102020 Lab Sample ID: 480-179236-2

Limits

77 - 120

%Recovery Qualifier

106

Date Collected: 12/10/20 12:01 Date Received: 12/10/20 13:00

1,2-Dichloroethane-d4 (Surr)

Surrogate

Analyzed

12/12/20 17:13

Prepared

Matrix: Water

Dil Fac

Job ID: 480-179236-1

4-Bromofluorobenzene (Surr)	110		73 - 120					12/12/20 17:13	1
Dibromofluoromethane (Surr)	109		75 - 123					12/12/20 17:13	1
Toluene-d8 (Surr)	103		80 - 120					12/12/20 17:13	1
- Method: 8270D - Semivolatile Org	ganic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.2	U	5.2	0.43	ug/L		12/11/20 08:59	12/15/20 01:32	1
Acenaphthylene	5.2	U	5.2	0.40	ug/L		12/11/20 08:59	12/15/20 01:32	1
Anthracene	5.2	U	5.2	0.29	ug/L		12/11/20 08:59	12/15/20 01:32	1
Benzo[a]anthracene	5.2	U	5.2	0.38	ug/L		12/11/20 08:59	12/15/20 01:32	1
Benzo[a]pyrene	5.2	U	5.2	0.49	ug/L		12/11/20 08:59	12/15/20 01:32	1
Benzo[b]fluoranthene	5.2	U	5.2	0.35	ug/L		12/11/20 08:59	12/15/20 01:32	1
Benzo[g,h,i]perylene	5.2	U	5.2	0.36	ug/L		12/11/20 08:59	12/15/20 01:32	1
Benzo[k]fluoranthene	5.2	U	5.2	0.76	ug/L		12/11/20 08:59	12/15/20 01:32	1
Chrysene	5.2	U	5.2	0.34	ug/L		12/11/20 08:59	12/15/20 01:32	1
Dibenz(a,h)anthracene	5.2	U	5.2	0.44	ug/L		12/11/20 08:59	12/15/20 01:32	1
Fluoranthene	5.2	U	5.2	0.42	ug/L		12/11/20 08:59	12/15/20 01:32	1
Fluorene	5.2	U	5.2	0.38	ug/L		12/11/20 08:59	12/15/20 01:32	1
Indeno[1,2,3-cd]pyrene	5.2	U	5.2	0.49	ug/L		12/11/20 08:59	12/15/20 01:32	1
Naphthalene	5.2	U	5.2	0.79	ug/L		12/11/20 08:59	12/15/20 01:32	1
Phenanthrene	5.2	U	5.2	0.46	ug/L		12/11/20 08:59	12/15/20 01:32	1
Pyrene	5.2	U	5.2	0.35	ug/L		12/11/20 08:59	12/15/20 01:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	115		48 - 120				12/11/20 08:59	12/15/20 01:32	1
Nitrobenzene-d5 (Surr)	114		46 - 120				12/11/20 08:59	12/15/20 01:32	1
p-Terphenyl-d14 (Surr)	106		60 - 148				12/11/20 08:59	12/15/20 01:32	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.0069		0.0040	0.0010	mg/L		12/14/20 10:39	12/14/20 20:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.0050	J F1	0.010	0.0050	mg/L		12/11/20 19:21	12/12/20 12:04	1

Surrogate Summary

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-179236-1	MW-14_12102020	105	108	109	102
480-179236-1 MS	MW-14_12102020	104	99	98	98
480-179236-1 MSD	MW-14_12102020	104	97	104	98
480-179236-2	MW-140_12102020	106	110	109	103
LCS 480-563012/5	Lab Control Sample	102	113	100	104
LCS 480-563196/5	Lab Control Sample	100	95	95	94
MB 480-563012/7	Method Blank	102	112	109	105
MB 480-563196/8	Method Blank	108	96	105	96

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Water**

_				Percent Sui
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(48-120)	(46-120)	(60-148)
480-179236-1	MW-14_12102020	98	97	94
480-179236-1 MS	MW-14_12102020	101	102	90
480-179236-1 MSD	MW-14_12102020	102	99	88
480-179236-2	MW-140_12102020	115	114	106
LCS 480-562867/2-A	Lab Control Sample	113	109	112
LCS 480-563320/2-A	Lab Control Sample	101	97	104
MB 480-562867/1-A	Method Blank	107	112	116
MB 480-563320/1-A	Method Blank	103	100	103

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-563012/7

Matrix: Water

Analysis Batch: 563012

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed	Dil Fac	
12/12/20 12:41	1	
12/12/20 12:41	1	
12/12/20 12:41	1	
12/12/20 12:41	1	

Analyte	Regult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	1.0		1.0		ug/L	- -	riepaieu	12/12/20 12:41	Dii Fa
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L ug/L			12/12/20 12:41	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			12/12/20 12:41	
1,1,2-Trichloroethane	1.0		1.0		ug/L			12/12/20 12:41	
	1.0		1.0		ug/L ug/L			12/12/20 12:41	
1,1-Dichloroethane					_				
1,1-Dichloroethene	1.0		1.0		ug/L			12/12/20 12:41	
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			12/12/20 12:41	
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			12/12/20 12:41	
1,2-Dibromoethane	1.0		1.0		ug/L			12/12/20 12:41	
1,2-Dichlorobenzene	1.0		1.0		ug/L			12/12/20 12:41	
1,2-Dichloroethane	1.0		1.0		ug/L			12/12/20 12:41	
1,2-Dichloropropane	1.0		1.0		ug/L			12/12/20 12:41	
1,3-Dichlorobenzene	1.0		1.0	0.78	ug/L			12/12/20 12:41	
1,4-Dichlorobenzene	1.0		1.0	0.84	ug/L			12/12/20 12:41	
2-Butanone (MEK)	10	U	10	1.3	ug/L			12/12/20 12:41	
2-Hexanone	5.0	U	5.0	1.2	ug/L			12/12/20 12:41	
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	2.1	ug/L			12/12/20 12:41	
Acetone	10	U	10	3.0	ug/L			12/12/20 12:41	
Benzene	1.0	U	1.0	0.41	ug/L			12/12/20 12:41	
Bromodichloromethane	1.0	U	1.0	0.39	ug/L			12/12/20 12:41	
Bromoform	1.0	U	1.0	0.26	ug/L			12/12/20 12:41	
Bromomethane	1.0	U	1.0	0.69	ug/L			12/12/20 12:41	
Carbon disulfide	1.0	U	1.0	0.19	ug/L			12/12/20 12:41	
Carbon tetrachloride	1.0	U	1.0	0.27	ug/L			12/12/20 12:41	
Chlorobenzene	1.0	U	1.0	0.75	ug/L			12/12/20 12:41	
Chloroethane	1.0	U	1.0	0.32	ug/L			12/12/20 12:41	
Chloroform	1.0	U	1.0		ug/L			12/12/20 12:41	
Chloromethane	1.0	U	1.0		ug/L			12/12/20 12:41	
cis-1,2-Dichloroethene	1.0		1.0		ug/L			12/12/20 12:41	
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			12/12/20 12:41	
Cyclohexane	1.0		1.0		ug/L			12/12/20 12:41	
Dibromochloromethane	1.0		1.0		ug/L			12/12/20 12:41	
Dichlorodifluoromethane	1.0		1.0		ug/L			12/12/20 12:41	
Ethylbenzene	1.0		1.0		ug/L			12/12/20 12:41	
Isopropylbenzene	1.0		1.0		ug/L			12/12/20 12:41	
Methyl acetate	2.5		2.5		ug/L			12/12/20 12:41	
Methyl tert-butyl ether	1.0		1.0		ug/L			12/12/20 12:41	
Methylcyclohexane	1.0		1.0		ug/L			12/12/20 12:41	
Methylene Chloride	1.0		1.0		ug/L			12/12/20 12:41	
Styrene									
•	1.0		1.0		ug/L			12/12/20 12:41	
Tetrachloroethene	1.0		1.0		ug/L			12/12/20 12:41	
Toluene	1.0		1.0		ug/L			12/12/20 12:41	
trans-1,2-Dichloroethene	1.0		1.0		ug/L			12/12/20 12:41	
trans-1,3-Dichloropropene	1.0		1.0		ug/L			12/12/20 12:41	
Trichloroethene	1.0		1.0		ug/L			12/12/20 12:41	
Trichlorofluoromethane	1.0		1.0		ug/L			12/12/20 12:41	
Vinyl chloride	1.0		1.0	0.90	ug/L			12/12/20 12:41	
Xylenes, Total	2.0	U	2.0	0.66	ug/L			12/12/20 12:41	

