

TABLE 4-1 CURRENT STATUS OF SWMUs, WATERCOURSES & AREAS OF CONCERN REQUIRING FURTHER ASSESSMENT

Sub-Area	Designation	Description	Notes
Slag Fill Sub-A	reas:		
	S-1	Surface Impoundment A	
	S-2	Surface Impoundment B	
	S-3	Surface Impoundment C (HWMU 2)	
	S-4	Surface Impoundment D	
	S-5	Surface Impoundment E	
	S-6	Surface Impoundment F	
Zone 2	S-7	Surface Impoundment G	
	S-8	Surface Impoundment H (empty)	
	S-20	Drying Area for Sludge from Impoundment F	
	S-27	Sludge Disposal Area	
	S-11	Acid Tar Pit South (Landfill K)	Remediated as part of ATP-ECM
	S-22	Acid Tar Pit North (Vacuum Carbonate Blowdown)	Reflectated as part of ATT -EGW
	S-21	Scrap Melter Dust	Remediated under OU-2, residuals relocated to ATP
Zone 3	S-10	Slag Quench Area J	
	S-12	Asbestos Landfill L	
	S-13	Coal Tar Sludge (HWMU 1A)	
	S-14	General Rubble Landfill N	
	S-15	General Rubble Landfill O	
	S-16	Lime Stabilized Spent Pickle Liquor Sludge/Slag Landfill Basin (HWMU 1B)	
	S-17	Vacuum Carbonate Blowdown (Landfill Q)	
	S-18	Lime Dust and Kish Landfill R	
74	S-23	Tar Pit Adjacent to Lime Stabilized SPL Sludge Landfill	
Zone 4	S-24	Acid Tar Pit North of Lime Plant (Agitator Sludge)	Residuals relocated to ATP-ECM
	S-28	Drum Landfill	
	AOC-A	Lead-impacted soild waste/fill within SWMU S-18	
	AOC-B	Lead-impacted hazardous waste/fill within SWMU S-18	Remediated under OU-2, residuals treated and relocated
	AOC-C	Lead-impacted hazardous waste/fill within SWMU S-18	to ATP
	AOC-D	Tar-impacted solid waste slag/fill identified during Steel Winds I utility excavation and CMS	
	AOC-E	Tar-impacted solid waste slag/fill identified during Steel Winds I utility excavation	Excavated and transported off-site for disposal
Zone 5	AOC-F	Tar-Impacted solid waste slag/fill identified during slag reclamation activities	Excavated and transported off-site for disposal
Zone 3	AOC-G	Tar-impacted solid waste slag/fill identified during Steel Winds II Wind Turbine 9 foundation excavation	Excavated and transported on-site for disposal
Coal, Coke, &	Ore Handling &	Storage Sub-Area:	
	S-19	Murphy's Mountain Landfill AA	
	S-25	Landfill / Impoundment under North End of Coal Pile	
Former Petrole	eum Bulk Stora	ge Sub-Area:	
	P-8	Waste Oil Storage Tanks	
	P-74 (A, B, C, & D)	Solid Fuel Mix Storage Piles	
	P-75	Tank Storage Area for No. 6 Fuel Oil and Petroleum Tar	
	АОС-Н	Tar-Impacted solid waste slag/fill identified during Steel Winds II transmission pole installation	Excavated and transported off-site for disposal
	AOC-I	Tar-Impacted solid waste slag/fill identified during Steel Winds II transmission pole installation	Excavated and transported off-site for disposal

CURRENT STATUS OF SWMUs, WATERCOURSES & AREAS OF CONCERN REQUIRING FURTHER ASSESSMENT

Sub-Area	Designation	Description	Notes
ormer Coke	Plant & By-Prod	ucts Facility:	
	P-1	Quench Water Pit, North Station	
	P-2	Quench Water Pit, Arctic Station	
	P-1 Q P-2 Q P-3 Q P-4 Q P-5 Q P-6 P-7 P-7 P-9 P-11 B P-11 B P-11 B P-11A O P-12 S P-18 (A&B) B S-26 Fi Oven Gas Pipeline: P-76 U ar Smokes Creek Si Blasdell Creek Bi Ship Canal G NRWT N	Quench Water Pit, Central Station	
	P-4	Quench Water Pit, A Station	
	P-5	Quench Water Pit, B Station	
	P-6	PA-2: Lime Sludge Settling Basin	
	P-7	PA-2: Abandoned Lime Sludge Settling Basin	
	P-9	PA-3: Abandoned Tar Decanter Sludge Pits	Remediated under OU-2, residuals treated and relocated to ATP
	P-10	PA-3: Contaminated Soil in Area Near Ball Mill	Southern portion of P-10 overlying P-9, remediated unde OU-2 and relocated to ATP
	P-11	Benzol Plant Tank Storage Area	Groundwater final remedy implemented under OU-4.
	P-11A	Old Benzol Plant Tank Storage Area	Source control being completed under ICM for P-11. Final remedy for slag/fill subject of CMS. P-11A added during
	P-12	Spill Cleanup Soil Storage Area	CMS
	P-18 (A&B)	Blast Furnace Cooling Tower and Hot & Cold Wells	Remediated under OU-2, residuals treated and relocated to ATP
	S-26	Fill Area Near Coke Battery No. 8	
0-Inch Coke	Oven Gas Pipeli	ne:	
	P-76	Underground 30-inch diameter cast iron pipeline in buffer zone alone SRWT and Smokes Creek	Remediated under OU-2, residuals treated and relocated to ATP. SWMU added during CMS
Vatercourses	:		
	Smokes Creek	Smokes Creek	Lower Reach Sediments Dredged by Tecumseh under ICM in 2009; Upper Reach Sediments Dredged by DEC 2015.
	Blasdell Creek	Blasdell Creek	
	Ship Canal	Gateway Metroport Ship Canal	
	NRWT	North Return Water Trench	
	SRWT	South Return Water Trench	
alvanizing P	lant Area:		
	P-73 (A&B)	Former Drum Storage Area and Flander's Field	

SWMUs	45
WCs	5
AOCs	9
AOCs TOTAL	9 59

= SWMU or Watercourse added by USEPA per May 17, 2006 letter.

= SWMUs where interim or partial corrective measures have been implements; refer to Notes.

= SWMU/AOC where final corrective measures have been implemented

Definitions:

AOC = Area of Concern

SWMU = Solid Waste Management Unit

HWMU = Hazardous Waste Management Unit NRWT = North Return Water Trench

SRWT = South Return Water Trench

ATP = Acid Tar Pits

TABLE 4-2 SUMMARY OF DREDGE SPOIL DISPOSAL AREA SOIL/FILL ANALYTICAL DATA ¹

					JOIN	WART OF D	KLDGL 3F	OIL DISF	SAL AREA	JOIL/I ILL		1110	AL D/	114															
					Shoreline S	ample Loca	tion, Deptl	h (fbgs), &	Sample Dat	е								Are	ea Site	s Rep	portin	g Sin	nilar	Com	poun	ds			
Parameter ²	CAS No.	Industrial SCOs ³ (mg/kg)	of GW ⁴ (mg/kg)	P-25	P-28 (25.0 - 28.0)	P-29 (18.0 - 20.0)	P-30 (28.0 - 30.0)	P-31 (28.0 - 30.0)	P-32 (23.0 - 24.0)	P-32 (24.0 - 28.0)							Si		urce N ee Note		er ⁵								edge Sediment ⁶ spoil Disposal Site ⁵
				10/06/00	10/10/00	10/11/00	10/12/00	10/23/00	10/23/00	10/23/00	1	2 3	4	5 6	120- 122	126 1	35 138	141	147 148	162	190 19	203	206	217	220 24	1 249	253 25	54	poli Disposai Oile
TCL VOCs (Method 8260B) (mg/kg) 5																													
Benzene	71-43-2	89	0.06			0.0035 J				0.3 J	Х	хх	х		х	П	х х	II	Т	Π	>	x x	х	х	Т	х	П	241, 2	53, 254
Chlorobenzene	108-90-7	1,000	1.1							0.99		х х	Х		Х						>	<					,	x 241, 2	53, 254
Ethylbenzene	100-41-4	780	1							0.41 J	Х	х х	Х		Х		х х	Х	х					Х				241, 2	53
Toluene	108-88-3	1,000	0.7			0.0031 J				0.39 J	х	х х	Х		Х		х х	х			>	<		х		Х		241, 2	53, 254
m-Xylene & p-Xylene	95-47-6	1,000	0.6	0.0053 J	0.14 J	0.0018 J				1.5	х	х х	Х		Х		х х							х					
o-Xylene	136777-61-2	1,000	0.6	0.0028 J		0.0014 J				0.74	Х	х х	Х		Х		х х							Х		Х		241, 2	
Total VOCs (mg/kg)				0.0081	0.14	0.0098	ND			4.33												-						-	NA
TCL SVOCs (Method 8270C) (mg/kg) (PAHs in	BLUE)																												
Acenaphthylene	208-96-8	1,000	98	2.2 J	13 J	0.92	0.75 J	0.13 J	0.029 J	2 J	х	х х	х		Х	T	х х	х				х		х		х		254	
Anthracene	120-12-7	1,000	1,000	3.3 J	16 J	1.7	5.5	0.8 J	0.088 J	14	х	х х	х		х		х	х						х		х		241	
Benzo(a)anthracene	56-55-3	11	1	3.2 J	13 J	3.1 J	4 J	0.6 J	0.16 J	7.9 J	Х	х х	х		х		х х	х				х	х	Х		х		241, N	ote 6
Benzo(a)pyrene	50-32-8	1.1	22	2.5 J	11 J	3.2	2.6 J	0.41 J	0.13 J	5.6 J	х	х х	х		х		х х	х				х	х	х		х		241	
Bis(2-ethylhexyl) phthalate	117-81-7							R	0.055 J		х						Х					Х				Х		241, 2	54
Chrysene	218-01-9	110	1	3.8 J	12 J	3.1 J	3.6 J	0.71 J	0.15 J	7.5 J	х	х х	Х		Х		х х	Х			>	x x	Х	х		Х		241, N	ote 6
1,2-Dichlorobenzene	95-50-1	1,000	1.1					0.44 J	R	1.9 J		Х	Х		Х						>	Κ.		х				241, 2	54
1,4-Dichlorobenzene	106-46-7	250	1.8					0.15 J	R			Х	Х		Х						>	Κ.						241, 2	54
2,4-Dimethylphenol	105-67-9							0.028 J	R			х			Х		х							х		Х		241	
Fluoranthene	206-44-0	1,000	1,000	9.1	33	7.4	10	2 J	0.3 J	26	Х	х х	Х		Х		х х	Х				Х	Х	Х		Х		241, 2	54
Fluorene	86-73-7	1,000	386	2.9 J	24	1.3	4.6	0.7 J	0.04 J	11	Х	х х	Х		Х		х х	Х				Х		Х		Х	+-+		
2-Methylphenol	95-46-7					0.062		R	R			х						1						Х		Х			
Naphthalene	91-20-3	1,000	12	19	140	3.3	0.75 J	2 J	0.13 J	48	Х	х х	Х		Х	Х	х х	Х			>	K X		Х		х		241, 2	
Phenanthrene	85-01-8	1,000	1,000	12	62	5.2	15	2.2 J	0.25 J	38	Х	х х	Х	_	Х		х х	Х		+		Х	Х	Х	_	х		241, 2	54
Phenol	108-95.2	1,000	0.33	0.45 J		0.074		0.12 J	R	40		х	Х	_	-		х х	1	Х	+				Х	_	Х			
Pyrene	129-00-0	1,000	1,000	6.4	25	3.5 J	6.3	1 J	0.23 J	13	Х	х х	Х		Х		х х	Х	_			Х	Х	Х		Х	+	241, N	ote 6
1,2,4-Trichlorobenzene	120-82-1			e e	240	22	E2	0.078 J	R	475					Х		Х												MA
Total SVOCs (mg/kg)				65	349	33	53	11	2	175																		•	NA NA
Total PAHs (mg/kg) ⁷		500		64	349	33	53	11	2	173		-					-					-					-	-	NA
Total and RCRA Metals (Method 6010B/7471A)) (mg/kg)																												
Antimony	7740-36-0			8.2 J	5.4 J	4.3 J	1.5 J			5.4 JB	х	Х	Х		Х		Х				>	(Х	х				241, 24	13
Arsenic	7740-38-2	118	118	28.8	31.6	23.8	10.6			28.1	х	х	Х		Х		х х		х		>	(Х	х	Х			241, 2	53, 254, Note 6
Barium	7740-39-3	10,000	820	88.5	108	89.1	69			109	х		х				х х		х				Х	х					53, 254, Note 6
Cadmium	7740-43-9	60	7.5	8.3 J	2.7	2.5	1.5			4.1	х	х	х		х	_	х х		х		X >	κ .	+	Х	Х			241, 2	53, 254
Calcium	7740-70-2			43200	59000	47300	17600			30400	Х	\perp	\bot		\perp	_	х х	\sqcup	\bot	\sqcup		\perp		Х			,		
Chromium	7740-47-3	6,800		213	158	137	72.3			71.4	Х	_	Х		+	Х			х х	-	X >	-	Х	_	_	х	$\vdash \vdash$		53, 254, Note 6
Lead	7439-92-1	3,900	450	418	159	141	134			235	Х	Х	Х		Х		х х	Х	х х	+	X >	Κ .	+	Х	Х	-	\vdash		53, 254, Note 6
Magnesium	7439-95-4	 5.7	0.72	7900	11500 J	10500 J	7490 J			4650 J	Х	-	+		+		ХХ	+		+		+	Х	-	_		\vdash	254	10 N-4- 0
Mercury	7439-97-5	5.7	0.73	0.19	0.47	0.44	1.6			2.4	+	_	X		Х	-	ХХ	\vdash		+		_	+	X			\vdash		13, Note 6
Nickel	7440-02-0	10,000	130	109 J	50.4	42.4	27.9			17.8	X	Х	Х		Х	-	X X	╁┼	-	╀┤	X X	Κ	_	Х	Х	-	++	241, 24	13, Note 6
Potasium Silver	7440-09-7	6 900		1040	1010	873	605 B			561 B 1.8	X		1		x	-	х х х х	+ +	+	+		_		X X	-		++		
Sodium	7440-22-4 7440-23-5	6,800	8.3	1.4 305 B	1.4 288 B	0.95 266 B	0.44 B 88.7 B			1.8 147 B	X	x	Х	-	X	\vdash	X X	╁┼	+	╂	\vdash	+	X	-	+	-	++	254	
	1440-23-5	 -		300 D	200 D	200 D	00.7 D			14/ D	^						^ X			1 1			_ X	^				204	
General Chemistry	I == =										, ,	-	, ,	-	, ,	-	-	, ,	-	, ,	-	-			1	_	, ,		
Cyanide	57-12-5	10,000	2,000	1.6	1.6	2.2	0.94			2.1	Х	_			+	\vdash	Х	$\downarrow \downarrow$	_	┦┤		4	Х	Х	_		++		
Total Recoverable Phenolics				0.59	0.23	0.073	0.084			0.065	++	Х	Х		+			+	_	+			Х	_	_	-	\vdash		
Chloride				9.9	13.6	33.1	6.2			184	++	_	+		+			+	_	+				_	_	-	\vdash		
Sulfate Total Organia Carban				10000	04000	7.6	20400			20700	++		+		+	Х		\vdash		+		_	1	Х	_		\vdash		
Total Organic Carbon				10900	21300	10800	20400			30700		Х											1						

TABLE 4-2 SUMMARY OF DREDGE SPOIL DISPOSAL AREA SOIL/FILL ANALYTICAL DATA 1

				5	Shoreline S	ample Loc	ation, Depti	n (fbgs), &	Sample Dat	е								Area	Sites I	Repo	rting	Simil	ar Co	mpoı	ınds		
Parameter ²	CAS No.	Industrial SCOs ³ (mg/kg)	Protection of GW ⁴ (mg/kg)	P-25 (20.0 - 22.0)	P-28 (25.0 - 28.0)	P-29 (18.0 - 20.0)	P-30 (28.0 - 30.0)	P-31 (28.0 - 30.0)	P-32 (23.0 - 24.0)	P-32 (24.0 - 28.0)							Site		ce Nur Notes		5						Dredge Sediment ⁶ and Spoil Disposal Site ⁵
		. 5 5/	, , ,	10/06/00	10/10/00	10/11/00	10/12/00	10/23/00	10/23/00	10/23/00	1 2	3	4	5 6	120- 122	26 135	138 1	141 147	7 148 1	62 19	196	203 2	06 217	220	241 249	253 254	and opon Disposar ofte
Tentatively Identified Compounds (SVOCs - M	ethod 8270C)) (mg/kg)																									
Dibenz(a,h)anthracene	53-70-3	1.1	1,000	NI	NI	0.7 NJ	0.82 NJ	0.055 J	NI	NI	х				Х	Х	Х					Х	Х		Х		
n-Hexadecanoic acid	57-10-3			3.9 R	NI	NI	NI	NI	NI	NI													Х				
Aniline	62-53-3			NI	NI	NI	NI	0.16 J	NI	NI					х												241
Acenaphthene	83-32-9	1,000	98	NI	14 NJ	0.81 NJ	4 NJ	0.47 J	0.028 J	6.8 NJ	х	X	х		х	Х	Х					Х	Х		х		
N-Nitrosodiphenylamine	86-30-6			NI	NI	NI	NI	0.17 J	NI	NI					х								Х		х		253
Carbazole	86-74-8			0.62 NJ	8.2 NJ	2.1 NJ	1.4 NJ	0.23 J	NI	NI						Х									х		
Naphthalene, 1-methyl-	90-12-0			1.2 NJ	2 NJ	0.39 NJ	2.2 NJ	NI	NI	2.1 NJ																	
Naphthalene, 2-methyl-	91-57-6			2.2 NJ	4.4 NJ	0.48 NJ	3.9 NJ	0.68 J	NI	2.4 NJ	х	. x	Х		х	Х	Х	Х				Х	Х		х		
Biphenyl	92-52-4			NI	5.3 NJ	NI	NI	NI	NI	NI																	
Ethylbenzylaniline (Benzenemethanamine, N-ethyl-N-pheynl-)	92-59-1			NI	NI	NI	5.3 NJ	NI	NI	8.7 NJ																	
4,4'-Methylenebis(N,N-dimethylbenzenamine), common name - Michler's Base	101-61-1			NI	NI	NI	1.3 NJ	NI	NI	NI								see	Note 9								241
Dibenzofuran	132-64-9	1,000	210	1.2 NJ	15 NJ	0.71 NJ	2.5 NJ	0.32 J	NI	NI	хх	x	х			х	х					х	х		х		Note 6
Benzo(ghi)perylene	191-24-2	1,000	1,000	2.4 NJ	8.4 NJ	0.95 NJ	1.3 NJ	0.11 J	0.06 J	NI	×	: x	х		х	х	х	х	1 1				х х	1 1	х		Note 6
Indeno(1,2,3-cd)pyrene	193-39-5	11	8.2	1.1 NJ	8.7 NJ	1.7 NJ	1.4 NJ	0.13 J	0.062 J	NI	хх	х	х		х	х	х					х	х		х		Note 6
Benzo(b)fluoranthene	205-99-2	11	1.7	1.2 NJ	9.2 NJ	5.3 NJ	2 NJ	NI	0.097 J	NI	X	: x	х		х	х	х	х	1 1			х	хх		х		241. Note 6
Benzo(k)fluoranthene	207-08-9	110	1.7	NI	10 NJ	7.4 NJ	2.3 NJ	0.65 J	0.13 J	3.8 NJ	Х	: x	х		х	х	х	х				х	хх		х		241, Note 6
11H-Benzo(b)fluorene	243-17-4			NI	NI	0.22 NJ	NI	NI	NI	NI																	
Naphthalene, 1,5-dimethyl-	571-91-9			NI	NI	NI	2.3 NJ	NI	NI	NI																	
Tentatively Identified Compounds (SVOCs - M	ethod 8270C)) (mg/kg)																									
Naphthalene, 2,6-dimethyl-	581-42-0			NI	NI	NI	2 NJ	NI	NI	NI																	
Benzenamine, 4,4',4"-methyldynetris[N,N-dimethyl]	603-48-5			NI	NI	NI	NI	NI	NI	6.7 NJ																	
Hexadecane, 2,6,10,14-tetramethyl-	638-36-8			8.7 NJ	NI	NI	NI	NI	NI	NI																	
Naphthalene, 1-ethyl	1127-76-0			NI	NI	NI	2.4 NJ	NI	NI	NI																	
Benzene, 1,1'-(butenylidene)bis-	1726-14-3			4.2 NJ	NI	NI	NI	NI	NI	NI							1 1		1 1	1							
Pentadecane, 2,6,10.14-tetramethyl-	1921-70-6			NI	NI	1.2 NJ	NI	NI	NI	NI							1 1		1 1	1							
Cyclic oclaatomic sulfur	10544-50-0			3.7 NJ	NI	NI	NI	NI	0.18 NJ	NI																	
Benzene, 2,4-dimethyl-1-(phenylmethyl)-	28122-28-3			23 NJ	NI	NI	NI	NI	NI	NI																	
Unknown				6.5 J	7.6 J	2.9 J	4 J	1.9 J	NI	12 J																	
Unknown Alkane				NI	17 J	5.7 J	NI	1.2 J	NI	20 J																	
Unknown Branched Alkane				NI	NI	1.5 J	6 J	1.8 J	NI	31 J																	
Unknown Cycloalkane				4.4 J	5.3 J	NI	2 J	NI	NI	2.3 J											Ì						
Unknown Organic Acid				NI	NI	0.16 J	NI	NI	0.14 J	NI																	
Unknown PAH				4.1 J	7 J	3.3 J	2.9 J	0.33 J	NI	NI																	
Unknown Straight Chain Alkane				7.6 J	NI	2.3 J	3.8 J	NI	NI	NI																	
Unknown Substituted Benzene				6.5 J	7.9 J	NI	NI	1.2 J	NI	NI																	
Unknown Substituted Naphthalene				29 J	15 J	NI	4.9 J	0.64 J	NI	NI																	

- 1. Analytical results taken from *Investigation of Dredge Spoils Dumping at Bethlehem Steel Corporation's Lackawanna, New York Facility*, URS Corporation, January 2001, revised October 2002.

 2. Only those VOC and SVOC parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- 3. Values per NYSDEC 6NYCRR Part 375 Restricted Use Industrial Soil Cleanup Objectives (December 2006).
- 4. Values per NYSDEC 6NYCRR Part 375 Restricted Use Protection of Groundwater Soil Cleanup Objectives (December 2006).
- 5. Site number as identified in Preliminary Evaluation of Chemical Migration to Groundwater and the Niagara River from Selected Waste-Disposal Sites, USGS, 1983, E.J. Koszalka, J.E. Paschal, Jr., T.S. Miller, and P.B. Duran. Site identification is listed below.
- 6. Analytical Test Locations in the Buffalo River and Harbor as identified in Contaminated sediment in the Buffalo River area of concern historical trends and current conditions, 1996, K.N. Irvine, K.M Frothingham, M.C. Rossi, S. Pickard, J. Atkinson, T. Bajak.
- 7. The Total PAH SCO was adapted from Commissioner Policy CP 51/Soil Cleanup Guidance, dated October 21, 2010. This was the basis for determining whether significant concentrations of PAHs were present. Individual SVOC ISCOs were not used.
- A site-specific action level of 118 mg/kg was developed for the CMS Area; see Appendix H.
 Aromatic Amines In and Near the Buffalo River, ACS Volume 14, Number 9, September 1980, Charles R. Nelson and Ronald A. Hites.
- 10. Former boring/piezometer locations are presented on Plate 4-1.

TABLE 4-2 SUMMARY OF DREDGE SPOIL DISPOSAL AREA SOIL/FILL ANALYTICAL DATA 1

				5	Shoreline S	ample Loca	ation, Depth	n (fbgs), & S	Sample Dat	е	Area Sites Reporting Similar Compounds	
Parameter ²	CAS No.	_	Protection of GW ⁴ (mg/kg)	P-25	P-28 (25.0 - 28.0)	P-29 (18.0 - 20.0)	P-30 (28.0 - 30.0)	P-31 (28.0 - 30.0)	P-32 (23.0 - 24.0)	P-32 (24.0 - 28.0)	Site Source Number ⁵ (see Notes)	Dredge Sediment ⁶
		(mg/ng)	(1119/119)	10/06/00	10/10/00	10/11/00	10/12/00	10/23/00	10/23/00	10/23/00	1 2 3 4 5 6 120 126 135 138 141 147 148 162 190 196 203 206 217 220 241 249 253 254	and Spoil Disposal Site ⁵

Data Qualifiers:

B = The concentration is below the contract required detection limit, but greater than the instrument detection limit.

J = The associated numerical value is an estimation.

NA = Not analyzed.

ND = The analyte was not detected.

NI = Not identified as a tentatively identified compound in the sample

NJ = the analyte has been tentatively identified. The associated concentration is an estimation.

R = Results were rejected. The presence or absence of the analyte cannot be verified.

Color Code:

BOLD	
BOLD	
BOLD	

= Result exceeds Industrial SCO

= Result exceeds Protection of Groundwater SCO

= Result exceeds Industrial SCO and Protection of Groundwater SCO

Dredge Spoil & Hazardous Waste Disposal Sites in the Buffalo Area:

- 1. Airco Alloys (ChemCore, Inc.) NYSDEC 932001
- 2. Fourth Street MGP Site NYSDEC 915167
- 3. Iroquois Gas / Westwood Pharm. Terrestrial Site NYSDEC 915 190. Lehigh Valley Railroad Landfill NYSDEC 915781
- 5. MarCon Erectors Site NYSDEC 915173
- 6. Shenango Steel Site NYSDEC 915172
- 120-122. Buffalo Color Sites NYSDEC 915012-a, b, c
- 126. Dunlop Tire and Rubber Site NYSDEC 915018
- 135. Hanna Furnace Site NYSDEC 915029
- 138. McNaughton Brook Site NYSDEC 915034
- 141. Mobil Oil Corporation Site NYSDEC 915040
- 147. Ramco Steel Site NYSDEC 915046

- 148. Former Republic Steel (Marilla Street Landfill) NYSDEC 915047
- 162. Alltift Landfill Site NYSDEC 915054
- 4. Iroquois Gas / Westwood Pharm. Riparian Site NYSDEC 91514 196. Niagara Frontier Port Authority (Buffalo Outer Harbor) NYSDEC 915026
 - 203. Squaw Island Landfill NYSDEC 915052
 - 206. Tifft Farm Nature Preserve Site NYSDEC 915072
 - 217. Donner-Hanna Coke Company Site NYSDEC 915017
 - 220. West Seneca Landfill & Transfer Station Site NYSDEC 915039
 - 241. Times Beach Containment Site NYSDEC 915080
 - 249. Allied Chemical (Hurwitz-Ranne) Hopkins Street Site NYSDEC 915120
 - 253. Small Boat Harbor Containment Site NYSDEC 915127
 - 254. USACE Buffalo Harbor Containment Site

TABLE 4-3 SURFACE AND SUBSURFACE SOIL/FILL CONTAINING PARAMETERS AT CONCENTRATIONS EXCEEDING PART 375 INDUSTRIAL SCOS

		VC)Cs								(PA	SV0 AHs i		ED)										Me	tals					Otl	her	
Groundwater Discharge Subarea	Benzene	Ethylbenzene	Toluene	Xylenes, total	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene		Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Arsenic	Barium	Cadmium	Lead	Nickel	Mercury	Nickel	Selenium	Cyanide	TRP	TCLP	PAHs > 500
DSA 2A																																
S-1								•	•	•	•	•	•		•		•	•	•	•												•
S-2																																
S-3 (HWMU 2)																								•								
S-4 (portion)																																
S-5																		O														0
S-6																																
S-7/S-20																																
S-8 (portion) - empty									•																							
S-11 (portion)																																
S-21																																
S-27																														-	m	H
DSA 2B			<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>			<u> </u>			<u> </u>	I				I				<u> </u>						
S-4 (portion)				Π	Ι																									·		
S-8 (portion) - empty					H				•																						H	\Box
S-11 (portion)																														-	m	H
S-22					H																										H	\Box
Localized Impact (MWS-02)																																
DSA 3A						<u> </u>					<u> </u>			<u> </u>			<u> </u>									<u> </u>						
P-8								•		•			•				•	O								•						
S-24 (NFA)																																
P-74D								•	•	•	•	•	•				•									•						•
P-75 (portion)						0	O								0	O		0	O	O											O	
DSA 4A						<u> </u>					<u> </u>			<u> </u>			<u> </u>									<u> </u>						
P-74 (A, B, & C)								•	•	•	•	•	•				•									•						•
P-75 (portion)						O	O								O	O		O	O	O											O	
S-10									O																							
S-12 ¹																																
S-13 (HWMU 1A) ²																																
S-14								O		0	0	O	0		0	O	0	O	O	O												О
S-15																																
S-16 (HWMU 1B) ³																																
S-17				İ					0												ľ					0						
S-18								O																•							•	
S-19																																
S-23						O	O			O	0	O			0	O	0	O	O	O											O	О
S-28				l					0																							
Localized Impact (MWN-02 and MWN-05B)																																

SURFACE AND SUBSURFACE SOIL/FILL CONTAINING PARAMETERS AT CONCENTRATIONS **EXCEEDING PART 375 INDUSTRIAL SCOs**

		VC)Cs								(P/		OCs in RE	ED)										Me	tals					Otl	her	
Groundwater Discharge Subarea	Benzene	Ethylbenzene	Toluene	Xylenes, total	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Arsenic	Barium	Cadmium	Lead	Nickel	Mercury	Nickel	Selenium	Cyanide	TRP	TCLP	PAHs > 500
DSA 4B																																
S-25																																
S-26 (portion)									O																							
DSA 5																																
P-7								•	•	•			•																			
P-9																															O	
P-10								•	•	•							•															•
P-11	O		0	0														O														O
P-11A ⁴																																
P-12	O		0	0														O														O
P-18 (A and B)								0	0				O											O							O	
S-26 (portion)									O																							

Notes:

- 1. RFI: Part V SWMU Assessment Report for SWMU S-12 is an asbestos landfill only.
- 2. RFI: Part V SWMU Assessment Report for SWMU S-13 (HWMU 1A) did not report surface/subsurface soil/fill results as this is a closed landfill.
- 3. RFI: Part V SWMU Assessment Report for SWMU S-16 (HWMU 1B) did not report surface soil/fill results as this is a closed landfill. Subsurface results were presented for total metals only, no exceedances of the Part 375 ISCO were reported.

sco

4. Soil data associated with SWMU P-11A was not collected during the RFI or CMS; COCs associated with this SWMU are obtained from groundwater impacts identified on Table 4-13 in the vicinity of this SWMU.

Symbol Code:

•	= Surface soil/fill exceeds Part 375 Industrial SCO
0	= Subsurface soil/fill exceeds Part 375 Industrial SCO
	= Both surface and subsurface soil/fill exceeds Part 375 Industrial

References:

- 1. RFI: Part V SWMU Assessment Report for SWMU Group SFA-1 (SWMUs S-1, S-2, S-4, S-5, S-6, S-7/S-20, S-27).
- RFI: Part V SWMU Assessment Report for SWMU S-3.
- 3. RFI: Part V SWMU Assessment Report for SWMU S-8.
- 4. RFI: Part V SWMU Assessment Report for SWMU S-10.
 5. RFI: Part V SWMU Assessment Report for SWMU S-11.
 6. RFI: Part V SWMU Assessment Report for SWMU S-13.

- RFI: Part V SWMU Assessment Report for SWMU S-14 and CMS analytical data from Table 4-3 of the CMS Report.
- RFI: Part V SWMU Assessment Report for SWMU S-15.
- RFI: Part V SWMU Assessment Report for SWMU S-16.
 CMS Report (December 2011) for SWMU S-16 and 23; Table 4-5, subsurface SWMU Material COPCs.
- 11. RFI: Part V SWMU Assessment Report for SWMU S-17.
- 12. RFI: Part V SWMU Assessment Report for SWMU S-18 and CMS analytical data from Table 4-6 of the CMS Report.
- RFI: Part V SWMU Assessment Report for SWMU S-19.
 RFI: Part V SWMU Assessment Report for SWMU S-21.
- 15. RFI: Part V SWMU Assessment Report for SWMU S-22.
- 16. RFI: Part V SWMU Assessment Report for SWMU S-23 and CMS analytical data from Table 4-5 of the CMS Report.
- 17. RFI: Part V SWMU Assessment Report for SWMU S-24.
 18. RFI: Part V SWMU Assessment Report for SWMU S-25.
- 19. RFI: Part V SWMU Assessment Report for SWMU S-26 and CMS analytcial data from Table 4-15 of the CMS Report.
- 20. RFI: Part VI SWMU Assessment Report for SWMU P-18 and CMS analytical data from Table 4-14 of the CMS Report.

 22. RFI: Part VI SWMU Assessment Report for SWMU P-74, 75, and 8 (Tank Farm) and CMS analytical data from Table 4-9 of the CMS Report.
- 23. RFI: Part VI SWMU Assessment Report for SWMUs P-1 thru P-5.
- RFI: Part VI SWMU Assessment Report for SWMU P-6 and 7.
 CMS Report (December 2011) for SWMU P-7 and P-9 and CMS analytical data from Table 4-12 of the CMS Report.
- 26. RFI: Part VI SWMU Assessment Report for SWMU P-9 and P-10.
- 27. RFI: Part VI SWMU Assessment Report for SWMU P-11.
- 28. RFI: Part VI SWMU Assessment Report for SWMU P-12.

TABLE 4-4
SUMMARY OF SWMU S-14 TEST PIT LOCATIONS

	Test	Pit Dimen	sions		Visually	Olfactory	Interval of Observed	Maximum		Analysis &	Depth Interval		Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Soil/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	SVOC BN (Only) 8270	TCL VOCs 8260	TAL Metals	Interval (fbgs)	(ASTM D2488: Visual-Manual Procedure)
Test Pit Locati	ions												
S14-TP-01	16.0	3.5	16.5	12/20/10	Yes	Yes	3.0 - 4.5 fbgs	10.1	Yes			3-5 fbgs	O.0-16.5 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel cable, plastic sheeting, white soft possible lime pile at south end of test pit.
S14-TP-02	19.0	7.0	16.5	12/20/10	Yes	Yes	3.0 - 5.0 fbgs 13.0 - 14.0 fbgs	28.3 53.1	Yes	Yes		3-5 fbgs 5-13 fbgs 13-14 fbgs	0.0-16.5 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel cable, plastic sheeting, very hard upper 4.0 fbgs, test pit located next to steel debris piles.
S14-TP-2A	22.0	4.0	19.0	12/21/10	Yes	Yes	6-7 fbgs	None	Yes	Yes		6-7 fbgs 7-9 fbgs	0.0-16.5 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel cable, plastic sheeting, medium dense to dense.
S14-TP-03	18.0	8.0	15.0	12/20/10	No	Yes	0.0 - 15.0 fbgs	3.0	Yes		Yes	0.0-15.0 fbgs	0.0-15.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel cable, piping and I-beams, test pit located next to steel debris piles.
S14-TP-04	19.0	5.0	17.0	12/20/10	No	No	None	None	Yes		Yes	0.0-17.0 fbgs	0.0-17.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, at 10.0 fbgs hard slag layer 1.0-foot thick, test pit located next to steel/fill debris piles.
S14-TP-05	20.0	6.0	18.0	12/20/10	No	Yes	8.0-10.0 fgbs	21.5	Yes	Yes		8.0-10-0 fbgs 10.0-12.0 fbgs	0.0-18.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, at 6.0-7.0 fbgs hard slag layer, test pit located next to steel/fill debris piles.
S14-TP-05A	21.0	12.0	16.0	12/21/10	No	No	None	None	Yes	Yes		0.0-16.0 fbgs	0.0-16.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel and wood debris, at 6.0-7.0 fbgs hard slag layer 1.0-foot thick, test pit located next to steel/fill debris piles.
S14-TP-06	19.0	6.0	16.0	12/21/10	No	No	None	None	Yes		Yes	0.0 - 16.0 fbgs	0.0-16.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel and wood debris.
S14-TP-08	19.0	4.5	18.0	12/21/10	No	No	None	None			Yes	0.0-18.0 fbgs	0.0-16.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel and wood debris, medium dense.
S14-TP-09	20.0	4.5	16.5	12/21/10	No	No	None	None			Yes	0.0-16.5	0.0-16.5.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel and wood debris, medium dense.

1. Test pit locations are shown on Plate 4-4.

Definitions

fbgs = feet below ground surface
PID = MiniRae photoionization detector equipped with a 10.6 eV lamp
ppm = parts per million

TABLE 4-5
SUMMARY OF SWMU S-14 SLAG/FILL ANALYTICAL DATA

							CMS	Sample Locat	ion. Depth (fb	gs). & Sample	e Date								RFI Sample	Location. De	pth (fbgs), & S	Sample Date		
1	Industrial	S14-TP-01	S14-TP-02	S14-TP-02	S14-TP-02	S14-TP-02	S14-TP-02A	S14-TP-02A	S14-TP-03	S14-TP-04	S14-TP-05	S14-TP-05	S14-TP-05A	S14-TP-06	S14-TP-08	S14-TP-09	S14-1	S14-1C	S14-1G	S14-2	S14-2C	S14-2G	S14-3	S14-4
Parameter '	SCOs ² (mg/kg)	(3.0 - 5.0)	(3.0 - 5.0)	(5.0 - 13.0)	(13.0 - 14.0)	(14.0 - 16.0)	(6.0 - 7.0)	(7.0 - 9.0)	(0.0 - 15.0)	(0.0 - 17.0)	(8.0 - 10.0)	(10.0 - 12.0)	(0.0 - 16.0)	(0.0 - 16.0)	(0.0 - 18.0)	(0.0 - 16.5)	(0-0.5')	(0-15.8')	(6-8')	(0-0.5')	(0-30')	(4-6')	(0-0.5')	(0-0.5')
		12/20/10	12/20/10	12/20/10	12/20/10	12/20/10	12/21/10	12/21/10	12/20/10	12/20/10	12/20/10	12/20/10	12/21/10	12/21/10	12/21/10	12/21/10	02/08/95	09/05/95	09/05/95	09/05/95	09/07/95	09/07/95	02/08/95	02/08/95
TCL VOCs (Method 8260B) (m	1	T	1			I	I			I					I	1		I	T	I	1	l		
Acetone	1,000	0.14 J	0.14 J	0.0065 J	0.29 J	ND	0.61	0.015 J			0.14 J	ND	ND				ND		ND	ND		ND	ND	ND
Benzene	89	0.046 J	0.046 J	ND	0.091	ND	0.053 J	ND			ND	ND	ND				ND		0.087	ND		1.3	1.3	0.35
Carbon disulfide		0.048 J	0.048 J	ND	ND	ND	ND	ND			ND	ND	ND				ND		ND	ND		0.006	ND	ND
1,2-Dichlorobenzene	1,000	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND				ND		ND	ND		ND	ND	ND
2-Butanone	1,000	0.13 J	ND	ND	0.16 J	ND	0.28	ND			ND	ND	ND				ND		ND	ND		ND	ND	ND
Cyclohexane		ND	0.13 J	ND	ND	ND	ND	ND			ND	ND	ND				ND		ND	ND		ND	ND	ND
Ethylbenzene	780	0.015 J	0.015 J	ND	0.068	ND	0.13	ND			ND	ND	ND				ND		0.13	ND		0.037	ND	ND
Isopropylbenzene		ND	ND	ND	0.017 J	ND	0.02 J	ND			ND	ND	ND	-			ND		ND	ND		ND	ND	ND
Methylene chloride	1,000	0.1 B	0.1 B	0.012 B	0.11 B	0.066 B	0.24 B	0.026 B			0.074 B	0.063 B	0.028 B				0.008		ND	ND		ND	0.043	0.009
Methyl Ethyl Ketone	1,000	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND				ND		0.045	ND		0.029	ND	ND
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND			ND	ND	ND				ND		ND	ND		ND	ND	ND
Methyl Acetate		ND	ND	ND	ND	ND	ND	ND			ND	ND	ND				ND		ND	ND		ND	ND	ND
4-Methyl-2-pentanone		ND	ND	ND	0.39	ND	ND	ND			ND	ND	ND				ND		ND	ND		ND	ND	ND
Styrene		ND	ND	ND	ND	ND	ND	ND			0.16	ND	ND				ND		ND	ND		ND	ND	ND
Tetrachloroethene	300	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND				ND		ND	ND		ND	ND	ND
Trichloroethylene	400	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND				ND		ND	ND		0.003	ND	ND
Toluene	1,000	0.069	0.069	ND	ND	0.015 J	0.17	ND			0.027 J	ND	ND				ND		0.52	ND		2.7	ND	ND
Xylenes, Total	1,000	0.27	0.27	ND	ND	0.069 J	0.42	ND			0.08 J	ND	ND				ND		3.5	ND		0.61	ND	ND
Total VOCs (mg/kg)		0.82	0.82	0.019	1.1	0.15	1.9	0.041	NA	NA	0.48	0.063	0.028	NA	NA	NA	0.0080	NA	4.3	ND	NA	4.7	1.3	0.40
TCL SVOCs (Method 8270C) (mg/kg) (PAHs	in BLUE)																						
Acenaphthene	1,000	100 DB	1.8 D	3.6 DJ	100 D	0.93 DJ	410 D	ND	1.2 DJ	1.8 DJ	ND	ND	0.077 J				ND	5.6		0.75	0	NA	ND	ND
Acenaphthylene	1,000	970 DB	2 DB	29 DB	330 DB	5.6 DB	31 D	ND	16 DB	1.1 DJ	1.2 DJB	0.076 DJ	0.14 J				ND	32		ND	0.29	NA	ND	ND
Anthracene	1,000	900 D	3.6 D	34 D	540 D	6.6 D	900 D	ND	16 D	4 D	ND	ND	0.49				ND	26		1.2	0.52	NA	0.16	0.1
Benzo(a)anthracene	11	810 D	6.7 D	110 D	620 D	17 D	990 D	ND	51 D	22 D	1.4 DJ	0.076 DJ	0.79 DJ				0.33	30		2.9	3	NA	0.4	0.43
Benzo(a)pyrene	1.1	690 D	7.7 D	150 D	660 D	20 D	840 D	ND	53 D	25 D	ND	ND	0.88 DJ				0.29	27		1.9	4.8	NA	0.29	0.41
Benzo(b)fluoranthene	11	680 D	7.1 D	110 D	610 D	18 D	940 D	ND	56 D	31 D	ND	ND	1.3				0.52	27		3.5	5.9	NA	0.68	0.68
Benzo(ghi)perylene	1,000	ND	2.5 D	28 D	140 D	8 D	250 D	ND	19 D	11 D	ND	ND	0.45				0.16	15		1.3	3.8	NA	0.42	0.34
Benzo(k)fluoranthene	110	350 DJ	4 D	59 D	340 D	9.2 D	210 D	ND	20 D	12 D	ND	ND	0.38				0.25	20		0.73	2.8	NA	0.15	0.26
Biphenyl		ND	0.63 DJ	2 DJ	170 D	1.2 DJ	69 D	ND	1.7 DJ	ND	ND	ND	0.17 J				ND	ND		ND	ND	NA	ND	ND
Bis(2-ethylhexyl) phthalate		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19 BJ				0.33	ND		ND	ND	NA	ND	ND
Carbazole		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	ND		ND	ND	NA	ND	ND
2-Chloronaphthalene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	ND		ND	ND	NA	ND	ND
Chrysene	110	760 D	6.9 D	91 D	600 D	16 D	780 D	ND	47 D	27 D	ND	0.057 DJ	0.97 DJ				0.38	28		2.5	3.6	NA	0.45	0.48
Dibenz(a,h)anthracene	1.1	ND	0.77 DJ	11 D	59 D	ND	110 D	ND	6.7 D	3.4 D	ND	ND	0.14 J				ND	3.5		0.27	0.8	NA	0.091	ND
2,4-Dimethylphenol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	ND		ND	ND	NA	ND	ND
Dibenzofuran	1,000	850 DB	2.7 DB	10 DB	680 DB	5 DB	400 D	ND	7.8 DB	0.94 DJ	1.4 DJ	ND	0.5				ND	ND		ND	ND	NA	ND	ND
2,4-Dintrotoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	ND		ND	ND	NA	ND	ND
Fluoranthene	1,000	2200 D	15 D	240 D	1800 D	31 D	2200 D	ND	89 D	55 D	1.4 DJ	0.076 DJ	2				0.48	79		4.1	3.4	NA	0.4	0.65
Fluorene	1,000	1100 D	3.8 D	21 D	860 D	5.7 D	610 D	ND	5.5 D	1.4 DJ	ND	ND	0.062 J				ND	ND		0.55	0.5	NA	ND	ND
Indeno(1,2,3-cd)pyrene	11	ND	2.6 D	30 D	160 D	7.9 D	270 D	ND	20 D	11 D	ND	ND	0.41				0.16	17		1.4	3.8	NA	0.32	0.33
2-Methylphenol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	ND		ND	ND	NA NA	ND	ND
4-Methylphenol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	ND		ND	ND	NA NA	ND	ND
2-Methylnaphthalene		ND	3.1 DB	7.9 DB	710 DB	5.5 DB	320 D	ND	6.4 D	0.29 DJ	19 DJB	0.1 DJ	1				ND	ND		ND	ND	NA NA	ND	ND
Naphthalene	1,000	5100 DB	19 DB	34 DB	5600 DB	3.5 DB	690 D	ND	25 DB	1.1 DJ	ND	5.1 D12	3				0.13	1400		0.75	5	NA NA	0.2	0.18
Phenanthrene	1,000	4000 DB	16 DB	100 DB	3200 DB	29 DB	2900 D	ND	58 DB	30 D	3.9 DJB	0.085 DJ	2.7				0.13	130		3.7	2.5	NA NA	0.75	0.18
Pyrene	1,000	1500 D	12 D08	300 D	1500 D	29 DB 28 D	1800 D	ND	80 D	43 D	ND	0.085 DJ	1.5				0.23	56		3.4	3.8	NA NA	0.75	0.42
		20010	12 000	1371	18679	246	14720	0	579	281	28.3	5.66	17.1	NA NA	NA NA	NA NA	3.65	1896	NA NA	29.0	44.5	NA NA	4.73	4.82
Total SVOCs (mg/kg) 3								0																
Total PAHs (mg/kg) ³	500	19160	115	1359	17829	239	14251	U	570	280	26.9	5.66	16.3	NA	NA	NA	3.32	1896	NA	29.0	44.5	NA	4.73	4.82

TABLE 4-5 SUMMARY OF SWMU S-14 SLAG/FILL ANALYTICAL DATA

							CMS	Sample Locat	ion, Depth (fb	ogs), & Sampl	e Date								RFI Sample	Location, De	pth (fbgs), & S	Sample Date		
Parameter ¹	Industrial SCOs ² (mg/kg)	S14-TP-01 (3.0 - 5.0)	S14-TP-02 (3.0 - 5.0)	S14-TP-02 (5.0 - 13.0)	S14-TP-02 (13.0 - 14.0)	S14-TP-02 (14.0 - 16.0)	S14-TP-02A (6.0 - 7.0)	S14-TP-02A (7.0 - 9.0)	S14-TP-03 (0.0 - 15.0)	S14-TP-04 (0.0 - 17.0)	S14-TP-05 (8.0 - 10.0)	S14-TP-05 (10.0 - 12.0)	S14-TP-05A (0.0 - 16.0)	S14-TP-06 (0.0 - 16.0)	S14-TP-08 (0.0 - 18.0)	S14-TP-09 (0.0 - 16.5)	S14-1 (0-0.5')	S14-1C (0-15.8')	S14-1G (6-8')	S14-2 (0-0.5')	S14-2C (0-30')	S14-2G (4-6')	S14-3 (0-0.5')	S14-4 (0-0.5')
	(99)	12/20/10	12/20/10	12/20/10	12/20/10	12/20/10	12/21/10	12/21/10	12/20/10	12/20/10	12/20/10	12/20/10	12/21/10	12/21/10	12/21/10	12/21/10	02/08/95	09/05/95	09/05/95	09/05/95	09/07/95	09/07/95	02/08/95	02/08/95
Total and RCRA Metals (Me	thod 6010B/747	1A) (mg/kg)																						
Aluminum									6930	8780				8770	9060	7530							ND	ND
Antimony									ND	ND				ND	ND	ND	12.5	1.5		44.7	4		19.3	34.4
Arsenic ⁵	118								18.6	33.9				17.4	12.1	15.2	7.5	12.8		6.1	11.5		4.2	11.3
Barium	10,000								68.8	114				143	77	92.4	42.4	64.8		57.2	84		29	208
Beryllium	2,700				-				0.925	1.23				1.04	1.06	0.852	_						ND	ND
Cadmium	60								3.93	5.89				1.39	1.89	2.72	10.1	7.4		2.1	9		ND	1.2
Calcium									46000	49000 D				64000 D	32300	38400	19800			41400			35400	53400
Chromium	6,800				-				136	201				62.4	46.9	68	85.6 R	149		156 R	180		130 R	175 R
Cobalt									6.88	10.4				5.09	8.77	10.8							ND	ND
Copper	10,000				-				146	208				57.5	162	384	_						ND	ND
Iron									68000 D	56700				39400	46000	63500 D	-						ND	ND
Lead	3,900								386	432				266	303	330	911	109		157	253		20.7	109
Magnesium					-				10900	17200				9180	7150	7530	_						ND	ND
Maganese	10,000								3480	4220 D				3290 D	1990	2770 D	-						ND	ND
Mercury	5.7				-				0.482	0.568				0.177	0.111	0.443	0.31	0.36		0.28	0.14		0.16	0.29
Nickel	10,000								231	254	-			29.1	42	27	58.6	135		26.6	143		12.2	130
Potasium									724	653				2010	1150	1030	ND			727			ND	699
Selenium	6,800.0								ND	ND	-			ND	ND	ND							ND	ND
Silver	6,800								ND	1.11				ND	ND	0.636	3.3	4.7			4.9		ND	ND
Sodium									283	233	-			676	364	245	ND			632			ND	ND
Vanadium									81.1	81.6	-			44.2	35.9	75.6							ND	ND
Zinc	10,000								2260 D	3760 D				383	1110	686							ND	ND

- Only those VOC and SVOC parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
 Values per NYSDEC 6NYCRR Part 375 Industrial Soil Cleanup Objectives (December 2006).
 The total PAH SCO was adapted from Commissioner Policy CP-51/Soil Cleanup Guidance, dated October 21, 2010. This was the basis for determining whether significant concentrations of PAHs were present. Individual SVOC ISCOs were not used.
 Boring locations are presented on Plate 4-4.
 Site-specific SCO for arsenic.

Definitions:

- B = Analyte was detected in the associated Method Blank.
 D = Compound was analyzed at the secondary dilution factor.
- J = Estimated Value.
 "-- " = sample was not analyzed for this parameter.
 - BOLD
- = Total PAHs exceeds CP-51 SCO. = Result exceeds the Part 375 Industrial SCO or site-specific SCO

TABLE 4-6
SUMMARY OF SWMU S-23 & AOC-D SLAG/FILL ANALYTICAL DATA

							Sample	Location, Dept	h (fbgs), Date,	and Unit					
	lu di catulal			R	FI						CN	//S			
Parameter ¹	Industrial SCOs ² (mg/kg)	S23-1 (4-6)	S23-1 (0-46)	\$23-2 (0-41.5)	S23-2 (4-6)	AMEC S23A (0-0.5)	AMEC S23B (0-0.5)	S23-TP-01 (17.0-18.0)	S23-TP-02 (5.0-14.0)	S23-TP-04 (0.0 - 15.0)	S23-TP-06 (0.0 - 13.0)	S23-TP-08 (6.0 - 11.0)	S23-TP-15 (17.0-18.0)	S23-TP-18 (0.0-14.0)	Conduit Trench Soil
		06/09/94	06/10/94	06/13/94	06/13/94	06/06/01	06/06/01	01/03/11	01/03/11	12/22/10	12/22/10	12/23/10	01/06/11	01/07/11	05/08/07
		SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	AOC-D	AOC-D	AOC-D & E
TCL VOCs (Method 8260B) (mg/kg)		•		T									1		
Acetone	1,000	ND	NA	NA	ND	ND	ND	0.04 J	0.054 J	0.019 J	0.014 J	ND	ND	0.01 J	NA
Benzene	89	40	NA	NA	48	ND	ND	ND	ND	ND	ND	ND	0.013 J	ND	NA
2-Butanone	1,000	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0013 J	NA
Carbon Disulfide		ND	NA	NA	ND	ND	ND	0.087	ND	ND	ND	ND	ND	ND	NA
Ethylbenzene	780	ND	NA	NA	ND	ND	ND	0.0079 J	ND	ND	ND	ND	0.0073 J	ND	NA
Methylene chloride	1,000	ND	NA	NA	ND	ND	ND	0.057 B	0.14 B	0.024 B	0.027 B	0.12 B	0.11	0.0037	NA
Styrene		ND	NA	NA	ND	ND	ND	0.019 J	0.053 J	ND	ND	0.018 J	0.04 J	ND	NA
Toluene	1,000	37	NA	NA	42	ND	ND	0.015 J	0.015 J,B	ND	ND	0.0099 J	0.031 J	ND	NA
Xylenes, Total	1,000	42	NA	NA	30	ND	ND	0.16	0.042 J	ND	ND	0.039 J	0.14	ND	NA
TCL SVOCs (Method 8270C) (mg/kg)	(PAHs in BLUE)														
Acenaphthene	1,000	NA	ND	ND	NA	ND	ND	0.7	ND	0.43 DJ	ND	1.7 D	4	0.063 J	NA
Acenaphthylene	1,000	NA	1400	1000	NA	13	0.21	5.1	2.1 J	0.61 DJ	ND	37 D	3.2	0.56	NA
Anthracene	1,000	NA	1000	1300	NA	11	0.43	5.3	2.7 J	1.3 D	0.016 J	31 D	9	0.74	NA
Benzo(a)anthracene	11	NA	650	1100	NA	57	1.5	4	5.9 J	5 D	0.58 J	22 D	8.9	0.84	NA
Benzo(a)pyrene	1.1	NA	310	780	NA	ND	1.7	2.9	5.4 J	8.1 D	0.081 J	18 D	8	0.86	NA
Benzo(b)fluoranthene	11	NA	250	950	NA	ND	ND	2.9	5.4 J	7.4 D	0.084 J	19 D	8.2	0.95	NA
Benzo(ghi)perylene	1,000	NA	ND	ND	NA	ND	ND	1.2 J	3.1 J	5.3 D	0.057 J	8.4 D	4.1	0.6	NA
Benzo(k)fluoranthene	110	NA	490	300	NA	ND	ND	1.6 J	3.2 J	2.6 D	0.028 J	5.5 D	4.3	0.56	NA
Bis (2-ethylhexyl)phthalate		NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	0.12 J,B	NA
Biphenyl		NA	ND	ND	NA	ND	ND	1.3 J	ND	0.1 DJ	ND	4.6 D	1.2	0.15 J	NA
Carbazole		NA	ND	ND	NA	ND	ND	0.38 J	ND	ND	ND	ND	4.5	0.43	NA
Chrysene	110	NA	610	ND	NA	54	1.6	3.4 D	5.3 J	4.4 D	0.059 J	19 D	8.4	0.9	NA
Dibenzofuran	1,000	NA	ND	ND	NA	ND	ND	4.9	3.4 J	0.52 DJ	ND	21 D	5.9	0.52	NA
2,4-Dimethylphenol		NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	0.64 DJ	ND	ND	NA
Fluoranthene	1,000	NA	2000	3500	NA	ND	2.8	12	13 J	6.6 D	0.11 J	60 D	22	2.3	NA
Fluorene	1,000	NA	1100	1600	NA	1.7	0.16	7.2	3.7 J	0.6 DJ	ND	27 D	9.6	0.57	NA
Indeno(1,2,3-cd)pyrene	11	NA	ND	280	NA	ND	ND	1.3	2.7 J	5.3 D	0.053 J	9.3 D	3.7	0.55	NA
2-Methylnaphthalene		NA	ND	ND	NA	ND	ND	6.5	13 J	0.47 DJ	ND	17 D	4.5 DJ	0.57	NA
2-Methylphenol (o-Cresol)	1,000	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	1.4 D	0.35 J	ND	NA
3 & 4 Methylphenol (m & p Cresol)	1,000	NA	190	ND	NA	ND	ND	ND	ND	ND	ND	3.9 D	ND	ND	NA
4-Methylpheol		NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	1.1 J	0.022 J	NA
Naphthalene	1,000	NA	5200	11000	NA	2.7	0.14	37 B	2000 D	1.2 D	0.038 J	100 D	16	1.5	NA
Phenanthrene	1,000	NA	3000	5500	NA	25	1.9	20	8.6 J	4.2 D	0.063 J	87 D	2.5	2.2	NA
Phenol	1,000	NA	140	270	NA	ND	ND	ND	ND	ND	ND	3.7 D	0.89 J	ND	NA
Pyrene	1,000	NA	1400	2300	NA	ND	2.7	8.3	9.8 J	5.6 D	0.088 J	41 D	17	1.6	NA
Total PAHs (mg/kg) ³	500	NA	17410	29610	NA	164	13.1	119	2084	59.1	1.26	503	133	15.4	NA

TABLE 4-6
SUMMARY OF SWMU S-23 & AOC-D SLAG/FILL ANALYTICAL DATA

							Sample	Location, Dept	h (fbgs), Date,	and Unit					
	Industrial			R	FI						CI	IS			
Parameter ¹	SCOs ²	S23-1 (4-6)	S23-1 (0-46)	S23-2 (0-41.5)	S23-2 (4-6)	AMEC S23A (0-0.5)	AMEC S23B (0-0.5)	S23-TP-01 (17.0-18.0)	S23-TP-02 (5.0-14.0)	S23-TP-04 (0.0 - 15.0)	S23-TP-06 (0.0 - 13.0)	S23-TP-08 (6.0 - 11.0)	S23-TP-15 (17.0-18.0)	S23-TP-18 (0.0-14.0)	Conduit Trench Soil
	(mg/kg)	06/09/94	06/10/94	06/13/94	06/13/94	06/06/01	06/06/01	01/03/11	01/03/11	12/22/10	12/22/10	12/23/10	01/06/11	01/07/11	05/08/07
		SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	SWMU-23	AOC-D	AOC-D	AOC-D & E
Total Metals (Method 6010B/7471A) (n	ng/kg)														
Arsenic ⁵	118	NA	1.9	9.2	NA	7.1	6.4	NA	NA	NA	NA	NA	NA	NA	ND
Barium	10,000	NA	134	138	NA	58	58.7	NA	NA	NA	NA	NA	NA	NA	31
Cadmium	60	NA	ND	1.8	NA	4.1	3.9	NA	NA	NA	NA	NA	NA	NA	ND
Chromium	800	NA	120	37.8	NA	609	574	NA	NA	NA	NA	NA	NA	NA	ND
Lead	3,900	NA	27.4	21.9	NA	135	124	NA	NA	NA	NA	NA	NA	NA	ND
Mercury	5.7	NA	ND	0.4	NA	1.1	ND	NA	NA	NA	NA	NA	NA	NA	ND
Nickel	10,000	NA	ND	ND	NA	46.1	42.6	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800	NA	1.6	2.6	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND
Silver	6,800	NA	5.7	4.5	NA	2.1	1.9	NA	NA	NA	NA	NA	NA	NA	ND
Thallium		NA	ND	ND	NA	23.4	16.1	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	NA	ND	ND	NA	1.4	0.67	NA	NA	NA	NA	NA	NA	NA	NA
TCLP VOCs (Method 1311/8260B) (mg	/L)														
Benzene	0.5	1.6	NA	NA	2.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.027 J
Toluene		0.72	NA	NA	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total		0.37	NA	NA	0.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP SVOCs (Method 1311/8270C) (m	ng/L)														
Acenaphthylene		NA	1.1	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dimethylphenol		NA	1.1	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylphenol (o-Cresol)	200	NA	1.8	6.9 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.33
3 & 4 Methylphenol (m & p Cresol)	200	NA	5.1	20 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.71 D
Naphthalene		NA	12	18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene		NA	0.28 J	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenol		NA	5.2	22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyridine		NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.42
TCLP Total Metals (Method 1311/6010)	B/7470A) (mg/L)					,									
Barium	100	NA	0.23	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- 1. Only those VOC and SVOC parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- 2. Values per NYSDEC 6NYCRR Part 375 Industrial Soil Cleanup Objectives (December 2006)
- 3. The total PAH SCO was adapted from Commissioner Policy CP-51/Soil Cleanup Guidance, dated October 21, 2010. This was the basis for determining whether significant concentrations of PAHs were present. Individual SVOC ISCOs were not used.
- 4. RFI and CMS locations are shown on Plate 4-5.
- 5. Site-specific SCO for arsenic.

Definitions:

- B = Analyte was detected in the associated Method Blank.
- D = Compound was analyzed at the secondary dilution factor.
- J = Estimated Value.
- ND = Compound was not detected above the method detection limit.
- NA = Sample was not analyzed for this compound

BOLD	
BOLD.	

- = Total PAHs exceeds CP-51 SCO.
- = Result exceeds Part 375 Industrial SCO, site-specific SCO, or TCLP criteria.

TABLE 4-7
SUMMARY OF SWMU S-23 & AOC-D TEST PIT LOCATIONS

	SWMU	Test	Pit Dimen	sions		Visually	Olfactory	Interval of Observed	Maximum		Analysis & D	epth Interval		Depth (fbgs) and Soil Description
Location	or AOC	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Soil/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	SVOC BNA 8270	TCL VOCs 8260	Paint Filter Test	Interval (fbgs)	(ASTM D2488: Visual-Manual Procedure)
Test Pit Locati	ons	(1001)	(1001)	(1290)				(131)		02.0	0200	1001	(1.595)	
S23-TP-01	SWMU S-23	36.0	5.0	18.0	01/03/11	Yes	Yes	6.0 - 15.0 fbgs	10.1	Yes	Yes		17.0-18.0	 0.0- 2.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, plastic sheeting, old hoses. 2.0-17.0 Sludge Like Material: Reddish brown/black, moist with weeping lenses of water, mostly non-plastic fines, few fine sand, very soft. 17.0-18.0 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, very hard.
S23-TP-02	SWMU S-23	45.0	5.0	14.0	01/03/11	Yes	Yes	3.0 - 5.0 fbgs	15.0	Yes	Yes	Yes (3.0-5.0)	5.0-14.0	 0.0- 3.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, dense. 3.0-5.0 Suspected Tar Like Material: Black, moist with weeping lenses of water, mostly tar-like material mixed with few fine sand, coarse gravels (slag), plastic sheeting, steel and brick debris, dense. 5.0-14.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, very hard.
S23-TP-03	SWMU S-23	42.0	6.0	12.0	01/05/11	Yes	Yes	3.0 - 5.0 fbgs 7.0-10.0 fbgs	35.0 45.0					 0.0- 3.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, dense. 3.0-5.0 Suspected Tar Like Material: Black, moist with weeping lenses of water, mostly tar-like material mixed with few fine sand, coarse gravels (slag), plastic sheeting, steel and brick debris, dense. 5.0-7.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, very hard. 7.0-10.0 Suspected Tar Like Material: Black, moist with weeping lenses of water, mostly tar-like material mixed with few fine sand, coarse gravels (slag), steel and brick debris, dense. 10.0-12.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, extremely hard.
S23-TP-04	SWMU S-23	50.0	10.0	15.0	12/22/10	Yes	Yes	1.5-2.0 fbgs 3.0-4.0 fbgs	90.0	Yes	Yes		0.0-15.0	 0.0- 1.5 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, dense. 1.5-2.5 Suspected Tar Like Material: Black, moist, mostly tar-like material mixed with few fine sand, coarse gravels (slag), dense. 2.5-3.5 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, very hard. 3.5- 4.0 Suspected Tar Like Material: Black, moist, mostly tar-like material mixed with few fine sand, coarse gravels (slag), dense. 4.0-15.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, extremely hard.
S23-TP-05	SWMU S-23	36.0	6.0	14.0	12/22/10	Yes	Yes	3.5-6.0 fbgs	85.0					 0.0- 3.5 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, dense. 3.5-6.0 Suspected Tar Like Material: Black, moist, mostly tar-like material mixed with few fine sand, coarse gravels (slag), bricks, dense. 6.0-14.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, very hard.
S23-TP-06	SWMU S-23	26.0	6.5	15.0	12/22/10	Yes	Yes	3.5-4.5 fbgs 4.5-8.0 fbgs	82.6	Yes	Yes		0.0-13.0	 0.0- 3.5 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, dense. 3.5-4.5 Suspected Tar Like Material: Black, moist, mostly tar-like material mixed with few fine sand, coarse gravels (slag), dense. 4.5-14.0 Slag/Fill: Dark Grey, moist with perched water lenses from (5.5 to 8.0 fbgs), mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, very hard, yellow product from (4.5-8.0 fbgs), petroleum odor from (4.5-11.0 fbgs) slag is rusted in upper 4.0 fbgs.
S23-TP-07	SWMU S-23	30.0	5.0	4.0	12/23/10	Yes	Yes	1.0-4.0 fbgs	84.6					 0.0- 1.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, plastic sheeting, dense. 1.0-4.0 Suspected Tar Like Material: Black, moist perched water filled test pit (2.0 fbgs), mostly tar-like material mixed with few fine sand, coarse gravels (slag), plastic sheeting, three rusted non-intact drums containing possible petroleum product, dense.
S23-TP-07A	SWMU S-23	20.0	4.5	11.0	12/23/10	No	No		0.0					0.0-11.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, slag is easily broken with excavator bucket, very dense.
S23-TP-07B	SWMU S-23	25.0	3.5	8.0	12/23/10	Yes	Yes	1.0-4.0 fbgs	22.8	-				 0.0- 1.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, dense. 1.0-4.0 Suspected Tar Like Material: Black, moist, mostly tar-like material mixed with few fine sand, coarse gravels (slag), more slag is mixed in the material from (1.5 – 4.0 fbgs), dense. 4.0-8.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, reddish brown coloring of slag from 4.0-6.0 fbgs, very hard.
S23-TP-08	SWMU S-23	54.0	4.5	14.0	12/23/10	Yes	Yes	2.0 - 6.0 fbgs	63.7	Yes	Yes		6.0-11.0	 0.0- 2.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, dense. 2.0-6.0 Suspected Tar Like Material: Black, moist, mostly tar-like material mixed with few fine sand, coarse gravels (slag), flows, dense. 6.0-14.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, reddish brown coloring of slag from 1.0-2.5 fbgs, very hard.

TABLE 4-7
SUMMARY OF SWMU S-23 & AOC-D TEST PIT LOCATIONS

	SWMU	Test	Pit Dimen	sions		Visually	Olfactory	Interval of Observed	Maximum		Analysis & D	epth Interva	I	Depth (fbgs) and Soil Description
Location	or AOC	Length	Width	Depth	Date	Impacted Soil/Fill?	Odor	Impact	PID Scan (ppm)		TCL VOCs			(ASTM D2488: Visual-Manual Procedure)
Test Pit Locati	ions	(feet)	(feet)	(fbgs)				(fbgs)		8270	8260	Test	(fbgs)	
S23-TP-09	SWMU S-23	65.0	4.0	16.5	01/03/11	Yes	Yes	6.0-15.0 fbgs	0.0					 0.0- 4.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, plastic sheeting, old hoses. 4.0-6.0 Slag/Fill: Brown/grey, moist, mostly, mostly non-plastic fines, some coarse and fine slag, some fine sand, breaks easily with excavator bucket, rusted color at west end. 6.0-15.0 Sludge Like Material: Reddish brown/black, moist with weeping lenses of water, mostly non-plastic fines, few fine sand, very soft,. 15.0-16.5 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, very hard.
S23-TP-10	SWMU S-23	24.0	4.0	14.0	01/05/11	No	No		0.0					 0.0-1.0 Well Graded Gravel w/ Sand: Brown, moist, mostly fine gravel, some fine sand, loose, green tarp at 1.0 fbgs, 4-inch PVC drain line at 1.0 fbgs. 1.0-14.0 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, layered, very hard.
S23-TP-11	AOC-D	25.0	4.0	14.0	01/06/11	No	No		0.0					 0.0-1.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, some fine sand, yellow and orange brick, slag, steel debris, loose. 1.0-14.0 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, layered, very hard.
S23-TP-12	AOC-D	23.0	4.0	12.0	01/05/11	Yes	Yes	2.0-7.0 fbgs	52.5					 0.0- 2.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, dense. 2.0-7.0 Suspected Tar Like Material: Black, moist weeping water, mostly tar-like material mixed with few fine sand, coarse gravels (slag), dense. 7.0-12.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, layered, very hard.
S23-TP-13	AOC-D	22.0	4.5	12.0	01/06/11	Yes	Yes	3.0-4.0 fbgs 10.0-12.0 fbgs	14.8 123					 0.0-2.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, loose. 2.0-3.0 Well Graded Sand: Brown, moist, mostly fine sand, trace non-plastic fines, loose. 3.0-4.0 Suspected Tar Like Material: Black, moist, mostly tar-like material mixed with some coarse gravels (slag), dense. 4.0-10.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, very hard. 10.0-12.0 Suspected Tar Like Material: Black, wet (perched), mostly tar-like material mixed with few fine sand, coarse gravels (slag), soft.
S23-TP-13A	AOC-D	22.0	5.0	17.0	01/06/11	Yes	Yes	10.0-17.0 fbgs	90.0					 0.0-1.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, loose. 1.0-2.0 Well Graded Sand: Brown, moist, mostly fine sand, trace non-plastic fines, frozen. 2.0-10.0 Slag/Fill: Dark Grey, moist, mostly fine to coarse gravel (slag), some coarse sand (slag), few non-plastic fines, very hard. 10.0-17.0 Suspected Tar Like Material: Black, moist weeping water lenses, mostly tar-like material mixed with few fine sand, coarse gravels (slag), flows, soft. 17.0 Slag/Fill: Grey, extremely hard bottom, at excavator limit could not bring material.
S23-TP-14	AOC-D	22.0	4.0	13.5	01/05/11	No	No		0.0					 0.0-0.5 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, some fine sand, yellow and orange brick, slag, steel debris, loose. 0.5-1.0 Fill: Black, moist, mostly non-plastic coal and coke fines, with some fine sand, few coarse gravel (slag), dense, dense, fines, with some fine sand, few coarse gravel (slag), dense. 1.0-2.0 Fill: As above (0.0-0.5 fbgs). 2.0-13.05 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, layered, very hard.
S23-TP-15	AOC-D	25.0	5.0	18.0	01/06/11	Yes	Yes	3.0-14.0	134.0	Yes	Yes		17.0-18.0	 0.0-3.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, yellow and orange brick, slag, steel debris, loose. 3.0-5.0 Fill: Brown/Black, moist, mostly non-plastic fines, with some coarse gravel (slag), 4 rusted non-intact drums containing possible petroleum product, brick and steel debris, dense. 3.0-14.0 Suspected Tar Like Material: Black, moist weeping water lenses, mostly tar-like material mixed with few fine sand, coarse gravels (slag), soft. 14.0-18.0 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, very hard.
S23-TP-16	AOC-D	25.0	5.0	16.0	01/07/11	No	No		0.0					 0.0-16.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, some fine sand, yellow and orange brick, slag, steel and wood debris, dense. 16.0-16.5 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, layered, very hard.

TABLE 4-7 SUMMARY OF SWMU S-23 & AOC-D TEST PIT LOCATIONS

Location	SWMU	Test	Pit Dimens	ions	Date	Visually	Olfactory	Interval of Observed	Maximum		Analysis & D	epth Interval		Depth (fbgs) and Soil Description
Location	or AOC	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Soil/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	SVOC BNA 8270	TCL VOCs 8260	Paint Filter Test	Interval (fbgs)	(ASTM D2488: Visual-Manual Procedure)
Test Pit Locati	ons		•											
S23-TP-17	AOC-D	23.0	6.0	14.5	01/07/11	No	No		0.0		1			 0.0-14.0Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, some fine sand, yellow and orange brick, slag, steel and wood debris, dense. 14.0-14.5 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, layered, very hard.
S23-TP-18	AOC-D	20.0	6.0	14.0	01/07/11	No	Yes	1.0-14.0	0.0	Yes	Yes		0.0-14.0	 0.0-1.5 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, some fine sand, yellow and orange brick, slag, steel debris, loose. 1.5-14.0 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, layered, very hard.
S23-TP-19	AOC-D	28.0	4.0	16.0	01/07/11	No	No		0.0					 0.0-1.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, some fine sand, yellow and orange brick, slag, steel debris, loose. 1.0-14.0 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, rusted appearance in upper 1.0-foot, from (1.5-7.5 fbgs) large void space, 6-8-feet deep, layered, very hard.
S23-TP-20	SWMU S-23	25.0	4.0	14.0	01/10/11	No	No		0.0					 0.0-1.0 Fill: Brown/black, moist, mostly non-plastic fines, some fine sand few coarse gravel, some fine sand, yellow and orange brick, slag, steel debris, loose. 1.0-14.0 Slag/Fill: Dark Grey, moist, mostly fine gravel (slag), some coarse sand (slag), few non-plastic fines, layered, very hard, rusted appearance in upper 1.5-foot, upper 4.0 fbgs breaks easier with excavator.

- Notes:

 1. ftgs = feet below ground surface
 2. PID = MiniRae photoionization detector equipped with a 10.6 eV lamp
 3. ppm = parts per million
 4. CMS test pit locations are shown on Plate 4-5.

TABLE 4-8
SUMMARY OF SWMU S-18 SLAG/FILL ANALYTICAL DATA
RESULTS PRIOR TO REMEDIATION OF AOCs B & C

	Total Le	ad (mg/kg)	TCLP Lead (mg/L)
Location	0-1 fbgs	2 fbgs	0-1 fbgs
	01/04/11	01/04/11	01/04/11
Regulatory Limit 1 (mg/kg)	3	900	5
CMS Samples (January 2011)			
S18-S-01	8,670	27.5	
S18-S-02	13,200	186	
S18-S-03	833		
S18-S-04	5,000	90.4	
S18-S-05	5,580	101	
S18-S-06	5,340	679	0.86
S18-S-07	24,200	404	
S18-S-08	1,500		0.014
S18-S-09	5,430	308	
S18-S-10	1,110		
S18-S-11	6,400	129	0.16
S18-S-12	3,600	1310	1.5
S18-S-13	68.3		
S18-S-14	774		
S18-S-15	13,600	8.6	
S18-S-16	5,690	26.1	
S18-S-17	122		
S18-S-18	20.8		
S18-S-19	226		
S18-S-20	71		
S18-S-21	1,400		
S18-S-22	1,980		
S18-S-23	359		
S18-S-24	435		
S18-S-25	7,620	262	30.1
S18-S-26	17.4		
S18-S-27	16.4		
S18-S-28	1,470		
S18-S-29	1,320		

TABLE 4-8

SUMMARY OF SWMU S-18 SLAG/FILL ANALYTICAL DATA RESULTS PRIOR TO REMEDIATION OF AOCs B & C

	Total Lea	d (mg/kg)	TCLP Lead (mg/L)	
Location	0-1 fbgs	2 fbgs	0-1 fbgs	
	01/04/11	01/04/11	01/04/11	
Regulatory Limit 1 (mg/kg)	39	00	5	
S18-S-30	123	1		
S18-S-31	141	1		
S18-S-32	9,590	493	0.66	
S18-S-33	383			
S18-S-34	211			
S18-S-35	245			
RFI Samples (October 2000)				
S18-KISH-C01	13,800		15.4	
S18-KISH-C02	13,200	17.6		
S18-KISH-G01	13,800	13,800 32.3		
S18-KISH-G02	18,800		37.7	

Notes:

- Regulatory limit refers to the NYSDEC Industrial SCO or the USEPA RCRA TCLP MCL.
 " -- " not analyzed for this parameter
 Sample locations are shown on Plate 4-6.

= Totals SVOCs exceeds Industrial SCO or RCRA TCLP MCL.

TABLE 4-9
SUMMARY OF SWMU S-18 TEST PIT LOCATIONS

	Test	Pit Dimen	sions	5.4	Analy	sis & Depth In	terval	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Total Lead	TCLP Lead (0-1.0) fbgs	Interval (fbgs)	(ASTM D2488: Visual-Manual Procedure)
Test Pit Loc	ations			•				
S18-TP-01	6.0	2.5	2.0	01/04/11	yes	no	0-1' 2'	0.0-1.5 FILL: Red fine waste mixed with slag. 1.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-02	6.0	2.5	2.0	01/04/11	yes	no	0-1' 2'	0.01.0 FILL: Red fine waste. 1.0-1.5 FILL: Red fine waste mixed with slag. 1.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-03	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Lime 0.5-1.5 FILL: Red fine waste. 1.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-04	6.0	2.5	2.0	01/04/11	yes	no	0-1' 2'	0.0-1.5 FILL: Red fine waste mixed with slag. 1.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-05	6.0	2.5	2.0	01/04/11	yes	no	0-1' 2'	0.0-1.5 FILL: Red fine waste. 1.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-06	6.0	2.5	2.0	01/04/11	yes	Yes	0-1' 2'	0.0-0.5 FILL: Red fine waste. 0.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-07	6.0	2.5	2.5	01/04/11	yes	no	0-1' 2'	0.0-0.5 FILL: Red fine waste mixed with lime and slag/fill. 0.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-08	6.0	2.5	2.0	01/04/11	yes	Yes	0-1'	0.0-1.0 FILL: Red fine waste. 1.0-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-09	6.0	2.5	2.0	01/04/11	yes	no	0-1' 2'	0.0-1.0 FILL: Red finewaste. 1.0-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-10	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Red fine waste mixed with slag. 0.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-11	6.0	2.5	2.0	01/04/11	yes	Yes	0-1' 2'	0.0-1.0 FILL: Red fine waste. 1.0-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-12	6.0	2.5	2.0	01/04/11	yes	Yes	0-1' 2'	0.0-1.0 FILL: Red fine waste. 1.0-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-13	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Red fine waste mixed with slag. 0.5-2.5 FILL: Grey/dark grey, slag/fill.
S18-TP-14	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Red fine waste mixed with slag. 0.5-2.0 FILL: Grey/Dark Grey, slag/fill.
S18-TP-15	6.0	2.5	2.0	01/04/11	yes	no	0-1' 2'	0.0-1.0 FILL: Red fine waste. 1.0-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-16	6.0	2.5	3.0	01/04/11	yes	no	0-1' 2'	0.0-0.5 FILL: Lime 0.5-1.0 FILL: Red fine waste. 1.0-3.0 FILL: Grey/dark grey, slag/fill.
S18-TP-17	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Red fine waste. 0.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-18	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Red fine waste mixed with slag. 0.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-19	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Red fine waste. 0.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-20	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Red fine waste mixed with slag. 0.5-2.0 FILL: Grey/dark grey, slag/fill.

TABLE 4-9
SUMMARY OF SWMU S-18 TEST PIT LOCATIONS

Landina	Test	Pit Dimens	sions	D-4-	Analy	sis & Depth In	terval	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Total Lead	TCLP Lead (0-1.0) fbgs	Interval (fbgs)	(ASTM D2488: Visual-Manual Procedure)
Test Pit Loc	ations							
S18-TP-21	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-0.5 FILL: Lime 0.5-1.0 FILL: Red fine waste. 1.0-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-22	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-2.0 FILL: Grey/dark grey, slag/fill with bricks.
S18-TP-23	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-1.0 FILL: Red fine waste mixed with slag. 1.0-2.0 FILL: Grey/dark Grey, slag/fill.
S18-TP-24	6.0	2.5	2.0	01/04/11	yes	no	0-1'	0.0-2.0 FILL: Grey/dark grey, slag/fill with bricks.
S18-TP-25	6.0	2.5	2.5	2/9/2011	yes	no	0-1' 2'	0.0-1.0 FILL: Red finewaste. 1.0-2.0 FILL: Grey/dark Grey, slag/fill.
S18-TP-26	6.0	2.5	2.5	2/9/2011	yes	no	0-1'	0.0-2.5 FILL: Grey/dark grey, slag/fill.
S18-TP-27	6.0	2.5	2.5	2/9/2011	yes	no	0-1'	0.0-2.5 FILL: Grey/dark grey, slag/fill with bricks.
S18-TP-28	6.0	2.5	3.0	2/9/2011	yes	no	0-1'	0.0-1.0 FILL: Red fine waste. 1.0-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-29	6.0	2.5	2.5	2/9/2011	yes	no	0-1'	0.0-0.5 FILL: Red fine waste mixed with slag. 0.5-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-30	6.0	2.5	2.0	2/9/2011	yes	no	0-1'	0.0-2.0 FILL: Grey/dark grey, slag/fill with bricks.
S18-TP-31	6.0	2.5	2.0	2/9/2011	yes	no	0-1'	0.0-2.0 FILL: Grey/dark Grey, slag/fill with bricks.
S18-TP-32	6.0	2.5	3.0	2/9/2011	yes	yes	0-1' 2'	0.0-0.5 FILL: Lime 0.5-1.0 FILL: Red fine waste. 1.0-2.0 FILL: Grey/dark grey, slag/fill.
S18-TP-33	6.0	2.0	2.0	2/22/2011	yes	no	0-1'	0.0-2.0 FILL: Grey/dark Grey, slag/fill with bricks.
S18-TP-34	6.0	2.0	2.0	2/22/2011	yes	no	0-1'	0.0-2.0 FILL: Grey/dark grey, slag/fill with bricks.
S18-TP-35	6.0	2.0	2.0	2/22/2011	yes	no	0-1'	0.0-2.0 FILL: Grey/dark grey/red , slag/fill with bricks.

fbgs = feet below ground surface

TABLE 4-10
SUMMARY OF FORMER TANK FARM ASTS

Tank No.	Capacity (gallons)	Contents
Large Tanks		
1	3,380,000	No. 6 Fuel Oil
2	3,380,000	No. 6 Fuel Oil, Petroleum Tar, Coal Tar
3	3,380,000	No. 6 Fuel Oil, Petroleum Tar, Coal Tar
4	3,380,000	No. 6 Fuel Oil, Petroleum Tar, Coal Tar
5	4,500,000	No. 6 Fuel Oil
6	4,500,000	No. 6 Fuel Oil
7	4,873,000	No. 6 Fuel Oil
Small Tanks		
1	210,000	Tar Acid Oil, Carbolic Oil
2	210,000	Carbolic Oil
3	126,000	Crude Tar
4	105,000	Topped Tar
5	105,000	Weak Ammonia Liquor (WAL)
6	42,000	Dehydrated Tar
7	10,500	Light Oil Receiver
8	10,500	Water Receiver
9	10,500	Light Carbolic Oil Receiver
10	10,500	Heavy Carbolic Oil Receiver
11	500,000	Crude Tar
15	1,000,000	Crude Tar
16	1,500,000	Weak Ammonia Liquor (WAL)
31	247,000	Pitch Blend

1. Former tank locations are shown on Plate 4-9.

		Test Pit			Visually	Olfactory	Interval of Observed	Maximum	Analysis & Dep	Approximate	Depth to	Observed	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Slag/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	Full List Interv	(TDQS)	Native (fbgs)	Groundwater Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	ntions	, ,											
VSS-1			16.0	09/09/16	No	No	NA	26.8		10.5	11.0	Yes sheening	0.0 -11.0 SLAG/FILL: brown/black, moist to wet, mostly non-plastic fines with some fine sand, few coarse slag and gravel up to 1-foot in diameter, large rubble and steel debris 4 to 6-foot in diameter 11.0 - 13.0 WELL GRADED SAND: Black/grey, wet (sheening), with little non-plastic fines and few sub rounded coarse gravel and trace sub-rounded coarse cobble.
P75-TP-1	18.0	10.0	13.0	08/04/10	No	No	NA	26.8		10.5	11.0	Yes sheening	0.0 -11.0 SLAG/FILL: brown/black, moist to wet, mostly non-plastic fines with some fine sand, few coarse slag and gravel up to 1-foot in diameter, large rubble and steel debris 4 to 6-foot in diameter 11.0 - 13.0 WELL GRADED SAND: Black/grey, wet (sheening), with little non-plastic fines and few sub rounded coarse gravel and trace sub-rounded coarse cobble.
P75-TP-2	23.0	8.0	12.5	08/04/10	Yes	Yes	(1.0 - 12.5) Petroleum like NAPL, Mothball odor.	107.0	Yes 1.0 - 12	.0 12.0	12.0	Yes petroleum like NAPL product	0.0 - 4.0 SLAG/FILL: Brown/black, moist, mostly 1 to 2-inch slag, with some non-plastic fines, with some fine sand, loose, with coal and coke pieces, perched water 2 - 4 foot. 4.0 -12.0 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, few coarse slag and gravel up to 1-foot in diameter, large rubble and steel debris 4 to 6-foot in diameter. 12.0 - 12.5 POORLY GRADED SAND: Black/grey, wet, with little non-plastic fines and few sub rounded coarse gravels and trace sub rounded coarse cobbles.
P75-TP-2A	18.0	10.0	11.5	08/04/10	No	No	No	0.0		11.0	Not Encountered	No	0.0 - 2.0 SLAG/FILL: Brown, mostly 1 to 2-inch slag, with some non-plastic fines, with some fine sand, loose, with coal and coke pieces. 2.0 - 3.0 SLAG/FILL: Blue/grey/ with reddish brown, very hard. 3.0 - 11.5 SLAG/FILL: Black, moist to wet, mostly non-plastic fines with some fine sand, few coarse slag and gravel up to 1-foot in diameter, large rubble and steel debris 4 to 6-foot in diameter.
P75-TP-3	23.0	6.0	12.5	08/04/10	No	Yes	(11.5 - 12.5) Mothball odor,	3.0		12.0	12.0	Yes Sheening.	0.0 - 2.0 SLAG/FILL: Brown/Black, moist, mostly non-plastic fines with some fine sand, loose, with coal and coke debris. 2.0 - 12.0 SLAG/FILL: As above, with large pieces of rubble debris (mixed slag and steel) 4 - 6-foot in diameter, dense, loose when disturbed. 12.0 12.5 WELL GRADED SAND: Black/grey, moist to wet, with little non-plastic fines and few sub rounded coarse gravels and trace sub rounded coarse cobbles.
P75-TP-4	23.0	10.0	14.0	08/04/10	Yes	Yes	(0.0 - 2.0) Petroleum like NAPL around 6-inch pipe north end of test pit.	7.9		13.5	Not Encountered	No	0.0 - 2.0 SLAG/FILL: Brown/Black, moist, mostly non-plastic fines with some fine sand, loose, with coal and coke debris, 6-inch pipe running east west at north end of test pit. 2.0 - 14.0 SLAG/FILL: As above, wet at 13.5 fbgs, with large pieces of rubble debris (mixed slag and steel) 4 - 6-foot in diameter, dense, loose when disturbed.
P75-TP-4A	18.0	6.0	6.0	08/04/10	No	No	No	0.0		NA	Not Encountered	No	0.0 - 2.0 SLAG/FILL: Brown/Black, moist mostly non-plastic fines with some fine sand, loose, with coal and coke debris, medium dense. 2.0 - 6.0 SLAG/FILL: As above with large pieces of rubble debris (mixed slag and steel) 4 - 6-foot in diameter, dense, loose when disturbed.
P75-TP-4B	18.0	3.5	12.0	08/04/10	No	No	No	0.0		NA	Not Encountered	No	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 12.0 SLAG/FILL: Blue/grey with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, horizontal layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-4C	18.0	10.0	13.5	08/04/10	No	Yes	(12.5 - 13.0) Mothball odor	0.0		12.5	10.5	Odors	0.0 - 10.5 SLAG/FILL: Brown/Black, moist mostly non-plastic fines with some fine sand, with coal and coke debris, with large pieces of rubble debris (mixed slag and steel) 4 - 6-foot in diameter, orange brick, dense, loose when disturbed. 10.5 - 13.5 WELL GRADED SAND: Black/grey, moist to wet, with little non-plastic fines and few sub rounded coarse gravels and trace sub rounded coarse cobbles.