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-179236-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

105

Lab Sample ID: MB 480-563012/7

Matrix: Water

Surrogate

Analysis Batch: 563012

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Method Blank Prep Type: Total/NA

12/12/20 12:41

MB MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac 102 77 - 120 12/12/20 12:41 112 73 - 120 12/12/20 12:41 75 - 123 109 12/12/20 12:41

Lab Sample ID: LCS 480-563012/5 Client Sample ID: Lab Control Sample

80 - 120

Toluene-d8 (Surr)

Analy

atrix: Water	Prep Type: Total/NA
nalysis Batch: 563012	

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	26.8		ug/L		107	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.8		ug/L		103	76 ₋ 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	18.4		ug/L		73	61 - 148	
ne								
1,1,2-Trichloroethane	25.0	25.1		ug/L		100	76 - 122	
1,1-Dichloroethane	25.0	24.5		ug/L		98	77 - 120	
1,1-Dichloroethene	25.0	20.3		ug/L		81	66 - 127	
1,2,4-Trichlorobenzene	25.0	25.4		ug/L		102	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	33.8	*	ug/L		135	56 - 134	
1,2-Dibromoethane	25.0	27.8		ug/L		111	77 - 120	
1,2-Dichlorobenzene	25.0	25.7		ug/L		103	80 - 124	
1,2-Dichloroethane	25.0	23.9		ug/L		96	75 ₋ 120	
1,2-Dichloropropane	25.0	25.1		ug/L		100	76 - 120	
1,3-Dichlorobenzene	25.0	25.3		ug/L		101	77 - 120	
1,4-Dichlorobenzene	25.0	24.5		ug/L		98	80 - 120	
2-Butanone (MEK)	125	124		ug/L		99	57 - 140	
2-Hexanone	125	135		ug/L		108	65 _ 127	
4-Methyl-2-pentanone (MIBK)	125	130		ug/L		104	71 - 125	
Acetone	125	126		ug/L		101	56 ₋ 142	
Benzene	25.0	24.2		ug/L		97	71 - 124	
Bromodichloromethane	25.0	29.1		ug/L		116	80 - 122	
Bromoform	25.0	32.6		ug/L		130	61 - 132	
Bromomethane	25.0	19.4		ug/L		78	55 - 144	
Carbon disulfide	25.0	22.9		ug/L		91	59 ₋ 134	
Carbon tetrachloride	25.0	26.6		ug/L		106	72 ₋ 134	
Chlorobenzene	25.0	25.4		ug/L		102	80 - 120	
Chloroethane	25.0	18.7		ug/L		75	69 ₋ 136	
Chloroform	25.0	23.6		ug/L		94	73 ₋ 127	
Chloromethane	25.0	20.2		ug/L		81	68 - 124	
cis-1,2-Dichloroethene	25.0	26.5		ug/L		106	74 ₋ 124	
cis-1,3-Dichloropropene	25.0	28.5		ug/L		114	74 - 124	
Cyclohexane	25.0	22.3		ug/L		89	59 ₋ 135	
Dibromochloromethane	25.0	30.8		ug/L		123	75 ₋ 125	
Dichlorodifluoromethane	25.0	16.5		ug/L		66	59 ₋ 135	
Ethylbenzene	25.0	25.6		ug/L		102	77 - 123	
Isopropylbenzene	25.0	26.3		ug/L		105	77 - 122	
Methyl acetate	50.0	43.3		ug/L		87	74 - 133	
Methyl tert-butyl ether	25.0	26.8		ug/L		107	77 - 120	
Methylcyclohexane	25.0	22.4		ug/L		90	68 - 134	

Eurofins TestAmerica, Buffalo

Page 12 of 31

12/24/2020

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-563012/5

Matrix: Water

Analysis Batch: 563012

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 480-179236-1

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Methylene Chloride 25.0 24.8 99 75 - 124 ug/L ug/L Styrene 25.0 26.6 106 80 - 120 Tetrachloroethene 25.0 26.3 74 - 122 ug/L 105 Toluene 25.0 24.6 ug/L 99 80 - 122 trans-1,2-Dichloroethene 25.0 ug/L 84 73 - 127 21.0 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 62 - 150 Trichlorofluoromethane 25.0 22.1 ug/L 89 25.0 20.3 81 65 - 133 Vinyl chloride ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		77 - 120
4-Bromofluorobenzene (Surr)	113		73 - 120
Dibromofluoromethane (Surr)	100		75 - 123
Toluene-d8 (Surr)	104		80 - 120

Lab Sample ID: MB 480-563196/8

Matrix: Water

Analysis Batch: 563196

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.82	ug/L			12/15/20 11:17	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.21	ug/L			12/15/20 11:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			12/15/20 11:17	1
1,1,2-Trichloroethane	1.0	U	1.0	0.23	ug/L			12/15/20 11:17	1
1,1-Dichloroethane	1.0	U	1.0	0.38	ug/L			12/15/20 11:17	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			12/15/20 11:17	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.41	ug/L			12/15/20 11:17	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.39	ug/L			12/15/20 11:17	1
1,2-Dibromoethane	1.0	U	1.0	0.73	ug/L			12/15/20 11:17	1
1,2-Dichlorobenzene	1.0	U	1.0	0.79	ug/L			12/15/20 11:17	1
1,2-Dichloroethane	1.0	U	1.0	0.21	ug/L			12/15/20 11:17	1
1,2-Dichloropropane	1.0	U	1.0	0.72	ug/L			12/15/20 11:17	1
1,3-Dichlorobenzene	1.0	U	1.0	0.78	ug/L			12/15/20 11:17	1
1,4-Dichlorobenzene	1.0	U	1.0	0.84	ug/L			12/15/20 11:17	1
2-Butanone (MEK)	10	U	10	1.3	ug/L			12/15/20 11:17	1
2-Hexanone	5.0	U	5.0	1.2	ug/L			12/15/20 11:17	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	2.1	ug/L			12/15/20 11:17	1
Acetone	10	U	10	3.0	ug/L			12/15/20 11:17	1
Benzene	1.0	U	1.0	0.41	ug/L			12/15/20 11:17	1
Bromodichloromethane	1.0	U	1.0	0.39	ug/L			12/15/20 11:17	1
Bromoform	1.0	U	1.0	0.26	ug/L			12/15/20 11:17	1
Bromomethane	1.0	U	1.0	0.69	ug/L			12/15/20 11:17	1
Carbon disulfide	1.0	U	1.0	0.19	ug/L			12/15/20 11:17	1
Carbon tetrachloride	1.0	U	1.0	0.27	ug/L			12/15/20 11:17	1
Chlorobenzene	1.0	U	1.0	0.75	ug/L			12/15/20 11:17	1
Chloroethane	1.0	U	1.0	0.32	ug/L			12/15/20 11:17	1
Chloroform	1.0	U	1.0	0.34	ug/L			12/15/20 11:17	1
Chloromethane	1.0	U	1.0	0.35	ug/L			12/15/20 11:17	1