									COMMITTEE OF 1	ANK FARM IEST PI	LOGATIONS		
Location		Test Pit		- Date	Visually Impacted	Olfactory	Interval of Observed	Maximum PID Scan	Analysis & Dep Interval	Approximate DTW	Depth to Native	Observed Groundwater	Depth (fbgs) and Soil Description
	Length (feet)	Width (feet)	Depth (fbgs)		Slag/Fill?	Odor	(fbgs)	(ppm)	Full List Interv	al (fbas)	(fbgs)	Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	. ,	(,	('5')						, , , ,				
P75-TP-5	18.0	8.0	13.0	08/03/10	Yes	Yes	(3.0 - 5.0) Petroleum like NAPL, mothball odor.	94.2		12.5	Not Encountered	No	0.0 - 1.0 SLAG/FILL: Brown/grey, moist, mostly 1-inch gravel, few non-plastic fines, dense, loose when disturbed. 1.0 - 4.0 SLAG/FILL: Brown/Black, moist, mostly non-plastic fines with some fine sand, mixed with coal and coke debris, 12-inch pipe running through west side of test pit approximately 5.0 fbgs. 5.0 - 13.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravel, very hard, horizontal layers, large steel pieces upper 2.0-foot of slag.
P75-TP-5A	18.0	3.5	7.0	08/03/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Brown/grey, moist, mostly 1-inch gravel, few non-plastic fines, dense, loose when disturbed. 1.0 - 3.0 SLAG/FILL: Brown/Black, moist, mostly non-plastic fines with some fine sand, mixed with coal and coke debris, with orange and yellow brick. 3.0 - 7.0 SLAG/FILL: Blue/grey with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, horizontal layers, large steel pieces upper 2.0-foot of slag.
P75-TP-5B	23.0	7.0	12.0	08/03/10	Yes	Yes	(1.0 - 6.5) Petroleum like NAPL mixed in SLAG/FILL, mothball odors.	58.6		NA	Not Encountered	NA	0.0 - 12.0 SLAG/FILL: Brown/Black, moist, mostly non-plastic fines with some fine sand, with coal and coke debris, with large pieces of rubble debris (mixed slag and steel) 4 - 6-foot in diameter, dense, loose when disturbed.
P75-TP-5C	23.0	7.0	12.0	08/04/10	Yes	Yes	(7.0 - 9.0) Petroleum like NAPL (9.0-12.0) Discolored with odors.	100.0		NA	Not Encountered	NA	0.0 - 10.5 SLAG/FILL: Reddish brown/Black, moist, mostly non-plastic fines with some fine sand, few coarse gravel slag. with coal and coke debris, dense, loose when disturbed. 10.5 - 12.0 WELL GRADED SAND: Black/grey, moist, with little non-plastic fines and few sub rounded coarse gravels and trace sub rounded coarse cobbles.
P75-TP-5D	20.0	7.0	12.5	08/04/10	No	No	No	0.0		12.0	Not Encountered	No	0.0 - 6.0 SLAG/FILL: Reddish Brown, moist, mostly non-plastic fines with some fine sand, mixed with coal and coke debris, with orange and yellow brick, large pieces of slag and steel debris 4 to 6-foot in diameter. 6.0 - 12.5 SLAG/FILL: Blue/grey, moist to wet, mostly coarse slag with some non-plastic fines and fine gravel, horizontal layers, slag layer is 6-foot thick on west side and 4-foot thick on east side of test pit, very hard.
P75-TP-5E	18.0	10.0	11.5	08/04/10	Yes	Yes	(upper 3-inch) Petroleum like NAPL, mothball odor	0.0		11.0	Not Encountered	No	0.0 - 11.5 SLAG/FILL: Brown/Black, moist to wet, mostly non-plastic fines with some fine sand, with coal and coke debris, with large pieces of rubble debris (mixed slag and steel) 4 - 6-foot in diameter, dense, loose when disturbed.
P75-TP-6	25.0	17.0	17.5	08/02/10	Yes	Yes	(upper 3-inch) Petroleum like NAPL, mothball odor	0.0		17.0	Not Encountered	No	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 17.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-7	15.0	6.0	16.5	08/02/10	Yes	Yes	(1.0 - 4.0) Petroleum like NAPL, mothball odors.	68.5		16.0	Not Encountered	No	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 16.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, 0.0 - 2.0 slag is very broken.
P75-TP-7A	18.0	3.5	13.5	08/03/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 13.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, 0.0 - 2.0 slag is very broken.

											K FARW 1EST PIT			
Location		Test Pit	l =	Date	Visually Impacted	Olfactory	Interval of Observed Impact	Maximum PID Scan	_	& Depth erval	Approximate DTW	Depth to Native	Observed Groundwater	Depth (fbgs) and Soil Description
	Length (feet)	Width (feet)	Depth (fbgs)		Slag/Fill?	Odor	(fbgs)	(ppm)	Full List	Interval (fbgs)	(fbgs)	(fbgs)	Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	ations													
P75-TP-7B	18.0	3.5	12.0	08/03/10	Yes	Yes	(2.0 - 7.0) Discolored slag/fill ammonia odor.	97.0	Yes	2.0 - 7.0	NA	Not Encountered	NA	0.0 - 0.1 SLAG/FILL: Brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 12.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, purple color (2.0 - 7.0) fbgs, moist with perched water from 2.0 - 7.0 fbgs, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-7C	18.0	3.5	12.0	08/03/10	Yes	Yes	(2.0 - 8.0) Petroleum like NAPL, mothball odor.	47.6			NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 12.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, 0.0 - 2.0 slag is very broken.
P75-TP-7D	18.0	3.5	15.0	8//3/10	No	No	No	0.0			NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-7E	18.0	3.5	15.5	08/03/10	Yes	Yes	(2.0 - 4.0) Petroleum like NAPL, mothball odor.	17.6			15.0	Not Encountered	No	0.0 - 1.0 SLAG/FILL: Brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 15.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-7F	18.0	3.5	12.0	08/03/10	Yes	Yes	(upper 3-inch) Petroleum like NAPL, mothball odor	13.5			NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 12.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-7G	18.0	3.5	11.5	08/03/10	Yes	Yes	0.0 - 4.0	15.7		-	NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 11.5 SLAC/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-7H	18.0	3.5	12.0	08/04/10	Yes	Yes	(upper 4-inch) Petroleum like NAPL, mothball odor	88.2		1	NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 12.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-8	20.0	3.5	14.5	08/02/10	No	No	No	0.0			NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.5 SLAC/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-9	15.0	3.5	16.0	08/02/10	Yes	Yes	(1.0 - 6.0) Petroleum like NAPL, mothball odor	172.0	Yes	1.0 - 6.0	15.5	14.0	No	0.0 - 0.5 SLAG/FILL: Black/reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 14.0 15.5 WELL GRADED GRAVEL WITH SAND (FUSED): Grey, moist to wet, mostly fine sub rounded gravel and some fine few sub rounded coarse sands, and trace slag sub rounded and non plastic fines.

		Test Pit			Visually	Olfactory	Interval of Observed	Maximum	Analysis & Depth Interval	Approximate	Depth to	Observed	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Slag/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	Full List Interval (fbgs)	- DTW (fbgs)	Native (fbgs)	Groundwater Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	tions												
P75-TP-9A	15.0	3.5	10.0	08/02/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-9B	15.0	3.5	10.0	08/02/10	Yes	Yes	(1.0 - 6.0) Petroleum like NAPL, mothball odor	73.4		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, very broken in upper 2-foot.
P75-TP-9C	15.0	3.5	10.0	08/02/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, very broken in upper 2-foot.
P75-TP-9D	15.0	3.5	14.5	08/02/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist (at 11.0 fbgs material is wet but no free water in test pit.), very hard, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, very broken in upper 2-foot.
P75-TP-9E	15.0	3.5	16.5	08/02/10	Yes	Yes	(0.0 - 10.0) Petroleum like NAPL, mothball odor	77.6	Yes 0.0 - 10.0	NA	15.0	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist (At 13.0 fbgs material is wet but no free water in test pit.), mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the page 3-foot stag. 15.0 - 16.5 WELL GRADED GRAVEL WITH SAND (FUSED): Grey, moist (Material is wet but no free water in test pit.), mostly fine sub rounded gravel and some fine few sub rounded coarse sands, and trace slag (sub rounded) and non plastic fines.
P75-TP-9F	23.0	3.5	15.5	08/03/10	No	No	No	0.0		15.0	11.5	Yes Sheening	0.0 - 1.0 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 1.0.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 11.5 - 15.5 WELL GRADED GRAVEL WITH SAND (FUSED): Grey, moist to wet, mostly fine sub rounded gravel and some fine few sub rounded coarse sands, and trace slag (sub rounded) and non plastic fines.
P75-TP-9G	18.0	3.5	10.5	08/03/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 10.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-10	20.0	3.5	15.5	07/29/10	No	No	No	0.0		NA	14.5	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 14.5 - 15.5 WELL GRADED GRAVEL WITH SAND (FUSED): Grey, moist (At 13.0 flogs material is wet but no free water in test pit.), mostly fine sub rounded gravel and some fine few sub rounded coarse sands, and trace slag (sub rounded) and non plastic fines.
P75-TP-11	18.0	3.5	15.5	07/29/10	No	No	No	0.0		15.0	14.5	No	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 14.5 - 15.5 WELL GRADED GRAVEL WITH SAND (FUSED): Grey, moist to wet, mostly fine sub rounded gravel and some fine few sub rounded coarse sands, and trace slag (sub rounded) and non plastic fines.

									SUMMARY OF TAN	IN FARINI IESI PII	LUCATIONS		
Location		Test Pit		- Date	Visually Impacted	Olfactory	Interval of Observed	Maximum PID Scan	Analysis & Depth Interval	Approximate DTW	Depth to Native	Observed Groundwater	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Slag/Fill?	Odor	(fbgs)	(ppm)	Full List Interval (fbgs)	(fbgs)	(fbgs)	Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	ations		, , ,			1							
P75-TP-12	22.0	3.5	16.0	07/27/10	Yes	Yes	(upper 4-inch) petroleum like NAPL, mothball like odor (3.0 - 15.5) petroleum like NAPL, petroleum like odors.	32.4	Yes 3.0 - 15.5	15.5	14.5	Yes	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist with perched water lenses, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 14.5 - 16.0 WELL GRADED GRAVEL WITH SAND (FUSED): Grey with yellow staining, moist to wet, mostly fine sub rounded gravel and some fine few sub rounded coarse sands, and trace slag (sub rounded) and non plastic fines.
P75-TP-12A	21.0	3.5	14.0	07/28/10	Yes	Yes	(upper 4-inch) petroleum like NAPL, mothball like odor (2.0 - 12.0) petroleum like NAPL, petroleum like odors.	22.5		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist (at 13.5 material looks wet but no free water in test pit), mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-12B	21.0	3.5	16.0	07/28/10	Yes	Yes	(upper 1-inch) petroleum like NAPL, mothball like odor 13.0 - 15.0 (petroleum like NAPL, petroleum like odors)	8.4		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist (at 13.5 material looks wet but no free water in test pit), mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 14.0 - 16.0 POORLY GRADED SAND (FUSED): Grey with yellow staining, moist (at 13.5 material looks wet but no free water in test pit), mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic.
P75-TP-12C	21.0	3.5	15.5	07/28/10	Yes	No	0.0 - 1.5 Minor petroleum like NAPL mostly near surface	0.0		15.0	14.0	Yes sheening	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 14.0 - 15.5 POORLY GRADED SAND (FUSED): Yellow to grey, moist to wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic.
P75-TP-12D	21.0	3.5	15.5	07/28/10	Yes	Yes	(15.0 - 15.5) Petroleum like NAPL, petroleum like odors	35.6		15.0	15.0	Yes Petroleum like NAPL, petroleum like odors	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 15.0 - 15.5 POORLY GRADED SAND (FUSED): Grey with yellow staining, wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic.
P75-TP-12E	21.0	3.5	15.0	07/28/10	Yes	Yes	(13.5 - 15.0) Petroleum like NAPL, petroleum like odors	77.8		14.5	15.0	Yes Petroleum like NAPL, petroleum like odors	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist (at 13.5 material looks wet but no free water in test pit), mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick, very hard, large pieces of steel in the upper 3-foot of slag. 14.5 - 15.0 WELL GRADED GRAVEL WITH SAND (FUSED): Grey with yellow staining, moist to wet, mostly fine sub rounded gravel and some fine few sub rounded coarse sands, and trace slag (sub rounded) and non plastic fines.
P75-TP-12F	20.0	3.5	15.0	07/28/10	Yes	Yes	15.0	10.6		15.0	14.0	Yes	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 14.0 - 15.0 WELL GRADED GRAVEL WITH SAND (FUSED): Grey with yellow staining, moist to wet, mostly fine sub rounded gravel and some fine few sub rounded coarse sands, and trace slag (sub rounded) and non plastic fines.
P75-TP-12G	18.0	6.0	15.0	07/29/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist (at 13.5 material looks wet but no free water in test pit), mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, from 4 to 7-foot steel debris (4-inch square beams and rebar).
P75-TP-13	22.0	3.5	18.0	07/22/10	Yes	Yes	(0.0 - 4.0) petroleum like NAPL, Mothball odor (11.0 - 16.0) petroleum like NAPL, petroleum like odor.	12.4		16.0	15.0	Yes petroleum like NAPL, petroleum like odor.	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, yellow staining ~11.0 ftgs. 15.0 - 18.0 POORLY GRADED SAND (FUSED): Grey with yellow staining, wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic.

TABLE 4-11

		Test Pit			Visually	Olfactory	Interval of Observed	Maximum	Analysis & Depth Interval	Approximate	Depth to	Observed	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Slag/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	Full List Interval (fbgs)	DTW (fbgs)	Native (fbgs)	Groundwater Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	tions												
P75-TP-13A	22.0	3.5	15.0	07/22/10	Yes	Yes	(2.5 - 15.0) petroleum like NAPL, petroleum like odor.	2.5		15.0	15.0	Yes petroleum like NAPL, petroleum like odor.	0.0 - 2.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 2.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist perched water from 2.5 fbgs, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, very hard, large pieces of steel in the upper 3-foot of slag. 15.0 - 18.0 POORLY GRADED SAND (FUSED): Grey with yellow staining, wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic.
P75-TP-13B	22.0	3.5	17.5	07/22/10	No	No	No	0.0		15.5	15.0	No	0.0 - 1.0 SLAG/FILL: Reddish/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 15.0 - 17.5 POORLY GRADED SAND (FUSED): Grey, moist to wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic.
P75-TP-13C	20.0	3.5	13.0	07/22/10	Yes	Yes	(0.0 - 3.0) petroleum like NAPL, mothball odor.	41.2		NA	Not Encountered	NA	0.0 - 1.5 SLAG/FILL: Reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 1.5 - 2.5 SLAG/FILL: Black, perched water, mostly coarse gravel with some non plastic fines, loose, rail road ballast. 2.5 - 13.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-13D	20.0	3.5	12.0	07/22/10	Yes	Yes	(5.0 - 12.0) petroleum like NAPL, mothball odor.	170.0	Yes 5.0 - 12.0	NA	Not Encountered	NA	0.0 - 2.0 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 2.0 - 5.0 SLAG/FILL: Reddish brown, moist, mostly non plastic fines, with some fine sand, few coarse gravels, loose. 5.0 - 12.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist with perched water intervals from 5.0 to 12.0, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-13E	27.0	3.5	16.0	07/23/10	Yes	Yes	(0.0 -1.0) Petroleum like NAPL, mixed with fine sand	3.2		NA	Not Encountered	NA	0.0 - 5.0 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch with rail road ties, 6-inch steel pipe running north south at approximately 3.0 fbgs. 5.0 - 16.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, in 45 degree layers 1 to 2-foot thick.
P75-TP-13F	27.0	3.5	14.0	07/23/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 4.0 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch with rail road ties, rubble and brick on east side of test pit 4.0 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, in 45 degree layers 1 to 2-foot thick.
P75-TP-13G	27.0	3.5	13.0	07/23/10	Yes	Yes	(0.0 - 0.5) Petroleum like NAPL, mixed with fine sand, mothball odor.	98.7		NA	Not Encountered	NA	0.0 - 2.0 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch with rail road ties and rail road ballast. 2.0 - 13.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-13H	21.0	3.5	16.0	07/23/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.5 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 1.5 - 16.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-14	22.0	3.5	15.0	07/22/10	Yes	Yes	(2.0 - 5.5) Petroleum like NAPL, mothball odor.	62.3		15.0	14.5	No	0.0 - 2.0 SLAG/FILL: Reddish/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 2.0 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, very hard, large pieces of steel in the upper 3-foot of slag. 14.0 - 15.0 POORLY GRADED SAND (FUSED): Grey, wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic, hard.

		Took Did			\0. II				Analysis	s & Depth		5 // /		
Location	Length	Test Pit Width	Depth	Date	Visually Impacted Slag/Fill?	Olfactory Odor	Interval of Observed Impact (fbgs)	Maximum PID Scan (ppm)	Into	erval Interval	Approximate DTW (fbgs)	Depth to Native (fbgs)	Observed Groundwater Impact	Depth (fbgs) and Soil Description (ASTM D2488: Visual-Manual Procedure)
Daving Last	(feet)	(feet)	(fbgs)		Slag/Fill?		(ibgs)	(ррііі)	ruii List	(fbgs)	(ibgs)	(Ibgs)	illipact	
Boring Loca	tions					l							1	
P75-TP-14A	26.0	3.5	9.5	07/22/10	No	No	No	0.0			NA	Not Encountered	NA	0.0 - 1.5 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 1.5 - 9.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-14B	20.0	3.5	9.0	07/22/10	No	No	No	0.0			NA	Not Encountered	NA	0.0 - 1.5 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 1.5 - 9.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-14C	20.0	3.5	10.0	07/22/10	Yes	Yes	(1.5 - 3.0) Petroleum like NAPL, mixed with fine sand, mothball odor.	21.2			NA	Not Encountered	NA	0.0 - 1.5 SLAG/FILL: Reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 1.5 - 2.5 SLAG/FILL: Black, perched water, mostly coarse gravel with some non plastic fines, loose, rail road ballast. 2.5 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-14D	24.0	3.5	15.0	07/22/10	Yes	Yes	(0.0-1.0) Petroleum like NAPL, entrenched in rail road ties.	0.0			NA	Not Encountered	NA	0.0 - 7.5 SLAG/FILL: Reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch, with rail road ties and orange and yellow brick. 7.5 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, in 45 degree layers 1 to 2-foot thick.
P75-TP-15	18.0	3.5	15.0	07/21/10	No	No	No	0.0			14.5	Not Encountered	No	0.0 - 1.0 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-16	19.0	3.5	15.0	07/21/10	No	No	No	0.0			14.0	Not Encountered	Sheen	0.0 - 1.0 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick.
P75-TP-17	16.0	3.5	17.0	07/21/10	No	No	No	0.0			16.0	Not Encountered	No	0.0 - 1.0 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.0 - 17.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.
P75-TP-18	20.0	3.5	16.5	07/21/10	No	No	No	0.0			15.5	Not Encountered	No	0.0 - 1.0 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.
P75-TP-19	22.0	3.5	16.5	07/27/10	No	No	No	0.0			NA	Not Encountered	NA	0.0 - 1.5 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.5 - 16.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.

Lasatian		Test Pit		D-4-	Visually	Olfactory	Interval of Observed	Maximum	Analysis & Depth Interval	Approximate	Depth to	Observed	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	- Date	Impacted Slag/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	Full List Interval (fbgs)	DTW (fbgs)	Native (fbgs)	Groundwater Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	tions												
P75-TP-20	21.0	3.5	16.0	07/29/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.5 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.5 - 16.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.
P75-TP-21	20.0	3.5	15.5	08/02/10	No	No	No	0.0		NA	15.0	NA	0.0 - 0.5 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 0.5 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick. 15.0 - 15.5 POORLY GRADED SAND (FUSED): Grey, moist, mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic, hard.
P75-TP-22	20.0	3.5	16.5	08/02/10	No	No	No	0.0		16.0	15.0	No	0.0 - 0.5 SLAG/FILL: Reddish brown/black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose, roots in the upper 2-inch. 0.5 - 15.0 SLAG/FILL: Blue/grey.hhite/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, in 45 degree layers 1 to 2-foot thick. 15.0 - 16.5 POORLY GRADED SAND (FUSED): Grey, moist to wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, non-plastic, hard.
P75-TP-23	20.0	3.5	16.5	08/02/10	No	No	No	0.0		16.0	15.5	No	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 16.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 15.5 - 16.5 POORLY GRADED GRAVEL WITH SAND (FUSED): Grey, moist to wet, mostly fine sub rounded gravel (mixed with fine slag) and some fine few sub rounded coarse sands, and trace slag (sub rounded) and non plastic fines.
P75-TP-24	22.0	3.5	14.5	07/29/10	No	No	No	0.0		14.5	Not Encountered	No	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of stag.
P75-TP-25	15.0	3.5	12.0	07/27/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 12.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-26	25.0	3.5	18.0	07/26/10	No	No	No	0.0		15.5	16.0	No	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 16.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 16.0 - 18.0 POORLY GRADED SAND (FUSED): Grey, wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, trace fine slag, non-plastic.
P75-TP-27	21.0	3.5	16.0	07/23/10	No	No	No	0.0		15.5	14.0	No	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 14.0 -16.0 POORLY GRADED SAND (FUSED): Grey, moist to wet, mostly coarse sand with few fine sand trace sub rounded fine gravel, trace fine slag, non-plastic.
P75-TP-28	51.0	3.5	14.5	07/23/10	Yes	Yes	(1.0 - 9.0) Petroleum like NAPL, mixed with fine sand, mothball odor.	75.8		14.0	Not Encountered	No	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.

		Test Pit			Visually	Olfactory	Interval of Observed	Maximum	Analysis & Dep	th Approximate	Depth to	Observed	Double (fibrary) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Slag/Fill?	Offactory	Impact (fbgs)	PID Scan (ppm)	Full List Interv	(IDUS)	Native (fbgs)	Groundwater Impact	Depth (fbgs) and Soil Description (ASTM D2488: Visual-Manual Procedure)
Boring Loca		(leet)	(fbgs)						(IDG:)			
P75-TP-28A	18.0	3.5	8.0	07/23/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 8.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-28B	25.0	3.5	6.5	07/23/10	Yes	Yes	(1.0 - 4.0) Petroleum like NAPL, mixed with fine sand, mothball odor.	85.8	Yes	NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 6.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-28C	18.0	3.5	11.0	07/23/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 11.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravel 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-28D	21.0	3.5	10.5	07/26/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 10.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-29	18.0	3.5	15.0	07/21/10	No	No	No	0.0		14.5	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-30	16.0	3.5	15.0	07/21/10	No	No	No	0.0		14.5	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-31	25.0	3.5	15.0	07/26/10	Yes	Yes	(1.0 - 2.0) Petroleum like NAPL, in pockets, slight mothball	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-31A	14.0	3.5	6.0	07/26/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 6.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-31B	12.0	3.5	4.0	07/26/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 4.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.

		Test Pit			Visually	Olfactory	Interval of Observed	Maximum	Analysis & Dep	Approximate	Depth to	Observed	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Slag/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	Full List Interv	(TDQS)	Native (fbgs)	Groundwater Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	tions												
P75-TP-31C	12.0	3.5	8.0	07/26/10	Yes	Yes	(0.0 - 8.0) Petroleum like NAPL, Thin lens less then 0.5 fbgs on 45 degree angle	21.6	Yes 0.0 - 8	0 NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 8.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-31D	12.0	3.5	11.0	07/26/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 11.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-31E	18.0	3.5	8.0	07/26/10	Yes	Yes	(3.5 - 6.5) isolated pockets, petroleum like NAPL.	22.6		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 8.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-32	23.0	3.5	10.0	07/27/10	Yes	No	(upper 4-inch) Petroleum like NAPL.	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33	22.0	3.5	14.5	07/29/10	Yes	Yes	(1.0 - 8.0) Petroleum like NAPL, in pockets, mothball odor	0.0	Yes 1.0 - 8	0 NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33A	23.0	3.5	10.0	07/30/10	Yes	Yes	(1.0 - 3.0) Small Pockets of petroleum like NAPL, in pockets, mothball odor	0.0		NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33B	23.0	3.5	12.5	07/30/10	Yes	Yes	(3.0 - 6.5) Petroleum like NAPL, in pockets, mothball odor	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 12.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist perched water from 3.0 to 12.5 fbgs, mostly coarse slag with some non-plastic fines and fine gravel, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33C	20.0	3.5	13.5	07/30/10	Yes	Yes	(1.0 - 3.0) Small Pockets of petroleum like NAPL, in pockets, mothball odor	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 13.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33D	20.0	3.5	10.5	07/30/10	Yes	Yes	(1.0 - 3.0) Petroleum like NAPL, in pockets, mothball odor South East corner	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 10.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.

		Test Pit			Visually	Olfactory	Interval of Observed	Maximum	Analysis & Depth Interval	Approximate	Depth to	Observed	Depth (fbgs) and Soil Description
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Impacted Slag/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	Full List Interval (fbgs)	DTW (fbgs)	Native (fbgs)	Groundwater Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	tions												
P75-TP-33E	15.0	3.5	5.0	07/30/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 5.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33F	15.0	3.5	5.0	07/30/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 5.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33G	15.0	3.5	6.0	07/30/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 6.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33H	20.0	3.5	10.0	07/30/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33I	20.0	3.5	10.0	07/30/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33J	20.0	3.5	10.0	07/30/10	No	Yes	(4.0 - 8.0) mothball odors	9.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-33K	20.0	3.5	6.0	07/30/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 6.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-34	23.0	3.5	13.0	07/30/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 13.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist perched water at 12.0 fbgs, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag.
P75-TP-35	20.0	3.5	10.5	07/30/10	No	No	No	0.0		NA	Not Encountered	NA	0.0 - 1.0 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.0 - 10.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.

Analysis & Depth Test Pit Interval of Observed Observed Visually Approximate Depth to Olfactory Interval Depth (fbgs) and Soil Description PID Scan DTW Groundwater Location Date Impacted Native Impact Width Odor (ASTM D2488: Visual-Manual Procedure) Length Depth Interval Slag/Fill? (fbgs) (ppm) Full List (fbgs) (fbgs) Impact (feet) (feet) (fbgs) (fbgs) **Boring Locations** 0.0 - 1.5 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic P75-TP-36 25.0 3.5 14.0 07/26/10 No No No 0.0 NA NA Encountered fines and fine gravels , very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot. $0.0 - 0.5 \; SLAG/FILL: \; Black, \; moist, \; mostly \; non-plastic \; fines \; with \; some \; fine \; sand, \; trace \; fine \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; , \; mixed \; with \; coal \; and \; coarse \; gravel \; .$ P75-TP-37 25.0 14.0 07/27/10 Nο 0.0 NA 3.5 No Nο NA 0.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. Encountered 0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal Not P75-TP-38 23.0 3.5 14.5 07/27/10 No No No 0.0 NA 0.5 - 14.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines Encountered and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal Not and coke fines, loose. P75-TP-39 23.0 3.5 14.0 07/27/10 No 0.0 NA No No NA 0.5 - 14.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravel, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. Encountered 0.0 - 0.5 SLAG/FILL: Black, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal Not and coke fines, loose. 0.5 - 12.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines P75-TP-40 23.0 3.5 12.0 07/27/10 No No No 0.0 NA NA Encountered and fine gravel , very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. $0.0 - 1.5 \, \text{SLAG/FILL:} \, \text{Black, moist, mostly non-plastic fines with some fine sand and fine and coarse gravel} \, , \, \text{mixed with coal and the last of the$ coke fines, loose. P75-TP-41 18.0 07/29/10 No 0.0 NA 3.5 7.5 No No NA 1.5 - 7.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and Encountered fine gravel, very hard, 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag. 0.0 - 1.5 SLAG/FILL: Reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel , mixed (1.0-2.5)with coal and coke fines, loose, roots in the upper 2-inch. 1.5 - 2.5 SLAG/FILL: Black, perched water, mostly coarse gravel with some non plastic fines, loose, rail road ballast. Petroleum like NAPL Not P75-TP-42 20.0 4.0 8.0 01/11/11 Yes Yes 2.1 Yes 6.0-8.0 NA NA nixed with rail road ballast Encountered 2.5 – 8.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels , very hard, in 45 degree layers 1 to 2-foot thick. mothball odor. $0.0 - 0.5 \; \text{SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine and coarse gravel , mixed with some fine sand, trace fine sand,$ coal and coke fines, loose. P75-TP-43 18.0 4.0 8.0 01/11/11 No No 0.0 Yes 6.0-8.0 NA NA $0.5-8.0 \; \text{SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines}$ Encountered and fine gravels, 45 degree layers 1 to 2-foot thick, very hard. (5.0) $0.0-5.0\;SLAG/FILL:\;Brown,\;moist,\;mostly\;non-plastic\;fines\;with\;some\;fine\;sand\;and\;coarse\;gravel\;.\;with\;coal\;and\;coke\;debris,\;mostly\;non-plastic\;fines\;with\;some\;fine\;sand\;and\;coarse\;gravel\;.$ P75-TP-44 17.0 01/12/11 Yes 3.0-5.0 NA 4.0 5.0 Petroleum like NAPL. 21.8 Yes Yes NA Encountered dense, loose when disturbed. mothball odor

									SUMMART OF TAI				
Location		Test Pit		- Date	Visually Impacted	Olfactory	Interval of Observed Impact	Maximum PID Scan	Analysis & Depth Interval	Approximate DTW	Depth to Native	Observed Groundwater	Depth (fbgs) and Soil Description
	Length (feet)	Width (feet)	Depth (fbgs)		Slag/Fill?	Odor	(fbgs)	(ppm)	Full List Interval (fbgs)	(fbgs)	(fbgs)	Impact	(ASTM D2488: Visual-Manual Procedure)
Boring Loca	itions			•									
P75-TP-45	19.0	4.0	10.0	01/12/11	Yes	Yes	(0.0-1.0) Petroleum like NAPL, mothball odors (1.0 - 10.0) Mothball odor	30.6	Yes 8.0-10.0	NA	Not Encountered	NA	0.0 – 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 – 10.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, 45 degree layers 1 to 2-foot thick.
P75-TP-46	21.0	4.0	17.5	01/11/11	No	No	No	0.0	Yes 0.0-17.5	NA	Not Encountered	NA	0.0 - 1.5 POORLY GRADED SAND (SLAG/FILL): Brown, moist to wet, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.5 – 17.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.
P75-TP-47	21.0	9.0	10.5	01/11/11	No	No	No	0.0	Yes 0.0-9.0	NA	Not Encountered	NA	0.0 - 1.5 POORLY GRADED SAND (SLAG/FILL): Brown, moist to wet, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.5 – 9.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot. 9.0-10.5 CONCRETE: Dark grey, sub-rounded fine and coarse gravels, very hard.
P75-TP-48	23.0	4.5	15.5	01/10/11	No	No	No	0.0	Yes 0.0-15.0	15.0	Not Encountered	NA	0.0 - 1.0 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.
P75-TP-49	19.0	4.5	15.0	01/10/11	No	No	No	0.0	Yes 0.0-14.5	15.0	Not Encountered	NA	0.0 - 1.0 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.0 - 15.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, very hard, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.
P75-TP-50	24.0	4.0	16.5	01/11/11	No	No	No	0.0	Yes 0.0-16.0	16.0	Not Encountered	NA	0.0 - 1.5 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.5 - 16.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist to wet, mostly coarse slag with some non-plastic fines and fine gravels, in 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot.
P75-TP-51	30.0	4.0	16.5	01/12/11	No	No	No	0.0	Yes 0.0-16.5	NA	Not Encountered	NA	0.0 - 1.5 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.5 - 16.5 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, in 45 degree layers 1 to 2-foot thick.
P75-TP-52	25.0	4.0	16.0	01/12/11	No	No	No	0.0	Yes 0.0-16.0	NA	Not Encountered	NA	0.0 - 1.5 POORLY GRADED SAND (SLAG/FILL): Brown, moist, mostly fine sand, little non-plastic fines, trace fine and coarse gravel (rounded), loose, roots in the upper 2-inch. 1.5 - 16.0 SLAG/FILL: Blue/grey/white/yellow with reddish brown layers, moist, mostly coarse slag with some non-plastic fines and fine gravels, in 45 degree layers 1 to 2-foot thick.
P75-TP-53	19.0	4.0	6.0	01/12/11	Yes	Yes	(1.0-6.0) Petroleum like NAPL, mothball odors	0.0	1.0-4.0 4.0-6.0	NA	Not Encountered	NA	0.0 - 0.5 SLAG/FILL: Black/reddish brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 0.5 - 6.0 SLAG/FILL: Blue/grey/white, moist, mostly coarse slag with some non-plastic fines and fine gravels, very hard, 45 degree layers 1 to 2-foot thick.

SUMMARY OF TANK FARM TEST PIT LOCATIONS

Location	Test Pit			Date	Visually Impacted	Olfactory	Interval of Observed	Maximum PID Scan	Analysis & Depth Interval	Approximate DTW	Depth to Native	Observed Groundwater	Depth (fbgs) and Soil Description				
Location	Length (feet)	Width (feet)	Depth (fbgs)	Date	Slag/Fill?	Odor	Impact (fbgs)	(ppm)	Full List Interval (fbgs)	(fbgs)	(fbgs)	Impact	(ASTM D2488: Visual-Manual Procedure)				
Boring Loca	ntions																
P75-TP-54	25.0	9.0	6.0	01/10/11	Yes	Yes	1-0-5.0 Petroleum like NAPL, mothball odors	10.5	3.0-4.0	NA	Not Encountered	NA	0.0 - 1.0 SLAG/FILL: Black/brown, moist, mostly non-plastic fines with some fine sand, trace fine and coarse gravel, mixed with coal and coke fines, loose. 1.0 - 6.0 SLAG/FILL: Blue/grey/white, moist, mostly coarse slag with some non-plastic fines and fine gravel 45 degree layers 1 to 2-foot thick, large pieces of steel in the upper 3-foot of slag, eastern side of test pit, was brown mostly non-plastic fines with some coarse slag and fine sand, backSLAG/FILL material for ~24-inch waterline that was exposed at 5.0 fbgs				

Notes:

CMS test pit locations are shown on Plate 4-9.

Definitions:

fbgs = feet below ground surface

DTW = depth to water

HSD = headspace determination

PID = MiniRae photoionization detector equipped with a 10.6 eV lamp

ppm = parts per million

[&]quot; * " = Surface topography sloped toward the railroad right-of-way; total test pit depth and approximate depth to water (DTW) measurements reflect this elevation difference (low/high).

TABLE 4-12
SUMMARY OF TANK FARM SLAG/FILL ANALYTICAL DATA

Marie Mari	ETER ¹	_			Sample Location, Depth (fbgs), & Sample Date																				
Marcia		SCOs -																				P75-TP-52	P75-TP-53	P75-TP-53	P75-TP-54 (3.0 - 4.0)
Part		(mg/kg)		1																		01/12/11	(1.0 - 4.0) 01/12/11	(4.0 - 6.0) 01/12/11	01/10/11
Control Cont								1 1								<u> </u>	1				<u> </u>				
Exclusion 1.900 10	on		NAPL	discolored	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	below NAPL	none	NAPL	below NAPL	none	none	none	none	none	none	none	NAPL	NAPL	NAPL
Secretar	od 8260B) (mg/k	kg)																							
2.00 Exclusionarium 1,000		1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.012 J	0.008 J	0.042 J	0.0083 J	0.0055 J	0.014 J	0.0071 J	0.083 J	0.005 J	ND	1		
Debarder 1,800		89	63 D	ND	8.7 D	3.3	ND	ND	15 D	ND	ND	0.0047 J	0.00056 J	0.0026 J	0.0052 J	0.00055 J	ND	ND	ND	ND	0.0031 J	0.0038 J	1		
Employee: 786 3.40 2.0	zene	1,000	ND	ND	ND	ND	ND	1.9 D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1		
Interly expected 1,600 1		1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 J	ND	ND	ND	ND	ND	ND	-		
Methyl Activities		780	3.4 D	ND	ND	ND	ND	1 D	ND	ND	ND	0.01 J	ND	ND	0.0054 J	ND	ND	ND	ND	ND	ND	ND	1		
Methyl Accidate	ide	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.011	0.0075 B	ND	0.0064	0.0076	0.0088	0.0078	0.0081	0.0098 B	0.0089 B	-		
Sprace 34 D 160 23 D 3 160 19 D 19 D 19 D 19 D 10 D	ane	-	ND	ND	ND	ND	ND	0.52 DJ	ND	ND	0.28 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1		
Totale		-	ND	ND	ND	ND	ND	ND	ND	0.27 D	0.81 D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		
Note		-	34 D	ND	23 D	3	ND	10 D	10 D	ND	ND	0.019 J	ND	ND	0.0097 J	ND	ND	ND	ND	ND	ND	ND	-		
Value Characterization (mg/U Value		1,000	50 D	ND	21 D	3.6	ND	0.6 DJ	17 D	ND	ND	0.014 J	ND	0.00081 J	0.011 J	0.00053 J	ND	ND	ND	ND	0.00068 J	0.001 J			
TCLP Berezee		1,000	77 D	ND	46 D	6.5	ND	14 D	24 D	0.12 DJ	0.35 DJ	0.063 J	ND	ND	0.043 J	ND	ND	ND	ND	ND	ND	ND			
Flashpoint (F) — NA — - NA — - NA —	ization (mg/L)																								
TCL SVDCs (Method 8270C) (mg/kg) (PANs in BLUE) Accuspithhese 1,000 200 110 1700 1 180 DJ 380 DJ 140 DJ 350 DJ 2200 DB N0 N0 5.8 N0 0.3 J 0.27 N0		0.5	NA			NA		ND															0.15	0.12	NA
Acesaphthese 1,000 220 D 11 D 170 D 180 D 3.8 DJ 14 DJ 88 DJ 160 6.8 160 1.00 160 160 160 160 160 160 160 160 160 1			NA			NA																	>176	>176	>176
Accomplitylene 1,000 1700 1.6 DJ 310 D 1500 D 14 DJ 35 DJ 2200 DB 100 100 A0 0.033 J 0.76 0.99 100 100 100 100 100 100 100 100 100 1	thod 8270C) (mg/	ı/kg) (PAHs in	BLUE)																						
Acetophenone NO		1,000	220 D	11 D	170 DJ	180 DJ	3.8 DJ	14 DJ	89 DJ	ND	ND	5.8	ND	0.3 J	0.27	ND	ND	ND	ND	ND	ND	ND			
Anthracene 1,000 1400 D 1,2 DJ 2900 D 1800 D 19 D 25 DJ 1900 D 10 ND 10	:	1,000	1700 D	1.6 DJ	3100 D	1500 D	14 DJ	35 DJ	2200 DB	ND	ND	40	0.033 J	0.76	0.99	ND	ND	ND	ND	ND	ND	ND	-		
Benzo(a)pyrene 11			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.016 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		
Benzo(a)pyrene 1.1 780 2.7 DJ 1800 1100 31 D 31 D 31 D 1200 1.2 DJ ND 39 D 0.058 J 3.6 0.98 0.014 J ND 0.039 J 0.013 J 0.023 J ND ND ND ND ND ND ND		1,000	1400 D	1.2 DJ	2900 D	1800 D	19 D	25 DJ	1900 D	ND	ND	34 D	0.024 J	1.5	1	ND	ND	ND	ND	ND	ND	ND	-		
Benzo(ph)fluoranthene	cene	11	910 D	2.9 DJ	2000 D	1200 D	33 D	35 DJ	1200 D	1.6 DJ	ND	39 D	0.053 J	3.5	1.1	0.013 J	ND	0.042 J	0.026 J	0.026 J	0.012 J	ND	-		
Benzo(ghi)perylene 1,000 360 D 1.8 DJ 1100 D 630 D 20 D 22 DJ 560 D 1.1 ND 15 D 0.088 J 2.4 0.57 ND ND ND 0.023 J 0.013 J 0.011 J ND ND ND ND ND ND ND		1.1	780 D	2.7 DJ	1800 D	1100 D	31 D	31 DJ	1200 D	1.2 DJ	ND	39 D	0.058 J	3.6	0.98	0.014 J	ND	0.039 J	0.013 J	0.023 J	ND	ND	-		
Benzo(k)flioranthene 110 260 D 1.4 DJ 790 D 380 D ND 5.5 DJ 560 D ND ND ND ND ND ND ND	thene	11	760 D	3.1 DJ	1800 D	1100 D	32 D	15 DJ	1100 D	ND	ND	42 D	0.064 J	3.9	0.96	0.013 J	ND	0.057 J	0.026 J	ND	0.0083 J	ND	-		
Bis(2-ethylnexyl) phthalate ND ND ND ND ND ND ND	ene	1,000	360 D	1.8 DJ	1100 D	630 D	20 D	22 DJ	560 D	1.1	ND	15 D	0.088 J	2.4	0.57	ND	ND	0.023 J	0.013 J	0.011 J	ND	ND	-		
Biphenyl 320 D 8.6 D 560 D 220 D 2.1 DJ 9.4 DJ 280 DB ND	thene	110	260 D	1.4 DJ	790 D	380 D	ND	5.5 DJ	560 D	ND	ND	17 D	0.033 J	1.8	0.42	0.0073 J	ND	0.024 J	0.01 J	0.013 J	0.0057 J	ND	-		
Carbazole ND) phthalate		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.081 J	ND	-		
2-Chloronaphthalene ND 0.53 DJ ND N			320 D	8.6 D	560 D	220 D	2.1 DJ	9.4 DJ	280 DB	ND	ND	3.8 D	ND	0.061 J	0.089 J	ND	ND	ND	ND	ND	ND	ND	-		
Chrysene 110 850 D 2.7 DJ 2000 D 1200 D 46 D 1200 D 2.9 DJ 16 DJ 32 D 0.059 J 3.4 1 0.009 J ND 0.042 J 0.022 J 0.0079 J ND Dibenzo(a,h)anthracene 1.1 ND 0.54 DJ ND ND ND 130 DJ ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	17 D	0.015 J	0.45	0.42	ND	ND	ND	ND	ND	ND	ND	-		
Dibenzo(a,h)anthracene 1.1 ND 0.54 DJ ND <	alene		ND	0.53 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		
Dibenzofuran 1,000 1200 D 21 D 2300 D 1000 D 13 DJ 19 DJ 1200 DB ND ND 26 D ND 0.48 0.58 ND ND <th< td=""><td></td><td>110</td><td>850 D</td><td>2.7 DJ</td><td>2000 D</td><td>1200 D</td><td>40 D</td><td>46 D</td><td>1200 D</td><td>2.9 DJ</td><td>16 DJ</td><td>32 D</td><td>0.059 J</td><td>3.4</td><td>1</td><td>0.009 J</td><td>ND</td><td>0.042 J</td><td>0.024 J</td><td>0.022 J</td><td>0.0079 J</td><td>ND</td><td>-</td><td></td><td></td></th<>		110	850 D	2.7 DJ	2000 D	1200 D	40 D	46 D	1200 D	2.9 DJ	16 DJ	32 D	0.059 J	3.4	1	0.009 J	ND	0.042 J	0.024 J	0.022 J	0.0079 J	ND	-		
2,4-Dintrotoluene ND 1.2 DJ ND	hracene	1.1	ND	0.54 DJ	ND	ND	4.3 DJ	ND	130 DJ	ND	ND	4.2 D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		
		1,000	1200 D	21 D	2300 D	1000 D	13 DJ	19 DJ	1200 DB	ND	ND	26 D	ND	0.48	0.58	ND	ND	ND	ND	0.0073 J	ND	ND	-		
Figure 1 400 000 05 05 000 000 000 000 000 000 0	е	-	ND	1.2 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
Fluoranthene 1,000 2200 D 6.5 D 6200 D 3400 D 62 D 44 D 3400 D ND 130 D 0.1 J 7.6 2.7 0.018 J ND 0.05 J 0.045 J 0.057 J 0.018 J 0.087		1,000	2200 D	6.5 D	6200 D	3400 D	62 D	44 D	3400 D	ND	ND	130 D	0.1 J	7.6	2.7	0.018 J	ND	0.05 J	0.045 J	0.057 J	0.018 J	0.0087 J	-		
Fluorene 1,000 1400 D 3.6 DJ 2500 D 1300 D 15 DJ 30 DJ 1400 D ND N		1,000	1400 D	3.6 DJ	2500 D	1300 D	15 DJ	30 DJ	1400 D	ND	ND	38 D	0.15 J	0.58	1	ND	ND	0.0072 J	0.0047 J	0.0093 J	ND	ND			
Indeno(1,2,3-cd)pyrene 11 350 D 1.7 DJ 1100 D 570 D 12 DJ 7.3 DJ 550 D ND ND 14 D 0.43 J 2.2 ND 0.0073 J ND 0.023 J 0.089 J 0.009 J ND ND)pyrene	11	350 D	1.7 DJ	1100 D	570 D	12 DJ	7.3 DJ	550 D	ND	ND	14 D	0.43 J	2.2	ND	0.0073 J	ND	0.023 J	0.089 J	0.009 J	ND	ND			
2-Methylnaphthalene 1400 D 47 D 1900 D 790 D 15 DJ 110 D 980 DB 2.1 DJ ND 11 D 0.012 J 0.16 J 0.32 ND ND ND ND ND 0.0035 J ND ND			1400 D	47 D	1900 D	790 D	15 DJ		980 DB	2.1 DJ	ND	11 D	0.012 J	0.16 J	0.32	ND	ND	ND	ND	0.0035 J	ND	ND	-		-
		1,000	16000 D	38 DB	16000 DB	5300 DB	9.6 DJ	730 D	7300 DB	8.8 DJ	ND	55 D				0.017 J	ND	ND	ND	0.02 J	ND	0.024 J			
Phenanthrene 1,000 4200 D 4.7 D 9500 D 4800 D 80 D 110 D 4500 DB 2 DJ 12 DJ 180 D 0.096 J 6.6 DJ 3.5 0.015 J ND 0.031 J 0.035 J 0.057 J 0.021 J ND		1,000	4200 D	4.7 D	9500 D	4800 D	80 D	110 D	4500 DB	2 DJ	12 DJ	180 D	0.096 J	6.6 DJ	3.5	0.015 J	ND	0.031 J	0.035 J	0.057 J	0.021 J	ND			
Pyrene 1,000 1700 D 4.8 D 4100 D 2200 D 70 D 100 D 2600 D 3.4 DJ 21 DJ 100 D 0.084 J 6.4 DJ 2.2 0.015 J ND 0.044 J 0.038 J 0.042 J ND ND				4.8 D													ND				-	ND			
	/kg) ³	500	34490	135	56960	27450	461	1360	30869	23.1	49.0	796	1.36	45.1	18.0	0.129	ND	0.382	0.324	0.293	0.0729	0.0327			

SUMMARY OF TANK FARM SLAG/FILL ANALYTICAL DATA

												ample Location	n, Depth (fbgs)	, & Sample Dat	te									
PARAMETER 1	Industrial SCOs ² (mg/kg)	P75-TP-02 (1.0 - 12.0)	P75-TP-07B (2.0 - 7.0)	P75-TP-09 (1.0 - 6.0)	P75-TP-09E (0.0 - 10.0)	P75-TP-12 (3.0 - 15.5)	P75-TP-13D (5.0 -12.0)	P75-TP-28B (1.0 - 4.0)	P75-TP-31C (0.0 - 8.0)	P75-TP-33 (1.0 - 8.0)	P75-TP-42 (6.0 - 8.0)	P75-TP-43 (6.0 - 8.0)	P75-TP-44 (3.0 - 5.0)	P75-TP-45 (8.0 - 10.0)	P75-TP-46 (0.0 - 17.5)	P75-TP-47 (0.0 - 9.0)	P75-TP-48 (0.0 - 15.0)	P75-TP-49 (0.0 - 14.5)	P75-TP-50 (0.0 - 16.0)	P75-TP-51 (0.0 - 16.5)	P75-TP-52 (0.0 - 16.0)	P75-TP-53 (1.0 - 4.0)	P75-TP-53 (4.0 - 6.0)	P75-TP-54 (3.0 - 4.0)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	08/04/10	08/03/10	08/02/10	08/02/10	07/27/10	07/22/10	07/23/10	07/26/10	07/29/10	01/11/11	01/11/11	01/12/11	01/12/11	01/11/11	01/11/11	01/10/11	01/10/11	01/11/11	01/12/11	01/12/11	01/12/11	01/12/11	01/10/11
RCRA Metals (Method 6010B/74	RCRA Metals (Method 6010B/7471A) (mg/kg)																							
Arsenic ⁵	118	15.4	10.6	5	7.8	4.9	5.5	38.6	5.9	82.1			-								-	-	-	
Barium	10,000	159	252	201	133	188	112	1140	554	153								-		-			-	
Cadmium	60	ND	ND	ND	ND	ND	ND	0.897	ND	ND								-		-			1	
Chromium	6,800	457	3.94	2.55	19.5	2.16	6.21	18.4	8.76	10.5											-		-	
Cyanide	10,000	8.1	ND	ND	ND	1.5	ND	6.8	ND	3.3								-		-			1	
Lead	3,900	34.5	1.4	3.5	14.4	1.8	3.9	48.7	7.8	99.3								-					-	
Mercury	5.7	7.16	0.0576	0.0612	0.0694	ND	ND	0.279	ND	ND		-	-								-			

- Notes:

 1. Only those VOC and SVOC parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).

 2. Values per NYSDEC 6NYCRR Part 375 Industrial Soil Cleanup Objectives (December 2006)

 3. The total SVOC SCO was adapted from Commissioner Policy CP-51/Soil Cleanup Guidance, dated October 21, 2010. This was the basis for determining whether significant concentrations of SVOCs were present. Individual SVOC ISCOs were not used.

 4. CMS test pit locations are shown on Plate 4-9.

 5. Site-specific SCO for arsenic.

 Definitions:

- Definitions:

 B = Analyte was detected in the associated Method Blank.

 D = Compound was analyzed at the secondary dilution factor.

 J = Estimated Value.

 "--" = Sample was not analyzed for compound.

 NA = Sample was submitted for analysis, but due to sample characteristics analysis could not be performed.

 ND = Sample was not detected above the method detection limit.

 BOLD

 = Total PAHs exceeds CP-51 SCO.

В	U	L	D	
B	0	1	n	

= Result exceeds the Part 375 Industrial SCO or site-specific SCO

TABLE 4-13 SUMMARY OF SWMU GROUP P-1 TO P-6 CONTAINMENT DETAILS

SWMU	Length (feet)	Width (feet)	Depth (fbgs)	Volume of Water (gallons)	Volume of Sediment (CY)	Comments
P-1	75	15	11	60,000	105	Quench Pit sampled water and solid residuals in July 2014
P-2	77	16.5	10	24,000	None Recoverable	Quench Pit sampled water in July 2014
P-3	160	11	15	20,000	None Recoverable	Quench Pit sampled water in July 2014
P-4	51	9	10	10,500	None Recoverable	Quench Pit sampled water in July 2014
P-5	50	15	13	17,000	90	Coke Breeze Settling Basin sampled water and solid residuals in July 2014
P-6	95	10	14	90,000	None Recoverable	Lime Sludge Settling Basin sampled water in July 2014

Notes:

- Field measurements obtained by TurnKey personnel on July 19, 2011.
 Historic as-built drawings were used to confirm dimensions, as necessary.
 SWMU locations are shown on Plate 4-10.

TABLE 4-14 SUMMARY OF JULY 2014 QUENCH PIT (SWMUs P1 TO P6) WATER ANALYTICAL DATA

			SWMU Samp	ling Location 8	Sample Date		
	P-1	P-2	P-3	P-4	P-	5 ¹	P-6
Parameter	07/11/14	07/11/14	07/08/14	07/08/14	07/08/14	07/08/14	07/08/14
		Esti	imated Volume	of Impoundme	ent Water (gall	ons)	
	60,000	24,000	20,000	10,500	17,	000	90,000
Priority Pollutant VOCs (Method	624) (mg/L)						
Acetone	ND	0.0089 J	ND	0.0037 J	ND	ND	0.0047 J
Toluene	ND	0.0730	ND	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	0.0022 J	ND	ND	ND
Priority Pollutant SVOCs (Method	d 625) (mg/L)						
Bis(2-ethylhexyl) phthalate	0.044	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	ND	0.28	ND	ND	ND	ND	ND
Total Priority Pollutant Metals 2 (Method 6010C)	(mg/L)					
Antimony	0.00126 J	0.0281 J	0.00067 J	0.0006 J	0.00113 J	0.00099 J	0.00206 J
Arsenic	0.00277	0.03652	0.00023 J	0.00024 J	0.00043 J	0.00038 J	0.00216
Cadmium	ND	0.00942 J	ND	ND	ND	ND	ND
Chromium	0.00127	0.4138	0.00072 J	0.00078 J	0.00102	0.00094 J	0.00113
Copper	0.00260	0.06352	0.00115	0.00174	0.00224	0.00215	0.00286
Lead	ND	0.04182	0.00022 J	0.00038 J	0.00077 J	0.00058 J	ND
Mercury	ND	0.001	ND	ND	ND	ND	ND
Nickel	0.00178	0.8335	0.00053 J	0.00072 J	0.00042 J	0.00038 J	0.00123
Selenium	0.00047 J	0.00502 J	ND	0.00075 J	0.00034 J	ND	0.00248
Thallium	ND	0.00055 J	ND	ND	ND	ND	ND
Zinc	0.00687	3.346	0.01519	0.02713	0.00487 J	0.00242 J	0.00534
General Chemistry (mg/L)							
Cyanide, Total	0.001 J	0.003 J	0.001 J	0.002 J	0.002 J	0.002 J	0.003 J
Nitrogen, Ammonia	ND	40.0	0.265	8.18	0.199	0.531	0.445
Phenolics, Total	0.02 J	0.13	0.120	0.029 J	0.08	ND	ND

- Results for P-5 and blind duplicate.
 Mercury was tested using USEPA Method 7470A.

- B = Analyte was detected in the associated Method Blank.
- ND = Parameter not detected above laboratory detection limit.

TABLE 4-15
SUMMARY OF JULY 2014 QUENCH PIT (SWMUs P1 TO P6) RESIDUALS ANALYTICAL DATA ¹

	lu de atrial	Oite Onesidie	Sample Loc	ation, Depth (fbgs) &	& Sample Date
PARAMETER ²	Industrial SCOs ³ (mg/kg)	Site Specific SCOs ⁴ (mg/kg)	P-1	Blind Duplicate (P-1)	P-5
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0 0)	07/15/14	07/15/14	07/15/14
TCL VOCs (Method 8260B) (mg/kg)					
Acetone	1,000	1,000	0.034	0.044	0.12
2-Butanone	1,000	1,000	ND	ND	0.02 J
TCL SVOCs (Method 8270C) (mg/kg) (PA	Hs in BLUE)				
Acenaphthene	1,000	See Note 5	0.45	0.33	0.53
Acenaphthylene	1,000	See Note 5	0.37	0.3	1.1
Acetophenone			ND	0.3 J	ND
Anthracene	1,000		1.8	1.2	2.1
Benzo(a)anthracene	11]	2.5	1.6	4.1
Benzo(a)pyrene	1.1	See Note 5	1.8	1.3	4
Benzo(b)fluoranthene	11	See Note 5	2.8	2.4	6.2
Benzo(ghi)perylene	1,000		1.2	0.85	3
Benzo(k)fluoranthene	110		0.96	0.73	2.3
Bis(2-ethylhexyl) phthalate			ND	0.64	1.9
Biphenyl			0.66 J	0.61 J	0.68 J
Carbazole			1.2	0.84	1.8
Chrysene	110	See Note 5	3	2.4	5
Dibenzo(a,h)anthracene	1.1	See Note 5	0.37	0.28	0.71
Dibenzofuran	1,000	1,000	1.6	1.3	2
Fluoranthene	1,000		4.3	3.7	9.4
Fluorene	1,000		1.2	0.94	1.4
Indeno(1,2,3-cd)pyrene	11		1.2	0.92	3.2
2-Methylnaphthalene]	3.8	3.4	3.8
Naphthalene	1,000	See Note 5	7.6	5	14
Phenanthrene	1,000	See Note 5	5.6	5.2	8.6
Phenol	1,000		2	1.7	0.44
2-Methylphenol			1.5	1	0.49
3-Methylphenol/4-Methylphenol			3.2	2.2	1.3
Pyrene	1,000		3.6	2.9	7.1
Total PAHs (mg/kg) 5	500	500	49	38	79

TABLE 4-15 ${\tt SUMMARY\ OF\ JULY\ 2014\ QUENCH\ PIT\ (SWMUS\ P1\ TO\ P6)\ RESIDUALS\ ANALYTICAL\ DATA}^{\ 1}$

	Industrial	Sita Specific	Sample Loca	ation, Depth (fbgs) 8	Sample Date
PARAMETER ²	SCOs ³ (mg/kg)	Site Specific SCOs ⁴ (mg/kg)	P-1	Blind Duplicate (P-1)	P-5
	, , ,	, ,	07/15/14	07/15/14	07/15/14
RCRA Metals (Method 6010B/7471A) (mg/kg	g)				
Aluminum			3,800	3,300	11,000
Antimony			1.5 J	1.8 J	1.7 J
Arsenic	16	118	26	23	23
Barium	10,000	10,000	140	120	200
Beryllium	2,700	2,700	0.97	0.84	2
Cadmium	60	60	1.7 J	1.6	1.9 J
Calcium	-		9,100	8,200	94,000
Chromium	6,800	6,800	90	97	74
Cobalt			8.6	7.4	5.6
Copper	10,000	10,000	100	90	160
Iron	-		29,000	23,000	63,000
Lead	3,900	3,900	250	180	150
Magnesium			1,800	1,700	9,400
Manganese	10,000	10,000	780	670	2,300
Mercury	5.7	5.7	3.3	2.9	0.75
Nickel	10,000	10,000	63	59	27
Potassium			490	400 J	880
Selenium	6,800	6,800	3 J	2.8 J	2.6 J
Sodium	-		110 J	76 J	880
Vanadium			25	23	33
Zinc	10,000	10,000	480	500	820
Inorganic Compounds & Miscellaneous (un	nits as shown)				
Solids (%)			42.6	48.4	37.0
Cyanide (mg/kg)	10,000	10,000	16	12	14

- 1. There were no solid residuals recovered from SWMUs P-2, P-3, P-4, and P-6.
- 2. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- 3. Values per NYSDEC 6NYCRR Part 375 Industrial Soil Cleanup Objectives (December 2006)
- 4. Site specific Soil Clean-up Objectives were developed for arsenic and for PAHs. Arsenic was developed based on a statistical analysis of samples in the BCP and CMS areas of the Tecumseh Redevelopment Site to be 118 mg/kg. PAHs are discussed in Note 5 below.
- 5. The total PAH SCO was adapted from Commissioner Policy CP-51/Soil Cleanup Guidance, dated October 21, 2010.

Definitions:

ND = Sample was not detected above the method detection limit.

BOLD

= Result exceeds Part 375 Industrial SCO

TABLE 4-16

SUMMARY OF SWMU P-7 TEST PIT LOCATION

Lasation	Test Pit Dimensions Length Width Depth			Dete	Visually	Olfactory	Interval of Observed	Maximum	Analy	sis & Depth In	terval	Approx.	Observed Perched	Depth (fbgs) and Soil Description			
Location	Length (feet)		Depth (fbgs)	Date	Impacted Soil/Fill?	Odor	Impact (fbgs)	PID Scan (ppm)	TCL VOCs (8260)	TCL SVOCs (8270)	Interval (fbgs)	(fbgs)	Water Impact	(ASTM D2488: Visual-Manual Procedure)			
Test Pit Loc	ations																
P7-TP-01	13.0	4.5	9.5	01/13/11	Yes	Yes	2.0-9.5	26.8	Yes	Yes	2.0-9.5	3.0	sheen	0.0-2.0 Slag/Fill: Black, moist, mostly non-plastic coal and coke fines, with some fine sand, with brick and steel debris, medium dense loose when disturbed. 2.0-9.5 Slag/Fill: Dark grey, moist to wet, mostly coarse sand and fine gravel, with some non-plastic fines and fine sand, larger pieces of slag/fill mixed with brick. loose, on east side of test pit concrete foundation.			

Notes:

1. CMS test pit locations are shown on Plate 4-11.

Definitions:

fbgs = feet below ground surface PID = MiniRae photoionization detector equipped with a 10.6 eV lamp ppm = parts per million DTW = depth to water

TABLE 4-17
SUMMARY OF SWMU P-7 FILL ANALYTICAL DATA

			Sample Location, I	Depth (fbgs) & Date
Parameter ¹	Industrial SCOs ²	TCLP ³ Threshold	P07-1 (0.0-0.5')	P7-TP-01 (0.0 - 9.5')
	(mg/kg)	(mg/L)	RFI	CMS
	, , ,	`	02/21/95	01/13/11
TCL VOCs (Method 8260B)	(mg/kg)			
Benzene	89		ND	0.058 J
Methyl Acetate			ND	1.2
Methylene chloride	1,000		0.013	ND
Styrene	5		ND	ND
Toluene	1,000		0.002 J	ND
1,1,1-Trichloroethane	1,000		0.005	ND
Xylenes, Total	1,000		0.002 J	ND
Total VOCs (mg/kg)			0.022	1.3
TCL SVOCs (Method 8270C)) (mg/kg) (PAHs	in BLUE)		
Acenaphthene	1,000		1.1 J	0.035 J
Acenaphthylene	1,000		19	0.46
Anthracene	1,000		23	0.34
Benzo(a)anthracene	11		35	0.4
Benzo(a)pyrene	1.1		20	0.37
Benzo(b)fluoranthene	11		24	0.5
Benzo(ghi)perylene	1,000		12	0.14 J
Benzo(k)fluoranthene	110		13	0.19
Biphenyl			ND	0.071 J
Carbazole			ND	0.25
Chrysene	110		31	0.42
Dibenz(a,h)anthracene	1.1		2.7 J	ND
Dibenzofuran	1,000		ND	0.32
2,4-Dimethylphenol			ND	0.07 J
Fluoranthene	1,000		62	1.2
Fluorene	1,000		21	0.4
Indeno(1,2,3-cd)pyrene	11		13 J	0.13 J
2-Methylnaphthalene			ND	0.26
2-Methylphenol			ND	0.28
4-Methylpheol			1.5 J	1.2
Naphthalene	1,000		44	2.8
Phenanthrene	1,000		66	1.4
Phenol	1,000		1.3 J	2.5
Pyrene	1,000		58	ND
Total PAHs (mg/kg) 4	500		445	9.0

TABLE 4-17 SUMMARY OF SWMU P-7 FILL ANALYTICAL DATA

			Sample Location, I	Depth (fbgs) & Date
_ 1	Industrial	TCLP 3	P07-1	P7-TP-01
Parameter ¹	SCOs ²	Threshold	(0.0-0.5')	(0.0 - 9.5')
	(mg/kg)	(mg/L)	RFI	CMS
			02/21/95	01/13/11
Inorganic Compounds (mg/kg)				
Arsenic ⁵	118		4 J	NA
Barium	10,000		32.1	NA
Calcium			115,000	NA
Chromium	6,800		343	NA
Lead	3,900.0		192 J	NA
Mercury	6		0.65	NA
Nickel	10,000		61.6	NA
Selenium	6,800		ND	NA
Cyanide	1,000		6.8	NA
Wet Chemistry (mg/kg)				
pH SOL	6.5-8.5		8	NA
Total Recoverable Phenolics			2.6	NA
TCLP Benzene (Method 8260C) (mg/L)			
Benzene		0.5	NA	NA

Notes:

- 1. Only those VOC and SVOC parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- 2. Values per NYSDEC 6NYCRR Part 375 Industrial Soil Cleanup Objectives (December 2006)
- 3. TCLP means toxic characteristic leaching procedure via USEPA Method 1311.
- 4. The total PAH SCO was adapted from Commissioner Policy CP-51/Soil Cleanup Guidance, dated October 21, 2010.
- 5. Site-specific SCO for arsenic.

- D = Compound was analyzed at the secondary dilution factor.
- J = Estimated Value.
- ND = Not detected above method detection limit for this compound
- NA = Not analyzed for this compound

BOLD	= Total PAHs exceeds CP-51 SCO.
BOLD	= Result exceeds Part 375 Industrial SCO or site-specific SCO.
BOLD	= Result exceeds TCLP leachable level.

TABLE 4-18 SUMMARY OF SWMU P-11 ESTIMATED BENZOL PRODUCT MASS REMOVAL

					ATILE ORG		Total	Moving Average (mg/L)					Treated Volume			Volume	Percent Reduction	APL Mass R	emoved Per E x B x C)	Event		LNAPL Mass		Total Mass Removed (APL & LNAPL)					
Date of Collection	Event	Event		(m	ig/L)		VOCs (mg/L)	(mg.t.)											gallons	liters	Reduction		1	pounds	кеп	noved Per Ev	pounds	(pou	nds)
			В	E	Т	Х	5				\ 			1 1	П				E		С	mg	pounds	(cumulative)	gallons	pounds	(cumulative)	per event	cumulative
05/04/05	start-up	Apr-05	91 D	0.42	10 D	2.7	104.12	4 4 12.11											218,276	826,262	100%	86,030,396	190	190	0.00	0	0	190	190
05/31/05	M1	May-05	57 D	0.4	6.1 D	2.6	66.10 -	81.6											89,216	337,718	99.98%	28,737,451	63	253	19.92	146	146	210	399
06/30/05	M2	Jun-05	65 D	0.39	6.3 D	3	74.69 -	8 97.50 5.19											384,303	1,454,741	99.99%	118,748,295	262	515	9.35	69	215	330	730
08/04/05	М3	Aug-05	69 D	0.4 J	8.7	2.6	80.70 -		109.95										295,121	1,117,151	99.95%	90,893,418	200	715	6.13	45	260	245	975
08/29/05	M4	Aug-05	120 D	2.9 J	16	23	161.90 -		111.96										305,166	1,155,175	98.91%	111,404,222	246	961	3.74	27	287	273	1,248
09/23/05	M5	Sep-05	120 D	1.1 J	13	9.5 J	143.60 -		116	113.27									510,119	1,931,004	99.97%	203,051,771	448	1,409	139.74	1,025	1,312	1,473	2,721
10/31/05	M6	Oct-05	120 D	0.81 J	12	5.7 J	138.51 -			113	3								484,182	1,832,823	99.98%	201,470,681	444	1,853	44.82	329	1,641	773	3,494
12/05/05	Y1Q3	Dec-05	100 D	0.79 J	14	5.6 J	120.39 -		-	1, 6,	110.70								1,295,322	4,903,312	99.77%	544,244,929	1,200	3,053	74.93	550	2,191	1,750	5,244
04/10/07	Y1Q4	Apr-07	120	1 J	16	7.6 J	144.60				106	105.60							1,040,553	3,938,909	99.54%	450,720,989	994	4,047	99.60	731	2,922	1,725	6,968
07/10/07	Y2Q1	Jul-07	110	1.2 J	15	8.5 J	134.70 -	- - - -				106.0 104.63							942,933	3,569,379	99.97%	417,245,795	920	4,967	80.51	591	3,512	1,511	8,479
10/30/07	Y2Q2	Oct-07	63	0.69 J	8.1	4.9 J	76.69 -	- - - -				103.	54						432,400	1,636,807	99.35%	184,200,452	406	5,373	77.19	566	4,079	972	9,452
01/18/07	Y2Q3	Jan-07	93	1.1	14	7.7	115.80 -						102.2						521,768	1,975,101	99.90%	223,916,857	494	5,867	34.86	256	4,334	749	10,201
04/16/07	Y2Q4	Apr-07	110	0.8	12	5.7	128.50 -)1						465,708	1,762,891	99.91%	201,913,234	445	6,312	19.92	146	4,481	591	10,792
10/19/07	Y3SA1	Oct-07	81	0.74 J	5.5	4.5	91.74 -							98.32	7.53				377,088	1,427,429	98.86%	159,464,685	352	6,664	51.72	379	4,860	731	11,524
04/10/08	Y3SA2	Apr-08	70	< 1	4.7	2.7 J	78.40 -				-				95.50	1.80		-	1,186,475	4,491,282	99.76%	495,973,803	1,094	7,757	126.58	929	5,789	2,022	13,546
11/17/08	Y4SA1	Nov-08	40	0.3 J	1.6	1.3 J	43.20 -									93.99	8		784,835	2,970,914	99.93%	316,114,104	697	8,454	31.96	234	6,023	932	14,477
04/08/09	Y4SA2	Apr-09	78 D	0.66 DJ	8.5 D	4.4 D	91.56 -										94.72	.72	566,020	2,142,612	99.97%	226,191,961	499	8,953	7.47	55	6,078	554	15,031
11/13/09	Y5SA1	Nov-09	100 D	0.79 DJ	8.6 D	4.4 D	113.79 -											90.40	779,293	2,949,936	99.89%	312,511,292	689	9,642	13.30	98	6,175	787	15,818
04/29/10	Y5SA2	Apr-10	73 D	<1	2.9 D	2.1 D	79.00												1,639,458	6,206,004	98.90%	642,198,016	1,416	11,058	12.32	90	6,266	1,506	17,324
					4.7 D	2.7 D														4,574,372							6,462	1,237	18,561
10/22/10	Y6SA1	Oct-10	71 D	<1			79.40 -												1,208,425		99.76%	471,715,705	1,040	12,098	26.79	197			
04/26/11	Y6SA2	Apr-11	55	< 1	6.1	3.3	65.40 -												1,023,146	3,873,017	99.95%	393,152,451	867	12,965	43.00	315	6,778	1,182	19,743
10/28/11	Y7SA1	Oct-12	87	1.5	17	11	116.50 -												1,015,933	3,845,713	99.97%	393,069,466	867	13,832	70.08	514	7,292	1,381	21,124
05/01/12	Y7SA2	Apr-11	76	< 1	5.7	2.8	85.50 -						-						858,183	3,248,566	99.99%	329,737,425	727	14,559	43.84	322	7,614	1,049	22,173
10/03/12	Y8SA1	Oct-12	49	< 1	2.4	1.1 J	53.50 -	- - - -	- - -	-	-	- -	- -						769,882	2,914,311	99.99%	289,980,190	639	15,198	36.93	271	7,885	910	23,083
04/04/13	Y8SA2	Apr-11	75 D	0.43 J	6.2	29.6	111.23 -		- - -	- - - -	-		- - -						1,567,627	5,934,095	99.99%	593,236,260	1,308	16,506	38.85	285	8,170	1,593	24,676
10/30/13	Y9SA1	Oct-13	48	< 2.5	4.7	1.67 J	56.87 -	- - - -	- - -	- -	-			-					1,450,192	5,489,556	99.98%	539,639,943	1,190	17,696	42.64	313	8,482	1,503	26,179
04/21/14	Y9SA2	Apr-14	64	0.69 J	8.3	3.8	76.79 -				-			-					2,058,564	7,792,488	99.99%	759,887,855	1,676	19,372	57.85	424	8,907	2,100	28,279
10/30/14	Y10SA1	Oct-14	34	< 1.2	3.6	2.15 J	40.95 -				-			-					1,283,541	4,858,717	99.84%	463,287,606	1,022	20,393	35.66	262	9,168	1,283	29,562
04/30/15	Y10SA2	Apr-15	67	< 2.5	4.1	1.4 J	75.00 -							-		-			954,826	3,614,398	99.95%	342,464,920	755	21,149	35.11	258	9,426	1,013	30,575
04/05/16	Y11SA2	Apr-16	63	< 2.5	2.6	2.4 J	70.50 -				-			-					1,604,223	6,072,626	99.97%	570,580,699	1,258	22,407	8.63	63	9,489	1,321	31,896
10/26/16	Y12SA1	Oct-16	90	0.88 J	8.3	5.6 J	104.78 -				-			- -					1,182,202	4,475,107	99.98%	422,078,438	931	23,337	24.00	176	9,665	1,107	33,003
04/05/17	Y12SA2	Apr-17	94	<2.5	9	3.68 J	106.68 -							- - -					1,629,980	6,170,126	99.98%	584,327,114	1,288	24,626	14.50	106	9,772	1,395	34,398
12/20/17	Y13SA1	Dec-18	27	<2.5	1 J	0.55 J	28.55												1,182,202	4,475,107	99.98%	414,832,707	915	25,541	24.00	176	9,948	1,091	35,489
04/19/18	Y13SA2	Apr-18	13	0.14 J	0.33 J	0.54 J	14.01 -												1,629,980	6,170,126	99.83%	556,840,250	1,228	26,768	14.50	106	10,054	1,334	36,823

TOTALS:

31,737,142

99.81%

26,768

1,370.44 10,054

36,823

Notes:
1. LNAPL Mass removal conversion: 8.337 pounds/gallon of water x specific gravity of benzol (0.88) = 7.3366 pounds/gallon.

Definitions:

APL = aqueous-phase liquid; dissolved phase
LNAPL = light non-aqueous phase liquid; floats on water
B = benzene; E = ethylbenzene; T = toluene; X = xylene
= current monitoring period

Total Mass Removed: 36,823 (APL & LNAPL) 18.41

pounds tons

TABLE 4-19
SUMMARY OF SWMU S-26 SLAG/FILL ANALYTICAL DATA

								Sample I	ocation De	nth (fhas) I	Date of San	nle Collect	ion, SWMU	Location ⁴						
	Industrial	S26-1	S26-2	S26-B-1	S26-B-1	S26-B-1	S26-B-2	S26-B-2	S26-B-3	S26-B-3	S26-B-3	S26-B-3	S26-B-04	S26-B-06	S26-B-07	S26-B-08	S26-B-10	S26-B-11	S26-B-12	S26-B-13
Parameter ¹	SCOs ²	(0.0 - 30.0)	(0.0 - 30.0)	(0.0 - 12.0)	(12.0 - 14.0)	(14.0 - 30.0)	(0.0 - 14.0)	(14.0 - 22.0)	(6.0 - 8.0)	(10.0 - 12.0)	(14.0 - 30.0)	COMP ³	(14.0 - 16.0)	(14.0 - 16.0)	(6.0 - 8.0)	(14.0 - 16.0)	(6.0 - 8.0)	(4.0 - 6.0)	(14.0 - 16.0)	(14.0 - 16.0)
	(mg/kg)	02/15/95	02/15/95	12/14/06	12/14/06	12/14/06	12/14/06	12/14/06	12/15/06	12/15/06	12/15/06	12/15/06	09/23/10	09/20/10	09/20/10	09/17/10	09/20/10	09/21/10	09/23/10	09/24/10
		S26-G	S26-G	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-G	S26-T	S26-G	S26-G	S26-T	S26-G	S26-T
TCL VOCs (Method 8260B) (mg/k	rg)																			
Acetone	1,000	ND	ND	NA	0.11 J	NA	NA	NA	0.046 J	0.052 J	NA	NA	ND	0.13 J	0.016 J	ND	0.089 J	NA	ND	0.17 J
Benzene	89	ND	4.9 J	NA	2.4 D	NA	NA	NA	0.24	0.013 J	NA	NA	0.78 DJ	0.16	0.0027 J	62 D	0.034 J	NA	ND	0.03 J
Carbon Disulfide		2.4 J	7.7	NA	0.012 J	NA	NA	NA	ND	0.009 J	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND
Cyclohexane		ND	ND	NA	0.047	NA	NA	NA	ND	0.015 J	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND
Ethylbenzene	780	ND	ND	NA	0.25	NA	NA	NA	0.055	0.08	NA	NA	ND	0.094	ND	2.6	0.02 J	NA	ND	ND
Isopropylbenzene		ND	ND	NA	0.60	NA	NA	NA	ND	0.063	NA	NA	ND	0.08	ND	1.2	ND	NA	ND	ND
Methylcyclohexane		ND	ND	NA	0.066	NA	NA	NA	ND	0.056	NA	NA	ND	0.053 J	ND	0.15 J	ND	NA	ND	ND
Methylene Chloride	1,000	3.7 J	4.9 J	NA	0.093 B	NA	NA	NA	0.072 B	0.065 B	NA	NA	ND	0.12	0.0042 J	ND	0.039	NA	ND	0.046 J
Methyl Ethyl Ketone (2-Butanone)	1,000	ND	ND	NA	ND	NA	NA	NA	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	0.036 J
Styrene		ND	ND	NA	ND	NA	NA	NA	0.28	0.012 J	NA	NA	ND	0.15	ND	ND	ND	NA	ND	ND
Toluene	1,000	ND	7.7	NA	0.041	NA	NA	NA	0.23	0.011 J	NA	NA	ND	0.26	ND	3.8	0.031 J	NA	ND	ND
Xylenes, Total	1,000	2.6 J	13	NA	1.3	NA	NA	NA	1.4	0.085 J	NA	NA	ND	0.7	ND	18	0.048 J	NA	ND	0.15
Total VOCs (mg/kg)		8.7	38	NA	4.9	NA	NA	NA	2.3	0.46	NA	NA	0.78	1.7	0.023	88	0.26	NA	ND	0.43
TCL SVOCs (Method 8270C) (mg	/kg) (PAHs in l	BLUE)																		
Acenaphthene	1,000	0.3 J	ND	3 J	1.8 J	0.024 J	2.4 J	ND	440 J	100	0.27 J	44 J	130 D	51 D	0.19 DJ	340 D	110 D	1.9 DJ	96 D	140 D
Acenaphthylene	1,000	0.72 J	1.2	12 J	1.4 J	0.027 J	12 J	ND	390 J	12 J	0.028 J	24 J	11 DJ	19 D	3.9 D	34 D	12 D	14 D	10 DJ	14 D
Anthracene	1,000	1.1	2.6	24 J	4.1	0.074 J	21 J	ND	940 J	55 J	0.11 J	71 J	49 D	50 D	6.6 D	290 D	34 D	6.8 DJ	47 D	110 D
Benzo(a)anthracene	11	2.2	3.6	48	4.2	0.086 J	49	0.046 J	1400 J	51 J	0.14 J	110	65 D	76 D	15 D	270 D	39 D	38 D	63 D	130 D
Benzo(a)pyrene	1.1	2.1	2.8	37 J	2.9	0.056 J	39	0.031 J	1000 J	50 J	0.12 J	80 J	70 D	76 D	20 D	230 D	37 D	55 D	51 D	140 D
Benzo(b)fluoranthene	11	2.9	3.6	65	3.8	0.100 J	53	0.038 J	1400 J	60 J	0.15 J	110	72 D	75 D	21 D	240 D	35 D	55 D	57 D	130 D
Benzo(g,h,i)perylene	1,000	1.1	1.4	27 J	1.8 J	0.040 J	32 J	0.026 J	840 J	39 J	0.089 J	58 J	56 D	42 D	9.8 D	130 D	29 D	49 D	44 D	49 D
Benzo(k)fluoranthene	110	1	1.2	ND	1.1 J	ND	16 J	ND	410 J	16 J	0.045 J	35 J	20 D	25 D	5.4 D	90 D	15 D	23 D	16 D	56 D
Biphenyl		ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	13 D	0.48 DJ	45 D	9.9 D	1.3 DJ	1.7 DJ	ND
Bis(2-ethylhexyl)phthalate		ND	ND	ND	ND	0.086 J	ND	0.079 J	ND	ND	0.14 BJ	ND	ND	ND	0.82 DJ	ND	ND	ND	ND	ND
Chrysene	110	2	3	44	3.2	0.083 J	43	0.033 J	1300 J	59 J	0.14 J	110	64 D	63 D	15 D	220 D	34 D	37 D	56 D	120 D
Dibenz(a,h)anthracene	1.1	0.24 J	0.29 J	8.2 J	0.56 J	ND	8.3 J	ND	200 J	8.7 J	0.024 J	16 J	27 D	19 D	ND	41 D	15 D	23 D	26 D	16 D
Dibenzofuran	1,000	ND	ND	7.5 J	2.5	0.036 J	6.0 J	ND	2000	12 J	0.088 J	170	17 D	26 D	1.3 D	180 D	50 D	5.4 DJ	16 D	73 D
Fluoranthene	1,000	4.7	9.5	100	10	0.200 J	85	0.063 J	4900	150	0.39	400	160 D	170 D	27 D	670 D	110 D	57 D	150 D	300 D
Fluorene	1,000	0.84	1.9	7.9 J	3.7	0.052 J	8.4 J	ND	1400 J	46 J	0.13 J	120	62 D	36 D	0.89 DJ	250 D	58 D	ND	54 D	110 D
Indeno(1,2,3-cd)pyrene	11	1.1	1.4	25 J	1.6 J	0.036 J	28 J	ND	740 J	33 J	0.079 J	54 J	50 D	40 D	9.5 D	120 D	26 D	46 D	42 D	48 D
2-Methylnaphthalene		ND	ND	2.6 J	1.2 J	ND	2.6 J	ND	2900	6.5 J	0.20 J	280	8.9 DJ	60 D	0.8 DJ	110 D	15 D	6 DJ	6.2 DJ	38 D
Naphthalene	1,000	8.2	2.7	9.4 J	5.9	0.095 J	7.4 J	0.023 J	210000 D	1200	4.5	9700 D	1700 D	4300 D	6.6 D	1200 D	2600 D	34 D	620 D	370 D
Phenanthrene	1,000	3.7	9.2	66	12	0.180 J	54	0.035 J	7700	170	0.48	660	200 D	140 D	11 D	860 D	160 D	26 D	160 D	380 D
Pyrene	1,000	3.5	6.8	89	7.4	0.150 J	77	0.054 J	3400	110	0.30 J	280	140 D	140 D	26 D	450 D	99 D	64 D	120 D	220 D
Total PAHs (mg/kg) 5	500	35.7	51.2	568	66.7	1.20	538	0.349	239,360	2166	7.20	12,152	2,885	5,382	179	5,545	3,428	536	1,618	2,371

TABLE 4-19 SUMMARY OF SWMU S-26 SLAG/FILL ANALYTICAL DATA

								Sample L	ocation, De	pth (fbgs), I	Date of Sam	ple Collect	ion, SWMU	Location ⁴						
Parameter ¹	Industrial SCOs ² (mg/kg)	\$26-1 (0.0 - 30.0) 02/15/95	\$26-2 (0.0 - 30.0) 02/15/95	S26-B-1 (0.0 - 12.0) 12/14/06	S26-B-1 (12.0 - 14.0) 12/14/06	S26-B-1 (14.0 - 30.0) 12/14/06	S26-B-2 (0.0 - 14.0) 12/14/06	S26-B-2 (14.0 - 22.0) 12/14/06	S26-B-3 (6.0 - 8.0) 12/15/06	S26-B-3 (10.0 - 12.0) 12/15/06	S26-B-3 (14.0 - 30.0) 12/15/06		S26-B-04 (14.0 - 16.0) 09/23/10			S26-B-08 (14.0 - 16.0) 09/17/10			S26-B-12 (14.0 - 16.0) 09/23/10	
		S26-G	S26-G	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-T	S26-G	S26-T	S26-G	S26-G	S26-T	S26-G	S26-T
RCRA Metals (Method 6010B/74)	71A) (mg/kg)																			
Arsenic, Total ⁶	118	14.9 J	8 J	3.9	6.1	2.2	6.1	7.0	40.4	2.5	2.2	15.6	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Total	10,000	170	137	58.9	48.5	45.4	66.7	79.9	220	16	10.3	46.8	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium, Total	60	NA	NA	0.3	0.24	0.22	0.34	0.39	2.5	0.33	ND	0.95	NA	NA	NA	NA	NA	NA	NA	NA
Chromium, Total	6,800	501 J	1400 J	55.9	16.4	9.1	14.7	13.8	36.2	5.3	4.3	17	NA	NA	NA	NA	NA	NA	NA	NA
Lead, Total	3,900	11.5 J	10.6 J	40.6	7.6	6.0	26.5	8.5	230	23.1	4.8	130	NA	NA	NA	NA	NA	NA	NA	NA
Mercury, Total	5.7	0.18 J	0.19 J	4.0	ND	ND	0.31	ND	1.8	0.34	ND	3.8	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC Part 375 Soil Cleanup Objectives (December 2006). The total SVOC concentration limit is adopted from CP/Soil Cleanup Guidance dated October 21, 2010.
- 3. Composite sample consists of three grab samples collected from 0-6, 8-10, and 12-14 fbgs.
- 4. S26-T refers to the portion of SWMU S-26 on Tecumseh property, S26-G refers to the portion of SWMU S-26 on Gateway property.
- 5. The total PAH SCO was adapted from Commissioner Policy CP-51/Soil Cleanup Guidance, dated October 21, 2010. This was the basis for determining whether significant concentrations of PAHs were present. Individual SVOC ISCOs were not used.
- 6. Site-specific SCO for arsenic.

Definitions:

fbgs = Feet below ground surface.

B = Analyte was detected in the associated blank as well as in the sample.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

D = All compounds were identified in an analysis at the secondary dilution factor.

NA = Sample not analyzed for those parameters.

ND = Not detected above method detection limit for this compound

NA = Not analyzed for this compound

BOLD
BOLD
BOLD

- = Locations advanced on Tecumseh portion of SWMU S-26
- = Total PAHs exceeds CP-51 SCO
- = Result exceeds the Part 375 Industrial SCO or site-specific SCO

TABLE 4-20
SUMMARY OF SMOKES CREEK LOWER REACH SEDIMENT ANALYTICAL DATA

									Sample Lo	cation. Analy	sis, and Sam	nnle Date 3,4													
	SC-SED-01	SC-SED-02	SC-SED-01	SC-SED-02	SC-SED-03	SC-SED-04	SC-SED-03	SC-SED-04					SC-SED-07	SC-SED-08	SC-SED-07	SC-SED-08	SC-SED-09	SC-SED-10	SC-SED-09	SC-SED-10	Pre-ICM Average	Post-ICM Average	Sedi	ment Guidance Val	ues ⁷
Parameter ¹	pre-		post			e-ICM		t-ICM	pre-			t-ICM	pre-		post	l	pre-	l		t-ICM	Concentration ⁵	Concentration 5		(mg/kg)	
	06/2		04/0		•	27/07	04/2		06/2			24/09	06/2		04/2		06/2		04/2		(mg/kg)	(mg/kg)	Class A	Class B	Class C
TCL VOCs (Method 8260B)							1										1								
Acetone	0.17 B	0.078 B	ND	ND	0.12 B	0.088 B	0.055 B	0.046 B	0.076 B	0.035 BJ	0.039 B	0.045 BJ	0.022 BJ	0.058 B	0.067	0.059	0.082 BJ	0.022 BJ	0.041 J	0.039 J	0.075	0.049	_		
Benzene	8.8 D	0.005 J	ND	ND	0.002 J	0.003 J	ND	0.0038 J	0.003 J	0.009	ND	0.0089 J	0.014	0.012	0.005 J	0.0038 J	0.44	0.008	0.0097 J	0.021	0.93	0.0087	< 0.53	0.53 - 1.9	> 1.9
2-Butanone	0.044 J	0.016 J	ND	ND	0.027 J	0.023 J	ND	ND	0.012 J	ND	ND	ND	ND	0.013 J	0.014 J	ND	ND	ND	ND	ND	0.023	0.014			
Carbon Disulfide	0.017	0.003 J	ND	ND	0.003 J	0.006 J	ND	0.0025 J	0.002 J	0.002 J	ND	ND	0.005 J	0.005 J	0.0047 J	ND	0.029	0.006	ND	0.0053 J	0.0078	0.0042			
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002 J	ND	ND	0.02	ND	ND	ND	0.011	ND			
Ethylbenzene	0.002 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.49	0.006	0.0095 J	0.025	0.17	0.017	< 0.43	0.43 - 3.7	> 3.7
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002 J	ND	ND	ND	0.079	ND	ND	0.0062 J	0.041	0.0062	< 0.21	0.21 - 1.8	> 1.8
Methylcyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002 J	0.004 J	ND	ND	0.13	ND	0.0023 J	0.0065 J	0.045	0.0044			
Methylene Chloride	0.021 B	0.022 B	0.043 B	0.027 B	0.02 B	0.022 B	0.0086 B	0.011 B	0.018 B	0.013 B	0.007 B	0.0084 B	0.015 B	0.012 B	0.0019 B	0.0084 B	0.074 B	0.02 B	0.0092 B	0.0087 B	0.024	0.013	-		
Stryrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	0.02	0.027	0.071	0.56	0.049	-		
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.009 J	ND	ND	ND	0.0090	ND	< 16	16 - 57	> 57
Toluene	0.1	ND	ND	ND	ND	ND	0.017	ND	ND	ND	ND	0.0089 J	0.005 J	0.012	ND	ND	1.8 D	0.021	0.019	0.051	0.39	0.024	< 0.93	0.93 - 4.5	> 4.5
Xylenes, Total	0.013 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0069 J	0.012 J	0.012 J	ND	0.014 J	17 D	0.12	0.19	0.48	3.4	0.17	< 0.59	0.59 - 5.2	> 5.2
Total VOCs (mg/kg)	9.17	0.124	0.043	0.027	0.172	0.142	0.0806	0.0633	0.111	0.059	0.046	0.0781	0.077	0.130	0.0926	0.0852	21.25	0.223	0.308	0.714	3.1	0.15			
TCL SVOCs (Method 8270C) (mg/kg)																								
Acenaphthene	0.6	4 J	N	ID	0	.1 J	0.2	2 DJ	0.4	5 J	0.12	2 DJ	2.3	3 J	0.56	3 DJ	3	.6	2.9	9 D	1.42	0.95		9.82	
Acenaphthylene	0.7	1 J	N	ID	0.0)99 J	0.1	5 DJ	0.1	8 J	0.17	7 DJ	2.5	5 J	0.95	5 DJ	1	2	7.2	2 D	3.10	2.12		9.04	
Acetophenone	N	D	N	ID		ND	١	ID .	N	D	0.1	1 DJ	N	D	N	ID	N	ID	N	1D	ND	0.11			
Anthracene	1.1	J	0.41	1 DJ	0.	19 J	0.3	8 DJ	0.6	2 J	0.52	2 DJ	4	J	1.4	DJ	3	.3	3.7	7 D	1.84	1.28		11.88	
Benzo(a)anthracene	2.	1	1.4	DJ	0.	63 J	0.8	3 DJ	0.9	8 J	1.1	DJ	3.5	5 J	1.4	DJ	1	.6	2.3	3 D	1.76	1.41		16.82	
Benzo(a)pyrene	2.	0	1.3	DJ	0.	61 J	0.7	3 DJ	0.7	9 J	0.9	1 DJ	1.9	9 J	1.2	DJ	1	.2	1.6	S DJ	1.30	1.15		19.28	
Benzo(b)fluoranthene	2.		1.8	DJ	0.	98 J	0.9	7 DJ	1.3	3 J	1.1	DJ	3.1	1 J	1.6	DJ	4	.9	2.1	DJ	2.00	1.51		19.58	
Benzo(g,h,i)perylene	0.9		0.64			38 J	0.3		0.4			ł DJ	1.4		0.58		0.0			' DJ	0.75	0.54		21.9	
Benzo(k)fluoranthene	0.9	5 J	0.46	6 DJ	0.	36 J	0.3	7 DJ	0.3		0.36	6 DJ	1.5		0.52		0.5	51 J	0.76		0.74	0.49		19.6	
Biphenyl	N		N			ND		ID	0.1			1D	1.3		0.38		;			2 D	1.47	1.29			
Bis(2-ethylhexyl)phthalate	1.		N		ļ	1.8		PDJ	1.		0.7		N		0.94		-	i9 J		4 DJ	1.47	0.92			
Caprolactam	N		N			ND		ID	N			1 D	N		3.9		4	ID .		D	ND	3.00			
Carbazole	0.6		0.3			ND .		ID .	N			ND	N		0.4		0.9		0.74		0.77	0.48			
Chrysene	2.		1.6		-	87 J	0.9		1.3			DJ	3.6			DJ	1			1 D	1.91	1.45		16.86	
Dibenz(a,h)anthracene	2.		N		ļ	2.4	0.1		2.		0.12		2			ID .	 	.9		2 DJ	6.66	0.16		22.44	
Dibenzofuran	0.6		N			ND	0.2		0.3		0.14		4.4			DJ	4	.8		5 DJ	3.31	2.11			
Diethyl phthalate	N		N			ND		ID ID	N			1D	N 0.0		0.14		N			ND	ND 5.00	0.14			
Fluoranthene	6.		3.8			1.7		2 D	3.			9 D	8.9 5.5		4		6	.3	-	9 D 1 D	5.22	3.96		14.16	
Fluorene	0.9		N N			ND	0.5		0.7			6 DJ			21			9 F 1			4.06	2.73		10.78	
Indeno(1,2,3-cd)pyrene	0.7		0.62			.3 J	0.3		0.3			7 DJ	1.2		0.57		0.9	_		8 DJ	0.63	0.50		22.3	
2 - Methylnaphthalene	0.4		N N		1)59 J ND		5 DJ	0.4 N			6 DJ	4. <i>i</i>	7 J	2 I	DJ DJ	-	.22 ID		5 D	5.53	4.35 ND			
2 - Methylphenol	0.1			ID ID		ND ND		ID	0.09			5 DJ		D		ID		ID	0.2		0.16 0.37	0.38			
4 - Methylphenol	4.		1	ID ID		061 J		P.DJ	1.			5 DJ		6		5 D		' D		1 D	19.91	9.30		7.7	
Naphthalene	6.		2.3			96 J		i DJ	2.			2 DJ		5		3 D		8		7 D	8.59	9.30 5.56		11.94	
Phenanthrene	4.2		1	DJ		.1 J		S DJ	1.			I DJ	5.8			D D	'			D	3.20	2.74		13.96	
Pyrene Total SVOCs (mg/kg)	4.2			7.3		2.6		4.3	21			5.3		21		3.8	4	5 67		22	73.0	41.5		13.90	
rotal SVOCS (IIIg/kg)	43		17		1	2.0	1	7.0	21	.,	13	J.J	12		30	,.0	10	71	12	LL	73.0	41.0			

TABLE 4-20

SUMMARY OF SMOKES CREEK LOWER REACH SEDIMENT ANALYTICAL DATA

					Sample Location, Anal	ysis, and Sample Date 3,4					Pre-ICM	Post-ICM			
1	SC-SED-01 SC-SED-02	SC-SED-01 SC-SED-02	SC-SED-03 SC-SED-04	SC-SED-03 SC-SED-04			SC-SED-07 SC-SED-08	SC-SED-07 SC-SED-08	SC-SED-09 SC-SED-10	SC-SED-09 SC-SED-10		Average	Sed	iment Guidance Val (mg/kg)	ues ⁷
Parameter ¹	pre-ICM	post-ICM	pre-ICM	post-ICM	pre-ICM	post-ICM	pre-ICM	post-ICM	pre-ICM	post-ICM	Concentration ⁵	Concentration 5		(ilig/kg)	
	06/27/07	04/01/09	06/27/07	04/23/09	06/27/07	04/24/09	06/27/07	04/24/09	06/27/07	04/24/09	(mg/kg)	(mg/kg)	Class A	Class B	Class C
Total PCBs (Method 8082)	?) (mg/kg)														
Aroclor 1248	0.1	0.094 DJ	0.046 J	0.17	0.27	0.33 D	0.32	0.2	0.14	0.48	0.18	0.25	-		_
Aroclor 1254	0.1	ND	0.087	ND	0.26	ND	0.21	ND	0.081 J	ND	0.15	ND			-
Aroclor 1260	ND	ND	ND	ND	ND	ND	0.085 J	ND	ND	ND	0.09	ND			-
Total PCBs (mg/kg)	0.20	0.094	0.13	0.17	0.53	0.33	0.62	0.20	0.22	0.48	0.34	0.25	< 0.1	0.1 - 1	> 1
RCRA Metals (Method 60:	10B/7471A) (mg/kg)														
Arsenic	ND	4.3	ND	12.4	ND	10.8	50.7	10.9	15	18.6	32.9	11.4	< 10	10 - 33	> 33
Barium	76.5	47.9	76	84.6	99.8	77.2	104	74.5	93.7	95.2	90.0	75.9	-	-	-
Cadmium	1.1	ND	1.1	2.16	5.2	2.29	17.2	1.54	5.6	3.77	6.04	2.44	< 1	1 - 5	> 5
Chromium	57.8	14.5	37.4	51.5	101	48.3	164	47.7	134	76.2	98.8	47.6	< 43	43 - 110	> 110
Lead	94.9	35.7	85.4	271	369	286	1190	210	180	451	384	251	< 36	36 - 130	> 130
Mercury	0.25	0.0718	0.253	0.397	0.439	0.354	0.195	0.213	0.151	0.381	0.258	0.283	< 0.2	0.2 - 1	> 1
Silver	ND	ND	ND	1.18	2	1.3	5.4	0.917	ND	1.8	3.7	1.3	< 1	1 - 2.2	> 2.2
Wet Chemistry (Method 9	012A) (mg/kg)														
Cyanide	17	ND	ND	2 J	ND	ND	ND	ND	ND	5.8	17.0	3.9	-	-	
Total Organic Carbon (Me	ethod Lloyd Kahn) (mg/kg)														
TOC	38,800	19,000	47,800	60,200	43,100	54,500	36,500	59,600	19,200	93,200	37,080	57,300	-	-	-

Notes:

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Values per NYSDEC 6NYCRR Part 375 Industrial Soil Cleanup Objectives (December 2006)

 3. Discrete samples from each location were collected for VOC analysis; adjacent sediment core locations were composited for SVOC, PCB, metals, cyanide, and TOC analysis.

 4. Pre-ICM samples colored BLUE were collected June 26-28, 2007; Post-ICM samples colored BLACK were collected April 23-24, 2009.

 5. Average Concentrations are based on the combined average of detected concentrations.

- Sample locations are shown on Plate 4-15.
 NYSDEC Division of Fish, Wildlife and Marine Resources, Bureau of Habitat. Screening and Assessment of Contaminated Sediment (Tables 5 and 7). June 24, 2014.

- B = Analyte was detected in the associated Method Blank.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- D = Indicates value obtained through dilution of sample.
 ND = Parameter was analyzed but not detected in sample.

Color Code: Class A

= Sediments considered to be of low risk to aquatic life.

Class B = Sediments considered slightly to moderately contaminated; additional testing is required to evaluate the potential risks to aquatic life.

- Sediments considered to be highly contaminated and likely pose a risk to aquatic life; additional testing is required to evaluate the potential risks to aquatic life.

TABLE 4-21
SUMMARY OF SMOKES CREEK UPPER REACH SEDIMENT ANALYTICAL DATA

					Sample Loca	ation, Analysi	s, and Date ²					Average	Sedim	nent Guidance Va	alues ⁴
Parameter ¹	SC-SED-11	SC-SED-12	SC-SED-13	SC-SED-14	SC-SED-15	SC-SED-16	SC-SED-17	SC-SED-18	SC-SED-19	SC-SED-20	SC-SED-22	Concentrations ³		(mg/kg)	
	12/04/07	12/04/07	12/04/07	12/04/07	12/04/07	12/04/07	12/05/07	12/05/07	12/05/07	12/05/07	12/05/07	(mg/Kg)	Class A	Class B	Class C
TCL VOCs (Method 8260B) (I	ng/kg)														
Acetone	0.18	0.14	0.059 J	0.23	0.12 J	0.21 J	0.19	0.044 J	0.067 J	0.29	0.2	0.16			
Benzene	0.084	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.084	< 0.53	0.53 - 1.9	> 1.9
2-Butanone	0.037 J	0.029 J	ND	0.05 J	ND	ND	ND	ND	ND	0.061 J	0.42 J	0.12			
Carbon Disulfide	0.014 J	0.008 J	ND	ND	ND	ND	ND	ND	0.036	0.01 J	0.009 J	0.015			
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	0.01 J	ND	ND	0.010	< 0.2	0.20 - 1.7	> 1.7
Cyclohexane	0.03 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.044	0.037			
Methylcyclohexane	0.013 J	ND	ND	ND	ND	ND	ND	ND	0.005 J	ND	0.016 J	0.011			
Methylene Chloride	0.092 B	0.047 B	0.024 BJ	0.068 B	0.034 B	0.056 B	0.052 B	0.064 B	0.045 B	0.055 B	0.039 B	0.052			
Toluene	0.01 J	ND	ND	ND	ND	ND	ND	ND	0.011 J	ND	ND	0.011	< 0.93	0.93 - 4.5	> 4.5
Xylenes, Total	0.03 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.030	< 0.59	0.59 - 5.2	> 5.2
Total VOCs (mg/kg)	0.49	0.22	0.083	0.35	0.15	0.27	0.24	0.11	0.17	0.42	0.73	0.29			
TCL SVOCs (Method 8270C)	(mg/kg)														
Acenaphthene	2	.5	N	ID	N	D	0.08	36 J	1.4 J	ND	ND	1.3		9.82	
Acenaphthylene	1.8	8 J	N	ID	N	D	N	D	ND	ND	ND	1.8		9.04	
Anthracene	6	.2	0.1	3 J	0.08	34 J	0.2	6 J	2.9 J	ND	0.06 J	1.6		11.88	
Benzo(a)anthracene	5	.4	0.4	4 J	0.1	8 J	0.4	7 J	4.4 J	0.16 J	0.21 J	1.6		16.82	
Benzo(a)pyrene	3	.7	0.3	88 J	N	D	0.2	8 J	ND	0.1 J	0.12 J	0.92		19.28	
Benzo(b)fluoranthene	4	.5	0.4	17 J	N	D	0.4	5 J	4 J	0.14 J	0.2 J	1.6		19.58	
Benzo(g,h,i)perylene	2	.5	0.3	31 J	N	D	0.2	2 J	2.2 J	0.069 J	0.12 J	0.90		21.9	
Benzo(k)fluoranthene	1.8	8 J	0.2	24 J	N	D	0.1	8 J	2.2 J	0.066 J	0.091 J	0.76		19.6	
Biphenyl	0.5	i9 J	1	ID	N	D	N	D	ND	ND	ND	0.59			
Bis(2-ethylhexyl) phthalate	N	ID	0.5	52 J	N	D	N	D	ND	ND	ND	0.52			
Carbazole	1.3	3 J	0.0	71 J	N	D	N	D	0.95 J	ND	ND	0.77			
Chrysene	4	.6	0.4	5 J	0.4	6 J	0.4	8 J	5.2 J	0.11 J	0.25 J	1.7		16.86	
Dibenz(a,h)anthracene	0.7	'5 J	0.0	93 J	N	D	0.09	98 J	ND	ND	ND	0.31		22.44	
Dibenzofuran		.4		ID		D	0.09		1.2 J	ND	ND	1.9			
Fluoranthene		5)4 J	0.3	1 J		4 J	8.5 J	0.18 J	0.38 J	3.8		14.16	
Fluorene		.4		58 J	N	D		7 J	1.8 J	ND	ND	1.4		10.78	
Indeno(1,2,3-cd)pyrene		.4	0.2	28 J		D		2 J	1.2 J	0.056 J	0.09 J	0.71		22.3	
2 - Methylnaphthalene	1.0	6 J	N	ID	0.1		0.1	4 J	1.6 J	ND	ND	0.87			
4 - Methylphenol		ID	N	ID	1.2	2 J		D	ND	ND	ND	1.2			
Naphthalene		.3	N	ID	N	D	0.1	7 J	ND	ND	ND	1.7		7.7	
N-nitrosodiphenylamine		24 J		ID	N			D	ND	ND	ND	0.24			
Phenanthrene	2	24		3 J	0.2		0.9		14 J	0.13 J	0.3 J	5.8		11.94	
Pyrene	1	0	0.	8 J	0.36 J		0.81 J		7.4 J	0.17 J	0.32 J	2.8		13.96	
Total SVOCs (mg/kg)	10	00	5	.8	3.	0	6.	0	59	1.2	2.1	25			

TABLE 4-21
SUMMARY OF SMOKES CREEK UPPER REACH SEDIMENT ANALYTICAL DATA

					Sample Loca	ation, Analysi	s, and Date ²					Average	Sediment Guidance Values ⁴			
Parameter ¹	SC-SED-11	SC-SED-12	SC-SED-13	SC-SED-14	SC-SED-15	SC-SED-16	SC-SED-17	SC-SED-18	SC-SED-19	SC-SED-20	SC-SED-22	Concentrations ³		(mg/kg)		
	12/04/07	12/04/07	12/04/07	12/04/07	12/04/07	12/04/07	12/05/07	12/05/07	12/05/07	12/05/07	12/05/07	(mg/Kg)	Class A	Class B	Class C	
Total PCBs (Method 8082) (mg/kg)																
Aroclor 1242	0.0	034	N	D	N	D	N	D	3.6	0.0055	0.033	0.92				
Aroclor 1254	0.0	14 J	N	D	N	D	N	D	ND	ND	ND	0.014				
Total PCBs (mg/kg)	0.0	048	N	D	N	D	N	D	3.6	0.0055	0.033	0.92	< 0.1	0.1 - 1	> 1	
RCRA Metals (Method 6010B	/7471A) (mg/kg)															
Arsenic	17	7.1	N	D	30).6	22	2.4	11.3	ND	ND	20	< 10	10 - 33	> 33	
Barium	7	72	55	5.2	59	9.8	45.3		10.8	80	114	62				
Cadmium	2	2.6	N	D	3.	.9	9.4		ND	ND	ND	5.3	< 1	1 - 5	> 5	
Chromium	84	4.9	33	.2	11	17	81		44.9	27.4	22.7	59	< 43	43 - 110	> 110	
Lead	3:	33	13	34	13	70	92	26	21.6	75.2	113	425	< 36	36 - 130	> 130	
Mercury	0.2	205	0.2	:07	0.	12	0.1	88	0.022	0.074	0.1	0.13	< 0.2	0.2 - 1	> 1	
Silver	Ν	ND .	N	D	5.	.3	3	.4	ND	ND	ND	4.4	< 1	1 - 2.2	> 2.2	
Wet Chemistry (Method 9012	Vet Chemistry (Method 9012A) (mg/kg)															
Cyanide	Cyanide ND ND ND 4.6 ND ND 4.6															
Total Organic Carbon (Metho	od Lloyd Kahi	n) (mg/kg)														
TOC	38,	500	N	D	93,4	400	42,	000	66,600	ND	100,000	68,100				

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Discrete samples from each location were collected for VOC analysis; adjacent sediment core locations for SC-SED-11 thru 18 were composited for SVOC, PCB, metals, cyanide, and TOC analysis. See Plate 4-15.
- 3. Average concentrations are based on the combined average of detected concentrations.
- 4. NYSDEC Division of Fish, Wildlife and Marine Resources, Bureau of Habitat. Screening and Assessment of Contaminated Sediment (Tables 5 and 7). June 24, 2014.

Definitions:

- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- * = Indicates analysis is not within the quality control limits.
- ND = Parameter was analyzed but not detected in sample.

Class A	= Sediments considered to be of low risk to aquatic life.
Class B	= Sediments considered slightly to moderately contaminated; additional testing is required to evaluate the potential risks to aquatic life.
Class C	= Sediments considered to be highly contaminated and likely pose a risk to aquatic life; additional testing is required to evaluate the potential risks to aquatic life.

TABLE 4-22
SUMMARY OF SHIP CANAL SEDIMENT ANALYTICAL DATA

				Sample Loca	tion and Date ²				Average	Sedim	nent Guidance Values 4	
PARAMETER 1	GSC-SED-1A	GSC-SED-1B	GSC-SED-2A	GSC-SED-2B	GSC-SED-3A	GSC-SED-3B	GSC-SED-4A	GSC-SED-4B	Concentrations ³		(mg/kg)	
	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	(mg/Kg)	Class A	Class B	Class C
TCL VOCs (Method 8260B) (mg/kg)											
Acetone	0.038 J	0.043 J	0.031 J	0.046 J	0.028 J	0.031 J	0.027 J	0.069	0.039			
Benzene	ND	0.006	ND	ND	ND	ND	ND	0.00078 J	0.0034	< 0.53	0.53 - 1.9	> 1.9
2-Butanone	ND	0.0091 J	ND	ND	ND	ND	ND	0.0098 J	0.0095			
Carbon Disulfide	ND	0.0017 J	ND	ND	ND	ND	ND	ND	0.0017			
Cyclohexane	ND	0.0059 J	ND	ND	ND	ND	0.0073 J	0.033	0.015			
Ethylbenzene	ND	0.0022 J	ND	ND	ND	ND	ND	0.0013 J	0.0018	< 0.43	0.43 - 3.7	> 3.7
Isopropylbenzene	ND	0.0034 J	ND	ND	ND	ND	ND	0.002 J	0.0027	< 0.21	0.21 - 1.8	> 1.8
Methylcyclohexane	ND	0.022	ND	ND	ND	0.0024 J	0.0094 J	0.04	0.018			
Methylene chloride	ND	0.0042 JB	0.0071 JB	0.0026 JB	ND	0.0039 JB	0.0032 JB	0.003 JB	0.0040			
Toluene	ND	0.0016 J	ND	ND	ND	0.0013 J	ND	0.0014 J	0.0014	< 0.93	0.93 - 4.5	> 4.5
Xylenes, Total	ND	0.025 J	ND	ND	ND	ND	0.0029 J	0.0091 J	0.012	< 0.59	0.59 - 5.2	> 5.2
Total VOCs (mg/kg)	0.038	0.12	0.038	0.049	0.028	0.039	0.050	0.17	0.067			
TCL SVOCs (Method 8270C)	(mg/kg)											
Acenaphthene	0.8	7 DJ	0.0	B DJ	2.1	DJ	8.5	i DJ	3.1		9.82	
Acenaphthylene	1.2	P. DJ	0.86 DJ		2.5	i DJ	3	DJ	1.9		9.04	
Anthracene	2.8	B DJ	2 DJ		8 DJ		9.7	' DJ	5.6		11.88	
Benzo(a)anthracene	6	DJ	4.5 DJ		14 DJ		13 DJ		9.4		16.82	·
Benzo(a)pyrene	5.4	ł DJ	4.4	∤ DJ	14 DJ		12 DJ		9.0		19.28	
Benzo(b)fluoranthene	8.3	B DJ	4.6	6 DJ	15	DJ	13	DJ	10		19.58	
Benzo(ghi)perylene	3.9) DJ	3.2	PDJ	10	DJ	9	DJ	6.5		21.9	
Benzo(k)fluoranthene	N	ND.	1.9	DJ	5.7	' DJ	4.9	DJ	4.2		19.6	
Carbazole	N	ND.	1	ND.	0.70	6 DJ	1.5	i DJ	1.1			
Chrysene	5.9) DJ	4.4	- DJ	15	DJ	12	DJ	9.3		16.86	
Dibenzofuran	1.2	2 DJ	1	ND.	1.2	PDJ	4.4	· DJ	2.3			
Fluoranthene	12	DJ	7.5	5 DJ	26	DJ	32	DJ	19		14.16	
Fluorene	N	ND		9 DJ	2.3	B DJ	6.5	i DJ	3.2		10.78	
Indeno(1,2,3-cd)pyrene	3.4 DJ		2.9) DJ	8.8	B DJ	7.6	5 DJ	5.7		22.3	
2-Methylnaphthalene	0.8	0.87 DJ		ID.	١	ID	2.8	DJ	1.8			, <u> </u>
Naphthalene	5.6 DJ		4	DJ	4.2	P. DJ	21 D		8.7		7.7	
Phenanthrene	7.6	7.6 DJ		3.8 DJ		14 DJ		29 D			11.94	
Pyrene	9.8	B DJ	6.1 DJ		21	I D	24 D		15		13.96	
Total SVOCs (mg/kg)	75		52		165		2	214 126				

TABLE 4-22
SUMMARY OF SHIP CANAL SEDIMENT ANALYTICAL DATA

				Sample Locat	tion and Date ²				Average	Sedim	ent Guidance V	alues 4
PARAMETER 1	GSC-SED-1A	GSC-SED-1B	GSC-SED-2A	GSC-SED-2B	GSC-SED-3A	GSC-SED-3B	GSC-SED-4A	GSC-SED-4B	Concentrations ³		(mg/kg)	
	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	(mg/Kg)	Class A	Class B	Class C
Total PCBs (Method 8082) (mg	/kg)											
Aroclor 1248	0.25		0.055		0.0	19 J	0.0)47	0.11			
Aroclor 1254	N	D	N	D	N	D	0.075		0.075			
Aroclor 1260	0.0)86	0.0)46	0.0	64 J	0.036 J		0.058			
Total PCBs (mg/kg)	0	34	0.10		0.	15	0.	16	0.19	< 0.1	0.1 - 1	> 1
RCRA Metals (Method 6010B/7	/471A) (mg/kg)											
Arsenic, Total	22	2.4	12.8		14	1.4	18	3.6	17	< 10	10 - 33	> 33
Barium, Total	91	1.3	75.5		76.1		87.7		83		-	
Cadmium, Total	2	.7	1.68		1.5		1.9		1.9	< 1	1 - 5	> 5
Chromium, Total	65	5.3	50).4	53.2		80		62	< 43	43 - 110	> 110
Lead, Total	40	04	27	71	1:	39	2:	20	259	< 36	36 - 130	> 130
Mercury, Total	1.0	61	1.	07	0.5	551	0.	43	0.92	< 0.2	0.2 - 1	> 1
Wet Chemistry (Method 9012A	Vet Chemistry (Method 9012A) (mg/kg)											
Cyanide, Total 3.8 7.9 ND ND 5.9												
Total Organic Carbon (Method	Lloyd Kahn) (m	g/kg)										
TOC	90,600		90,400		138,000 88,000		101,750					

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- 2. Discrete samples from each location were collected for VOC analysis; adjacent transect core locations were composited for SVOC, PCB, metals, and TOC analysis. See Plate 4-16.
- 3. Average Concentrations are based on the combined average of detected concentrations.
- 4. NYSDEC Division of Fish, Wildlife and Marine Resources, Bureau of Habitat. Screening and Assessment of Contaminated Sediment (Tables 5 and 7). June 24, 2014.

Definitions:

- B = Analyte was detected in the associated Method Blank.
- D = Dilution required due to viscosity.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- D = Indicates value obtained through dilution of sample.
- ND = Parameter was analyzed but not detected in sample.

Class A	Sediments considered to be of low risk to aquatic life.
Class B	= Sediments considered slightly to moderately contaminated; additional testing is required to evaluate the potential risks to aquatic life.
Class C	= Sediments considered to be highly contaminated and likely pose a risk to aquatic life; additional testing is required to evaluate the potential risks to aquatic life.

TABLE 4-23
SUMMARY OF SHIP CANAL SURFACE WATER ANALYTICAL DATA

		Sample Loca	ation & Date ³
PARAMETER 1	SWQS ²	SHIP CANAL #1 NORTH	SHIP CANAL #2 SOUTH
		12/18/07	12/18/07
Field Parameters			
pH - Units	6.5 - 8.5	6.43	6.13
Temperature - C°	-	1.7	1.6
Conductivity - mS	-	397.4	407.7
Turbidity - NTU		3.01	3.43
Eh/ORP - mV	-	122	122
Odor		None	None
Appearance		Clear	Clear
TCL VOCs (Method 8260B) (m	g/L)		
Acetone	0.05*	0.0042 J	0.0052
Benzene	0.01	0.0017	0.0018
TCL SVOCs (Method 8270C) (I	mg/L)		
Di-n-butyl phthalate		0.0003 BJ	0.0003 BJ
Inorganic Compounds (Metho	d 6010B/7471A) (mg	g/L)	
Calcium		33.3	34.6
Iron	0.3	0.37	0.36
Magnesium		8	8.2
Manganese		0.013	0.014
Potassium		1.8	2
Sodium	-	31.3	42.6
Wet Chemistry (mg/L)			
Ammonia		0.52	0.39
Hardness (Ca & Mg)		116	120
Chemical Oxygen Demand		ND	13.3
Total Alkalinity	-	95.7	96.8
Total Dissolved Solids	-	242	242
Total Kjeldahl Nitrogen		0.47	0.56
Total Organic Carbon	-	2.8	2.6
Total Phosphorous		0.032	0.039
Total Suspended Solids		ND	6

- Only those VOCs and SVOCs detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998. The SRWT is a Class C water body.
- 3. Sample locations are shown on Plate 4-16.

- J = Estimated Value.
- B = Analyte was also detected in the method blank.
- ND = Not detected above the Method Detection Limit.
- * = Indicates a guidance value, which is used when there is no standard given in 6NYCRR part 703.5

TABLE 4-24 SUMMARY OF NRWT SURFACE WATER ANALYTICAL DATA

Parameter ¹	Location & Sample Date ² NRWT-Surface Water 12/14/06	NYSDEC Class C AWGV ³ (mg/L)						
TCL VOCs (Method 8260B) (mg/L)							
Methylene Chloride	0.0024 J	0.2						
TCL SVOCs (Method 8270	C) (mg/L)							
Total	ND							
RCRA Metals (Method 6010B/7471A) (mg/L)								
Barium, Total	0.34							

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Sample location is shown on Plate 4-17.
- 3. NYSDEC Class "C" Ambient Water Guidance Values (AWGV) for Type A(C), Fish Propagation (fresh waters), in accordance with 6NYCRR Part 703.

Definitions:

J = Estimated value.

ND = Parameter not detected above the method detection limit.

BOLD = Result exceeds the NYSDEC Class C AWGV.

TABLE 4-25

SUMMARY OF NORTH RETURN WATER TRENCH SEDIMENT ANALYTICAL DATA

	Sa	mple Location & Da	te ²	Sediment Guidance Values ³				
Parameter ¹	NRWT-SED-1	NRWT-SED-3	NRWT-SED-4		(mg/kg)			
	12/14/06	12/14/06	12/14/06	Class A	Class B	Class C		
TCL VOCs (Method 8260B) (mg/kg)								
Acetone	0.14	0.022 J	0.032 J					
2-Butanone	0.030 J	ND	ND					
Carbon Disulfide	0.006 J	ND	ND					
Methylene Chloride	0.054 B	0.022 B	0.029 B					
Total VOCs (mg/kg)	0.23	0.044	0.061					
TCL SVOCs (Method 8270C) (mg/kg)								
Acenaphthene	ND	0.056 J	ND		9.82			
Acenaphthylene	ND	0.14 J	0.43 J		9.04			
Anthracene	ND	0.14 J	0.72 J		11.88			
Benzo(a)anthracene	6.8 J	0.33 J	1.5 J		16.82			
Benzo(a)pyrene	ND	0.27 J	1.3 J		19.28			
Benzo(b)fluoranthene	12 J	0.33 J	1.4 J		19.58			
Benzo(g,h,i)perylene	ND	0.19 J	0.87 J		21.9			
Benzo(k)fluoranthene	ND	0.16 J	0.61 J		19.6			
Chrysene	ND	0.27 J	1.5 J		16.86			
Dibenz(a,h)anthracene	ND	0.056 J	ND		22.44			
Dibenzofuran	ND	0.087 J	0.34 J		-			
Fluoranthene	7.7 J	0.76	2.7 J		14.16			
Fluorene	ND	0.12 J	0.38 J		10.78			
Indeno(1,2,3-cd)pyrene	ND	0.18 J	0.76 J		22.3			
Naphthalene	ND	0.29 J	ND		7.7			
Phenanthrene	ND	0.53 J	2.0 J		11.94			
Pyrene	8.7 J	0.57 J	2.4 J		13.96			
Total SVOCs (mg/kg) 3	35	4.5	17					
Total PCBs (Method 8082) (mg/kg)								
Aroclor 1254	0.17	ND	0.13	-	-			
Aroclor 1260	0.17	1.2	0.095	-	-			
Total PCBs (mg/kg)	0.34	1.2	0.23	< 0.1	0.1 - 1	> 1		
RCRA Metals (Method 6010B/7471A)	(mg/kg)							
Arsenic, Total	58.7	19.8	12	< 10	10 - 33	> 33		
Barium, Total	226	82.5	61	-				
Cadmium, Total	10.2	2.4	1.3	< 1	1 - 5	> 5		
Chromium, Total	438	62.2	45	< 43	43 - 110	> 110		
Lead, Total	909	140	89	< 36	36 - 130	> 130		
Mercury, Total	1.4	3.2	1.1	< 0.2	0.2 - 1	>1		
Selenium, Total	22.7	ND	ND	-	-			
Wet Chemistry (Method 9012A) (mg/k	(g)							
Total Organic Carbon	126,000	50,900	67,900		-			

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- Sample locations are shown on Plate 4-17.
 NYSDEC Division of Fish, Wildlife and Marine Resources, Bureau of Habitat. Screening and Assessment of Contaminated Sediment (Tables 5 and 7). June 24, 2014.

Definitions:

- B = Analyte was detected in the sample as well as the associated method blank.
- J = Estimated value.

 ND = Parameter not detected above method detection limit.

Class A	= Sediments considered to be of low risk to aquatic life.
Class B	Sediments considered slightly to moderately contaminated; additional testing is required to evaluate the potential risks to aquatic life.
Class C	= Sediments considered to be highly contaminated and likely pose a risk to aquatic life; additional testing is required to evaluate the
	natantial vialva ta navvatia lifa

TABLE 4-26
SUMMARY OF SRWT SURFACE WATER ANALYTICAL DATA

			Sa	mple Loca	ition & Dat	e ³		
		SRWT	-SW-01	SRWT-	-SW-02	SRWT	-SW-03	
PARAMETER ¹	SWQS ²	conflue	eam near nce with s Creek	Mid along			n Portion RWT	
		09/2	9/09	09/2	9/09	09/2	9/09	
Field Parameters								
Field Measurement		First	Last	First	Last	First	Last	
pH - Units	6.5 - 8.5	7.92	7.91	7.69	7.69	7.41	7.39	
Temperature - °C		14.9	15.3	15.6	15.4	16.3	16.3	
Conductivity - mS		1158	1153	2394	2393	3378	3379	
Turbidity - NTU		5.51	3.86	5.17	5.29	5.03	6.67	
Eh/ORP - mV		67	75	64	66	80	72	
DO - mg/L		6.45	6.5	4.24	4.2	5.16	5.18	
Odor		None	None	None	None	None	None	
Appearance		Clear	Clear	Clear	Clear	Clear	Clear	
TCL VOCs (Method 8260B) (m	g/L)							
Benzene	0.01	N	ID	N	D	0.00	068 J	
TCL SVOCs (Method 82670C)	(mg/L)							
Total SVOCs		N	ID	N	D	N	ID	
RCRA Metals (Method 6010B/	7471A) (mg/L)							
Barium, Total		0.0	392	0.0	691	0.0752		
Cyanide, Total	0.0052 4	0.0	116	0.0	534	0.119		
Mercury, Total	7.00E-7 ⁵	N	ID	0.0	007	0.0	005	

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- 2. NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998. The SRWT is a Class C water body.
- 3. Sample locations are shown on Plate 4-17.
- 4. Cyanide standard applies to free cyanide: the sum of HCN and CN- expressed as CN for fish propogation (H[FC]).
- 5. Mercury standard applies to dissolved phase for human fish consumption (H[FC]). Samples not filtered prior to analysis.

- J = Estimated Value.
- ND = Not detected above the Method Detection Limit.

TABLE 4-27
SUMMARY OF SOUTH RETURN WATER TRENCH SEDIMENT ANALYTICAL DATA

								Sample	e Location	& Date ²									0 "		. 4
PARAMETER 1	SRWT- SED-1	SRWT- SED-2	SRWT- SED-3	SRWT- SED-4	SRWT- SED-5	SRWT- SED-6	SRWT- SED-7	SRWT- SED-8	SRWT- SED-9	SRWT- SED-10	SRWT- SED-11	SRWT- SED-12	SRWT- SED-13	SRWT- SED-14	SRWT- SED-15	SRWT- SED-16	SRWT- SED-17	Average Concentration ³ (mg/kg)	Sedim	ent Guidance V (mg/kg)	alues
	09/30/09	09/30/09	10/01/09	09/30/09	09/30/09	09/30/09	09/30/09	09/30/09	09/30/09	09/30/09	09/30/09	10/01/09	10/01/09	10/01/09	10/01/09	10/01/09	10/01/09	(ilig/kg)	Class A	Class B	Class C
TCL + STARS LIST VOCs (I	Method 8260)B) (mg/kg)																			
Acetone	0.13	0.028 J	0.016 J	0.039 J	0.027 J	0.054 J	0.077 J	ND	ND	ND	ND	0.011 J	0.056 J	0.22	0.09 J	0.25	0.13	0.087			
Benzene	ND	ND	ND	ND	ND	0.032	ND	ND	0.032	< 0.53	0.53 - 1.9	> 1.9									
2-Butanone	0.029 J	ND	ND	ND	ND	0.044 J	ND	0.037 J	0.025 J	0.034	-										
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	0.0057 J	0.0057	-											
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	0.0031 J	0.0031	< 0.43	0.43 - 3.7	> 3.7									
Methylene chloride	0.0079 J	ND	ND	0.0047 J	0.0049 J	0.012 J	ND	0.0062 J	0.022 J	0.0038 J	ND	0.0021 J	0.01 J	0.0042 J	0.037	0.017 J	0.012 J	0.011	-		
Tetrachloroethene	ND	ND	ND	ND	0.0048 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0048	< 16	16 - 57	> 57
Toluene	0.0068 J	ND	ND	ND	ND	ND	ND	ND	ND	0.0068	< 0.93	0.93 - 4.5	> 4.5								
Total VOCs (mg/kg)	0.17	0.028	0.016	0.044	0.037	0.066	0.077	0.0062	0.022	0.0038	ND	0.013	0.066	0.27	0.16	0.30	0.18	0.091			
TCL SVOCs (Method 82700	C) (mg/kg)																				
Acenaphthene	N	ID	ND	N	ND.	N	D	N	ID	N	D	0.3	1 DJ	0.58	3 DJ	1	ID	0.45		9.82	
Acenaphthylene	N	ID	0.25 DJ	N	ND.	N	D	N	ID	N	D	N	ID	0.52	2 DJ	N	ID	0.39		9.04	
Anthracene	N	ID	0.26 DJ	N	ND.	N	D	N	ID	N	D	0.49	9 DJ	2.8	DJ	9.2	DJ	3.2		11.88	
Benzo(a)anthracene	2	DJ	1.4 DJ	1.2	2 DJ	2.1	DJ	1.8	B DJ	0.95	5 DJ	1.7	DJ	7.3	DJ	N	ID	2.3		16.82	
Benzo(a)pyrene	2.2	DJ	1.5 DJ	1.3	B DJ	2.2	DJ	1.6	DJ	1.1	DJ	1.9	DJ	6.9	DJ	8.4	DJ	3.0		19.28	
Benzo(b)fluoranthene	3.3	DJ	2 DJ	2.1	DJ	2.9	DJ	2.2	2 DJ	1.3	DJ	2.5	DJ	8.2	DJ	12	DJ	4.1		19.58	
Benzo(ghi)perylene	1.7	DJ	1.3 DJ	1	DJ	N	D	N	ND.	0.78	B DJ	1.4	DJ	5.1	DJ	7.6	DJ	2.7		21.9	
Benzo(k)fluoranthene	1	DJ	0.74 DJ	0.59	9 DJ	0.89) DJ	0.78	8 DJ	0.62	2 DJ	0.9	2 B	3.3	DJ	5	DJ	1.5		19.6	
Carbazole	N	ID	ND	N	ND	N	D	N	ND.	N	D	0.26	3 DJ	1.5	DJ	N	ID	0.88			
Chrysene	2.2	DJ	1.4 DJ	1.5	5 DJ	1.8	DJ	1.7	' DJ	0.99	DJ	1.9	DJ	6.7	DJ	8.4	DJ	3.0		16.86	
Dibenz(a,h)anthracene	N	ID	0.29 DJ	N	ND	N	D	N	ID	N	D	0.4	1 DJ	1.2	DJ	N	ID	0.63		22.44	
Dibenzofuran	N	ID	ND	N	ND	N	D	N	ND.	N	D	0.24	1 DJ	1.2	DJ	N	ID	0.72			
Fluoranthene	4.4	DJ	2.5 DJ	2.2	2 DJ	3.6	DJ	2.9	DJ	1.6	DJ	3.3	DJ	16	DJ	16	DJ	5.8		14.16	
Fluorene	N	ID	ND	N	ND	N	D	N	ND.	N	D	0.25	5 DJ	1.7	DJ	N	ID	0.98		10.78	
Indeno(1,2,3-cd)pyrene	1.3	DJ	1 DJ	N	ND .	1.3	DJ	N	ID	0.64	l DJ	1.2	DJ	4.7	DJ	N	ID	1.7	_	22.3	
Naphthalene	N	ID	ND	N	ND .	N	D	N	ID	N	D	0.43	3 DJ	1.1	DJ	N	ID	0.77	_	7.7	
Phenanthrene	1.8	DJ	0.93 DJ	0.7	1 DJ	1.5	DJ	N	ID	0.66	3 DJ	1.8	DJ	12	DJ	5.8	DJ	3.2	_	11.94	
Pyrene	3.5	DJ	2.2 DJ	1.9) DJ	3	DJ	2.6	5 DJ	1.3	DJ	2.5	DJ	12	DJ	12	DJ	4.6		13.96	
Total SVOCs (mg/kg)	2	3	16	1	'3	1	9	1	4	1	0	2	2	9	3	8	4	33			

TABLE 4-27
SUMMARY OF SOUTH RETURN WATER TRENCH SEDIMENT ANALYTICAL DATA

								Sample	Location 8	& Date ²									011		4
PARAMETER 1	SRWT- SED-1	SRWT- SED-2	SRWT- SED-3	SRWT- SED-4	SRWT- SED-5	SRWT- SED-6	SRWT- SED-7	SRWT- SED-8	SRWT- SED-9	SRWT- SED-10	SRWT- SED-11	SRWT- SED-12	SRWT- SED-13	SRWT- SED-14	SRWT- SED-15	SRWT- SED-16	SRWT- SED-17	Average Concentration ³ (mg/kg)	Sealmo	ent Guidance V (mg/kg)	alues
	09/30/09	09/30/09	10/01/09	09/30/09	09/30/09	09/30/09	09/30/09	09/30/09	09/30/09	09/30/09	09/30/09	10/01/09	10/01/09	10/01/09	10/01/09	10/01/09	10/01/09	(99)	Class A	Class B	Class C
Total PCBs (Method 8082) (mg/kg)																				
Aroclor 1248	0.08	36 J	0.042 J	0.0	34 J	0.04	4 J	N	D	0.0	28 J	0.02	25 J	0.0	28 J	0.0	169	0.044			
Aroclor 1254	N	D	ND	N	ND .	NI	D	N	D	N	ID	N	D	0.08	8 DJ	N	D	0.088		-	
Aroclor 1260	0.0)55	0.055	0.0	62 J	0.05	54 J	N	D	0.0)44	0.0)45	N	D	0.	12	0.062			
Total PCBs (mg/kg)	0.	14	0.097	0.0	096	0.0	94	N	D	0.0	72	0.0	70	0.	12	0.	19	0.11	< 0.1	0.1 - 1	> 1
RCRA Metals (Method 6010	RA Metals (Method 6010B/7471A) (mg/kg)																				
Arsenic, Total	27	' .7	43	36	6.8	33	.5	2	4	24	1.8	50).3	59	0.6	17	'.8	35	< 10	10 - 33	> 33
Barium, Total	81	.9	77.1	7′	1.7	57	.5	57	'.6	73	3.3	75	5.3	1	12	54	.2	73			
Cadmium, Total	1.	37	1.91	2.	57	1.7	72	1.8	88	3.	18	1.8	85		2	2.	21	2.1	< 1	1 - 5	> 5
Chromium, Total	36.	2 B	174	49.	.1 B	38.6	6 B	30.4	4 B	49.	7 B	44	.5	40).8	40).9	56	< 43	43 - 110	> 110
Lead, Total	14	1 7	318	2	95	20	16	20)4	2	75	24	17	2	32	33	30	256	< 36	36 - 130	> 130
Mercury, Total	0.3	35	0.381	0.4	416	0.2	22	0.3	347	0.4	133	0.7	'37	2	.1	2.5	5 D	0.83	< 0.2	0.2 - 1	> 1
Silver, Total	N	D	ND	N	ND .	NI	D	N	D	1.	14	N	D	N	D	N	D	1.1	< 1	1 - 2.2	> 2.2
Wet Chemistry (Method 9012A) (mg/kg)																					
Cyanide, Total	N	D	ND	N	ND .	NI	D	N	D	1	.9	N	D	N	D	N	D	1.9			
Total Organic Carbon (Meth	od Lloyd K	ahn) (mg/kg	g)																		
TOC	65,	500	97,400	117	,000	134,	000	131,	,000	112	,000	105,	,000	117	,000	157	,000	115,100			

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- 2. Each sediment location was analyzed for VOC analysis; adjacent pairs SRWT-SED-1/2, -4/5, -6/7, -8/9, -10/11, -12/13, -14/15, and -16/17 were composited for SVOC, total metals, and TOC analysis. Sediment location SRWT-SED-3 was not composited, rather only a discrete sample was analyzed.
- 3. Average concentrations are based on the combined average of detected concentrations.
- 4. NYSDEC Division of Fish, Wildlife and Marine Resources, Bureau of Habitat. Screening and Assessment of Contaminated Sediment (Tables 5 and 7). June 24, 2014.

Definitions:

- B = Analyte was detected in the associated Method Blank.
- D = Compound was analyzed at the secondary dilution factor.
- J = Estimated Value.

Class A	= Sediments considered to be of low risk to aquatic life.
Class B	= Sediments considered slightly to moderately contaminated; additional testing is required to evaluate the potential risks to aquatic life.
Class C	= Sediments considered to be highly contaminated and likely pose a risk to aquatic life; additional testing is required to evaluate the potential risks to aquatic life.

TABLE 4-28
SUMMARY OF USEPA SRWT SEDIMENT ANALYTICAL DATA (NOVEMBER 7, 2011)

				Sample Lo	cation & Date							3
PARAMETER 1	SC11-RT-028-006 (0-6 inches)	SC11-RT-028-024 (6-24 inches)	SC11-RT-028-039 (24-39 inches)	SC11-RT-029-006 (0-6 inches)	SC11-RT-029-006-DP (0-6 inches)	SC11-RT-029-025 (6-25 inches)	SC11-RT-030-006 (0-6 inches)	SC11-RT-030-029 (6-29 inches)	Average Concentration ² (mg/kg)	Sedim		'alues '
				11/	07/11				(99)	Class A	Class B	Class C
TCL SVOCs (Method 8270C) (mg/kg	g)											
1,1'-Biphenyl	ND	ND	1.1 J	ND	ND	ND	ND	ND	1.1			
2-Methylnaphthalene	0.079	ND	4.5	0.14	0.017	0.043	0.014	0.019	0.69			
4-Chloroaniline	0.26 J	ND	ND	ND	ND	ND	ND	ND	0.26			
4-Methylphenol	0.09 J	0.11 J	0.89	0.17 J	0.073 J	0.095 J	ND	0.094 J	0.22			
Acenaphthene	0.16	0.13	2.7	0.26	0.021	0.033	0.014	0.034	0.42		9.82	
Acenaphthylene	0.04	0.039	0.46	0.49	0.034	0.15	0.093	0.055	0.17		9.04	
Acetophenone	0.11 J	0.14 J	0.39	0.33 J	ND	ND	ND	ND	0.24			
Anthracene	0.25	0.3	7.8	3.5	0.091	0.3	0.092	0.13	1.6		11.88	
Benzo(a)anthracene	0.52 J	0.36	9	13	0.38	0.65 J	0.38	0.35	3.1		16.82	
Benzo(a)pyrene	0.049	0.041	0.34 J	1.2 J	0.067	0.062	0.044	0.044	0.23		19.28	
Benzo(b)fluoranthene	0.51 J	0.28	4.2 J	10	0.45	0.46 J	0.3	0.28	2.1		19.58	
Benzo(ghi)perylene	ND	ND	ND	ND	0.0091	ND	ND	ND	0.009		21.9	
Benzo(k)fluoranthene	0.31 J	0.12 J	2.7 J	7.8	0.21 J	0.32 J	0.22 J	0.21 J	1.5		19.6	
Bis(2-ethylhexyl)phthalate	0.23 J	0.94 J	1.9 J	1	0.11 J	0.2 J	0.12 J	0.096 J	0.57	<360	>360	
Carbazole	ND	ND	0.42	0.19 J	ND	ND	ND	ND	0.31			
Chrysene	0.48 J	0.32	6	11	0.4	0.53 J	0.32	0.31	2.4		16.86	
Dibenz(a,h)anthracene	0.1	0.041	1 J	1.7 J	0.061	0.092	0.059	0.055	0.39		22.44	
Dibenzofuran	0.14 J	0.15 J	5.6	0.28 J	ND	0.076 J	ND	ND	1.2			
Di-n-butylphthalate	0.056 J	0.54 J	0.26 J	0.19 J	ND	ND	ND	ND	0.26			
Fluoranthene	1.1 J	0.71 J	17	24	0.56 J	1.3 J	0.57 J	0.65 J	5.7		14.16	
Fluorene	0.34	0.3	8.9	0.35	0.033	0.17	0.025	0.06	1.3		10.78	
Indeno(1,2,3-cd)pyrene	0.063	0.025	0.41 J	1.2 J	0.067	0.053	0.035	0.032	0.24		22.3	
Naphthalene	0.1	0.1	2.5	0.33	0.056	0.14	0.042	0.049	0.41		7.7	
Phenanthrene	0.69	0.64	29	8.3	0.3	0.58	0.24	0.4	5.0		11.94	
Phenol	ND	ND	0.16 J	0.28 J	ND	0.069 J	ND	ND	0.17			
Pyrene	0.27	0.16	1.6 J	4.8 J	0.28	0.33	0.14	0.16	1.0		13.96	
Total PAH-17 ⁴ (mg/kg)	5.06	3.6	98	88	3.0	5.2	2.6	2.8	26	<4	4 - 35	>35
Total SVOCs (mg/kg)	6	5	109	91	3	6	3	3	28			
EPA-34 Polycyclic Aromatic Hydro	carbons (PAHs) (mg/kg)											
1-Methylnaphthalene	ND			0.013	0.012		0.0081		0.011			
2-Methylnaphthalene	ND			0.016	0.017		0.013		0.015			
Acenaphthene	ND			0.042	0.03		0.01		0.027		9.82	
Acenaphthylene	0.033			0.041	0.036		0.076		0.047		9.04	
Anthracene	ND			ND	ND		0.11		0.11		11.88	
Benzo(a)anthracene	0.48			0.48	0.3		0.31		0.39		16.82	
Benzo(a)pyrene	0.46			0.45	0.25		0.14		0.33		19.28	
Benzo(b)fluoranthene	0.67			0.67	0.38		0.37		0.52		19.58	

TABLE 4-28
SUMMARY OF USEPA SRWT SEDIMENT ANALYTICAL DATA (NOVEMBER 7, 2011)

				Sample Lo	cation & Date					On diam		Malua 3
PARAMETER 1	SC11-RT-028-006 (0-6 inches)	SC11-RT-028-024 (6-24 inches)	SC11-RT-028-039 (24-39 inches)	SC11-RT-029-006 (0-6 inches)	SC11-RT-029-006-DP (0-6 inches)	SC11-RT-029-025 (6-25 inches)	SC11-RT-030-006 (0-6 inches)	SC11-RT-030-029 (6-29 inches)	Average Concentration ²	Seaim	ent Guidance \ (mg/kg)	values
				11/	07/11				(mg/kg)	Class A	Class B	Class C
Benzo(e)pyrene	ND			ND	0.14 J		0.071		0.11		19.34	
Benzo(g,h,i)perylene	ND			ND	0.037		0.0097		0.023		21.9	
Benzo(k)fluoranthene	ND			ND	0.13 J		0.13		0.13		19.6	
C1-Chrysenes	0.19 J			0.23 J	0.14 J		0.13 J		0.17		18.6	
C1-Fluoranthenes/Pyrenes	0.57 J			0.49 J	0.29 J		0.24 J		0.40		15.38	
C1-Fluorenes	0.099 J			0.048 J	0.031 J		0.023 J		0.050		12.22	
C1-Naphthalenes	0.11 J			0.019 J	0.019 J		0.014 J		0.041		8.9	
C1-Phenanthrenes/Anthracenes	0.52 J			0.22 J	0.15 J		0.13 J		0.26		13.4	
C2-Chrysenes	0.11 J			0.082 J	0.042 J		0.042 J		0.069		20.18	
C2-Fluoranthenes/Pyrenes	0.33 J			0.34 J	0.14 J		0.1 J		0.23			
C2-Fluorenes	0.15 J			0.016 J	0.011 J		0.021 J		0.050		13.74	
C2-Naphthalenes	0.16 J			0.026 J	0.027 J		0.015 J		0.057		10.2	
C2-Phenanthrenes/Anthracenes	0.5 J			0.11 J	0.066 J		0.048 J		0.18		14.9	
C3-Chrysenes	0.091 J			0.047 J	0.024 J		0.035 J		0.049		22.24	
C3-Fluoranthenes/Pyrenes	0.17 J			0.12 J	0.035 J		0.027 J		0.088			
C3-Fluorenes	0.18 J			0.06 J	0.034 J		0.022 J		0.074		15.36	
C3-Naphthalenes	0.25 J			0.023 J	0.024 J		0.012 J		0.077		11.62	
C3-Phenanthrenes/Anthracenes	0.33 J			0.061 J	0.048 J		0.021 J		0.12		16.6	
C4-Chrysenes	0.034 J			0.02 J	0.014 J		ND		0.023		24.26	
C4-Naphthalenes	0.21 J			0.016 J	0.017 J		0.0077 J		0.063		13.14	
C4-Phenanthrenes/Anthracenes	0.18 J			0.059 J	0.018 J		0.019 J		0.069		18.28	
Chrysene	0.52			0.59	0.31		0.3		0.43		16.86	
Dibenz(a,h)anthracene	ND			ND	0.07		0.069		0.070		22.44	
Fluoranthene	1.3			1.2	0.65		0.66		0.95		14.16	
Fluorene	ND			0.061	0.041		0.03		0.044		10.78	
Indeno(1,2,3-cd)pyrene	0.3			ND	0.16		0.11		0.19		22.3	
Naphthalene	ND			0.049	0.05		0.045		0.048		7.7	
Perylene	ND			ND	0.05		0.02		0.034		19.34	
Phenanthrene	0.90			0.64	0.33		0.27		0.54		11.94	
Pyrene	0.85			0.97	0.54		0.43		0.70		13.96	
Total PAH-34 ⁴ (mg/kg)	10			7.9	4.5		3.9		6.7	<4	4 - 45	>45

TABLE 4-28
SUMMARY OF USEPA SRWT SEDIMENT ANALYTICAL DATA (NOVEMBER 7, 2011)

	SC11-RT-028-006				cation & Date				_	O = al!	0 \	4-1 3
PARAMETER 1	(0-6 inches)	SC11-RT-028-024 (6-24 inches)	SC11-RT-028-039 (24-39 inches)	SC11-RT-029-006 (0-6 inches)	SC11-RT-029-006-DP (0-6 inches)	SC11-RT-029-025 (6-25 inches)	SC11-RT-030-006 (0-6 inches)	SC11-RT-030-029 (6-29 inches)	Average Concentration ²	Seaime	ent Guidance V (mg/kg)	alues -
				11/	07/11				(mg/kg)	Class A	Class B	Class C
Total PCBs (Method 8082) (mg/kg)												
Aroclor 1248	ND	ND	0.074 N J	ND	ND	ND	ND	ND	0.074			
Aroclor 1254	ND	ND	0.1	ND	ND	0.054 J	ND	ND	0.077			
Total PCBs (mg/kg) (sum of detects)	0	0	0.17	0	0	0.054	0	0	0.029	< 0.1	0.1 - 1	> 1
RCRA Metals (Method 6010B/7471A) (mg	ng/kg)											
Aluminum, Total	3560 J	4980 J	4300 J	5750 J	7040 J	4470 J	6840 J	7560 J	5,563	-		
Antimony, Total	0.7 J	0.64 J	2.8 J	2.3 J	2 J	3 J	2.4 J	2 J	2.0	-		
Arsenic, Total	9.2 J	9.8 J	15.1 J	28.9 J	26.1 J	32.4 J	34.3 J	24.8 J	23	< 10	10 - 33	> 33
Barium, Total	67.3	80.9	62.9	69.1	74.5	87.4	74.3	81.8	75			
Beryllium, Total	0.66 J	0.71 J	1.7	1.3	1.4	1.6	1.5	1.7	1.3			
Cadmium, Total	0.88	1.3	1.8	1.2	1	3.6	1.5	1.3	1.6	< 1	1 - 5	> 5
Calcium, Total	82400 J	51000 J	99200 J	57300 J	60700 J	142000 J	111000 J	123000 J	90,825			
Chromium, Total	23 J	22.4 J	48.1 J	45.5 J	29.9 J	57.7 J	46.5 J	212 J	61	< 43	43 - 110	> 110
Cobalt, Total	3.2 J	4.3 J	3.5 J	5.1 J	4.3 J	4.3 J	4.2 J	3.5 J	4.1			
Copper, Total	29.5 J	39 J	44.7 J	50.8 J	38.9 J	53.6 J	57.9 J	48.9 J	45	<32	32-150	>150
Iron, Total	26500 J	22300 J	84800 J	53100 J	39000 J	88900 J	45900 J	61900 J	52,800			
Lead, Total	204 J	194 J	275 J	189 J	159 J	458 J	205 J	184 J	234	< 36	36 - 130	> 130
Magnesium, Total	2920	3270	4770	4200	4320	5970	6010	14100	5,695			
Manganese, Total	820 J	607 J	1500 J	3580 J	3170 J	3360 J	2240 J	7950 J	2,903			
Mercury, Total	0.56	0.62	0.4	0.36	0.34	0.47	ND	0.5	0.46	< 0.2	0.2 - 1	> 1
Nickel, Total	13.7 J	16.7 J	22.9 J	20.5 J	16.4 J	24 J	17.4 J	15.2 J	18	<23	23-49	>49
Potassium, Total	346 J	483 J	351 J	528 J	532 J	379 J	718 J	652 J	499			
Selenium, Total	3.2 J	7.1	ND	3.1 J	2.7 J	ND	2.8 J	1.7 J	3.4			
Silver, Total	0.99 J	2.1	ND	0.33 J	0.45 J	0.6 J	0.44 J	0.38 J	0.76	< 1	1 - 2.2	> 2.2
Sodium, Total	234 J	257 J	310 J	414 J	407 J	434 J	660 J	554 J	409			
Vanadium, Total	11	11.5	18	29.4	22.5	32	28.5	117	34			
Zinc, Total	892	828	2,390	934	823	3,410	1,020	872	1,396	<120	120-460	>460
DRO/ORO (mg/kg)												
DRO	290	1,300	620	110	95	130	39 J	89	334			
ORO	500	1,300	940	280	240	290	85	220	482			
Total Organic Carbon (Method Lloyd Ka	ahn) (mg/kg)											
TOC	54,300	50,800	65,600	53,700	52,100	75,400	62,100	46,100	57,513			

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect (ND).
- 2. Average concentrations are based on the combined average of detected concentrations.
- 3. NYSDEC Division of Fish, Wildlife and Marine Resources, Bureau of Habitat. Screening and Assessment of Contaminated Sediment (Tables 5 and 7). June 24, 2014.
- 4. Calculated by adding detections + 1/2 of MDL for NDs).

TABLE 4-28 SUMMARY OF USEPA SRWT SEDIMENT ANALYTICAL DATA (NOVEMBER 7, 2011)

				Sample Loc	cation & Date				Averege	Sadime	ent Guidance V	Zaluge ³
PARAMETER 1	SC11-RT-028-006 (0-6 inches)	SC11-RT-028-024 (6-24 inches)	SC11-RT-028-039 (24-39 inches)	SC11-RT-029-006 (0-6 inches)	SC11-RT-029-006-DP (0-6 inches)	SC11-RT-029-025 (6-25 inches)	SC11-RT-030-006 (0-6 inches)	SC11-RT-030-029 (6-29 inches)	Average Concentration ²	Sedime	(mg/kg)	aiues
				11/0	07/11				(mg/kg)	Class A	Class B	Class C

Definitions:

ND = Not Detected

"--" - Not applicable

mg/kg = milligram per kilogram

J = Estimated Value.

N = Indicates presumptive evidence of a compound

DRO = Diesel Range Organic

ORO = Oil Range Organic

PAH 34 - Polycyclic aromatic hydrocarbons, extended list 34

PCB - Polychlorinated biphenyl

SVOC - Semivolatile organic compound

TAL - Target Analyte List

TOC - Total organic carbon

Total PAHs calculated as sum of detections plus one-half the detection limit for nondetected results

Total PCBs calculated as the sum of detections

Class A	= Sediments considered to be of low risk to aquatic life
Class B	= Sediments considered slightly to moderately contaminated; additional testing is required to evaluate the potential risks to aquatic life.
Class C	= Sediments considered to be highly contaminated and likely pose a risk to aquatic life; additional testing is required to evaluate the potential risks to aquatic life.

TABLE 4-29

CMS MONITORING WELL SAMPLING SUMMARY

								Analytical Para	ameters and Me	thod ^{2,3}				
Monitoring Location ¹	Hydrogeologic Unit	LTGWM Network Monitoring Location	LTGWM DTW (only)	TCL VOCs (8260)	STARS VOCs (8021 or 8260)	SVOCs (BN) (8270)	Total Phenols via TCL SVOCs (AE) (8270)	Arsenic (6010 or 6020) ⁴	Barium (6010 or 6020)	Cadmium (6010 or 6020)	Chromium (6010 or 6020)	Lead (6010 or 6020)	Selenium (6010 or 6020)	Cyanide (9010/9012)
Discharge Sub-Are	a 2A (18 wells)													
MW-2D2	Slag/Fill	х		May-2010	Apr-2018	Apr-2018	Aug-2013	Mar-2012	Mar-2012	May-2009	Mar-2012	Mar-2012	Mar-2012	May-2009
MW-2D2B	Sand/Dredge Spoils	х		Jan-2019		Jan-2019	Jan-2019	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MW-2D2D	Bedrock Well		х	Jan-2019		Jan-2019	Jan-2019	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MW-2D3	Slag/Fill	х		May-2010	Apr-2018	Apr-2018	May-2011	Mar-2012	Mar-2012	May-2009	Mar-2012	Mar-2012	Mar-2012	May-2009
MW-2D4	Slag/Fill	х		May-2010	Apr-2018	Apr-2018	May-2011	Mar-2012	Mar-2012	May-2009	Mar-2012	Mar-2012	Mar-2012	May-2009
MW-2U1B	Slag/Fill; Sand/Dredge Spoils		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-09	Slag/Fill	х		Mar-2012		Mar-2012	Nov-1999	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWS-11A	Slag/Fill		х	May-2013	Apr-2018	Apr-2018	Aug-2013	May-2013	May-2013	Nov-1999	May-2013	May-2013	May-2013	Nov-1999
MWS-12A	Slag/Fill		х	Apr-2013		Apr-2013	Aug-2013	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-12B	Slag/Fill; Sand		х	Apr-2013		Apr-2013	Aug-2013	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-13	Slag/Fill		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-14	Slag/Fill; Sand		х	Apr-2013		Apr-2013	Aug-2013	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-14B	Slag/Fill; Sand		х	Apr-2013		Apr-2013	Aug-2013	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-15	Slag/Fill		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-25A	Slag/Fill		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-25B	Slag/Fill; Sand; Clay		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-26A	Slag/Fill; Sand/Dredge Spoils	х		Jan-2019		Jan-2019	Jan-2019	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWS-29A	Slag/Fill		х	Apr-2013		Apr-2013	Dec-2000	Apr-2013	Apr-2013	Dec-2000	Apr-2013	Apr-2013	Apr-2013	Dec-2000
Discharge Sub-Are	a 2B (16 wells)													
MWS-01	Slag/Fill	х		Jan-2019		Jan-2019	Jan-2019	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Mar-2012	Nov-1999	Nov-1999
MWS-01B	Slag/Fill; Sand/Dredge Spoils	х		Jan-2019		Jan-2019	Jan-2019	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Mar-2012	Nov-1999	Nov-1999
MWS-02	Slag/Fill	х		Apr-2018		Apr-2018	Apr-2018	Apr-2018	Apr-2018	Nov-1999	Apr-2018	Apr-2018	Nov-1999	Apr-2018
MWS-03	Slag/Fill	х		Mar-2012		Mar-2012	Nov-1999	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Mar-2012	Nov-1999	Nov-1999
MWS-10	Slag/Fill		Х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-10B	Slag/Fill; Clay; Sand/Dredge Spoils		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-18A	Slag/Fill	х		Apr-2018		Apr-2018	Apr-2018	Apr-2018	Apr-2018	Nov-1999	Apr-2018	Apr-2018	Nov-1999	Apr-2018
MWS-18C	Slag/Fill; Clay; Sand	х		Apr-2018		Apr-2018	Apr-2018	Apr-2018	Apr-2018	Nov-1999	Apr-2018	Apr-2018	Nov-1999	Apr-2018
MWS-19A	Slag/Fill	х		Apr-2018		Apr-2018	Apr-2018	Apr-2018	Apr-2018	Nov-1999	Apr-2018	Apr-2018	Nov-1999	Apr-2018
MWS-19B	Slag/Fill; Sand	х		Apr-2018		Apr-2018	Apr-2018	Apr-2018	Apr-2018	Nov-1999	Apr-2018	Apr-2018	Nov-1999	Apr-2018

TABLE 4-29

CMS MONITORING WELL SAMPLING SUMMARY

	•		•											
								Analytical Para	meters and Me	thod ^{2,3}				
Monitoring Location ¹	Hydrogeologic Unit	LTGWM Network Monitoring Location	LTGWM DTW (only)	TCL VOCs (8260)	STARS VOCs (8021 or 8260)	SVOCs (BN) (8270)	Total Phenols via TCL SVOCs (AE) (8270)	Arsenic (6010 or 6020) ⁴	Barium (6010 or 6020)	Cadmium (6010 or 6020)	Chromium (6010 or 6020)	Lead (6010 or 6020)	Selenium (6010 or 6020)	Cyanide (9010/9012)
MWS-20A	Slag/Fill; Sand	х		Apr-2018		Apr-2018	Apr-2018	Apr-2018	Apr-2018	Nov-1999	Apr-2018	Apr-2018	Nov-1999	Apr-2018
MWS-20B	Sand; Clay	х		Apr-2018		Apr-2018	Apr-2018	Apr-2018	Apr-2018	Nov-1999	Apr-2018	Apr-2018	Nov-1999	Apr-2018
MWS-21A	Slag/Fill		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-21B	Slag/Fill; Clay		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-23A	Slag/Fill		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWS-23B	Sand		х	Apr-2013		Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
Discharge Sub-Area	a 3A (17 wells, 1 decomm	issioned)												
MWN-01	Slag/Fill	х		Jan-2019		Jan-2019	Jan-2019	Mar-2012	Nov-1999	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-01B	Slag/Fill; Sand/Dredge Spoils	х		Jan-2019		Jan-2019	Jan-2019	Mar-2012	Nov-1999	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Mar-2012
MWN-11	Slag/Fill	х		Oct-2010		Oct-2010	Nov-1999	Mar-2012	Nov-1999	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-17A	Slag/Fill	х		Oct-2010		Oct-2010	Aug-2013	Mar-2012	Nov-1999	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-17B	Slag/Fill; Sand	х		Oct-2010		Oct-2010	Aug-2013	Mar-2012	Nov-1999	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-23B	Sand/Dredge Spoils	х		Jan-2019	Mar-2012	Jan-2019	Jan-2019	Mar-2012	Nov-1999	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-24A	Slag/Fill; Clayey Silt; Sand	x		Jan-2019	Mar-2012	Jan-2019	Jan-2019	Mar-2012	Nov-1999	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-24B	Till		х	Jan-2019	Mar-2012	Jan-2019	Jan-2019	Mar-2012	Nov-1999	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-44A ⁵	Slag/Fill			Dec-2000	Mar-2012	Mar-2012	Dec-2000	Mar-2012	Dec-2000	Dec-2000	Mar-2012	Mar-2012	Mar-2012	Mar-2012
MWN-80A	Slag/Fill; Sand		х	Oct-2010		Oct-2010								
MWN-81A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-82A	Slag/Fill; Sand		х	Oct-2010		Oct-2010								
MWN-83A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-84A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-85A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-94A	Slag/Fill	х		Jan-2019		Jan-2019	Jan-2019	May-2013			May-2013	May-2013	May-2013	
MWN-94B	Sand	х		May-2013		May-2013		May-2013			May-2013	May-2013	May-2013	
Discharge Sub-Area	a 4A (64 wells)													
MW-1D1	Slag/Fill	х		Apr-2018		Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009
MW-1D2	Slag/Fill	х		May-2010	Apr-2018	Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	Jun-2009
MW-1D3	Slag/Fill	х		May-2010	Apr-2018	Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	Jun-2009
MW-1D4	Slag/Fill	х		May-2010	Apr-2018	Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	Jun-2009
MW-1D5	Slag/Fill		Х	Jan-2019		Jan-2019	Jan-2019	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999
MW-1D6	Slag/Fill	х		Apr-2018		Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009
MW-1D7	Slag/Fill	х		Apr-2018		Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009

TABLE 4-29

CMS MONITORING WELL SAMPLING SUMMARY

								Analytical Para	meters and Me	thod ^{2,3}				
Monitoring Location ¹	Hydrogeologic Unit	LTGWM Network Monitoring Location	LTGWM DTW (only)	TCL VOCs (8260)	STARS VOCs (8021 or 8260)	SVOCs (BN) (8270)	Total Phenols via TCL SVOCs (AE) (8270)	Arsenic (6010 or 6020) ⁴	Barium (6010 or 6020)	Cadmium (6010 or 6020)	Chromium (6010 or 6020)	Lead (6010 or 6020)	Selenium (6010 or 6020)	Cyanide (9010/9012)
MW-1D8	Slag/Fill	х		Apr-2018		Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009
MW-1U1	Slag/Fill; Sand/Dredge Spoils	x		Apr-2018		Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009
MWN-02	Slag/Fill	х		Nov-1999	Jul-2011	Jul-2011	Aug-2013	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Nov-1999	Mar-2012	Nov-1999
MWN-02B	Sand/Dredge Spoils	х		Nov-1999	Jul-2011	Jul-2011	Aug-2013	Jul-2011	Mar-2012	Nov-1999	Mar-2012	Nov-1999	Mar-2012	Nov-1999
MWN-02D	Bedrock			Mar-2012		Mar-2012	Nov-1999	Jul-2011	Jul-2011	Nov-1999	Jul-2011	Nov-1999	Mar-2012	Nov-1999
MWN-03	Slag/Fill	х		Nov-1999	Jul-2011	Jul-2011	Aug-2013	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Nov-1999	Mar-2012	Nov-1999
MWN-03B	Sand/Dredge Spoils; Clay; Peat	x		Mar-2012		Mar-2012	Aug-2013	Jul-2011	Jul-2011	Nov-1999	Jul-2011	Nov-1999	Mar-2012	Nov-1999
MWN-03D	Bedrock			Nov-1999	Jul-2011	Jul-2011	Nov-1999	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Nov-1999	Mar-2012	Nov-1999
MWN-04	Slag/Fill	х		Nov-1999	Jul-2011	Jul-2011	Aug-2013	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Nov-1999	Mar-2012	Nov-1999
MWN-05A	Slag/Fill	х		Jan-2019		Jan-2019	Jan-2019	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-05B	Sand/Dredge Spoils	х		Jan-2019		Jan-2019	Jan-2019	Mar-2012	Jan-2019	Mar-2012	Mar-2012	Mar-2012	Mar-2012	Nov-1999
MWN-05D	Bedrock		х	Mar-2012		Mar-2012	Nov-1999	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Nov-1999	Mar-2012	Nov-1999
MWN-06A	Slag/Fill	x		Nov-1999	May-2013	May-2013	Aug-2013	Nov-1999	Nov-1999	Nov-1999	May-2013	Nov-1999	Nov-1999	Nov-1999
MWN-12	Slag/Fill	x		Apr-2018		Apr-2018	Jun-2012	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009	May-2009
MWN-14A	Slag/Fill		х	Nov-1999		Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999
MWN-14B	Slag/Fill; Sand/Dredge Spoils		х	Nov-1999		Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999
MWN-15A	Slag/Fill	х		Nov-1999	Apr-2013	Apr-2013	Aug-2013	Nov-1999	Nov-1999	Nov-1999	Apr-2013	Nov-1999	Nov-1999	Nov-1999
MWN-15B	Slag/Fill; Sand; Peat	х		Nov-1999	Apr-2013	Apr-2013	Aug-2013	Nov-1999	Nov-1999	Nov-1999	Apr-2013	Nov-1999	Nov-1999	Nov-1999
MWN-15D	Bedrock		х	Mar-2012		Mar-2012	Aug-2013	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Nov-1999	Mar-2012	Nov-1999
MWN-16A	Slag/Fill		х	Nov-1999	Apr-2013	Apr-2013	Aug-2013	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-16B	Slag/Fill		х	Nov-1999	Apr-2013	Apr-2013	Aug-2013	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-19A ⁶	Slag/Fill; Sand; Peat		х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999
MWN-19B ⁶	Peat		х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999
MWN-20A	Slag/Fill		х	Nov-1999	Apr-2013	Apr-2013	Aug-2013	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-20B	Slag/Fill; Sand		х	Nov-1999	Apr-2013	Apr-2013	Aug-2013	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-21AR	Slag/Fill		х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-21B	Clayey Silt		х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-21C	Slag/Fill; Sand; Peat		Х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-22B	Sand/Dredge Spoils		Х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-25A	Slag/Fill; Sand		Х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-25B	Slag/Fill; Sand		х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-25D	Bedrock		х	Mar-2012		Mar-2012	Nov-1999	Mar-2012	Mar-2012	Nov-1999	Mar-2012	Nov-1999	Mar-2012	Nov-1999

TABLE 4-29

CMS MONITORING WELL SAMPLING SUMMARY

								Analytical Para	meters and Me	thod ^{2,3}				
Monitoring Location ¹	Hydrogeologic Unit	LTGWM Network Monitoring Location	LTGWM DTW (only)	TCL VOCs (8260)	STARS VOCs (8021 or 8260)	SVOCs (BN) (8270)	Total Phenols via TCL SVOCs (AE) (8270)	Arsenic (6010 or 6020) ⁴	Barium (6010 or 6020)	Cadmium (6010 or 6020)	Chromium (6010 or 6020)	Lead (6010 or 6020)	Selenium (6010 or 6020)	Cyanide (9010/9012)
MWN-32A	Sand; Peat	х		Nov-1999	Apr-2013	Apr-2013	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999
MWN-35A	Slag/Fill		х	Dec-2000	Apr-2013	Apr-2013	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Apr-2013	Dec-2000
MWN-37A	Slag/Fill		х	Oct-2010	·	Oct-2010	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000
MWN-38A	Slag/Fill		х	Oct-2010		Oct-2010	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000
MWN-39A	Slag/Fill		х	Oct-2010		Oct-2010	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000
MWN-40A	Slag/Fill		х	Oct-2010		Oct-2010	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000
MWN-41A	Slag/Fill		х	Dec-2000	Apr-2013	Apr-2013	Aug-2013	Dec-2000	Dec-2000	Dec-2000	Apr-2013	Dec-2000	Apr-2013	Dec-2000
MWN-42A	Slag/Fill		х	Dec-2000		Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000
MWN-51AR	Slag/Fill	x		Dec-2000	Apr-2013	Apr-2013	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000
MWN-51BR	Peat		х	Dec-2000	Apr-2013	Apr-2013	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000
MWN-73A	Peat		х	Jan-2019		Jan-2019	Jan-2019							
MWN-75A	Peat		х	Jan-2019		Jan-2019	Jan-2019							
MWN-76AR	Slag/Fill; Peat		х	Jan-2019		Jan-2019	Jan-2019							
MWN-77A	Slag/Fill		х	Jan-2019		Jan-2019	Jan-2019							
MWN-78A	Slag/Fill; Sand		х	Jan-2019		Jan-2019	Jan-2019							
MWN-79A	Slag/Fill		х	Jan-2019		Jan-2019	Jan-2019							
MWN-86A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-87A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-88A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-89A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-90A	Slag/Fill		х	Oct-2010		Oct-2010								
MWN-91A	Slag/Fill		х	Oct-2010		Oct-2010								
WT1-07	Slag/Fill; Sand/Dredge Spoils		х	Jan-2019		Jan-2019	Jan-2019	Mar-2012	Mar-2012		Mar-2012		Mar-2012	
WT8-01	Slag/Fill; Sand/Dredge Spoils		х	Jan-2019		Jan-2019	Jan-2019	Apr-2013						
WT8-02	Slag/Fill; Sand/Dredge Spoils		х	Jan-2019		Jan-2019	Jan-2019	Apr-2013						
Discharge Sub-Area	a 4B (2 wells)													
MWN-18A	Slag/Fill	х		Jan-2019	Mar-2012	Jan-2019	Jan-2019	Nov-1999	Jan-2019	Nov-1999	Mar-2012	Nov-1999	Nov-1999	Nov-1999
MWN-43A	Slag/Fill	х		Jan-2019	Feb-2012	Jan-2019	Jan-2019	Dec-2000	Jan-2019	Dec-2000	Feb-2012	Dec-2000	Dec-2000	Dec-2000
Discharge Sub-Area	a 5 (19 wells)						•					•		
MWN-07 ⁶	Slag/Fill	х		Jan-2019	Feb-2012	Jan-2019	Jan-2019	Feb-2012	Feb-2012	Nov-1999	Feb-2012	Nov-1999	Nov-1999	Feb-2012
MWN-08 ⁶	Slag/Fill		х	Jan-2019		Jan-2019	Jan-2019	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999

TABLE 4-29

CMS MONITORING WELL SAMPLING SUMMARY

								Analytical Para	meters and Me	thod ^{2,3}				
Monitoring Location ¹	Hydrogeologic Unit	LTGWM Network Monitoring Location	LTGWM DTW (only)	TCL VOCs (8260)	STARS VOCs (8021 or 8260)	SVOCs (BN) (8270)	Total Phenols via TCL SVOCs (AE) (8270)	Arsenic (6010 or 6020) ⁴	Barium (6010 or 6020)	Cadmium (6010 or 6020)	Chromium (6010 or 6020)	Lead (6010 or 6020)	Selenium (6010 or 6020)	Cyanide (9010/9012)
MWN-09 ⁶	Slag/Fill	х		Jan-2019	Apr-2013	Jan-2019	Jan-2019	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999
MWN-26A	Slag/Fill	х		Jul-2010		Feb-2012	Nov-1999	Feb-2012	Feb-2012	Nov-1999	Feb-2012	Nov-1999	Nov-1999	Feb-2012
MWN-26B	Clayey Silt		х	Jan-2019		Jan-2019	Jan-2019	Feb-2012	Jan-2019	Nov-1999	Feb-2012	Nov-1999	Nov-1999	Nov-1999
MWN-30A ⁶	Slag/Fill		х	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Nov-1999	Apr-2013	Apr-2013	Apr-2013	Nov-1999
MWN-34 ⁶	Slag/Fill		х	Jan-2019		Jan-2019	Jan-2019	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999	Nov-1999
MWN-45A	Slag/Fill	х		Jan-2019	Feb-2012	Jan-2019	Jan-2019	Feb-2012	Feb-2012	Dec-2000	Feb-2012	Dec-2000	Dec-2000	Jan-2019
MWN-46A	Slag/Fill		х	Dec-2000	Apr-2013	Apr-2013	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000	Dec-2000
MWN-47A	Slag/Fill	х		Jan-2019	Feb-2012	Jan-2019	Jan-2019	Feb-2012	Feb-2012	Dec-2000	Feb-2012	Dec-2000	Dec-2000	Dec-2000
MWN-49A ⁶	Clayey Silt	х		Jan-2019	Feb-2012	Jan-2019	Jan-2019	Feb-2012	Feb-2012	Dec-2000	Feb-2012	Dec-2000	Dec-2000	Dec-2000
MWN-49B ⁶	Clayey Silt; Till; Peat		х	Jan-2019	Mar-2012	Jan-2019	Jan-2019	Mar-2012	Jan-2019	Dec-2000	Mar-2012	Dec-2000	Dec-2000	Dec-2000
MWN-53A	Slag/Fill	х		Jan-2019		Jan-2019	Jan-2019							Jan-2019
MWN-54A	Slag/Fill	х		Apr-2013		Apr-2013								
MWN-55AR	Slag/Fill	х		Apr-2013		Apr-2013								
MWN-66AR	Slag/Fill	х		Jan-2019		Jan-2019	Jan-2019							Jan-2019
MWN-67A	Slag/Fill	х		Jan-2019		Jan-2019	Jan-2019							Jan-2019
MWN-68A	Sand	х		Jan-2019		Jan-2019	Jan-2019							
MWN-72AR	Slag/Fill; Sand		х	Jan-2019		Jan-2019	Jan-2019							

Notes:

- 1. Monitoring well locations are shown on Plate 4-18. Only wells that have been sampled at least once are included in this table.
- 2. Analytical compounds identified on this Table were selected based on historical exceedances of NYSDEC Groundwater Quality Standards/Guidance Values (GWQS/GVs) and/or constituents of concern associated with nearby Solid Waste Management Units (SWMUs).
- 3. The presented date represents the most recent sampling event for each parameter/method.
- 4. Two methods are shown for metals (As, Ba, Cd, Cr, Pb, Se) as the originnal method (6010, ICP-0ES) was updated to a new method (6020, ICP-MS) with a lower detection limit.
- 5. MWN-44A was decommissioned after the 2012 CMS sampling event.
- 6. Well location is outside the CMS Area and/or off the Tecumseh property.