Eurofins TestAmerica, Buffalo

12/24/2020

Page 13 of 31

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-563196/8

Matrix: Water

Analysis Batch: 563196

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Buton. 500 100									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	1.0	U	1.0	0.81	ug/L			12/15/20 11:17	
cis-1,3-Dichloropropene	1.0	U	1.0	0.36	ug/L			12/15/20 11:17	
Cyclohexane	1.0	U	1.0	0.18	ug/L			12/15/20 11:17	
Dibromochloromethane	1.0	U	1.0	0.32	ug/L			12/15/20 11:17	
Dichlorodifluoromethane	1.0	U	1.0	0.68	ug/L			12/15/20 11:17	
Ethylbenzene	1.0	U	1.0	0.74	ug/L			12/15/20 11:17	
Isopropylbenzene	1.0	U	1.0	0.79	ug/L			12/15/20 11:17	
Methyl acetate	2.5	U	2.5	1.3	ug/L			12/15/20 11:17	
Methyl tert-butyl ether	1.0	U	1.0	0.16	ug/L			12/15/20 11:17	
Methylcyclohexane	1.0	U	1.0	0.16	ug/L			12/15/20 11:17	
Methylene Chloride	1.0	U	1.0	0.44	ug/L			12/15/20 11:17	
Styrene	1.0	U	1.0	0.73	ug/L			12/15/20 11:17	
Tetrachloroethene	1.0	U	1.0	0.36	ug/L			12/15/20 11:17	
Toluene	1.0	U	1.0	0.51	ug/L			12/15/20 11:17	
trans-1,2-Dichloroethene	1.0	U	1.0	0.90	ug/L			12/15/20 11:17	
trans-1,3-Dichloropropene	1.0	U	1.0	0.37	ug/L			12/15/20 11:17	
Trichloroethene	1.0	U	1.0	0.46	ug/L			12/15/20 11:17	
Trichlorofluoromethane	1.0	U	1.0	0.88	ug/L			12/15/20 11:17	
Vinyl chloride	1.0	U	1.0	0.90	ug/L			12/15/20 11:17	
Xylenes, Total	2.0	U	2.0	0.66	ug/L			12/15/20 11:17	

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120	_		12/15/20 11:17	1
4-Bromofluorobenzene (Surr)	96		73 - 120			12/15/20 11:17	1
Dibromofluoromethane (Surr)	105		75 - 123			12/15/20 11:17	1
Toluene-d8 (Surr)	96		80 - 120			12/15/20 11:17	1

Lab Sample ID: LCS 480-563196/5

Matrix: Water

Analysis Batch: 563196

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.2		ug/L		97	73 - 126
1,1,2,2-Tetrachloroethane	25.0	21.9		ug/L		88	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.6		ug/L		98	61 - 148
ne							
1,1,2-Trichloroethane	25.0	19.9		ug/L		79	76 - 122
1,1-Dichloroethane	25.0	21.9		ug/L		88	77 - 120
1,1-Dichloroethene	25.0	23.1		ug/L		92	66 - 127
1,2,4-Trichlorobenzene	25.0	22.1		ug/L		88	79 ₋ 122
1,2-Dibromo-3-Chloropropane	25.0	21.8		ug/L		87	56 - 134
1,2-Dibromoethane	25.0	20.9		ug/L		84	77 _ 120
1,2-Dichlorobenzene	25.0	20.9		ug/L		84	80 - 124
1,2-Dichloroethane	25.0	21.7		ug/L		87	75 ₋ 120
1,2-Dichloropropane	25.0	21.2		ug/L		85	76 ₋ 120
1,3-Dichlorobenzene	25.0	21.5		ug/L		86	77 - 120
1,4-Dichlorobenzene	25.0	21.2		ug/L		85	80 - 120
2-Butanone (MEK)	125	102		ug/L		82	57 _ 140
2-Hexanone	125	98.2		ug/L		79	65 - 127

Eurofins TestAmerica, Buffalo

Page 14 of 31

_

3

5

Q

10

11

13

-

Spike

LCS LCS

Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-563196/5

Matrix: Water

Analysis Batch: 563196

Client: Parsons Corporation

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total/NA

	Opike	LOG	LOG			/ortec.	
Analyte	Added	Result	Qualifier Unit	D %	%Rec	Limits	
4-Methyl-2-pentanone (MIBK)	125	101	ug/L		81	71 - 125	
Acetone	125	102	ug/L		82	56 - 142	
Benzene	25.0	21.4	ug/L		85	71 - 124	
Bromodichloromethane	25.0	22.5	ug/L		90	80 - 122	
Bromoform	25.0	21.0	ug/L		84	61 - 132	
Bromomethane	25.0	22.7	ug/L		91	55 - 144	
Carbon disulfide	25.0	22.1	ug/L		89	59 - 134	
Carbon tetrachloride	25.0	23.0	ug/L		92	72 - 134	
Chlorobenzene	25.0	21.1	ug/L		84	80 _ 120	
Chloroethane	25.0	21.4	ug/L		86	69 - 136	
Chloroform	25.0	21.0	ug/L		84	73 _ 127	
Chloromethane	25.0	22.4	ug/L		89	68 - 124	
cis-1,2-Dichloroethene	25.0	21.5	ug/L		86	74 - 124	
cis-1,3-Dichloropropene	25.0	22.0	ug/L		88	74 - 124	
Cyclohexane	25.0	23.1	ug/L		93	59 ₋ 135	
Dibromochloromethane	25.0	21.2	ug/L		85	75 ₋ 125	
Dichlorodifluoromethane	25.0	29.8	ug/L		119	59 ₋ 135	
Ethylbenzene	25.0	20.9	ug/L		84	77 - 123	
Isopropylbenzene	25.0	22.6	ug/L		90	77 - 122	
Methyl acetate	50.0	37.8	ug/L		76	74 - 133	
Methyl tert-butyl ether	25.0	21.8	ug/L		87	77 - 120	
Methylcyclohexane	25.0	23.5	ug/L		94	68 - 134	
Methylene Chloride	25.0	22.2	ug/L		89	75 ₋ 124	
Styrene	25.0	21.4	ug/L		86	80 - 120	
Tetrachloroethene	25.0	21.1	ug/L		84	74 - 122	
Toluene	25.0	20.1	ug/L		80	80 - 122	
trans-1,2-Dichloroethene	25.0	22.2	ug/L		89	73 - 127	
Trichloroethene	25.0	22.0	ug/L		88	74 - 123	
Trichlorofluoromethane	25.0	24.7	ug/L		99	62 - 150	
Vinyl chloride	25.0	22.6	ug/L		90	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Dibromofluoromethane (Surr)	95		75 - 123
Toluene-d8 (Surr)	94		80 - 120

Lab Sample ID: 480-179236-1 MS

Matrix: Water

Analysis Batch: 563196

Client Sample ID:	WW-14_	12102020
Pi	rep Type	: Total/NA

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	1.0	U F1	25.0	26.5		ug/L		106	73 - 126	
1,1,2,2-Tetrachloroethane	1.0	U	25.0	21.6		ug/L		86	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	1.0	U F2	25.0	24.2		ug/L		97	61 - 148	
ne										
1,1,2-Trichloroethane	1.0	U	25.0	21.2		ug/L		85	76 - 122	
1,1-Dichloroethane	1.0	U F1	25.0	23.2		ug/L		93	77 - 120	
1,1-Dichloroethene	1.0	U F1 F2	25.0	24.7		ug/L		99	66 - 127	

Eurofins TestAmerica, Buffalo

Page 15 of 31

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-179236-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

1.0 U

1.0 U

Lab Sample ID: 480-179236-1 MS

Matrix: Water

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

Vinyl chloride

Chloroethane

Chloroform

Carbon tetrachloride

Analysis Batch: 563196

Client Sample ID: MW-14_12102020

Prep Type: Total/NA

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,4-Trichlorobenzene	1.0	U	25.0	23.3		ug/L		93	79 - 122	
1,2-Dibromo-3-Chloropropane	1.0	U * F1	25.0	21.9		ug/L		88	56 - 134	
1,2-Dibromoethane	1.0	U F1	25.0	22.2		ug/L		89	77 _ 120	
1,2-Dichlorobenzene	1.0	U	25.0	22.5		ug/L		90	80 - 124	
1,2-Dichloroethane	1.0	U	25.0	22.1		ug/L		88	75 ₋ 120	
1,2-Dichloropropane	1.0	U F1	25.0	22.5		ug/L		90	76 ₋ 120	
1,3-Dichlorobenzene	1.0	U F1	25.0	22.4		ug/L		89	77 - 120	
1,4-Dichlorobenzene	1.0	U	25.0	22.4		ug/L		90	78 ₋ 124	
2-Butanone (MEK)	10	U	125	101		ug/L		81	57 ₋ 140	
2-Hexanone	5.0	U	125	98.8		ug/L		79	65 - 127	
4-Methyl-2-pentanone (MIBK)	5.0	U	125	106		ug/L		85	71 ₋ 125	
Acetone	10	U	125	98.5		ug/L		79	56 - 142	
Benzene	1.0	U F1 F2	25.0	23.1		ug/L		92	71 - 124	
Bromodichloromethane	1.0	U F1	25.0	23.3		ua/l		93	80 - 122	

ug/L 1.0 UF1 25.0 19.8 79 61 - 132 ug/L 1.0 U 25.0 26.7 ug/L 107 55 - 144 25.0 22.7 1.0 UF2 ug/L 91 59 - 134 25.0 24.9 100 72 - 134 1.0 UF1 ug/L 1.0 U 25.0 23.4 ug/L 94 80 - 120 1.0 U 25.0 26.0 ug/L 104 69 _ 136 1.0 U 25.0 23.2 ug/L 93 73 - 127

25.9

26.1

ug/L

ug/L

104

105

65 - 133

68 - 124

cis-1,2-Dichloroethene 1.0 UF1 25.0 23.3 ug/L 93 74 - 124 25.0 87 cis-1,3-Dichloropropene 1.0 UF1 21.9 ug/L 74 - 124 1.0 U 25.0 23.8 95 59 - 135 Cyclohexane ug/L 25.0 Dibromochloromethane 1.0 UF1 22.6 ug/L 90 75 - 125 Dichlorodifluoromethane 59 - 135 1.0 U 25.0 32.0 ug/L 128 Ethylbenzene 1.0 UF1 25.0 23.1 ug/L 93 77 - 123 Isopropylbenzene 25.0 ug/L 99 77 - 122 1.0 U F1 24.8 Methyl acetate 2.5 U 50.0 37.0 ug/L 74 74 - 133 1.0 U 25.0 22.4 90 77 - 120 Methyl tert-butyl ether ug/L Methylcyclohexane 1.0 U 25.0 23.6 ug/L 94 68 - 134 Methylene Chloride 25.0 22.5 90 75 - 124 1.0 U F1 ug/L Styrene 1.0 UF1 25.0 23.2 ug/L 93 80 - 120

25.0

Tetrachloroethene 1.0 UF1 25.0 23.8 ug/L 95 74 - 122 91 Toluene 1.0 U 25.0 22.8 ug/L 80 - 122 trans-1,2-Dichloroethene 1.0 UF1F2 25.0 23.5 ug/L 94 73 - 127 1.0 U F1 25.0 ug/L 98 74 - 123 Trichloroethene 24.5 Trichlorofluoromethane 25.0 27.4 110 62 - 150 1.0 U ug/L

25.0

MS MS %Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 104 77 - 120

4-Bromofluorobenzene (Surr) 99 73 - 120 Dibromofluoromethane (Surr) 98 75 - 123 Toluene-d8 (Surr) 98 80 - 120

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-179236-1 MSD

Matrix: Water									Prep 1	Type: To	tal/NA
Analysis Batch: 563196	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	1.0	U F1	25.0	31.5		ug/L		126	73 - 126	17	15
1,1,2,2-Tetrachloroethane	1.0	U	25.0	26.9	F2	ug/L		108	76 ₋ 120	22	15
1,1,2-Trichloro-1,2,2-trifluoroetha	1.0	U F2	25.0	26.3		ug/L		105	61 - 148	8	20
ne											
1,1,2-Trichloroethane	1.0	U	25.0	25.5	F2	ug/L		102	76 - 122	18	15
1,1-Dichloroethane	1.0	U F1	25.0	27.8		ug/L		111	77 - 120	18	20
1,1-Dichloroethene	1.0	U F1 F2	25.0	29.7	F2	ug/L		119	66 - 127	18	16
1,2,4-Trichlorobenzene	1.0	U	25.0	28.4		ug/L		114	79 - 122	20	20
1,2-Dibromo-3-Chloropropane	1.0	U * F1	25.0	27.4	F2	ug/L		110	56 - 134	23	15
1,2-Dibromoethane	1.0	U F1	25.0	26.1	F2	ug/L		104	77 - 120	16	15
1,2-Dichlorobenzene	1.0	U	25.0	26.8		ug/L		107	80 - 124	18	20
1,2-Dichloroethane	1.0	U	25.0	26.2		ug/L		105	75 - 120	17	20
1,2-Dichloropropane	1.0	U F1	25.0	26.8		ug/L		107	76 - 120	17	20
1,3-Dichlorobenzene	1.0	U F1	25.0	27.9	F2	ug/L		111	77 - 120	22	20
1,4-Dichlorobenzene	1.0	U	25.0	28.1	F2	ug/L		112	78 ₋ 124	23	20
2-Butanone (MEK)	10	U	125	120		ug/L		96	57 ₋ 140	18	20
2-Hexanone	5.0	U	125	116	F2	ug/L		93	65 - 127	16	15
4-Methyl-2-pentanone (MIBK)	5.0	U	125	125		ug/L		100	71 - 125	16	35
Acetone	10	U	125	116	F2	ug/L		93	56 ₋ 142	16	15
Benzene	1.0	U F1 F2	25.0	27.4	F2	ug/L		110	71 - 124	17	13
Bromodichloromethane	1.0	U F1	25.0	28.1	F2	ug/L		113	80 - 122	19	15
Bromoform	1.0	U F1	25.0	24.2	F2	ug/L		97	61 - 132	20	15
Bromomethane	1.0	U	25.0	29.7		ug/L		119	55 - 144	11	15
Carbon disulfide	1.0	U F2	25.0	27.2	F2	ug/L		109	59 ₋ 134	18	15
Carbon tetrachloride		U F1	25.0	29.4	F2	ug/L		117	72 - 134	16	15
Chlorobenzene	1.0	U	25.0	27.6		ug/L		110	80 - 120	16	25
Chloroethane	1.0		25.0	29.1		ug/L		116	69 ₋ 136	11	15
Chloroform	1.0	U	25.0	27.3		ug/L		109	73 - 127	16	20
Chloromethane	1.0		25.0	28.4		ug/L		114	68 - 124	9	15
cis-1,2-Dichloroethene		U F1	25.0	27.5	F2	ug/L		110	74 - 124	16	15
cis-1,3-Dichloropropene		U F1	25.0	26.0		ug/L		104	74 ₋ 124	17	15
Cyclohexane	1.0		25.0	27.1		ug/L		108	59 - 135	13	20
Dibromochloromethane		U F1	25.0	26.5	F2	ug/L		106	75 - 125	16	15
Dichlorodifluoromethane	1.0		25.0	32.9		ug/L		132	59 - 135	3	20
Ethylbenzene		U F1	25.0	27.0		ug/L		108	77 - 123	15	 ° 15
Isopropylbenzene		U F1	25.0		F1 F2	ug/L		124	77 - 123 77 ₋ 122	22	20
Methyl acetate	2.5		50.0	44.2		ug/L		88	74 - 133	18	20
Methyl tert-butyl ether	1.0		25.0	27.1		ug/L		108	77 - 120	19	37
Methylcyclohexane	1.0		25.0	26.9		ug/L		107	68 - 134	13	20
Methylene Chloride		U F1	25.0	27.5		ug/L ug/L		110	75 ₋ 124	20	15
					12						
Styrene		U F1	25.0 25.0	26.9		ug/L		107	80 ₋ 120	15 15	20
Tetrachloroethene Toluene		U F1	25.0	27.7	F0	ug/L		111	74 - 122	15	20
	1.0		25.0	27.1		ug/L		109	80 - 122	17	15
trans-1,2-Dichloroethene		U F1 F2	25.0	28.5		ug/L		114	73 ₋ 127	19	20
Trichloroethene		U F1	25.0	28.6		ug/L		114	74 - 123	15	16
Trichlorofluoromethane	1.0	U	25.0	30.8		ug/L		123	62 - 150	11	20