Definitions:

LTGWM = Long Term Groundwater Monitoring
DTW = Depth to water
VOC = Volatile Organic Compound
TCL = Target Compound List
STARS = Spill Technology and Remediation Series
SVOC = Semivolatile Organic Compound
BN = Base/Neutral Extractables
AE = Acid Extractables

TABLE 4-30

GROUNDWATER MONITORING WATER LEVEL SUMMARY (JANUARY 2019)

							TOR					,	Well Gauging	g	
Monitoring		LTGWM Network	LTGWM			Ground Surface	Elevation ³	Bottom	Bottom	Bottom			1/4/2019		
Location 1	Hydrogeologic Unit	Monitoring	DTW (Only)	Northing	Easting	Elevation (ft) ²	(ft)	(fbgs)	(fbTOR)	Elevation (ft)	DTP	DTW	PT	GWE	LLE
		Location				(π)				()	(fbTOR)	(fbTOR)	(ft)	(ft)	(ft)
Discharge Sub-Area	a 2A (20 Wells)														
MW-2D2	Slag/Fill	х		1023523.849	1073155.919	630.69	632.11	63.78	65.20	566.91	NP	58.34	NP	573.77	573.77
MW-2D2B	Sand/Dredge Spoils	х		1023504.539	1073159.699	629.97	632.85	83.40	86.28	546.57	NP	59.22	NP	573.63	573.63
MW-2D2D	Bedrock Well		х	1023515.049	1073154.669	630.38	632.933 **	110.57	112.38	520.55	NP	61.85	NP	571.08	571.08
MW-2D3	Slag/Fill	х		1023710.709	1073125.069	634.87	635.581 **	65.55	67.20	568.38	NP	61.34	NP	574.24	574.24
MW-2D4	Slag/Fill	х		1023930.919	1073102.019	628.96	629.637 **	61.12	62.60	567.04	NP	55.33	NP	574.31	574.31
MW-2U1B	Slag/Fill; Sand/Dredge Spoils		х	1023692.869	1073522.859	626.93	629.42	66.22	68.71	560.71	NP	54.86	NP	574.56	574.56
MWS-09	Slag/Fill	х		1023036.999	1073341.959	628.41	630.82	62.49	64.90	565.92	NP	56.81	NP	574.01	574.01
MWS-11A	Slag/Fill		х	1024002.349	1073558.829	637.2	639.56	69.94	72.30	567.26	NP	65.12	NP	574.44	574.44
MWS-12A	Slag/Fill		х	1023573.689	1074214.749	598.37	601.29	30.94	33.86	567.43	NP	25.82	NP	575.47	575.47
MWS-12B	Slag/Fill; Sand		х	1023588.579	1074215.479	598.47	601.13	41.66	44.32	556.81	NP	25.66	NP	575.47	575.47
MWS-13	Slag/Fill		х	1023564.829	1073983.219	639.63	642.37	74.57	77.31	565.06	NP	67.40	NP	574.97	574.97
MWS-14	Slag/Fill; Sand		х	1024210.609	1073970.789	605.7	608.568 **	38.68	41.34	567.23	NP	32.77	NP	575.80	575.80
MWS-14B	Slag/Fill; Sand		х	1024191.189	1073995.049	605.62	607.217 **	47.66	50.15	557.07	NP	31.50	NP	575.72	575.72
MWS-15	Slag/Fill		х	1023465.139	1073589.589	625.07	627.09	58.52	60.54	566.55	NP	52.46	NP	574.63	574.63
MWS-24AR ⁴	Slag/Fill; Sand		х	1024237.749	1074911.499	591.41	594.33	23.22	26.14	568.19	NP	18.17	NP	576.16	576.16
MWS-24B 4	Sand; Clay		х	1024246.099	1074904.119	591.79	594.38	36.61	39.20	555.18	NP	19.37	NP	575.01	575.01
MWS-25A	Slag/Fill		х	1023919.649	1074447.769	598.85	601.87	31.21	34.23	567.64	NP	26.00	NP	575.87	575.87
MWS-25B	Slag/Fill; Sand; Clay		х	1023923.609	1074437.069	598.55	601.37	37.98	40.80	560.57	NP	25.50	NP	575.87	575.87
MWS-26A	Slag/Fill; Sand/Dredge Spoils	x		1023245.099	1073237.419	622.18	624.8	53.98	56.60	568.20	NP	51.49	NP	573.31	573.31
MWS-29A	Slag/Fill		х	1024024.982	1074141.648	597.166	599.004 **	28.39	30.24	568.76	NP	21.48	NP	577.52	577.52
Discharge Sub-Area	a 2B (16 Wells)								•	•					•
MWS-01	Slag/Fill	х		1024249.149	1073028.679	629.94	632.6	63.62	66.28	566.32	NP	58.73	NP	573.87	573.87
MWS-01B	Slag/Fill; Sand/Dredge Spoils	х		1024218.009	1073035.879	629.89	632.68	83.08	85.87	546.81	59.08	59.09	0.01	573.59	573.60
MWS-02	Slag/Fill	х		1024778.669	1073718.369	599.58	602.39	34.17	36.98	565.41	NP	27.20	NP	575.19	575.19
MWS-03	Slag/Fill	х		1024939.229	1075241.079	585.7	587.42	18.71	20.43	566.99	NP	13.22	NP	574.20	574.20
MWS-10	Slag/Fill		х	1024296.139	1074398.169	601.43	604.43	31.50	34.50	569.93	NP	28.07	NP	576.36	576.36
MWS-10B	Slag/Fill; Clay; Sand/Dredge Spoils		х	1024272.009	1074411.149	599.95	602.67	38.89	41.61	561.06	NP	27.05	NP	575.62	575.62
MWS-18A	Slag/Fill	х		1024859.279	1074480.709	595.16	597.81	27.47	30.12	567.69	NP	21.55	NP	576.26	576.26
MWS-18C	Slag/Fill; Clay; Sand	х		1024848.236	1074474.097	594	596.44	35.77	38.21	558.23	NP	20.76	NP	575.68	575.68
MWS-19A	Slag/Fill	х		1024841.199	1074166.86	597.61	600.69	28.88	31.96	568.73	NP	25.62	NP	575.07	575.07

TABLE 4-30

GROUNDWATER MONITORING WATER LEVEL SUMMARY (JANUARY 2019)

							TOD				Well Gauging					
Monitoring		LTGWM Network	LTGWM			Ground Surface	TOR Elevation ³	Bottom	Bottom	Bottom			1/4/2019			
Location 1	Hydrogeologic Unit	Monitoring	DTW (Only)	Northing	Easting	Elevation (ft) ²	(ft)	(fbgs)	(fbTOR)	Elevation (ft)	DTP	DTW	PT	GWE	LLE	
		Location				(11)				, ,	(fbTOR)	(fbTOR)	(ft)	(ft)	(ft)	
MWS-19B	Slag/Fill; Sand	х		1024842.819	1074178.739	596.93	600.04	38.79	41.90	558.14	NP	24.95	NP	575.09	575.09	
MWS-20A	Slag/Fill; Sand	х		1024785.849	1074724.279	591.68	593.69	20.19	22.20	571.49	NP	16.56	NP	577.13	577.13	
MWS-20B	Sand; Clay	х		1024791.859	1074735.239	591.4	594.28	28.66	31.54	562.74	NP	17.05	NP	577.23	577.23	
MWS-21A	Slag/Fill		х	1024247.573	1074221.358	597.59	600.378 **	28.99	31.59	568.79	NP	24.32	NP	576.06	576.06	
MWS-21B	Slag/Fill; Clay		х	1024258.664	1074219	597.65	603.243 **	41.74	44.60	558.64	NP	27.03	NP	576.21	576.21	
MWS-23A	Slag/Fill		х	1024363.299	1074708.909	595.37	598.563 **	18.97	21.95	576.61	NP	15.85	NP	582.71	582.71	
MWS-23B	Sand		х	1024373.289	1074709.909	595.46	598.468 **	34.98	37.72	560.75	NP	22.11	NP	576.36	576.36	
Discharge Sub-Area	a 3A (17 wells, 2 staff gauges	s)														
MWN-01 ⁵	Slag/Fill	х		1024541.599	1072907.429	582.99	587.91 **	17.00	19.15	568.76	NP	14.32	NP	573.59	573.59	
MWN-01B ⁵	Slag/Fill; Sand/Dredge Spoils	х		1024563.629	1072939.259	583.79	588.95 **	29.00	32.24	556.71	NP	15.21	NP	573.74	573.74	
MWN-11	Slag/Fill	х		1025138.159	1074031.239	597.8	600.06	31.05	33.31	566.75	NP	25.40	NP	574.66	574.66	
MWN-17A	Slag/Fill	х		1025472.339	1074490.589	594.96	597.82	25.49	28.35	569.47	NP	22.40	NP	575.42	575.42	
MWN-17B	Slag/Fill; Sand	х		1025475.939	1074471.769	594.88	597.62	35.26	38.00	559.62	NP	23.20	NP	574.42	574.42	
MWN-23B	Sand/Dredge Spoils	х		1024917.019	1073466.659	596.25	599.01	48.67	51.43	547.58	NP	24.90	NP	574.11	574.11	
MWN-24A	Slag/Fill; Clayey Silt; Sand	x		1025114.169	1075097.4	585.48	588.05	18.48	21.05	567.00	NP	12.05	NP	576.00	576.00	
MWN-24B	Till		х	1025112.769	1075109.349	585.05	587.88	37.86	40.69	547.19	NP	13.52	NP	574.36	574.36	
MWN-61A ⁴	Slag/Fill			1025362.397	1075666.551	584.72	586.91	15.84	18.03	568.88	NP	10.58	NP	576.33	576.33	
MWN-80A	Slag/Fill; Sand		х	1025596.674	1074854.26	587.93	592.747 **	17.54	20.33	572.42	NP	15.80	NP	576.95	576.95	
MWN-81A	Slag/Fill		х	1025791.324	1074868.44	587.99	589.72	18.58	20.31	569.41	NP	12.50	NP	577.22	577.22	
MWN-82A	Slag/Fill; Sand		х	1025697.16	1074809.737	589.07	590.75	18.62	20.30	570.45	NP	14.00	NP	576.75	576.75	
MWN-83A	Slag/Fill		х	1025540.11	1074749.041	591.45	593.86	22.45	24.86	569.00	NP	18.00	NP	575.86	575.86	
MWN-84A	Slag/Fill		х	1025697.781	1074682.345	591.12	593.24	23.58	25.70	567.54	NP	17.48	NP	575.76	575.76	
MWN-85A	Slag/Fill		х	1025804.878	1074507.225	590.3	592.41	24.63	26.74	565.67	NP	16.78	NP	575.63	575.63	
MWN-94A	Slag/Fill	х		1025082.636	1074558.345	589.79	592.47	25.37	28.05	564.42	NP	18.12	NP	574.35	574.35	
MWN-94B	Sand	х		1025081.236	1074570.294	589.66	591.95	36.38	38.67	553.28	NP	17.51	NP	574.44	574.44	
SG-02	Smoke's Creek		х	1025099.446	1075344.632		582.254 **					7.99	NP	574.26	574.26	
SG-07R ⁶	Smoke's Creek		х	1024480.062	1072942.849		581.446 **					7.58	NP	573.87	573.87	
Discharge Sub-Area	a 4A (72 Wells)															
MW-1D1	Slag/Fill	х		1028413.499	1071454.069	609.21	610.59	43.57	44.95	565.64	NP	32.18	NP	578.41	578.41	
MW-1D2	Slag/Fill	х		1027772.519	1071948.079	613.04	614.46	48.08	49.50	564.96	NP	40.95	NP	573.51	573.51	
MW-1D3	Slag/Fill	х		1027666.099	1071961.879	610.72	612.69	46.13	48.10	564.59	NP	39.12	NP	573.57	573.57	
MW-1D4	Slag/Fill	х		1027566.049	1071977.659	609.51	612.52	37.86	40.87	571.65	NP	38.88	NP	573.64	573.64	
MW-1D5	Slag/Fill		х	1027710.839	1071809.76	610.7	613.49	42.71	45.50	567.99	NP	39.91	NP	573.58	573.58	

TABLE 4-30

GROUNDWATER MONITORING WATER LEVEL SUMMARY (JANUARY 2019)

											Well Gauging					
Monitoring		LTGWM Network	LTGWM			Ground Surface	TOR Elevation ³	Bottom	Bottom	Bottom			1/4/2019			
Location 1	Hydrogeologic Unit	Monitoring	DTW (Only)	Northing	Easting	Elevation (ft) ²	(ft)	(fbgs)	(fbTOR)	Elevation (ft)	DTP	DTW	PT	GWE	LLE	
		Location				(11)					(fbTOR)	(fbTOR)	(ft)	(ft)	(ft)	
MW-1D6	Slag/Fill	х		1028316.649	1071506.709	608.2	610.94	39.41	42.15	568.79	NP	37.30	NP	573.64	573.64	
MW-1D7	Slag/Fill	х		1028454.389	1071403.779	608.49	611.26	42.68	45.45	565.81	NP	36.32	NP	574.94	574.94	
MW-1D8	Slag/Fill	х		1028646.359	1071445.319	607.97	610.74	40.78	43.55	567.19	NP	36.31	NP	574.43	574.43	
MW-1U1	Slag/Fill; Sand/Dredge Spoils	х		1027965.239	1072334.069	611.38	613.18	64.70	66.50	546.68	NP	39.42	NP	573.76	573.76	
MWN-05A	Slag/Fill	х		1029286.609	1071006.469	620.22	622.84	55.50	58.12	564.72	NP	49.48	NP	573.36	573.36	
MWN-05B	Sand/Dredge Spoils	х		1029258.299	1071005.459	617.85	620.54	74.00	76.69	543.85	NP	47.46	NP	573.08	573.08	
MWN-05D	Bedrock		х	1029211.939	1071024.379	614.07	617.17	102.29	105.39	511.78	NP	44.03	NP	573.14	573.14	
MWN-12	Slag/Fill	х		1028521.969	1071684.699	606.71	608.59	38.52	40.40	568.19	NP	35.17	NP	573.42	573.42	
MWN-13A	Slag/Fill		х	1027754.579	1072541.399	605.37	607.32	38.46	40.41	566.91	NP	33.37	NP	573.95	573.95	
MWN-13C	Sand/Dredge Spoils; Clayey Silt		х	1027763.989	1072539.64	605.29	607.3	72.62	74.63	532.67	NP	33.29	NP	574.01	574.01	
MWN-14A	Slag/Fill		х	1029612.249	1072161.079	609.78	612.38	46.47	49.07	563.31	NP	38.95	NP	573.43	573.43	
MWN-14B	Slag/Fill; Sand/Dredge Spoils		х	1029590.849	1072165.679	609.84	612.9	56.65	59.71	553.19	NP	39.28	NP	573.62	573.62	
MWN-15A	Slag/Fill	х		1028156.936	-1073750.122	590.798	592.727 **	21.31	23.72	569.01	NP	17.03	NP	575.70	575.70	
MWN-15B	Slag/Fill; Sand; Peat	х		1028165.851	-1073749.67	590.852	592.415 **	31.62	34.19	558.23	NP	16.72	NP	575.70	575.70	
MWN-15D	Bedrock		х	1028176.067	-1073749.81	590.515	591.982 **	103.22	104.61	487.37	NP	18.27	NP	573.71	573.71	
MWN-16A	Slag/Fill		х	1025685.709	1073502.819	600.23	602.53	31.01	33.31	569.22	NP	28.06	NP	574.47	574.47	
MWN-16B 7	Slag/Fill		х	1025697.529	1073499.519	600.4	602.94	30.80	33.34	569.60	-		-			
MWN-19A ⁴	Slag/Fill; Sand; Peat		х	1027560.361	-1074434.676	583.188	585.385 **	16.04	18.24	567.15	NP	7.98	NP	577.41	577.41	
MWN-19B ⁴	Peat		х	1027550.194	-1074438.966	582.982	585.272 **	26.52	28.81	556.46	NP	9.21	NP	576.06	576.06	
MWN-20A	Slag/Fill		х	1026915.759	1073083.699	599.86	602.71	30.49	33.34	569.37	NP	28.30	NP	574.41	574.41	
MWN-20B	Slag/Fill; Sand		х	1026907.719	1073088.589	599.67	601.66	53.84	55.83	545.83	NP	27.25	NP	574.41	574.41	
MWN-21AR	Slag/Fill		х	1028093.499	-1074253.442	582.453	585.024 **				NP	7.98	NP	577.04	577.04	
MWN-21B	Clayey Silt		х	1028099.751	-1074266.885	582.417	584.167 **	40.01	41.76	542.41	NP	8.43	NP	575.74	575.74	
MWN-21C	Slag/Fill; Sand; Peat		х	1028095.803	-1074258.813	582.623	584.404 **	19.78	21.56	562.84	NP	7.37	NP	577.03	577.03	
MWN-22B	Sand/Dredge Spoils		х	1025262.739	1073198.889	609.96	612.44	59.18	61.66	550.78	NP	38.30	NP	574.14	574.14	
MWN-25A	Slag/Fill; Sand		х	1029929.155	-1073427.209	590.249	591.917 **	20.66	22.33	569.59	NP	16.11	NP	575.81	575.81	
MWN-25B	Slag/Fill; Sand		х	1029936.174	-1073425.025	590.318	591.488 **	23.18	24.57	566.92	NP	15.66	NP	575.83	575.83	
MWN-25D	Bedrock		х	1029919.016	-1073428.787	590.349	592.433 **	55.31	57.58	534.85	NP	18.36	NP	574.07	574.07	
MWN-29A	Slag/Fill		x	1027223.249	1072258.399	594.01	596.19	18.72	20.90	575.29	NP	24.51	NP	571.68	571.68	
MWN-32A	Sand; Peat	х		1027726.795	-1074269.854	584.379	587.223 **	18.08	20.92	566.30	NP	10.37	NP	576.85	576.85	
MWN-35A	Slag/Fill		х	1027362.152	1072052.685	606.604	608.71	42.00	44.11	564.60	NP	34.70	NP	574.01	574.01	
MWN-37A	Slag/Fill		х	1025670.121	1074070.494	595.382	597.82	29.29	31.73	566.09	NP	22.55	NP	575.27	575.27	

TABLE 4-30

GROUNDWATER MONITORING WATER LEVEL SUMMARY (JANUARY 2019)

													Well Gaugin	g	
Monitoring		LTGWM Network	LTGWM			Ground Surface	TOR Elevation ³	Bottom	Bottom	Bottom			1/4/2019		
Location 1	Hydrogeologic Unit	Monitoring Location	DTW (Only)	Northing	Easting	Elevation (ft) ²	(ft)	(fbgs)	(fbTOR)	Elevation (ft)	DTP	DTW	PT	GWE	LLE
		Location				()					(fbTOR)	(fbTOR)	(ft)	(ft)	(ft)
MWN-38A	Slag/Fill		х	1026237.836	1073698.859	598.232	600.16	28.26	30.19	569.97	NP	25.09	NP	575.07	575.07
MWN-39A	Slag/Fill		х	1026750.478	1073935.803	589.16	591.24	21.83	23.91	567.33	NP	15.08	NP	576.16	576.16
MWN-40A	Slag/Fill		х	1026195.305	1074615.333	587.86	589.96	19.73	21.83	568.13	NP	13.60	NP	576.36	576.36
MWN-41A	Slag/Fill		х	1025624.803	1073139.081	613.64	615.86	47.00	49.22	566.64	NP	41.45	NP	574.41	574.41
MWN-42A	Slag/Fill		х	1029186.615	1071856.735	576.931	579.37	14.58	17.02	562.35	NP	5.65	NP	573.72	573.72
MWN-51AR	Slag/Fill	х		1029381.939	-1073619.266	589.10	592.874 **	19.41	23.18	569.69	NP	17.21	NP	575.66	575.66
MWN-51BR	Peat		х	1029384.225	-1073622.529	589.20	592.515 **	32.77	36.08	556.44	NP	16.90	NP	575.62	575.62
MWN-62D	Bedrock Well		х	1026120.845	1074815.787	582.34	584.61	63.69	65.96	518.65	NP	10.60	NP	574.01	574.01
MWN-73A	Peat		х	1028658.335	-1074211.751	582.016	584.493 **	22.38	24.86	559.63	NP	4.98	NP	579.51	579.51
MWN-75A	Peat		х	1029321.822	-1074013.921	584.067	586.475 **	23.86	26.27	560.21	NP	5.92	NP	580.56	580.56
MWN-76AR	Slag/Fill; Peat		х	1029672.532	-1073869.002	582.922	585.91 **				NP	5.17	NP	580.74	580.74
MWN-77A	Slag/Fill		х	1028821.66	-1074091.09	582.994	585.342 **	10.19	12.54	572.80	NP	5.75	NP	579.59	579.59
MWN-78A	Slag/Fill; Sand		х	1029099.763	-1073996.934	582.919	584.945 **	14.75	16.78	568.17	NP	6.02	NP	578.93	578.93
MWN-79A	Slag/Fill		х	1029397.847	-1073899.795	583.472	585.982 **	9.52	12.03	573.95	NP	6.72	NP	579.26	579.26
MWN-86A	Slag/Fill		х	1026290.474	1074374.726	589.5	591.98	20.35	22.83	569.15	NP	16.25	NP	575.73	575.73
MWN-87A	Slag/Fill		х	1026410.45	1074467.17	589.28	591.49	18.06	20.27	571.22	NP	15.65	NP	575.84	575.84
MWN-88A	Slag/Fill		х	1026646.399	1074376.174	591.76	594.24	24.40	26.88	567.36	NP	18.40	NP	575.84	575.84
MWN-89A	Slag/Fill		х	1026473.246	1074307.726	589.31	591.47	22.58	24.74	566.73	NP	15.70	NP	575.77	575.77
MWN-90A	Slag/Fill		х	1026442.942	1074234.111	590.85	593.49	23.99	26.63	566.86	NP	17.10	NP	576.39	576.39
MWN-91A	Slag/Fill		х	1026651.359	1074139.396	589.92	592.4	24.30	26.78	565.62	NP	16.71	NP	575.69	575.69
OU4PZ-6	Slag/Fill		х	1029808.222	-1073873.972	583.076	585.673 **	6.10	8.70	576.98	NP	4.73	NP	580.94	580.94
OU4PZ-7	Slag/Fill		х	1029600.46	-1073706.99	584.59	587.11 **	6.10	8.62	578.49	NP	10.15	NP	576.96	576.96
OU4PZ-8	Slag/Fill		х	1028913.945	-1073883.937	588.484	591.311 **	14.70	17.53	573.78	NP	13.62	NP	577.69	577.69
OU4PZ-9	Slag/Fill		х	1028803.637	-1073842.579	589.485	591.49 **	13.90	15.91	575.59	NP	15.74	NP	575.75	575.75
OU4PZ-10	Slag/Fill		х	1028777.216	-1073980.342	585.099	587.125 **	13.90	15.93	571.20	NP	9.54	NP	577.59	577.59
OU4PZ-11	Slag/Fill		х	1028345.703	-1074114.016	582.563	585.479 **	13.90	16.82	568.66	NP	8.36	NP	577.12	577.12
OU4PZ-12	Slag/Fill		х	1027726.206	-1074234.84	586.9	589.381 **	18.50	20.98	568.40	NP	12.69	NP	576.69	576.69
OU4PZ-13	Slag/Fill		х	1027624.129	-1074394.455	582.696	585.337 **	11.10	13.74	571.60	NP	8.03	NP	577.31	577.31
BPP-05R	Slag/Fill		х	1027909.257	-1074572.34	581.332	584.265 **				NP	6.9	NP	577.37	577.37
BPP-13	Slag/Fill		х	1027907.446	-1074503.249	583.575	584.561 **	13.91	14.90	569.66	NP	9.34	NP	575.22	575.52
BPP-17	Slag/Fill		х	1027825.994	-1074308.294	583.638	585.188 **	13.20	14.75	570.44	NP	8.48	NP	575.22	575.52
BPP-18	Slag/Fill; Clay		х	1028124.2	-1074395.751	582.541	585.484 **	10.27	13.21	572.27	NP	7.82	NP	575.22	575.52
BPP-20	Slag/Fill; Sand		x	1028118.119	-1074480.321	582.101	585.918 **	9.37	13.19	572.73	NP	7.91	NP	578.01	578.01
BPP-23	Slag/Fill; Sand		x	1027986.487	-1074530.221	583.11	585.274 **				NP	8.73	NP	576.54	576.54
P-19S	Slag/Fill		х	1027649.058	-1074464.617		584.771 **				NP	7.21	NP	577.56	577.56

TABLE 4-30

GROUNDWATER MONITORING WATER LEVEL SUMMARY (JANUARY 2019)

							TOD				Well Gauging					
Monitoring		LTGWM Network	LTGWM			Ground Surface	TOR Elevation ³	Bottom	Bottom	Bottom			1/4/2019			
Location 1	Hydrogeologic Unit	Monitoring	DTW (Only)	Northing	Easting	Elevation (ft) ²	(ft)	(fbgs)	(fbTOR)	Elevation (ft)	DTP	DTW	PT	GWE	LLE	
		Location				(11)				()	(fbTOR)	(fbTOR)	(ft)	(ft)	(ft)	
Discharge Sub-Area	4B (4 Wells)															
MWN-18A	Slag/Fill	х		1031074.099	1072841.799	592.71	594.2	26.70	28.19	566.01	NP	20.09	NP	576.54	576.54	
MWN-43A	Slag/Fill	х		1030849.391	1072294.243	595.766	598.02	31.58	33.83	564.19	NP	24.38	NP	576.54	576.54	
MWN-50AR	Slag/Fill		х	1030442.644	1073166.909	593.7	596.7	20.33	23.33	573.37	NP	21.92	NP	576.54	576.54	
MWN-50BR	Sand		х	1030452.819	1073164.562	593.7	596.41	33.02	35.73	560.68	NP	21.65	NP	576.54	576.54	
Discharge Sub-Area	5 (31 wells, 1 staff gauge)															
MWN-07 ⁴	Slag/Fill	х		1031175.359	1073593.439	581.67	584.12	17.14	19.59	564.53	NP	9.69	NP	575.22	575.22	
MWN-08 ⁴	Slag/Fill		х	1029761.877	-1074088.693	583.429	584.604 **	18.25	19.43	565.17	NP	9.38	NP	575.22	575.22	
MWN-09 4	Slag/Fill	х		1028322.4	-1074556.389	582.578	584.944 **	16.06	18.43	566.51	NP	11.01	NP	573.93	573.93	
MWN-26A	Slag/Fill	х		1028967.767	-1074285.82	583.15	583.92	6.56	7.33	576.59	NP	7.33	NP	576.59	576.59	
MWN-26B	Clayey Silt		х	1028964.179	-1074273.978	581.461	583.331 **	39.53	41.40	541.93	NP	6.78	NP	576.55	576.55	
MWN-26C	Slag/Fill		х	1028968.709	1074290.476	581.21	589.86	8.50	17.15	566.85	7.06	7.71	0.65	576.29	576.83	
MWN-27A	Slag/Fill		х	1027868.736	-1074619.628	581.073	583.838 **				NP	6.48	NP	577.36	577.36	
MWN-27B	Clayey Silt		х	1027856.644	-1074622.408	580.74	583.924 **	-	-	-	NP	7.62	NP	576.30	576.30	
MWN-27C	Slag/Fill		х	1027863.376	-1074620.716	581.016	583.968 **	-	-	-	NP	6.51	NP	577.46	577.46	
MWN-30A 4	Slag/Fill		х	1027634.581	-1074641.495	582.436	584.915 **	18.47	20.95	563.97	NP	7.26	NP	577.66	577.66	
MWN-31A	Slag/Fill; Peat		х	1027786.992	-1074531.575	581.976	584.108 **	-	-	-	NP	6.78	NP	577.33	577.33	
MWN-34A ⁴	Slag/Fill		х	1029242.534	-1074277.746	582.387	584.682 **	20.45	22.75	561.93	NP	9.73	NP	574.95	574.95	
MWN-45A	Slag/Fill	х		1027980.385	-1074849.825	581.85	583.803 **	18.20	20.15	563.65	NP	10.3	NP	573.50	573.50	
MWN-46A	Slag/Fill		х	1027916.277	-1074863.344	580.315	582.792 **	12.71	15.19	567.60	NP	5.65	NP	577.14	577.14	
MWN-47A	Slag/Fill	х		1028105.168	-1074713.948	581.837	584.816 **	-		-	NP	11.42	NP	573.40	573.40	
MWN-49A ⁴	Clayey Silt	х		1029872.294	-1074033.901	582.715	585.06 **	18.64	20.98	564.08	NP	10.03	NP	575.03	575.03	
MWN-49B ⁴	Clayey Silt; Till; Peat		х	1029865.51	-1074035.7	582.525	585.017 **	34.49	36.98	548.04	NP	11.31	NP	573.71	573.71	
MWN-53A	Slag/Fill	х	х	1028166.859	-1074590.24	581.827	584.45 **	15.52	18.14	566.31	NP	8.28	NP	576.17	576.17	
MWN-54A	Slag/Fill	х	х	1028025.897	-1074657.132	582.235	584.913 **	18.00	20.68	566.31	NP	9.02	NP	575.89	575.89	
MWN-55AR	Slag/Fill	х	х	1027885.893	-1074730.213	581.795	584.635 **	14.72	17.56	566.31	NP	7.33	NP	577.31	577.31	
MWN-66AR	Slag/Fill	х		1029497.054	-1074070.39	583.47	586.917 **				NP	6.73	NP	580.19	580.19	
MWN-67A	Slag/Fill	х		1029251.64	-1074188.981	582.757	585.395 **	13.55	16.19	569.21	NP	5.32	NP	580.08	580.08	
MWN-68A	Sand	х		1030225.125	-1073852.692	583.117	585.45 **	11.67	14.00	571.45	NP	9.29	NP	576.16	576.16	
MWN-72AR	Slag/Fill; Sand		х	1028748.191	-1074376.24	583.193	586.245 **				NP	9.41	NP	576.84	576.84	
MWN-74A	Slag/Fill; Sand		х	1028991.82	-1074153.592	582.64	584.445 **	12.55	14.36	570.09	NP	4.22	NP	580.23	580.23	
OU4PZ-1	Slag/Fill		х	1028451.008	-1074492.124	583.459	585.758 **	15.00	17.30	568.46	NP	11.14	NP	574.62	574.62	
OU4PZ-2	Slag/Fill		х	1028571.21	-1074457.13	583.238	585.68 **	15.00	17.44	568.24	NP	11.90	NP	573.78	573.78	
OU4PZ-3	Slag/Fill		х	1028869.063	-1074355.747	583.361	585.902 **	15.00	17.54	568.36	NP	11.43	NP	574.47	574.47	
OU4PZ-4	Slag/Fill		х	1029044.346	-1074306.037	583.814	586.033 **	15.80	18.02	568.01	NP	10.98	NP	575.05	575.05	

TABLE 4-30

GROUNDWATER MONITORING WATER LEVEL SUMMARY (JANUARY 2019)

		1.7014/14					TOR					,	Well Gauging	9	
Monitoring	Uhadan an ala ai a Unit	LTGWM Network	LTGWM	Nauthina	Faating	Ground Surface	Elevation ³	Bottom	Bottom	Bottom Elevation			1/4/2019		
Location 1	Hydrogeologic Unit	Monitoring	DTW (Only)	Northing	Easting	Elevation (ft) ²	(ft)	(fbgs)	(fbTOR)	(ft)	DTP	DTW	PT	GWE	LLE
		Location				(11)					(fbTOR)	(fbTOR)	(ft)	(ft)	(ft)
OU4PZ-5	Slag/Fill		х	1029386.681	-1074140.237	583.588	586.203 **	17.80	20.42	565.79	NP	6.65	NP	579.55	579.55
OU4PZ-14	Slag/Fill		х	1027709.196	-1074622.445	581.951	584.399 **	10.70	13.15	571.25	NP	6.82	NP	577.58	577.58
SG-01 ⁸	Ship Canal		х	1028168.64	1074650.681		581.971					9.03	NP	572.94	572.94
DISCHARGE AREA U	JNIDENTIFIED (8 wells)														-
BPP-22	Slag/Fill		х	1028011.243	1074588.397	582.106	584.622 **					7.43	NP	577.19	577.19
RWS-3	Slag/Fill		х	1027807.248	-1074469.16	582.702	580.348	13.3	10.90	568.602	NP	2.94	NP	577.41	577.41
RWS-4	Slag/Fill		х	1027947.408	-1074366.103	582.422	579.85	11.8	9.18	568.522	NP	2.01	NP	577.84	577.84
RWS-12	Slag/Fill		х	1028445.793	-1074236.365	583.483	581.267	12.3	10.11	570.083	NP	3.13	NP	578.14	578.14
RWN-9	Slag/Fill		х	1029709.251	-1074010.934	583.834	581.767	17.8	15.68	565.234	NP	1.14	NP	580.63	580.63
RWN-10	Slag/Fill		х	1028667.792	-1074294.119	582.801	580.368	13.2	10.74	567.801	NP	1.23	NP	579.14	579.14
RWN-12	Slag/Fill		х	1028855.755	-1074231.449	583.029	580.535	12.5	10.01	568.029	NP	1.05	NP	579.49	579.49
RWN-17	Slag/Fill		х	1029408.081	-1074004.209	584.751	582.369	10.0	7.62	574.751	NP	1.68	NP	580.69	580.69

Notes:

- 1. Monitoring well locations are shown on Plate 4-18.
- 2. All elevations are measured in feet; refernce datum NAVD 88.
- 3. Elevation data collected during the RFI, excluding data indicated with a double asterisk (see below).
- 4. Well location is outside the CMS Area and/or off the Tecumseh property.
- 5. Depth to groundwater measured January 8, 2019.
- 6. Water level at staff gauge 7 was measured January 8, 2019, as the gauge had previously been destroyed.
- 7. Depth to groundwater could not be measured because the well casing was bent.
- 8. Ship Canal GWE data based on NOAAA January 4, 2019 water level data for Buffalo NY station 9063020.

Definitions:

LTGWM = Long Term Groundwater Monitoring

TOR = Top of riser

fbTOR = feet below top of riser

fbgs = feet below ground surface

DTP = depth to product; if present

DTW = depth to water

PT = product thickness

GWE = groundwater elevation

LLE = liquid level elevation

NP = no product

- -- = no data available
- ** = TOR data collected Febrary 2019

TABLE 4-31

											Monito	ring Well Locat			toring Progra	ım									
PARAMETERS 1	GWQS/GV ²	Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	MW-2D2 — SI May-2008	Oct-2008	May-2009	May-2010	May-2011	Mar-2012	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	Jun-2017	Apr-2018
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	CMS 2012 ⁵	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
VOCs (Method 8260B, 8260C, 8021B) - ug/L	5	ND	ND	ND	ND	ND I	ND	0.41 J	0.46 J	ND	ND	I ND	ND	ND	ND	ND	T -	-	Т -	1 -	Ι.	T -	Т	-	
1,2,4,5-Tetramethylbenzene	-	- IND	-	- ND	- ND	-	- -		-	-	-	-	- ND	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
1,2,4-Trimethylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane 1,3,5-Trimethylbenzene	0.6	ND	ND -	ND	ND -	ND -	ND	ND	ND -	ND	ND -	ND -	ND	ND -	ND -	ND	ND.	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND
1.3-Dichlorobenzene	3	+ -	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND.	ND	ND.	-	- ND	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	3	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
1,4-Diethylbenzene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Butanone 4-Ethyltoluene	50	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acetone	50	+ :	+ -	-	-	-		-	-	-	-	+ -	-	-	-	+ -	-	-	-	-	-	-	-	-	-
Benzene	1	6.5	ND	ND	ND	ND	ND	0.54 J	ND	0.83 J	ND	ND	ND	ND	ND	ND	0.083 J	-	0.13 J	ND	ND	ND	0.21	ND	ND
Carbon disulfide	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyclohexane Ethylbenzene	5	ND	- ND	- ND	- ND	- ND	ND .	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	-	- ND	- ND	- ND	0.79 J	- ND	- ND	- ND
Isopropylbenzene	5	ND -	ND -	ND -	ND -	- ND	- -	- ND	- ND	ND -	-	ND -	- UVD	- ND	- ND	- ND	ND ND		ND ND	ND	ND	0.79 J ND	ND ND	ND ND	ND ND
Methyl cyclohexane	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert butyl ether	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- NID	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND
n-Butylbenzene n-Propylbenzene	5	-	-	-	-			-	-	-	-	-	-	-	-	-	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
p-Isopropyltoluene (p-Cymene)	5	-	-	-	-	-		-	-	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-	-	-	-	-	-	-
Toluene Trichloroethene	5	3.9 J	ND ND	ND ND	ND ND	ND 1 J	ND ND	ND 1 J	ND 0.89 J	ND 0.67 J	0.92 J	ND ND	ND 0.88 J	ND 0.76 J	0.68 J 0.62 J	0.58 J 0.61 J	0.12 J	-	0.057 J	ND -	ND -	ND -	ND -	ND -	ND -
Xylenes, Total	5	11	ND	ND ND	ND	ND.	ND ND	0.53 J	0.69 J	ND	0.92 J	ND ND	0.66 J	0.76 J	0.02 J ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
SVOCs (Method 8270C, 8270D) - ug/L			110	110	110	110	110	0.000	110	110	110	110	110	110	110	110	110								
2,4,6-Trichlorophenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	-	-	-	-	-
2,4-Dichlorophenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	-	-	-	-	-
2,4-Dimethylphenol 2-Chloronaphthalene	See Note 3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND -	- ND	- ND	- ND	- ND	- ND	- ND	- ND
2-Methylnaphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol (o-Cresol)	See Note 3	ND	ND	ND	ND	ND	ND	4 J	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	-	-	-	-	-
3,4-Methylphenol (m,p-Cresol)	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol Acenaphthene	See Note 3 20	ND	ND -	ND	ND -	ND -	ND	ND	ND -	ND	ND -	ND -	ND	ND -	ND -	ND.	ND ND	ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND
Acenaphthylene	-	1.6 J	ND	ND	ND	ND	ND	22	ND.	ND	ND.	ND	ND.	ND	ND.	ND	ND ND	-	ND	ND	ND	ND	ND ND	ND	ND
Acetophenone	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Anthracene	50	ND	ND	ND	ND	ND	ND	4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	0.07 J	ND	ND	ND	ND
Benzo(a)anthracene	0.002 0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND ND	ND ND	-	ND ND	ND	ND	ND	ND ND	ND	ND
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Benzyl Alcohol	- 5	-	-	-	-		-	-	-	-	-	-	-	-	-	ND	ND	-	ND ND	- ND	ND	ND ND	ND ND	ND ND	ND
Biphenyl Bis(2-ethylhexyl)phthalate	5	ND	- ND	ND	ND	- ND	ND .	- ND	- ND	- 8 BJ	- ND	- ND	- ND	- ND	- ND	ND ND	3.3 BJ	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Caprolactam	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	-	ND	ND	4.5 J	ND	-	-	-
Carbazole	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene Dibenzofuran	-	-	-	-	-	+	-	-	-	-	-	 -	-	-		ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Diethyl phthalate	50	ND	ND.	ND	ND	ND .	ND	ND	ND	ND	ND	ND .	ND.	ND	ND	0.34 J	ND ND	-	ND	ND	ND	ND	ND ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	0.3 J	ND	0.3 J	0.3 BJ	0.3 BJ	ND	0.32 BJ	ND	-	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4 BJ	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50 50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2 J	ND	ND	ND	ND	-	ND	ND	ND	0.08 J	ND	ND	ND
Fluorene Indeno(1,2,3-cd)Pyrene	0.002	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Naphthalene	10	16	ND	ND	ND	ND	ND	ND	0.7 J	ND	0.4 J	0.2 J	0.2 J	ND	ND	ND	ND	-	ND	ND	0.27	0.28 J	0.1 J	ND	ND
Pentachlorophenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	-	ND	0.36 J	-	-	-	ND	ND	-	-
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	ND	ND	ND	ND	ND	ND	ND
Phenol Pyrene	See Note 3 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.2 J	ND ND	ND ND	ND ND	- ND	ND ND	ND -	- ND	- ND	- ND	0.07 J	- ND	- ND	- ND
Pyridine	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND -	- ND	-	- ND	- ND	- ND	-	- -	- -	- ND
Total Phenolic Compounds (Method 8270C,															.,,,										
Phenolic compounds (total phenols) 4	1	ND	ND	ND	ND	ND	ND	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
<u> </u>																									

											Monitor	ing Well Loca	tion, Sample D	ate(s), & Moni	toring Progra	m									
PARAMETERS ¹	GWQS/GV ²												MW-2D2 — S	lag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Mar-2012	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	Jun-2017	Apr-2018
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	CMS 2012 5	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
Filtered SVOCs (Method 8270D) - ug/L																									
Acenaphthene	20	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																									
Arsenic, Total	25	4.3 B	ND	ND	ND	ND	-	-	ND	-	-	-	-	-	-	-									
Barium, Total	1000	45.1 B	36	40	35	33	38.6	40	35.7	30	32.8	35	29.3	31	25.7	-	-	22	-	-	-	-	-	-	-
Cadmium, Total	5	0.3 B	ND	ND	ND	ND	-	-	-	-	-	-	-		-	-									
Chromium, Total	50	0.7 B	ND	8	ND	ND	ND	ND	ND	-	-	5 J	-	-	-	-		-	-						
Cyanide, Total	200	60	60	60	62	54	63	68	61 J	58	64	46	80	46	31.8	-	-	-	-	1	-	-	-	-	-
Lead, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND	-	-	-	-	-	-	-
Selenium, Total	10	5.2	ND	ND	ND	ND	-	-	ND	-	-	-	-	-	-	-									
Dissolved Metals - ug/L																									
Arsenic, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Barium, Dissolved	1000	-	31	40	-	33	39	37	34.9	28	32.9	37	28.5	29	26.3	-	-	-	-	-	-	-		-	-
Cadmium, Dissolved	5	-	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-		-	-						
Chromium, Dissolved	50	-	ND	ND	-	ND	ND	ND	1.5 J	-	-	-	-	-	-	-		-	-						
Lead, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Selenium, Dissolved	10	-	ND	ND	-	ND	ND	ND	ND	-	-	-	-	1	-	-	-	-	-						
Field Measurements																									
Dissolved Oxygen (mg/L)	-	0.3	1.7	4.8	1.93	1.2	1.53	1.02	1.4	2.67	2.21	1.26	0.89	1.18	1.45	-	3.89	1.47	1.55	2.49	2.48	1.28	1.6	2.44	3.37
Field pH (S.U.)	12.5	9.64	9.49	10.78	10.62	9.61	10.11	9.96	9.81	8.69	9.75	9.87	9.80	9.74	9.24	8.91	8.92	8.80	9.67	9.28	9.29	9.34	9.78	8.49	9.42
Redox Potential (mV)	-	266	78	-42	-96	-53	-120	22	-66	-49	-36	-58	-140	-135	-117	-81	155	-125	418	-155	39	-120	-76	129	-90
Specific Conductance (uhos/cm)	-	2,080	1,688	1,740	1,556	1,511	1,671	1,576	1,483	1,452	1,289	1,406	1,238	1,296	1,193	1,166	1,161	1114	1133	1071	1235	1289	1167	1168	1034
Temperature (deg C)	-	20.6	19.8	17.5	17.8	19.1	18.8	16.3	21.1	21.8	19.9	19.6	17.6	15.8	19.7	18.4	17.8	16.5	16.8	26.9	18.9	20.3	17.4	17.3	17.9
Turbidity (NTU)	-	1.1	1.27	3.36	3.82	0.11	0.98	0.79	9.05	2.14	4.16	4.49	0.73	0.37	2.57	3.56	3.63	0.35	0.73	4.78	6.53	3	1.85	0.77	4.23

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
- 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
- 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

- B = The analyte was also detected above the reporting limit in the associated method blank. J = Estimated value. J+ = Estimated value that may be biased high.
- J- = Estimated value that may be biased low.
 D = Concentration of analyte was quantified from diluted analysis.
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- ND = Not detected at the method detection limit.
 -= No GWQS/GV, or parameter was not analyzed for.
 R = Sample result was rejected by third party validator.

- VOCs = Volatile Organic Compounds SVOCs = Semivolatile Organic Compounds RFI = Final RCRA Facility Investigation (October 2004)
- CMS = Corrective Measures Study
- HWMU = Hazardous Waste Management Unit groudwater monitoring data

|--|

- = concentration is less than or equal to the GWQS/GV (includes non-detect)
- = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV = concentration exceeds 100 times the GWQS/GV
 - = pH exceeds 12.5

TABLE 4-31 Page 3 of 10

											Monitori	ng Well Location	on, Sample Da	ite(s), & Monito	oring Program	m									
PARAMETERS 1	GWQS/GV ²											ı	MW-2D3 — Sla	ag/Fill											
		Nov-1999 RFI	Jun-2003 HWMU 2003a	Oct-2003 HWMU 2003b	May-2004 HWMU 2004a	Oct-2004 HWMU 2004b	May-2005 HWMU 2005a	Oct-2005 HWMU 2005b	May-2006	Oct-2006 HWMU 2006b	May-2007 HWMU 2007a	Oct-2007 HWMU 2007b	May-2008 HWMII 2008a		May-2009 HWMU 2009	May-2010 HWMU 2010		Mar-2012 CMS 2012	Jun-2012 HWMU 2012	Jun-2013 HWMII 2013	Jul-2014 HWMU 2014	Sep-2015 HWMII 2015	Jun-2016 HWMII 2016	May-2017 HWMU 2017	Apr-2018 HWMU 2018
VOCs (Method 8260B, 8260C, 8021B) - ug/L																									
1,1-Dichloroethane 1,2,4,5-Tetramethylbenzene	5	1.3 J	ND	ND	1.2 J	ND	ND	0.97 J	1.2 J	0.87 J	0.94 J	ND	0.52 J	ND	ND	ND	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	5	-	- ND	- ND	ND	- ND	- ND	- ND	ND	- ND	- ND	ND	ND	0.2 J	ND	-	-	-	-	-	-	-	-	-	-
1,2,4-Trimethylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.6	-	8	6.5 DJ	8.8 DJ	7.2	6.2	4.6	2.9
1,2-Dichlorobenzene 1,2-Dichloroethane	3 0.6	- ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	5	-	-	- ND	- -	-	- ND	-	- -	- -	- -	- -	- ND	-	- ND	-	2.9	-	3.6	ND	3.9 DJ	3.3	2.8	1.9	1.5 J
1,3-Dichlorobenzene	3	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene 1,4-Diethylbenzene	3	-	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	-	-	-	-	-	-	-	-	-	-
2-Butanone	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Ethyltoluene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acetone Benzene	50 1	15	22 J	- 17 J	14	9.8	13 J	- 14 J	16	12	12	10	6.1	9.2	2.2	5.7	4.3	-	3.5	6.2 D	4.9 D	3	4.6	3.6	3.5
Carbon disulfide	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyclohexane Ethylbenzene	5	4.5 J	- ND	- ND	5.2	3.2 J	- ND	3.6 J	3 J	2.3 J	3.1	2.5	2.5	2.2 J	1.2	8.4	7	-	7.4	- 7 DJ	7.2 DJ	4	3	2.2 J	- 1.6 J
Isopropylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.27	-	0.28	ND	ND	ND	ND	ND ND	ND
Methyl cyclohexane	- 10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.2.1	-	-	- ND	- ND	- ND	-	- ND	- ND
Methyl tert butyl ether Methylene chloride	10 5	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND .	- ND	- ND	- ND	- ND	- ND	ND .	- ND	0.3 J	-	ND -	ND -	ND -	ND -	ND -	ND -	ND -
n-Butylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.095 J	-	0.23	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene (p-Cymene) sec-Butylbenzene	5	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Toluene Trichloroethene	5	14 1.6 J	19 J	16 J	16 1 J	8.8 1.4 J	10 J	12 1.5 J	12 B 1.1 J	10 1 J	10	7.6 1.7	5.8 0.93 J	7 2.9 J	2.4 0.79 J	6.7 0.7 J	4.9	-	3.8	6.6 DJ	4.6 DJ	2.5	3.3	2.6	2.6
Xylenes, Total	5	41	53	39 J	59	38	30 J	40	32	27	33	29	25.6	23.1	9.3	57	50	-	53	53 D	49 D	24.6	21	17.7	11
SVOCs (Method 8270C, 8270D) - ug/L																									
2,4,6-Trichlorophenol 2,4-Dichlorophenol	See Note 3 See Note 3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	See Note 3	7.2 J	5 J	4 J	2 J	ND	2 J	2 J	ND	1 J	0.9 J	4 J	2 J	5	ND	-	1.1 J	-	-	-	-	-	-	-	-
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene 2-Methylphenol (o-Cresol)	See Note 3	5.6 J	- 3 J	- 3 J	- ND	- ND	- ND	- 4 J	2 J	- 2 J	- 1 J	3 J	- 2 J	- 4 J	ND ND	24	20 0.54 J	-	18 J	15	28 D	20 D	14 D	12	9.8
3,4-Methylphenol (m,p-Cresol)	See Note 3	7.1 J	4 J	4 J	2 J	ND	2 J	ND	3 J	4 J	2 J	6 J	2 J	8 J	ND	-	1.5 J	-	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6 J	ND	ND	ND		ND	-		-	-	-	-	-	-
Acenaphthene Acenaphthylene	20	24	27	31	30	23 J	22	22	18	18	14	20	21	19	4.7 J	3.4 J 30	3.9 J 21	-	3.5 J 20 J	2.7 9.6	4.8 D 27 D	3.5 D 17 D	2.8 D 14 D	2.2 14	2.2
Acetophenone	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	ND	ND	ND	ND	ND	-	ND
Anthracene	50 0.002	1.5 J	ND	4 J	4 J	ND	3 J	4 J	3 J	2 J	2 J	3 J	4 J	4 J	ND	2.8 J	3.3 J	-	3.7 J	1.6	2.8 D	2.3 D	1.6 DJ	1.7 J	1.5 J
Benzo(a)anthracene Benzo(a)pyrene	0.002 0 (ND)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.2 J	ND ND	0.2 J	ND ND	ND ND	ND ND	ND ND	-	ND ND	0.08 J	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(b)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Benzo(ghi)perylene Benzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzyl Alcohol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	ND	-	ND	ND	ND	ND	ND
Biphenyl	5	-	-	-	-	-		-	-	-		-	-	-	-	4.2 J	3.4 J	-	3.5 J	3	3.6	2.8	2.8	2.5	2
Bis(2-ethylhexyl)phthalate Caprolactam	<u>5</u>	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND ND	ND ND	3 BJ ND	-	ND ND	ND ND	1.1 J ND	ND ND	ND -	ND -	ND -
Carbazole	-	-	-	-		-	-		-	-		-			ND ND	35	27		25	20	24	16	12	8.8	7
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2 J	0.3 J	ND	ND	ND	ND	-	ND	0.07 J	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene Dibenzofuran	-	-	-	-	-	-	-	-		-	-	-	-	-	-	ND 16	ND 15	-	ND 14 J	ND 11	ND 13	ND 10	ND 10	ND 8.8	ND 8.9
Diethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	0.3 J	ND	ND	ND	ND	ND	0.4 BJ	0.33 J	-	ND	ND	ND	ND	ND	ND	ND ND
Di-n-octyl phthalate Fluoranthene	50 50	ND ND	ND ND	ND 2 J	ND 3 J	ND ND	ND 2 J	ND 2 J	ND 2 J	ND 2 J	0.3 BJ 1 J	ND 2 J	ND 2 J	ND 2 J	ND ND	ND 2.5 J	ND 3.3 J	-	ND 2.7 J	ND 1.7	2.8 D	2.3 D	ND 2 D	ND 1.6 J	ND 1.7 J
Fluorene	50	9.9 J	22	22	24	16 J	19	19	19	16	13	17	18	18	5.6 J	20	21	-	19 J	15	23 D	18 D	14 D	12	13
Indeno(1,2,3-cd)Pyrene	0.002	202.5	240.0	400	400 D	- 400	-	450.5	-	- 04.5	-	-	- 440	-	-	ND	ND	-	ND	ND 220 D	ND 240 D	ND 200 D	ND 00 D	ND	ND E7
Naphthalene Pentachlorophenol	10 See Note 3	200 D	210 D	160 ND	190 D	190 ND	130 ND	150 E	99 ND	94 B	100 ND	130 ND	110 ND	110 ND	47	250	200 ND	-	220	220 D	310 D	200 D ND	90 D ND	82	57 -
Phenanthrene	50	8.7 J	24	26	26	20 J	22	23	21	20	16	21	25	23	5.9 J	19	22	-	24	14	24 D	21 D	17 D	15	17
Phenol	See Note 3	4.4 J	ND	ND 1.1	ND	ND	ND	ND	ND	ND	ND 0.0.1	ND	ND	ND 1	ND	- 15.1	ND 101	-	- 161	- 0.00	- 16D	- 12DI	- 1 D I	-	- 0.03 1
Pyrene Pyridine	50 50	ND ND	ND ND	1 J ND	2 J ND	ND ND	ND ND	1 J ND	1 J ND	1 J ND	0.8 J ND	1 J ND	1 J ND	1 J ND	ND ND	1.5 J	1.8 J -	-	1.6 J	0.89	1.6 D	1.2 DJ -	1 DJ -	0.9 J -	0.93 J -
Total Phenolic Compounds (Method 8270C, 8		.,,,			.,,,	,,,,		.,,,,		.,,,		.,,,		110											
Phenolic compounds (total phenols) ⁴	1	24	12	11	4	ND	4	6	5	7	3.9	19	6	17	ND	-	3.1	-	-	-	-	-	-	-	-

											Monitori	ng Well Locati	on, Sample Da	ite(s), & Monit	oring Progran	n									
PARAMETERS ¹	GWQS/GV ²												MW-2D3 — SIa	ag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Mar-2012	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	CMS 2012	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
Filtered SVOCs (Method 8270D) - ug/L			·							•															
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																									
Arsenic, Total	25	4.3 B	ND	ND	ND	ND	-	-	6	-	-	-	-	-	-	-									
Barium, Total	1000	57.4 B	54	54	49	48	51.1	55	48.1	52	44.9	42	42.3	45	46.7	-	-	45	-	-	-	-	-	-	-
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
Chromium, Total	50	2 B	ND	ND	ND	ND	-	-	2 J	-	-	-	-	-	-	-									
Cyanide, Total	200	78	ND	ND	ND	ND	ND	52	ND	16	36	17	ND	ND	19.3	-	-	-	-	-	-	-	-	-	-
Lead, Total	25	1.7 B	ND	ND	ND	ND	-	-	5 J	-	-	-	-	-	-	-									
Selenium, Total	10	23.7	7.7	ND	ND	ND	ND	-	-	ND	-	-	-	-	-	-	-								
Dissolved Metals - ug/L																									
Arsenic, Dissolved	25	2 B	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Barium, Dissolved	1000	54.6 B	48	50	-	47	50.7	50	47.6	51	44.2	42	42.3	41	48.4	-	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	ND	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Chromium, Dissolved	50	ND	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Lead, Dissolved	25	ND	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Selenium, Dissolved	10	22.4	8	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Field Measurements	•													•				•	•		•			•	
Dissolved Oxygen (mg/L)	-	0.2	1.4	3.8	1.4	0.6	0.7	1.4	1.5	1.2	1.7	0.8	0.7	2.0	1.8	NA	1.0	0.1	1.23	1.98	2.63	1.31	1.16	1.1	1.24
Field pH (S.U.)	12.5	10.81	10.94	12.36	11.61	10.62	10.92	11.03	10.56	10.45	10.85	10.93	10.83	10.79	9.34	10.32	10.80	10.68	11.34	11.23	10.93	10.74	11.38	11.91	11.82
Redox Potential (mV)		32	-245	-221	-266	-234	-234	-237	-252	-235	-229	-251	-233	-237	-187	-241	-117	-274	-134	-276	-238	-285	-219	-239	-241
Specific Conductance (uhos/cm)		2,110	1,871	1,823	1,651	1,589	1,692	1,674	1,569	1,564	1,397	1,399	1,382	1,492	1,282	1,156	1,263	1,189	1242	1185	1271	1300	1236	1273	1208
Temperature (deg C)		18.5	18.8	16.5	17.7	18.8	18.5	17.0	20.3	19.9	19.3	18.6	17.2	16.1	21.2	18.5	17.2	16.8	17.4	18.6	20.1	20.0	17.8	17.8	19.0
Turbidity (NTU)	-	23.6	1.25	4.63	3.09	0.12	2.49	3.61	8.44	3.89	3.09	5.93	1	2.14	1.06	2.28	1.67	17.0	2.11	3.27	26	3.53	1.93	0.72	6.37

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
- 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

- 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

- B = The analyte was also detected above the reporting limit in the associated method blank. J = Estimated value.
- J+ = Estimated value that may be biased high.
- J- = Estimated value that may be biased low.
 D = Concentration of analyte was quantified from diluted analysis.
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- ND = Not detected at the method detection limit.
 = No GWQS/GV, or parameter was not analyzed for.
 R = Sample result was rejected by third party validator.

- VOCs = Volatile Organic Compounds SVOCs = Semivolatile Organic Compounds RFI = Final RCRA Facility Investigation (October 2004)
- CMS = Corrective Measures Study
- HWMU = Hazardous Waste Management Unit groudwater monitoring data

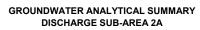
- = concentration is less than or equal to the GWQS/GV (includes non-detect)
 - = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV = concentration exceeds 100 times the GWQS/GV

 - = pH exceeds 12.5

TABLE 4-31 Page 5 of 10

											Monitori	ng Well Locati	on, Sample Da	ate(s), & Monito	oring Progran	m									
PARAMETERS 1	GWQS/GV ²												MW-2D4 — Sla	ag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009		May-2011	Mar-2012		Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
VOCs (Method 8260B, 8260C, 8021B) - ug/L		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	CMS 2012	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
1,1-Dichloroethane	5	1.5 J	ND	ND	1.6 J	ND	ND	0.59 J	ND	ND	ND	ND	0.6 J	ND	ND	ND	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	- 5	-	- ND	- ND	- ND	- ND	- ND	- ND	ND .	ND	0.5 J	- ND	ND .	- ND	- ND	-	-	-	-	- ND	- ND	- ND	- ND	-	-
1,2,4-Trimethylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	0.18 J	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3 0.6	-	ND	ND	ND	ND	ND	ND	ND	ND	0.6 J	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane 1,3,5-Trimethylbenzene	5	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	- ND	-	- ND	- ND	- ND	- ND	ND.	- ND	- ND
1,3-Dichlorobenzene	3	-	ND	ND	ND	ND	ND	ND	ND	ND	0.6 J	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene 1,4-Diethylbenzene	3 -	-	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	0.6 J	ND -	ND -	ND	ND -	-	-	-	-	-	-	-	-	-	-
2-Butanone	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Ethyltoluene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acetone Benzene	50 1	27	ND.	5.7	- ND	1.3 J	- ND	2.2 J	0.66 J	ND.	- ND	2.7	0.43 J	- ND	- ND	- ND	- ND	-	0.23	- ND	- ND	0.53	ND .	- ND	- ND
Carbon disulfide	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyclohexane Ethylbenzene	5	7.9	- ND	1.6 J	- ND	- ND	- ND	0.83 J	ND .	- ND	- ND	1.1	- ND	- ND	- ND	- ND	- ND	-	0.033 J	- ND	- ND	- ND	ND .	- ND	- ND
Isopropylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Methyl cyclohexane Methyl tert butyl ether	- 10	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	- ND	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND
Methylene chloride	5	ND	ND	ND ND	ND	ND	ND .	ND .	ND	ND	ND.	ND	ND	ND	ND	ND	- ND	-	- -	- -	- -	- ND	- -	- ND	- ND
n-Butylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene p-Isopropyltoluene (p-Cymene)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
sec-Butylbenzene	5	-	-	-	-	-	-	-		-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-		-		
Toluene Trichloroethene	5	25	ND ND	4.6 J	1.4 J ND	1.8 J	ND ND	1.5 J 0.46 J	0.4 J	ND 1 J	ND 0.93 J	2.3 ND	0.64 J 0.95 J	3.2 J ND	ND 0.69 J	ND 0.83 J	ND	-	0.21	ND	ND -	ND	ND	ND -	ND -
Xylenes, Total	5	65	ND	13 J	ND	7.6 J	ND	6.5 J	2.23 J	ND	ND	9.3	2.33 J	ND	ND	ND	ND	-	0.88	ND	ND	0.75 J	ND	ND	ND
SVOCs (Method 8270C, 8270D) - ug/L 2.4.6-Trichlorophenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T		T	ı	1 1		ı	
2,4-Dichlorophenol	See Note 3	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	-	ND ND	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	See Note 3	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	-	-	-	-	-	-	-	-
2-Chloronaphthalene 2-Methylnaphthalene	10	ND	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	0.09 J	ND ND	ND ND	ND ND
2-Methylphenol (o-Cresol)	See Note 3	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4 J	ND	ND	ND	-	ND	-	-	-	-	-	-	-	-
3,4-Methylphenol (m,p-Cresol)	See Note 3 See Note 3	14 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	-	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol Acenaphthene	20	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND	ND ND	-	- ND	- ND	- ND	- ND	ND.	- ND	ND .
Acenaphthylene	-	15	ND	4 J	ND	ND	ND	ND	1 J	ND	ND	4 J	0.3 J	ND	ND	ND	ND	-	ND	ND	ND	0.11	ND	ND	ND
Acetophenone Anthracene	- 50	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND 0.06 J	ND ND	ND ND	ND ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	0.06 J	ND	ND	ND
Benzo(a)pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(k)fluoranthene	0.002		-	-	-		-	-	-	-	-	-	-		-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Benzyl Alcohol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND ND	-	ND ND	- ND	ND	ND ND	ND	ND ND	ND ND
Biphenyl Bis(2-ethylhexyl)phthalate	5	ND	- ND	- ND	- ND	- ND	ND ND	- ND	- ND	6 BJ	ND ND	- ND	- ND	ND	- ND	ND ND	ND 3 BJ	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Caprolactam	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	-	ND	ND	ND	ND	-	-	-
Carbazole Chrysene	0.002	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibenzo(a,h)anthracene	-	-	-	-	-	- 110	- IND	- ND	-	-	-	-	-	-	- ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	-	N/D	- ND	- ND	A ID	-	- ND	NIC	- ND		A I D	- ND	- 10	ND	- ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate Di-n-butyl phthalate	50 50	ND ND	ND 10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.3 BJ	0.4 BJ	ND ND	0.61 BJ	0.29 J	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-octyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 BJ	0.4 J	ND	0.3 J	ND	ND	3.9 J	-	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50 50	ND	ND	ND	ND	ND	ND	ND	ND 0.6.1	ND	ND	0.4 J	ND	ND	ND	ND	ND	-	ND	ND	ND	ND 0.06 I	ND	ND	ND
Fluorene Indeno(1,2,3-cd)Pyrene	0.002	6.8 J	ND -	2 J	ND -	ND -	ND -	ND -	0.6 J -	ND -	ND -	1 J -	ND -	ND -	ND -	ND ND	ND ND	-	ND ND	ND ND	ND ND	0.06 J ND	ND ND	ND ND	ND ND
Naphthalene	10	420 D	36	53	17	38	12	ND	20	0.2 BJ	0.5 J	60	4 J	ND	ND	0.83 J	ND	-	2.3 J	ND	0.1 J	0.86	0.07 J	ND	ND
Pentachlorophenol Phenanthrene	See Note 3 50	ND 8.5 J	ND ND	ND 4 J	ND ND	ND ND	ND ND	ND ND	0.7 J	ND ND	ND ND	ND 1 J	ND 0.2 J	ND ND	ND ND	- ND	ND ND	-	- ND	- ND	- ND	ND 0.11 J	ND ND	- ND	- ND
Phenol	See Note 3	8.5 J 3.6 J	ND ND	4 J ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND -	ND ND	-	ND -	ND -	- ND	0.11 J -	- ND	ND -	ND -
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND
Pyridine Total Phenolic Compounds (Method 8270C, 8	50 (270D)- µg/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
Phenolic compounds (total phenols) ⁴	1	44	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND	ND	ND	-	ND	-	-	-	-	-	-	-	-
	·																				1				

											Monitori	ing Well Locati	on, Sample Da	ate(s), & Monit	oring Progran	n									
PARAMETERS 1	GWQS/GV ²												MW-2D4 — Sla	ag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Mar-2012	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	CMS 2012	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
Filtered SVOCs (Method 8270D) - ug/L																									
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	0.002	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	0.002	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																									
Arsenic, Total	25	4.2	ND	ND	ND	ND	-	-	4 J	-	-	-	-	-	-	-									
Barium, Total	1000	44.4	42	41	45	40	42.3	41	31.2	39	36.7	36	36	34	30.6	-	-	26	-	-	-	-	-	-	-
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
Chromium, Total	50	3.3 B	4.5	9	5.7	5.3	9.2	6.3	17	15	ND	7.3	ND	ND	9.3	-	-	8 J	-	-	-	-	-	-	-
Cyanide, Total	200	78	51	30	43	51	ND	58	32 J	46	39	39	59	42	33.9	-	-	-	-	-	-	-	-	-	-
Lead, Total	25	1.7 B	ND	ND	ND	ND	-	-	ND	-	-	-	-	-	-	-									
Selenium, Total	10	17.2	5	ND	ND	ND	ND	-	-	ND	-	-	-	-	-	-	-								
Dissolved Metals - ug/L																									
Arsenic, Dissolved	25	4.2 B	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Barium, Dissolved	1000	41.6 B	39	40	-	40	41.1	38	33.5	38	35.1	35	35 B	33	30.1	-	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	ND	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Chromium, Dissolved	50	0.52 B	4	4.4	-	4.2	5.1	ND	6	9.4	7.4	4	4 B	ND	8.4	-	-	-	-	-	-	-	-	-	-
Lead, Dissolved	25	ND	ND	ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-						
Selenium, Dissolved	10	17	5.1	ND	-	ND	ND	ND	ND		-	-	-	-	-	-	-	-	-						
Field Measurements																									
Dissolved Oxygen (mg/L)	-	0.3	4.54	4.01	4.16	3.98	4.15	1.28	3.4	5.2	5.45	1.56	5.31	1.25	7.62	-	8.5	8.6	6.27	6.27	7.96	4.75	7.98	7.92	8.67
Field pH (S.U.)	12.5	9.09	8.50	9.33	8.81	7.83	8.24	8.30	8.26	7.88	8.17	8.16	7.97	8.09	8.02	7.85	8.00	8.00	8.42	8.42	8.31	8.20	8.36	8.43	8.60
Redox Potential (mV)	-	117	-79	-109	-52	-62	-54	-84	-57	21	0	-167	-30	-128	30	26	112	103	362	362	32	-76	-1	49	-64
Specific Conductance (uhos/cm)	-	1,670	1,335	1,331	1,326	1,301	1,250	1,306	1,127	1,381	1,195	1,230	1,302	1,268	1,197	1,118	1,306	1167	1104	1104	1112	1064	1059	1464	1287
Temperature (deg C)	-	18.2	19.2	16.6	15.8	17.8	16.9	16.2	21.2	18.3	18.0	17.7	16.2	14.7	19.4	18.6	18.0	17.1	17.6	17.6	19.7	19.8	18.5	17.6	17.8
Turbidity (NTU)	-	18.8	0.87	3.56	2.66	0.11	1.1	2.01	9.19	2.28	3.82	3.35	0.56	0.82	1.4	2.92	2.32	0.82	0.83	0.83	3.97	2.22	3.01	2.17	6.72


- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
- 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

- 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.
 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.
 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

- B = The analyte was also detected above the reporting limit in the associated method blank. J = Estimated value.
- J+ = Estimated value that may be biased high.
- J- = Estimated value that may be biased low.
 D = Concentration of analyte was quantified from diluted analysis.
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- ND = Not detected at the method detection limit.
 = No GWQS/GV, or parameter was not analyzed for.
 R = Sample result was rejected by third party validator.

- VOCs = Volatile Organic Compounds SVOCs = Semivolatile Organic Compounds RFI = Final RCRA Facility Investigation (October 2004)
- CMS = Corrective Measures Study
- HWMU = Hazardous Waste Management Unit groudwater monitoring data

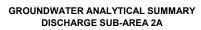
lor Code:	
	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5
	·

									Monitoring W	lell Location, Sa	ample Date(s). 8	& Monitorina Pı	rogram						
	2	MW-2D2	B — Sand/Dred	dge Spoils	MV	V-2D2D — Bedr	ock		— Slag/Fill;		- Slag/Fill	3		— Slag/Fill		MWS-12A	— Slag/Fill	MWS-12R	Slag/Fill; Sand
PARAMETERS 1	GWQS/GV ²	Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Sand/Dre Nov-1999	dge Spoils Apr-2013	Nov-1999	Mar-2012	Nov-1999	May-2013	May-2017	Apr-2018	Nov-1999	Apr-2013	Nov-1999	Apr-2013
		RFI	CMS 2012 ⁵	CMS 2019	RFI	CMS 2012	CMS 2019	RFI	CMS 2013	RFI	CMS 2012	RFI	CMS 2013 ⁵	HWMU 2017	HWMU 2018	RFI	CMS 2013 5,6	RFI	CMS 2013 ^{5,6}
VOCs (Method 8260B, 8260C, 8021B) - ug/L		ND	ND	ND	ND	ND	ND	ND.	N.D.	ND.	ND					0.0.1		4.0.1	ND
1,1-Dichloroethane 1,2,4,5-Tetramethylbenzene	5	ND -	ND 7	ND -	ND -	ND 1.2 J	ND -	ND -	ND ND	ND	ND ND	5.6	1.5 J ND	-	-	3.3 J	2.3 J ND	1.3 J	ND ND
1,2,4-Trichlorobenzene	5	-	ND	ND	-	ND	ND	-	ND	-	ND	-	ND	-	-	-	ND	-	ND
1,2,4-Trimethylbenzene	5	-	29	-	-	18	-	-	1.8 J	-	ND	-	3.5	2.8	2.4 J	-	ND	-	ND
1,2-Dichlorobenzene 1,2-Dichloroethane	3 0.6	ND	ND ND	ND ND	ND .	ND ND	ND ND	- ND	ND ND	- ND	ND ND	- ND	ND ND	-	-	ND .	ND ND	ND .	ND ND
1,3,5-Trimethylbenzene	5	- -	8.9	-	- -	5	-	- ND	0.91 J	- ND	ND	- ND	1.7 J	1.5 J	1.5 J	- -	ND ND	- -	ND
1,3-Dichlorobenzene	3	-	ND	ND	-	ND	ND	-	ND	-	ND	-	ND	-	-	-	ND	-	ND
1,4-Dichlorobenzene 1,4-Diethylbenzene	3 -	-	ND 3.7 J	ND -	-	ND 1.4 J	ND -	-	ND	-	ND	-	ND	-	-	-	ND	-	ND
2-Butanone	50	-	ND	ND	-	ND	ND .	-	ND 1.8 J	-	ND ND	-	ND ND	-	-		ND ND	-	ND ND
4-Ethyltoluene	-	-	14	-	-	3.3	-	-	ND	-	ND	-	ND	-	-	-	ND	-	ND
Acetone	50		16	12 DJ	-	33	84 D	-	12	-	ND		2.1 J	-	-		ND	<u> </u>	14 J
Benzene Carbon disulfide	60	35	29 ND	23 D ND	710	95 D 3.4 J	130 D	16 -	13	ND	ND ND	7.4	2.7 ND	2.6	2.6	<u>55</u> -	9 ND	44	150 ND
cis-1,2-Dichloroethene	5		ND	ND	-	ND	ND	-	ND	-	ND	-	1.8 J	-	-	-	ND ND	-	ND ND
Cyclohexane	<u>-</u>		ND	ND		120	82 DJ-	<u> </u>	ND	-	ND		ND	-	-	-	ND		ND
Ethylbenzene Isopropylbenzene	5 5	23	24 2.5	20 D	53	10 1.4	8.2 D	1.7 J	2.5 ND	ND	ND ND	2.4 J	ND ND	ND ND	1.6 J ND	ND -	ND ND	ND -	ND ND
Methyl cyclohexane	-	-	ND	ND	-	76	49 DJ-	-	ND ND	-	ND	-	ND ND	- -	- -		ND	-	ND
Methyl tert butyl ether	10	-	ND	ND	-	ND	ND	-	ND	-	ND	-	ND	ND	ND	-	ND	-	ND
Methylene chloride n-Butylbenzene	5 5	ND	ND 1.5	ND	ND	ND ND	ND -	ND	ND ND	ND	ND ND	ND	ND ND	- ND	- ND	ND	ND ND	ND	ND ND
n-Propylbenzene	5	-	ND	-	-	1.9	-	-	ND ND	-	ND ND	-	ND ND	ND ND	ND ND		ND ND	-	ND ND
p-Isopropyltoluene (p-Cymene)	5	-	1.9	-	-	0.47 J	-	-	ND	-	ND	-	ND	ND	ND	-	ND	-	ND
sec-Butylbenzene	5	-	ND	- ND	-	0.38 J	- ND	-	ND	-	ND	-	ND 0.50	ND	ND	-	ND	-	ND
Tetrachloroethene Toluene	5 5	ND 18	ND 13	11 D	ND 29	ND 5.8	2.3 DJ	7.6	7.7	ND ND	ND ND	ND 2.3 J	0.58 1.6 J	- 1 J	- 1.7 J	ND 1.5 J	ND ND	ND 1.3 J	ND 8 J
Trichloroethene	5	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	5.7	2.8	-	-	ND	ND	ND	ND
Xylenes, Total	5	820 D	550	600 D	91	16	9.5 D	17	24	ND	ND	16	5.1	4.7 J	5	ND	ND	ND	ND
SVOCs (Method 8270C, 8270D) - ug/L 2.4.6-Trichlorophenol	See Note 3	ND	ND	ND	ND	-	ND	ND	-	ND	-	ND	ND	-		ND	ND	ND	ND
2,4-Dichlorophenol	See Note 3	ND	ND	ND	ND	-	ND	ND	-	ND	-	ND	ND	-	-	ND	ND	ND	ND
2,4-Dimethylphenol	See Note 3	56 J	22	17	5.1 J	-	2.4 J	ND	-	ND	-	4.9 J	3.3 J	-	-	ND	ND	ND	9.4 J
2-Chloronaphthalene 2-Methylnaphthalene	10	ND	ND 12	ND 12	ND	ND 0.51	ND ND	ND	ND 3.5	ND	ND ND	ND	ND 17	ND 38 D	ND 17	ND	ND 2.2	ND	ND 0.72 J
2-Methylphenol (o-Cresol)	See Note 3	52 J	13	-	4.6 J	-	- -	- 78 J	3.5	- ND	- -	- 6.5 J	2.9 J	36 D	-	ND .	ND	ND .	8.2 J
3,4-Methylphenol (m,p-Cresol)	See Note 3	68 J	20	25	19 J	-	2.6 J	110 J	-	ND	-	6.9 J	4.3 J	-	-	5 J	ND	28 J	27 J
4,6-Dinitro-2-methylphenol	See Note 3	ND	ND 2.0	ND 4.3	ND	- ND	ND	ND	-	ND	- ND	ND	ND 40	-	-	ND	ND 0.74	ND	ND
Acenaphthene Acenaphthylene	20	26 J	3.8 15	18	- ND	ND ND	ND ND	- ND	0.99 ND	- ND	ND ND	- 24	18 5.8	8.6 10	3.1 13	1.6 J	0.74 0.77	- ND	ND ND
Acetophenone	-	-	ND	ND	-	ND	ND	-	0.72 J	-	ND	-	ND	-	ND	-	ND	-	ND
Anthracene	50	ND	1.4	1.9	ND	ND	ND	ND	0.97	ND	ND	1.5 J	1.2	1.4	1.3 J	1.6 J	0.9	ND	ND
Benzo(a)anthracene Benzo(a)pyrene	0.002 0 (ND)	ND ND	0.26 0.14 J	0.37	ND ND	0.14 J 0.11 J	0.02 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.65 0.34	0.28 0.1 J	ND ND	ND ND	0.06 J	ND ND	ND ND
Benzo(b)fluoranthene	0.002	-	0.29	0.47	-	0.24	ND	-	ND	-	ND	-	0.48	0.14	ND ND	-	ND	-	ND
Benzo(ghi)perylene	-	-	0.1 J	0.07 J	-	0.08 J	ND	-	ND	-	ND	-	0.09 J	0.06 J	ND	-	ND	-	ND
Benzo(k)fluoranthene Benzyl Alcohol	0.002	-	0.16 J	0.18		0.15 J ND	ND -	-	ND 22	-	ND ND	-	0.34 ND	0.05 J	ND ND		ND ND		ND ND
Biphenyl	5	-	2.1	1.9 J	-	ND	ND	-	0.52 J	-	ND	-	7.4	-	3.6		ND	-	ND ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND
Caprolactam Carbazole	-	-	- 49	ND 46	-	- ND	ND 0.71 J	-	- ND		- ND	-	-	-	- 0.2	-	-	-	- 16 1
Carbazole Chrysene	0.002	- ND	0.15 J	0.31	- ND	0.06 J	0.71 J ND	- ND	ND ND	- ND	ND ND	- ND	2.3 0.57	0.21	9.3 ND	ND .	2.2 ND	- ND	1.6 J ND
Dibenzo(a,h)anthracene	-	-	ND	0.03 J	-	ND	ND	-	ND	-	ND	-	ND	ND	ND	-	ND	-	ND
Dibenzofuran	-	- ND	8.3	5.9	AUD	ND	ND	-	ND	-	ND	-	13	-	10	ND	ND	ALC:	ND
Diethyl phthalate Di-n-butyl phthalate	50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-octyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND ND	ND	ND	ND	ND
Fluoranthene	50	ND	1.5	2.4	ND	ND	ND	ND	1.2	ND	0.14 J	4 J	4.5	3.8	3.6	2.4 J	1.2	ND	ND
Fluorene Indeno(1,2,3-cd)Pyrene	50 0.002	ND -	8.6 0.2	0.1	ND -	0.13 J 0.18 J	ND ND	ND -	2.5 ND	ND -	ND ND	25 -	7.4 0.1 J	9.3 0.06 J	9.2 ND	6.1 J -	3.5 ND	ND -	0.82 J ND
Naphthalene	10	340	250 D	270 D	2.4 J	0.53	ND ND	42 J	48	ND	0.14 J	230 D	2.1	160 D	140	26	7.3	200	160
Pentachlorophenol	See Note 3	ND	1.6	1.2	ND	-	ND	ND	-	ND	-	ND	1.2	2.1	-	ND	ND	ND	ND
Phenal	50 See Note 2	15 J	8.9	10	ND	0.2	ND	ND 2600 D	4	ND	ND	33	7.9	13	13	9.4 J	5.6	ND 160 I	0.69 J
Phenol Pyrene	See Note 3 50	ND ND	ND 1.1	1.9 J 1.5	ND ND	- 0.11 J	0.9 J ND	2600 D ND	0.69 J	ND ND	- 0.1 J	2.6 J 2.4 J	ND 3.4	2.6	2.3	18 1.2 J	ND 0.62	160 J ND	98 J ND
Pyridine	50	ND	-	-	ND	-	-	ND	- 0.093	ND	-	ND	-	-	-	4.9 J	-	ND	-
Total Phenolic Compounds (Method 8270C,																			
Phenolic compounds (total phenols) ⁴	1	176	57	45	29	-	5.9	2788	-	ND	-	21	12	-	-	23	ND	188	143

									Monitorina W	ell Location. Sa	mple Date(s), &	Monitoring Pr	ogram						
PARAMETERS ¹	GWQS/GV ²	MW-2D2	B — Sand/Dred	ge Spoils	M	W-2D2D — Bedr	ock		— Slag/Fill; dge Spoils	MWS-09 -	– Slag/Fill		MWS-11A	— Slag/Fill		MWS-12A	— Slag/Fill	MWS-12B —	· Slag/Fill; Sand
		Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Nov-1999	Apr-2013	Nov-1999	Mar-2012	Nov-1999	May-2013	May-2017	Apr-2018	Nov-1999	Apr-2013	Nov-1999	Apr-2013
		RFI	CMS 2012 5	CMS 2019	RFI	CMS 2012	CMS 2019	RFI	CMS 2013	RFI	CMS 2012	RFI	CMS 2013 ⁵	HWMU 2017	HWMU 2018	RFI	CMS 2013 5,6	RFI	CMS 2013 5,6
Filtered SVOCs (Method 8270D) - ug/L																			
Acenaphthene	20	-	-	0.55	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-
Acenaphthylene	-	-	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-
Benzo(b)fluoranthene	0.002	-	-	0.02 J	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-
Benzo(k)fluoranthene	0.002	-	-	0.01 J	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	0.02 J	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	150 D	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
Total Metals - ug/L																			
Arsenic, Total	25	29.9	29	-	5.7 B	8	-	5.4 B	ND	ND	ND	ND	1.84	-	-	ND	ND	31.6	21.07
Barium, Total	1000	204	58	-	22200	1540	710.6	9860	5755	27.2 B	20	50.9 B	44.53	-	-	130 B	77.07	776 J	1059
Cadmium, Total	5	0.25 B	-	-	0.98 B	-	-	ND	-	ND	-	ND	-	-	-	0.33 B	-	ND	-
Chromium, Total	50	91.2	ND	-	57.9	210	-	1.4 B	ND	40.4	20	1.9 B	15.34	-	-	3.3 B	ND	6	ND
Cyanide, Total	200	100	-	-	ND	-	-	ND	-	ND	-	0.21	-	-	-	0.062	-	0.15 J	-
Lead, Total	25	31.1	ND	-	ND	27	-	ND	ND	ND	ND	3.5	2.65	-	-	1.3 B	ND	ND	ND
Selenium, Total	10	ND	ND	-	ND	ND	-	R	68.4	5.7	6 J	12.6	8.18	-	-	17.3	33.2 J	6	42.2 J
Dissolved Metals - ug/L																			
Arsenic, Dissolved	25	28.8	-	-	4.6 B	ND	-	5.9 B	-	ND	-	3 B	-	-	-	2.5 B	-	26.9	-
Barium, Dissolved	1000	124 B	-	-	21400	993	970.3	9850	-	26.4 B	-	52.7 B	-	-	-	102 B	-	680	-
Cadmium, Dissolved	5	ND	-	-	ND	-	-	ND	-	0.29 B	-	ND	-	-	-	0.26 B	-	ND	-
Chromium, Dissolved	50	0.84 B	-	-	4.7 B	20	-	0.61 B	-	0.51 B	-	ND	-	-	-	ND	-	ND	-
Lead, Dissolved	25	ND	-	-	ND	ND	-	ND	-	ND	-	ND	-	-	-	ND	-	ND	-
Selenium, Dissolved	10	ND	-	-	3.1 B	ND	-	R	-	4.9 B	-	8.2	-	-	-	14	-	4.7 B	-
Field Measurements																			
Dissolved Oxygen (mg/L)	-	0.4	0.86	0.11	0.4	0.01	0.66	0.3	NA	0.9	5.4	0.5	NA	0.93	1.14	0.3	1.57	0.5	0.62
Field pH (S.U.)	12.5	10.39	10.48	10.74	6.20	6.95	6.70	11.95	12.10	11.72	11.46	11.92	11.86	12.33	12.75	12.06	11.96	10.31	10.51
Redox Potential (mV)	-	-65	-284	-270	104	-217	-294	-551	-530	128	-116	-77	-314	-305	-284	-511	-407	-412	-422
Specific Conductance (uhos/cm)	-	1,930	1174	969.6	6,630	8003	7378	8400	6631	3,210	1912	3480	2620	2297	2211	3500	1852	16000	7930
Temperature (deg C)	-	21.0	16.7	13.8	19.2	13.5	11.7	17.4	15.3	14.0	12.3	18.3	16.4	13.5	15.3	13.3	13.6	13.4	13.9
Turbidity (NTU)	-	59.9	17.22	18.8	135	203.7	36.6	140	5.62	65.8	14.59	11.3	13.7	3	5.78	190	4.17	990	14.5

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
- 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
- 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.