Client Sample ID: MW-14_12102020

Project/Site: Honeywell - Tonawanda Plastics

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water

Analysis Batch: 563196

Lab Sample ID: 480-179236-1 MSD

Client Sample ID: MW-14_12102020

Prep Type: Total/NA

Job ID: 480-179236-1

MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 104 77 - 120 4-Bromofluorobenzene (Surr) 97 73 - 120 Dibromofluoromethane (Surr) 104 75 - 123 Toluene-d8 (Surr) 98 80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-562867/1-A

Matrix: Water

Analysis Batch: 563133

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 562867

Allalysis Datcil. 303 133							Fiep Dateil.	302001	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.0	U	5.0	0.41	ug/L		12/11/20 08:59	12/14/20 20:39	1
Acenaphthylene	5.0	U	5.0	0.38	ug/L		12/11/20 08:59	12/14/20 20:39	1
Anthracene	5.0	U	5.0	0.28	ug/L		12/11/20 08:59	12/14/20 20:39	1
Benzo[a]anthracene	5.0	U	5.0	0.36	ug/L		12/11/20 08:59	12/14/20 20:39	1
Benzo[a]pyrene	5.0	U	5.0	0.47	ug/L		12/11/20 08:59	12/14/20 20:39	1
Benzo[b]fluoranthene	5.0	U	5.0	0.34	ug/L		12/11/20 08:59	12/14/20 20:39	1
Benzo[g,h,i]perylene	5.0	U	5.0	0.35	ug/L		12/11/20 08:59	12/14/20 20:39	1
Benzo[k]fluoranthene	5.0	U	5.0	0.73	ug/L		12/11/20 08:59	12/14/20 20:39	1
Chrysene	5.0	U	5.0	0.33	ug/L		12/11/20 08:59	12/14/20 20:39	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		12/11/20 08:59	12/14/20 20:39	1
Fluoranthene	5.0	U	5.0	0.40	ug/L		12/11/20 08:59	12/14/20 20:39	1
Fluorene	5.0	U	5.0	0.36	ug/L		12/11/20 08:59	12/14/20 20:39	1
Indeno[1,2,3-cd]pyrene	5.0	U	5.0	0.47	ug/L		12/11/20 08:59	12/14/20 20:39	1
Naphthalene	5.0	U	5.0	0.76	ug/L		12/11/20 08:59	12/14/20 20:39	1
Phenanthrene	5.0	U	5.0	0.44	ug/L		12/11/20 08:59	12/14/20 20:39	1
Pyrene	5.0	U	5.0	0.34	ug/L		12/11/20 08:59	12/14/20 20:39	1

//B

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	107		48 - 120	12/11/20 08:59	12/14/20 20:39	1
Nitrobenzene-d5 (Surr)	112		46 - 120	12/11/20 08:59	12/14/20 20:39	1
p-Terphenvl-d14 (Surr)	116		60 - 148	12/11/20 08:59	12/14/20 20:39	1

Lab Sample ID: LCS 480-562867/2-A

Matrix: Water

Analysis Batch: 563133

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 562867

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	32.0	33.9		ug/L		106	60 - 120	
Acenaphthylene	32.0	35.4		ug/L		111	63 _ 120	
Anthracene	32.0	36.5		ug/L		114	67 _ 120	
Benzo[a]anthracene	32.0	35.4		ug/L		111	70 - 121	
Benzo[a]pyrene	32.0	37.9		ug/L		119	60 - 123	
Benzo[b]fluoranthene	32.0	40.1		ug/L		125	66 - 126	
Benzo[g,h,i]perylene	32.0	39.4		ug/L		123	66 _ 150	
Benzo[k]fluoranthene	32.0	37.6		ug/L		117	65 _ 124	
Chrysene	32.0	34.7		ug/L		108	69 - 120	

Eurofins TestAmerica, Buffalo

Page 18 of 31

Project/Site: Honeywell - Tonawanda Plastics

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-562867/2-A

Matrix: Water

Analysis Batch: 563133

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-179236-1

Prep Batch: 562867

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dibenz(a,h)anthracene	32.0	39.9		ug/L		125	65 - 135	
Fluoranthene	32.0	37.1		ug/L		116	69 - 126	
Fluorene	32.0	35.4		ug/L		111	66 - 120	
Indeno[1,2,3-cd]pyrene	32.0	39.8		ug/L		125	69 - 146	
Naphthalene	32.0	31.3		ug/L		98	57 - 120	
Phenanthrene	32.0	35.1		ug/L		110	68 - 120	
Pyrene	32.0	34.5		ug/L		108	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	113		48 - 120
Nitrobenzene-d5 (Surr)	109		46 - 120
p-Terphenyl-d14 (Surr)	112		60 ₋ 148

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 563320

Lab Sample ID: MB 480-563320/1-A **Matrix: Water**

Analysis Batch: 563626

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.0	U	5.0	0.41	ug/L		12/15/20 14:54	12/17/20 11:42	1
Acenaphthylene	5.0	U	5.0	0.38	ug/L		12/15/20 14:54	12/17/20 11:42	1
Anthracene	5.0	U	5.0	0.28	ug/L		12/15/20 14:54	12/17/20 11:42	1
Benzo[a]anthracene	5.0	U	5.0	0.36	ug/L		12/15/20 14:54	12/17/20 11:42	1
Benzo[a]pyrene	5.0	U	5.0	0.47	ug/L		12/15/20 14:54	12/17/20 11:42	1
Benzo[b]fluoranthene	5.0	U	5.0	0.34	ug/L		12/15/20 14:54	12/17/20 11:42	1
Benzo[g,h,i]perylene	5.0	U	5.0	0.35	ug/L		12/15/20 14:54	12/17/20 11:42	1
Benzo[k]fluoranthene	5.0	U	5.0	0.73	ug/L		12/15/20 14:54	12/17/20 11:42	1
Chrysene	5.0	U	5.0	0.33	ug/L		12/15/20 14:54	12/17/20 11:42	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		12/15/20 14:54	12/17/20 11:42	1
Fluoranthene	5.0	U	5.0	0.40	ug/L		12/15/20 14:54	12/17/20 11:42	1
Fluorene	5.0	U	5.0	0.36	ug/L		12/15/20 14:54	12/17/20 11:42	1
Indeno[1,2,3-cd]pyrene	5.0	U	5.0	0.47	ug/L		12/15/20 14:54	12/17/20 11:42	1
Naphthalene	5.0	U	5.0	0.76	ug/L		12/15/20 14:54	12/17/20 11:42	1
Phenanthrene	5.0	U	5.0	0.44	ug/L		12/15/20 14:54	12/17/20 11:42	1
Pyrene	5.0	U	5.0	0.34	ug/L		12/15/20 14:54	12/17/20 11:42	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	103		48 - 120	12/15/20 14:54	12/17/20 11:42	1
Nitrobenzene-d5 (Surr)	100		46 - 120	12/15/20 14:54	12/17/20 11:42	1
p-Terphenyl-d14 (Surr)	103		60 - 148	12/15/20 14:54	12/17/20 11:42	1

Lab Sample ID: LCS 480-563320/2-A

Matrix: Water

Analysis Batch: 563626

Client Sample ID: L	ab Control Sample
F	Prep Type: Total/NA

Prep Batch: 563320

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	32.0	30.9		ug/L		97	60 - 120
Acenaphthylene	32.0	32.1		ug/L		100	63 _ 120
Anthracene	32.0	33.0		ug/L		103	67 - 120

Eurofins TestAmerica, Buffalo

Page 19 of 31

12/24/2020

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-179236-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-563320/2-A

Matrix: Water

Analysis Batch: 563626

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 563320

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]anthracene	32.0	31.5		ug/L		98	70 _ 121	
Benzo[a]pyrene	32.0	34.4		ug/L		108	60 - 123	
Benzo[b]fluoranthene	32.0	36.9		ug/L		115	66 - 126	
Benzo[g,h,i]perylene	32.0	35.5		ug/L		111	66 - 150	
Benzo[k]fluoranthene	32.0	35.7		ug/L		112	65 _ 124	
Chrysene	32.0	31.1		ug/L		97	69 - 120	
Dibenz(a,h)anthracene	32.0	35.8		ug/L		112	65 - 135	
Fluoranthene	32.0	33.5		ug/L		105	69 - 126	
Fluorene	32.0	31.9		ug/L		100	66 - 120	
Indeno[1,2,3-cd]pyrene	32.0	34.8		ug/L		109	69 - 146	
Naphthalene	32.0	28.3		ug/L		88	57 - 120	
Phenanthrene	32.0	31.9		ug/L		100	68 - 120	
Pyrene	32.0	31.4		ug/L		98	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	101		48 - 120
Nitrobenzene-d5 (Surr)	97		46 - 120
p-Terphenyl-d14 (Surr)	104		60 - 148

Lab Sample ID: 480-179236-1 MS

Matrix: Water

Analysis Batch: 563626

Client Sample ID: MW-14_12102020

Prep Type: Total/NA

Prep Batch: 563320

•									•	
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	5.0	U	32.0	30.9		ug/L		97	48 - 120	
Acenaphthylene	5.0	U	32.0	32.2		ug/L		101	63 - 120	
Anthracene	5.0	U	32.0	32.2		ug/L		101	65 - 122	
Benzo[a]anthracene	5.0	U	32.0	31.0		ug/L		97	43 - 124	
Benzo[a]pyrene	5.0	U	32.0	30.5		ug/L		95	23 - 125	
Benzo[b]fluoranthene	5.0	U	32.0	33.4		ug/L		104	27 - 127	
Benzo[g,h,i]perylene	5.0	U	32.0	31.9		ug/L		100	16 - 147	
Benzo[k]fluoranthene	5.0	U	32.0	30.4		ug/L		95	20 - 124	
Chrysene	5.0	U	32.0	29.1		ug/L		91	44 - 122	
Dibenz(a,h)anthracene	5.0	U	32.0	32.3		ug/L		101	16 - 139	
Fluoranthene	5.0	U	32.0	31.8		ug/L		99	63 - 129	
Fluorene	5.0	U	32.0	30.8		ug/L		96	62 - 120	
Indeno[1,2,3-cd]pyrene	5.0	U	32.0	31.8		ug/L		99	16 - 140	
Naphthalene	5.0	U	32.0	29.2		ug/L		91	45 - 120	
Phenanthrene	5.0	U	32.0	30.2		ug/L		94	65 - 122	
Pyrene	5.0	U	32.0	31.9		ug/L		100	58 - 128	

MS MS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	101		48 - 120
Nitrobenzene-d5 (Surr)	102		46 - 120
p-Terphenyl-d14 (Surr)	90		60 - 148

Eurofins TestAmerica, Buffalo

Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Lab Sample ID: 480-179236-1 MSD

Client: Parsons Corporation

Analysis Batch: 563626

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: MW-14_12102020

Prep Type: Total/NA

Prep Batch: 563320

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	5.0	U	32.0	30.1		ug/L		94	48 - 120	3	24
Acenaphthylene	5.0	U	32.0	31.4		ug/L		98	63 - 120	3	18
Anthracene	5.0	U	32.0	31.4		ug/L		98	65 - 122	2	15
Benzo[a]anthracene	5.0	U	32.0	29.9		ug/L		94	43 - 124	4	15
Benzo[a]pyrene	5.0	U	32.0	30.2		ug/L		94	23 - 125	1	15
Benzo[b]fluoranthene	5.0	U	32.0	32.0		ug/L		100	27 - 127	4	15
Benzo[g,h,i]perylene	5.0	U	32.0	30.6		ug/L		95	16 - 147	4	15
Benzo[k]fluoranthene	5.0	U	32.0	29.2		ug/L		91	20 - 124	4	22
Chrysene	5.0	U	32.0	27.9		ug/L		87	44 - 122	4	15
Dibenz(a,h)anthracene	5.0	U	32.0	30.7		ug/L		96	16 - 139	5	15
Fluoranthene	5.0	U	32.0	33.1		ug/L		103	63 - 129	4	15
Fluorene	5.0	U	32.0	32.4		ug/L		101	62 - 120	5	15
Indeno[1,2,3-cd]pyrene	5.0	U	32.0	29.8		ug/L		93	16 - 140	7	15
Naphthalene	5.0	U	32.0	28.1		ug/L		88	45 - 120	4	29
Phenanthrene	5.0	U	32.0	32.0		ug/L		100	65 - 122	6	15
Pyrene	5.0	U	32.0	30.8		ug/L		96	58 - 128	3	19