 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

- B = The analyte was also detected above the reporting limit in the associated method blank. J = Estimated value.
- J+ = Estimated value that may be biased high.
- J- = Estimated value that may be biased low.
 D = Concentration of analyte was quantified from diluted analysis.
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- ND = Not detected at the method detection limit.
 = No GWQS/GV, or parameter was not analyzed for.
 R = Sample result was rejected by third party validator.

- VOCs = Volatile Organic Compounds SVOCs = Semivolatile Organic Compounds RFI = Final RCRA Facility Investigation (October 2004)
- CMS = Corrective Measures Study
- HWMU = Hazardous Waste Management Unit groudwater monitoring data

	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5

								Monit	oring Well Locat	ion, Sample Dat	te(s), & Monitorir	ng Program						
PARAMETERS ¹	GWQS/GV ²	MWS-13 -	— Slag/Fill	MWS-14 — S	Slag/Fill; Sand	MWS-14B —	Slag/Fill; Sand	MWS-15	— Slag/Fill	MWS-25A	— Slag/Fill	MWS-25B — Sla	g/Fill; Sand; Clay		NS-26A — Slag/F and/Dredge Spo		MWS-29A	— Slag/Fill
PARAMETERS	Sirgo, Si	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Mar-2012	Jan-2019	Dec-2000	Apr-2013
VOCs (Method 8260B, 8260C, 8021B) - ug/L		RFI	CMS 2013	RFI	CMS 2013 ^{5,6}	RFI	CMS 2013 ^{5,6}	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2012	CMS 2019	RFI	CMS 2013
1,1-Dichloroethane	5	1.5 J	1.1 J	4.3 J	3.6	6.5	ND	4.4 J	ND	67	27	92	40	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	-	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	ı	ND	-		ND
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	ND	-	ND
1,2-Dichlorobenzene	5	-	ND ND	-:-	ND ND		ND ND	-	ND ND		ND ND		ND ND	-	ND ND	- ND	-	ND ND
1,2-Dichloroethane	0.6	ND	ND	1.4 J	1.5	ND	ND	ND	ND	ND	7	ND	13	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	-	ND
1,3-Dichlorobenzene 1.4-Dichlorobenzene	3	-	ND ND	-	ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	ND ND	-	ND ND
1,4-Dictriorobertzene	-	-	ND ND	- :	ND ND	-	ND ND	-	ND	-	ND	-	ND ND	-	ND	- ND	-	ND ND
2-Butanone	50	-	4 J	-	1.9 J	-	ND	-	ND	-	1.5 J	-	ND	-	ND	ND	-	ND
4-Ethyltoluene	-	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	-	ND
Acetone Benzene	50	- ND	34	3.6 J	18	-	28 J	-	1.1 J	-	22	- 040	ND	-	ND ND	ND 0.39 J	-	ND
Carbon disulfide	60	ND -	3.5 4.1 J	3.6 J	2.7 ND	42	54 ND	8.4	10 ND	95	37 ND	210	62 ND	2.8 J -	ND	0.39 J ND	2.4 J	ND ND
cis-1,2-Dichloroethene	5	-	ND ND	-	ND	-	ND	-	ND	-	1.1 J	-	1.7 J	-	ND	ND	-	ND
Cyclohexane	_	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	ND	-	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	6.7	0.79 J	ND	ND	ND	ND	5.3	ND	ND	ND	ND
Isopropylbenzene Methyl cyclohexane	5	-	ND ND	-	ND ND		ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	ND ND	-	ND ND
Methyl tert butyl ether	10	-	ND		ND	-	ND ND	-	ND ND	-	ND	-	ND	-	ND	ND	-	ND
Methylene chloride	5	ND	ND	1.2 J	1.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	-	ND
n-Propylbenzene p-Isopropyltoluene (p-Cymene)	5	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	-	ND ND
sec-Butylbenzene	5	-	ND	- :	ND	-	ND ND	-	ND		ND	-	ND	-	ND	-	-	ND
Tetrachloroethene	5	ND	ND	ND	0.34 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	0.76 J	ND	ND	6.3	ND	2.2 J	ND	ND	ND	ND	0.72 J	1.7 J	ND	ND	ND	ND
Trichloroethene Xylenes, Total	5	ND ND	ND ND	ND ND	0.89 ND	6.2	ND ND	3 J 34	0.29 J	ND ND	0.85 J	ND ND	ND 1.1 J	ND 37	0.28 J ND	0.58 1.3 J	ND ND	ND ND
SVOCs (Method 8270C, 8270D) - ug/L		ND	ND	ND	ND	6.2	ND	34	2 J	ND	0.65 J	ND	1.1 J	3/	ND	1.5 5	ND	ND
2,4,6-Trichlorophenol	See Note 3	ND	-	ND	ND	ND	ND	ND	-	ND	-	1.6 J	-	ND	-	ND	ND	-
2,4-Dichlorophenol	See Note 3	ND	-	ND	ND	ND	ND	ND	-	ND	-	4.3 J	-	ND	-	ND	ND	-
2,4-Dimethylphenol 2-Chloronaphthalene	See Note 3	ND ND	- ND	ND ND	1.7 J ND	23	7.9 J ND	ND ND	- ND	ND 2.4.1	- ND	7.1 J	- ND	ND ND	- ND	ND ND	ND ND	- ND
2-Methylnaphthalene	- 10	- -	1 ND	ND -	6.3	ND -	60	- -	0.16 J	3.4 J -	0.43	4.5 J	0.54	- ND	ND	ND	- -	0.1 J
2-Methylphenol (o-Cresol)	See Note 3	ND	-	ND	1.6 J	23	7.5 J	ND	-	ND	-	4.6 J	-	ND	-	-	ND	-
3,4-Methylphenol (m,p-Cresol)	See Note 3	ND	-	ND	4 J	84	16 J	ND	-	ND	-	ND	-	ND	-	ND	ND	-
4,6-Dinitro-2-methylphenol Acenaphthene	See Note 3 20	ND	- 0.07	ND	ND 4.0	ND	ND	ND	-	ND	- 0.07	ND	0.33	ND	0.11 J	ND	ND	- 0.00 1
Acenaphthylene	- 20	- ND	0.37 ND	29	1.6 9.6	64	26 53	6.1 J	1.3 0.96	- ND	0.27 0.25	- ND	0.33	6.3 J	0.113	ND ND	ND .	0.08 J 0.14 J
Acetophenone	-	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	ND	-	ND
Anthracene	50	ND	0.34	5.6 J	2.4	7.1 J	8.9	ND	0.6	ND	0.27	ND	0.34	ND	ND	ND	ND	0.14 J
Benzo(a)anthracene	0.002	ND	ND	1.4 J	0.28 J	ND	ND	ND	0.11 J	ND	0.06 J	ND	ND	ND	0.15 J	0.05 J	ND	0.13 J
Benzo(a)pyrene Benzo(b)fluoranthene	0 (ND) 0.002	ND -	ND ND	ND -	ND ND	ND -	ND ND	ND -	ND ND	ND -	ND ND	ND -	ND ND	ND -	0.12 J 0.27 J	0.02 J	ND -	0.08 J 0.1 J
Benzo(ghi)perylene	-	-	ND		ND		ND ND	-	ND ND	-	ND	-	ND	-	ND	ND	-	ND ND
Benzo(k)fluoranthene	0.002	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	0.15 J	ND	-	0.07 J
Benzyl Alcohol	5	-	ND ND	-	ND 1.1.1	-	ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	- ND	-	ND ND
Biphenyl Bis(2-ethylhexyl)phthalate	5	- ND	ND ND	- ND	1.1 J ND	ND .	12 ND	ND	ND ND	- ND	ND ND	- ND	ND ND	ND	ND ND	ND ND	ND	ND ND
Caprolactam	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	-
Carbazole	-	-	ND	-	11	-	98	-	ND	-	ND	-	ND	-	ND	0.99 J	-	ND
Chrysene Dibenzo(a h)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	0.08 J	ND	ND	ND	ND	ND	0.09 J	0.04 J	ND	0.14 J
Dibenzo(a,h)anthracene Dibenzofuran	-	-	ND ND	-	ND 5.4	-	ND 43	-	0.93 J	-	ND ND		ND ND	-	ND ND	ND 0.52 J	-	ND ND
Diethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	0.93 J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.70	ND	ND 0.00	ND	ND	ND
Fluoranthene Fluorene	50 50	ND ND	0.32 1.7	10 J 26	4.3 12	10 J 51	8.8 51	1.2 J 2.6 J	0.82 1.6	ND ND	0.62	ND 1.4 J	0.72 1.7	1.6 J 2.9 J	0.32 0.07 J	ND ND	ND ND	0.56 0.33
Indeno(1,2,3-cd)Pyrene	0.002	- ND	ND	-	ND	- -	ND ND	2.0 J -	ND	- -	ND	1.4 J	ND	- -	0.07 J	ND	- -	ND
Naphthalene	10	3.2 J	5.7	100	35	670 D	580 D	44	2	9 J	3.2	10	2.7	43	0.14 J	ND	ND	0.3
Pentachlorophenol	See Note 3	ND	-	ND	ND	ND	ND	ND	-	ND	-	ND	-	ND	-	ND	ND	-
Phenanthrene Phenol	50 See Note 3	ND ND	2.1	41 17	18 26 J	56 78	55 ND	4.2 J ND	0.85	3.2 J ND	2	2.2 J ND	2.3	4.2 J ND	0.09 J	ND ND	ND ND	1 -
Pyrene	See Note 3	ND ND	0.2	17 6.5 J	26 J 2.9	78 8.8 J	4.8 J	ND ND	0.7	ND ND	0.37	ND ND	0.41	ND ND	0.48	0.76	ND ND	0.36
Pyridine	50	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	-	ND	-
Total Phenolic Compounds (Method 8270C,	8270D)- ug/L		_								_							
Phenolic compounds (total phenols) ⁴	1	ND	-	17	33	208	31	ND	-	ND	-	18	-	ND	-	ND	ND	-

								Manie	oring Well Locat	ion Comple Det	o(a) O Manitani	Due						
PARAMETERS ¹	GWQS/GV ²		— Slag/Fill		Slag/Fill; Sand	-	Slag/Fill; Sand	MWS-15	— Slag/Fill	MWS-25A	— Slag/Fill	MWS-25B — Sla	g/Fill; Sand; Clay	s	NS-26A — Slag/l and/Dredge Spo	ils		— Slag/Fill
		Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Mar-2012	Jan-2019	Dec-2000	Apr-2013
		RFI	CMS 2013	RFI	CMS 2013 ^{5,6}	RFI	CMS 2013 5,6	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2012	CMS 2019	RFI	CMS 2013
Filtered SVOCs (Method 8270D) - ug/L			,				,					•					•	
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	0.002	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																		
Arsenic, Total	25	ND	ND	2.1 B	2.06 J	5 B	3.81 J	ND	ND	7.5 B	ND	11.9	ND	3.6 B	ND	-	11.6	13.27
Barium, Total	1000	122 B	609	423	225.6	75.3 B	55.47	57.1 B	83.64	183 B	67.51	127 JB	28.92	39.4 B	17	-	47.9 B	26.48
Cadmium, Total	5	ND	-	0.53 B	-	ND	-	ND	-	0.44 B	-	ND	-	ND	-	-	ND	-
Chromium, Total	50	1.6 B	3.8 J	23.9 J	6.46 J	8.9	16.82	1.5 B	ND	140	5.87 J	46.8	ND	33.6	10	-	15.7	26.45
Cyanide, Total	200	0.066 J	-	ND	-	0.01	-	ND	-	0.011	-	0.02 J	-	11	-	-	0.024 J	-
Lead, Total	25	ND	ND	8	3.86 J	6.7	10.97	ND	ND	24.2	ND	12.1	ND	9	ND	-	ND	ND
Selenium, Total	10	16.4	7.07 J	9.2	4.23 J	ND	ND	5	ND	ND	ND	2.2 B	ND	8.1	ND	-	6.7	6.65 J
Dissolved Metals - ug/L																		
Arsenic, Dissolved	25	-	-	3.6 JB	-	4.3 B	-	-	-	4.8 B	-	4.1 B	-	1.9 B	-	-	11.7	-
Barium, Dissolved	1000	-	-	782 J	-	65.6 B	-	-	-	46.6 B	-	41.9 B	-	34.3 B	-	-	45.9 B	-
Cadmium, Dissolved	5	-	-	0.26 B	-	ND	-	-	-	0.28 B	-	ND	-	ND	-	-	ND	-
Chromium, Dissolved	50	-	-	2.7 B	-	ND	-	-	-	1.6 B	-	ND	-	0.5 B	-	-	14.4	-
Lead, Dissolved	25	-	-	7.5	-	ND	-	-	-	ND	-	ND	-	ND	-	-	ND	-
Selenium, Dissolved	10	-	-	ND	-	ND	-	-	-	2 B	-	ND	-	7.6	-	-	7.3 J	-
Field Measurements																		
Dissolved Oxygen (mg/L)	-	0.5	0.04	1.5	3.36	0.4	1.75	0.4	1.43	8.9	2.76	0.3	1.47	1.6	3.93	2.46	10.48	9.98
Field pH (S.U.)	12.5	11.70	12.20	12.37	12.04	10.74	10.64	11.84	8.19	10.70	10.85	9.40	10.98	11.20	10.53	11.55	8.42	8.38
Redox Potential (mV)	-	93	-495	-217	-315	-340	-354	-84	-281	-167	-131	-700	-149	94	-106	-171	-160	153
Specific Conductance (uhos/cm)	-	3950	4049	5900	2349	4800	2985	3830	753.6	5000	5624	5000	2803	1,960	7936	1572	5890	593.8
Temperature (deg C)	-	18.6	16.1	14.1	16.2	13.0	15	16.6	13.8	11.0	13.1	11.5	12.1	19.0	10.3	9.7	11.3	13
Turbidity (NTU)	-	4.1	18.1	53	11.4	72	115	0.4	12	400	25.9	280	7.4	60.5	0.08	9.7	55.5	29.2

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
- 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
- 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.
 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.
 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

- B = The analyte was also detected above the reporting limit in the associated method blank. J = Estimated value.
- J+ = Estimated value that may be biased high.
- J- = Estimated value that may be biased low.
 D = Concentration of analyte was quantified from diluted analysis.
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- ND = Not detected at the method detection limit.
 -= No GWQS/GV, or parameter was not analyzed for.
 R = Sample result was rejected by third party validator.

- VOCs = Volatile Organic Compounds SVOCs = Semivolatile Organic Compounds RFI = Final RCRA Facility Investigation (October 2004)
- CMS = Corrective Measures Study
 HWMU = Hazardous Waste Management Unit groudwater monitoring data

	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5

TABLE 4-32

													Monitoring We	II I ocation S	Samnle Date(s	a) & Monitorin	na Program										
			WO 04 OI	·/=:!!	M	WS-01B — Slag	a/Fill;			100	WO 00 OI		wontoning we	ii Location, o	MWS-03			01/511	MMO 40D 01-	/E'!!. Ol O				NO 404 OI-			
PARAMETER 1	GWQS/GV ²	Nov-1999	WS-01 — Slag	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Nov-1999	Feb-2012	Apr-2014	VS-02 — Slag/ Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	— Slag/Fill Mar-2012	Nov-1999	— Slag/Fill Apr-2013	Nov-1999	ag/Fill; Clay; Sand	Nov-1999	Feb-2012	Apr-2014	VS-18A — Slag	Apr-2016	Apr-2017	Apr-2018
		RFI	CMS 2012 ⁵	CMS 2019	RFI	CMS 2012 ⁵	CMS 2019	RFI	CMS 2012 5,6	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2012	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018
VOCs (Method 8260B, 8260C, 8021B) - ug/L	_		<u>'</u>				<u>'</u>		<u>'</u>		<u>'</u>	•	<u>'</u>		•						•					<u> </u>	
1,1-Dichloroethane	5	2.7 J	0.93 J	ND	4.1 J	1.7	ND	8.3	9.8	1.1 J	1 J	1.2 J	3	ND	ND	ND	1.9 J	4.8	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	-	-	ND	-	-	0.48 J	-	-	0.31 J	-	-	-	-	-	-	ND	-	ND	-	ND	-	ND	-	-	-	-	-
1,2,4-Trimethylbenzene	5	-	ND	-	-	4.6	-	-	ND	ND	ND	ND	1 J	-	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	-
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	1.7	ND	0.43 J	0.91	2.6	0.21 J	ND	ND	9.2 J	6.1	ND	ND	ND	ND	ND	ND	ND	110	ND
1,3,5-Trimethylbenzene	5	-	ND	-	-	2.7	-	-	0.54 J	ND	ND	ND	ND	-	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	-
1,4-Diethylbenzene	- :	-	ND ND	-	-	1.8 J 1.7 J	-	-	0.55 J	-	-	-	-	-	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	-	-	-	-
4-Ethyltoluene Acetone	50	-	ND	ND	-	2.7 J	6.9 DJ	-	ND ND	7.2	14	- 2	5.1	7.8	-	ND	-	5.6	-	64	-	ND	ND	ND	ND	ND.	ND
Benzene	1	67	1.4	34 D	16	2.9	11 D	14	0.49 J	2.1	8.5	4.1	12	1.0	ND	ND	5.4	75	740	510	140000	39000 D	4200 D	7100 D	7000 D	4600 D	1900 D
Bromomethane	5	ND	ND	ND.	ND	ND.	R	ND	ND	ND.	1.5 J	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND.	ND	ND	ND
Carbon disulfide	60	-	ND	ND	-	0.34 J	ND	-	ND	ND	ND	ND	ND	ND	-	0.8 J	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	-	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	-	-	ND	-	10	-	ND	-	ND	ND	ND	ND	ND	-
Cyclohexane	-	-	ND	ND	-	0.51 J	ND	-	0.37 J	0.4 J	0.84 J	0.93 J	1.5 J	ND	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	21	0.87 J	12 D	ND	0.32 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	-	ND	ND	-	ND	ND	-	ND	ND	2.3 J	ND	ND	ND	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	-	-	ND	ND	-	ND	ND	-	ND	2.2 J	3.6 J	3.3 J	8.7 J	1 J	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene (p-Cymene)	5	-	ND	-	-	0.56	- ND	-	ND	ND	2.3 J	ND	ND	- NID	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	- NID
Styrene	5	- ND	ND	9.2 DJ	- ND	ND	ND ND	- ND	ND	ND	ND ND	ND	ND	ND ND	- ND	ND ND	ND.	ND ND	ND.	ND ND	- ND	ND ND	ND	ND ND	ND ND	ND	ND ND
Tetrachloroethene Toluene	5	ND	ND ND	ND 2C D	ND 4.0.1	ND 4.5	110	ND 121	0.38 J	ND	110	0.3 J	0.52 J 1.1 J	ND ND	ND	ND	ND	110	110	110	ND	ND	ND	ND	ND ND	ND	ND ND
trans-1,2-Dichloroethene	5	130 ND	ND ND	36 D ND	4.8 J ND	1.5 ND	3.1 DJ ND	1.2 J ND	ND	ND	1.3 J ND	ND	ND	ND	ND	ND	5.4	3.2 6.8	21 J ND	23 J ND	ND ND	ND	ND	ND	ND	ND ND	ND
Trichloroethene	5	ND	0.91 J	ND	ND	ND	ND	ND	0.57	ND	0.32 J	0.4 J	1	ND	ND	ND	ND.	0.22 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	0.77 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	5	350	5.5 J	152 D	4.4 J	2.9	ND	1.9 J	ND	ND	ND	ND	0.85 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SVOCs (Method 8270C, 8270D) - ug/L					•										•	•						•		•		,	
2,4-Dimethylphenol	See Note 3	ND	ND	2.4 J	24	94	12 D	R	ND	ND	ND	ND	ND	ND	ND	_	ND	-	ND	-	21 J	_	1.8 J	0.81 J	ND	ND	ND
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.79	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene		-	0.78	21	-	23 D	12 D	-	0.16 J	0.65	0.21 J	1.9	2.4	0.27	-	ND	-	ND	-	1	-	0.12 J	0.08 J	0.09 J	0.19 J	0.15 J	0.11
2-Methylphenol (o-Cresol)	See Note 3	ND	ND	-	16	45	-	R	ND	ND	ND	-	-	-	ND	-	ND	-	980 J	-	31	-	6.8	3.5 J	-	-	-
3,4-Methylphenol (m,p-Cresol)	See Note 3	ND	ND	5.7	42	140	39 D	R	ND	ND	ND	ND	ND	ND	ND	-	7.8 J	-	5400 J	-	ND	-	1.8 J	8.4	1.6 J	ND	ND
Acenaphthene	20	-	0.84	4.1	-	9.8	5.2 D	-	0.29	0.15 J	ND	0.46	0.53	0.1	-	ND	-	ND	-	0.65	-	0.1 J	0.08 J	0.08 J	ND	0.09 J	0.06 J
Acenaphthylene	-	83 J	3.8	17	18	13	6.4 D	ND	0.7	0.47	ND	1.5	1.8	0.32	ND	ND	ND	ND	ND	ND	ND	0.05 J	ND	ND	ND	0.06 J	0.05 J
Acetophenone		-	ND	ND		ND	ND		ND	ND	ND	ND	ND	ND		ND		ND		ND		48	1.9 J	1.1 J	ND	ND	ND
Anthracene	50 0.002	13 J	0.13 J	2.8	2.6 J	2.5	ND	ND	0.18 J	0.36	0.19 J	1.3 J	1.3	0.13	ND	ND	ND	ND	ND	0.54	ND	ND	0.07 J	0.07 J	ND	0.04 J	0.04 J
Benzo(a)anthracene	0.002 0 (ND)	ND ND	0.16 J	0.2 0.07 J	1.1 J	2.1 1.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	ND	ND	0.07 3	ND	2.4	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Benzo(ghi)perylene	0.002	-	ND	0.02 J	-	1.5	ND	-	ND ND	ND	ND	ND	ND	ND	-	ND	-	ND	-	ND ND	-	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	-	ND	0.02 J	-	1.1	ND		ND ND	ND	ND	ND	ND	ND ND	 	ND	-	ND	-	ND ND	-	ND	ND	ND	ND	ND	ND
Benzoic Acid	- 0.002	-	ND	-	-	ND	-	-	-	ND	9.1 J	-	-	-	-	-	-	-	-	-	-	-	ND	8.2 J	-	-	-
Biphenyl	5	-	ND	4.6	-	5.1	2.8 DJ	-	ND	ND	ND	ND	ND	ND	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	11	ND	3.8 J	ND	ND	2.3 J	ND	ND	3.9	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J	11	ND	ND	ND
Caprolactam	-	-	-	ND	-	-	ND	-	-	ND	2.7 J	3.9 J	ND	ND	-	-	-	-	-	ND	-	-	ND	ND	ND	ND	ND
Carbazole		-	4.5	33	-	18	18 D	-	ND	0.5 J	ND	1.1 J	1.1 J	ND	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	0.08 J	0.14	ND	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	-	-	ND	ND 45	-	0.51	ND	-	ND	ND 0.04 I	ND	ND	ND	ND	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND
Dibenzofuran Fluoranthene	50	ND.	3.3	15	3.6 J	13 3.9	5.3 D	221	ND 1.3	0.81 J	ND 0.11 J	2.2 1.4 J	ND 1.2	ND 0.18	- ND	ND 0.06 I	ND.	ND ND	- ND	ND ND	ND	ND ND	ND 0.05 I	ND ND	ND ND	ND ND	ND ND
Fluorantnene	50	57 J	3.6	21	3.6 J 12	3.9	5.5 D	2.2 J 8.6 J	1.3	0.38 1.5	0.11 J 0.24	1.4 J 4.9	4.7	0.18	ND ND	0.06 J	ND ND	ND ND	ND ND	ND 1	ND ND	ND ND	0.05 J	ND ND	ND ND	ND	ND ND
Indeno(1,2,3-cd)Pyrene	0.002	5/ J	ND	0.02 J	12	1.4	5.5 D ND	0.0 J	ND	I.5	0.24 ND	4.9 ND	4.7 ND	0.59 ND	ND-	ND	ND -	ND	ND -	ND.	ND -	ND	ND	ND	ND	ND	ND ND
Naphthalene	10	1000 D	1.2	470 D	630 D	540 D	280 D	25	0.27	2.2	0.87	6	9.1	0.94	2.7 J	ND	ND	0.07 J	ND.	9.5	ND.	1.4	1.2	1.4	2.9	2.8	2.3
Pentachlorophenol	See Note 3	ND	ND	ND	ND.	2.3	ND ND	R	ND	ND	ND	ND	1.1	ND	ND	-	ND	- 0.07 0	ND		ND	- 1.4	ND	ND.	ND	ND	ND
Phenanthrene	50	80 J	1	27	13	11	ND	14	0.2	2.6	0.27	9.5	8.4	0.49	ND	ND	ND	ND	ND	1.8	ND	0.16 J	0.12 J	0.09 J	ND	0.06 J	0.03 J
Phenol	See Note 3	ND	ND	ND	150 D	170	69 D	R	ND	ND	2.5 J	ND	ND	ND	ND	-	44	-	29000	-	110	-	1.4 J	12	4.2 J	ND	ND
Pyrene	50	ND	1.2	2.3	2.7 J	3.8	ND	1.3 J	0.88	0.26	0.11 J	0.72	ND	0.15	ND	0.06 J	ND	0.09 J	ND	0.14 J	ND	ND	ND	ND	ND	ND	ND
Pyridine	50	ND	-	-	ND	-	-	ND	-	-	-	-	-	-	ND	-	ND	-	ND	-	150 J	-	-	-	-	-	-
Total Phenolic Compounds (Method 8270C, 82	270D)- ug/L																										
Phenolic compounds (total phenols) 4	1	ND	ND	8.1	232	451	120	-	ND	ND	2.5	ND	1.1	ND	ND	-	52	-	35380	_	162	-	12	25	5.8	ND	ND
compoundo (total prionolo)	<u> </u>																										

																	_										
PARAMETER ¹	GWQS/GV ²	M	WS-01 — Slag	ŋ/Fill		S-01B — Slag				MV	VS-02 — Slag		Monitoring We	ell Location, S		— Slag/Fill		— Slag/Fill	MWS-10B — SI	ag/Fill; Clay; Sand			MW	/S-18A — Slaç	g/Fill		
		Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Mar-2012	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018
		RFI	CMS 2012 ⁵	CMS 2019	RFI	CMS 2012 ⁵	CMS 2019	RFI	CMS 2012 5,6	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2012	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018
Filtered SVOCs (Method 8270D) - ug/L					_			_																			
Acenaphthene	20	-	-	-	-	-	0.91	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	2.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	0.02 J	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	190 D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																											
Arsenic, Total	25	5.9 B	ND	-	17.1	45	-	2.3 B	4 J	1.33	1.88	4.4 J	6.19	1.33	3.5 B	4 J	740 J	544.3	20.7 J	7.37	7.7 B	4 J	3.71	3.95	7.5	3.57	5.43
Barium, Total	1000	58.4 B	36	-	1620 J	1820	842.3	37.6 B	41	42.29	38.94	33	18.5	31.95	76.9 B	71	596	546.9	6010	2539	40.6 B	24	26.03	27.56	24.7	19.76	17.41
Cadmium, Total	5	ND	-	-	2.7	-	-	ND	-	-	-	-	-	-	ND	-	ND	-	1.3 B	-	ND	-	-	-	-	-	-
Chromium, Total	50	2.3 B	ND	-	35.6	90	-	7.1	3 J	8.24	18.14 J	16 J	9.59	20.12	3.2 B	ND	168 J	26.84	38.1 J	50.07	53.1	5 J	9.89	8.34	ND	3.96	6.77
Cyanide, Total	200	120	-	-	100	-	-	1200	1850	8250	8140	1860	92	6440	16	-	0.012	-	0.3	-	530 J	445	417	330	382	332	249
Lead, Total	25	ND	ND	-	278	601	-	ND	3 J	0.27 J	0.8 J	ND	23.79	ND	ND	ND	45.9 J	9.77 J	4.5	2.98 J	7.3	4 J	2.09	1.24	ND	3.44	ND
Selenium, Total	10	8 J	-	-	ND	-	-	8	-	-	-	-	-	-	4.3 B	-	ND	ND	R	105 J	ND	-	-	-	-	-	-
Dissolved Metals - ug/L																											
Arsenic, Dissolved	25	6.3 B	-	-	6.9 JB	12	-	2.2 B	-	-	-	-	-	-	3.7 B	-	3.4 B	-	15	-	6.1 B	-	-	-	-	- 1	-
Barium, Dissolved	1000	58.3 B	-	-	1520 J	996	886.3	35.9 B	-	-	-	-	-	-	75.2 B	-	19.1 B	-	6390	-	20.1 B	-	-	-	-	-	-
Cadmium, Dissolved	5	ND	-	-	ND	-	-	ND	-	-	-	-	-	-	ND	-	ND	-	ND	-	ND	1	-	-	-	-	-
Chromium, Dissolved	50	ND	-	-	0.73 B	10	-	0.56 B	-	-	-	-	-	-	ND	-	ND	-	ND	-	2.8 B		-	-	-	-	-
Lead, Dissolved	25	ND	-	-	ND	12	-	ND	-	-	-	-	-	-	ND	-	ND	-	ND	-	ND	-	-	-	-	-	-
Selenium, Dissolved	10	9.9 J	-	-	ND	-	-	5.8	-	-	-	-	-	-	1.6 B	-	ND	-	R	-	ND	-	-	-	-	-	-
Field Measurements																											
Dissolved Oxygen (mg/L)	-	0.4	0.16	1.58	1.5	0.78	2.26	1.4	4.06	-	1.85	3.6	2.27	3.66	0.6	2.95	0.4	0.28	NA	NA	0.4	2.5	-	3.63	2.08	2.77	2.1
Field pH (S.U.)	12.5	11.27	9.04	10.70	8.25	8.81	8.52	11.07	10.99	10.30	10.75	10.67	11.41	10.68	10.94	9.68	7.41	7.14	11.47	11.08	9.03	9.28	9.47	8.85	8.73	10.34	9.84
Redox Potential (mV)	-	-386	-128	-230	366	-119	-158	-156	-156	205	210	-81	-245	221	-330	-211	226	-147	-126	-638	-474	-103	-104	-54	-92	-1.23	-120
Specific Conductance (umhos/cm)	-	1,960	1139	1108	4,740	2572	2794	2,590	2280	2053	1905	1803	2096	1639	1,000	713.9	3550	3450	1140	9493	4,700	3323	2649	2623	2767	2470	2725
Temperature (deg C)	-	17.4	16.2	11.3	15.5	10.6	9.0	14.8	10.1	13.1	13.6	11.3	12.9	7.9	14.0	10.0	15.0	15.2	15.0	15.4	15.3	12.2	13.7	13.7	9.1	13.2	8.4
Turbidity (NTU)		15	0.59	2.39	245	512	6.41	18	14.6	1.96	8.9	8	4.2	1.3	16	5.02	224	>1000	1000	>1000	91	17.4	16.4	30	14.6	5.64	3.4

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCS, SVOCs, and Total Metals were analyzed for during GWRS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

Definitions

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV = concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5

Page 3 of 6

										Monitoring V	Vell Location.	Sample Date	e(s). & Monito	ring Program								
				MWS-18C	— Slag/Fill; (Clay: Sand						/S-19A — Sla						MWS-1	9B — Slag/Fil	II: Sand		
PARAMETER 1	GWQS/GV ²	Dec-2000	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018
		RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018
VOCs (Method 8260B, 8260C, 8021B) - ug/L			00 2012	5.11.0 Z01.4	Silio 2010	5 2010	S.I.I.O 2011	00 20.10		5 2012	00 2014	J 2010	00 2010	S.II.O 2017	5.11.0 Z0 10		00 20 .2	00 2014	S.II.O 2010	S.II.O 2010	00 2011	G.I.I.O 2010
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	1.4 J	ND	1 J	1.5 J	1 J	ND	ND	ND	ND	ND	ND	ND	ND
1,2.4.5-Tetramethylbenzene	-	- ND	ND	ND	ND	ND	- ND	IND	IND	ND	ND	ND	ND	- 13	IND -	IND.	ND	ND	ND	ND	ND	-
1,2,4-Trimethylbenzene	5	-	ND	ND	ND	ND	ND	_	-	ND	ND	ND	ND	ND	_	_	ND	ND	ND	ND	ND	-
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-
1,4-Diethylbenzene		-	ND	-	-	-	-	-	-	ND	-	-	-	-	_	_	ND	-	-	-	-	-
4-Ethyltoluene	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-
Acetone	50	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND
Benzene	1	65000 D	9600	340	910	4400	1400	43 D	1200	ND	34	70	56	40	13	27000	18000	2800 D	390 D	1500 D	5800 D	520 D
Bromomethane	5	R	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	60	-	660	6.3 J	24 J	480	140 J	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	0.77 J	ND	-	-	ND	ND	ND	ND	ND	-
Cyclohexane	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	0.47 J	ND	ND	-	ND	ND	1.3 J	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	-	ND	ND	ND	ND	ND	ND	-	ND	ND	2.2 J	ND	ND	ND	-	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND
Methylene chloride	5	1.1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene (p-Cymene)	5	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-
Styrene	5	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	340 J	51 J	ND	11 J	140 J	72 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	0.84 J	ND	0.42 J	ND	0.32 J	0.21 J	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	5	500 J	85 J	ND	9.3 J	150	54 J	ND	13 J	2.6	ND	1.5 J	1.4 J	0.78 J	ND	ND	ND	ND	ND	ND	ND	ND
SVOCs (Method 8270C, 8270D) - ug/L																•						
2,4-Dimethylphenol	See Note 3	20 J	_	1.8 J	5.4	12	4.8 J	ND	10	_	ND	ND	ND	ND	ND	73 J	I -	19	14	ND	ND	ND
2-Chloronaphthalene	10	ND	ND	ND.	ND	ND.	ND.	ND	ND	ND	ND	ND	ND	0.08 J	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene		-	0.23	ND	ND	ND	0.07 J	ND	-	ND	ND	ND	ND	0.09 J	ND	-	ND	0.09 J	ND	ND	ND	ND
2-Methylphenol (o-Cresol)	See Note 3	19 J	- 0.20	ND	2.3 J	-	0.07 0	-	ND	-	ND	ND	-	- 0.00 0	-	150 J	-	ND.	ND	-	-	-
3,4-Methylphenol (m,p-Cresol)	See Note 3	40 J	-	ND	9.5	31	9.9	ND	ND	_	ND	ND	ND	ND	ND	200 J	_	2.6 J	2.3 J	ND	ND	ND
Acenaphthene	20	-	ND	ND	ND	0.09 J	ND	ND	-	0.09 J	ND	0.07 J	ND	0.1	0.04 J	-	0.19 J	0.12 J	ND.	0.11 J	0.1	0.05 J
Acenaphthylene	-	ND	ND	ND	ND	ND.	ND	ND	ND	ND.	ND	ND.	ND	0.07 J	ND	ND	ND	ND.	ND	ND	ND	ND
Acetophenone	-	-	4.6 J	2.9 J	9.3	43	11	ND	-	ND	ND	ND	ND	ND	ND	-	8.4	ND	ND	ND	ND	ND
Anthracene	50	ND	0.07 J	0.12 J	0.08 J	0.14 J	0.06 J	0.06 J	ND	0.07 J	0.07 J	0.09 J	ND	0.04 J	0.09 J	ND	ND	ND	ND	ND	0.05 J	0.04 J
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	ND	ND	ND	ND	0.04 J	ND
Benzo(a)pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	-	ND	ND	ND	ND	ND	ND	-	0.16 J	ND	ND	ND	ND	0.18	-	ND	ND	ND	ND	0.05 J	ND
Benzo(ghi)perylene	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	0.09 J	-	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	0.08 J	-	ND	ND	ND	ND	ND	ND
Benzoic Acid	-	-	-	ND	62	-	-	-	-	-	ND	ND	-	-	-	-	-	ND	ND	-	-	-
Biphenyl	5	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	15	ND	ND	5.8	4.4 J	ND	ND	6.4	ND	ND	3.6	ND	ND	ND	11	ND	ND	3.4
Caprolactam	-	-	-	22	16	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND
Carbazole	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	0.04 J	-	ND	ND	ND	ND	ND	ND
Dibenzofuran	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	0.14 J	ND	ND	ND	ND	ND	0.08 J	ND	ND	ND	ND	0.24	ND	ND	ND	ND	ND	0.07 J	ND
Fluorene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06 J	0.08 J	ND	ND	0.09 J	ND	0.12 J	0.09 J	0.1
Indeno(1,2,3-cd)Pyrene	0.002	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	0.1	-	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	0.42	0.17 J	0.23	0.53	0.21	ND	ND	ND	ND	ND	ND	0.08 J	0.05 J	ND	0.61	0.52	0.39	ND	0.05 J	ND
Pentachlorophenol	See Note 3	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	0.08 J	ND	ND	0.04 J	ND	ND	0.07 J	ND	ND	ND	ND	0.18	ND	ND	0.12 J	0.09 J	ND	0.05 J	ND
Phenol	See Note 3	280 J	-	3.6 J	20	76	27	ND	19	-	ND	ND	ND	ND	ND	2100 D	-	1.2 J	0.59 J	ND	ND	ND
Pyrene	50	ND	ND	0.11 J	ND	ND	ND	ND	ND	0.07 J	ND	ND	ND	ND	0.2	ND	ND	ND	ND	ND	0.06 J	ND
Pyridine	50	18000 D	-	-	-	-	-	-	5.6 J	-	-	-	-	-	-	3200 D	-	-	-	-	-	-
Total Phenolic Compounds (Method 8270C, 827	'0D)- ug/L																					
Phenolic compounds (total phenols) 4	1	359	-	5.4	37	119	42	ND	29	-	ND	ND	ND	ND	ND	2523	-	23	17	ND	ND	ND
: zompodnao (total prionolo)																						

TABLE 4-32 Page 4 of 6

GROUNDWATER ANALYTICAL SUMMARY DISCHARGE SUB-AREA 2B

										Monitoring V	Vell Location,	, Sample Date	(s), & Monitor	ring Program								
PARAMETER ¹	GWQS/GV ²			MWS-18C	— Slag/Fill;	Clay; Sand					MW	/S-19A — Slag	g/Fill					MWS-1	9B — Slag/Fi	II; Sand		
		Dec-2000	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018
		RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018
Filtered SVOCs (Method 8270D) - ug/L																						
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																						
Arsenic, Total	25	16.1	5	6.88	9.23	118	8.98	4.47	5.9 B	7	3.45	3.5	7.1	3.01	2.76	21.9 J	ND	4.76	3.99	18.3	6.41	5.36
Barium, Total	1000	31.7 B	17	22.22	19.19	15.4	13.99	16.3	35.4 B	24	20.53	25.73	25.2	22.58	20	55.4 B	18	17.7	23.02	19	17.83	17.87
Cadmium, Total	5	1.9 B	-	-	-	-	-	-	1.4 B	-	-	-	-	-	-	ND	-	-	-	-	-	-
Chromium, Total	50	27.4	230	30.8	358.3	240	260.6	6.05	4.5 B	ND	2.91	2.93	2.6 J	1.58	8.02	398 J	10	9.21	11.21	7.5 J	9.38	1.48
Cyanide, Total	200	2400 J	621	612	446	272	1050	484	500	271	118	173	62	142	97	820	774	468	568	317	419	266
Lead, Total	25	9.7	25	1.98 J	ND	ND	3.38 J	ND	2.3 B	3 J	0.52 J	0.59 J	ND	0.77 J	10.73	54	17	1.57 J	1.3 J	ND	22.76	1.34
Selenium, Total	10	ND	-	-	-	-	-	-	2.8 B	-	-	-	-	-	-	ND	-	-	-	-	-	-
Dissolved Metals - ug/L																						
Arsenic, Dissolved	25	15.5	-	-	10.68	128	10.56	-	4.9 B	-	-	-	-	-	-	3.5 B	-	-	-	15.8	2.9	-
Barium, Dissolved	1000	32.3 B	-	-	20.5	21.7	18.58	-	35.4 B	-		-	-	-	-	21.9 B	-	-	-	23.6	16.22	-
Cadmium, Dissolved	5	2.3 B	-	-	-	-	-	-	0.38 B	-	-	-	-	-	-	ND	-	-	-	-	-	-
Chromium, Dissolved	50	15.3	-	-	838.5	160	166.2	-	2.4 B	-		-	-	-	-	87.8	-	-	-	3.1 J	0.24 J	-
Lead, Dissolved	25	7.7	-	-	ND	ND	4.96 J	-	ND	-	-	-	-	-	-	11.3 B	-	-	-	ND	4.54 J	-
Selenium, Dissolved	10	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-
Field Measurements	<u> </u>					•		•												•		
Dissolved Oxygen (mg/L)	-	-	3.76	-	1.57	1.83	2.03	1.84	0.5	1.71	-	1.33	1.68	1.6	2.8	0.4	1.53	-	1.06	0.92	1.44	1.33
Field pH (S.U.)	12.5	6.93	4.57	6.40	6.62	4.48	4.71	6.84	8.45	7.29	7.60	7.65	7.76	7.51	7.92	5.84	5.66	6.22	6.21	6.67	6.99	7.65
Redox Potential (mV)	-	-73	33	-83	-86	144	140	-78	-310	-159	-147	-163	-125	-96	-57	-136	-95	-43	-47	-67	-109	-141
Specific Conductance (umhos/cm)	-	4,100	6634	3369	2746	7342	4660	3012	4,450	2743	1957	2121	2064	2055	1612	1,030	7966	5077	4529	4433	3394	3175
Temperature (deg C)	-	11.2	12.1	13.0	12.4	10.8	13.1	9.0	13.3	10.4	15.4	13.1	11.6	12.7	9.6	13.1	10.4	15.1	13.3	12.0	12.8	8.3
Turbidity (NTU)	-	233	39.6	107	112	73.9	124	16.6	72	10.6	2.55	3.55	6	6.31	49.1	430	25.7	22.4	30	88	128	8.3

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for "Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCS, SVOCS, and Total Metals were analyzed for for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RTI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code: = concentration is less than or equal to the GWQS/GV (includes non-detect) = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV = concentration exceeds 100 times the GWQS/GV = pH exceeds 12.5

										Moni	toring Well La	cation. Samp	le Date(s), & M	Ionitoring Pr	ogram								
				MWS-2	20A — Slag/Fill	l· Sand						-20B — Sand				MWS-214	— Slag/Fill		B — Slag/Fill;	MWS-23A	— Slag/Fill	MWS-231	B — Sand
PARAMETER 1	GWQS/GV ²	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Apr-2013	Nov-1999	Clay Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013
	-	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013
VOCs (Method 8260B, 8260C, 8021B) - ug/L			00 2012	00 2014	J 2010	5.11.0 Z0.10	00 2011	00 2010		0.11.0 2012	S.II.O 2014	0.11.0 2010	S.II.O 2010	00 2011	0.11.0 2010		00 2010		5		00 2010		J 2010
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND	0.79 J	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	-	-	ND	ND	ND	ND	-	-	-	ND	ND	ND	ND	-	-	-	ND	-	ND	-	ND	-	ND
1,2,4-Trimethylbenzene	5	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-	-	ND	-	ND	-	ND	-	ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	2.2	2.2	2.8	1.4	1.5 J	0.37 J	ND	3.6	4 J	ND	ND	6.2
1,3,5-Trimethylbenzene	5	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-	-	ND	-	ND	-	ND	-	ND
1,4-Diethylbenzene 4-Ethyltoluene	-	-	ND ND	-	-	-	-	-	-	ND ND	-	-	-	-	-	-	ND ND		ND ND	-	ND ND		ND ND
Acetone	50	-	ND	ND	ND	ND	ND	ND		ND	ND	ND	1.7 J	ND	1.6 J	-	ND	_	ND	-	ND		ND
Benzene	1	33	ND	ND	ND	0.22 J	0.63	ND	ND	ND	0.28 J	0.63 J	0.32 J	0.5 J	0.23 J	ND	0.58	ND	12	ND	ND	470	280
Bromomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	60	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	-	ND	-	ND	-	ND
cis-1,2-Dichloroethene	5	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-	-	ND	-	ND	-	ND	-	ND
Cyclohexane	- 5	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND.	ND ND
Ethylbenzene Isopropylbenzene	5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	2.3 J	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND
Methyl cyclohexane	-	-	ND ND	ND ND	ND	ND ND	ND ND	ND ND		ND ND	ND ND	Z.3 J ND	ND ND	ND ND	ND ND	H :	ND ND	1	ND ND	 	ND ND		ND ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene (p-Cymene)	5	-	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	-	-	ND	-	ND	-	ND	-	ND
Styrene	5	,	ND	ND	ND	ND	ND	ND	÷	ND	ND	ND	ND	ND	ND	-	ND	-	ND	-	ND	-	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene Trichloroethene	5 5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	2.1 J 7.5	ND 6.2	ND ND	ND
Vinyl chloride	2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	7.5 ND	ND	ND ND	ND ND
Xylenes, Total	5	1.2 J	ND	ND	ND	ND	ND	ND	2.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
SVOCs (Method 8270C, 8270D) - ug/L	,	1.2 0	IND	ND	ND	ND	ND	IND	2.00	ND	ND	ND	ND	ND	IND	IND	113	ND	110	ND	110	IND	112
	See Note 3	ND	_	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	2.9 J	-	ND	- 1	ND	-
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
2-Methylnaphthalene	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	0.54	-	ND	-	ND	-	ND
2-Methylphenol (o-Cresol)	See Note 3	ND	-	ND	ND	-	-	-	ND	-	ND	ND	-	-	-	ND	-	ND	-	ND	-	ND	-
3,4-Methylphenol (m,p-Cresol)	See Note 3	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	1.3 J	ND	ND	ND	-	ND	-	ND	-	ND	-
Acenaphthene	20	-	ND	ND	ND	ND	ND	ND	- NE	ND	ND	ND	ND	ND	ND	- LID	0.46	- NE	ND	- ND	ND	-	ND
Acetophenone	-	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND .	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.85 ND	ND	ND ND	ND	ND ND	ND	ND ND
Anthracene	50	ND.	0.07 J	0.12 J	ND	0.21	0.08 J	0.1 J	ND	0.09 J	0.17 J	0.07 J	0.23 J	0.05 J	0.1	ND	0.67	ND	ND	ND	ND	ND.	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	0.02 J	ND	0.44	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11 J	ND	ND	ND	ND	ND	0.26	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	1	ND	ND	ND	ND	ND	ND	-	ND	0.08 J	ND	ND	ND	ND	-	0.35	-	ND	-	ND	-	ND
Benzo(ghi)perylene	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	0.13 J	-	ND	-	ND	-	ND
Benzo(k)fluoranthene	0.002	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	0.21	-	ND	-	ND	-	ND
Benzoic Acid Biphenyl	- 5	-	ND	ND ND	ND ND	ND.	ND	ND.	-	- ND	ND ND	ND ND	- ND	ND.	- ND	-	ND	-	ND	-	- ND	-	ND.
Bis(2-ethylhexyl)phthalate	5	ND .	ND ND	ND ND	4.2	ND ND	ND ND	ND 4	ND	ND ND	ND ND	5.6	ND ND	ND ND	ND ND	ND.	ND ND	ND .	ND ND	ND	ND ND	ND .	ND ND
Caprolactam	-	- ND	- ND	ND	ND	ND	ND	ND	- ND	- ND	ND	ND	ND	ND	24	- IND	- ND	- ND	- ND	IND	- ND	- IND	- IND
Carbazole	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	2.4	-	ND	-	ND	-	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	-	ND	-	ND	-	ND
Dibenzofuran	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND		ND	-	ND	-	ND	-	ND
Fluoranthene Fluorene	50 50	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	0.09 J	ND ND	0.07 J	ND ND	ND ND	3.5 J	1.6 1.8	ND ND	0.16 J	ND	ND	ND ND	ND ND
Indeno(1,2,3-cd)Pyrene	0.002	ND -	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	0.13 J	ND -	ND ND	ND -	ND ND	ND -	ND ND
Naphthalene	10	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	2.4	ND	0.12 J	ND	ND ND	ND	0.07 J
Pentachlorophenol	See Note 3	ND	- ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	- 0.12.0	ND	-	ND	- 0.07 3
Phenanthrene	50	ND	ND	ND	ND	ND	0.03 J	ND	ND	ND	ND	ND	ND	0.02 J	ND	2.1 J	3.6	ND	0.2	ND	ND	ND	ND
Phenol	See Note 3	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	-	ND	-	ND	-	ND	-
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.09 J	ND	0.06 J	ND	ND	2 J	0.99	ND	0.11 J	ND	ND	ND	ND
Pyridine	50	ND		-	-	-	-	-	ND		<u> </u>	-	-	-	-	ND	-	ND	-	ND	-	ND	-
Total Phenolic Compounds (Method 8270C, 8270)	D)- ug/L																						
Phenolic compounds (total phenols) 4	1	ND	-	ND	ND	ND	ND	ND	ND	-	ND	ND	1.3	ND	ND	ND	-	2.9	-	ND	-	ND	-

TABLE 4-32 Page 6 of 6

GROUNDWATER ANALYTICAL SUMMARY DISCHARGE SUB-AREA 2B

										Moni	toring Well Lo	cation, Samp	le Date(s), & M	Monitoring Pro	ogram								
PARAMETER 1	GWQS/GV ²			MWS-2	20A — Slag/Fi	ll; Sand					MWS	3-20B — Sand	; Clay			MWS-21A	— Slag/Fill		— Slag/Fill; lay	MWS-23A	— Slag/Fill	MWS-23E	B — Sand
		Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Feb-2012	Apr-2014	Apr-2015	Apr-2016	Apr-2017	Apr-2018	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013
		RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2012	CMS 2014	CMS 2015	CMS 2016	CMS 2017	CMS 2018	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013
Filtered SVOCs (Method 8270D) - ug/L																							
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
Naphthalene	10	-	-	-	-	-		-	-				-	-	-	-	-	-	-		-		-
Total Metals - ug/L																							
Arsenic, Total	25	ND	5	4.05	5.03	7.2	4.23	3.06	3.9 B	7	3.71	3.59	6.6	2.87	2.93	ND	ND	6 B	10.65	153	13.83	3.3 B	7.4
Barium, Total	1000	27.1 B	21	16.78	12.42	17.1	21.06	20.54	54.7 B	31	39.08	24.7	39	33.75	30.93	56.6 B	31.11	42.6 B	33.56	184 B	15.88	27.2 B	37.07
Cadmium, Total	5	ND	-	-	-	-		-	ND	-	-	-	-	-	-	ND	-	14.6	-	ND	-	1.6 B	-
Chromium, Total	50	7.6	10	17.84	23.62	1.9	23.32	15.48	37.6	3 J	10.49	1.57	5.3	1.23	3.36	4.3 B	10.06	13.6	12.15	267	28.06	3.4 B	14.66
Cyanide, Total	200	120 J	-	75	29	34	124	68	44 J	-	47	48	38	68	47	ND	-	0.18	-	0.18	-	0.1	-
Lead, Total	25	ND	ND	ND	ND	ND	0.41 J	ND	10.2	ND	4.43	0.14	ND	0.35 J	1.23	ND	5.27 J	9.3	4.14 J	109	ND	2.6 B	5.88 J
Selenium, Total	10	5	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	7.1 J	ND	ND	4.4 B	4.32 J	ND	ND
Dissolved Metals - ug/L																							
Arsenic, Dissolved	25	-	-	-	-	-	-	-	3.1 B	-	-	-	-	-	-	ND	-	6.6 B	-	6.9 B	-	4.4 B	-
Barium, Dissolved	1000	-	-	-	-	-	ı	-	34.6 B	-	-	-	-	-	-	52.7 B	-	40.6 B	-	14.2 B	-	27.8 B	-
Cadmium, Dissolved	5	-	-	-	-	-	1	-	ND	-	-	-	-	-	-	ND	-	13.6	-	0.41 B	-	2.1	-
Chromium, Dissolved	50	-	-	-	-	-		-	ND	-	-	-	-	-	-	ND	-	7.7 B	-	2.7 B	-	2.8 B	-
Lead, Dissolved	25	-	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	8.9	-	ND	-	3.5	-
Selenium, Dissolved	10	-	-	-	-	-	-	-	ND	-	-	-	-	-	-	2.9 B	-	ND	-	2.3 B	-	ND	-
Field Measurements	<u> </u>																						
Dissolved Oxygen (mg/L)	-	1.1	2.04	-	3.7	4.12	2.55	2.4	0.4	2.11	-	0.85	2.04	1.81	2.01	4.4	4.13	0.3	1.6	2.6	2.8	0.3	1.03
Field pH (S.U.)	12.5	9.02	9.20	9.37	9.47	9.66	9.78	10.09	7.29	7.38	7.63	7.63	7.49	7.23	8.48	11.25	8.60	7.51	6.90	6.90	7.14	7.87	6.44
Redox Potential (mV)	-	416	0	-89	51	194	111	-57	204	-150	-170	-180	-118	-58	-196	344	-	169	-153	5.12	44	167	-69
Specific Conductance (umhos/cm)	-	2,130	985.9	926	656	895.2	1183	1193	2,500	1329	1447	1076	1375	1275	1058	3990	2133	1520	4956	2730	2520	4110	3369
Temperature (deg C)	-	15.9	10.5	12.5	10.6	10.6	12.0	9.2	13.2	10.7	13.5	10.9	10.2	12.7	9.6	12.7	13.2	13.5	15.4	13.2	11.4	12.5	12.6
Turbidity (NTU)		0.1	5.23	1.69	256	7.19	5.08	2.28	146	11.1	26.6	3.92	20.4	9.52	22.2	320	115.2	256	83	647	15.1	16.2	254

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCS, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RF1 = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

								Monitoring \	Well Location,	, Sample Date	(s), & Monitor	ing Program						
PARAMETER ¹	GWQS/GV ²		MWN-01 -	— Slag/Fill		MWN-0	1B — Slag/Fil	ll; Sand/Dredge	e Spoils	MV	VN-11 — Slag/	/Fill	MW	/N-17A — Slag	g/Fill	MWN-1	7B — Slag/Fi	II; Sand
		Nov-1999	Jul-2011	Mar-2012	Jan-2019	Nov-1999	Jul-2011	Mar-2012	Jan-2019	Nov-1999	Oct-2010	3/1/2012	Nov-1999	Oct-2010	Mar-2012	Nov-1999	Oct-2010	Mar-2012
		RFI	SWI 2011	CMS 2012 5	CMS 2019	RFI	SWI 2011	CMS 2012 ⁵	CMS 2019	RFI	CMS 2010	CMS 2012	RFI	CMS 2010	CMS 2012 ⁵	RFI	CMS 2010	CMS 2012 ⁵
VOCs (Method 8260B, 8260C, 8021B) - ug/L																		
1,1-Dichloroethane	5	ND	-	-	ND	ND	-	-	ND	1.5 J	ND	-	ND	ND	-	ND	ND	-
1,2,4-Trimethylbenzene	5	-	6.4	-	-	-	7.1 J	-	-	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	5	-	4.2	-	-	-	ND	-		-		-	-		-	-	-	-
Acetone	50	-	-	-	ND	-	-	-	5.4	-	ND	-	-	ND	-	-	3.8 J	-
Benzene	1	22	62	-	24 D	54	93	-	72	4.5 J	0.7 J	-	ND	5.7	-	10	51	-
Carbon disulfide	60	-	-	-	ND	-	-	-	ND	-	0.98 J	-	-	0.86 J	-	-	0.87 J	-
Chloroform	7	ND	-	-	ND	ND	-	-	ND	ND	ND	-	12	ND	-	4.2 J	ND	-
Chloromethane (Methyl chloride)	5	ND	-	-	ND	ND	-	-	3	ND	ND	-	ND	ND	-	ND	ND	-
Cyclohexane	-	-	-	-	ND	-	-	-	0.39 J	-	ND	-	-	ND	-	-	ND	-
Ethylbenzene	5	ND	1.8 J	-	ND	ND	ND	-	0.74 J	ND	ND	-	ND	0.86 J	-	ND	ND	-
Isopropylbenzene	5	-	ND	-	ND	-	ND	-	1.3 J	-	ND	-	-	ND	-	-	ND	-
Methyl cyclohexane	-	-	-	-	ND	-	-	-	0.44 J	-	ND	-	-	ND	-	-	ND	-
p-Isopropyltoluene (p-Cymene)	5	-	ND	-	-	-	ND	-	-	-	-	-	-	-	-	-	-	-
Styrene	5	-	-	-	ND	-	-	-	ND	-	ND	-	-	1	-	-	ND	-
Toluene	5	9.1	12	-	5.1 DJ	21	23	-	20	ND	ND	-	ND	2	-	1.7 J	8.4	-
Xylenes, Total	5	19	40	-	17.9 D	23	21.1 J	-	20.7	ND	ND	-	ND	4.9	-	ND	5.3	-
SVOCs (Method 8270C, 8270D) - ug/L																		
2,4-Dimethylphenol	See Note 3	ND	-	2.4 J	ND	ND	-	ND	4.6 J	3.3 J	-	-	2.3 J	-	4.1 J	92 JD	-	140
2-Methylnaphthalene	-	_	54	-	35	-	48	-	30	_	ND	-	_	8.8	-	_	12	-
2-Methylphenol (o-Cresol)	See Note 3	24 J	-	8.7	_	ND	-	19	_	8.4 J	-	_	10	-	15	270 JD	-	330 D
3,4-Methylphenol (m,p-Cresol)	See Note 3	72 J	-	20	14	ND	-	40	34	37	-	-	43	-	46	1200 D	-	960 D
Acenaphthene	20	-	17	-	11	-	12	-	6.7	-	ND	-	-	2.8 J	-	-	2.5 J	-
Acenaphthylene	-	110	51	-	32	150 J	58	-	26	ND	0.38 J	-	ND	7.5	-	ND	8.7	-
Acetophenone	-	-	0.59 JB	-	ND	-	0.86 JB	-	0.72 J	_	ND	-	-	ND	-	-	ND	-
Anthracene	50	20 J	14	_	11	ND	11	-	3.5	ND	ND	_	ND	1.6 J	-	ND	1.4 J	_
Benzo(a)anthracene	0.002	ND	0.59 J	_	0.45	ND	1.2 J	-	0.34	ND	ND	_	ND	ND	-	ND	ND	_
Benzo(a)pyrene	0 (ND)	ND	ND	-	0.03 J	ND	0.54 J	-	0.08 J	ND	ND	-	ND	ND	-	ND	ND	-
Benzo(b)fluoranthene	0.002	-	ND	-	0.05 J	-	0.65 J	-	0.12	-	ND	-	-	ND	-	-	ND	-
Benzo(ghi)perylene	-	_	ND	-	ND	-	ND	-	0.04 J	_	ND	-	_	ND	-	_	ND	-
Benzo(k)fluoranthene	0.002	-	ND	_	0.02 J	_	ND	_	0.05 J	_	ND	-	_	ND	_	_	ND	_
Biphenyl	5	_	14	_	10		8.9	_	5.2	_	ND	-	_	2 J	_	_	2.5 J	_
Bis(2-chloroethyl)ether	1	ND	ND	_	ND	ND	ND	-	ND	ND	ND	-	ND	ND	-	81 J	ND	_
Bis(2-ethylhexyl)phthalate	5	ND	ND	_	ND	ND	ND	_	ND	ND	3.6 JB	_	ND	3.2 JB	-	ND	4 JB	-
Butyl benzyl phthalate	50	ND	ND	_	ND	ND	ND	-	ND	ND	1.9 JB	_	ND	ND	-	ND	ND	_
Carbazole	-	IND	50	_	29	- ND	79	-	43	- ND	0.88 J	_	IND -	8	-	- ND	9.6	
Chrysene	0.002	ND	0.52 J	_	0.2	ND	1.1 J	-	0.19	ND	ND	_	ND	ND	-	ND	ND	_
Dibenzo(a.h)anthracene	-	-	ND	_	ND	-	ND	_	ND	-	ND	_	-	ND	-	-	ND	
Dibenzofuran	-	-	62	_	42	-	30	-	18		ND	_	-	6 J	-		7.1 J	-
Di-n-butyl phthalate	50	ND	ND	_	ND	ND	ND	-	ND	ND	ND	_	ND	0.29 J	-	ND	0.46 J	_
Fluoranthene	50	15 J	15	_	10	ND ND	13	-	5.8	ND	0.5 J	-	ND ND	2.3 J	-	1.1 J	1.5 J	-
Fluorene	50	99 J	82	_	72 D	63 J	43	-	23	ND	0.55 J	_	ND ND	8.8	-	ND	8.2	-
Indeno(1,2,3-cd)Pyrene	0.002	- 33 3	ND	_	ND	-	ND	-	0.05 J	ND	ND	_	- ND	ND	-	- ND	ND	-
Naphthalene	10	630	290 D	_	250 D	1200	1300 D	-	920 D	4.3 J	2.7 J	_	6.4 J	62	-	22	110	
Pentachlorophenol	See Note 3	ND	230 D	2.2 D	1.1 J-	ND	1300 D	1.4 DJ	1 J-	4.3 J ND	Z./ J	-	ND	- 62	ND	ND	-	ND
Phenanthrene	50	140	120	-	130 D	95 J	69	1.4 D3	33	1.2 J	0.93 J	-	1.1 J	8.3	- -	2.2 J	8.3	- IND
Phenol	See Note 3	ND	120	ND	ND	95 J	- 69	7.5	18	1.2 J 2.1 J	0.93 J -	-	1.1 J 140 D	8.3	58	2.2 J 2400 D	- 8.3	700 D
Pyrene	50 See Note 3	ND ND	8.3	- -	6.1	ND	7.9	-	3.5	Z.1 J ND	0.4 J	-	2.5 J	2 J	-	2400 D	1.3 J	700 D
Total Phenolic Compounds (Method 8270C, 8		ND	0.3		0.1	ND	7.9		5.5	ND	U.4 J		2.5 J	_ Z J		1.4 J	1.3 J	
	0210D)= ug/L	00	1	00	4-	ND		60	F^	F4		1	405	T	400	0000		0400
Phenolic compounds (total phenols) 4	1	96	-	33	15	ND	-	68	58	51	-	-	195	-	123	3962	-	2130

								Monitoring '	Well Location	, Sample Date	(s), & Monitor	ing Program						
PARAMETER ¹	GWQS/GV ²		MWN-01 -	— Slag/Fill		MWN-0	1B — Slag/Fil	I; Sand/Dredge	e Spoils	MV	WN-11 — Slag	/Fill	MV	/N-17A — Slag	g/Fill	MWN-1	7B — Slag/Fi	II; Sand
		Nov-1999	Jul-2011	Mar-2012	Jan-2019	Nov-1999	Jul-2011	Mar-2012	Jan-2019	Nov-1999	Oct-2010	3/1/2012	Nov-1999	Oct-2010	Mar-2012	Nov-1999	Oct-2010	Mar-2012
		RFI	SWI 2011	CMS 2012 5	CMS 2019	RFI	SWI 2011	CMS 2012 ⁵	CMS 2019	RFI	CMS 2010	CMS 2012	RFI	CMS 2010	CMS 2012 ⁵	RFI	CMS 2010	CMS 2012 ⁵
Filtered SVOCs (Method 8270D) - ug/L																		
Acenaphthene	20	-	-	-	-	-	-	-	6.5	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	25	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	2.8	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	0.002	-	-	-	-	-	-	-	0.34	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	0 (ND)	-	-	-	-	-	-	-	0.08 J	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	0.002	-	-	-	-	-	-	-	0.12	-	-	-	-	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	0.04 J	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	0.05 J	-	-	-	-	-	-	-	-	-
Chrysene	0.002	-	-	-	-	-	-	-	0.21	-	-	-	-	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	5.8	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	22	-	-	-	-	-	-	-	1	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	0.05 J	-	-	-	-	-	-	-	1	-
Naphthalene	10	-	-	-	-	-	-	-	200 E	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	32	-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	3.4	-	-	-	-	-	-	-	1	-
Total Metals - ug/L																		
Arsenic, Total	25	4.1 B	-	5	-	12.1	-	19	-	4.3 B	-	ND	6.3 B	-	4 J	11.4	-	15
Barium, Total	1000	49.6 JB	-	-	-	58.1 JB	-	-	-	98.7 JB	-	-	92.7 JB	-	-	102 JB	-	-
Cadmium, Total	5	ND	-	-	-	ND	-	-	-	ND	-	-	ND	-	-	ND	-	-
Chromium, Total	50	6.5	-	ND	-	4 B	-	ND	-	1.1 B	-	6 J	2.7 B	-	ND	30.5	-	ND
Cyanide, Total	200	80	-	-	-	1100	-	204	-	100 J	-	-	R	-	-	50 J	-	-
Lead, Total	25	ND	-	ND	-	12.7 J	-	7 J	-	ND	-	3 J	ND	-	ND	ND	-	ND
Selenium, Total	10	6.6	-	11	-	6.1	-	8 J	-	10.4	-	12	12.2	-	6 J	14.8	-	ND
Dissolved Metals - ug/L	<u> </u>																	
Arsenic, Dissolved	25	-	-	-	-	11.7 J	-	-	-	-	-	-	2 B	-	-	9.9 B	-	-
Barium, Dissolved	1000	-	-	-	-	57.7 JB	-	-	-	-	-	-	60.8 B	-	-	99.7 B	-	-
Cadmium, Dissolved	5	-	-	-	-	ND	-	-	-	-	-	-	0.27 B	-	-	ND	-	-
Chromium, Dissolved	50	-	-	-	-	ND	-	-	-	-	-	-	5.6 B	-	-	0.96 B	-	-
Lead, Dissolved	25	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	ND	-	-
Selenium, Dissolved	10	-	-	-	-	6.8 J	-	-	-	-	-	-	7.9	-	-	12.5	-	-
Field Measurements																		
Dissolved Oxygen (mg/L)	-	0.6	1.84	2.67	1.4	0.5	1.05	1.46	1.48	1.3	1.63	1.66	-	1.32	0.51	0.5	1.94	1.14
Field pH (S.U.)	12.5	11.50	11.67	12.99	11.74	11.00	11.26	11.25	11.23	11.60	11.56	12.27	-	11.28	12.51	11.57	11.60	12.79
Redox Potential (mV)	-	-354	-223	-222	-225	-328	-223	-264	-228	-326	-195	-214	-	-295	-318	-70	-270	-295
Specific Conductance (umhos/cm)		1,400	1285	1271	1355	1,000	907.4	917.1	874.7	1,300	1267	1449	-	906.8	878.6	1,270	1920	1887
Temperature (deg C)		13.5	16.6	11.2	10.2	13.2	16.1	9.7	9.7	12.6	13.5	11.1	-	14.2	11.4	14.5	13.7	10.9
Turbidity (NTU)	-	9	5.56	8.86	1.49	140	9.94	1.46	4.61	9	40.5	4.03	_	1.22	0.92	60.5	50	3.57

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
- 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1) 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
- 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.
- 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.
 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results
- are presented as estimated (J qualified).

Definitions

- $\mbox{\sc B}$ = The analyte was also detected above the reporting limit in the associated method blank. $\mbox{\sc J}$ = Estimated value.
- J+ = Estimated value that may be biased high.
 J- = Estimated value that may be biased low.
- D = Concentration of analyte was quantified from diluted analysis.
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.
- = No GWQS/GV, or parameter was not analyzed for.
- R = Sample result was rejected by third party validator. VOCs = Volatile Organic Compounds

- SVOCs = Semivolatile Organic Compounds
 RFI = Final RCRA Facility Investigation (October 2004)
 CMS = Corrective Measures Study HWMU = Hazardous Waste Management Unit groudwater monitoring data

- = concentration is less than or equal to the GWQS/GV (includes non-detect)
 = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
 = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
 = concentration exceeds 100 times the GWQS/GV
 - = pH exceeds 12.5

					_					Monito	ring Well Loc	ation, Sample	Date(s), & Monitoring	Program							
PARAMETER ¹	GWQS/GV ²	MWN-23E	3 — Sand/Dred	dge Spoils	MWN-24A —	· Slag/Fill; Clay	ey Silt; Sand	1	MWN-24B — T	ill	MWN-44A	— Slag/Fill	MWN-80A — Slag/Fill; Sand	MWN-81A — Slag/Fill	MWN-82A — Slag/Fill; Sand	MWN-83A — Slag/Fill	MWN-84A — Slag/Fill	MWN-85 — Slag/Fill	MWN-94A	— Slag/Fill	MWN-94B — Sand
		Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Dec-2000	3/2/2012	Oct-2010	Oct-2010	Oct-2010	Oct-2010	Oct-2010	Oct-2010	May-2013	Jan-2019	May-2013
		RFI	CMS 2012	CMS 2019	RFI	CMS 2012	CMS 2019	RFI	CMS 2012	CMS 2019	RFI	CMS 2012	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2013	CMS 2019	CMS 2013
VOCs (Method 8260B, 8260C, 8021B) - ug/L			•	ND		1	ND		1	ND		•	ND	ND	ND	ND	ND	ND			
1,1-Dichloroethane	5	ND	-	ND	ND	- ND	ND	ND	- ND	ND	ND	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	-	1.1 J 1.7 J	-	-	ND	-	-	ND	-	-	ND	-	-	-	-	-	-	1.6 J	-	ND ND
1,3,5-Trimethylbenzene Acetone	50	-	1.7 J	1.5 J	-	ND -	- ND	-	ND -	- ND	-	ND -	- ND	5.4 J	- ND	ND	- 6.8 J	- 4.4 J	ND 7.4	ND	2.1 J
Benzene	30	13	11	6.5	ND	ND	ND ND	ND.	ND	ND ND	270	74 D	0.55 J	5.4 J	82	0.75 J	0.8 J 24	4.4 J 10	49	40	0.37 J
Carbon disulfide	60	13	-	ND	- ND	- ND	ND	ND	- ND	2.5 J	210	740	0.55 J ND	1.3	ND	0.75 J	0.52 J	0.55 J	ND	ND	0.37 3 ND
Chloroform	7	ND		ND	ND.	_	ND	ND	-	ND	ND	-	ND	ND	ND	ND	0.52 J ND	0.55 J	ND ND	ND	ND
Chloromethane (Methyl chloride)	5	ND	_	ND	ND	_	ND	ND		ND	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	-	-	_	ND	-	_	ND	-	-	ND	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.8 J	1.4 DJ	ND	ND	ND	ND	17	3.6	ND	ND	ND
Isopropylbenzene	5	-	ND	ND	-	ND	ND	-	ND	ND	-	ND	ND	ND	2.5	ND	1.1	1.7	0.74 J	ND	ND
Methyl cyclohexane	-	-	-	ND	-	-	ND	-	-	ND	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene (p-Cymene)	5	-	0.48 J	-	-	ND	-	-	ND	-	-	ND	-	-	-	-	-	-	ND	-	ND
Styrene	5	-	-	ND	-	-	ND	-	-	ND	-	-	ND	ND	ND	ND	ND	6.2	ND	ND	ND
Toluene	5	1.5 J	ND	1 J	ND	ND	ND	ND	ND	ND	53	ND	ND	1.3	ND	ND	2.9	5.1	ND	ND	ND
Xylenes, Total	5	ND	2.74 J	1.72 J	ND	ND	ND	ND	ND	ND	53	ND	ND	2.6	2.5	ND	13	23	1.2 J	0.9 J	ND
SVOCs (Method 8270C, 8270D) - ug/L																					
2,4-Dimethylphenol	See Note 3	6.5 J	-	ND	ND	-	ND	ND	-	ND	ND	-	-	-	-	-	-	-	-	ND	-
2-Methylnaphthalene	-	-	1.7	ND	-	ND	ND	-	ND	ND	-	ND	ND	3.6 J	ND	ND	6.9	84	1.6	ND	0.1 J
2-Methylphenol (o-Cresol)	See Note 3	22	-	-	ND	-	-	ND	-	-	ND	-	-	-	-	-	-	-	-	-	-
3,4-Methylphenol (m,p-Cresol)	See Note 3	69	-	8.5	ND	-	ND	ND	-	ND	ND	-	-	-	-	-	-	-	-	ND	-
Acenaphthene	20	-	0.8	ND	-	ND	ND	-	ND	ND	-	3.4	0.99 J	3.6 J	1.2 J	0.42 J	52	10	2	1.6	0.08 J
Acenaphthylene	-	ND	0.55	ND	ND	0.09 J	ND	ND	ND	ND	50	0.8	0.64 J	0.65 J	0.55 J	0.42 J	7.1	38	0.89	0.68	ND
Acetophenone	-	-	ND	ND	-	ND	ND	-	ND	ND	-	2.1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	50	ND	0.58	ND	ND	0.14 J	ND	ND	ND	ND	ND	0.94	0.56 J	0.84 J	1.3 J	ND	0.52 J	8.8	0.31	0.1	ND
Benzo(a)anthracene	0.002	ND	0.19 J	ND	ND	0.16 J	ND	ND	0.18 J	ND	85 J	0.72	0.5 J	0.34 J	0.45 J	ND	ND	ND	0.29	ND	0.14 J
Benzo(a)pyrene	0 (ND)	ND	0.1 J	ND	ND	0.11 J	ND	ND	0.13 J	ND	65 J	0.89	ND	ND	ND	ND	ND	ND	0.23	ND	ND
Benzo(b)fluoranthene	0.002	-	0.25	ND	-	0.29	ND	-	0.28	ND	-	1.1	0.44 J	ND	ND	ND	ND	ND	0.26	ND	0.11 J
Benzo(ghi)perylene	-		0.07 J	ND	-	ND	ND	-	0.1 J	ND	-	0.98	ND	ND	ND	ND	ND	ND	0.16 J	ND	ND
Benzo(k)fluoranthene	0.002		0.15 J	ND		0.16 J	ND	-	0.18 J	ND	-	0.63	ND	ND	ND	ND	ND	ND	0.22	ND	ND
Biphenyl	5	-	ND	ND	-	ND	ND	-	ND	ND	-	1.2 J	ND	0.81 J	ND	ND	21	13	ND	ND	ND
Bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	5 50	ND	ND	ND	ND	ND	1.7 J	ND	ND	1.6 J	ND	ND	3.7 JB 1.9 JB	3.7 JB	5 B	6.2 B	3.9 JB	4.4 JB	ND	1.7 J	ND
Carbazole	- 50	ND	ND 3	1.5 J	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	1.9 JB 0.58 J	1.8 JB 6	1.8 JB 1.9 J	1.8 JB 0.33 J	ND 9.5	ND 36	ND 1.8 J	1.3 J	ND ND
Chrysene	0.002	ND	0.08 J	ND	- ND	0.06 J	ND ND	ND	0.1 J	ND	75	0.55	0.33 J	ND ND	0.37 J	0.33 J ND	9.5 ND	ND	0.33	ND	0.15 J
Dibenzo(a,h)anthracene	0.002	ND -	0.06 J	ND ND	ND -	ND	ND ND	ND -	0.1 J	ND ND	/5	0.29	0.33 J ND	ND ND	0.37 J ND	ND	ND ND	ND ND	0.33 ND	ND ND	ND
Dibenzofuran	-	 	1.3 J	0.72 J	-	ND ND	ND		0.14 J	ND		5	0.77 J	2.1 J	ND ND	ND	22	34	0.9 J	0.87 J	ND ND
Di-n-butyl phthalate	50	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.32 J	ND	ND	0.29 J	ND	ND	ND
Fluoranthene	50	ND	1	ND	ND ND	0.17 J	ND	ND	0.17 J	0.04 J	310 JD	0.9	1.8 J	1.5 J	2 J	0.64 J	0.48 J	8.4	0.81	ND	0.4
Fluorene	50	1.4 J	2.1	ND	ND	0.08 J	ND	ND	0.09 J	ND	440 D	5.2	1.0 J	3.1 J	0.75 J	0.42 J	13	37	1.3	ND	0.4
Indeno(1,2,3-cd)Pyrene	0.002	-	0.18 J	ND	-	ND	ND	-	0.21	ND	-	0.97	ND	ND	ND	ND	ND	ND ND	0.16 J	ND	ND
Naphthalene	10	9.4 J	8.9	ND	ND	0.43	ND	ND	0.23	ND	1700 D	0.68	ND	57	3.5 J	2.3 J	470 DB	990 DB	34 D	22	0.45
Pentachlorophenol	See Note 3	ND	-	0.49 J-	ND	-	ND	ND	-	ND	ND	-	-	-	-	-	-	-	-	ND	-
Phenanthrene	50	2.7 J	3.6	ND	ND	0.13 J	ND	ND	0.19 J	ND	760 D	0.66	1.5 J	1.7 J	3.5 J	1.2 J	4.4 J	65	1	ND	0.62
Phenol	See Note 3	3.9 J	-	0.89 J	4.8 J	-	ND	ND	-	ND	13 J	-	-	-	-	-	-	-	-	ND	-
Pyrene	50	ND	0.8	ND	ND	0.14 J	ND	ND	0.17 J	ND	220 JD	1.1	ND	1.1 J	1.4 J	0.5 J	0.37 J	5.1	0.63	ND	0.28
Total Phenolic Compounds (Method 8270C,	8270D)- ug/L																				
Phenolic compounds (total phenols) 4	1	101	-	9.9	4.8	-	ND	ND	-	ND	13	-	-	-	-	-	-	-	-	ND	-
	· ·		!									l	1			1					

										Monito	ring Well Loc	ation, Sample	Date(s), & Monitoring	Program							
PARAMETER ¹	GWQS/GV ²	MWN-23E	B — Sand/Dre	dge Spoils	MWN-24A —	- Slag/Fill; Clay	yey Silt; Sand	,	MWN-24B — T	ill	MWN-44A	— Slag/Fill	MWN-80A — Slag/Fill; Sand	MWN-81A — Slag/Fill	MWN-82A — Slag/Fill; Sand	MWN-83A — Slag/Fill	MWN-84A — Slag/Fill	MWN-85 — Slag/Fill	MWN-94A	— Slag/Fill	MWN-94B — Sand
		Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Dec-2000	3/2/2012	Oct-2010	Oct-2010	Oct-2010	Oct-2010	Oct-2010	Oct-2010	May-2013	Jan-2019	May-2013
		RFI	CMS 2012	CMS 2019	RFI	CMS 2012	CMS 2019	RFI	CMS 2012	CMS 2019	RFI	CMS 2012	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2013	CMS 2019	CMS 2013
Filtered SVOCs (Method 8270D) - ug/L							'														
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	0 (ND)	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Benzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	_	_	-	-	_	-	-	-	-	_	_	-	-	_	_	-	_	-
Phenanthrene	50	_	_	-	_	_	_	_	-	-	_	_	_	_	_	-	_	_	_	_	_
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Total Metals - ug/L					•	•	•														
Arsenic, Total	25	12.6	8	-	73.4	4 J	-	2.6 B	ND	-	36.5	72	-	-	_	-	-	-	11.09	_	7.29
Barium, Total	1000	81.9 JB	-	-	47.1 JB	-	-	198 JB	-	-	88 B	-	-	-	-	-	-	-	-	_	_
Cadmium, Total	5	ND	-	-	ND	-	-	ND	-	-	ND	-	-	-	-	-	-	-	-	_	_
Chromium, Total	50	1.7 B	5 J	-	18.5	5 J	-	24.9	5 J	-	112	10	-	-	-	-	-	-	6.77	_	5.37
Cvanide, Total	200	92 J	-	-	19 J	-	-	R	-	-	230 J	119	_	-	_	-	-	-	-	_	-
Lead, Total	25	ND	3 J	-	ND	6 J	-	3.1	3 J	-	44.4	4 J	_	-	-	-	-	-	28.53	-	14.56
Selenium, Total	10	8.1 J	6 J	-	ND	ND	-	ND	ND	-	2.6 B	ND	_	-	-	-	-	-	1.17 J	-	0.87 J
Dissolved Metals - ug/L						•															
Arsenic, Dissolved	25	12	-	-	2.9 B	ND	-	ND	ND	-	20.3	-	-	-	_	-	-	-	-	-	-
Barium, Dissolved	1000	80.3 B	-	-	31.7 B	-	-	166 B	-	-	29.2 B	-	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	0.26 B	-	-	ND	-	-	ND	-	-	0.83 B	-	-	-	-	-	-	-	-	-	-
Chromium, Dissolved	50	ND	-	-	5	3 J	-	1.1 B	ND	-	2.7 B	-	-	-	-	-	-	-	-	-	-
Lead, Dissolved	25	ND	-	-	ND	4 J	-	ND	ND	-	ND	-	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	11.5 J	-	-	ND	ND	-	ND	ND	-	ND	-	-	-	-	-	-	-	-	-	-
Field Measurements																					
Dissolved Oxygen (mg/L)	T -	0.9	1.76	2.11	2.6	2.06	4.23	0.4	1.47	-	na	2.6	1.72	1.17	1.59	2.02	2.20	2.13	2.58	1.6	1.22
Field pH (S.U.)	12.5	11.60	12.08	11.74	6.48	6.60	5.85	6.58	7.43	6.80	8.30	7.16	7.33	9.52	6.75	8.20	10.81	11.62	9.71	9.50	6.97
Redox Potential (mV)		-377	-253	-237	378	-68	41	-138	-192	-103	-83	-220	-110	-214	-83	-133	-246	-257	-155	-182	-92
Specific Conductance (umhos/cm)	-	1.200	1243	1135	2.750	218.2	1440	1.860	1367	1338	2.400	1694	578.5	511.6	790.1	657.2	1138	1202	2000	1230	3310
Temperature (deg C)	-	13.2	11.4	9.1	13.4	10.4	9.6	12.6	10.5	10.1	11.4	10.8	16.1	17.7	15.3	14.7	12.9	12.5	15.5	10.8	15.6
Turbidity (NTU)	-	95	16.6	1.57	112	145	18.8	125	1.47	12.40	1000	12.8	201	84.3	83.7	235	107	9.42	130	3.42	296

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
- 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
- 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.
- 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.
- 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

Definitions

- B = The analyte was also detected above the reporting limit in the associated method blank. J = Estimated value.
- J+ = Estimated value that may be biased high.
 J- = Estimated value that may be biased low.
- D = Concentration of analyte was quantified from diluted analysis.
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument. ND = Not detected at the method detection limit.
- = No GWQS/GV, or parameter was not analyzed for.
- R = Sample result was rejected by third party validator. VOCs = Volatile Organic Compounds
- SVOCs = Semivolatile Organic Compounds
 RFI = Final RCRA Facility Investigation (October 2004)
- CMS = Corrective Measures Study
- HWMU = Hazardous Waste Management Unit groudwater monitoring data

Bold	
Bold	
Bold	
Dala	

- = concentration is less than or equal to the GWQS/GV (includes non-detect)
 = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
 = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
 = concentration exceeds 100 times the GWQS/GV
- = pH exceeds 12.5

Page 1 of 26

Property of the part															& Monitoring P										
Part	PARAMETER 1	GWQS/GV ²											MW-1	D1 — Slag/Fill											
Selection of the select																									Apr-201
Company Comp		ug/L				_								<u> </u>											
1. The properties of the prope		5							0.98 J					110											ND ND
All Properties 1	etramethylbenzene	-			-	-	-	-		-	-	-	-	-	-	-		-	-		-		-	ı	-
Company				ND	ND				ND	ND				ND	ND	ND									ND 25
1			-	ND	ND				ND	ND .				ND	ND	ND ND				ND					ND
Add Sections 1				ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND			110			110		ND
All Controls																									ND ND
Service 18		-																							-
Service 1 1 17 1 17 1 10 10 10 10 10 10 10 10 10 10 10 10 1	ie		-	+			-	-	-	-	-	-	-	-	-	+	-			110		-			NE
STATE OF THE PARTY NAME AND ADDRESS			1.7 J				3.4 J	2.1 J	1.8 J	8.5	0.8 J	2.3	15	6.5	3.7		20			IND		17 D			ND 8.5
The content of the co				ND	ND	ND												ND	ND	ND	ND	-	ND	ND	NE
Transfer 9 10 10 10 10 10 10 10 10 10 10 10 10 10						_				- ND															ND ND
Targeties (110				110	110				110	110					110						ND ND
Composed Com		7		ND		ND	ND		ND		ND	ND		ND			ND	ND			ND		ND	ND	NE
Thingstart											-			-			-					-			NE NE
Company Comp	rene	5									2.3 J			7.5			32	36	32	IND	19		32		14
## Professional S. N.D. NO. NO. NO. NO. NO. NO. NO. NO. NO. NO	enzene		-	-	-	-	-	-	-	-	-		-	-	-	-	-		2.4	ND	1.3 J	ND	ND	ND	NE
Sobpenson 8			ND.	ND.	ND.	ND			- ND	ND.	0.66.1	0.78.1		ND.	ND.	- ND	ND.			IND			IND		NE NE
Secretary Secret	nzene	5			_					-					-		1			A 150	ND		ND	ND	NE
S		5		-	-	-			-	-				-	-										NE NE
Commonweigner Commonweigne	/itolderie (p-Cyrrierie)													_			1								NE
in 2 Consolements	oethene																110		ND	ND	ND	-	ND	ND	NE
Second S	Dichloroothono					1.4 J	6.6	4.8 J		20 B	2 J					16		20	20	15 D	8.2	12 DJ	12	12 D	6.6
Part		5		110	110	3.5 J	6.8	6.9	110	12	2 J		IND	110	110	9.7		16	16	12 D	6.1	-	8.1	8.5 D	4.
Cambridge Camb		2			ND	ND					ND				ND		110		110	110			110		NI
Open propried See Note 3 NO NO NO NO NO NO NO		5	9.6	ND	ND	ND	10	9	6.8 J	84	7.3 J	14.2	48	23.1	16.9	81	102	120	97	99 D	64	92 D	105	86 D	41
Comprehense S		See Note 3	ND	ND	ND	ND	ND	ND	ND	4.1	ND	ND	10	2.1	ND	ND	_	28.1	ND		_	· -	-	-	Τ -
Chargement See Note 3	otoluene	5	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND		ND			-	-	-		-
New York				ND	ND	ND			ND	ND	ND			ND	ND		ND			ND	ND	ND	ND	ND	NE
Methylphone Consol See Note 3 NO		-	+	-	-	-			-	-	-	-		-	-		ND			7	5.4	8.2 D	7.2 D	7.4	4.5
Section Sect	henol (o-Cresol)		ND	ND	ND	ND	ND	ND	2 J	2 J	0.5 J	0.3 J	2 J	0.4 J	ND	ND	-	ND	ND	-					-
	nol	See Note 3	-	-	-	-			-	-	-	-	-	-	-	-	- ND			- ND	- ND	- ND	-	ND.	N
See Note 3 NO NO NO NO NO NO NO	Iphenol (m,p-Cresol)	See Note 3	ND							1 J	1.2 J	0.4 J	4 J	0.8 J						110		1	-		- 111
Niceraline Se		See Note 3																							-
See Note 3		5																							NE
anaphthylene	enol													_				ND	ND			-	-		-
etelphenone										-	_							0.98 J		2					2
Infracence						ND -				-	- 3 J				- 3 J								ND -		25 NE
Oracle O	ne			ND		ND			ND	ND	0.3 J		0.3 J			ND	ND		ND	0.42		ND	ND	ND	NI
race/bifurcartenee				110		110		110	110								110		110				110		NI
1.20 1.20									- IND																NI NI
Tayl Alcohol				-	-	-		-	-	-	-			-	-	-									N
Description Fig.			-	-	-	-		-	-		-			-	-	-	ND -			ND ND			ND -		NI NI
		5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	4.8	8.7 J	10		15	-		8.
Page				110		110		110	145		110		110	110		110				- ::=		2.3 J			N
Sene		5U -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND			110	- ::=	1,9.I	-		0.9
Properties Pro		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	N
Description														-						110					1
thylphtalate																									1
-octyl phthalate	phthalate	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	1
anthene																									
rene														110											1
hthalene		50			ND												1.8 DJ	2.8 J	4.5 J	6.7	5.5	9 D	8.6 D	9.8	8
trosodiphenylamine (NDPA/DPA) 50									12 1		- 12 B	- 22		- 70	42	250 D									1
tacklorophenol See Note 3 ND ND<																		ND	ND	ND ND	ND				1
nol See Note 3 2.1 J ND 1 J 1 J 0.9 J ND 2 J 4 J 1 J ND - ND	prophenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-		ND	-	
rene 50 ND	ene																					1			2
idine 50 ND	+																								N.
		50	ND																						-

											Monitoring Wel	Location, Sai	mple Date(s),	& Monitoring P	rogram									
PARAMETER ¹	GWQS/GV ²											MW-1D	1 — Slag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
Filtered SVOCs (Method 8270D) - ug/s	"	RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
Acenaphthene	20	1	T	T	T	1		1	T	T			I		1	I	T .	T	1	I		T	I	
Acenaphthylene	- 20	- :	-	-	-	-	-		-		-		-	-		-	-	-		-			-	-
Anthracene	50	-	-							-		-	-	-	-					-	-		-	
Benzo(ghi)perylene	-	-	-				-			-		-	-	-	-	-				-			-	
Dibenzo(a.h)anthracene	-			+			-		-	+				-				-				-		
Fluoranthene	50	_	-	-					-	-	-		-	-	-	-	-	-		-	-		-	-
Fluorene	50	-	-	-	-	-	-		-		-	-		-				-	-	-	- :	-	-	
Indeno(1,2,3-cd)Pyrene	0.002	-	-				-	_				-	-	+		-						-		
Naphthalene	10	-	-				-			-		-	-	-	-	-				-	-		-	-
Phenanthrene	50	-	-	-			-			+		-	-	-		-								
Pyrene	50	-		-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-		-	
Total Metals - ug/L	30	-	-	•	•	<u> </u>	-	-	•	<u> </u>	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	
Arsenic, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	I .	Τ -	I .	_	_	T -	_	_
Barium, Total	1000	21.1 B	22	25	28	48	38.8	38	125	32	34.6	65	36.8	35	44.8	-	-			-		1	-	-
Cadmium, Total	5	ND.	ND	ND	30.8 ND	ND	ND	-	-	-	-	-		-	-	-								
Chromium, Total	50	1.4 B	3.4	ND	ND	ND	9.2	ND	ND	19	6.1	ND	4.9	5.7	13.7	-	-		-	-		-	-	
Cyanide, Total	200	32	ND	50	20	24	14	55	90 J	ND	13	57	31	27	45.2	-		-		-		1	-	-
Lead. Total	25	1.9 B	ND	ND	ND	ND	45.2 ND	-	-	-	-	-		-	-									
Selenium, Total	10	6.5	ND	ND	ND	ND	ND	-	-	-		-		1	-									
Dissolved Metals - ug/L	1.0	0.5	IND	IND	IND	IND	ND	IND	IND	IND	IND	IND	IND	ND	ND	-	_	-	-	-	_	_	-	
Arsenic, Dissolved	25	_	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-				-	-	-	-	-
Barium, Dissolved	1000	-	20	26	_	36	38.2	37	128	33	34.1	69	35.6	35	44.4	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	ND.	ND	-	ND	ND.	ND.	ND.	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Dissolved	50	-	ND	ND	-	ND	6.4	ND	ND	13	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Lead, Dissolved	25	-	ND	ND	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	-	ND	ND	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Field Measurements		1			1							.,,,						1		1		1	1	
Dissolved Oxygen (mg/L)	-	2.6	4.22	2.51	2.82	1.21	1.39	1.91	1.25	2.2	1.72	1.02	1.21	1.21	1.21	1.9	1.16	1.24	1.65	2.31	1.21	1.47	2.18	3.88
Field pH (S.U.)	12.5	10.80	10.92	11.91	11.92	10.86	10.97	10.63	10.62	11.59	11.36	10.46	10.45	10.87	10.87	8.82	8.66	9.16	9.09	10.99	9.31	9.17	10.60	11.64
Redox Potential (mV)	-	-145	-44	-48	-69	-108	-26	-129	-159	-114	-54	-130	-87	-161	-161	-92	-60	57	-179	-156	-273	-55	-66	-152
Specific Conductance (umhos/cm)	-	2600	1946	2563	2220	4088	2710	3551	6736	4601	3227	5257	3332	3021	3021	3515	6693	3860	5341	3719	4879	4890	4205	3842
Temperature (deg C)	-	15.9	17.1	14.1	14.2	14.8	17.1	12.1	19.4	14.3	18.1	15.7	14.1	14.6	14.6	16.6	15.3	15.9	16.3	18.1	18.5	16.3	14.8	13.7
Turbidity (NTU)		2	3.33	1.23	1.1	0.2	0.95	1.45	4.35	2.82	3.74	2.04	20.3	21	21	4.06	3.87	6.69	12.7	3.23	5.93	8.29	23.4	11
			1 0.00			. v.=	0.00				U	-	_0.0				0.0.	0.00		0.20	0.00	0.20	_0	

- Notes:
 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.
 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.
 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).
 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value that may be biased high.

 J = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 D = Not detected at the method detection limit.

 No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	
	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= nH eyreeds 12.5

										N	lonitoring Well	Location, Sa	mple Date(s),	& Monitoring P	rogram									
PARAMETER ¹	GWQS/GV ²	Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	MW-1[02 — Slag/Fill May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
		RFI	HWMU 2003a			HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b		HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	
OCs (Method 8260B, 8260C, 8021B) I,1-Dichloroethane) - ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	_	-	-		_	_	1 -
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
1,2,4,5-Tetramethylbenzene	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	5	-	ND	-	-	-	-	-	-	-	-	-	-	-	ND	-	-	-	-		-	-	-	-
1,2,4-Trimethylbenzene	5	-	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	- ND	9.6	12	10 D	9.9 D	11 D	3.4	13 D	3.9
1,2-Dichlorobenzene 1,2-Dichloroethane	0.6	- ND	ND ND	ND	ND	- ND	ND	- ND	ND	- ND	- ND	ND	ND.	- ND	ND ND	ND ND	-	1	-			- :		-
1,3,5-Trimethylbenzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	6	7.1	5 DJ	5.9 DJ	6.8 D	5.3	6.3 D	3
1,4-Dichlorobenzene	3	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	ı	1	-
,4-Diethylbenzene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Butanone Acetone	50 50	-	-	- ND	- ND	- ND	- ND	- ND	ND .	- ND	ND	ND.	- ND	- ND	-	-	-	-	-	-	-	-	-	-
Benzene	1	2.3 J	- ND	1.4 J	1.8 J	2.4 J	2.4 J	2.8 J	0.87 J	1.8 J	1.6	1.4	1.1	2	1.8	1.6	1.1	1.6	1.1 DJ	1.5 D	1.7 D	0.9	1.3 D	1.3
Bromomethane	5	ND	ND	1.40	1.00	2.40	2.40	2.00	0.07 0	1.00	1.0	1.4	1	_	ND	ND	-	-	-	-	-	-	-	-
Carbon disulfide	60	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	
Chloroethane Chloroform	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	5	ND -	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND -	ND -	-	-	-	-	-	-	-	-
Cyclohexane	-	-	_	-	-	-	-	- 10	-	-	-	-	-	-	-	-	-	-	-	-	-		ı	-
thylbenzene	5	ND	ND	ND	ND	ND	ND	0.63 J	0.45 J	ND	ND	ND	ND	ND	ND	ND	0.29	0.34	ND	ND	ND	ND	ND	ND
sopropylbenzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	ND	ND	ND
Methyl cyclohexane Methylene chloride	5	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	-	-	-	-	-	-	-	+ -
-Butylbenzene	5	-	- ND	ND -	- ND	- -	- ND	- ND	- ND	- ND	- -	- 140	- 140	- ND	- -	- ND	0.67	0.92	ND ND	ND .	ND .	ND .	ND	ND
-Propylbenzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	ND	ND	ND
-Isopropyltoluene (p-Cymene)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND
tyrene	5	- ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	- ND	-	-	-	-	-	-	-	-
etrachloroethene oluene	5	2.5 J	ND ND	ND 1.4 J	1.6 J	ND 1.9 J	ND 1.3 J	ND 2.1 J	ND ND	ND 1.4 J	ND 1	1.3	ND 0.81 J	ND 1.6	ND 2.8	ND 3.5	2.9	3.5	3.4 DJ	1.8 DJ	3.1 DJ	0.97 J	2.5 DJ	0.83 J
ans-1,2-Dichloroethene	5	2.5 J ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	0.61 J	ND	ND	3.5 ND	2.9	3.5	3.4 DJ	1.0 DJ	3.1 DJ	0.97 J	2.5 DJ	0.03 J
richloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-		-	-
inyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	ı	ı	-
ylenes, Total	5	32	ND	10.7 J	15 J	12.5 J	13.4 J	17.7	10.3 J	14.3 J	9.9	13	5.9	10.9	8.6	8.9	7.9	8.5	6.8 DJ	6.3 DJ	6.5 DJ	3.5 J	7.5 DJ	4 J
'OCs (Method 8270C, 8270D) - ug/L																								
,4-Dimethylphenol	See Note 3	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	-	-	-	-
t,6-Dinitrotoluene t-Chloronaphthalene	5 10	ND	- ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	- ND	- ND	- ND	- ND	- ND
!-Chlorophenol	See Note 3	ND -	- ND	ND -	ND -	ND -	ND -	ND -	ND -	ND -	- ND	ND -	ND -	ND -	ND -	- ND	ND ND	ND	ND -	- ND	ND -	- IND	ND .	ND -
-Methylnaphthalene	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	52	50	64	82 D	32 D	42 D	27 D	63	26
-Methylphenol (o-Cresol)	See Note 3	ND	ND	-	-	-	-	-	-	0.5 J	-	-	-	-	ND	-	0.7 J	ND	-	-	-	-	-	-
-Nitrophenol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-
i,3'-Dichlorobenzidine i,4-Methylphenol (m,p-Cresol)	See Note 3	- ND	ND.	- ND	ND	- ND	- 1 J	ND.	ND .	- 2.1	ND	ND .	ND.	- ND	- ND	ND	ND 1.8 J	ND ND	ND	ND	ND	ND	ND	ND
-Chloro-3-methylphenol	See Note 3	ND	ND	ND	ND	ND	ND ND	ND	ND	2 J ND	ND	ND	ND	ND ND	ND	-	ND	ND	-	-	-	-	-	-
-Chloroaniline	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Nitroaniline	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	-	-	-	-
-Nitrophenol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-		ND	ND	-	-	-	-		-
cenaphthene cenaphthylene	20	- 88	46	ND 54	ND 51	ND 32	ND 34	ND 67	ND 28	ND 42	ND 23 J	ND 39	ND 17 J	ND 37	14	1.4 J 26	1.2 J 26	ND 21 J	0.96 15	0.66	0.88 DJ 17 D	0.67 D 7.8 D	1 J 19	0.83 J
cetophenone	-	-	-	ND	ND	ND	ND	ND	ND	WD ND	ND ND	ND ND	ND.	ND	- 14	1.5 J	1.2 J	ND.	ND	ND	0.53 J	ND	1.2 J	ND
Inthracene	50	2.3 J	ND	ND	ND	ND	ND	ND	0.8 J	1 J	ND	2 J	ND	2 J	ND	0.71 J	0.83 J	ND	0.3	0.32	0.37 DJ	0.18 DJ	ND.	ND
enzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
enzo(a)pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
enzo(b)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
enzo(ghi)perylene enzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
enzyl Alcohol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND
phenyl	5		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	5.1	4.8	5.8 J	5.3	3.2	3	2.8	5.9	2.9
s(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	8 BJ	ND	ND	ND	ND	ND	ND	3.3 BJ	ND	ND	ND	ND	ND	ND	ND
utyl benzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 251	ND 2.4.1	ND	ND	ND 121	ND 101	ND	ND 101	ND
arbazole nrysene	0.002	ND.	- ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND.	2.5 J	2.4 J	ND ND	1.5 J	1.3 J	1.3 J	ND	1.6 J ND	1.1 J
benz(a,h)anthracene	0.002	ND -	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzofuran	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	8.4 J	7.5 J	7.5 J	6.6	4.4	3.8	3.6	6.8	4.7
ethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.32 J		ND	ND	ND	ND	ND	ND	ND
methyl phthalate	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-butyl phthalate n-octyl phthalate	50 50	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND 1 D I	ND	ND	ND	ND	0.65 BJ	0.38 J	ND ND	ND	ND	ND	ND ND	ND	ND
-n-octyl pntnalate uoranthene	50	2.9 J	ND ND	ND ND	ND 2 J	ND ND	ND ND	ND ND	ND 1 J	ND 2 J	1 BJ 1 J	ND 2 J	ND 1 J	ND 2 J	ND ND	0.74 J	3.6 J 0.95 J	ND ND	ND 0.44	ND 0.44	ND ND	0.56 DJ	ND ND	0.72
Jorene	50	16	13	14	12	ND ND	8 J	17 J	6 J	9 J	5 J	ND	6 J	10 J	3.4 J	5.9	0.95 J 5.8	4.5 J	4.3	0.44 3.2 J	4 D	3 D	4.5	4.7
deno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
aphthalene	10	340 D	150	220	490 D	240	490 D	370	360 D	270 BD	250	240	210	160	100	130	120	160	160 D	69 D	110 D	46 D	170	44
Nitrosodiphenylamine (NDPA/DPA)		-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
entachlorophenol	See Note 3	ND 14	ND 10	ND 12	ND 10	ND	ND	ND 14	ND 4 I	ND	ND	ND	ND	ND 10.1	ND	-	ND 4.5.1	ND 2.4.1	-	-	ND	ND	- 27	-
nenanthrene nenol	50 See Note 3	14 2.7 J	10 ND	12 1 J	10 1 J	ND ND	5 J 1 J	14 J ND	4 J ND	7 J 1 J	4 J ND	11 J ND	5 J ND	10 J ND	2.9 J 3.1 J	4 J -	4.5 J 2.7 J	3.4 J ND	2.6	2.2	2.3 D	2.3 D	2.7	3.8
/rene	50 See Note 3	2.7 J	ND ND	1 J	2 J	ND ND	ND	ND ND	1 J	1 J	ND ND	1 J	ND ND	1 J	3.1 J ND	0.48 J	0.63 J	ND	0.28	0.34	ND ND	0.42 DJ	ND.	ND.
ridine	50	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	- 0.42 D3	-	-
al Phenolic Compounds (Method																								
	1	2.7	ND	3	1	ND	2	ND	ND	3.5	ND	ND	ND	ND	3.1	-	5.2	ND	-	-				-

											Monitoring Wel	LL ocation, Sar	nnle Date(s). 8	Monitoring P	rogram									
													p.o Dato(o);		. og. u									
PARAMETER 1	GWQS/GV ²											MW-1D	2 — Slag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
		RFI	HWMU 2003a		HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010		HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015		HWMU 2017	HWMU 2018
Filtered SVOCs (Method 8270D) - ug/L																								
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																								
Arsenic, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Barium, Total	1000	52.5	57	51	48	43	51	58	44.1	49	45.7	46	43.3	46	48.8	-	-	-	-	-	-	-	-	-
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Total	50	0.5	ND	ND	ND	ND	4.1	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Cyanide, Total	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Lead, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Total	10	6.8	5.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Dissolved Metals - ug/L																								
Arsenic, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Barium, Dissolved	1000	-	52	53	-	49	49.3	53	44.5	47	44.9	45	45.1	44	48	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Dissolved	50	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Lead, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	-	6	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Field Measurements																								
Dissolved Oxygen (mg/L)	-	0.7	1.37	2.64	1.63	0.98	1.95	2.04	1.41	1.43	1.69	1.5	1.07	1.68	1.56	1.55	1.26	1.89	1.6	1.71	1.63	1.85	1.4	1.51
Field pH (S.U.)	12.5	12.10	11.66	13.23	12.59	11.91	11.92	11.52	11.61	11.46	11.33	11.61	11.11	11.34	11.00	11.24	11.73	12.50	11.98	11.59	11.35	11.95	12.08	12.63
Redox Potential (mV)	-	-336	-229	-204	-214	-241	-263	-251	-230	-239	-236	-233	-174	-251	-255	-231	-239	-194	-238	-278	-277	-154	-161	-234
Specific Conductance (umhos/cm)	-	3300	2347	2627	2523	2486	2406	2552	2396	2538	2406	2382	2373	2495	2370	1977	1932	2135	1952	1483	1774	1268	1936	1728
Temperature (deg C)	-	13.9	15.7	11.9	11.9	14.5	13.5	13.5	17.7	14.8	14.6	15.7	12.8	13.2	13.0	14.1	12.9	14.2	15.5	16.2	16.4	15.6	13.1	13.6
Turbidity (NTU)	-	2	20.3	1.5	7.75	1	2.23	2.53	10.3	3.27	2.79	2.31	2.43	1.5	2.69	4.58	47.6	2.28	5.82	4.29	10	2.33	0.65	8.37

- Notes:
 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.
 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.
 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).
 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value that may be biased high.

 J = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 D = Not detected at the method detection limit.

 No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5
<u> </u>	

										N	Ionitoring Wel	l Location, Sa	mple Date(s),	& Monitoring F	Program									
PARAMETER ¹	GWQS/GV ²											MW-1	D3 — Slag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
VOCs (Method 8260B, 8260C, 8021B)	B) - ug/L	RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
1,1-Dichloroethane 1,1-Dichloroethene	5	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-	-	-	-	-	-	-
1,2,4,5-Tetramethylbenzene	5	ND -	- ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	- IND	-		-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	5	-	ND	-	-	-	-	-	-	-	-	-	-	-	ND	-	-	-	-	-	-	-	-	-
1,2,4-Trimethylbenzene 1,2-Dichlorobenzene	5	-	- ND	ND -	ND -	ND -	ND -	ND -	ND -	0.3 J	0.6 J	ND -	0.3 J	ND -	- ND	- ND	0.46	0.36	ND -	ND -	ND -	ND -	ND -	ND -
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-		-			-
1,3,5-Trimethylbenzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	0.69	0.79	ND	0.74 J	0.93 J	0.94 J	0.8 J	0.93 J
1,4-Dichlorobenzene 1,4-Diethylbenzene	3	-	ND	ND -	ND -	ND -	ND -	ND -	ND -	0.3 J	ND -	ND -	ND -	ND -	ND -	-	-	-	-	-	-	-	-	-
2-Butanone	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Acetone Benzene	50	- 401	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 2.4	ND	ND	-	- 40	-	-	-	-	-	-	-	-
Bromomethane	5	4.9 J ND	ND	1.9 J ND	12 ND	16 ND	16 J ND	8.7 ND	4.3 J ND	4.6 J ND	35 ND	3.1 ND	14 ND	5.7 ND	8.5 ND	12 ND	27	6.8	23	11	4.8	4.9	4.2	5.2
Carbon disulfide	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
Chlorobenzene Chloroethane	5	ND ND	ND ND	ND ND	ND ND	1.8 ND	ND ND	0.85 J	0.42 J	ND ND	3.5 ND	ND ND	1.2 ND	0.58 J	0.99 J	1.5 ND	-	-	-	-	-	-	-	-
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyclohexane Ethylbenzene	5	- ND	- ND	- ND	- ND	- ND	- ND	0.45 J	- ND	- ND	0.63 J	- ND	- ND	- ND	- ND	ND ND	- ND	- ND	ND ND	- ND	- ND	- ND	ND.	- ND
Isopropylbenzene	5	- ND	-	ND ND	ND	ND ND	ND ND	0.45 J ND	ND ND	ND ND	ND	ND ND	ND	ND	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	-	-	-	-	-	-	-	-
Methylene chloride n-Butylbenzene	5	ND -	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND -	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND
n-Propylbenzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene (p-Cymene) Styrene	5	-	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	-	-	ND	0.15 J	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	-	-	-	-	-		-	-
Toluene	5	2.3 J	ND	ND	2.8 J	3.7 J	ND	2.4 J	ND	2.2 J	7.4	1.2	3	2.3	3.6	5.4	11	3.4	9.6	5.1	2 J	2 J	1.8 J	2.3 J
trans-1,2-Dichloroethene Trichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-	-	-	-	-	-	-
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
Xylenes, Total	5	14	ND	3.2 J	4.5	5.8	ND	8 J	5.6 J	8.3 J	13.6	4.9	7.1	5.7	5.4	6.7	10.5	5.7	9.1	7.1	4.6 J	4.6 J	4 J	4.8 J
SVOCs (Method 8270C, 8270D) - ug/s 2,4-Dimethylphenol	See Note 3	2.6 J	ND	ND	3 J	2 J	2 J	2 J	ND	1 J	2 J	ND	4 J	1 J	ND	-	3.5 J	ND	_	-	1		-	T -
2,6-Dinitrotoluene	5	ND	- ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	-	-	-	-	-
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol 2-Methylnaphthalene	See Note 3		-	- ND	- ND	- ND	ND.	ND.	ND .	- ND	ND .	ND.	ND.	ND	-	1.3 J	ND ND	0.8 J	0.92	0.72	0.74	0.73	- ND	- 1.1 J
2-Methylphenol (o-Cresol)	See Note 3	ND	ND	ND	6 J	4 J	4 J	2 J	ND	2 J	9	0.7 J	7	2 J	2.4 J	-	13 J	ND	-		-	-	-	-
2-Nitrophenol 3,3'-Dichlorobenzidine	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.50 1	ND	ND	- ND	- ND	- ND	- ND	- ND	- ND
3,4-Methylphenol (m,p-Cresol)	See Note 3	ND.	3 J	- 1 J	28	12	10	13 J	3 J	9 J	54	- 4 J	38	- 8 J	ND	0.58 J	ND 46 J	ND ND	ND -	ND -	ND -	ND -	ND -	ND -
4-Chloro-3-methylphenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	-	•	-	-
4-Chloroaniline 4-Nitroaniline	5	-	-	- ND	- ND	- ND	ND .	ND.	ND .	- ND	- ND	- ND	- ND	ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND
4-Nitrophenol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-
Acenaphthene	20	-	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	1.2 J	1.9 J	0.69 J	1.1	0.6	0.58	0.55	ND 0.00 I	0.84 J
Acetophenone	-	3.8 J	ND -	ND ND	ND ND	ND ND	ND ND	1 J ND	1 J ND	0.9 J ND	1 J ND	1 J ND	1 J ND	0.9 J ND	ND -	0.89 J ND	ND ND	0.69 J ND	0.65 ND	0.52 ND	0.69 ND	0.75 ND	0.92 J ND	1.1 J ND
Anthracene	50	ND	ND	ND	ND	ND	ND	0.6 J	ND	0.3 J	0.9 J	0.4 J	1 J	0.5 J	ND	0.78 J	1.4 J	0.42 J	0.69	0.36	0.28	0.37	ND	ND
Benzo(a)anthracene Benzo(a)pyrene	0.002 0 (ND)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.2 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(b)fluoranthene	0.002	-	- ND	- ND	-	-	- -	-	- ND	-	- ND	- 140	- -	-	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(ghi)perylene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene Benzyl Alcohol	0.002		-	-	-	-	-	-	-	-	-	-	-	-	-	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Biphenyl	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5 50	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	8 BJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	1.8 J	ND ND	ND ND	ND ND	ND ND
Butyl benzyl phthalate Carbazole	-	ND -	ND -	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- UND	2.2 J	3.3 J	1.3 J	ND	ND	1 J	ND	1.1 J	1.9 J
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene Dibenzofuran	-	-	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	-	ND 1.1 J	ND ND	ND 0.61 J	ND ND	ND ND	ND ND	ND ND	ND ND	0.89 J
Diethyl phthalate	50	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	0.42 J	ND ND	ND	ND ND	ND ND	ND ND	ND ND	IND	0.89 J ND
Dimethyl phthalate	- 50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate Di-n-octyl phthalate	50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.3 BJ ND	0.4 BJ ND	ND ND	0.42 BJ ND	ND 16 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Fluoranthene	50	1.8 J	ND	2 J	ND	ND	ND	1 J	0.7 J	0.4 J	1 J	1 J	0.8 J	0.7 J	ND	0.68 J	ND	0.58 J	0.4	0.37	0.51	0.51	0.8 J	ND
Fluorene Indeno(1,2,3-cd)Pyrene	50 0.002	3.9 J	ND	3 J	ND	ND	2 J	2 J	2 J	1 J	2 J	2 J	2 J	2 J	ND	2.2 J	2.7 J	1.4 J	1.7	1.2	1.3	1.5	1.2 J	1.9 J
Naphthalene	10	- 6 J	- 4 J	- 4 J	- 11	- 8	- 8 J	- 7 J	- 6 J	- 6 BJ	14 J	- 4 J	9	5	5.9 J	ND 16	ND 18 J	ND 5.9	ND 12	ND 6.1	ND 4.8	ND 4.1	ND 3.7	7.4
N-Nitrosodiphenylamine (NDPA/DPA	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.2 J	3.2 J	0.71 J	ND	ND	ND	ND	ND	ND
Pentachlorophenol Phenanthrene	See Note 3 50	ND 4.9 J	ND ND	ND 4 J	ND 4 J	ND 3 J	ND 3 J	ND 3 J	ND 2 J	ND 2 J	ND 4 J	ND 3 J	ND 4 J	ND 3 J	2.3 J	- 4.1 J	ND 6.3 J	ND 2.1 J	2.9	1.8	ND 1.5	ND 1.7	- 1.7 J	2.5
Phenol	See Note 3	4.9 J 15	ND	3 J	56	41	27	15	7 J	14	100	4 J	64	11	2.3 J	4.1 J	150	ND	- 2.9	-	-	- 1.7	1.7 J	- 2.3
Pyrene	50	ND	ND	1 J	ND	ND	ND	0.8 J	0.5 J	0.3 J	0.6 J	0.7 J	0.5 J	0.4 J	ND	0.45 J	ND	0.4 J	0.23	0.27	0.35	0.32	ND	0.64 J
Pyridine Total Phenolic Compounds (Method	50 8270C. 8270D)- u	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND	4 J	ND	ND	-	-	-	-	-	-	-	-	-
Phenolic compounds (total phenols)		17.6	3	4	93	59	43	32	10	26	165	8.7	113	22	26.4	-	212.5	ND	-	-	-	-	-	-
	_																							

											Monitoring Well	Location Sa	mple Date(s), 8	Monitoring P	rogram									
PARAMETER ¹	GWQS/GV ²									·	<u> </u>		3 — Slag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
Filtered SVOCs (Method 8270D) - ug/L																								
Acenaphthene	20	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-		-
Total Metals - ug/L																								
Arsenic, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Barium, Total	1000	97.6 B	61	58	150	220	219 J	140 J	91.4	53	361	87	220	110	207	-	-	-	-	-	-	-	-	-
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Total	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Cyanide, Total	200	ND	ND	ND	130	26	ND	39	ND	ND	ND	ND	290	ND	17.2	-	-	-	-	-	-	-	-	-
Lead, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Total	10	7.9	5.9	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-							
Dissolved Metals - ug/L																								
Arsenic, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Barium, Dissolved	1000	-	53	60	-	230	244 J	130	92.1	50	380	88	260	110	235	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Dissolved	50	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Lead, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	-	4.8	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Field Measurements																								
Dissolved Oxygen (mg/L)	-	0.6	1.59	1.93	0.91	0.77	1.64	0.57	1.46	1.03	1.55	0.89	0.51	1.01	1.19	0.85	0.62	0.74	0.64	0.68	1.05	0.89	1.2	0.74
Field pH (S.U.)	12.5	12.00	11.86	13.40	12.36	11.98	11.75	11.53	11.56	10.91	11.47	11.50	11.60	11.18	11.30	11.30	11.73	13.39	11.43	11.81	11.53	12.29	12.40	12.80
Redox Potential (mV)	-	-393	-269	-243	-280	-319	-320	-309	-308	-304	-349	-288	-326	-305	-317	-367	-342	-346	-478	-347	-346	-319	-314	-360
Specific Conductance (umhos/cm)	-	3400	2574	2650	2651	2683	2828	2727	2272	1081	3238	2485	2102	2975	3070	2572	3637	2409	3787	2572	2407	2320	2301	3652
Temperature (deg C)	-	14.0	15.8	12.0	12.0	14.4	12.6	12.1	16.3	14.5	14.2	13.3	12.8	12.4	13.6	13.8	14.2	14.1	16.8	15.0	15.4	15.3	12.9	14.8
Turbidity (NTU)	-	2	2.45	1.71	4.61	1.5	2.08	2.19	10.9	3.96	21	3.41	7.92	2.52	7.09	6.48	9.2	6.92	2.97	10.3	7.02	3.09	0.7	5.55

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCS, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (*Italicized*).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5

												Monitorin	g Well Location	n, Sample Dat	te(s), & Monito	oring Program	1									
PARAMETER 1	GWQS/GV ²											MW-1	04 — Slag/Fill												MW	V-1D5 — Slag/F
		Nov-1999 RFI	Jun-2003 HWMU 2003a	Oct-2003 HWMU 2003b	May-2004 HWMU 2004a	Oct-2004 HWMU 2004b	May-2005 HWMU 2005a	Oct-2005 HWMU 2005b	May-2006 HWMU 2006a	Oct-2006 HWMU 2006b	May-2007 HWMU 2007a	Oct-2007 HWMU 2007b	May-2008 HWMU 2008a	Oct-2008 HWMU 2008b	May-2009 HWMU 2009	May-2010 HWMU 2010	May-2011 HWMU 2011	Jun-2012 HWMU 2012	Jun-2013 HWMU 2013	Jul-2014 HWMU 2014	Sep-2015 HWMU 2015	Jun-2016 HWMU 2016	May-2017 HWMU 2017	Apr-2018 HWMU 2018	Nov-1999 RFI	Apr-2013 CMS 2013
lethod 8260B, 8260C, 8021B) -	ug/L																									
hloroethane hloroethene	5	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	-	-	-	-	-	-		-	ND ND	ND
-Tetramethylbenzene	-	ND -	- ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	- ND	ND.	-	-		-	-	-	-	-	- ND	ND ND
richlorobenzene	5	-	ND	-	-	-	-	-	-	-	-	-	-	-	ND	-	-	-	-	-	-	-	-	-	-	ND
rimethylbenzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	0.41	0.85	ND	0.74 J	0.81 J	ND	ND	ND	-	ND
hlorobenzene	3	-	ND	-	-	-	-	-	-	-	-	0.2 J	-	-	ND	-	-	-	-	-	-	-	-	-	-	ND
nloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	- 401	- 101	-	- 471	- 4 4 1	- 451	ND	ND
imethylbenzene Ilorobenzene	3	-	- ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	- ND	ND ND	1.4	2.4	1.6 J	1.9 J	2.1 J	1.7 J	1.4 J	1.5 J	-	ND ND
nylbenzene	-	-	- ND	ND -	ND -	ND -	- ND	ND	ND.	ND -	ND -	IND.	ND -	- -	IND.	- ND	-	-		-		-		-		ND
one	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND
	50	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	-	-	-	-	-	-	-	-	-	4 J
1	1	31	17 J	18	14	14	11	8.5	14	12	15	9.2	9.4	14	8.9	12	4	11	9.3	7.6	7.1	7.5	6	5.6	18	13
ethane	5 60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	ND	ND
lisulfide Inzene	5	ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.48 J	ND ND	0.55 J	ND ND	ND ND	0.52 J	ND.	ND ND	-	-	-	-	-		-	-	ND	ND ND
hane	5	ND	ND	ND	ND	ND	ND	ND	0.46 J	ND	0.55 J	ND	ND	0.52 J	ND	ND	-	-		-	-	-	-	-	ND	ND
rm	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	ND	ND
ichloroethene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	-	-	-	-	-	-	-	-	-	ND
ane	-	-		-		-	-	-	-	-		-		-	-	-	-		LIP.	-	-	-	- 6	-		ND
zene	5	ND	ND	ND	ND	ND	ND	0.69 J	0.73 J	0.58 J	0.78 J	ND	0.54 J	0.62 J	0.49 J	ND ND	0.23	0.45	ND	ND	ND	ND	ND	ND	ND	ND
benzene /clohexane	5	-	-	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	-	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	-	ND ND
e chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-		-	-	-	-	-	-	ND	ND
enzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	0.1 J	0.19 J	ND	ND	ND	ND	ND	ND	-	ND
enzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND
yltoluene (p-Cymene)	5	-	-	-	<u> </u>	ļ <u>-</u>	-	-	-		-				-		0.23	0.33	ND	ND	ND	ND	ND	ND	-	ND
raethana	5	- ND	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	ND	-	-	-	-	-	-	-	-	- ND	ND
roethene	5	8.2	ND 5.5 J	5.7	4.8 J	4.4 J	3.4 J	ND 3 J	ND ND	3.6 J	ND 4.9	ND 3.2	3.3	5.3	ND 3.5	6.7	6.2	- 4	- 6	4.8	3.9	3.4	3.1	2.8	ND 6.5	ND ND
-Dichloroethene	5	ND	ND	ND	4.83 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	- 0.2	-	-	-	-	-	-	-	ND	ND
ethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	ND	ND
ride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	ND	ND
Total	5	19	7.1 J	17.2 J	15.6	15.3 J	11.8 J	12.8 J	13.5 J	11.8 J	14.4	10.2	10	12	8.4	9.7	5.5	9	7.4	7.3	6.6	6.2	5.8	5.2	22	ND
lethod 8270C, 8270D) - ug/L																										
thylphenol	See Note 3	2.5 J	ND	ND	2 J	ND	ND ND	ND ND	ND ND	1 J	1 J	ND ND	1 J	1 J	ND ND	- ND	ND ND	ND	- ND	-	-	-	-	-	3.7 J	- ND
rotoluene naphthalene	10	ND	- ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	- ND	- ND	- ND	- ND	- ND	ND ND	ND ND
phenol	See Note 3	ND -	- ND	ND -	IND .	IND -	IND.	ND -	IND.	ND -	- ND	IND.	IND -	- ND	IND.	- ND	ND	ND	- ND	- ND	ND -	- ND	ND -	IND -	IND.	IND -
naphthalene	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	3 J	2.1 J	2.4 J	2.1	2 J	1.9	1.6	1.4 J	2.2	_	3.6
ohenol (o-Cresol)	See Note 3	2.2 J	ND	2 J	-	2 J	-	-	-	1 J	1 J	-	0.9 J	1 J	ND	-	ND	ND	-	-	-	-	ı	-	6.8 J	-
enol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-	-	-
lorobenzidine	5	-				-	-	-	-	-	-	-		-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND
ylphenol (m,p-Cresol) 3-methylphenol	See Note 3 See Note 3	5.2 J	4 J ND	4 J	3 J	2 J ND	2 J	2 J ND	3 J	6 J ND	6 J ND	ND ND	4 J	6 J ND	ND ND	-	ND ND	ND ND	-	-	-	-	-	-	16 J	-
niline	5	ND -	ND	ND -	ND	ND	ND -	ND -	ND	ND	ND -	ND	ND -	- ND	ND	4.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
iline	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND.	ND	ND	ND	ND	- ND	-	-	-	-	ND
enol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-	-	-
hene	20	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	1.5 J	1 J	1.5 J	1	0.96	0.9	0.89	0.94 J	1.2 J	-	2.7
hylene	-	5.7 J	5 J	8 J	4 J	4 J	5 J	3 J	4 J	3 J	4 J	3 J	4 J	4 J	2.8 J	3.3 J	2.1 J	3.2 J	1.4	1.4	1.6	1.5	1.7 J	1.8 J	10	4.4
none	50	- ND	- ND	ND ND	ND ND	ND ND	ND ND	ND 1 J	ND 1 J	0.7 J	ND 1 J	ND 1 J	ND 1 J	ND 1	- ND	2.4 J 0.66 J	0.79 J 0.45 J	ND 1.3 J	ND 0.54	ND 0.49	ND 0.42	ND 0.58	ND ND	ND ND	- 1.5 J	ND 1.6
anthracene	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 J ND	1 J ND	0.7 J ND	1 J ND	ND	1 J ND	1 J	ND ND	0.66 J	0.45 J ND	1.3 J ND	0.54 ND	0.49 ND	0.42 ND	0.58 ND	ND ND	ND ND	1.5 J ND	0.1 J
pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND
)perylene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND
luoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND
cohol	5	-	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND	-	0.75 DJ	ND ND	ND 0.79 J	ND ND	ND ND	0.49 J	ND ND	ND ND	ND ND	-	1.6 J 0.9 J
/lhexyl)phthalate	5	ND.	ND.	ND ND	ND ND	ND ND	ND	10	ND ND	6 BJ	ND ND	ND ND	ND ND	ND ND	ND.	0.75 DJ	2.8 JB	0.79 J	ND ND	ND ND	0.49 J	ND ND	ND ND	ND ND	4.8 J	0.9 J
zyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	4.5	2.4 J	4.3 J	ND	ND	ND	ND	1.8 J	2.5	-	10
	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1 J
	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND
n)anthracene		- ND	- ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	- ND	2.1 J	1.5 J	2.3 J	ND	1.5 J	1.3 J	1.2 J	1.4 J	1.7 J	- ND	3.2
n)anthracene ran	-	INI)	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n)anthracene ran thalate	50				ND	ND	ND	ND	ND	ND	ND	0.3 J	0.3 BJ	0.4 BJ	ND	0.41 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n)anthracene ran thalate shthalate phthalate		ND ND	ND ND	ND		ND	ND	ND	ND	ND	0.8 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n)anthracene ran thalate hithalate phthalate phthalate	50 - 50 50	ND ND ND	ND ND	ND	ND	ND				0.9 J	1 J	1 J	1 J	1 J	ND	0.52 J 3.5 J	ND	1.3 J	0.5	0.6	0.4	0.57	0.6 J	0.75 J	2.1 J	2.5
n)anthracene ran thalate hithalate phthalate phthalate	50 - 50 50 50	ND ND ND 1.6 J	ND ND ND	ND	2 J	ND	2 J	2 J	2 J				4 1	4 J	3 J	3.5 J	2.5 J	3.8 J	2.3	2.6	0.0	3				6.1
h)anthracene rran thalate ohthalate phthalate phthalate ane	50 - 50 50 50 50	ND ND ND	ND ND				2 J 5 J	2 J 4 J	5 J	4 J	4 J	4 J	4 J	4.0				0.00	2.0		2.2		2.2	2.9	8.6 J	
h)anthracene uran tihalate phthalate phthalate phthalate ene ene 2,3-cd)Pyrene	50 - 50 50 50 50 50 0.002	ND ND ND 1.6 J 4.6 J	ND ND ND 6 J	ND 2 J 7 J	2 J 4 J	ND 4 J	5 J -	4 J -	5 J -	4 J -	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND
h)anthracene iran ithalate obthalate phthalate phthalate ene 2,3-cd)Pyrene ene	50 - 50 50 50 50 50 0.002	ND ND ND 1.6 J 4.6 J	ND ND ND 6 J	ND 2 J 7 J - 28	2 J 4 J - 16	ND 4 J - 16	5 J - 17	4 J - 13	5 J - 17	4 J - 13 B	14	- 11	- 11	14	10	ND 15	ND 8.7	ND 10	ND 11	ND 7.9	ND 8.2	ND 6.4	ND 7.1	ND 8.1	- 40	ND 19
h)anthracene uran uthalate phthalate phthalate phthalate phthalate ene 2,3-cd)Pyrene ene diphenylamine (NDPA/DPA)	50 - 50 50 50 50 0.002 10	ND ND ND 1.6 J 4.6 J	ND ND ND 6 J - 22	ND 2 J 7 J - 28	2 J 4 J - 16	ND 4 J - 16	5 J - 17 -	4 J - 13	5 J - 17 -	4 J - 13 B	- 14 -	- 11 -	- 11 -	- 14 -	10	ND 15 ND	8.7 ND	ND	ND 11 ND	ND 7.9 ND	ND 8.2 ND	ND 6.4 ND	7.1 ND	ND 8.1 ND	- 40 -	ND
h)anthracene uran uthalate phthalate phthalate phthalate ene 2,3-cd)Pyrene	50 - 50 50 50 50 50 0.002	ND ND ND 1.6 J 4.6 J	ND ND ND 6 J	ND 2 J 7 J - 28	2 J 4 J - 16	ND 4 J - 16	5 J - 17	4 J - 13	5 J - 17	4 J - 13 B	14	- 11	- 11	14	10	15 ND	ND 8.7	ND 10 ND	ND 11 ND	ND 7.9	ND 8.2	ND 6.4	ND 7.1	ND 8.1	- 40	ND 19 ND
h)anthracene uran uthalate phthalate phthalate phthalate ene 2,3-cd)Pyrene ene diphenylamine (NDPA/DPA) rorphenol	50 - 50 50 50 50 0.002 10 50 See Note 3 50 See Note 3	ND ND ND 1.6 J 4.6 J - 18 - ND	ND ND ND 6 J - 22 - ND 10	ND 2 J 7 J - 28 - ND	2 J 4 J - 16 - ND	ND 4 J - 16 - ND	5 J - 17 - ND 7 J ND	4 J - 13 - ND	5 J - 17 - ND 7 J ND	4 J - 13 B - ND	- 14 - ND 6 ND	- 11 - ND 5 ND	11 - ND 6 J 2 J	- 14 - ND	- 10 - ND 4.8 J ND	ND 15 ND - 3.8 J	ND 8.7 ND ND 3 J 0.9 J	ND 10 ND ND 6.3 ND	ND 11 ND - 3.3	7.9 ND - 3.7	ND 8.2 ND ND 2.4	ND 6.4 ND ND 3.4	ND 7.1 ND - 2.9	ND 8.1 ND	- 40 - ND 9.8 J 33	ND 19 ND - 7.9
n)anthracene ran thalate ththalate phthalate phthalate phthalate ene 2,3-cd)Pyrene ne ne piphenylamine (NDPA/DPA) rophenol	50 - 50 50 50 50 0.002 10 50 See Note 3	ND ND ND 1.6 J 4.6 J - 18 - ND 5.6 J	ND ND ND 6 J - 22 - ND	ND 2 J 7 J - 28 - ND 10	2 J 4 J - 16 - ND 7 J	ND 4 J - 16 - ND 6 J	5 J - 17 - ND 7 J	4 J - 13 - ND 8 J	5 J - 17 - ND 7 J	4 J - 13 B - ND 5 J	- 14 - ND 6	- 11 - ND 5	- 11 - ND 6 J	- 14 - ND 7	- 10 - ND 4.8 J	ND 15 ND - 3.8 J	ND 8.7 ND ND 3 J	ND 10 ND ND ND 6.3	ND 11 ND	7.9 ND - 3.7	ND 8.2 ND ND	ND 6.4 ND ND 3.4	7.1 ND - 2.9	ND 8.1 ND - 3.8	- 40 - ND 9.8 J	ND 19 ND

												Monitorin	g Well Location	n, Sample Dat	e(s), & Monito	oring Progran	n										
PARAMETER 1	GWQS/GV ²											MW-1	04 — Slag/Fill												MV	V-1D5 — Slag	/Fill
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018	Nov-1999	Apr-2013	Jan-2019
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018	RFI	CMS 2013	CMS 2019
Filtered SVOCs (Method 8270D) - ug/l	_		<u>'</u>	<u>'</u>	•		<u>'</u>						<u>'</u>								· · · · · · · · · · · · · · · · · · ·						
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																											
Arsenic, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	ND	-	-
Barium, Total	1000	71.6 B	81	140	79	64	67.8	68	70.1	77	69.3	69	67.3	77	63.5	-	-	-	-	-	-	-	-	-	158 B	-	-
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	ND	-	-
Chromium, Total	50	ND	ND	ND	ND	ND	ND	ND	ND	4.3	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	1.2 B	-	-
Cyanide, Total Lead, Total	200	ND	ND	13	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.066	-	-								
	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	ND	-	-
Selenium, Total	10	8.1	4	ND	ND	ND	-	-	-	-	-	-	-	-	-	9.8	-	-									
Dissolved Metals - ug/L																											
Arsenic, Dissolved	25	-	ND	ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-							
Barium, Dissolved	1000	-	73	88	-	65	67.4	66	75.5	67	68	67	68.5	76	62.5	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	ND	ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-							
Chromium, Dissolved	50	-	ND	ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-							
Lead, Dissolved	25	-	ND	ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-							
Selenium, Dissolved	10	-	4.6	ND	-	ND	ND	8 J	-	-	-	-	-	-	-	-	-	-	-	-							
Field Measurements																											
Dissolved Oxygen (mg/L)	-	0.4	1.28	4	1.72	1.18	1.41	1.19	1.67	1.47	1.41	0.89	1.08	0.9	1.21	2.16	1.9	0.74	1.5	0.58	1.94	1.5	1.99	1.56	0.4	0.85	1.76
Field pH (S.U.)	12.5	12.00	11.62	13.43	12.66	11.75	11.89	11.54	11.65	11.62	11.61	11.62	11.61	11.17	11.28	11.34	11.40	12.28	12.09	11.92	11.48	12.33	12.17	12.90	12.00	11.87	12.18
Redox Potential (mV)	-	-434	-295	-248	-251	-275	-299	-270	-302	-281	-304	-291	-304	-311	-302	-290	-245	279	-387	-325	-339	-317	-300	-332	-458	-390	-237
Specific Conductance (umhos/cm)	-	3100	2615	2596	2619	2490	2455	2568	2439	2290	2351	2517	2375	2527	2313	2387	2163	2259	2311	2260	2260	2297	2232	2193	3000	2386	2896
Temperature (deg C)	-	13.3	15.4	10.7	11.9	13.5	12.4	11.2	16.5	14.6	14.5	13.2	14.1	12.2	13.7	14.1	13.3	14.1	16.5	16.5	17.6	15.4	13.3	14.5	13.9	14.1	10.5
Turbidity (NTU)	-	3	2.48	1.83	2.31	0.18	0.99	1.27	10.5	4.19	3.78	2.03	2.36	0.63	1.39	1.1	4.19	1.53	2.56	2.24	8.24	2.61	1.12	4.66	1	5.44	1.35

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value that may be biased high.

 J = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5

										Monitori	ng Well Location	on, Sample Da	ate(s), & Monito	oring Progran	n								
PARAMETER 1	GWQS/GV ²											MW-1D6 — SI	ag/Fill										
		Nov-1999 RFI	Jun-2003 HWMU 2003a	Oct-2003 HWMU 2003b	May-2004 HWMU 2004a	Oct-2004 HWMU 2004b	May-2005 HWMU 2005a	May-2006 HWMU 2006a	Oct-2006 HWMU 2006b	May-2007 HWMU 2007a	Oct-2007 HWMU 2007b	May-2008 HWMU 2008a	Oct-2008 HWMU 2008b	May-2009 HWMU 2009	May-2010 HWMU 2010	May-2011 HWMU 2011	Jun-2012 HWMU 2012	Jun-2013 HWMU 2013	Jul-2014 HWMU 2014	Sep-2015 HWMU 2015	Jun-2016 HWMU 2016	May-2017 HWMU 2017	Apr-2018
Cs (Method 8260B, 8260C, 8021B) - u	ug/L							HVVIVIO 2000a		HVVIVIO 2007a										HVVIVIO 2015			
1-Dichloroethane	5	57	47	33	35	28	22	39	37	16	13	7.2	7.2 ND	4.2	2.5	2.6	3.3	1.5 J	2.2 J	-	2.4 J	1.9 J	1.7 DJ
1-Dichloroethene 2,4,5-Tetramethylbenzene	<u>5</u>	ND ND	ND -	ND ND	ND -	ND -	ND -	ND -	ND -	ND -	-	ND -	ND -	ND -									
2,4-Trichlorobenzene	5	-	ND	-	-	-	-	-	-	-	-	-	-	ND	-	ND	ND	-	ND	-	ND	ND	ND
2,4-Trimethylbenzene	5	ND	-	ND	-	-	-	-	ND	0.75 J	1 J	ND	0.84 J	1.2 D.									
2-Dichlorobenzene	3	- ND	ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND	ND	ND	ND 0.47 I	ND	ND	-	ND 0.41 I	ND	ND 0.20 D
2-Dichloroethane 3,5-Trimethylbenzene	0.6 5	ND -	ND -	ND ND	ND -	ND -	ND -	0.47 J	ND ND	ND ND	- ND	0.41 J	0.3 J	0.29 D									
4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	-	ND	ND	ND
4-Diethylbenzene	•	٠	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
-Butanone cetone	50 50	-	-	- ND	- ND	ND.	- ND	ND.	- ND	- ND	ND .	ND.	- ND		-	ND ND	ND ND	2.5 J	ND 4.8 J		ND 3 J	ND ND	2.3 D
enzene	1	ND	ND	ND	ND	ND	ND	1 J	ND	ND	1.7	0.48 J	2.4	1.3	ND	0.62 J	1.7	0.53	1.2	2	1.3	1.6	2.3 D
romomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
arbon disulfide hlorobenzene	60	-	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	- ND	ND	1.9	ND	ND	-	ND	ND	ND
hloroethane	5 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2 J	ND ND	ND 2.5	ND ND	ND ND	ND 2.1	ND ND	ND ND	ND 0.64 J	ND 0.85 J	ND ND	ND ND	-	ND ND	ND ND	ND ND
hloroform	7	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
s-1,2-Dichloroethene	5	-	-	ND	-	-	ND	ND	ND	ND	-	ND	ND	ND									
yclohexane	-	-	-	-	-	-	-	-	- 10	- ND	-	- ND	-	-	-	ND	ND	ND	ND	- 2	ND	ND	ND
hylbenzene opropylbenzene	5 	ND -	ND -	6.9 ND	ND ND	ND -	ND -	ND ND	ND ND														
lethyl cyclohexane	-	-	-	- -	- ND	-	- ND	IND	- ND	- -	- ND	- -	- ND	-	-	ND	ND	ND	ND	- -	ND ND	ND	ND
lethylene chloride	5	ND	ND	ND	ND	ND	ND	3.3 J	1.3 J	0.97 J	1.4	ND	1.3	ND	1.3 B	0.61 J	1.4	0.75 J	ND	-	ND	ND	0.7 D
-Butylbenzene Bronylbenzene	5 5	-	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	-	-	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Propylbenzene Isopropyltoluene (p-Cymene)	5	-	-	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	-	-	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
tyrene	5	-	-	ND	-	-	ND	ND	ND	ND	-	ND	ND	ND									
etrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
oluene	5	ND	ND	ND	ND	ND	ND	ND	ND	0.59 J	ND	ND	1	0.65 J	ND	ND	0.81 J	ND	ND	0.84 J	1.1 J	0.84 J	0.88 [
ans-1,2-Dichloroethene richloroethene	5 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.47 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
inyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
/lenes, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.85 J	0.45 J	ND	ND							
OCs (Method 8270C, 8270D) - ug/L																							4
4-Dimethylphenol 6-Dinitrotoluene	See Note 3	ND ND	ND -	ND ND	2 J ND	ND ND	1 J ND	ND ND	- ND	ND ND	ND ND	- ND	-	-	-	-	-						
-Chloronaphthalene	10	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND.	ND ND	ND .	ND.	- ND
-Chlorophenol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-
-Methylnaphthalene			-	ND	-	ND	ND	ND	ND	1.4	0.85	0.84	2	2.1									
-Methylphenol (o-Cresol) -Nitrophenol	See Note 3 See Note 3	ND	ND	-	-	-	-	-	0.5 J	0.4 J	4 J	0.5 J	0.8 J	ND	-	ND	1.2 J	-	-	-	-	-	-
3'-Dichlorobenzidine	5 See Note 3	-	-	-	-	-	-		-	-	-		-	-	- ND	ND ND	ND ND	- ND	- ND	- ND	- ND	ND.	- ND
4-Methylphenol (m,p-Cresol)	See Note 3	ND	7 J	1 J	ND	ND	ND	1 J	0.5 J	0.4 J	12 J	1.8 J	4 J	1.3 J	-	0.91 J	1.7 J	-	-	-	-	-	-
-Chloro-3-methylphenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-		-	-	-
-Chloroaniline -Nitroaniline	5	-	-	- ND	- ND	- ND	- ND	- ND	ND .	- ND	- ND	ND .	- ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND -	ND
Nitrophenol	See Note 3	-	-	- ND	- ND	- IND	- ND	-	- ND	ND	ND	- ND	- IND	-	-		-						
cenaphthene	20	-	-	ND	-	ND	ND	ND	0.09 J	0.28	0.21	0.2	ND	ND									
cenaphthylene	-	ND	ND	ND	ND	ND	ND	ND	0.2 J	ND	1 J	ND	0.5 J	ND	ND	ND	ND	ND	0.35	0.14 J	0.16 J	0.71 J	0.66
cetophenone othracene	50	ND	- ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4 J	0.2 J	ND 0.4 J	0.3 J	ND ND	- ND	ND ND	ND ND	ND ND	ND ND	ND 0.42	ND 0.26	ND 0.44	ND ND	ND ND
enzo(a)anthracene	0.002	ND	ND	ND ND	ND	ND	ND	ND ND	ND	0.2 J	0.4 J	0.3 J	0.3 J	ND	ND	ND	ND	0.06 J	0.42 0.16 J	0.26 0.07 J	0.44 0.19 J	ND	ND
enzo(a)pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
enzo(b)fluoranthene	0.002		-	ND	-	ND	ND	ND	ND	0.13 J	0.04 J	0.13 J	ND	ND									
enzo(ghi)perylene enzo(k)fluoranthene	0.002	-	-	- ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND O O E I	ND ND	ND ND									
nzyl Alcohol	0.002	-	-	ND -	ND -	ND -	ND -	- ND	ND -	ND -	ND -	ND -	- ND	-	ND -	ND	ND ND	ND ND	ND ND	ND	0.05 J	ND ND	ND
phenyl	5	-	-	ND	-	ND	ND																
s(2-ethylhexyl)phthalate	5	3.8 J	ND ND	3.5 JB	ND	ND	ND	ND	ND	1.8 J	ND												
ityl benzyl phthalate arbazole	50	ND	ND	ND ND	ND	ND 0.45 J	ND 1 J	ND 3.1 J	ND ND	ND	ND 2.6	ND 2.4	ND 3.4	3.3									
nrysene	0.002	ND	ND	ND	ND ND	ND ND	ND ND	0.5 J	ND ND	0.3 J	0.3 J	ND ND	ND ND	- ND	0.45 J ND	ND	ND	0.12 J	2.2 0.25	0.1 J	0.29	3.4 ND	ND
benz(a,h)anthracene	-	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND ND	ND	ND									
penzofuran	-	-	-	ND	-	ND	ND	0.65 J	ND	ND	0.88 J	1.1 J	1.5 J	1.4									
ethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
nethyl phthalate n-butyl phthalate	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.3 J	0.3 BJ	0.4 BJ	ND ND	0.33 BJ	ND ND	ND ND						
n-octyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	0.7 BJ	ND	ND	ND	ND	ND	3.8 J	ND	ND	ND	ND	ND	ND	ND
uoranthene	50	1.2 J	ND	4 J	2 J	ND	2 J	6 J	4 J	2 J	4 J	3 J	3 J	2 J	3.1 J	3.3 J	4.6 J	1	5	2.5	4.3	4.3	4.1
lorene leno(1,2,3-cd)Pyrene	50 0.002	ND	ND	ND	ND	ND	ND	ND	0.9 J	ND	1 J	0.4 J	0.2 J	ND	ND	0.37 J	0.4 J	ND ND	0.72	0.55	0.62	0.84 J	1.8
aphthalene	10	- ND	- ND	- ND	- ND	- ND	- ND	- ND	3 BJ	- ND	- 57	9	25	20	ND ND	ND ND	ND ND	ND ND	ND 14	7.8	7.2	ND 28	ND 28
Nitrosodiphenylamine (NDPA/DPA)	50	-	- ND	- ND	- ND	- -	- ND	- ND	3 BJ	- -	-	-	-	-	ND	ND							
entachlorophenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	ND	ND	-	-
nenanthrene	50	ND	ND	2 J	ND	4 J	4 J	ND	6 J	2 J	10	6	0.2 J	4.7 J	ND	1.6 J	ND	ND	7.6	5.5	8.8	11	11
nenol vrene	See Note 3 50	3 J ND	ND ND	ND 2 J	ND 1 J	ND 1 J	ND 1 J	ND 3 J	ND 2 J	ND 1 J	1 J 2 J	2 J 1 J	1 J 2 J	ND ND	- 1.6 J	ND 1.6 J	2.3 J	0.83	2.6	1.2	2.1	2.1	2
vridine	50	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	10 J	ND ND	ND ND	1.8 J	1.0 J	1.0 J -	2.3 J	-	-	-	-	- 2.1	-
											,				1		1						

										Monitori	ng Well Locati	on, Sample Da	ate(s), & Monito	oring Program	1								
PARAMETER ¹	GWQS/GV ²											MW-1D6 — SI											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
Filtered SVOCs (Method 8270D) - ug/L		'											·	·									
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																							
Arsenic, Total	25	2.7 B	DN	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-							
Barium, Total	1000	24.1 B	22	28 B	25	270	23.1	32.8 J	23	29.3	43	25.5	37	24.6	-	-	-	-	-	-	-	-	-
Cadmium, Total	5	0.32 B	DN	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-							
Chromium, Total	50	2.6 B	2	ND	ND	ND	5.2	ND	ND	5.9	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Cyanide, Total	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-	-	-		-
Lead, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Total	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-	-	-		-
Dissolved Metals - ug/L																							
Arsenic, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Barium, Dissolved	1000	-	22	30	-	26	22.8	36.7 J	25	27	45	25.5	36	26	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Dissolved	50	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Lead, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Field Measurements																							
Dissolved Oxygen (mg/L)	-	2	3.1	2.72	2.94	2.83	-	1.95	3.01	2.75	1.7	1.59	2.46	1.21	1.75	-	2.04	1.6	1.78	2.93	1.91	2.81	3.08
Field pH (S.U.)	12.5	11.10	11.14	12.33	11.97	11.54	11.15	10.87	11.31	10.95	11.10	10.71	10.85	10.90	11.09	11.44	12.60	11.98	11.22	10.91	11.38	12.07	12.03
Redox Potential (mV)	-	-204	-106	-156	-143	-126	-156	-167	-149	-126	-235	-194	-242	-232	-154	-129	10	-238	-238	-240	-180	-194	-203
Specific Conductance (umhos/cm)	-	4100	2904	3839	2962	3364	2960	4218	2925	3113	5381	3268	4909	3364	3412	3954	5404	1952	4640	5300	4193	3883	4133
Temperature (deg C)	-	14.2	17.3	11.5	14.2	14.9	13.0	19.7	12.2	17.2	15.6	14.1	13.5	17.1	11.1	14.6	16.4	15.5	18.3	21.1	19.4	14.2	13.1
Turbidity (NTU)	-	6	3.71	5.18	3.25	2.5	1.51	28	4.4	11.8	10.2	1.81	4.79	2.23	3.39	3.22	11.9	5.82	9.34	3.49	1.91	3.29	5.24

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWOS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	
	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Rold	= nH exceeds 12.5

										N	Monitoring Wel	Location, Sa	ımple Date(s), &	& Monitoring F	Program									
PARAMETER ¹	GWQS/GV ²											MW-11	D7 — Slag/Fill											
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
VOCs (Method 8260B, 8260C, 8021B)	- ug/L	RFI	HWMU 2003a				HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b		HWMU 2010	HWMU 2011		HWMU 2013	HWMU 2014		HWMU 2016	HWMU 2017	HWMU 2018
1,1-Dichloroethane 1,1-Dichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.7 J 0.91 J	1 J 1.4 J	0.98 J 1.5 J	0.81 J 0.79 J	ND ND	0.43 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
1,2,4,5-Tetramethylbenzene	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5	-	ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND -	-	ND -	ND -	ND.	ND ND	- ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	3	-	ND	-	-	-	-	-	-	0.2 J	-	0.2 J	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
1,2-Dichloroethane 1,3,5-Trimethylbenzene	0.6 5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	- ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	3	-	- ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.3 J	ND ND	ND ND	ND	-	- ND	- ND	ND ND	ND	-	ND	ND	ND
1,4-Diethylbenzene	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Butanone Acetone	50 50	-	-	ND	ND.	ND.	ND.	- ND	ND.	- ND	- ND	- ND	ND.	- ND	-	-	4.3 J	ND ND	ND ND	ND ND	-	2.8 J	ND ND	ND ND
Benzene	1	ND	14	12	14	13	11	10	14	12	9.2	9.3	14	13	11	9.3	11	12	6.3	7.4	5.5	7	7.6	7
Bromomethane Carbon disulfide	5 60	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND -	ND ND	0.43 J	ND ND	ND ND	-	ND ND	ND ND	ND ND
Chlorobenzene	5	ND	1.1 J	ND	ND	ND	ND	0.74 J	0.89 J	0.84 J	0.64 J	ND	0.64 J	ND	0.59 J	ND	ND	ND ND	ND	ND	-	ND	ND	ND
Chloroform	5 7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
cis-1,2-Dichloroethene	5	- ND	- ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND -	- -	45	20	20	10	-	18	14	7.9
Cyclohexane Ethylbenzene	- 5	- ND	- ND	- ND	- ND	- ND	- ND	- 1.4.1	- 121	- 121	- 1.1	- ND	- 1.0	- ND	- ND	- 1.0	ND 1.0	ND 1.6	ND	ND 1.1	0.00 1	ND 0.06 I	ND ND	ND 0.79 J
Isopropylbenzene	5	ND -	ND -	ND ND	ND ND	ND ND	ND ND	1.4 J ND	1.3 J ND	1.3 J ND	1.1 ND	ND ND	1.6 ND	ND ND	- ND	1.8	1.9 ND	1.6 ND	1 J ND	1 J ND	0.88 J ND	0.96 J ND	ND ND	0.78 J ND
Methyl cyclohexane		-	-	-	-	-	-	-	-	-	-	-	-	-	- ND	- ND	ND	ND	ND	ND	-	ND	ND	ND
Methylene chloride n-Butylbenzene	5	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND ND	ND ND	- ND	ND ND	ND ND	ND ND
n-Propylbenzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene (p-Cymene) Styrene	5	-	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	-	-	- ND	- ND	ND ND	ND ND	ND -	ND ND	ND ND	ND ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
Toluene trans-1,2-Dichloroethene	5	ND	ND 4.8 J	ND 4.7 J	ND 5.6	ND 8.9	ND 8.5	ND 9.1	ND 15	ND 16	ND	ND 12	ND 5.7	ND 2.9 J	1.8 4.7	ND 10	ND 11	ND 5.8	ND 4.2	ND 3.6	ND	ND 14	ND 15	ND 10
Trichloroethene	5	18	31	33	23	30	27	41	61	61	28	40	18	18	10	11	11	3.4	1.2	0.53		0.42	0.48 J	0.44 J
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	2.2 J	3.5	ND	4.3	8.6	2.2	2.5	- ND	ND	3.3	3.4
Xylenes, Total SVOCs (Method 8270C, 8270D) - ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	-	-	-	-
2,6-Dinitrotoluene 2-Chloronaphthalene	5 10	ND ND	- ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	- ND	- ND	- ND	- ND	- ND
2-Chlorophenol	See Note 3	- ND	- ND	- ND	ND -	- ND	-	- ND	- -	ND -	-	- ND	- ND	- ND	-	- -	ND	ND	- -	-	-	- -	- ND	-
2-Methylnaphthalene	- Can Nata 2	- ND	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
2-Methylphenol (o-Cresol) 2-Nitrophenol	See Note 3 See Note 3	ND -	ND -	-	-	-	-	-	-		-	-	-	-	ND -	-	ND ND	ND ND		-	-		-	-
3,3'-Dichlorobenzidine	5	-	-	-	-	-	-	-	-		-	-	-		-	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,4-Methylphenol (m,p-Cresol) 4-Chloro-3-methylphenol	See Note 3 See Note 3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.6 J	ND ND	ND ND	-	ND ND	ND ND	-	-	-		-	-
4-Chloroaniline	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline 4-Nitrophenol	See Note 3		-	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	-	ND -	ND ND	2.8 J	ND -	ND -	-			-
Acenaphthene	20	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.7 J	0.87 J	0.66 J	0.32	0.57	0.39	0.4	ND	ND
Acenaphthylene Acetophenone	-	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND ND	ND ND	ND ND	0.28 ND	0.29 ND	0.22 ND	0.2 ND	ND ND	ND ND
Anthracene	50	ND	ND	ND	ND	ND	ND	ND	0.6 J	0.5 J	0.3 J	ND	0.6	ND	ND	ND	0.43 J	0.28 J	0.4	0.72	0.45	0.46	ND	ND
Benzo(a)anthracene	0.002 0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	ND -	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(ghi)perylene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene Benzyl Alcohol	0.002	-	-	-	-	-	-	-		-	-	-	-	-	-	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Biphenyl	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	5 50	ND ND	ND ND	ND ND	30 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3 J ND	2.2 J ND	3.5 BJ ND	6.2 ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Carbazole	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene Dibenz(a,h)anthracene	0.002	ND -	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.2 J ND	ND ND	ND ND	ND ND	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibenzofuran	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	6.2 J	6.5 J	5.5 J	3.9	3.8	4.8	1.6 J	ND	ND
Diethyl phthalate	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dimethyl phthalate Di-n-butyl phthalate	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.3 J	ND ND	0.6 J	0.4 J	ND ND	ND ND	0.69 BJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-octyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene Fluorene	50 50	7.2 J	ND 11	ND 10	ND 12	ND 8 J	ND 8 J	0.5 J 7 J	7 J	0.8 J 9 J	0.4 J 5	0.9 J 8	0.6 J 7	ND 8	5.1 J	ND 6.3	0.55 J 7.5	0.61 J 6	0.32 4.3	0.49 6.6	0.53 6.3	0.41 4.7	4.6	ND 5.2
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-		-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene N-Nitrosodiphenylamine (NDPA/DPA)	10 50	ND -	ND -	ND -	ND -	ND -	ND -	0.9 J	ND -	0.6 BJ	0.4 J	1 J -	0.5 J	0.4 J	ND -	0.88 J ND	ND ND	ND ND	0.62 ND	0.27 ND	0.34 ND	0.34 ND	ND ND	ND ND
Pentachlorophenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	ND	ND	-	-
Phenanthrene Phenol	50 See Note 3	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	0.4 J	ND ND	ND ND	ND 1.1	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	0.07 J	0.14 J	ND	ND
Pyrene	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.4 J	0.3 J	0.6 J	1 J 0.4 J	ND ND	ND ND	- ND	0.32 J	ND ND	0.18 J	0.26	0.27	0.2	- ND	- ND
Pyridine	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Total Phenolic Compounds (Method 8 Phenolic compounds (total phenols) 4	1270C, 8270D)- u	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	ND	ND	_	ND	ND		-	T -	-	-	-
r nenolic compounds (total prieffols)	1	ND	ND	ND	ND	ND	IND	IND	IND	ND	ND	ND	1.0	ND	ND		ND	IND	-	<u> </u>		-	-	

											Monitoring Wel	I Location, Sa	mple Date(s), 8	Monitoring P	rogram									
PARAMETER ¹	GWQS/GV ²											MW-1E	7 — Slag/Fill											
		Nov-1999 RFI	Jun-2003 HWMU 2003a	Oct-2003 HWMU 2003b	May-2004 HWMU 2004a	Oct-2004 HWMU 2004b	May-2005 HWMU 2005a	Oct-2005 HWMU 2005b	May-2006 HWMU 2006a	Oct-2006 HWMU 2006b	May-2007 HWMU 2007a	Oct-2007 HWMU 2007b	May-2008 HWMU 2008a	Oct-2008 HWMU 2008b	May-2009 HWMU 2009	May-2010 HWMU 2010	May-2011 HWMU 2011	Jun-2012 HWMU 2012	Jun-2013 HWMU 2013	Jul-2014 HWMU 2014	Sep-2015 HWMU 2015	Jun-2016 HWMU 2016	May-2017 HWMU 2017	Apr-2018 HWMU 2018
Filtered SVOCs (Method 8270D) - ug/	1	1411	1144110 20000	11441110 20000	11111110 20040	11111110 20040	1111110 20000	11441110 20000	11441110 20000	TIVINIO 2000D	11441110 20074	11111110 200715	11441110 20000	11441110 200000	11441110 2003	11441110 2010	11441110 2011	11001110 2012	1144410 2010	11001110 2014	11441110 2010	11441110 2010	11441110 2017	11441110 2010
Acenaphthene	20	_	T -		1 -	-		I -			-					-	-	I -	T -		-	I -	-	_
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	50		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50		-	-	-	-	-	-		-	-	-	-	-	-			-	-	-	-	-	-	-
Total Metals - ug/L																								
Arsenic, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Barium, Total	1000	26 B	24	22	24	21	21.2	20	32.4	46	40.1	32	52.3	47	44.8	-	-	-	-	-	-	-	-	-
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Total	50	3.6 B	ND	ND	ND	ND	5.4	5.2	ND	5.1	6.2	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Cyanide, Total	200	24 J	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	27	ND	-	-	-	-	-	-	-	-	-	-
Lead, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Total	10	ND	1.3	ND -	-	-	-	-	-	-	-	-												
Dissolved Metals - ug/L																		,						
Arsenic, Dissolved	25	-	ND	ND	-	ND -	-	-	-	-	-	-	-	-										
Barium, Dissolved	1000	-	24	22	-	21	20.7	18	34.9	48	38.9	31	51.7	45	45.2	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	ND	ND	-	ND -	-	-	-	-	-	-	-	-										
Chromium, Dissolved	50	-	ND	ND	-	ND	5.8	ND -	-	-	-	-	-	-	-	-								
Lead, Dissolved	25	-	ND	ND	-	ND -	-	-	-	-	-	-	-	-										
Selenium, Dissolved	10	-	1.9	ND	-	ND -	-	-	-	-	-	-	-	-										
Field Measurements																								
Dissolved Oxygen (mg/L)	- 40.5	0.8	1.31	2.08	0.84	0.59	0.7	2.77	1.64	1.33	2.45	0.81	1.01	0.29	1.36	1.94	1.27	0.95	1.9	0.76	1.4	2.03	1.68	2.03
Field pH (S.U.)	12.5	7.40	7.61	8.51	7.63	7.48	7.65	7.73	7.39	7.29	7.64	7.60	7.17	7.21	7.26	7.45	7.01	7.45	7.21	7.39	7.45	7.46	7.34	8.22
Redox Potential (mV)	-	-233	-213	-138	-206	-240	-235	-236	-256	-251	-185	-227	-152	-229	-140	-146	-43	123	-105	-222	-230	-170	-15	-198
Specific Conductance (umhos/cm)	-	3600	3515	2920	3589	3256	3187	2652	5322	7355	6351	4545	8274	6864	7255	4630	7097	6750	5260	6112	5205	5883	5398	4380
Temperature (deg C)	-	17.3	17.2	14.3	15.1	15.8	17.4	12.8	19.2	14.8	17.8	16.2	15.1	15.0	15.9	16.2	14.9	16.4	16.8	19.4	20.0	17.7	15.0	13.2
Turbidity (NTU)	-	8	4.45	1.75	1.14	0.35	1.58	2.62	3.33	1.87	3.15	1.98	1.17	1.12	4.06	3.99	0.75	4.48	11.6	2.04	3.27	1.34	1.52	5.07

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

- CMS = Corrective Measures Study
 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	
Bold	
Bold	
Bold	

- = concentration is less than or equal to the GWQS/GV (includes non-detect)
 = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
 = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
 = concentration exceeds 100 times the GWQS/GV
 = pH exceeds 12.5

											Monitoring Well	Location, Sa	imple Date(s),	& Monitoring P	Program									
PARAMETER 1	GWQS/GV ²												D8 — Slag/Fill											
		Nov-1999 RFI	Jun-2003 HWMU 2003a	Oct-2003 HWMU 2003b	May-2004 HWMU 2004a	Oct-2004 HWMU 2004b	May-2005 HWMU 2005a	Oct-2005 HWMU 2005b	May-2006 HWMU 2006a	Oct-2006 HWMU 2006b	May-2007 HWMU 2007a	Oct-2007 HWMU 2007b	May-2008 HWMU 2008a	Oct-2008 HWMU 2008b	May-2009 HWMU 2009	May-2010 HWMU 2010	May-2011 HWMU 2011	Jun-2012 HWMU 2012	Jun-2013 HWMU 2013	Jul-2014 HWMU 2014	Sep-2015 HWMU 2015	Jun-2016 HWMU 2016	May-2017 HWMU 2017	Apr-201 HWMU 20
Cs (Method 8260B, 8260C, 8021B) - ug	g/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND
I-Dichloroethane	5	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	-	ND	ND ND	ND
2,4,5-Tetramethylbenzene		-	-	ND	-	-			-	-	-	-	-	-										
2,4-Trichlorobenzene 2,4-Trimethylbenzene	5 5	-	ND -	- ND	ND -	-	ND -	ND -	- ND	ND 4.1	- ND	ND 1.1 J	ND ND	ND ND										
2-Dichlorobenzene	3	-	ND	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
3,5-Trimethylbenzene 4-Dichlorobenzene	5 3	-	- ND	ND ND	- ND	-	- ND	- ND	ND ND	3.7 ND	0.84 J	2.1 J ND	ND ND	ND ND										
4-Diethylbenzene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	- ND
Butanone	50	-	-	-	-	-	-	-	-	-	-		-		-		ND	ND	ND	ND	-	ND	ND	ND
etone	50 1	- ND	3.8 J	ND 6.1	ND ND	ND 1.3 J	ND 2.7 J	2.2 J	2 J	1.6 J	ND 0.59 J	ND 6.9	ND 3.1	ND 3	4.1	0.98 J	ND ND	ND 1.4	ND ND	1.6 J 1.9	0.34 J	ND 1.1	ND ND	ND ND
omomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
rbon disulfide	60	-	-	ND	-	-	ND	0.41 J	ND	ND	-	ND	ND	ND										
lorobenzene loroethane	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
lloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
-1,2-Dichloroethene	5	-	-	ND	-	-	ND	ND	ND	ND	-	ND	ND	ND										
rclohexane	- 5	2.4 J	1.7 J	2.2 J	- ND	- ND	- ND	1.5 J	0.92 J	0.95 J	- ND	1.5	0.91 J	0.93 J	1.3	0.82 J	ND ND	ND 1.1	ND ND	0.81 J	- ND	ND ND	ND ND	ND ND
propylbenzene	5	- -	-	ND	ND ND	ND	ND	ND	0.92 J ND	0.95 J ND	ND ND	ND	0.913 ND	0.93 J ND	-	0.02 J -	ND ND	ND	ND	ND	ND	ND	ND	ND
ethyl cyclohexane	- ;		-	-	-	-	- LUD	- NID	-	-	-	ı	-	-	-	-	ND	ND	ND	ND	-	ND	ND	ND
ethylene chloride Butylbenzene	5 5	1.4 J	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND ND	ND ND	- ND	ND ND	ND ND	ND ND
Propylbenzene	5	-	<u> </u>	ND	-	-	-	-	ND	ND	ND	ND	ND	ND										
sopropyltoluene (p-Cymene)	5	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND
yrene trachloroethene	<u>5</u>	- ND	- ND	ND ND	- ND	- ND	ND ND	4.2 ND	ND ND	3.8 ND	-	1.8 J	ND ND	ND ND										
luene	5	17	11	14	2.6 J	3.8 J	4.8 J	8.6	6 B	5.7	2.4	8.8	5.7	6.7	8.6	4.1	ND	6.3	ND	5.5	1.3 J	3.1	ND	ND
ns-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND
chloroethene nyl chloride	5 	1.6 J	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND													
lenes, Total	5	44	26.1	32	ND	9.1 J	7.7 J	20.3	12 J	14.5 J	5.4	21.6	10.4	13.3	15.2	11	ND	15	ND	11.2	2.4 J	5.5 J	ND	ND
Cs (Method 8270C, 8270D) - ug/L																								
	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.9 J	ND	ND	ND	-	ND	ND	-	-	-	-	-	-
S-Dinitrotoluene Chloronaphthalene	10	ND ND	- ND	ND ND ND ND	ND ND	ND ND	ND ND	- ND	- ND	- ND	- ND	- ND												
Chlorophenol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-
Methylnaphthalene		-	-	ND	-	6.3	ND	2.9 J	ND	3.1	0.29	1.3	ND	ND										
	See Note 3 See Note 3	ND -	ND -	-	-	-	-	-	-	0.3 J	-	0.5 J	0.3 J	0.6 J	ND -		ND ND	ND ND		-	-	-	-	-
B'-Dichlorobenzidine	5	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	ND	ND							
	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	0.4 J	ND	2 J	1.8 J	2 J	0.57 J	-	ND	ND	-	-	-	-	-	-
Chloroaniline	See Note 3	ND -	ND -	ND -	ND -	ND -	- ND	ND ND	ND ND	- ND	- ND	- ND	- ND	- ND	- ND									
Nitroaniline	5	-	-	ND	-	ND	ND	ND	ND	ND	-	-	-	-										
	See Note 3	-	-	-	-	-	-	-	-	-	-	- 10	-	-	-	-	ND	ND	-		-	-	-	-
enaphthene enaphthylene	20	26 J	12	ND 24	ND 4 J	ND 5 J	ND ND	ND 9	ND 2 J	ND 9 J	ND 1 J	ND 2 J	ND 1 J	ND 6	1.2 J	ND 3.9 J	ND ND	ND 2.9 J	ND 0.21	0.19 J 2.2	ND 0.36	0.09 J 1.1	ND ND	ND ND
etophenone	-	-	-	ND	-	1.1 J	ND	0.55 J	ND	ND	ND	ND	ND	ND										
thracene enzo(a)anthracene	50 0.002	ND	ND	ND	ND	ND	ND	ND	ND	0.2 J	ND	ND	ND	0.3 J	ND	ND	ND	ND	0.11 J	0.18 J	0.11 J	0.18 J	ND	ND
enzo(a)pyrene	0.002 0 (ND)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.2 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
nzo(b)fluoranthene	0.002	-	-	ND	-	ND	ND																	
nzo(ghi)perylene	0.002	-	-	-	-	-	-	-	-	-	-		-	-	-	ND	NE							
nzo(k)fluoranthene nzyl Alcohol	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND -	ND ND	ND ND						
phényl	5	-	-	ND	-	ND	ND																	
(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.3 BJ	3 J	ND	ND	ND	ND	2 J	NE
yl benzyl phthalate bazole	50 -	ND -	ND -	ND ND	ND -	0.58 J	ND ND	0.58 J	ND ND	ND ND	ND ND	ND ND	ND ND	NL NE										
rysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
enz(a,h)anthracene	-	-	-	ND	-	ND 0.00 I	ND	NI																
nzofuran nyl phthalate	50	ND .	- ND	ND ND	- ND	0.68 J 0.33 J	ND ND	N N																
ethyl phthalate	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4 BJ	0.4 BJ	ND	0.49 BJ	ND	N						
-octyl phthalate ranthene	50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4 BJ ND	ND 0.3 J	ND ND	0.3 J	ND ND	ND ND	ND ND	ND ND	0.08 J	0.14 J	0.06 J	0.12 J	ND ND	N N
rene	50	ND	ND	3 J	ND	ND	ND	1 J	ND	1 J	0.2 J	0.3 J 0.4 J	0.3 J	1 J	ND	ND	ND	ND	0.06 J ND	0.14 3	0.06 J	0.12 3	ND	N
	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	NI							
	10	700	270 D	540	91	130	34	220 E	31	160 B	0.4 J	130	5	110	ND -	64 ND	ND ND	44	ND ND	26 ND	4.5 ND	15 ND	ND ND	N N
hthalene	50	1 -	-	-		-	-	-		-	-	-	- ND	- ND	- ND	ND -	ND ND	ND ND				ND ND	ND -	N
ohthalene litrosodiphenylamine (NDPA/DPA)	50 See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	IVI I						-	-	[11]	NI)		
enanthrene	See Note 3 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.7 J	ND ND	0.7 J	ND ND	0.3 J	ND	1 J	ND	ND	ND	ND	ND	ND ND	ND ND	0.07 J	ND ND	
hthalene itrosodiphenylamine (NDPA/DPA) tachlorophenol nanthrene nol	See Note 3 50 See Note 3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.7 J ND	ND ND	0.7 J ND	ND ND	0.3 J 0.6 J	ND 2 J	1 J 0.9 J	ND ND	ND -	ND ND	ND ND	ND -	ND -	ND -	0.07 J	ND -	NE
hthalene itrosodiphenylamine (NDPA/DPA) tachlorophenol nanthrene	See Note 3 50	ND	ND	ND	ND	ND	ND	0.7 J	ND	0.7 J	ND	0.3 J	ND	1 J	ND	0.07 J	ND	ND - ND						

											Monitoring Wel	Location, Sa	mple Date(s), 8	Monitoring P	rogram									
PARAMETER ¹	GWQS/GV ²									·			98 — Slag/Fill	<u> </u>	- Caram									
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018
Filtered SVOCs (Method 8270D) - ug/L																								
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																								
Arsenic, Total	25	3.5 B	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-								
Barium, Total	1000	24.9 B	17	56	160	15	13.9	17	14.3	14	14.9	17	13.5	16	13.3	-	-	-	-	-	-	-	-	-
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Total	50	3.5 B	3.3	ND	ND	-	ND	ND	4.5	5.1	6.1	6.2	ND	ND	ND	-	-	-	-	-	-	-	-	-
Cyanide, Total	200	ND	ND	49	62	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Lead, Total	25	ND	ND	6.8	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-						
Selenium, Total	10	16.2	14	ND	16.9	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-						
Dissolved Metals - ug/L																								
Arsenic, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Barium, Dissolved	1000	-	16	18	-	14	13.4	15	14.9	15	14.3	19	13.8	15	13.3	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Chromium, Dissolved	50	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Lead, Dissolved	25	-	ND	7	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	-	12	ND	-	ND	ND	ND	15.2	ND	16	ND	158	ND	10.2 J	-	-	-	-	-	-	-	-	-
Field Measurements																								
Dissolved Oxygen (mg/L)	-	2.1	2.62	2.81	1.96	0.68	-	2.08	1.77	1.89	2.61	2.09	1.28	2.37	2.56	2.41	4.47	2.01	2.75	0.92	1.2	1.92	4.33	4.32
Field pH (S.U.)	12.5	10.70	9.87	11.64	9.99	9.82	9.62	10.21	9.84	10.23	9.73	10.38	9.74	10.39	9.69	10.01	10.73	10.83	10.17	10.19	10.17	10.21	11.21	11.50
Redox Potential (mV)	-	-123	-70	-113	-46	-85	-83	-63	-79	-164	5	-33	0	-137	-5	-29	55	221	-150	-140	-217	-29	-42	-110
Specific Conductance (umhos/cm)	-	3800	2839	3156	2590	2615	2514	2744	2532	2582	2432	2925	2455	2866	2464	2453	2368	2546	2411	2415	2480	2389	2322	2268
Temperature (deg C)	-	15.1	16.4	12.7	14.1	15.3	16.2	13.8	21.1	13.7	16.8	13.7	15.3	14.2	16.1	16.4	15.3	16.5	16.0	20.4	19.7	15.9	18.0	13.6
Turbidity (NTU)	-	5	3.89	1.16	0.87	0.1	0.41	1.07	3.93	2.49	3.63	19.4	0.87	0.63	1.73	2.61	1	1.27	9.41	0.92	1.4	0.6	0.31	3.82