MSD MSD

мв мв

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	102		48 - 120
Nitrobenzene-d5 (Surr)	99		46 - 120
p-Terphenyl-d14 (Surr)	88		60 - 148

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-563075/1-A

Matrix: Water

Analysis Batch: 563249

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 563075

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.0040	U	0.0040	0.0010	mg/L		12/14/20 10:39	12/14/20 19:59	1

Lab Sample ID: LCS 480-563075/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 563249

Prep Type: Total/NA **Prep Batch: 563075**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	 0.200	0.181		mg/L		90	80 - 120	

Lab Sample ID: LCSD 480-563075/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 563249 **Prep Batch: 563075** LCSD LCSD Spike %Rec. RPD Added Analyte Result Qualifier Unit %Rec Limits RPD Limit 0.200 Chromium 0.185 mg/L 93 80 - 120 3

Eurofins TestAmerica, Buffalo

12/24/2020

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-179236-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-179236-1 MS

Matrix: Water

Analyte

Chromium

Analysis Batch: 563249

Client Sample ID: MW-14_12102020

Prep Type: Total/NA

Prep Batch: 563075

Limits

%Rec

91

Lab Sample ID: 480-179236-1 MSD

Matrix: Water

Analysis Batch: 563249

Client Sample ID: MW-14_12102020

75 - 125

Prep Type: Total/NA

Prep Batch: 563075 %Rec. **RPD**

Sample Sample Spike MSD MSD Result Qualifier Limit Analyte Added Result Qualifier Unit D %Rec Limits RPD Chromium 0.0094 0.200 0.190 mg/L 90 75 _ 125 20

Spike

babbA

0.200

MS MS

0.191

Result Qualifier

Unit

mg/L

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-562988/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 563018

Prep Type: Total/NA **Prep Batch: 562988**

MB MB

Sample Sample

0.0094

Result Qualifier

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Cyanide, Total 0.010 U 0.010 0.0050 mg/L 12/11/20 19:21 12/12/20 11:29

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-562988/2-A

Matrix: Water

Analysis Batch: 563018

Prep Type: Total/NA

Prep Batch: 562988

Spike LCS LCS %Rec. Analyte Added Qualifier Unit %Rec Limits Result

0.400 0.389 90 - 110 Cyanide, Total mg/L

Lab Sample ID: LCS 480-562988/3-A

Matrix: Water

Analysis Batch: 563018

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 562988

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits

Cyanide, Total 0.250 0.270 108 90 - 110 mg/L

Lab Sample ID: 480-179236-2 MS

Matrix: Water

Analysis Batch: 563018

Client Sample ID: MW-140_12102020

Prep Type: Total/NA Prep Batch: 562988

MS MS Sample Sample Spike %Rec.

Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits 0.0050 0.100 Cyanide, Total JF1 0.0888 F1 mg/L 90 - 110

Lab Sample ID: MB 480-562989/1-A

Matrix: Water

Analysis Batch: 563019

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 562989

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cyanide, Total 0.010 U 0.010 0.0050 mg/L 12/11/20 19:25 12/12/20 12:17

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Analyte

Cyanide, Total

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: LCS 480-562989/2	2-A						Client	Sample	ID: Lab Co		
Matrix: Water									•	ype: To	
Analysis Batch: 563019									•	Batch: 5	62989
			Spike		LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Total			0.250	0.231		mg/L		92	90 - 110		
Lab Sample ID: LCSD 480-562989	/3-A					Clie	ent San	nple ID:	Lab Contro	l Sampl	e Dup
Matrix: Water									Prep 1	ype: To	al/NA
Analysis Batch: 563019									Prep I	Batch: 5	62989
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total			0.250	0.226		mg/L		90	90 - 110	2	15
Lab Sample ID: 480-179236-1 MS							Cli	ent Sam	ple ID: MW	-14_121	02020
Matrix: Water									=	ype: To	
Analysis Batch: 563019									Prep I	3atch: 5	62989
•	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Total	0.010	U F1	0.100	0.0989		mg/L		99	90 - 110		
Lab Sample ID: 480-179236-1 MSI	D						Cli	ent Sam	ple ID: MW	-14 121	02020
Matrix: Water	=						3		-	ype: To	
Analysis Batch: 563019										Batch: 5	

Spike

Added

0.100

Sample Sample

0.010 U F1

Result Qualifier

MSD MSD

0.0894 F1

Result Qualifier

Unit

mg/L

Limit 15

RPD

RPD

10

%Rec.

Limits

90 - 110

%Rec

Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

GC/MS VOA

Analysis Batch: 563012

Client: Parsons Corporation

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-179236-1	MW-14_12102020	Total/NA	Water	8260C	
480-179236-2	MW-140_12102020	Total/NA	Water	8260C	
MB 480-563012/7	Method Blank	Total/NA	Water	8260C	
LCS 480-563012/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 563196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-563196/8	Method Blank	Total/NA	Water	8260C	
LCS 480-563196/5	Lab Control Sample	Total/NA	Water	8260C	
480-179236-1 MS	MW-14_12102020	Total/NA	Water	8260C	
480-179236-1 MSD	MW-14_12102020	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 562867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-179236-2	MW-140_12102020	Total/NA	Water	3510C	
MB 480-562867/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-562867/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 563133

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-179236-2	MW-140_12102020	Total/NA	Water	8270D	562867
MB 480-562867/1-A	Method Blank	Total/NA	Water	8270D	562867
LCS 480-562867/2-A	Lab Control Sample	Total/NA	Water	8270D	562867

Prep Batch: 563320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-179236-1	MW-14_12102020	Total/NA	Water	3510C	
MB 480-563320/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-563320/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-179236-1 MS	MW-14_12102020	Total/NA	Water	3510C	
480-179236-1 MSD	MW-14_12102020	Total/NA	Water	3510C	

Analysis Batch: 563626

Lab Sample ID 480-179236-1	Client Sample ID MW-14 12102020	Prep Type Total/NA	Matrix Water	Method 8270D	Prep Batch 563320
MB 480-563320/1-A	– Method Blank	Total/NA	Water	8270D	563320
LCS 480-563320/2-A	Lab Control Sample	Total/NA	Water	8270D	563320
480-179236-1 MS	MW-14_12102020	Total/NA	Water	8270D	563320
480-179236-1 MSD	MW-14_12102020	Total/NA	Water	8270D	563320

Metals

Prep Batch: 563075

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-179236-1	MW-14_12102020	Total/NA	Water	3005A	
480-179236-2	MW-140_12102020	Total/NA	Water	3005A	
MB 480-563075/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-563075/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-563075/3-A	Lab Control Sample Dup	Total/NA	Water	3005A	
480-179236-1 MS	MW-14_12102020	Total/NA	Water	3005A	

Eurofins TestAmerica, Buffalo

12/24/2020

Page 24 of 31

QC Association Summary

Client: Parsons Corporation

Job ID: 480-179236-1 Project/Site: Honeywell - Tonawanda Plastics

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-179236-1 MSD	MW-14_12102020	Total/NA	Water	3005A	

Analysis Batch: 563249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-179236-1	MW-14_12102020	Total/NA	Water	6010C	563075
480-179236-2	MW-140_12102020	Total/NA	Water	6010C	563075
MB 480-563075/1-A	Method Blank	Total/NA	Water	6010C	563075
LCS 480-563075/2-A	Lab Control Sample	Total/NA	Water	6010C	563075
LCSD 480-563075/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	563075
480-179236-1 MS	MW-14_12102020	Total/NA	Water	6010C	563075
480-179236-1 MSD	MW-14_12102020	Total/NA	Water	6010C	563075