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCS, SVOCS, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (*Italicized*).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

- CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	
	= co
Bold	= co
Bold	= co
Bold	= co

- Bold = concentration is less than or equal to the GWQS/GV (includes non-detect) = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV = Bold = pH exceeds 100 times the GWQS/GV

PARAMETER ¹	GWQS/GV ²											Monitorin	ng Well Locatio	n, Sample Dat	e(s), & Monito	oring Program	1											
		MW-1U1 — Slag/Fill; Sand/Dredge Spoils																	MWN-02 — Slag/Fill									
		Nov-1999 RFI	Jun-2003 HWMU 2003a	Oct-2003 HWMU 2003b	May-2004 HWMU 2004a	Oct-2004 HWMU 2004b	May-2005 HWMU 2005a	Oct-2005 HWMU 2005b	May-2006 HWMU 2006a	Oct-2006 HWMU 2006b	May-2007 HWMU 2007a	Oct-2007 HWMU 2007b	May-2008 HWMU 2008a	Oct-2008 HWMU 2008b	May-2009 HWMU 2009	May-2010 HWMU 2010	May-2011 HWMU 2011	Jun-2012 HWMU 2012	Jun-2013 HWMU 2013	Jul-2014 HWMU 2014	Sep-2015 HWMU 2015	Jun-2016 HWMU 2016	May-2017 HWMU 2017	Apr-2018 HWMU 2018	Nov-1999 RFI	Jul-2011 SWI 2011		
s (Method 8260B, 8260C, 8021B)) - ug/L			ND				AUD						ND			ND	AUD							ND			
-Dichloroethane -Dichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	-		
4,5-Tetramethylbenzene	į	-	- ND	ND	- ND	-	- ND	- ND	-	- ND	-	- ND	- ND	- ND	-													
,4-Trichlorobenzene ,4-Trimethylbenzene	5	-	ND -	- ND	- ND	ND	- ND	ND -	-	- ND	- ND	- ND	ND ND	0.75 J	ND ND	ND ND	ND ND	-	0.096 J									
-Dichlorobenzene	3		ND	-				-	-		-	0.6 J		-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	-	-		
-Dichloroethane .5-Trimethylbenzene	0.6 5	ND -	ND -	ND ND	0.2 J ND	ND ND	ND -	ND -	ND -	ND -	0.99 J	ND 1.1 J	- 1.4 J	ND 1 J	1.1 J	ND 1 J	ND -	0.29										
Dichlorobenzene	3	•	ND	0.2 J	ND	ND	-	ND	ND	ND	ND	-	ND	ND	ND	-	-											
Diethylbenzene utanone	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- ND	- ND	- ND	- ND	-	- ND	- ND	- ND	-	+		
tone	50		-	ND	-	-	ND	ND	ND	ND	-	ND	ND	1.9 J	-	-												
zene	1	74	50	79	53 ND	38 ND	32	65 ND	70	22 ND	24	500 ND	33 ND	80 ND	26	46	17 ND	32 ND	24	13 ND	23	32	23 ND	22	ND ND	0.52	4	
nomethane oon disulfide	60	- ND	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	- ND	- ND	0.88 J	0.84 J	ND ND	ND ND	-	ND	ND ND	ND ND	- ND	+		
robenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	- '		
roethane roform	7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND		_	
,2-Dichloroethene	5		-	ND	-	-	ND	ND	ND	ND	-	ND	ND	ND	-	-												
bhexane Ibenzene	- 5	- ND	- ND	- ND	- ND	- ND	- ND	0.66 J	0.59 J	0.52 J	- ND	- ND	0.61 J	0.66 J	0.46 J	- ND	ND ND	ND ND	ND ND	ND ND	- ND	ND ND	ND ND	ND ND	- ND	0.11 J		
opylbenzene	5	-	- 14D	ND ND	ND	ND ND	ND	ND	0.59 J ND	0.52 J ND	ND	ND	ND	ND	- U.+U J	-	ND	ND	ND	ND	ND ND	ND	ND	ND	- 14D	ND ND		
yl cyclohexane vlene chloride	-	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	0.31 J ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND	- ND		\perp	
ylbenzene	5	- -	-	-	- -	- ND	- -	- -	- ND	- ND	-	-	- ND	-	-	-	- ND	- -	ND	ND	ND ND	ND	ND	ND	-	ND		
pylbenzene	5		-	ND	-	-	-	-	ND	ND	ND	ND	ND	ND	-	ND												
propyltoluene (p-Cymene) ne	5		-	- ND	ND .	- ND	- ND	ND .		-	ND.	ND.	ND ND	ND ND	ND -	ND ND	ND ND	ND ND	-	ND -	4							
chloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	-		
ne 1,2-Dichloroethene	5	13 ND	10 J	11 ND	12 ND	7.5	6.1	9.7 ND	8.5 B	4.9 J	4.6 ND	36 ND	7.4 ND	12 ND	5.2 ND	7.2 ND	4.1 ND	5.9 ND	5.9 ND	3.5	4.4	6.1	4.6	4.3 ND	2.4 J	0.19 J	4	
oroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND			
chloride es, Total	2	ND 34	ND 6.7 J	ND 16.1	ND 19.2 J	ND 16.7 J	ND 11.5 J	ND 16.6 J	ND 13.3 J	ND 11 J	ND 10.8	ND ND	ND 13.2	ND 17.7	9.3	ND 11.3	ND 9.8	ND 44	ND 10	ND 6.9	8.4	ND 8.7	ND	ND 7	ND ND	0.85	_	
s (Method 8270C, 8270D) - ug/l		34	6.7 3	10.1	19.2 3	10.7 3	11.53	10.0 3	13.3 3	113	10.0	IND	13.2	17.7	3.3	11.3	3.0		10	0.5	0.4	0.7		-	IND	0.85		
imethylphenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	-	-	ND	-	ND	0.61 J	-	-	-	-	-	-	ND	-		
Dinitrotoluene Ioronaphthalene	5 10	ND ND	- ND	ND ND ND ND	ND ND	ND ND	ND ND	- ND	- ND	- ND	- ND	- ND	ND ND	ND ND	4													
orophenol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-	-	-		
thylnaphthalene thylphenol (o-Cresol)	See Note 3	2.2 J	- ND	ND	ND	ND	ND 1 J	ND	ND	ND 0.8 J	ND 0.5 J	ND 7	ND 1 J	ND 1 J	- ND	1.7 J	0.78 J 0.44 J	1.2 J 0.5 J	0.75	0.82	0.88	0.89	1 J	1 J	- ND	ND		
ophenol	See Note 3	- Z.Z J	-	-	-	-	-	-	-	- U.O J	- 0.5 J	-	-	-	-	-	0.44 J ND	ND	-	-	-	-	-	-	-	+ -	+	
Dichlorobenzidine lethylphenol (m,p-Cresol)	5 See Note 3	- ND	- ND	-	-	-	- ND	-	-	-	-	-	ND 4 J	ND 4 J	- ND	ND	ND 1.5 J	ND 1.5 J	ND	ND	ND	ND	ND	ND	-	ND	4_	
oro-3-methylphenol	See Note 3	ND ND	ND ND	2 J ND	2 J ND	2 J ND	ND ND	3 J ND	2 J ND	4 J ND	2 J ND	28 ND	4 J -	4 J -	ND	-	ND	ND	-		-	-	ND		9.6 J ND	-	+	
proaniline	5		-	-	-	-	-	-	-	-	-	-	ND	ND	-	ND	-	ND										
paniline ophenol	See Note 3	-	-	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	-	ND -	ND ND	ND ND	ND -	ND	-	-	-	-	-	ND -	4	
phthene	20		-	ND	-	0.93 J	0.8 J	0.9 J	0.66	0.64	0.64	0.64	0.76 J	0.68 J	-	ND												
aphthylene phenone	-	3.7 J	ND	ND ND	3 J ND	ND ND	ND ND	2 J ND	1 J	2 J ND	1 ND	4 J	2 J ND	2 J ND	1.4 J	2 J 0.61 J	1.3 J	1.5 J	1 ND	1.2 ND	1.2 ND	1.3 ND	1.7 J	1.4 J	2.8 J	ND ND	4	
acene	50	ND	ND	ND	ND	ND	ND	0.9 J	0.5 J	0.7 J	0.5 J	1 J	0.8 J	0.6 J	ND	0.72 J	0.51 J	0.66 J	0.26	0.51	0.33	0.38	2.7	ND	1.3 J	ND		
o(a)anthracene o(a)pyrene	0.002 0 (ND)	ND ND	ND	0.3 J	ND	0.2 J	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.06 J	ND ND	ND ND	ND ND	ND ND	ND ND	4								
o(b)fluoranthene	0.002	- -	ND -	ND ND	ND ND	-	ND ND	ND	-	ND																		
o(ghi)perylene	-		-	-	-	-	-	-	-		-	-	ND	ND	-	ND	-	ND										
(k)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	ND -	ND -	-	ND -	ND ND	-	ND -	4								
ıyl	5	-	-	ND	-	ND	ND	ND	ND	ND	0.31 J	ND	ND	ND	-	ND												
ethylhexyl)phthalate benzyl phthalate	5 50	3.3 J	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	2.4 J	ND ND	ND ND	ND ND	ND ND	ND ND	4														
ole	-	-	-	ND	-	3 J	1.5 J	2.6 J	ND	1.3 J	1.5 J	2	1.8 J	2	-	ND												
ne (a,h)anthracene	0.002	ND -	ND -	ND ND	ND -	ND ND	ND ND	ND ND	ND ND	0.07 J ND	0.06 J	ND ND	ND ND	ND ND	ND -	ND ND	4											
ofuran	-	-	-	ND	-	1.4 J	0.83 J	1.1 J	ND	ND	0.68 J	0.77 J	0.89 J	0.82 J	-	ND												
phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.42 J	ND	ND	ND	_								
yl phthalate ityl phthalate	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.3 BJ	0.5 BJ	ND ND	ND 0.62 BJ	ND ND	ND ND	ND ND	ND ND	ND ND	5.7 ND	ND ND	ND ND	ND ND	ND ND	+	
ctyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	£	
nthene ne	50 50	2.8 J 3.3 J	ND ND	3 J 3 J	4 J 4 J	3 J 3 J	3 J 3 J	3 J 4 J	2 J 2 J	3 J 3 J	2 J 2 J	2 J 4 J	3 J 3 J	2 J 2 J	2 J 1.8 J	2.5 J 2.8 J	2 J 2.1 J	2.2 J 2.3 J	0.95 1.5	1.7 1.8	1.2 1.6	1.3 1.6	1.8 J 1.9 J	1.5 J 1.7 J	2.6 J 10	1.3 J ND	4	
(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND		
nalene sodiphenylamine (NDPA/DPA	10	29	27	29	36	22	17	30	16	7 BJ	10	75	19	24	11	23	3.1 J	12	3.4	7.1	10	11	11	14	36	ND ND	4	
sodiphenylamine (NDPA/DPA) hlorophenol	See Note 3	ND	- ND	- ND	- ND	- ND	- ND	ND .	- ND	- ND	- ND	- ND	-	-	- ND	ND -	ND ND	ND ND	ND -	ND -	ND ND	ND ND	ND -	ND -	- ND	ND -	4	
nthrene	50	6 J	7 J	6 J	7 J	5 J	4 J	6 J	4 J	4 J	4 J	7	5	4 J	3.4 J	4.9	3.4 J	4.2 J	2.2	3	2.4	2.7	3.1	2.9	14	ND		
ol	See Note 3	ND	ND	ND	ND 3 J	ND	ND	ND	ND	1 J	ND	ND	0.5 J	-	ND 10.1	-	ND 101	ND 2.1.1	0.79	1.7	1.2	1.2	101		6.2 J	0.94 J	+	
e	50	2.2.1	NI)				3.1		2.1	2.1	2.1	2.1	2.1	2.1		2.1.1								1.5.1	3.7.1		100	
	50	2.2 J ND	ND ND	2 J ND	ND	2 J ND	3 J ND	3 J ND	2 J	2 J -	1.8 J ND	2.1 J -	1.8 J -	2.1 J -	-	-	-	-	1.8 J -	1.5 J -	3.2 J ND	-	t					

												Monitorin	g Well Location	n, Sample Dat	e(s), & Monito	oring Progran	n										
PARAMETER 1	GWQS/GV ²										MV	/-1U1 — Slag/l	Fill; Sand/Dred	ge Spoils											MV	VN-02 — Slag	j/Fill
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018	Nov-1999	Jul-2011	Mar-2012
		RFI	HWMU 2003a		HWMU 2004a			HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	•	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013			HWMU 2016		HWMU 2018	RFI	SWI 2011	CMS 2012 ⁵
Filtered SVOCs (Method 8270D) - ug/l																											
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																											
Arsenic, Total	25	3.1 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	-	-	-	-	-	-	-	-	-	2.8 B	-	ND
Barium, Total	1000	53.1 B	57	53	54	49	50.1	58	51.7	47	45	61	48.8	55	47.7	-	-	-	-	-	-	-	-	-	107 B	-	97
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.31 B	-	-
Chromium, Total	50	6.6	5.6	ND	5.1	ND	27.6	7.9	22.4	26	19.8	9.9	5.8	20	9.8	-	-	-	-	-	-	-	-	-	20.3	-	ND
Cyanide, Total Lead, Total	200	170	ND	ND	ND	ND	ND	60	ND	40	ND	56	80	ND	35.5	-	-	-	-	-	-	-	-	-	20	-	-
	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	2.5 B	-	-
Selenium, Total	10	5.1	5.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	9.5	-	8 J
Dissolved Metals - ug/L																											
Arsenic, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-
Barium, Dissolved	1000	-	51	51	-	49	48.5	54	51.1	48	45.1	61	47.3	52	47.3	-	-	-		-	-	-	-	-		-	-
Cadmium, Dissolved	5	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-	-	-	-	-		-	-
Chromium, Dissolved	50	-	2.7	ND	-	ND	ND	ND	ND	5.5	ND	ND	ND	ND	0.6 J	-	-	-		-	-	-	-	-		-	-
Lead, Dissolved	25	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	-	4.4	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-	-	-	-	-		-	-
Field Measurements																											
Dissolved Oxygen (mg/L)	-	0.6	1.71	3.02	2.19	0.98	1.26	1.9	1.66	1.67	2.19	1.66	1.21	0.87	2.24	2.11	1.51	2.1	1.95	1.02	1.32	2.28	1.58	2.03	1.2	3.47	1.88
Field pH (S.U.)	12.5	11.80	11.74	13.23	12.62	11.97	11.96	11.59	11.73	11.22	11.39	11.25	11.09	11.19	11.05	10.99	12.05	13.63	11.91	12.14	11.96	12.30	12.31	12.95	12.00	11.93	11.95
Redox Potential (mV)	-	-300	-252	-235	-196	-241	-225	-234	-241	-217	-201	-251	-203	-247	-200	-210	-172	-11	-199	-234	-292	-209	-209	-192	-245	-116	-252
Specific Conductance (umhos/cm)	-	3000	2634	2573	2539	2549	2672	2562	2439	2701	2408	2078	2538	2478	2519	2404	2638	2484	2444	2460	2549	2515	2573	2642	2,300	1693	1973
Temperature (deg C)	-	13.0	15.8	11.6	12.6	14.3	12.4	12.7	18.3	12.1	15.2	13.2	12.1	14.6	14.3	14.3	12.4	14.2	15.0	17.5	16.6	15.6	16.3	9.9	13.5	17.2	12.5
Turbidity (NTU)	-	2	4.57	3.02	1.77	1.2	7	1.83	5.31	4.1	7.25	1.61	1.21	8	7.24	8	1.41	2.51	12.4	7.45	7.41	4.29	1.49	4.94	2	9.27	2.77

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value that may be biased high.

 J = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5

Column														Мо	nitoring Well I	Location, San	nple Date(s), 8	Monitoring I	Program											
The state of the s	PARAMETER 1	GWQS/GV ²	MWN-02E	3 — Sand/Dre	edge Spoils	MV	WN-02D — Bed	drock	M	VN-03 — Slag	/Fill	MWN-03E		dge Spoils;	MW	'N-03D — Bed	rock	M	WN-04 — Sla	g/Fill	MV	VN-05A — Sla	g/Fill	MWN-05	B — Sand/Dredg	e Spoils	MWN-05D	— Bedrock	MWN-06A -	– Slag/Fill
Separate Methods 1988 1989 1989 1989 1989 1989 1989 198																														
Scheller	VOCs (Method 8260B, 8260C, 8021B) -	- ua/L	RFI	SWI 2011	CMS 2012 °	RFI	SWI 2011	CMS 2012	RFI	SWI 2011	CMS 2012 ⁵	RFI	SWI 2011	CMS 2012 °	RFI	SWI 2011	CMS 2012	RFI	SWI 2011	CMS 2012 5,6	RFI	CMS 2012 °	CMS 2019 '	RFI	CMS 2012 ⁵	CMS 2019	RFI	CMS 2012	RFI	CMS 2013 5,6
Control Cont	1,1-Dichloroethane	5			-	110			ND	-		110	-			-	-	10		-				110			110		110	
14 - 14 - 14 - 15 - 15 - 15 - 15 - 15 -		5		-	-	ND -		110	ND -	-	-	ND -	-			-	-			-			ND -	110	110	ND -	ND -		ND -	
Control Cont	1,2,4-Trichlorobenzene	5		-	-	-	-	ND	-	-	-	-	-			-	-		-	-	-	ND	ND		ND	16 DJ	-	ND	-	-
Column	1,2,4-Trimethylbenzene	5		ND	-	-	-		-		-	-	-	110	-	ND	-	-	ND	-	-		-	-		- -	-		-	
14	1,2-Dichloropenzene 1,2-Dichloroethane			-	-	- ND	-	IND	ND.	-	-	ND.	-		- ND	-	-	ND.	-	-	ND.	110	IND	ND.	110	26 D ND	- ND	110	- ND	
Separate Property of the separate Property of	1,3,5-Trimethylbenzene	5		ND	-		-		-	1.6	-	-	-		-	1	-	- 110	ND	-		0.89 J	-	-	ND	-		ND	-	
Scheller 10									-			-															-		-	
TATION OF THE PARTY OF THE PART					-	-	-		- :			-	-			-											-		-	
Service of the control of the contro	Acetone			-	-	-	-	ND	-	-		-	-			-			-			ND				28 DJ	-	ND	-	
See also see		1				IND						IND	-			ND							110							
Service 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		60	ND -	-	-	ND -			ND -			ND -	-		ND	-		ND -			ND -	110	110	ND -	ND ND	ND ND	ND -		ND -	
Series 1	Chlorobenzene	5	ND	-	-	ND	-	ND	ND	-	-	ND	-		ND	-	-	ND	-	-	2.2 J	ND	ND	46	45	49 D	ND		ND	
The second secon	Chloroethane	5	110	-	-	110	-		ND			ND			110	-	-	140		-	ND	116	115	ND	ND	DN	110		ND	
Germanne 1		5			-	ND -			ND -			ND -				-					ND -			ND -	ND ND	ND	ND -		ND -	
Segregation 1	Cyclohexane	-	-	-	-		-	ND		-			-	ND	-	-		1	-	-	-	ND	ND		ND		-	0.51 J	-	-
The content of the co	Ethylbenzene	5			-	ND			ND			ND	-					IND		-	IND						ND		ND	IND
Company Comp	Methyl cyclohexane	-	-			+ :-		110	H :			1	-		H :			-			-		110		140	110	1			IND
Programme 1	Methylene chloride	5	ND	-	-	ND	-		ND	-	-	ND	-		ND	-	-	ND	-	-	ND		ND	ND			ND	ND	ND	
Secondary Seconds Secondary Seco		5		110	-	-			-	NID		-	-			ND			ND	-					ND	-			-	ND
Service 5 - 1		5							- :			-															-		-	
*** *** *** *** *** *** *** *** *** **	Styrene	5			-	-	-		-		-	-	-		-	-	-	ı		-		ND				ND	-		-	
The second secon		5	110	-		110			ND			IND				- ND					110			ND		110	110		IND	
Figure 1970 1980 1		5		- 1/	-	110	-		5.1			110				ND -											110			
Transport of the control of the cont	Trichloroethene	5	ND	-	-	ND	-	ND	ND	-	-	ND	-	ND	ND	-	-	ND	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Vocage Manual Services (1970) 1970 Services	Vinyl chloride	2	ND	47.4.1	-	ND	-		ND	-		ND	-	1.100	ND	-	-			-	ND F.O.	116	ND	ND	ND 46	ND 26 D I	ND 0.0		ND	
2-A friendly regions and the set of the set	y ,	5	6.5	17.4 J	-	ND	-	ND	16	4.3		ND	-	ND	9.8	2.9	-	ND	ND	-	5.8	ND	ND	40	16 3	36 D3	8.6	ND	6.2	ND
2 A Development See No. 3	2,4-Dimethylphenol	See Note 3	11 J	-	6.8	ND	-	-	2.8 J	-	ND	ND	-	ND	ND	-	- 1	ND	-	ND	3.7 J	ND	ND	ND	ND	11	ND	- 1	2.3 J	ND
2-Prophysical See Mars 3	2,6-Dinitrotoluene		ND				-					ND	-		ND	ND	-	10	27	-	ND		110	ND	ND	ND				
						ND			ND			ND				ND			ND	- ND				ND		ND 1 I			ND	
2-dethylamoria (s-freen) See New 3 25		-			-		+					-								-							-		-	
13 Chichesterstein	2-Methylphenol (o-Cresol)		26	-		ND		-	3.7 J			ND	-		ND	-		ND	-	110	ND	110		ND	IND	-	ND		ND	
3.4 Administration of the control of	2-Nitrophenol 3 3'-Dichlorobenzidine		-		ND -	-		ND.	-			-			-			-			-	110	110	-		T D	-		-	IND
4 Chinesia See Note 3 1 19 - NO 19 - N	3,4-Methylphenol (m,p-Cresol)		77	-	21	ND	-	-	8.3 J	-		ND	-		ND	-	-	ND	-	ND	5.7 J	110	110	400		110	ND	-	ND	110
## Affrogrander S	4-Chloro-3-methylphenol		ND	110	ND	ND	-	-	ND			ND	-		ND		-	ND		ND	ND	116	115	ND			ND		ND	
4 Attrophenol See Note 3		5				-			-			-			-	1100		-			-			-		110	-		-	110
Accessipativity of the control of th	4-Nitrophenol	See Note 3								-		-	-		-						-						-		-	
Acaptiphenione	Acenaphthene				-	-	_					-	-		-			•		-				-	19		-			
Adminiscrate 50 27.0 29.0 ND						ND			6.2 J			ND -	-		ND			ND -		-	6.7 J			ND -	ND.	6.8 ND	ND -		3.8 J	
Serzola phyrene	Anthracene	50				ND		110	ND	110	<u> </u>	ND	-	140	ND	110	-	ND		-	1.4 J	0.2	ND	ND	ND		ND	ND	1.5 J	1
Benzo Piliproamhene	Benzo(a)anthracene		ND	ND	-	110	-		ND	ND		110	-		ND	ND		110	ND	-	ND	5.1E5	0.09 J	ND	ND		110		ND	
Benzo(Alphorathere ND ND - ND - ND - ND - ND					-				ND														0.03 ·I						ND	
BenzyA Acknoble ND ND ND ND ND ND - ND - ND ND	Benzo(ghi)perylene	-			-	-	-		-			-	-				-			-						ND	-		-	
Biphery	Benzo(k)fluoranthene				-	-			-	ND		-	-			ND							0.02 J			0.03 J	-		-	0.09 J
Big/2 ethylexylphthalate 5 ND ND - ND		- 5	-					110	-	0.67.1		-			-	ND.		-			-		ND.	-	110	5.6	-		-	IND
Buty herayl phthalate	Bis(2-ethylhexyl)phthalate	5	ND	ND		ND		ND	ND		<u> </u>	4 J	-	110	ND	ND	-	6.1 J	ND	-	3.4 J	ND	ND	ND	ND ND		ND	110	ND	IND
Chrysene	Butyl benzyl phthalate	50	ND	ND	-	ND	-	ND	ND	ND	-	ND	-	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diberacylary and - - ND - - ND - - ND - - ND ND		0.002	- ND		-	ND.	-	ND	- ND		-	- ND	-	ND	ND -	ND	-	ND.	ND	-	ND.	ND 0.07 J	0.09.I	ND.	31 ND	0.15	- ND	ND ND	ND.	
Diencyclyran - - - 5.8 3 - - - ND - 2.5 - - ND - ND - ND - ND - ND ND	Dibenz(a,h)anthracene								-			-															- 140			
Dimetryl phthalate	Dibenzofuran		-	5.8 J		-	-	ND		2.5 J	-	-	-	ND	-	ND	-	1	ND	-	-	ND	ND	-			-	ND	-	2.1
Din-bottyl phthalate	Diethyl phthalate								IND																					
Di-n-oxyl phthalate 50 ND ND ND - ND	Di-n-butyl phthalate	50		ND				ND	IND	ND				ND	IND	ND			ND			ND	ND		ND			ND		
Fluorene	Di-n-octyl phthalate		ND		-	ND	-		ND		-	ND			ND			ND		-	ND			ND		ND	ND		ND	1 J
Indeno(1,2,3-cd)Pyrene																										3 18				
Naphthalene	Indeno(1,2,3-cd)Pyrene								- 8 J			- ND															ND -		0.4 J	
N-Nitrosodiphenylamine (NDPA/DPA) 50 - 0.49 J ND - ND - ND - ND - ND - ND - ND	Naphthalene	10		260 D	-		-	0.17 J	22	13	-	ND	-	ND		ND	-		ND	-		0.29	ND		560 D		ND	ND	30	9.2
Phenanthrene 50 16 J 18 - ND - ND 1.1 J - 0.61 ND ND - 1.9 J ND - 1.9 J ND - 1.9 J ND - 1.9 J ND ND - 1.5 I Phenol See Note 3 8.2 J - ND ND - ND ND - ND 150 180 D ND - ND ND - ND ND - ND ND ND ND - ND - ND ND ND - ND			-															-												
Phenol See Note 3 8.2 J - ND ND - - 7.7 J - ND ND - ND 190 J 120 I 130 D ND - 12 ND Pyreine 50 3.1 J 2.5 J - ND - ND - ND	Phenanthrene	50	16 J																											
Pyrene 50 3.1 J 2.5 J - ND - ND - 0.1 J ND - 1.6 J 0.45 J - 2.7 J 2 2.6 ND 1.9 J 1.8 ND ND ND 1.1 ND yrydine 50 ND - ND	Phenol	See Note 3	8.2 J	-		ND	-	-	7.7 J	-	II .	ND		ND		-		ND	-		6.9 J	ND	ND		120	130 D	ND	-		ND
ofal Phenolic Compounds (Method 8270C, 8270D)- u	Pyrene		3.1 J												ND						2.7 J			ND					ND	
						ND	-		7.9 J		-	ND	-	-	ND	-	-	ND	-	-	ND	-	-	ND	-	-	ND	<u> </u>	ND	-
	Phenolic compounds (total phenols) 4		122	_	42	ND	-	-	23		1.3	ND	-	ND	3.7	_	-	ND		ND	16	0.46	0.87	590	240	252	ND		14	ND

													Мо	nitoring Well	Location, Sar	nple Date(s),	& Monitoring	Program											
PARAMETER ¹	GWQS/GV ²	MWN-028	B — Sand/Dro	edge Spoils	MW	/N-02D — Be	drock	MV	VN-03 — Slaç	g/Fill	MWN-03B	— Sand/Dre Clay; Peat	dge Spoils;	MW	/N-03D — Bed	lrock	M	IWN-04 — Sla	g/Fill	M	WN-05A — Sla	ag/Fill	MWN-05B	— Sand/Dre	dge Spoils	MWN-05D	— Bedrock	MWN-06A	— Slag/Fill
		Nov-1999	Jul-2011	Mar-2012	Nov-1999	Jul-2011	Mar-2012	Nov-1999	Jul-2011	Mar-2012	Nov-1999	Jul-2011	Mar-2012	Nov-1999	Jul-2011	Mar-2012	Nov-1999	Jul-2011	Mar-2012	Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Jan-2019	Nov-1999	Mar-2012	Nov-1999	May-2013
		RFI	SWI 2011	CMS 2012 ⁵	RFI	SWI 2011	CMS 2012	RFI	SWI 2011	CMS 2012 ⁵	RFI	SWI 2011	CMS 2012 ⁵	RFI	SWI 2011	CMS 2012	RFI	SWI 2011	CMS 2012 5,6	RFI	CMS 2012 5	CMS 2019 7	RFI	CMS 2012 ⁵	CMS 2019	RFI	CMS 2012	RFI	CMS 2013 5,6
Filtered SVOCs (Method 8270D) - ug/	L																												
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.9 D	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5 D	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5 D	-	-	-	-
Benzo(ghi)perylene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.09 DJ	-	-	-	-
Dibenzo(a,h)anthracene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.12 DJ	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.61 D	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.1 D	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.11 DJ	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	500 D	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.5 D	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.3 DJ	-	-	-	-
Total Metals - ug/L							-	•		*			*			•		*		-	*	<u> </u>			•				
Arsenic, Total	25	40.1	49	-	ND	ND	-	ND	-	ND	84.8 J	34	-	3.7 B	-	ND	4.2 B	-	ND	2.5 B	ND	-	ND	16	-	ND	ND	ND	-
Barium, Total	1000	60.7 B	-	71	528	690	-	99.9 B	-	91	384	1100	-	1120	1400	1280	28 B	-	40	102 B	100	113.1	33400	8940	15750	81.1 B	100	244	-
Cadmium, Total	5	ND	-	-	ND	-	-	ND	-	-	ND	-	-	0.43 B	-	-	ND	-	-	ND	-	-	48.2 J	ND	-	ND	-	ND	-
Chromium, Total	50	3.1 B	-	9 J	1.1 B	ND	-	1.1 B	-	ND	28.7	4	-	38.8	-	ND	17.1	-	20	2.8 B	10	-	207	60	-	13.9	4 J	2.1 B	2.65
Cyanide, Total	200	62	-	-	ND	-	-	ND	-	-	ND	-	-	ND	-	-	ND	-	-	ND	-	-	ND	-	-	ND	-	ND	-
Lead, Total	25	ND	-	-	ND	-	-	ND		-	5.4	-	-	ND	-	-	ND	-	-	ND	3 J	-	25.2	23	-	ND	-	ND	-
Selenium, Total	10	5.8	-	5 J	ND	-	ND	10.5	-	7 J	ND	-	ND	ND	-	ND	3.1 B	-	6 J	5.5	ND	-	ND	ND	-	ND	ND	4.2 B	-
Dissolved Metals - ug/L																													
Arsenic, Dissolved	25	-	-	45	ND	-	-	-	-	-	112 J	-	-	2.6 B	-	ND	-	-	-	-	-	-	ND	ND	-	ND	ND	-	-
Barium, Dissolved	1000	-	-	52	537	-	-	-	-	-	285	-	-	1060	-	1380	-	-	-	-	-	113.4	31800	8940	17980	78.1 B	94	-	-
Cadmium, Dissolved	5	-	-	-	ND	-	-	-	-	-	ND	-	-	0.55 B	-	-	-	-	-	-	-	-	67.4 J	ND	-	ND	-	-	-
Chromium, Dissolved	50	-	-	ND	ND	-	-	-	-	-	1.4 B	-	-	22.7	-	7 J	-	-	-	-	-	-	10.6 B	ND	-	2.5 B	ND	-	-
Lead, Dissolved	25	-	-	-	ND	-	-	-	-	-	ND	-	-	ND	-	-	-	-	-	-	-	-	8.3 B	ND	-	ND	-	-	-
Selenium, Dissolved	10	-	-	3 J	3.7 B	-	-	-	-	-	ND	-	-	ND	-	ND	-	-	-	-	-	-	ND	ND	-	ND	ND	-	-
Field Measurements								•			•										*								
Dissolved Oxygen (mg/L)	-	0.5	3.47	1.27	0.4	0.87	2.83	0.5	0.48	1.03	2.1	1.28	1.67	0.5	1.71	0.41	4.1	6.36	8.7	0.7	1.59	8.28 3.67	0.3	0.27	0.68	0.4	0.04	0.6	1.98
Field pH (S.U.)	12.5	11.20	11.93	11.32	7.00	7.05	7.33	12.10	12.56	12.06	7.50	7.44	7.30	6.20	6.69	6.13	11.20	12.07	12.11	12.40	12.00	12.57 12.65	6.80	6.68	6.64	6.70	6.88	12.50	12.30
Redox Potential (mV)	-	-325	-116	-283	-142	-311	-106	-373	-311	-314	-165	-161	-175	-20	-69	-37	-82	-153	-137	-193	-0.08	-151 -152	-254	-132	-108	-104	-53	-347	-280
Specific Conductance (umhos/cm)	-	1.200	1693	1145	1.300	1370	1411	3.200	2615	2592	2.200	2917	3051	2.800	25.6	26750	3400	2664	2963	4.800	4353	4781 4550	82000	34.47	48.5	1.500	1382	6200	5026
Temperature (deg C)	-	13.5	17.2	13.0	14.5	16.0	12.9	14.2	18.5	12.1	15.9	19.5	12.1	14.9	20.0	14.1	21.0	22.0	11.2	14.0	11.0	7.5 8.2	14.8	10.6	7.0	15.0	13.1	14.9	12.9
Turbidity (NTU)	-	1	9.27	250	330	5.18	14.8	1	4	1.57	300	15.9	1.67	79	25.8	1339	1	4.9	2.56	1	1.48	5.04 2.81	320	>1000	8.32	580	>1000	1	22.5

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.
- = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

- VOCs = Volatile Organic Compounds
 SVOCs = Semivolatile Organic Compounds
 SVOCs = Semivolatile Organic Compounds
 RFI = Final RCRA Facility Investigation (October 2004)
 CMS = Corrective Measures Study
 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Bold	
Bold	
Bold	

- = concentration is less than or equal to the GWQS/GV (includes non-detect)
 = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
 = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
 = concentration exceeds 100 times the GWQS/GV
 = pH exceeds 12.5

														Well Location	, Sample Date	e(s), & Monito	ring Program								MWN-14A —	MWN-14B — Slag/Fill;		
PARAMETER ¹	GWQS/GV ²	Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	-12 — Slag/Fill May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018	Slag/Fill Nov-1999	Sand/Dredge Spoils Nov-1999	MWN-15A Nov-1999	A — Slag
		RFI	HWMU 2003a							HWMU 2006b	HWMU 2007a	HWMU 2007b		HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011			HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018	RFI	RFI	RFI	CMS 2
Cs (Method 8260B, 8260C, 8021B) - I-Dichloroethane	ug/L 5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- 1	ND	ND	ND	ND	ND	ND	-
-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	
,4,5-Tetramethylbenzene ,4-Trichlorobenzene	-	-	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	-	- ND	- ND	-	- ND	-	- ND	- ND	- ND	-	-	-	-
,4-Trimethylbenzene	5	-	ND -	ND	- ND	ND.	- ND	ND.	ND.	- ND	ND ND	ND.	ND.	ND.	ND	-	ND -	ND -	ND.	ND ND	- ND	ND ND	ND ND	ND ND	-	-		430
Dichlorobenzene	3	-	ND	-	-	-	-	-	-	-	-	0.6 J	-	-	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	-	-	-	-
-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	
5-Trimethylbenzene Dichlorobenzene	5	-	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	-	- ND	- ND	0.78 J ND	0.96 J	1.1 J	0.91 J ND	0.81 J ND	ND	-	-	-	31
Diethylbenzene	-	-	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	-	ND -	ND -	- ND	ND -	-	- -	- ND	ND -	-	-		
tanone	50	-	-	-	-	-	-	-	-	-	-		-	-	-	-	ND	ND	ND	ND	-	ND	ND	ND	-	-	-	
one	50	- ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	9.4 J	4.2 J	1.6 J	5.1	-	ND	2.5 J	10	-	-	-	
ene omethane	5	ND ND	4 J	4.3 J	2.9 J ND	4.1 J	3.1 J	4.4 J	4 J	2.9 J	3.1 ND	4.9 ND	3.5 ND	4.7 ND	ND	3.2 ND	2.9 ND	2.9 ND	1.8 ND	ND	1.9	2.4 ND	1.8 ND	0.32 J ND	130 ND	690 ND	12000	•
on disulfide	60	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	0.89 J	0.72 J	ND	1.2 J	-	ND	ND	ND	-	-	-	†
robenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	7.6 J	ND	
oethane oform	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	4
2-Dichloroethene	5	ND -	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND -	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND -	ND -	ND	+
hexane		-		-	-	-	- 110	-	-	-	-	-	-	-	<u> </u>	-	ND	ND	ND	ND	-	ND	ND	ND		_		L
enzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
ylbenzene cyclohexane	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	-	-	-	
lene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND .	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	
lbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	-	-	-	
oylbenzene	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	ND	ND	ND	ND	ND	ND	-	-	-	
ropyltoluene (p-Cymene) e	5	-	-	ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND.	- ND	- ND	-	-	- ND	- ND	ND ND	ND ND	ND -	ND ND	ND ND	ND ND	-	-		+
hloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	
ie	5	2.1 J	1.6 J	1.5 J	1.1 J	1.5 J	1.2 J	1.6 J	ND	1 J	1.2	1.7	1.4	1.8	1.4	1.4	1.4	1.3	0.87 J	1.2 J	0.89 J	1.1 J	0.78 J	ND	21	54	1500	
,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	
oethene lloride	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND	ND ND	ND	52 ND	ND	_
s, Total	5	4.7 J	4.2 J	2.2 J	ND	2.6 J	ND	4.4 J	3.6 J	2.6 J	3 J	2.6	3.2 J	4 J	2.6	2.8 J	2.4	2.3	1.3 J	1.76 J	1.74 J	1.72 J	1.51 J	ND	22	51	2800	\vdash
(Method 8270C, 8270D) - ug/L		0							0.00										1.00									
methylphenol	See Note 3	ND	ND	2 J	ND	ND	ND	ND	ND	ND	1 J	3 J	1 J	1 J	ND	-	ND	0.71 J	-	-	-	-	-	-	6.7 J	ND	3.3 J	
nitrotoluene	5	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	- ND	-	- ND	- ND	ND	ND	ND	
oronaphthalene orophenol	See Note 3	ND -	ND -	ND	ND -	ND -	ND -	ND -	ND	ND -	ND	ND -	ND -	ND	ND -	ND -	ND ND	ND ND	ND	ND -	ND -	ND	ND	ND	ND -	ND -	ND	
thylnaphthalene	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	15	7.7	10	7	10 D	5.2	8.2 D	9.3	ND	-	-	-	+
hylphenol (o-Cresol)	See Note 3	ND	ND	-	1 J	-	-	-	-	0.8 J	0.7 J	1	1 J	1 J	ND	-	0.66 J	0.64 J	-	-	-	-	-	-	7 J	24 J	ND	
ophenol ichlorobenzidine	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- ND	ND ND	ND	- ND	- ND	- ND	- ND	- ND	- ND	-	-	-	-
ethylphenol (m,p-Cresol)	See Note 3	ND.	ND.	2 J	ND.	2 J	2 J	3 J	3 J	- 4 J	- 4 J	8 J	3 J	6 J	ND	ND -	2.9 J	2.4 J	- ND	ND -	- ND	- -	ND -	ND -	- 14 J	ND ND	ND.	
oro-3-methylphenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	-	-		-	ND	ND	ND	
proaniline	5	-	-	-	-	-	-	-	-	-	-		-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	
aniline phenol	See Note 3	-	-	ND	ND	ND	ND	ND	ND	ND -	ND	ND	ND	ND	-	ND -	ND ND	ND ND	ND	ND	-	-	-	-	-	-	-	+
phthene	20	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	5.5	4.1 J	4.8	3.3	4.6 D	2.8	3.6 D	3	0.98 J	-	-	-	+
phthylene	-	7.5 J	6 J	9 J	4 J	6 J	6 J	7 J	6 J	7 J	5	9	7	6	4.3 J	6.4	3.8 J	4.2 J	3.2	4.7 D	2.5	3.4 D	4.3	ND	6 J	ND	27	
henone	- 50	- 451		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	- ND	- ND	_
cene (a)anthracene	0.002	4.5 J ND	5 J ND	6 J ND	4 J ND	5 J ND	6 J ND	6 J 0.6 J	5 J 0.6 J	5 J 0.6 J	4 J 0.5 J	0.7 J	0.6 J	4 J 0.5 J	3.8 J	5.2 ND	3.3 J 0.34 J	4.3 J 0.54 J	2.2 0.25	3.5 D 0.3 DJ	1.4 0.16 J	2.7 D	2.7 ND	ND ND	ND ND	ND ND	ND ND	+
(a)pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	+
(b)fluoranthene	0.002	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	0.05 J	ND	ND	ND	-	-	-	
(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	-	-	-	\vdash
k)fluoranthene Alcohol	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND -	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	-	-		+
yl	5	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	3.5 J	2 J	2.9 J	1.9 J	ND	2	2.8 D	2.6	ND	-	-	-	+
thylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.7 BJ	ND	ND	3.4	8.8	ND	ND	8.5	ND	ND	ND	
enzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4
role ne	0.002	- ND	- ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.3 J	0.2 J	0.3 J	ND ND	0.3 J	ND	15 ND	ND	ND ND	6.4 0.15 J	6.8 ND	5.5 0.12 J	7.5 D ND	5.8 ND	ND ND	- ND	ND	- ND	+
(a,h)anthracene	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND.	ND	ND	ND	ND	ND	-	-	-	1
ofuran	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	15	8.6 J	11	7.2	7	6.5	9.8 D	7.7	ND	-	-	-	
phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4
l phthalate yl phthalate	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.3 BJ	0.4 BJ	ND ND	ND ND	0.39 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	+
l phthalate	50	ND	ND	ND	ND	ND	ND	7 J	ND	0.4 J	0.8 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	F
thene	50	10	8 J	11	8 J	10	11	12	10	12	8	10	12	9	7.6 J	10	7.3	8.9	5.4	8 D	3.4	6.1 D	5.6	2.4	4.8 J	ND	ND	
,2,3-cd)Pyrene	50 0.002	25	22	28	17	22	23	26	25	26	19	29	25	20	17	24	15	17 ND	13	17 D	9.5	14 D	13	2.5	8 J	16 J	26	4
alene	10	62	69	90	48	71	78	100	93	80 B	62	140	82	70	60	76	ND 29	ND 46	ND 32 D	ND 46 D	ND 18	34 D	ND 49	ND 0.87 J	49	1100 D	1400 D	
odiphenylamine (NDPA/DPA)	50	-	-	-	-	- '1	-	-	-	- OU D	-	140	-	-	-	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	0.67 J ND	- 49	-	1400 D	
nlorophenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	-	ND	ND	-	-	ND	ND	ND	
threne	50	46	36	45	31	41	43	46	41	49	37	50	51	36	34	42	25	32	20	32 D	12	24 D	22	3.7	15 J	27 J	3.3 J	
	See Note 3 50	ND 7 I	ND 6 I	ND • I	ND 6 I	ND 6 I	ND 7 I	ND 7.1	ND 7 I	0.5 J	ND 5.1	0.4 J	3 J	ND 6	ND 4.0.1	- 6.7	1.5 J	0.59 J	- 2.2	ND 5.D	- 2.2	- 27 D	- 2.1	101	14 J	160	ND ND	
e e	50	7 J ND	6 J ND	8 J 2 J	6 J ND	6 J ND	7 J ND	7 J ND	7 J ND	7 J ND	5 J ND	7 4 J	2 J	6 2 J	4.9 J 2 J	6.7	4.5 J	5.8	3.3	5 D -	2.2	3.7 D	3.1	1.8 J -	3.7 J ND	ND ND	18 J	
henolic Compounds (Method 82		.10	.10		.,,,,	,,,,,	110	710	.10	.10		7.0								1							.50	
		ND	ND	4	1	2		3	3	5.3	5.7	12.4			ND		5.06	4.34										_

													Monitoring	Well Location,	Sample Date	e(s), & Monito	ring Program											
PARAMETER 1	GWQS/GV ²											MWN-	12 — Slag/Fill												MWN-14A — Slag/Fill	MWN-14B — Slag/Fill; Sand/Dredge Spoils	MWN-15A	A — Slag/Fill
		Nov-1999	Jun-2003	Oct-2003	May-2004	Oct-2004	May-2005	Oct-2005	May-2006	Oct-2006	May-2007	Oct-2007	May-2008	Oct-2008	May-2009	May-2010	May-2011	Jun-2012	Jun-2013	Jul-2014	Sep-2015	Jun-2016	May-2017	Apr-2018	Nov-1999	Nov-1999	Nov-1999	Apr-2013
		RFI	HWMU 2003a	HWMU 2003b	HWMU 2004a	HWMU 2004b	HWMU 2005a	HWMU 2005b	HWMU 2006a	HWMU 2006b	HWMU 2007a	HWMU 2007b	HWMU 2008a	HWMU 2008b	HWMU 2009	HWMU 2010	HWMU 2011	HWMU 2012	HWMU 2013	HWMU 2014	HWMU 2015	HWMU 2016	HWMU 2017	HWMU 2018	RFI	RFI	RFI	CMS 2013 5,6
Filtered SVOCs (Method 8270D) - ug/																												
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-			-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-		-
Total Metals - ug/L	*		<u> </u>	,				*				*	<u> </u>															
Arsenic, Total	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	ND	53.7	5.7 B	-
Barium, Total	1000	59.7 B	59	62	6.5	66	68	70	66.8	66	72.1	67	68.3	66	65.5	-	-	-	-	-	-	-	-	-	538	120 B	332 J	-
Cadmium, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	ND	ND	ND	-
Chromium, Total	50	2.8 B	ND	9.9	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.98 B	8.5	51	3.45 DJ						
Cyanide, Total	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.011 J	0.28 J	0.14	-
Lead, Total	25	ND	ND	ND	7	ND	ND	ND	-	-	-	-	-	-	-	-	-	ND	2.6 B	13.3	-							
Selenium, Total	10	4.9 B	5.9	ND	ND	ND	-	-	-	-	-	-	-	-	-	5.8	3.8 B	3.7 B	-									
Dissolved Metals - ug/L																												
Arsenic, Dissolved	25	-	ND	ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	51.8 J	ND	-							
Barium, Dissolved	1000	-	55	63	-	67	69	65	70.9	64	69	66	65.1	63	66.3	-	-	-	-	-	-	-	-	-		114 B	111 JB	-
Cadmium, Dissolved	5	-	ND	ND	-	ND	ND	ND	-	-	-		-	-	-	-	-	-	ND	ND	-							
Chromium, Dissolved	50	-	ND	ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	ND	ND	-							
Lead, Dissolved	25	-	ND	ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	ND	ND	-							
Selenium, Dissolved	10	-	6.3	ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	3.6 B	2.8 JB	-							
Field Measurements																												
Dissolved Oxygen (mg/L)	-	1.8	1.85	2.77	2.18	0.72	1.18	1.36	1.31	1.89	1.7	1.06	1.32	1.47	1.45	1.39	1.61	1.74	2.11	0.99	2.38	2.01	1.23	6.73	0.56	0.53	0.7	0.73
Field pH (S.U.)	12.5	12.10	11.81	13.41	12.75	12.28	11.89	11.89	11.78	11.73	11.70	11.48	11.07	11.37	11.26	11.17	12.23	13.86	12.38	12.12	12.08	12.62	12.46	13.31	12.3	11.6	11.12	10.97
Redox Potential (mV)	-	-310	-248	-202	-187	-251	-239	-247	-248	-244	-198	-244	-213	-258	-221	-206	-136	-25	-257	-247	-280	-189	-218	-159	-436	-413	103	-311
Specific Conductance (umhos/cm)	-	3100	2725	2851	2910	3141	3137	3064	2895	3086	2966	2977	3034	3033	3048	2963	3028	3206	3038	3146	3291	3516	3148	5062	4700	2300	396	829.1
Temperature (deg C)	-	14.6	15.6	12.0	12.8	14.1	12.5	12.0	18.3	12.2	14.5	13.8	12.7	14.9	14.1	14.1	13.3	14.7	15.4	21.7	17.6	16.6	16.8	11.0	13.5	13.4	13.4	14.1
Turbidity (NTU)	-	1	4.86	1.05	1.41	0.15	0.58	1.29	3.46	2.43	1.36	0.47	0.42	0.44	1.28	0.68	2.1	4.4	7.92	4.22	6.39	0.46	0.99	12.5	9	280	268	12.4

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCS, SVOCS, and Total Metals were analyzed for during CMS 2012 and GMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value that may be biased high.

 J = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	
	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= nH exceeds 12.5

											Moni	itoring Well L	ocation, Samp	ole Date(s), &	Monitoring Pro	ogram									
PARAMETER ¹	GWQS/GV ²		B — Slag/Fill; id; Peat	MWN-15D	— Bedrock	MWN-16.4	A — Slag/Fill	MWN-16B	— Slag/Fill		— Slag/Fill; ; Peat	MWN-19	B — Peat	MWN-20A	— Slag/Fill	MWN-20B —	Slag/Fill; Sand	MWN-21A — Slag/Fill	MWN-21AR — Slag/Fill	MWN-21B -	– Clayey Silt	Sand	— Slag/Fill; ; Peat		N-22B redge Spoils
		Nov-1999 RFI	Apr-2013 CMS 2013 ^{5,6}	Nov-1999 RFI	Mar-2012 CMS 2012 ⁵	Nov-1999 RFI	Apr-2013 CMS 2013 ⁵	Nov-1999 RFI	Apr-2013 CMS 2013 ⁵	Nov-1999 RFI	Apr-2013 CMS 2013	Nov-1999 RFI	Apr-2013 CMS 2013	Nov-1999 RFI	Apr-2013 CMS 2013 ^{5,6}	Nov-1999 RFI	Apr-2013 CMS 2013 ^{5,6}	Nov-1999 RFI	Apr-2013 CMS 2013	Nov-1999 RFI	Apr-2013 CMS 2013	Nov-1999 RFI	Apr-2013 CMS 2013	Nov-1999 RFI	Apr-2013 CMS 2013
VOCs (Method 8260B, 8260C, 8021B	3) - ug/L		CW3 2013		CWI3 2012		CW3 2013		CIVIS 2013		5		00 2010		CWI3 2013		CM3 2013		00 2010		00 2010		J 2010		00 2010
1,1-Dichloroethane 1,1-Dichloroethene	5	ND ND	-	ND ND	ND ND	ND ND		ND ND		ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	4
1,2,4,5-Tetramethylbenzene	-	-	-	-	0.14 J	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	5	-	-	-	ND 1.9 J	-	- ND	-	- ND	-	- ND	-	- ND	-	- 18	-	-	-	- ND	-	- ND	-	- 251	-	-
1,2,4-Trimethylbenzene 1,2-Dichlorobenzene	3	-	490 J	-	ND	- 1	- ND	-	- ND	-	- ND	-	- ND	-	- 18	-	18	-	- ND	-	- ND	-	3.5 J	-	3.9
1,2-Dichloroethane	0.6	ND		ND	ND	ND		ND	-	ND		ND	-	ND	-	ND	-	ND	-	ND	-	ND		ND	
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	3	-	360 J	-	ND ND		1.2 J	-	ND -	-	ND -	-	ND -	-	22	-	20	-	ND -	-	ND -		1.8 J	-	5.6
1,4-Diethylbenzene		-	-	-	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Butanone Acetone	50 50	-	-	-	4.1 J ND	- :	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+ -
Benzene	1	13000	7400	6.2	ND	19	16	3.2 J	36	3300	410 D	2.5 J	0.9	890 D	160	610 D	220	150 J	1.3	340 J	0.29 J	120 J	150	94	33
Bromomethane Carbon disulfide	5 60	ND	-	ND	ND ND	ND	-	ND -	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	4
Chlorobenzene	5	ND	-	ND	ND	ND		ND		ND	-	ND		ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
Chloroethane Chloroform	5	ND ND	-	ND ND	0.45 J	ND ND	-	ND ND	-	ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND	-	ND ND	4 -
cis-1,2-Dichloroethene	5	- 110	-	- 14D	ND	- ND		ND -		ND -	-	- 14D	-	- 110	-	ND -	-	-	-	ND -	-	ND -		ND -	
Cyclohexane Ethylbenzene		- ND	- ND	- ND	9.7 J ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- 14	- 5.8 J	6.9	- 621	- ND	- ND	- ND	- ND	- ND	- ND	- ND	151
Isopropylbenzene	5	- ND	ND ND	- ND	ND	ND -	ND ND	ND -	ND ND	- ND	ND ND	ND -	ND ND	14 -	5.8 J ND	- 6.9	6.2 J ND	- ND	2.4 J	- ND	ND ND	- ND	9.4	- ND	1.5 J ND
Methyl cyclohexane	-	- ND	-	- ND	ND	- ND	-	- ND	-	-	-	-	-	- ND	-	- ND	-	- ND	-	- ND	-	- ND	-	-	
Methylene chloride n-Butylbenzene	5	ND -	- ND	ND -	ND ND	ND -	- ND	ND -	- ND	ND -	- ND	ND -	- ND	ND -	- ND	ND -	- ND	ND -	- ND	ND -	- ND	ND -	- ND	ND -	- ND
n-Propylbenzene	5	-	ND	-	ND		ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
p-Isopropyltoluene (p-Cymene) Styrene	5	-	ND -	-	ND ND	- 1	ND -	-	ND -	-	ND -	-	ND -	-	ND -	-	ND -	-	ND -	-	ND -	-	ND -	-	ND -
Tetrachloroethene	5	ND	-	ND	ND	ND	-	ND		ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	4 -
Toluene trans-1,2-Dichloroethene	5	1700	670	ND ND	ND ND	1.8 J ND	2.9	ND ND	4.2 J	ND ND	ND -	ND ND	ND -	190	34	98 ND	35	24	ND -	49	ND -	5.5 ND	ND -	10 ND	6
Trichloroethene	5	ND	-	ND	ND	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
Vinyl chloride Xvlenes. Total	5	ND 3500	3400	ND 1.6 J	0.82 J	ND 3.1 J	5	ND ND	3.2	ND ND	1.8	ND ND	- ND	ND 430	155	ND 200	138	ND 2.8 J	- ND	ND 5.4 J	- ND	ND 11	6.6	ND 16	29
SVOCs (Method 8270C, 8270D) - ug/		3300	0400	1.0 3	0.02 0	3.13		ND	0.2	ND	1.0	ND	IND	730	100	200	100	2.00	IND	3.43	IND		0.0	10	20
2,4-Dimethylphenol	See Note 3	2.7 J	8 J	ND	ND	5.4 J	2.2 J	7.6 J	31	ND	-	ND	-	3.4 J	2.2 J	11	10 J	ND	-	6.8 J	-	ND	-	4.7 J	4
2,6-Dinitrotoluene 2-Chloronaphthalene	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol	See Note 3	-	ND	-	ND	-	ND	-	ND	-	-	-	-	-	ND	-	ND	-	-		-	-	-	-	
2-Methylnaphthalene 2-Methylphenol (o-Cresol)	See Note 3	- ND	49 ND	ND.	0.07 J ND	16	0.32 4.2 J	35	0.48 120	ND.	ND -	- ND	ND -	6.9 J	3 ND	42	3.2 34 J	ND.	ND -	- ND	ND -	- ND	ND -	13	3.5
2-Nitrophenol	See Note 3	-	ND	-	ND		ND	-	ND		-	-	-	-	ND	-	ND	-	-	-	-	-	-	-	-
3,3'-Dichlorobenzidine 3,4-Methylphenol (m,p-Cresol)	See Note 3	- ND	ND 4.3 J	- ND	ND ND	58	9.8	- 160 D	130 D	ND.	ND -	- ND	ND -	21	ND 10 J	- 160 JD	ND 110 J	ND.	ND -	ND.	ND -	- ND	ND -	- 52	ND -
4-Chloro-3-methylphenol	See Note 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	-	ND	ND	ND	ND	ND	-	ND	-	ND	-	ND	-
4-Chloroaniline 4-Nitroaniline	5	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND
4-Nitrophenol	See Note 3	-	ND	-	ND		ND	-	ND		-	-	-	-	ND	-	ND	-	-		-	-	-	-	-
Acenaphthene Acenaphthylene	20	34	ND 25	- ND	ND ND	- ND	0.11 J 0.15 J	- ND	0.42 0.31 J	- ND	0.78 ND	- ND	ND ND	- 2 J	ND 0.91 J	- 1.7 J	0.38 J 1.2	- ND	2.5 ND	- ND	0.08 J	- ND	10 0.54	- ND	0.92 0.97
Acetophenone	-	-	34	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
Anthracene Benzo(a)anthracene	50 0.002	ND ND	ND ND	ND ND	ND ND	ND ND	0.09 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.24 0.09 J	ND ND	0.09 J	ND ND	0.58 0.22 J	2.8 J ND	1.9 0.46
Benzo(a)pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002	-	ND ND	-	ND ND	- :	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	0.07 J ND	-	0.11 J ND	-	0.18 J ND	-	0.17 J ND
Benzo(k)fluoranthene	0.002	-	ND	-	ND		ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
Benzyl Alcohol Biphenyl	- 5	-	ND 9	- :	ND ND	- : -	ND ND	-	ND ND	-	ND ND	- :	ND ND	-	ND ND		ND ND	-	ND ND	- :	ND ND		ND ND	-	ND ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	2.3 J	ND	ND	ND	ND	ND	ND	ND	ND	3.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate Carbazole	50	ND -	ND 1.3 J	ND	ND ND	ND	ND ND	ND -	ND 1.4 J	ND .	ND ND	ND -	ND ND	ND	ND ND	ND -	ND ND	ND -	ND ND	ND	ND ND	ND -	ND ND	ND -	ND 4.4
Chrysene	0.002	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	0.11 J	ND	0.09 J	ND	0.28 J	ND ND	0.38 J
Dibenz(a,h)anthracene Dibenzofuran	-	-	ND 8.1	-	ND ND	- :	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND
Diethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate Di-n-butyl phthalate	- 50	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-octyl phthalate	50	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Fluoranthene	50	ND	ND	ND	ND	ND	0.14 J	ND	0.1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.41	ND	0.2	ND	0.83	6 J	4.3
Fluorene Indeno(1,2,3-cd)Pyrene	50 0.002	25	26 ND	ND -	ND ND	ND -	0.33 ND	ND -	0.28 J ND	14	8.9 ND	ND -	ND ND	ND -	0.46 J ND	ND -	0.79 J ND	1.3 J -	0.52 ND	ND -	ND ND	17 -	0.72 ND	7 J -	5.4 ND
Naphthalene	10	1400 D	1200	2.9 J	ND	4.8 J	2.3	2.8 J	23	9 J	0.23	ND	ND	180 D	40	91 JD	49	ND	ND	3.3 J	0.08 J	ND	0.52	22	18
N-Nitrosodiphenylamine (NDPA/DPA Pentachlorophenol	See Note 3	- ND	ND ND	- ND	ND ND	- ND	ND 2.1	- ND	ND ND	- ND	ND -	- ND	ND -	- ND	ND 1.2 J	- ND	ND 2.3 J	- ND	ND -	- ND	ND -	- ND	ND -	- ND	ND -
Phenanthrene	50	3.6 J	3.7 J	ND	ND	ND	0.28	ND	0.4	ND	ND	ND	ND	ND	0.46 J	1.3 J	1.1	ND	0.11 J	ND	0.09 J	ND	0.27 J	19	10
Phenol Pyrene	See Note 3 50	ND ND	6.2 J ND	ND ND	ND ND	47 ND	ND 0.1 J	530 D ND	160 D ND	53 ND	- ND	ND ND	- ND	43 ND	ND ND	450 D ND	57 J ND	ND ND	0.29	3 J ND	0.14 J	5.4 J ND	0.52	51 4.7 J	2.6
Pyridine	50	150 J	-	17 J	-	ND	- 0.13	7.6 J	- -	ND	-	ND ND	-	ND	- -	16 J	-	ND	- 0.29	ND ND	- -	ND	-	4.7 J ND	-
Total Phenolic Compounds (Method			40.5	ND	NID	400.4	40.0	720.0	444	E ^		NID		74.0	40.4	600	242.2	ND		0.0		E 4		400.7	
Phenolic compounds (total phenols)	1	2.7	18.5	ND	ND	126.4	18.3	732.6	441	53	-	ND	-	74.3	13.4	663	213.3	ND	-	9.8	-	5.4	-	120.7	-

											Moni	toring Well I c	cation Samn	ole Date(s). &	Monitoring Pro	ogram									
PARAMETER ¹	GWQS/GV ²	MWN-15B Sand	— Slag/Fill; l; Peat	MWN-15D	— Bedrock	MWN-16A	— Slag/Fill	MWN-16B	— Slag/Fill	MWN-19A Sand		MWN-19			A — Slag/Fill		Slag/Fill; Sand	MWN-21A — Slag/Fill	MWN-21AR — Slag/Fill	MWN-21B -	- Clayey Silt	MWN-21C - Sand	— Slag/Fill; ; Peat		N-22B redge Spoils
		Nov-1999	Apr-2013	Nov-1999	Mar-2012	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Apr-2013
		RFI	CMS 2013 5,6	RFI	CMS 2012 ⁵	RFI	CMS 2013 ⁵	RFI	CMS 2013 ⁵	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013 5,6	RFI	CMS 2013 5,6	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2013
Filtered SVOCs (Method 8270D) - ug/L	20		1		1						1				1				1		1				
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene		-	-	-	-	-	-	•	-	-	-	-	-	-	-	•	-	-	-	•	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	•	-	-	-	-	-	-	-	•	-	-	-	•	-	-	-	-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	•	-	-	-	•	-	-	-	-	-
Dibenzo(a,h)anthracene		-	-	-	-	-	-	•	-	-	-	-	-	-	-	•	-	-	-	•	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L																					,				4
Arsenic, Total	25	ND	-	ND	4 J	ND	ND	36.2 J	14.7	ND	-	2.7 B	-	3 B	ND	2.8 B	ND	8.7 B	2.87	69.4	26.54	3.4 B	0.97	2.5 B	2.23 J
Barium, Total	1000	120 JB	-	76.5 JB	223	107 JB	61.98	97.9 JB	445	713 J	-	366 J	-	77.4 JB	55.89	195 JB	160.9	108 B	49.2	1740	1300	162 B	77.78	50 B	48.56
Cadmium, Total	5	ND	-	0.85 B	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
Chromium, Total	50	6.8	0.91 J	61.7	9 J	1.1 B	ND	20.1	4.86 J	3.9 B	-	45.4	-	0.7 B	ND	1.4 B	ND	0.8 B	0.88 J	1 B	2.81	2.3 B	1.07	0.7 B	ND
Cyanide, Total	200	0.15	-	ND	-	0.045 J	-	R	-	0.018	-	ND	-	0.11 J	-	0.064 J	-	0.033	-	ND	-	0.053	-	0.092	-
Lead, Total	25	ND	-	8.8	-	ND	ND	ND	ND	ND	-	11.4	-	ND	ND	ND	ND	1.2 B	0.31 J	ND	5	2.9 B	0.63 J	ND	ND
Selenium, Total	10	2.8 B	-	ND	ND	12.8	6.83 J	1.7 B	10.6 J	ND	-	ND	-	6.4	4.21 J	8.3	7.29 J	ND	1.02 J	2 B	1.03 J	2 B	1.04 J	12.9	7.91 J
Dissolved Metals - ug/L																									
Arsenic, Dissolved	25	ND	-	ND	ND	-	-	49.6 J	-	-	-	ND	-	-	-	-	-	3.8 B	-	70.6	-	2.6 B	-	-	-
Barium, Dissolved	1000	108 JB	-	49.2 JB	115	-	-	92.9 B	-	-	-	302 J	-	-	-	-	-	98.4 B	-	1730	-	168 B	-	-	-
Cadmium, Dissolved	5	ND	-	ND	-	-	-	ND	-	-	-	ND	-	-	-	-	-	ND	-	0.31 B	-	ND	-	-	-
Chromium, Dissolved	50	ND	-	0.74 B	ND	-	-	1 B	-	-	-	2.1 B	-	-	-	-	-	ND	-	1 B	-	0.79 B	-	-	-
Lead, Dissolved	25	ND	-	ND	-	-	-	ND	-	-	-	ND	-	-	-	-	-	ND	-	ND	-	ND	-	-	-
Selenium, Dissolved	10	1.9 JB	-	ND	ND	-	-	1.6 B	-	-	-	ND	-	-	-	-	-	ND	-	1.6 B	-	ND	-	-	-
Field Measurements																									
Dissolved Oxygen (mg/L)	-	0.5	1.07	4.2	0.003	2.7	1.92	5.4	0.56	0.8	2.04	0.8	1.67	0.5	1.54	0.7	1.21	1	1.35	0.5	1.9	0.5	1.96	0.7	1.45
Field pH (S.U.)	12.5	11.20	11.03	8.19	7.20	12.00	11.86	9.40	10.01	6.60	7.05	6.00	6.19	12.00	11.92	12.20	12.09	6.70	6.94	6.50	6.89	6.80	7.12	12.00	11.84
Redox Potential (mV)	-	24	-329	444	-100	-338	-265	-331	-348	-141	-121	-51	-18	-379	-284	-387	-343	-157	-87	-116	-69	-165	-102	-387	-320
Specific Conductance (umhos/cm)	-	351	867.4	1,520	1390	1800	1540	740	1587	710	1181	940	1105	2600	1784	2700	2410	1100	1070	1300	1100	1400	1132	2400	1943
Temperature (deg C)	-	13.8	14.1	14.2	12.8	12.5	13.3	12.6	13.5	18.1	9.9	15.8	13	11.1	14.2	11.5	13.9	18.1	10.6	15.1	13	17.6	11.5	14.1	13.3
Turbidity (NTU)	-	125	7.87	110	606.3	10	2.02	69	3.61	1	30.7	160	32.4	3	1.82	2	4	260	8.06	290	47.5	120	31.7	2	2.8

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value

 J+ = Estimated value that may be biased high.

 J- = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWOS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RTI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	
	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Rold	= nH evceeds 12.5

													Monitoring V	Vell Location	, Sample Date	(s), & Monito	ring Program										
PARAMETER ¹	GWQS/GV ²		.— Slag/Fill; and		3 — Slag/Fill; Sand	MWN-25D	— Bedrock	MWN-32A -	– Sand; Peat	MWN-35A	— Slag/Fill	MWN-37A	— Slag/Fill	MWN-38A	— Slag/Fill	MWN-39A	— Slag/Fill	MWN-40A -	— Slag/Fill	MWN-41A	— Slag/Fill	MWN-42A	MWN-51AF	R — Slag/Fill	MWN-51	BR — Peat	MWN-73A
		Nov-1999 RFI	Apr-2013 CMS 2013	Nov-1999 RFI	Apr-2013 CMS 2013	Nov-1999 RFI	Mar-2012 CMS 2012	Nov-1999 RFI	Apr-2013 CMS 2013	Dec-2000 RFI	Apr-2013 CMS 2013	Dec-2000 RFI	Oct-2010 CMS 2010	Dec-2000 RFI	Oct-2010 CMS 2010	Dec-2000 RFI	Oct-2010 CMS 2010	Dec-2000 RFI	Oct-2010 CMS 2010	Dec-2000 RFI	Apr-2013	Dec-2000 RFI	Dec-2000 RFI	Apr-2013 CMS 2013	Dec-2000 RFI	Apr-2013 CMS 2013	Oct-2010 CMS 2010
(Method 8260B, 8260C, 8021B)) - ug/L	Kri	CWIS 2013	Kri	CWIS 2013	Kri	CIVIS 2012	Kri	CWIS 2013	Kri	CIVIS 2013	Kri	CWS 2010	KFI	CIVIS 2010	Kri	CWIS 2010	Kri	CWIS 2010	KFI	CMS 2013 ⁵	Kri	Kri	CWIS 2013	Kri	CWIS 2013	CWIS 2010
ichloroethane ichloroethene	5	ND ND	-	ND ND	-	ND ND	ND ND	ND ND	-	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	-	ND ND
5-Tetramethylbenzene	-	-	-	-	-	-	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorobenzene	5	-	-	-	-	-	ND	-	-	-	-	-	ND	-	ND	-	ND	-	ND	-	-	-	-	-		-	ND
Frimethylbenzene chlorobenzene	5		ND	-	ND	-	ND ND	-	ND -	-	ND -	-	- ND	-	- ND	-	- ND	-	- ND	-	ND -	-	-	ND	-	ND -	- ND
chloroethane	0.6	ND	-	ND	-	ND	ND	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	ND	-	ND
rimethylbenzene	5	-	ND	-	ND	-	ND	-	ND	-	1.4 J	-		-		-		-		-	ND	-	-	ND	-	ND	
chlorobenzene ethylbenzene	3		-	-	-	-	ND ND	-	-	-	-	-	ND -	-	ND -	-	ND -	-	ND -	-	-	-	-	-	-	-	ND -
none	50	-	-	-	-	-	ND	-	-	-	-	-	ND	-	ND	-	ND	-	ND	-	-	-	-	-	-	-	ND
)	50	-	-	-		-	ND		-	-	-	-	ND	-	ND		ND	-	ND		-	-	-	-	-	-	ND
e nethane	1 5	ND ND	120	ND ND	31	ND ND	ND ND	570000 J	440000 D	16 R	6.3	9 R	1.5 ND	47 R	5.2 ND	200 D	25 ND	ND R	ND ND	2.6 J R	42	16 ND	2.2 J R	1.1	9.3 R	0.36 J	ND -
disulfide	60	-	-	-	-	-	ND	-	-	-	-	-	0.86 J	-	0.92 J	-	0.81 J	-	0.56 J	-	-	-	-	-	-	-	ND
enzene	5	ND	-	ND	-	ND	ND	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	ND	-	ND
ethane orm	7	ND ND		ND ND	-	ND ND	ND ND	ND ND	-	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND		ND ND
Dichloroethene	5	-	-	-	-	-	ND	- ND	-	-	-	-	ND	-	ND	-	ND	-	ND	-	-	-	-	-	- IND	-	ND
exane	-	-	-	-	-	-	ND				-	-	ND	-	ND	-	ND	-	ND	-	-		-	-		-	ND
zene Ibenzene	5	ND	ND ND	ND	ND ND	ND -	ND ND	ND	740 J	ND	ND ND	ND	ND ND	ND	ND ND	ND	0.8 J ND	ND	ND ND	ND	ND ND	ND	ND -	ND ND	ND -	ND ND	ND ND
/clohexane	-		- IND		- ND	-	ND		- ND	-	- ND	-	0.8 J		ND		ND	-	ND		- 110		-	- IND		- 14D	ND
e chloride	5	ND	-	ND	-	ND	ND	ND	-	ND	-	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	ND	-	ND
enzene	5	-	ND ND	-	ND ND	-	ND	-	ND	-	ND	-	-	-	-	-	-	-	-	-	ND	-	-	ND ND	-	ND	↓ · · · · · · · · · · · · · · · · · · ·
penzene pyltoluene (p-Cymene)	5		ND ND	-	ND ND	-	ND ND	-	ND ND	H :	ND ND	-	-	-	-	1	-	-	-	-	ND ND		-	ND ND		ND ND	
	5	-	-	-	-	-	ND	-	-	-	-	-	ND	-	ND	-	0.87 J	-	ND	-	-	-	-	-		-	ND
proethene	5	ND	-	ND	-	ND	ND	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	ND	-	ND
Dichloroethene	5	ND	16	ND ND	4.9	ND ND	ND ND	70000	31000	4.8 J	1.5 J	ND ND	ND ND	ND ND	ND ND	ND ND	1.3 ND	ND ND	ND ND	ND ND	9.2 J	3.1 J	ND ND	ND	ND ND	ND	ND ND
thene	5	ND	-	ND	-	ND	ND	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	ND	-	ND /
ride	2	ND	-	ND	-	ND	ND	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	-	ND	-	ND
Total	5	ND	ND	ND	ND	ND	ND	ND	4000	19	5.8	ND	0.92 J	1.7 J	ND	ND	4.6	ND	ND	2.2 J	9.2	13	ND	ND	ND	ND	ND
<i>Method 8270C, 8270D) - ug/L</i> ethylphenol	See Note 3	ND	-	ND		ND	-	70 J	-	ND	T -	ND	-	ND	-	ND	-	ND	_	l p	ND	ND	D	I -	ND		-
otoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- 1
naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- 1
phenol naphthalene	See Note 3	-	- ND	- :	- ND	-	- ND	-	7.9	-	- 1.4		6.9	-	- ND	-	5.6		- ND	-	ND 24	-	-	- ND	-	- ND	
phenol (o-Cresol)	See Note 3	ND	- ND	ND	- ND	ND	-	140 J	7.9	ND.	1.4	12	-	14	-	ND	5.6	ND .	-	R	2.9 J	ND .	R	-	15 J	- ND	-
enol	See Note 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	-	-	-	-	- /
lorobenzidine ylphenol (m,p-Cresol)	See Note 3	- ND	ND	- ND	ND	- ND	ND		ND	- ND	ND	-	ND	-	ND	- 0.7.1	ND	- ND	ND	-	7.7	- ND	-	ND	- ND	ND	
-3-methylphenol	See Note 3	ND ND		ND ND	-	ND ND		220 J ND	-	ND ND	-	48 ND	-	57 ND	-	9.7 J	-	ND ND		R	ND	ND ND	R R	-	ND ND	-	
aniline	5	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	-	ND	-	ND	-
iline	5	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	-	ND	-	ND	
enol thene	See Note 3 20		0.66	-	0.79		- ND	-	0.46 J	-	- 1	-	1.6 J	-	- ND	-	0.83 J	-	1.8 J	- :	ND 6.6	-		ND.		ND.	
thylene	-	ND	ND	ND	ND	ND	ND	ND	5.9	ND	1.3	ND	0.96 J	ND	0.5 J	4.9 J	5.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	- 7
enone	-		ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	0.71 J	-	ND	-	5.9	-	-	ND	-	ND	- 1
ne anthracene	50 0.002	ND ND	0.11 J	ND ND	0.12 J	ND ND	ND ND	ND ND	ND ND	ND ND	0.94 0.12 J	ND ND	0.58 J	ND ND	ND ND	ND ND	0.79 J	ND ND	ND ND	ND ND	7.7 4.3	ND ND	ND ND	ND ND	ND ND	ND ND	
pyrene	0 (ND)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	ND	ND	ND	ND	ND	
fluoranthene	0.002	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	2.7	-	-	ND	-	ND	
ni)perylene fluoranthene	0.002	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	ND ND	-	1.1	-	-	ND ND	-	ND ND	
cohol	0.002		ND ND		ND	-	ND		ND ND	-	ND ND	-	ND -		- ND	-	- ND	-	ND -	-	2.2 ND	-	-	ND ND	-	ND ND	
	5	-	ND	-	ND	-	ND	-	1.5 J	-	ND	-	ND	-	ND	-	1.1 J	-	ND	-	9.5	-	-	ND	-	ND	- 1
ylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5 JB	ND	3.7 JB	4.5 J	3.4 JB	ND	5.7 B	5 J	3.7	ND	ND	ND	ND	ND	
izyl phthalate e	50	ND -	ND ND	ND -	ND ND	ND -	ND ND	ND -	ND ND	ND -	ND 2	ND -	1.8 J	ND -	1.7 J	ND -	1.7 JB 4.6 J	ND -	0.95 J	ND -	110	ND -	ND .	ND ND	ND -	ND ND	
l	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11 J	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	3.4	ND	ND	ND	ND	ND	-
h)anthracene	-	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	0.38 J	-	-	ND	-	ND	-
	50	ND.	ND ND	- ND	ND ND	ND .	ND ND	ND .	ND ND	- ND	1.4 J ND	- ND	1.4 J ND	ND	0.54 J ND	- ND	3 J ND	- ND	1.1 J ND	- ND	43 ND	- ND	- ND	ND ND	- ND	ND ND	
	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
thalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.46 J	ND	ND	ND	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
nthalate phthalate phthalate		ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND 2.4	ND	ND 0.64 I	ND	ND 0.56 L	ND ND	ND 16 I	ND ND	ND ND	ND 22	ND 10	ND ND	ND ND	ND	ND ND	ND	-
nthalate phthalate phthalate phthalate	50 50	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	0.78 J	3.8 J	2.4 4.4	ND ND	0.64 J 3.3 J	ND ND	0.56 J 0.75 J	ND 3.4 J	1.6 J 4.7	ND ND	1.2 J	22 28	19 31	ND 3.5 J	ND ND	ND ND	ND ND	ND ND	
nthalate phthalate phthalate phthalate ene	50 50 50				ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1.1	-	-	ND	-	ND	-
nthalate phthalate i phthalate phthalate phthalate phthalate ene	50 50 0.002	ND -	ND	-		ND	ND	1400 D	780 D	11	7.2	8.7 J	4.5 J ND	7.6 J	3.7 J	55	54	ND	1.1 J	220 JD	350 D	9.4 J	ND	0.08 J	ND	ND ND	25 **
hthalate phthalate I phthalate I phthalate I phthalate ene ,2,3-cd)Pyrene ene	50 50 0.002 10	ND	ND 0.35	ND	0.39				NID					-	ND	-	ND	-	ND		ND	-	-			INI)	-
hthalate phthalate i phthalate i phthalate l phthalate l phthalate lene .2.3-cd)Pyrene ene doiphenylamine (NDPA/DPA)	50 50 0.002 10 50	ND - ND	ND		0.39 ND	-	ND -	ND	ND	- ND	ND -	- ND	-	ND	-	ND	_	ND	-	R	ND	ND		ND -	ND	-	-
hthalate phthalate d phthalate d phthalate d phthalate d phthalate enene e. 2.3-cd)Pyrene lene dodiphenylamine (NDPA/DPA) forophenol	50 50 0.002 10	ND -	ND 0.35 ND	ND -	ND		ND	-	ND	ND	-	ND ND	- 4 J	ND		ND ND	- 4.4 J	ND ND	- ND	R 40	ND 53 D	ND 7.5 J	R ND		ND ND		-
furan hithtalate phthalate phthalate phthalate i phthalate i phthalate i phthalate hene e. e. e. e. e. e. e.	50 50 0.002 10 50 See Note 3 50 See Note 3	ND - ND - ND ND ND ND	ND 0.35 ND - ND	ND - ND ND ND	ND - ND -	ND ND ND	ND - ND -	ND ND 540	0.42 J	ND 5.5 J ND	- 5.9 -	ND ND 190 D	- 4 J -	ND 190 D	1.2 J	ND 23	4.4 J	ND ND	ND -	40 R	53 D 8.4	7.5 J ND	R ND R	ND -	ND 43	ND -	
nthalate phthalate i phthalate phthalate phthalate phthalate lene 2.3-cd)Pyrene ene diiphenylamine (NDPA/DPA) prophenol	50 50 0.002 10 50 See Note 3	ND - ND - ND ND	ND 0.35 ND - ND	ND - ND ND	ND - ND	ND ND	ND - ND	ND ND	ND - 0.42 J	ND 5.5 J	5.9	ND ND	- 4 J	ND	1.2 J	ND	4.4 J	ND	ND	40	53 D	7.5 J	R ND	- ND	ND	- ND	-

		Monitoring Well Location, Sample Date(s), & Monitoring Program																										
PARAMETER ¹	GWQS/GV ²	MWN-25A	— Slag/Fill; and		— Slag/Fill; and	MWN-25D	— Bedrock	MWN-32A -	- Sand; Peat	MWN-35A	— Slag/Fill	MWN-37A	— Slag/Fill	MWN-38A	— Slag/Fill	MWN-39A	— Slag/Fill	MWN-40A	— Slag/Fill	MWN-41A	— Slag/Fill	MWN-42A	MWN-51AR	.— Slag/Fill	MWN-51B	R — Peat	MWN-73	A — Peat
		Nov-1999	Apr-2013	Nov-1999	Apr-2013	Nov-1999	Mar-2012	Nov-1999	Apr-2013	Dec-2000	Apr-2013	Dec-2000	Oct-2010	Dec-2000	Oct-2010	Dec-2000	Oct-2010	Dec-2000	Oct-2010	Dec-2000	Apr-2013	Dec-2000	Dec-2000	Apr-2013	Dec-2000	Apr-2013	Oct-2010	Jan-2019
Filtered SVOCs (Method 8270D) - ug/		RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2012	RFI	CMS 2013	RFI	CMS 2013	RFI	CMS 2010	RFI	CMS 2010	RFI	CMS 2010	RFI	CMS 2010	RFI	CMS 2013 ⁵	RFI	RFI	CMS 2013	RFI	CMS 2013	CMS 2010	CMS 2019
Acenaphthene	20	_				Т -		1	-		T -				-		-			I -	-	Т -		-		-	- 1	-
Acenaphthylene	-		- :	-			- :	-			-		- :			- :			-			-			- :	-		-
Anthracene	50		-	-	-	-	-	1	-		-	-	-		-		-			-		<u> </u>	-		-	-	-	-
Benzo(ghi)perylene	-		-		-	-	-				-		-		-						-	<u> </u>	 		-	-	_	-
Dibenzo(a.h)anthracene	-		-		-	-	-	1	-		-		-		-		-		-		-	<u> </u>	 		-	-	-	-
Fluoranthene	50	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-		-	1 -	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Indeno(1.2.3-cd)Pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-			-	-	-			-			-	-	-	-			-		-	-		-	-	-
Phenanthrene	50	-	-	-	-		-		-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-		-	-	-
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-
Total Metals - ug/L				•	*	•		•	•		*	•				•				-			•				*	
Arsenic, Total	25	ND	ND	ND	ND	6.9 B	ND	21.4	-	ND	-	2.8 B	-	2.8 B	-	3.8 B	-	ND	-	3 B	-	ND	3.4 B	-	ND	-	-	-
Barium, Total	1000	65.3 B	49.83	72.3 JB	60.2	433	284	293	-	219	-	1810	-	114 B	-	196 B	-	15.4 B	-	50.2 B	-	599	106 B	-	267	-	-	-
Cadmium, Total	5	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	0.64 B	-	ND	ND	-	ND	-	-	-
Chromium, Total	50	1 B	ND	1.7 B	ND	110	3 J	1.3 B	-	5.7 J	-	91.7	-	9	-	9.7	-	4.1 B	-	109	86.84 D	5.1	4.2 B	-	23.6	-	-	-
Cyanide, Total	200	0.045	-	0.063	-	ND	-	0.029	-	ND	-	24 J	-	190 J	-	34 J	-	220 J	-	0.021 J	-	ND	0.044 J	-	0.013 J	-	-	-
Lead, Total	25	ND	ND	ND	ND	11.7	-	ND	-	ND	-	ND		ND	-	ND	-	2 B	-	4.4	-	ND	ND	-	ND	-	-	-
Selenium, Total	10	1.8 B	ND	ND	ND	ND	ND	ND	-	17.4	6.41 DJ	14.3 J	-	9.6	-	2.9 B	-	ND	-	27.7 J	6.59 DJ	ND	5.6	-	ND	-	-	-
Dissolved Metals - ug/L																												
Arsenic, Dissolved	25	ND	-	ND	-	2.1 B	ND	20.8	-	ND	-	-	-	-	-	-	-	-	-	ND	-	-	-	-	5.2 B	-	-	-
Barium, Dissolved	1000	65.5 B	-	69.2 JB	-	276	265	292	-	214	-	-	-		-	-		-		47.7 B	-	-	-	-	267	-	-	-
Cadmium, Dissolved	5	ND	-	ND	-	ND	-	ND	-	ND	-	-	-		-	-		-	-	ND	-	-	-	-	ND	-	-	-
Chromium, Dissolved	50	0.55 B	-	0.87 B	-	2.1 B	ND	0.76 B	-	3.3 B	-	-	-		-	-		-	-	97.4	-	-	-	-	1.5 B	-	-	-
Lead, Dissolved	25	ND	-	ND	-	ND	-	ND	-	ND	-	-			-	-		-	-	ND	-	-	-	-	ND	-	-	-
Selenium, Dissolved	10	ND	-	ND	-	1.5 B	ND	ND	-	16.4	-	-	-	-	-	-	-	-	-	28.1 J	-	-	-	-	ND	-	-	-
Field Measurements																												
Dissolved Oxygen (mg/L)	-	0.4	1.26	0.3	2.22	0.3	2.18	8.0	1.41	1.45	2.58	NA	1.84	NA	1.6	NA	1.96	NA	2.24	10.65	6.77	1.4	NA	2.12	NA	2.17	2.33	1.72
Field pH (S.U.)	12.5	7.90	8.45	8.13	8.28	7.24	7.82	6.80	6.83	12.15	11.90	12.20	11.89	11.98	11.64	12.00	11.47	8.10	7.64	11.97	12.26	12.48	10.35	11.07	9.75	6.60	6.76	6.89
Redox Potential (mV)	-	89	-202	102	-192	239	-152	-160	-82	-291	-324	-343	-264	-278	-214	-250	-210	-251	-170	-117	159	-275	-325	-127	-440	-69	-61	-118
Specific Conductance (umhos/cm)	-	1960	1750	2910	1880	1,360	1148	3100	1620	3380	2669	2,160	1903	1,380	1283	1,510	1018	806	682.4	2720	3577	3870	6580	1083	9430	2272	747	1802
Temperature (deg C)	-	19.2	12	18.6	13.2	15.2	10.2	15.7	11.6	11.1	14	13.5	13.4	12.6	13.2	8.4	13.7	14.0	15.6	12.1	14.2	11.7	18.0	12.6	17.1	13	13.8	8.9
Turbidity (NTU)	-	52.8	7.25	106	6.8	456	410	NA	26.1	40	3.5	NA	0.91	NA	1.19	NA	2.51	4.27	4.34	61.1	93.7	ND	9.4	127	10.5	9.7	4.31	1.44