General Chemistry

Prep Batch: 562988

Lab Sample ID 480-179236-2	Client Sample ID MW-140_12102020	Prep Type Total/NA	Matrix Water	Method 9012B	Prep Batch
MB 480-562988/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-562988/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-562988/3-A	Lab Control Sample	Total/NA	Water	9012B	
480-179236-2 MS	MW-140_12102020	Total/NA	Water	9012B	

Prep Batch: 562989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-179236-1	MW-14_12102020	Total/NA	Water	9012B	
MB 480-562989/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-562989/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCSD 480-562989/3-A	Lab Control Sample Dup	Total/NA	Water	9012B	
480-179236-1 MS	MW-14_12102020	Total/NA	Water	9012B	
480-179236-1 MSD	MW-14_12102020	Total/NA	Water	9012B	

Analysis Batch: 563018

г	-					
	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-179236-2	MW-140_12102020	Total/NA	Water	9012B	562988
	MB 480-562988/1-A	Method Blank	Total/NA	Water	9012B	562988
	LCS 480-562988/2-A	Lab Control Sample	Total/NA	Water	9012B	562988
ı	LCS 480-562988/3-A	Lab Control Sample	Total/NA	Water	9012B	562988
	480-179236-2 MS	MW-140_12102020	Total/NA	Water	9012B	562988

Analysis Batch: 563019

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-179236-1	MW-14_12102020	Total/NA	Water	9012B	562989
MB 480-562989/1-A	Method Blank	Total/NA	Water	9012B	562989
LCS 480-562989/2-A	Lab Control Sample	Total/NA	Water	9012B	562989
LCSD 480-562989/3-A	Lab Control Sample Dup	Total/NA	Water	9012B	562989
480-179236-1 MS	MW-14_12102020	Total/NA	Water	9012B	562989
480-179236-1 MSD	MW-14 12102020	Total/NA	Water	9012B	562989

Lab Chronicle

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Client Sample ID: MW-14_12102020

Date Received: 12/10/20 13:00

Lab Sample ID: 480-179236-1 Date Collected: 12/10/20 10:45

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	563012	12/12/20 16:49	RJF	TAL BUF
Total/NA	Prep	3510C			563320	12/15/20 14:54	ATG	TAL BUF
Total/NA	Analysis	8270D		1	563626	12/17/20 13:39	JMM	TAL BUF
Total/NA	Prep	3005A			563075	12/14/20 10:39	ADM	TAL BUF
Total/NA	Analysis	6010C		1	563249	12/14/20 20:10	LMH	TAL BUF
Total/NA	Prep	9012B			562989	12/11/20 19:25	ALT	TAL BUF
Total/NA	Analysis	9012B		1	563019	12/12/20 12:23	CRK	TAL BUF

Client Sample ID: MW-140_12102020

Lab Sample ID: 480-179236-2 Date Collected: 12/10/20 12:01

Matrix: Water

Date Received: 12/10/20 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	563012	12/12/20 17:13	RJF	TAL BUF
Total/NA	Prep	3510C			562867	12/11/20 08:59	JMP	TAL BUF
Total/NA	Analysis	8270D		1	563133	12/15/20 01:32	JMM	TAL BUF
Total/NA	Prep	3005A			563075	12/14/20 10:39	ADM	TAL BUF
Total/NA	Analysis	6010C		1	563249	12/14/20 20:39	LMH	TAL BUF
Total/NA	Prep	9012B			562988	12/11/20 19:21	ALT	TAL BUF
Total/NA	Analysis	9012B		1	563018	12/12/20 12:04	CRK	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Parsons Corporation Job ID: 480-179236-1

Project/Site: Honeywell - Tonawanda Plastics

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-21

•

3

/

Ţ

0

8

10

11

13

14

Method Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Method **Method Description** Laboratory Protocol 8260C Volatile Organic Compounds by GC/MS SW846 TAL BUF SW846 TAL BUF 8270D Semivolatile Organic Compounds (GC/MS) 6010C Metals (ICP) SW846 TAL BUF 9012B Cyanide, Total andor Amenable SW846 TAL BUF 3005A Preparation, Total Metals SW846 TAL BUF 3510C Liquid-Liquid Extraction (Separatory Funnel) SW846 TAL BUF 5030C Purge and Trap SW846 TAL BUF 9012B TAL BUF Cyanide, Total and/or Amenable, Distillation SW846

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

1

Job ID: 480-179236-1

3

4

5

7

10

11

12

14

Sample Summary

Client: Parsons Corporation

Project/Site: Honeywell - Tonawanda Plastics

Job ID: 480-179236-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-179236-1	MW-14_12102020	Water	12/10/20 10:45	12/10/20 13:00	
480-179236-2	MW-140_12102020	Water	12/10/20 12:01	12/10/20 13:00	

3

4

5

7

8

4.0

11

40

1Δ

1001-001-000-00-00-00-00-00-00-00-00-00-		10			-14-000
Client Information	Sampler	Lab PM Schov	Lab PM Schove, John R	Carrier Tracking No(s):	480-152728-33965.1
Client Contact. Mr. Jeff Poulsen	Phone:	E-Mail John.S	E-Mail: John.Schove@Eurofinset.com	Sert	Page: Page 1 of 1
Company: Parsons Corporation			Analysis I	Analysis Requested	# qof
Address 180 I awrence Bell Drive Suite 104	Due Date Requested:				
City. Williamsville State. Zp. NY, 14221	TAT Requested (days):				A - HCI. M - Hexane B - NaOH C - Zh Acetale O - AsNaO2 D - Mtiric Acid P - Na2O4S E - NaHSO4 O - Na2SO3
Phone:	PO# Purchase Order Requested		lo		
Email. jeffrey.poulsen@parsons.com	WO#		(on		J - Di Water
Project Name: Honeywell - Tonawanda Plastics Site:	Project #: 48023001 SSOW#		(Yes or		L-EDA Other:
	Sample	Matrix (wwwster, Smsolid, Owwsterold,	eid Filtered San 300 - PAH Semiy 10C - Metals (ICP 60C - TCL VOCs 12B - Cyanide, To		o to redmuM late
Sample Identification	Sample Date Time G=0	G=grab) en-rissus. AvAir) in Preservation Code.	28 A		Special Instructions/Note:
MW-14-12102020	12/10/22/1045 6	G Water	39		Ms/msD
MW-140-12102020	0/200	Water	3		
		Water			20
		Water			
		Water			
			480-17	480-179236 Chain of Custody	
ant	Poison B Unknown Radic	Radiological	Sample Disposal (A fee may I Return To Client	essed if samples are re	stained longer than 1 month) Archive For Months
Deliverable Requested: I, II, III, IV, Other (specify)	o	ľ	ecial Instructions/QC Requi	sments:	
Empty Kit Relinquished by:	Date	,,,,,,,,,,,,,	Lime.	Method of Shipment.	g
Reinquished by.	12/10/2020 (360)	Company		Date/Time:	Company
Relinquished by	Date/Time;	Company	Received by: X	Date/Time:	7 The Company
Contrado Casal Intrado Casal No					

Job Number: 480-179236-1

Login Number: 179236 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

orcator. Sabada, Brendan B		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.2 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Eurofins TestAmerica, Buffalo