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCs, SVOCs, and Total Metals were analyzed for during CMS 2012 and CMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

- N = Sampler essut was rejected by finite party validator.
 VOCs = Volatile Organic Compounds
 SVOCs = Semivolatile Organic Compounds
 RFI = Final RCRA Facility Investigation (October 2004)
 CMS = Corrective Measures Study
 HWMU = Hazardous Waste Management Unit groudwater monitoring data

- = concentration is less than or equal to the GWQS/GV (includes non-detect)
 = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
 = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
 = concentration exceeds 100 times the GWQS/GV
 = pH exceeds 12.5

				I								Monitoring \	Well Location	, Sample Date	(s), & Monitor	ing Program										
		MWN-75	A — Peat	MWN-76A — Slag/Fill;	MWN-76AR— Slag/Fill;	MWN-77A	— Slag/Fill	MWN-78A	- Slag/Fill;	MWN-79A —	- Slag/Fill	MWN-86A —	MWN-87A —	MWN-88A —	MWN-89A —	MWN-90A —	MWN-91A —	WT1-07 -	– Slag/Fill; Sar	nd/Dredge	WT8-01 —	- Slag/Fill; Sa	and/Dredge	WT8-02 -	– Slag/Fill; Sa	and/Dred
PARAMETER ¹	GWQS/GV ²	Oct-2010	Jan-2019	Peat Oct-2010	Peat Jan-2019	Oct-2010	Jan-2019	Oct-2010	Jan-2019	Oct-2010	Jan-2019	Slag/Fill Oct-2010	Slag/Fill Oct-2010	Slag/Fill Oct-2010	Slag/Fill Oct-2010	Slag/Fill Oct-2010	Slag/Fill Oct-2010	Jun-2007	Spoils Mar-2012	Jan-2019	Jun-2007	Spoils Apr-2013	Jan-2019	Jun-2007	Spoils Apr-2013	Jan-20
		CMS 2010	CMS 2019	CMS 2010		CMS 2010	CMS 2019	CMS 2010	CMS 2019	CMS 2010	CMS 2019	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2010	SWI BCP	CMS 2012	CMS 2019	SF1 RI	SF1 GWM	CMS 2019	SF1 RI	SF1 GWM	CMS 2
s (Method 8260B, 8260C, 8021B) -Dichloroethane	- ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
,4,5-Tetramethylbenzene	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	ND	-	-	ND	-	-	ND	-
,4-Trichlorobenzene ,4-Trimethylbenzene	5	ND	ND -	ND	ND -	ND	ND -	ND	ND -	ND	ND -	ND	ND	ND	ND -	ND	ND -	2.6 J	ND 2.9 J	ND -	ND 5.5 J	ND 6 J	ND -	ND ND	ND ND	ND
-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	180 D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
,5-Trimethylbenzene -Dichlorobenzene	5	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	2.2 J ND	3.2 J ND	- ND	ND ND	ND ND	- ND	ND ND	ND ND	NE
-Diethylbenzene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	-	ND	-	-	ND	-
Butanone	50	36 D	ND 400 D	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	1.3 J	N
etone nzene	50	310 D 1900 D	190 D 750 D	16 D 100 D	120 D	1300 D	310 D	8400 D	7000 D	110 D	ND 2.7	3.2 J 6.3	ND ND	3.6	190 D	36	27 380 D	5 J 61	ND 41	23	16 J 4.1 J	10 J 1.3 J	3.5 J 2.5	33 ND	16 ND	0.2
momethane	5	-	ND	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
rbon disulfide lorobenzene	60	ND	ND	ND	ND ND	ND	ND ND	3.5 DJ	ND ND	ND	ND	ND	ND ND	1.2	0.72 J	ND ND	2.6	1 J	ND	ND ND	ND	ND	ND	1.2 J	ND	N
loroethane	5	110 D ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	N
loroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
-1,2-Dichloroethene clohexane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	N N
ylbenzene	5	8 D	ND	47 D	ND	59 D	53 D	700 D	600 D	ND ND	ND	0.98 J	ND	ND	1.6	ND	12	1.4 J	1.6 J	ND	ND	ND	2 J	ND	ND	N N
propylbenzene	5	ND	ND	ND	ND	ND	ND	20 D	ND	ND	ND	ND	ND	ND	ND	ND	3.6	ND	ND	ND	ND	ND	ND	ND	ND	İ
hyl cyclohexane hylene chloride	- 5	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.6 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
utylbenzene	5	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	ND	ND	-	ND	ND	-	ND	ND	1
opylbenzene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	-	ND	ND	-	ND	ND	
opropyltoluene (p-Cymene) ene	5	- ND	- ND	- ND	- ND	- 77 D	- ND	- 48 D	- ND	4.2 D	- ND	6.1	- ND	- ND	2	4.4	40	0.94 J	ND ND	- ND	ND ND	ND ND	- 1.7 J	ND ND	ND ND	
achloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
uene	5	210 D	210 D	76 D	ND	420 D	34 DJ	1100 D	320 D	34 D	ND	0.7 J	ND	0.64 J	3	1.1	130 D	9.3	8.1	4.5 J	7.2 J	5.9 J	7.4	ND	ND	1
s-1,2-Dichloroethene hloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
/I chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
nes, Total	5	153 D	178 J	166 D	45 DJ	430 D	82 DJ	1640 D	1460 D	80 D	ND	13	ND	ND	11	10	130	26	28	15.5	ND	5.7	12.4	ND	ND	1
Cs (Method 8270C, 8270D) - ug/L			ND		50.0.1	1	0.7		400 D.I		ND									ND			2.0.1			
-Dimethylphenol -Dinitrotoluene	See Note 3	-	ND ND	-	50 DJ-	-	27 ND		420 DJ- ND		ND ND	ND.	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND ND	- ND	- ND	3.2 J ND	ND.	- ND	N
hloronaphthalene	10	-	ND	-	ND	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	, N
nlorophenol	See Note 3						ND										-			NID						1
	OCC HOLC C	-	ND 200 D	-	ND 270 D	-		-	ND 200 D	-	ND		-	-	-	-		- 10.1	-	ND 40	- 40.1	-	ND 0.5		0.47.1	
ethylnaphthalene	-	-	200 D		270 D	-	45 D	-	360 D	-	1.2	11	9.1 -	0.62 J	9.6 -	9.7	150 D	19 J	36	16 -	12 J	6.1	9.5	- 4 J -	0.17 J	
ethylnaphthalene ethylphenol (o-Cresol) itrophenol	See Note 3 See Note 3	-	200 D	-	270 D - ND	- - -	45 D - ND	-	360 D	-	1.2 - ND	- 11 -	9.1	0.62 J - -	9.6 - -	9.7	150 D - -	19 J - -	36 - -		12 J	6.1	9.5	- 4 J - -		1
ethylnaphthalene ethylphenol (o-Cresol) itrophenol -Dichlorobenzidine	See Note 3 See Note 3 5	-	200 D - 260 D ND		270 D - ND ND	- - - -	45 D - ND ND		360 D - ND ND	-	1.2 - ND ND	- ND	9.1 - - ND	- ND	9.6 - - ND	- ND	150 D - - ND	19 J - - ND	36 - - ND	16 -	12 J - - ND	- ND	9.5 - ND ND	- 4 J ND	- ND	
lethylnaphthalene lethylphenol (o-Cresol) itrophenol -Dichlorobenzidine -Methylphenol (m,p-Cresol)	See Note 3	-	200 D		270 D - ND	-	45 D - ND	-	360 D	-	1.2 - ND	- 11 - - ND -	9.1	-	9.6 - -	9.7 - - ND -	150 D - -	19 J - - ND -	36 - -	16 -	12 J - -	-	9.5	-	-	0.6
ethyinaphthalene ethyiphenol (o-Cresol) itrophenol -Dichlorobenzidine Methyiphenol (m,p-Cresol) hloro-3-methylphenol hloroanliline	See Note 3 See Note 3 5 See Note 3 See Note 3 See Note 3 See Note 3		200 D - 260 D ND 220 D ND ND	-	270 D	- - - - - -	45 D - ND ND 10 ND	-	360 D	-	ND ND ND ND ND ND	ND - ND - ND	9.1 - - ND - - ND	- ND - - ND	9.6 - - ND - - ND	- ND - ND	150 D	- ND - ND	36 - - ND - - ND	16 - ND ND 7 ND ND	12 J - - ND - - ND	ND - ND	9.5 - ND ND 3.4 J ND ND	- ND - - ND	- ND - ND	0.0
lethylnaphthalene lethylphenol (o-Cresol) itrophenol -Dichlorobenzidine -Methylphenol (m.p-Cresol) hloro-3-methylphenol hloroaniline itroaniline	See Note 3 See Note 3 5 See Note 3 See Note 3 See Note 3 5 5 5		200 D 260 D ND 220 D ND ND ND ND ND ND	-	270 D - ND ND 11 D ND ND ND ND ND ND ND		45 D	-	360 D	-	1.2 - ND ND ND ND ND ND	- ND -	9.1 - - ND - - ND ND	- - ND - -	9.6 - - ND - - ND ND	- - ND -	150 D ND -	- ND -	36 - - ND - - ND ND ND	16 - ND ND 7 ND ND ND ND	12 J	ND - ND ND ND	9.5 - ND ND 3.4 J ND ND ND	- - ND -	- ND - - ND ND	0.60
lethylnaphthalene lethylphenol (o-Cresol) itrophenol -Dichlorobenzidine -Methylphenol (m,p-Cresol) hloro-3-methylphenol hloroaniline itroanliine itrophenol	See Note 3 See Note 3 5 See Note 3 See Note 3 See Note 3 See Note 3		200 D - 260 D ND 220 D ND ND	-	270 D		45 D - ND ND 10 ND	-	360 D	-	ND ND ND ND ND ND	ND - ND - ND	9.1 - ND - ND ND ND	- ND - ND ND -	9.6 - - ND - - ND ND	- ND - ND	150 D	- ND - ND	36 - - ND - - ND	16 - ND ND 7 ND ND	12 J ND - ND ND ND ND	ND - ND ND -	9.5 - ND ND 3.4 J ND ND	- ND - - ND	ND ND ND	9.0
lethylnaphthalene lethylphenol (o-Cresol) litrophenol -Dichlorobenzidine -Methylphenol (m,p-Cresol) ihloro-3-methylphenol hloroaniline litrophenol enaphthene enaphthylene	See Note 3 See Note 3 5 See Note 3 See Note 3 See Note 3 5 See Note 3 5 See Note 3		200 D	- - -	270 D ND ND 11 D ND ND ND ND ND ND ND ND ND 200 D	-	45 D	-	360 D		1.2 ND ND ND ND ND ND ND ND ND ND 2.2 2.1	- ND - ND ND ND - 1.6 J 2.5 J	9.1 ND ND ND ND 6.8 3 J	- ND - ND ND - 9.4 0.44 J	9.6 - - ND - ND ND ND - - 2 J 3.5 J	- ND - ND ND	150 D	- ND - ND ND - 7 J 19 J	36 	16 - ND ND 7 ND ND ND ND	12 J	ND - ND ND - 0.74 1.4	9.5 ND ND 3.4 J ND ND ND ND ND 1	ND ND ND ND ND	- ND - ND ND - 0.08 J 0.12 J	0.6
ethy/inaphthalene ethy/phenol (o-Cresol) tirophenol -Dichlorobenzidine -Methy/phenol (m,p-Cresol) hloro-3-methy/phenol hloroaniline tiroaniline tirophenol naphthene naphthylene tophenone	See Note 3 See Note 3 5 See Note 3 See Note 3 See Note 3 5 See Note 3 20 -		200 D - 260 D ND 220 D ND ND ND ND 210 D 4.3 DJ 21 D ND	- - -	270 D	-	45 D - ND ND ND ND ND ND ND ND ND ND ND ND ND	-	360 D		1.2 ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND - 1.6 J 2.5 J 0.88 J	9.1 - - ND - - ND ND ND - 6.8 3 J		9.6 - ND - ND ND ND 2 J 3.5 J ND	- ND ND ND - 1.7 J 2.5 J ND	150 D ND ND ND ND 19.2 DJ 190 D 99 D	- ND - ND ND - 7 J 19 J ND	36 - - ND - - - ND ND ND - 11	16	12 J ND ND ND ND ND ND ND ND ND ND - ND ND ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND 0.74 1.4 ND	9.5	ND ND ND ND ND	- ND ND ND - 0.08 J 0.12 J ND	0.0
lethylnaphthalene lethylphenol (o-Cresol) itrophenol -Dichlorobenzidine -Methylphenol (m.p-Cresol) hloro-3-methylphenol hloroaniline itroaniline itrophenol naphthene naphthylene etophenone hracene tzo(a)anthracene	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 5 See Note 3 5 See Note 3 20		200 D	- - -	270 D ND ND 11 D ND ND ND ND ND ND ND ND ND 200 D	-	45 D - ND ND ND ND ND ND ND ND ND ND ND ND ND	-	360 D		1.2 ND ND ND ND ND ND ND ND ND ND 2.2 2.1	- ND - ND ND ND - 1.6 J 2.5 J	9.1 ND ND ND ND 6.8 3 J	- ND - ND ND - 9.4 0.44 J	9.6 - - ND - ND ND ND - - 2 J 3.5 J	- ND - ND ND - 1.7 J	150 D	- ND - ND ND - 7 J 19 J	36 	16 - ND ND 7 ND ND ND ND ND ND	12 J	ND - ND ND - 0.74 1.4	9.5 ND ND 3.4 J ND ND ND ND ND 1	ND ND ND ND ND	- ND - ND ND - 0.08 J 0.12 J	0.0
ethy/naphthalene ethy/phenol (o-Cresol) tirophenol -Dichlorobenzidine Methy/phenol (m,p-Cresol) hloro-3-methy/phenol hloroaniline itroaniline itroaniline itrophenol naphthene naphthylene tophenone hracene tzo(a) anthracene tzo(a) pyrene	See Note 3 See Note 3 5 See Note 3 See Note 3 5 See Note 3 5 See Note 3 20 - 5 0.002 0 (ND)	-	200 D - 260 D ND 220 D ND	- - -	270 D ND	-	45 D - ND ND ND ND ND ND ND ND ND ND ND ND ND		360 D		1.2 - ND ND ND ND ND ND ND ND ND 1.4 1.4 0.89	ND ND ND 1.6 J 2.5 J 0.88 J 0.51 J ND ND ND ND ND ND	9.1 - ND - ND ND - 6.8 3 J ND 0.87 J ND	- ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND 1.7 J 2.5 J ND 0.9 J 0.34 J ND	150 D	ND ND ND ND ND ND ND ND ND ND ND ND ND	36 ND - ND ND - 11 11 21 ND 9 1.4 J	16 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J		9.5 - ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	0.0
ethy/naphthalene lethy/phenol (o-Cresol) ltrophenol -Dichlorobenzidine Methy/phenol (m,p-Cresol) hloro-3-methy/phenol hloro-aniline ltroaniline itroaniline itrophenol maphthene maphthylene tophenone hracene lzo(a)anthracene lzo(a)pyrene lzo(b)/floroanthene	See Note 3 See Note 3 5 See Note 3 5 See Note 3 5 See Note 3 5 See Note 3 20 50 0.002	-	200 D - 260 D ND 220 D ND		270 D ND		45 D - ND ND ND ND ND ND ND ND ND ND ND ND ND		360 D - ND ND 350 D ND		1.2 ND ND ND ND ND ND ND ND ND 1.4 1.4 1.4 1.4 1.4 1.4	- ND ND ND 1.6 J 2.5 J 0.88 J ND ND ND ND ND ND ND ND ND ND	9.1 - - ND - - ND ND - - 6.8 3 J ND 0.87 J ND ND ND		9.6	- ND - ND ND - 1.7 J 2.5 J ND 0.9 J 0.34 J ND ND ND	150 D	- ND ND ND ND ND ND ND ND ND ND ND ND ND	36	16	12 J ND ND ND ND 3 J 3 J 3 J 3 J 4 J 2 J		9.5 - ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND S5 J 58		0.6
ethylnaphthalene ethylphenol (o-Cresol) trophenol Dichlorobenzidine Methylphenol (m.p-Cresol) iloro-3-methylphenol iloroaniline troaniline trophenol naphthene naphthylene tophenone tracene zo(a)anthracene zo(b)fluoranthene zo(b)fluoranthene zo(b)fluoranthene	See Note 3 See Note 3 5 See Note 3 See Note 3 5 See Note 3 5 See Note 3 20 - 5 0.002 0 (ND)	-	200 D - 260 D ND 220 D ND		270 D ND	- - - - - -	45 D - ND ND ND ND ND ND ND ND ND ND ND ND ND		360 D		1.2 - ND ND ND ND ND ND ND ND ND 1.4 1.4 0.89	ND ND ND 1.6 J 2.5 J 0.88 J 0.51 J ND ND ND ND ND ND	9.1 - ND - ND ND - 6.8 3 J ND 0.87 J ND	- ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND 1.7 J 2.5 J ND 0.9 J 0.34 J ND	150 D	ND ND ND ND ND ND ND ND ND ND ND ND ND	36 ND - ND ND - 11 11 21 ND 9 1.4 J	16 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J		9.5 - ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	0.6
ethylnaphthalene ethylphenol (o-Cresol) trophenol Dichlorobenzidine Methylphenol (m.p-Cresol) nloro-3-methylphenol nloroaniline trophenol naphthene naphthylene tophenone nracene zo(a)anthracene zo(a)plyrene zo(b)fluoranthene zo(sh)joerylene zo(sh)fluoranthene zo(sh)fluoranthene zo(sh)fluoranthene zo(sh)fluoranthene	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 20 50 0.002 0 (ND) 0.002 0.002	-	200 D 260 D ND ND 220 D ND		270 D		45 D		360 D		1.2 ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D	- ND ND ND SJ 2J ND ND ND ND ND ND ND ND ND ND ND ND ND	36 ND ND ND 11 21 ND 9 1.4 J ND ND ND ND ND ND ND ND	16	12 J		9.5	- ND ND ND ND ND S5 J S5 S 36 J ND ND ND ND ND ND		0.
ethylnaphthalene ethylphenol (o-Cresol) trophenol Dichlorobenzidine Methylphenol (m,p-Cresol) nloro-3-methylphenol nloroaniline trophenol naphthene naphthylene tophenone tracene zo(a)anthracene zo(a)luoranthene zo(b)fluoranthene zo(b)fluoranthene zo(b)fluoranthene zo(b)fluoranthene zo(y) Alcohol tenyl	See Note 3 See Note 3 5 See Note 3 5 See Note 3 5 See Note 3 20 50 0.002 0 (ND) 0.002	-	200 D 260 D ND ND 220 D ND		270 D		45 D		360 D		1.2 ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D	- ND - ND ND ND SJ 2J ND ND ND ND ND ND ND ND ND ND ND ND ND	36 ND ND ND 111 21 ND 9 1.4 J ND ND ND ND ND ND ND ND ND ND ND ND ND	16 ND ND ND ND ND ND ND ND ND ND	12 J ND ND ND 3 J 3 J ND 4 J 3 J 4 J 2 J 1 J		9.5	ND ND ND ND ND ND ND ND S58 36 J ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	0.1
ethylnaphthalene ethylphenol (o-Cresol) rophenol Dichlorobenzidine Methylphenol (m.p-Cresol) loro-3-methylphenol loroaniline rophenol naphthylene naphthylene naphthylene ophenone racene zo(a)pyrene zo(b)fluoranthene zo(b)fluoranthene zyl Alcohol eneytyl	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 20 50 0.002 0 (ND) 0.002 0.002	-	200 D 260 D ND ND 220 D ND		270 D		45 D		360 D		1.2 ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D	- ND ND ND SJ 2J ND ND ND ND ND ND ND ND ND ND ND ND ND	36 ND ND ND 11 21 ND 9 1.4 J ND ND ND ND ND ND ND ND	16	12 J		9.5	- ND ND ND ND ND S5 J S5 S 36 J ND ND ND ND ND ND		0.
ethylnaphthalene ethylphenol (o-Cresol) rophenol Dichlorobenzidine Methylphenol (m.p-Cresol) loro-3-methylphenol loro-aniline rophenol aphthene aphthylene phenone racene co(a)pyrene co(b)fluoranthene co(b)fluoranthene cyl Alcohol enyl 2-ethylhexyl)phthalate lbenzyl phthalate azole	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See	-	200 D 260 D ND 220 D ND ND ND ND 210 D 4.3 DJ 21 D ND		270 D		45 D		360 D		1.2 ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND - 1.2 J 9.9 B ND 1.2 J	150 D	- ND ND ND SJ ND ND ND ND ND ND ND ND ND ND ND ND ND	36	16 ND ND ND ND ND ND ND ND ND ND ND ND 13 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J		9.5	- ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	0.
thylnaphthalene thylphenol (o-Cresol) rophenol (o-Cresol) rophenol (bichlorobenzidine lethylphenol (m.p-Cresol) loro-3-methylphenol loro-3-methylp	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 20 50 0.002 0 (ND) 0.002 55 50 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002		200 D 260 D ND ND ND ND ND ND 210 D A3 DJ 21 D ND		270 D		45 D ND ND ND ND ND ND ND ND ND		360 D		1.2	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D	- ND ND ND - 7 J 19 J ND 5 J 2 J ND ND ND ND ND ND ND ND ND ND ND ND ND	36	16	12 J		9.5 ND ND ND ND ND ND ND ND ND N	- ND ND ND ND 6 J 35 J 58 36 J ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	0
thylnaphthalene thylphenol (o-Cresol) rophenol Dichlorobenzidine fethylphenol (m.p-Cresol) Ioro-3-methylphenol Ioroaniline rophenol aphthene aphthylene Dichloroaniline aphthylene O(a) pyrene O(a) pyrene O(b) fluoranthene O(b) fluoranthene O(b) fluoranthene O(b) fluoranthene O(b) fluoranthene O(b) fluoranthene Dichloroaniline Dichlor	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the seed of	-	200 D 260 D ND		270 D		45 D		360 D		1.2 ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND - 1.2 J 9.9 B ND 1.2 J	150 D	- ND ND ND SJ ND ND ND ND ND ND ND ND ND ND ND ND ND	36	16 ND ND ND ND ND ND ND ND ND ND ND ND 13 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J		9.5	- ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	000000000000000000000000000000000000000
thylnaphthalene thylphenol (o-Cresol) rophenol (o-Cresol) rophenol lichlorobenzidine lethylphenol (m.p-Cresol) loro-3-methylphenol loroaniline rophenol aphthene aphthylene phenone racene o(a)anthracene o(a)pyrene o(b)fluoranthene	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 20 50 0.002 0 (ND) 0.002 55 50 0.002 55 50 0.002 55 50 0.5002 55 50 0.5002 55 55		200 D 260 D ND ND 220 D ND ND ND ND 210 D 4.3 DJ 21 D ND		270 D		45 D		360 D		1.2	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D		36	16 ND ND ND ND ND ND ND ND ND ND 13 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J		9.5	- ND ND ND ND ND ND ND ND ND ND ND ND ND		0
thylnaphthalene thylphenol (o-Cresol) ophenol jichlorobenzidine fethylphenol (m.p-Cresol) ioro-3-methylphenol loro-3-methylphenol loro-3-methylphe	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the seed of		200 D 260 D ND ND 220 D ND		270 D		45 D		360 D		1.2		9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D	- ND ND ND ND ND ND ND ND ND ND ND ND ND	36	16 ND ND ND ND ND ND ND ND 13 ND 4.9 4.2 1.8 J ND 13 0.04 J ND 18 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J		9.5	- ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	0
thylnaphthalene thylphenol (o-Cresol) rophenol Dichlorobenzidine dethylphenol (m.p-Cresol) loro-3-methylphenol loroaniline rophenol aphthene aphthylene phenone racene o(a)anthracene o(a)pyrene o(b)fluoranthene to(b)fluoranthene o(c)fliporanthene o(b)fluoranthene to(b)fluoranthene o(b)fluoranthene to(b)fluoranthene o(b)fluoranthene to(b)fluoranthene to(See Note 3 See Note 3		200 D 260 D ND ND 220 D ND ND ND 210 D 4.3 DJ 21 D ND		270 D		45 D		360 D		1.2	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D		36	16 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J		9.5	- ND ND ND ND ND ND ND ND ND ND ND ND ND		0.
thylnaphthalene thylphenol (o-Cresol) trophenol (o-Cresol) trophenol (o-Cresol) trophenol Dichlorobenzidine lethylphenol (m.p-Cresol) loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol loro-3-methylphenol laphthene laphthylene laphthylene loro(a)pyrene loro(a)pyrene loro(b)fluoranthene loro(b)flu	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 Comparison of the see Note 3 Comp		200 D 260 D ND ND ND ND ND 210 D A3 DJ 21 D ND		270 D ND ND ND ND ND ND ND ND ND		45 D		360 D		1.2		9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D		36	16	12 J		9.5 ND ND ND ND ND ND ND ND ND ND ND ND ND			0.0
thylnaphthalene thylphenol (o-Cresol) rophenol Dichlorobenzidine lethylphenol (m.p-Cresol) loro-3-methylphenol loroaniline rophenol aphthylene aphthylene aphthylene oda)pyrene oda)pyrene oda)pyrene od(s)purene od(s)fluoranthene ody Alcohol enyl -eithylhexyl)phthalate benzyl phthalate azole sene nzofuran yl phthalate butyl phthalate butyl phthalate butyl phthalate octyl phthalate	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 20		200 D 260 D ND ND ND ND ND ND 210 D ND		270 D		45 D		360 D		1.2		9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D	- ND ND ND ND ND ND ND ND ND ND ND ND ND	36	16 ND ND ND ND ND ND ND ND ND ND ND ND 13 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	- ND ND ND ND ND ND ND ND ND ND ND ND ND	0
uthylnaphthalene tithylphenol (o-Cresol) rophenol (o-Cresol) rophenol (o-Cresol) rophenol (o-Cresol) rophenol (o-Cresol) loro-3-methylphenol loroaniline rophenol laphthene laphthylene la	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 Comparison of the see Note 3 Comp		200 D 260 D ND ND 220 D ND		270 D		45 D		360 D		1.2	- ND ND ND - 1.6 J 2.5 J 0.88 J 0.51 J ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D		36	16	12 J		9.5			0.0
ethylnaphthalene ethylphenol (o-Cresol) rophenol Dichlorobenzidine Wethylphenol (mp-Cresol) Ioroaniline rophenol Ioroaniline rophenol Ioroaniline rophenol Ioroaniline rophenol Ioroaniline Ioroanilin	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 Comparison of the see Note 3 S		200 D 260 D ND 260 D ND ND 210 D ND		270 D		45 D		360 D		1.2		9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D		36	16 ND ND ND ND ND ND ND 13 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.5			
ethylnaphthalene ethylphenol (o-Cresol) trophenol Dichlorobenzidine Methylphenol (mp-Cresol) nloro-3-methylphenol	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3		200 D 260 D ND ND ND ND 210 D 4.3 DJ 21 D ND		270 D ND ND ND ND ND ND ND ND		45 D		360 D		1.2		9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D		36	16	12 J		9.5 ND ND ND ND ND ND ND ND ND ND ND ND ND			
ethylnaphthalene ethylphenol (o-Cresol) trophenol Dichlorobenzidine Methylphenol (mp-Cresol) nloro-3-methylphenol nloroaniline trophenol naphthene naphthylene tophenol naphthylene tophenone mracene zo(a)anthracene zo(a)nthracene zo(b)fluoranthene zo(b)fluoranthene zo(b)fluoranthene zo(h)fluoranthene zo(h)haltate -botyl phthalate -botyl phthalate -octyl phthalate -	See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 Comparison of the see Note 3 S		200 D 260 D ND 260 D ND ND 210 D ND		270 D		45 D		360 D		1.2	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D		36	16 ND ND ND ND ND ND ND 13 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.5			0.0
thylnaphthalene thylphenol (o-Cresol) rophenol (o-Cresol) rophenol (indexidence) rophenol (See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 See Note 3 Comparison of the see Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3 See Note 3		200 D 260 D ND		270 D ND ND ND ND ND ND ND ND ND		45 D		360 D		1.2		9.1	- ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6	- ND ND ND ND ND ND ND ND ND ND ND ND ND	150 D		36	16 ND ND ND ND ND ND ND ND ND ND ND ND ND	12 J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	9.5			

												M i4 i 1	N-II I4:	Camarla Data	/-\ Q B#i4-	-i D										
				DENAME TO A	MWN-76AR							Monitoring v	Veil Location	Sample Date	e(s), & Monito	ring Program										
		B404/61 7/	SA — Peat			B804/01 77 A	— Slag/Fill	MWN-78A	- Slag/Fill;	B414/01 70 A	— Slag/Fill	MWN-86A —	MWN-87A —	MWN-88A —	MWN-89A -	MWN-90A	MWN-91A	WT1-07 -	- Slag/Fill; Sa	nd/Dredge	WT8-01 -	- Slag/Fill; Sa	nd/Dredge	WT8-02 —	Slag/Fill; Sa	nd/Dredge
PARAMETER 1	GWQS/GV ²	WWW-7	A — Peat	Slag/Fill;	- Slag/Fill;	WWW-//A	— Siag/Fili	Sa	and	WWW-79A	— Siag/Fili	Slag/Fill	Slag/Fill	Slag/Fill	Slag/Fill	Slag/Fill	Slag/Fill		Spoils			Spoils	_		Spoils	
				Peat	Peat								ŭ	· ·	, i	, i	•									
		Oct-2010	Jan-2019	Oct-2010	Jan-2019	Oct-2010	Jan-2019	Oct-2010	Jan-2019	Oct-2010	Jan-2019	Oct-2010	Oct-2010	Oct-2010	Oct-2010	Oct-2010	Oct-2010	Jun-2007	Mar-2012	Jan-2019	Jun-2007	Apr-2013	Jan-2019	Jun-2007	Apr-2013	Jan-2019
Filtered SVOCs (Method 8270D) - ug/	//	CMS 2010	CMS 2019	CMS 2010	CMS 2019	CMS 2010	CMS 2019	CMS 2010	CMS 2019	CMS 2010	CMS 2019	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2010	CMS 2010	SWI BCP	CMS 2012	CMS 2019	SF1 RI	SF1 GWM	CMS 2019	SF1 RI	SF1 GWM	CMS 2019
Acenaphthene	20	_	T -	T -		_	T -		T -			T -							T -	T -		1 -	_	_	-	-
Acenaphthylene	-		-	<u> </u>	-	-	-		-	-	-	-	-	-	-		-					-	-		-	-
Anthracene	50	-	-	-	-	-	-		-		-	-		-						_		_	-		-	-
Benzo(ghi)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-		-	-		-	-
Dibenzo(a.h)anthracene				-				-	-	-	-	-	-			-	-	1 1				-				-
Fluoranthene	50							-				_														
Fluorene	50		-	-	-	-	-	-	-	-		-	- :	-	- :	-	-	-	- :	-	-	-	-	-		-
Indeno(1,2,3-cd)Pyrene	0.002	-			-	- :	- :		-	-		-		- :	-		-	-		-	- :	-	-	- :	-	-
Naphthalene	10			-		1 - 1				- :		-	-			-	-	1 1								
Phenanthrene	50											_										_				
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Metals - ug/L	50	-	-	<u> </u>	-	<u> </u>	-	<u> </u>	-	<u> </u>	-	<u> </u>	-	<u> </u>	-	<u> </u>	<u> </u>		-	-	-	-	-	-	-	-
Arsenic, Total	25		T	1	1	T	T		T			1				T			4 J	1		ND			0.00.1	
Barium, Total	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	ND	-	-	2.96 J	-
Cadmium, Total	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	53	-	-	-	-	-	-	-
Chromium, Total	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	-	-	-	-	-	-	-
Cyanide, Total	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead, Total	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium, Total	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9 J	-	-	-	-	-	-	-
Dissolved Metals - ug/L															•			•		1						
Arsenic, Dissolved	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4 J	-	-	-	-	-	-	-
Barium, Dissolved	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	32	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium, Dissolved	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	-	-	-	-	-	-
Lead, Dissolved	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8 J	-	-	-	-	-	-	-
Field Measurements																										
Dissolved Oxygen (mg/L)	-	1.6	0.34	1.27	1.79	1.08	1.06	1.54	1.33	2.67	2.64	1.56	1.13	2.09	1.02	1.18	1.18	-	1.76	1.58	0.2	1.99	1.95	-	4.62	5.06
Field pH (S.U.)	12.5	8.56	8.90	7.22	7.27	7.28	6.88	7.26	7.25	8.09	6.95	11.48	9.61	11.13	11.56	11.51	11.51	-	10.89	11.06	10.89	9.76	10.84	11.85	12.37	12.61
Redox Potential (mV)	-	-148	-296	-107	-138	-142	-172	-250	-210	-93	-64	-261	-222	-262	-261	-252	-252	-	-285	-195	-253	-104	-147	-168	-80	-172
Specific Conductance (umhos/cm)	-	38.48	26.16	4483	1413	1175	869.8	1475	1189	3270	3429	906.9	508.6	823.7	990	965.5	965.5	-	883.6	994.7	4570	2621	2600	2070	5442	4170
Temperature (deg C)	-	16.9	10.3	15.0	4.3	16.3	6.4	16.8	5.2	17.1	4.4	13.0	15.4	14.8	13.0	13.8	13.8	-	12.5	9.7	21.1	16	11.9	20.1	11	4.3
Turbidity (NTU)	-	104	637	798	26.5	17.5	10.3	100	38.3	164	5.26	1.47	16.6	120	12.8	377	377	-	61.6	2	>1000	99.1	34	>1000	474	100

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.

 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."

 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

 5. VOCS, SVOCS, and Total Metals were analyzed for during CMS 2012 and GMS 2013 sampling events. The wells sampled during this event were resampled and analyzed for individual phenolic compounds via Method 8270D in August 2013. All results are reported in this column.

 6. Surrogate recoveries for individual phenolic compounds for CMS 2012 and CMS 2013 were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

 7. MWN-05B was resampled for Barium on January 18. The second set of field measurements represents the groundwater conditions during the Barium sampling (italicized).

- Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J+ = Estimated value that may be biased high.

 J = Estimated value that may be biased low.

 D = Concentration of analyte was quantified from diluted analysis.

 E = Concentration of analyte was quantified from diluted analysis.

 ND = Not detected at the method detection limit.

 = No GWQS/GV, or parameter was not analyzed for.

 R = Sample result was rejected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Semivolatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

Color Code:	
	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= nH exceeds 12.5

			Monitoring We	II Location, Sampl	le Date(s). & Mon	itoring Program	
1	20022002	N	IWN-18A — Slag/I			IWN-43A — Slag/F	ill
PARAMETER ¹	GWQS/GV ²	Nov-1999	Mar-2012	Jan-2019	Dec-2000	Feb-2012	Jan-2019
		RFI	CMS 2012	CMS 2019	RFI	CMS 2012	CMS 2019
VOCs (Method 8260B, 8260C, 8021B) - ug/L							
1,2,4-Trimethylbenzene	5	-	0.88 J	-	-	0.34 J	-
1,3,5-Trimethylbenzene	5	-	0.89 J	-	-	0.95 J	-
Acetone	50	-	-	7	-	_	3.3 J
Benzene	1	15	ND	3.2	8.5	1.1	0.44 J
Toluene	5	3.1 J	1.8 J	ND	2.1 J	0.34 J	ND
Xylenes, Total	5	4.3 J	2.22 J	ND	3.7 J	1.79 J	ND
SVOCs (Method 8270C, 8270D) - ug/L							
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	0.4
2-Methylnaphthalene	-	-	2.4	ND	-	1.3	ND
3,4-Methylphenol (m,p-Cresol)	See Note 3	R	-	1.4 J	R	-	5.1
Acenaphthene	20	-	1.6 J	ND	-	1.6	0.88
Acenaphthylene	-	ND	4.9	ND	6.5 J	2.8	ND
Acetophenone	-	-	ND	ND	-	5	ND
Anthracene	50	ND	2.6	ND	ND	1.1	ND
Benzo(a)anthracene	0.002	ND	ND	0.22	ND	0.21	0.14
Benzo(a)pyrene	0 (ND)	ND	ND	0.13	ND	ND	ND
Benzo(b)fluoranthene	0.002	-	ND	0.26	-	ND	0.03 J
Benzo(ghi)perylene	-	-	ND	0.06 J	-	ND	ND
Benzo(k)fluoranthene	0.002	_	ND	0.11	-	ND	0.01 J
Bis(2-ethylhexyl)phthalate	5	ND	2.9 J	2.5 J	ND	ND	ND
Carbazole	-	-	4.5	0.87 J	-	1.6 J	0.66 J
Chrysene	0.002	ND	ND	0.22	ND	0.12 J	0.12
Dibenzo(a,h)anthracene	-	-	ND	0.02 J	-	ND	ND
Dibenzofuran	-	-	3.7	ND	-	1.3 J	ND
Fluoranthene	50	ND	8.1	1.2	4 J	4.4	5.1
Fluorene	50	ND	7.4	ND	7.8 J	3	ND
Indeno(1,2,3-cd)Pyrene	0.002	-	ND	0.07 J	-	ND	ND
Naphthalene	10	26 J	13	ND	70	10	ND
Phenanthrene	50	21 J	17	ND	14	6.2	ND
Phenol	See Note 3	R	-	4.4 J	R	-	1.6 J
Pyrene	50	ND	7	0.89	ND	2.5	3
Total Phenolic Compounds (Method 8270C, 82		110	·	0.00	110	0	
Phenolic compounds (total phenols) 4	1	-	_	5.8	_	_	6.7
Total Metals - ug/L	<u> </u>			0.0			0.1
Barium, Total	1000	521 J	-	246.7	647		537.5
Chromium, Total	50	322	40	240.7	6.9	ND	-
Lead, Total	25	10.3	-	-	2.9 B	- -	
Selenium, Total	10	7.1	-	_	ND	_	
Dissolved Metals - ug/L	10	1.1		-	ND		
Barium, Dissolved	1000	501 J	-	212.6	_	- 1	537.8
Chromium, Dissolved	50	17.5			<u>-</u>	-	-
Cyanide, Total	200	33	-	-	ND ND	-	
Selenium, Dissolved	10	5.2 J	-	-	- -	-	<u> </u>
Field Measurements	10	J.Z J		-	<u> </u>		
Dissolved Oxygen (mg/L)	_	-	7.93	9.03		2.15	2.87
	12.5	<u> </u>	11.45	12.28	12.46	12.91	12.57
Field pH (S II)	12.0	<u>-</u>			-392	-156	-151
Field pH (S.U.)	_		_1/1/4				
Redox Potential (mV)	-	-	-143 2852	18			
		- - -	-143 2852 16.5	2872 6.3	5,580 12.2	5091 8.9	4956 8.7

Notes:

- Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
 Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations - Class GA (TOGS 1.1.1)
- 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
- 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

Definitions

- B = The analyte was also detected above the reporting limit in the associated method blank.
- J = Estimated value.
- J+ = Estimated value that may be biased high.
- J- = Estimated value that may be biased low.
- D = Concentration of analyte was quantified from diluted analysis.
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- ND = Not detected at the method detection limit. - = No GWQS/GV, or parameter was not analyzed for.
- R = Sample result was rejected by third party validator.

VOCs = Volatile Organic Compounds

SVOCs = Semivolatile Organic Compounds

RFI = Final RCRA Facility Investigation (October 2004)

CMS = Corrective Measures Study HWMU = Hazardous Waste Management Unit groudwater monitoring data

	= concentration is less than or equal to the GWQS/GV (includes non-detect)
Bold	= concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
Bold	= concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
Bold	= concentration exceeds 100 times the GWQS/GV
Bold	= pH exceeds 12.5

													Monitoring \	Well Location,	Sample Date	e(s), & Monito	ring Progran	n										
PARAMETER ¹	GWQS/GV ²	MV	WN-07 — Slag	g/Fill	MWN-08	— Slag/Fill	MV	VN-09 — Slag/	Fill	MW	/N-26A — Sla	g/Fill		MWN-26B -	- Clayey Silt		MWN-30A	— Slag/Fill	MWN-34A	— Slag/Fill	M\	WN-45A — Sla	ng/Fill	MWN-46A	— Slag/Fill	MW	/N-47A — Slag/F	iii
		Nov-1999 RFI	Feb-2012	Jan-2019 CMS 2019	Nov-1999 RFI	Jan-2019 CMS 2019	Nov-1999 RFI	Apr-2013 CMS 2013	Jan-2019	Nov-1999 RFI	Jul-2010	Feb-2012 CMS 2012	Nov-1999 RFI	Jul-2010	Feb-2012 CMS 2012	Jan-2019	Nov-1999 RFI	Apr-2013 CMS 2013	Nov-1999 RFI	Jan-2019 CMS 2019	Dec-2000		Jan-2019 CMS 2019	Dec-2000 RFI	Apr-2013 CMS 2013	Dec-2000 RFI	Feb-2012 CMS 2012	
VOCs (Method 8260B, 8260C, 8021B) - ug/L		KFI	CIVIS 2012	CIVIS 2019	KFI	CIVIS 2019	KFI	CIVIS 2013	CIVIS 2019	KFI	CIVIS 2010	CIVIS 2012	KFI	CIVIS 2010	CIVIS 2012	CIVIS 2019	KFI	CIVIS 2013	KFI	CIVIS 2019	KFI	CIVIS 2012	CIVIS 2019	KFI	CIVIS 2013	KFI	CIVIS 2012	51VIO 2019
1,2,4-Trimethylbenzene	5	-	ND	-	-	-	-	ND	-	-	-	-	-	-	-	-	-	120	-	-	-	ND	-	-	ND	-	ND	-
Acetone	50	-	-	3.6 J	-	1.9 J	-	-	1.8 J	-	ND	-	-	ND	-	4.7 J	-	-	-	3.6 J	-	-	ND	-	-	-	-	2.6 J
Benzene	1 5	4.6 J	ND	ND	14	0.18 J	6300	3.1	0.4 J	1800	ND	-	240	290 D	-	53	14000	2800	2.1 J	0.3 J	7.2	0.97	7.2	17	9.3	37	ND	28
Bromomethane Carbon disulfide	60	ND -	1 - 1	2.5 ND	ND	ND ND	ND -	-	ND ND	ND	ND ND	-	ND -	ND ND	-	ND ND	ND	-	ND -	ND ND	R	-	ND ND	R	-	R	-	ND ND
Chloromethane (Methyl chloride)	5	ND	-	0.73 J	ND	ND	ND	-	ND	ND	ND	-	ND	ND	-	ND	ND	-	ND	ND	ND	-	ND	ND	-	ND	-	ND
Cyclohexane	-	-	-	ND	-	0.63 J	-	-	ND	-	ND	-	-	ND	-	ND	-	-	-	ND	-	-	ND	-	-	-	-	ND
Ethylbenzene	5	ND	ND	ND	66	1.3 J	ND	ND	ND	28 J	ND	-	27	24 D	-	5.1	180 J	96 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene Methyl cyclohexane	5	-	ND -	ND ND	-	1.2 J 0.4 J	-	ND	ND ND	-	ND ND	-	-	ND ND	-	1.1 J ND	-	ND	-	ND ND	-	ND -	ND ND	-	ND -	-	ND	ND ND
Styrene	5	-	-	ND	-	ND	-	-	ND	-	ND	-		ND	-	ND	-	-		ND	-	-	ND	-	-	-	-	ND
Toluene	5	1 J	ND	ND	ND	ND	ND	ND	ND	11 J	ND	-	ND	4 D	-	ND	360 J	55 J	ND	ND	ND	ND	1.2 J	ND	ND	ND	ND	ND
Xylenes, Total	5	ND	ND	ND	560	49	ND	ND	ND	74	ND	-	64	7.8 D	-	4.9 J	980	236	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.8 J
SVOCs (Method 8270C, 8270D) - ug/L	O N. d. C			ND		LIB	1.00	,	ND				LUD			NID	LUD		LUD	A UP	N/P		ND	LUD		LUD		NID
2,4-Dimethylphenol 2-Methylnaphthalene	See Note 3	R	ND.	ND ND	2.4 J	ND ND	ND -	ND.	ND ND	5.4 J		ND	ND -	-	61	39 D	ND	10	ND -	ND ND	ND	0.26	ND ND	ND	ND.	ND -	- ND	ND ND
2-Methylphenol (o-Cresol)	See Note 3	R	- IND	ND -	ND.	ND -	ND.	ND	ND -	22	1 -	- ND	ND.	1 -	-	- 39 D	ND.	18	ND.	ND -	ND.	0.26	ND -	ND.	ND -	ND.	ND -	ND -
3,4-Methylphenol (m,p-Cresol)	See Note 3	R	-	ND	ND	ND	ND	-	ND	ND	-	-	ND	-	-	ND	ND	-	ND	ND	ND	-	0.54 J	ND	-	ND	-	0.66 J
Acenaphthene	20	-	0.18 J	ND	-	ND	-	ND	ND	-	-	2.9	-	-	49	38 D	-	ND	-	ND	-	0.63	0.71	-	0.08 J	-	ND	ND
Acenaphthylene	-	ND	0.08 J	ND	ND	ND ND	2.7 J	0.63	ND	9.2 J	-	0.47	ND	-	ND	ND	35 J	10	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
Acetophenone Anthracene	50	ND.	ND	ND	ND	ND	ND.	0.1 J	ND	ND		0.15 J	ND.	-	5.4 J	0.62 J 3.9 D	ND.	ND ND	ND.	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND
Benzo(a)anthracene	0.002	ND	0.14 J	0.03 J	ND	0.04 J	ND	ND ND	ND	ND	-	ND	ND	-	ND	0.97 DJ	ND	3 J	ND	ND	ND	ND	0.03 J	ND	ND	ND	ND	ND
Benzo(a)pyrene	0 (ND)	ND	0.1 J	ND	ND	0.02 J	ND	ND	ND	ND	-	ND	ND	-	ND	0.55 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	-	0.2	0.04 J	-	0.03 J	-	ND	ND	-	-	ND	-	-	ND	0.71 DJ	-	ND	-	ND	-	ND	ND	-	ND	-	ND	ND
Benzo(ghi)perylene Benzo(k)fluoranthene	0.002	-	0.07 J 0.14 J	0.04 J 0.03 J	-	0.01 J	-	ND ND	ND	-	-	ND ND	-	-	ND ND	0.33 DJ 0.27 DJ	-	ND ND	-	ND ND	-	ND ND	ND ND	-	ND ND	-	ND ND	ND ND
Biphenyl	5	-	0.143 ND	ND	-	ND		ND	ND		_	ND		-	ND	ND	-	6.3		ND	-	ND	ND	-	ND		ND	ND
Bis(2-ethylhexyl)phthalate	5	3.8 J	ND	ND	4.1 J	4	ND	ND	2.4 J	ND	-	ND	ND	-	ND	3.3	ND	ND	3.5 J	2.9 J	ND	ND	2.4 J	ND	ND	ND	ND	2.5 J
Carbazole	-	-	ND	ND	-	ND	-	ND	ND	-	-	ND	-	-	21	11	-	ND	-	ND	-	ND	ND	-	ND	-	ND	ND
Chrysene Dibenzo(a,h)anthracene	0.002	ND	0.07 J ND	0.03 J 0.07 J	ND	0.01 J	ND	ND ND	ND ND	ND	-	ND ND	ND	-	ND ND	0.63 DJ 0.13 DJ	ND	2.8 J ND	ND	ND ND	ND	ND ND	0.02 J ND	ND	ND ND	ND	ND ND	ND ND
Dibenzofuran		-	ND ND	0.07 J		0.02 J ND	-	ND ND	ND	-	-	ND ND	-	-	18	12	-	ND ND	-	ND		ND	ND	-	ND ND	-	ND	ND
Fluoranthene	50	1.6 J	0.43	ND	ND	ND	ND	0.1 J	ND	ND	-	0.45	ND	-	5.5 J	4.6 D	ND	7.6 J	ND	ND	ND	ND	0.23	ND	0.13 J	ND	ND	ND
Fluorene	50	2.9 J	0.16 J	ND	ND	ND	10	ND	ND	3.3 J	-	0.13 J	40 J	-	29	23 D	1700 D	ND	ND	ND	ND	0.14 J	ND	ND	ND	ND	ND	ND
Hexachloroethane Indeno(1,2,3-cd)Pyrene	5 0.002	ND	0.18 J	0.05 J	ND	ND	ND	ND	ND	ND	-	ND ND	ND	-	ND	0.34 DJ	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
Naphthalene	10	230 D	1.1	0.05 J	70 D	0.01 J	18	0.09 J	ND ND	150 D	ND **	ND	2000 D	1100 **	590	120 D	2400 D	940	ND.	ND ND	ND.	3.5	ND	ND.	0.2	ND.	ND ND	ND ND
Pentachlorophenol	See Note 3	R	-	ND	ND	ND	ND	-	ND	ND	-	-	ND ND	-	-	ND	ND ND	-	ND	ND	ND	-	0.19 J	ND	- 0.2	ND	-	0.15 J
Phenanthrene	50	3.2 J	0.2	ND	2 J	ND	ND	ND	ND	1.1 J	-	ND	43 J	-	34	24 D	48 J	19	ND	ND	ND	ND	1.3	ND	0.12 J	ND	ND	ND
Phenol	See Note 3	R	-	ND	2.3 J	ND	150 D	-	ND	16	-	-	ND	-	-	2.6 J 2.9 D	ND	-	ND	ND	ND	- ND	ND	ND		ND	- ND	ND ND
Pyridine	50 50	1.3 J 6.5 J	0.55	ND	ND	ND	4 J	0.08 J	ND	ND ND	-	0.33	ND ND	-	3.2 J	2.9 D	ND ND	2.9 J	ND ND	ND	ND	ND	ND	ND	0.1 J	ND ND	ND -	ND
Total Phenolic Compounds (Method 8270C,		0.00			110		70			IND			140				140		140		IND			110		140		
Phenolic compounds (total phenols) ⁴ Total Metals - ug/L	1	-	-	ND	4.7	ND	150	-	ND	43	-	-	ND	-	-	2.6	ND	-	ND	ND	ND	-	0.73	ND	-	ND	-	0.81
Arsenic, Total	25	ND	ND	-	4.6 B	-	3.2 B	-	-	10.1	-	4 J	485 J	-	623	-	8.2 B	1.96	ND	-	ND	ND	-	6.3 B	-	ND	ND	
Barium, Total	1000	398 J	41	-	148 JB	-	150 JB	-	-	31.1 B	-	42	1790	-	2320	1754	250 J	69.94	62.3 JB	-	120 B	109	-	42.9 B	-	35.7 B	71	
Cadmium, Total Chromium, Total	5 50	ND 19.1	40	-	2.7 B	-	2.4 B	-	-	0.8 B	-	ND -	2.7 B	-	3 J	-	0.25 B 12.1	1.64	ND 295	-	ND 12.3	3 J	-	0.64 B 6.2	-	4.2 B	10	
Cyanide, Total	200	510	49	-	0		0.14		-	220	-	186	2.7 B 89	-	-		0.61	1.04	0.11	-	290 J	1080	191	0.02 J	-	ND	-	- -
Lead, Total	25	ND	-	-	ND	-	ND	-	-	2.3 B	-	-	ND	-	-	-	1.9 B	0.64 J	2.9 B	-	ND	-	-	6.8	-	ND	-	-
Selenium, Total	10	4.8 B	-	-	ND	-	ND	-	-	1.9 B	-	-	ND		-	-	ND	0.56 J	6.3	-	2.3 B	-	-	2.1 B		3.3 B	-	-
Dissolved Metals - ug/L Arsenic, Dissolved	25	ND		T -									541 J		152		4.5 JB						Т -	66B				
Arsenic, Dissolved Barium, Dissolved	1000	418 J	-	-	1 -	-	-	-	-	-	-	-	541 J 1740	-	1890	1792	4.5 JB 204 J	-	-	-	1 -	-	-	6.6 B 36.2 B	-	1	-	-
Cadmium, Dissolved	5	ND	-	-	<u> </u>	-	-	-	-	-	-	-	ND	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-
Chromium, Dissolved	50	19.2	-	-	-	-	-	-	-	-	-	-	0.62 B	-	ND	-	ND	-	-	-	-	-	-	1.3 B	-	-	-	
Selenium, Dissolved	10	4.2 JB				-			-	-	-	-	1.6 B		-		ND		<u> </u>		<u> </u>		-	ND	-	-	<u> </u>	
Field Measurements Dissolved Oxygen (mg/L)	-	0.9	9.23	8.11	0.80	1.93	0.4	1.52	1.75	0.8	2.35	2.39	0.5	1.72	2.33	1.62	0.5	2.66	1.40	3.60	1	3.1	1.63	3.65	3	-	5.27	0.85
Field pH (S.U.)	12.50	11.77	12.55	12.06	7.29	7.27	7.10	7.21	7.42	7.96	7.15	7.19	6.66	6.51	7.33	6.57	7.40	7.80	7.28	7.34	11.28	11.56	11.26	9.55	9.26	11.41	11.55	11.91
Redox Potential (mV)	-	-173	-83	-140	-205	-105	-204	-15	-115	-158	-118	-114	-107	-74	-55	-63	-296	-285	-86	-76	-127	-154	-218	7	-7	-299	-144	-263
Specific Conductance (umhos/cm)	-	2,960	2494	2431	3,470	1,004	1400	1015	766.7	1,150	754.2	970.6	1,630	1408	1689	1500	600	1499	3,060	1,485	6,450	11.54	8187	1260	3740	1,350	800.6	5060
Temperature (deg C)	-	18.2	9.3 7.44	10.1	16.7	9.6	16.9	11.0	10.0	13.0	17.5 11.2	7.2	11.8 44	14.1 8.21	6.6 269	9.0 21.4	16.3	11.4	18.1	9.6	13.6	6.5 20.9	8.8	10.3	8.9 13	12.6	7.0 37.5	10.8 2.56
Turbidity (NTU)	-	180	7.44	0.79	200	13.8	190	33.2	10.7	8	11.2	2.58	44	0.21	209	21.4	150	20	300	36.6	-	20.9	0.83	13	13	4	31.5	2.00

- Notes:
 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

- A. GWQS/GV for Prierioric Compounds (Note processor)

 Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.
 J = Estimated value.
 J = Estimated value that may be biased high.
 J = Estimated value that may be biased low.
 D = Concentration of analyte was upuntified from diluted analysis.
 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
 ND = Not detected at the method detection limit.
 = No GWQS/GV, or parameter was not analyzed for.
 R = Sample result was relected by third party validator.
 VOCs = Volatile Organic Compounds
 SVOCs = Semivolatile Organic Compounds
 RFI = Final RCRA Facility Investigation (October 2004)
 OMS = Corrective Measures Study
 HWMU = Hazardous Waste Management Unit groups whether the standard of the standard

- r Code:

 Bold = concentration is less than or equal to the GWQS/GV (includes non-detect)
 = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV
 Bold = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
 Bold = pH exceeds 105 times the GWQS/GV

												Monito	ring Well Lo	ation, Sample	Date(s), & I	Monitoring Pr	ogram										
PARAMETER ¹	GWQS/GV ²	MW	/N-49A — Claye	ey Silt	MWN-49E	3 — Clayey Sil	t; Till; Peat	MWN-52A — Slag/Fill	MWN-52B — Sand		MWN-53A				N-54A - Slag			NN-55A - Slag	/Fill	MWN-66A — Slag/Fill	MWN-66AR — Slag/Fill	MWN-67A	-Slag/Fill	MWN-68	A - Sand	MWN-72A —Slag/Fill; Sand	MWN-72AR Slag/Fill; Sand
		Dec-2000		Jan-2019	Dec-2000		Feb-2019	Dec-2000	Dec-2000	Mar-2005	Apr-2013	Apr-2013	Jan-2019	Mar-2005	Apr-2013	Apr-2013	Mar-2005	Apr-2013	Apr-2013	Jul-2010	Jan-2019	Jul-2010	Jan-2019	Jul-2010	Jan-2019	Jul-2010	Jan-2019
VOCs (Method 8260B, 8260C, 8021B) - ug/L		RFI	CMS 2012	CMS 2019	RFI	CMS 2012	CMS 2019	RFI	RFI	ICM 2005	ICM 2013	CMS 2013	CMS 2019	ICM 2005	ICM 2013	CMS 2013	ICM 2005	ICM 2013	CMS 2013	CMS 2010	CMS 2019	CMS 2010	CMS 2019	CMS 2010	CMS 2019	CMS 2010	CMS 2019
1.2.4-Trimethylbenzene	5	-	ND	-	-	ND	-	I - I	-	- 1	_	-	-	- 1	-	-	-	-	-	T -	-	-	-	T -	-	-	
Acetone	50	-	-	1.8 J	-	-	ND	-	-	ND	ND	-	2.4 J+	ND	ND	-	ND	ND	-	53 D	ND	40 DJ	ND	ND	ND	ND	7.6 DJ
Benzene	1	2.8 J	ND	0.51	ND	ND	ND	ND	ND	74	ND	-	31	180000 B	50000	-	2400 DB	700	-	10000 D	6600 D	4100 D	4400 D	ND	ND	4 D	510 D
Bromomethane	5	R	-	ND	R	-	ND	ND	ND	ND	ND	-	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide Chloromethane (Methyl chloride)	60 5	ND.	-	ND ND	ND	-	ND ND	ND .	ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	ND ND	4.3 DJ ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane	-	-	-	ND	- ND	-	ND	-	- 140	ND	ND	-	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	1300 J	450 J	-	140	62	-	110 D	100 DJ	58 D	44 DJ	ND	ND	ND	ND
Isopropylbenzene	5	-	ND	ND	-	ND	ND	-	-	ND	ND	-	ND	ND	ND	-	8.2	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	-	-	-	ND	-	-	ND	-	-	ND ND	ND	-	ND	ND	ND	-	4.8 J	ND	-	470 D	410 D	ND	72 DJ	ND	ND	ND	ND
Styrene Toluene	5	ND.	ND	ND ND	- ND	ND.	ND ND	- ND	- ND	ND ND	ND ND	-	ND ND	9400	200 J	-	7.8 23	ND ND	-	3600 D	3200 D	2200 D	1100 D	ND ND	ND ND	ND ND	ND ND
Xylenes, Total	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	1060 J	-	340	1250 J	_	2170 D	2070 D	1390 D	630 D	ND	ND	ND	ND
SVOCs (Method 8270C, 8270D) - ug/L	•	·	-			-	•											*			*		·				
2,4-Dimethylphenol	See Note 3	ND	-	ND	ND	-	ND	ND	ND	-	-	-	ND	-	·	-	-	-	-	-	120 DJ-	-	53 D	-	ND	-	ND
2-Methylnaphthalene	Con Note C		ND	ND	-	ND	ND	ND	N/D	-	-	ND	ND	-	-	39	-	-	22	-	470 D	-	160 D	-	ND	-	ND
2-Methylphenol (o-Cresol) 3,4-Methylphenol (m,p-Cresol)	See Note 3 See Note 3	ND ND	-	- ND	ND ND	-	ND	ND ND	ND ND	-	-	-	ND.		-	-	-	-	-	-	1100 D		450 D		ND .		- ND
Acenaphthene	20	ND -	ND	ND	- ND	ND .	ND	- ND	- ND			0.8	ND	-		3.8 J	-	-	5.4 J	-	21 D	-	12 D	-	ND	-	12 D
Acenaphthylene	-	ND	0.08 J	ND	ND	ND	ND	ND	ND	-	-	ND	ND	-	-	21	-	-	8.3 J	-	150 D	-	160 D	-	ND	-	ND
Acetophenone	-	-	ND	ND	-	ND	ND	-	-	-	9	ND	ND	-	=	ND	-	-	ND	-	ND	-	ND	-	ND	-	ND
Anthracene	50 0.002	ND	ND	0.02 J	ND ND	ND	0.04 J	ND ND	ND	-	-	0.09 J	ND	-	-	ND ND	-	-	ND ND	-	24 D 17 DJ	-	14 D 0.96 DJ	-	ND	-	0.39 D
Benzo(a)anthracene Benzo(a)pyrene	0.002 0 (ND)	ND ND	ND ND	ND	ND ND	ND ND	0.04 J	ND ND	ND ND	-	-	ND ND	ND ND	-	-	ND	-	-	ND ND	-	17 DJ	-	0.96 DJ 0.41 DJ		ND ND	-	0.39 D 0.16 DJ
Benzo(b)fluoranthene	0.002	-	ND	ND	-	ND	0.04 J	-	-	-	-	ND	ND	-	-	ND	-	-	ND	-	14 DJ	-	0.55 DJ	-	ND	-	ND ND
Benzo(ghi)perylene	-	-	ND	ND	-	ND	ND	-	-	-	-	ND	ND	-	-	ND	-	-	ND	-	7 DJ	-	ND	-	0.06 J	-	ND
Benzo(k)fluoranthene	0.002	-	ND	ND	-	ND	0.03 J	-	-	-	-	ND	ND	-	-	ND	-	-	ND	-	5.3 DJ	-	0.21 DJ	-	ND	-	0.08 DJ
Biphenyl Bis(2-ethylhexyl)phthalate	5	ND.	ND	2.6 J	6.6 J	ND ND	1.6 J	ND	- ND	-	-	ND ND	ND	-	-	4.2 ND	-	-	4.8	-	27 DJ	-	22 D	-	ND 2.4 J	-	2.8 J
Carbazole	-	ND -	ND	2.0 J	0.0 J	ND	ND	ND -	- ND	-		ND ND	ND	-		ND	-	-	ND ND		89 D	-	120 D	-	2.4 J ND	-	2.9
Chrysene	0.002	ND	ND	ND	ND	ND	0.04 J	ND	ND	-	-	ND	ND	-	-	ND	-	-	ND	-	14 DJ	-	0.62 DJ	-	ND	-	0.37 D
Dibenzo(a,h)anthracene	-	-	ND	ND	-	ND	ND	-	-	-	-	ND	ND	-	-	ND	-	-	ND	-	ND	-	ND	-	ND	-	ND
Dibenzofuran	50	-	ND ND	ND	-	ND ND	ND ND	- ND	- ND	-	-	ND ND	ND ND	-	-	5.1	-	-	5.4	-	41 D	-	49 D 9.7 D	-	ND ND	-	2.7
Fluoranthene Fluorene	50	ND ND	ND ND	0.23 ND	ND	ND ND	ND ND	ND ND	ND			ND ND	ND ND		-	3.5 J			5.8 J		46 D 64 D		9.7 D 59 D		ND ND		1.1 D 4.3 D
Hexachloroethane	5	ND	0.07 J	ND	ND	ND	ND	ND	ND	_	_	ND	ND	-		ND	_	-	ND	-	ND.	-	ND.	-	ND	-	ND
Indeno(1,2,3-cd)Pyrene	0.002	-	ND	ND	-	ND	ND	-	-	-	-	ND	ND	-	-	ND	-	-	ND	-	6.7 DJ	-	ND	-	ND	-	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND	ND	-	-	2700 D	-	-	730	18000 D **	11000 D	8700 D **	2800 D	0.7 J **	ND	7.8 D **	22 D
Pentachlorophenol Phenanthrene	See Note 3	ND ND	0.08 J	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	-	=	ND .	ND ND	-	-	9.3 J	-	-	3.4 J	-	110 D	-	59 D	-	ND ND	-	4.7 D
Phenol	See Note 3	ND ND	0.06 J	ND ND	ND	ND -	ND ND	ND ND	ND ND	-		- IND	1 J	-		9.5 5		-	3.4 J	1 - 1	1200 D		880 D	1	ND ND	-	7.5
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND	ND	-	-	ND	-	-	ND	-	34 D	-	5.8 D	-	ND	-	0.94 D
Pyridine	50	ND	-	-	ND	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Phenolic Compounds (Method 8270C,				L/D	1:0		1:0	NE	NE	,		,	4.0							_	0		4655		N/D	-	
Phenolic compounds (total phenols) * Total Metals - ug/L	1	ND	-	ND	ND	-	ND	ND	ND	-	-	-	1.0	-	-	-	-	-	-	<u> </u>	2420		1383	-	ND	-	7.5
Arsenic, Total	25	ND	ND	_	66B	17	-	4.5 B	ND				_		_	-	-	I -	-	T -	<u> </u>	-	-	-	-	-	
Barium, Total	1000	146 B	90	-	1160	1360	1155	136 B	356	-		-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, Total	5	ND	-	-	0.97 B	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium, Total	50	4.3 B	20	-	3.5 B	40	-	6.6	7.6	-	-	-	- 100	-	-	-	-	-	-	-	-		-	-	-	-	-
Cyanide, Total Lead, Total	200 25	16 J ND	-	-	17 J	-	-	40 J	53 J ND	-	-	-	199	-	-	-	-	-	-	-	291		561	-	-	-	-
Selenium, Total	10	ND ND	-	-	ND	-	-	ND	ND	-		-		-		-	-	-	-	-	-	- -	-	-	-	-	-
Dissolved Metals - ug/L																							<u> </u>				
Arsenic, Dissolved	25	-	ND	-	4.2 B	4 J		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Barium, Dissolved Cadmium, Dissolved	1000	-	78	-	1040 0.65 B	1110	1151	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	
Chromium, Dissolved Chromium, Dissolved	50	1 -	ND	-	1.4 B	ND	1 -	- 1		-	-	-		1 -	-	1	1	1 -	-	 	-	1 -	-	1 -		-	
Selenium, Dissolved	10	-	-	-	ND ND	-	-	- 1	-	-		-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	
Field Measurements																											
Dissolved Oxygen (mg/L)	-		0.93	1.74	-	4.71	2.19	-	-	-	1.95	1.97	1.7	-	1.3	1.29	- 0.70	0.98	2.25	1.57	0.85	0.27	1.09	2.35	1.69	2.22	1.07
Field pH (S.U.) Redox Potential (mV)	12.50	7.35 -292	7.75 -250	7.14 -113	8.21 -97	7.20 -48	6.79 -35	8.42 -98	7.26 -124	6.22 63	7.03 -58	7.05 -73	7.14 -90	7.01 -24	7.14 -88	7.25 -176	8.78 -29	8.79 -213	8.67 -216	8.86 -104	9.00 -144	10.31 -516	10.16 -253	7.00 -76	6.97 -122	7.12 -100	7.38 -130
Specific Conductance (umhos/cm)	-	3,600	1531	1534	1,700	1540	1754	-96 3250	3130	1001	1051	1060	1137	-24 947	2164	1996	2145	4542	4682	5885	2900	3164	1637	830.1	1483	1094	1301
Temperature (deg C)	-	14.8	9.9	10.9	11.3	7.2	9.3	13.2	13.5	7.4	11.0	11.9	3.6	6.5	11.3	11.1	6.2	9.0	9.8	15.8	7.5	16.8	7.8	16.9	8.1	14.8	9.7
Turbidity (NTU)	-	7.23	150	62.1	950	>1000	22.1	7.1	-	100	15.4	6.59	1.41	12.9	17	8.11	10.6	1.66	1.6	189	544	>1000	12	7.41	4.43	29.3	55

- Notes:
 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
 2. Groundwater Quality Standards/Guldance Values (GWQS/GV) as per Divison of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
 3. Refer to GWQS/GV for "Phenolic compounds (total phenols)."
 4. GWQS/GV for Phenolic compounds (total phenols) applies to sum of these substances.

- 4. GWQS/GV for Phenolic compounds (total pnerions) applies to sum of these substances.

 Definitions

 B = The analyte was also detected above the reporting limit in the associated method blank.

 J = Estimated value.

 J = Estimated value that may be biased high.

 J = Estimated value that may be biased low.

 D = Concentration of analyte was unantified from diluted analysis.

 E = Concentration of analyte was caunstified from diluted analysis.

 E = Concentration of analyte was caunstified from diluted analysis.

 E = Concentration of analyte was caunstified from diluted analysis.

 E = No GWQS/GV, or parameter was not analyzed for.

 R = Samole result was relected by third party validator.

 VOCs = Volatile Organic Compounds

 SVOCs = Volatile Organic Compounds

 RFI = Final RCRA Facility Investigation (October 2004)

 CMS = Corrective Measures Study

 HWMU = Hazardous Waste Management Unit groudwater monitoring data

 ** Indicates Naphthalene was analyzed using Method 8260B

- | Code: | = concentration is less than or equal to the GWQS/GV (includes non-detect) | = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV | Sold | = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV | Bold | = concentration exceeds 100 times the GWQS/GV | = pH exceeds 12.5

TABLE 4-37

TOTAL GROUNDWATER VOLUMETRIC DISCHARGE BY DISCHARGE SUB-AREA

Discharge Sub-Area	Discharge Sub-Area Description	Surface Area	Total Discharge		Total Di	scharge "X" (CMS	3 2019) ²	
		(SF)	CF/YR ³	CF/YR	L/YR ⁴	L/Day ⁵	GPM ⁶	GPD ⁷
2A	Lake Erie, south of Smokes Creek, along SFA-2	2,150,338	2,687,923	2,687,923	76,113,498	208,530	38	55,051
2B	South bank of Smokes Creek, along SFA-2	1,337,383	1,671,729	1,514,009	42,871,979	117,457	22	31,008
3A	North bank of Smokes Creek, along SFA-3	1,976,503	2,470,629	2,470,629	69,960,424	191,672	35	50,601
4A	Lake Erie, north of Smokes Creek	16,748,890	20,936,113	20,430,223	578,519,547	1,584,985	291	418,431
4B	Lake Erie, north of Smokes Creek, Outer Harbor	2,227,484	2,784,355	2,784,355	78,844,163	216,011	40	57,026
5	Ship Canal, west side	1,046,629	1,308,286	0	0	0	0	0
	Totals for CMS Area:	25,487,227	31,859,034	29,887,138	846,309,611	2,318,656	425	612,118

- 1. Represents total discharge at the time of the final RCRA Facility Investigatin (RFI).
- 2. Includes a pumping of ATP area pumping wells in DSA 2B (ATP-PW1 through ATP-PW-4) and OU4 area recovery wells in DSA 4A and DSA 5 (RW-1 through RW-3, RW-A through RWS-1 through RWS-14, and RWN-1 through RWN-27).
- 3. Per RFI (and USEPA comments), Area x 1.25 feet/year (site-wide infiltration to groundwater).
- 4. Conversion factor: 1 CF/YR = 28.3168499 L/year.
- 5. Conversion factor: 1 L/year = 0.0027397 L/day.
- 6. Conversion factor: 1 L/year = 5.0227716E-7 GPM
- 7. Conversion factor: 1 GPM = 1440 GPD.

Definitions:

SF = square feet CF/YR = cubic feet per year L/YR = liters per year GPM = gallons per minute GPD = gallons per day

TABLE 4-38

RFI SHORELINE SEGMENT LENGTH & SATURATED THICKNESS SUMMARY

Groundwater Discharge Sub-Area	Discharge Sub-Area Description	Hydrologic Unit	Segment / Well	Saturated Thickness ¹ (feet)	Shoreline Segment Length ² (feet)	Average Total Saturated Thickness of Fill Unit "B" (feet)	Average Total Saturated Thickness of Sand Unit " A " (feet)	Average Total Saturated Thickness " Z " (feet)
			MW-2D4	16	469			
			MW-2D3	16	220			
	Lake Erie. south of Smokes	Slag/Fill	MW-2D2	14	291	15	\times	25
2A	Creek, along SFA-2		MWS-26A	14	278			25
	Creek, along SFA-2		MWS-09	15	230			
		Sand/Dredge Spoil	MW-2D2B	10	1,488	$>\!\!<$	10	
		Total Lei	ngth of Sub-Area 2 L	ake Erie Shoreline:	1,488			
			MWS-01	14	769			
	South bank of Smokes Creek, along SFA-2		MWS-02	13	684			
		Slag/Fill	MWS-19A	12	386	12		
		Slay/FIII	MWS-18A	12	331] 12		
			MWS-20A	9	301			18
2B			MWS-03	12	344			10
	along SFA-2	Sand/Dredge Spoil	MWS-01B	10	1,012			
			MWS-19B	4	809		6	
		Sand	MWS-18C	3	312		0	
			MWS-20B	2	682			
		Total Length	of Sub-Area 2 Smoke	es Creek Shoreline:	2,815			
			MWN-01	18	1,011			
		Slag/Fill	MWN-11	12	1,114	12		
		Slag/I III	MWN-44A	5	530	12		
3A	North bank of Smokes Creek,		MWN-24A	2	204			18
JA.	along SFA-3	Sand/Dredge Spoil	MWN-01B	10	729			
		• .	MWN-23B	6	1,217	\rightarrow	6	
		Till	MWN-24B	4	913			
			Total Length of Sub-		2,859			
			MWN-06A	13	646			
			MWN-05A	14	1,209			
		Slag/Fill	MWN-04	10	1,164	15	\times	
	Lake Erie, north of Smokes		MWN-03	18	1,343			24
4A	Creek		MWN-02	16	2,194			27
	OIGGR		MWN-05B	10	2,439			
		Sand/Dredge Spoil	MWN-03B	8	1,913	\rightarrow	9	
			MWN-02B	10	2,204			
			Total Length of Sub-	-Area 4A Shoreline:	6,556			

TABLE 4-38

RFI SHORELINE SEGMENT LENGTH & SATURATED THICKNESS SUMMARY

Groundwater Discharge Sub-Area	Discharge Sub-Area Description	Hydrologic Unit	Segment / Well	Saturated Thickness ¹ (feet)	Shoreline Segment Length ² (feet)	Average Total Saturated Thickness of Fill Unit " B " (feet)	Average Total Saturated Thickness of Sand Unit " A " (feet)	Average Total Saturated Thickness " Z " (feet)
		Slag/Fill	MWN-43A	5	1,943	6		
4B	Lake Erie, north of Smokes		MWN-18A	8	1,270			14
	Creek, Outer Harbor	Sand	(see Note 3)	8	3,213	> <	8	
			Total Length of Sub-	Area 4B Shoreline:	3,213			
			MWN-45A	1.5	109		\ /	
			MWN-47A	4.5	240			
			MWN-09	6	480			
			MWN-26A	10	460			
5	01-1-014	Slag/Fill	MWN-34A	12	429	8	l X	8
3	Ship Canal, west side 4		MWN-08A	13	344			
			MWN-49A	10	464			
			MWN-52A	3.5	686			
			MWN-07	9.5	728			
			Total Length of Sul	o-Area 5 Shoreline:	3,940			

Notes:

- 1. Saturated thicknesses for the RFI were calculated using groundwater elevations measured on 11/20/2001 (RFI Table 2-12).
- 2. Shoreline Segment Length = Total Length of Discharge Sub-Area between wells (see Plate 4-19).
- 3. Derived during the RFI from interpretation of data from nearby sand unit wells MWN-05B and MWN-50B.
- 4. Based on geologic cross sections (and boring logs), there was no discernable sand layer identified for CMS Discharge Sub-Area 5. Therefore the total saturated thickness was calculated without incorporating a sand layer.

Formula:

- "Z" = Average Total Saturated Thickness per CMS Discharge Sub-Area = Average Total Saturated Thickness (fill) + Average Total Saturated Thickness (sand)
- "B" = Average Total Saturated Thickness (fill) = $[(B_1 \times C_1) + (B_2 \times C_2) + (B_3 \times C_3) + ...] / Y$
- "A" = Average Total Saturated Thickness (sand) = $[(A_1 \times D_1) + (A_2 \times D_2) + (A_3 \times D_3) + ...] / Y$

Definitions:

- " A_N " = Saturated thickness of sand along shoreline segment " N "
- "B_N" = Saturated thickness of fill along shoreline segment "N"
- " C_N " = length of fill shoreline segment " N "
- " D_N " = length of sand shoreline segment " N "
- "Y" = total length of CMS Discharge Sub-Area Shoreline

TABLE 4-39
CMS SHORELINE SEGMENT LENGTH & SATURATED THICKNESS SUMMARY

Groundwater Discharge Sub-Area	Discharge Sub-Area Description	Hydrologic Unit	Segment / Well	Saturated Thickness ¹ (feet)	Shoreline Segment Length ² (feet)	Average Total Saturated Thickness of Fill Unit " B " (feet)	Average Total Saturated Thickness of Sand Unit " A " (feet)	Average Total Saturated Thickness " Z " (feet)
			MW-2D4	17	469			
			MW-2D3	17	220	1		
	Lake Erie, south of Smokes	Slag/Fill	MW-2D2	16	291	17	\times	27
2A	Creek, along SFA-2		MWS-26A	16	278	<u> </u>		21
	Oreck, along of A 2		MWS-09	17	230			
		Sand/Dredge Spoil	MW-2D2B	10	1,488	$>\!\!<$	10	
		Total Leng	th of Sub-Area 2 La		1,488			
			MWS-01	16	769			
			MWS-02	14	684	1		
		Slag/Fill	MWS-19A	13	386	14		
		Slag/T III	MWS-18A	13	331] '-		
	South bank of Smokes		MWS-20A	9	301			19
2B	Creek, along SFA-2		MWS-03	12	344			19
	Creek, along St A-2	Sand/Dredge Spoil	MWS-01B	10	1,012			
			MWS-19B	4	809		6	
		Sand	MWS-18C	3	312		0	
			MWS-20B	2	682			
		Total Length of	Sub-Area 2 Smokes	Creek Shoreline:	2,815			
			MWN-01	20	1,011			
		Slag/Fill	MWN-11	13	1,114	13		
		Slay/Fill	MWN-94A	5	530	13		
3A	North bank of Smokes		MWN-24A	2	204	Ī		20
JA	Creek, along SFA-3 ³		MWN-01B	10	729			
		Sand/Dredge Spoil	MWN-23B	6	1,217	\sim	6	
			MWN-94B	4	913			
		To	otal Length of Sub-A	rea 3A Shoreline:	2,859			
			MWN-06A	12	646			
			MWN-05A	17	1,209	1		
		Slag/Fill	MWN-04	11	1,164	15	\times	
	Lake Erie, north of Smokes		MWN-03	18	1,343	1		25
4A			MWN-02	16	2,194	1		20
	Creek		MWN-05B	10	2,439			
		Sand/Dredge Spoil	MWN-03B	8	1,913	\sim	9	
			MWN-02B	10	2,204			
		To	otal Length of Sub-A	rea 4A Shoreline:	6,556			

TABLE 4-39
CMS SHORELINE SEGMENT LENGTH & SATURATED THICKNESS SUMMARY

Groundwater Discharge Sub-Area	Discharge Sub-Area Description	Hydrologic Unit	Segment / Well	Saturated Thickness ¹ (feet)	Shoreline Segment Length ² (feet)	Average Total Saturated Thickness of Fill Unit " B " (feet)	Average Total Saturated Thickness of Sand Unit " A " (feet)	Average Total Saturated Thickness " Z " (feet)
		Slag/Fill	MWN-43A	11	1,943	11		
4B	Lake Erie, north of Smokes		MWN-18A	12	1,270		/	20
	Creek, Outer Harbor	Sand	(see Note 4)	8	3,213	\sim	8	
		To	otal Length of Sub-A	rea 4B Shoreline:	3,213			
			MWN-45A	3.6	109		\	
			MWN-47A	6.8	240			
			MWN-09	8.5	480			
			MWN-26A	8.4	501			ļ
5	Ship Canal, west side 5,6	Slag/Fill	MWN-67A	12.1	313	10	l X	10
	Ship Canal, west side		MWN-66A	12.2	266			
			MWN-49A	12.2	424			
			MWN-68A	4.2	661			
			MWN-07	13.8	946			
			Total Length of Sub-	-Area 5 Shoreline:	3,940			

- 1. Saturated thicknesses for the CMS were calculated using groundwater elevations measured on 01/04/2019 and 01/08/2019 (see Table 4-30).
- 2. Shoreline Segment Length = Total Length of Discharge Sub-Area between wells (see Plate 4-19).
- 3. Well MWN-44A was decommissioned and replaced with MWN-94A. Well MWN-24B, which is screened in the till layer and therefore unlikely to be contributing to Smoke's Creek, was replaced with MWN-94B, which is screened in the sand layer.
- 4. Derived during the CMS from interpretation of data from nearby sand unit wells MWN-05B and MWN-50B.
- 5. Based on geologic cross sections (and boring logs), there was no discernable sand layer identified for CMS Discharge Sub-Area 5. Therefore the total saturated thickness was calculated without incorporating a sand layer.
- 6. Wells MWN-34A, MWN-08A, and MWN-52A used during the RFI (see Table 4-41) were not sampled during the CMS; therefore, nearby wells MWN-67A, MWN-66A, and MWN-68A were used to calculate the respective CMS values

Formula:

- " Z " = Average Total Saturated Thickness per CMS Discharge Sub-Area = Average Total Saturated Thickness (fill) + Average Total Saturated Thickness (sand)
- "B" = Average Total Saturated Thickness (fill) = $[(B_1 \times C_1) + (B_2 \times C_2) + (B_3 \times C_3) + ...] / Y$
- " A " = Average Total Saturated Thickness (sand) = $[(A_1 \times D_1) + (A_2 \times D_2) + (A_3 \times D_3) + ...] / Y$

Definitions:

- " A_N " = Saturated thickness of sand along shoreline segment " N "
- " B_N " = Saturated thickness of fill along shoreline segment " N "
- " C_N " = length of fill shoreline segment " N "
- " D_N " = length of sand shoreline segment " N "
- "Y" = total length of CMS Discharge Sub-Area Shoreline

TABLE 4-40
RFI DISCHARGE RATE CALCULATIONS BY DSA

Discharge Sub-Area	Unit	Well I.D.		Discharç " Q		
Oub-Arca			CF/YR ¹	L/YR ²	GPM ³	CFS ⁴
		MW-2D4	794,982	22,511,391	11	0.025
	Ι	MW-2D3	372,913	10,559,714	5	0.012
2A	Slag/Fill	MW-2D2	493,262	13,967,622	7	0.016
ZA	Ι	MWS-26A	471,226	13,343,639	7	0.015
	Ι	MWS-09	389,863	11,039,701	6	0.012
	Sand/Dredge Spoil	MW-2D2B	165,676	4,691,430	2	0.005
		MWS-01	437,357	12,384,574	6	0.014
	Ι	MWS-02	389,015	11,015,668	6	0.012
	Slog/Fill	MWS-19A	219,532	6,216,444	3	0.007
	Slag/Fill -	MWS-18A	188,251	5,330,681	3	0.006
2B	Ι	MWS-20A	171,189	4,847,538	2	0.005
Z D	Ι	MWS-03	195,645	5,540,044	3	0.006
	Sand/Dredge Spoil	MWS-01B	25,431	720,135	0.362	0.001
		MWS-19B	20,330	575,681	0.289	0.001
	Sand	MWS-18C	7,840	222,018	0.112	0.0002
	Ι	MWS-20B	17,139	485,308	0.244	0.001
		MWN-01	830,325	23,512,178	12	0.026
	Slag/Fill	MWN-11	914,918	25,907,583	13	0.029
	Siag/Fill	MWN-44A	435,284	12,325,870	6	0.014
3A	Ι	MWN-24A	167,543	4,744,297	2	0.005
	Sand/Dredge Spoil	MWN-01B	31,251	884,922	0.4	0.001
	Sand/Dredge Spoil	MWN-23B	52,170	1,477,297	1	0.002
	Till	MWN-24B	39,138	1,108,276	0.6	0.001
		MWN-06A	1,939,704	54,926,309	28	0.061
	Γ	MWN-05A	3,630,189	102,795,522	52	0.115
	Slag/Fill	MWN-04	3,495,070	98,969,386	50	0.110
4A		MWN-03	4,032,543	114,188,905	57	0.127
44		MWN-02	6,587,787	186,545,389	94	0.208
		MWN-05B	465,337	13,176,867	7	0.015
	Sand/Dredge Spoil	MWN-03B	364,981	10,335,116	5	0.012
	Г	MWN-02B	420,501	11,907,264	6	0.013

TABLE 4-40 RFI DISCHARGE RATE CALCULATIONS BY DSA

Discharge Sub-Area	Unit	Well I.D.		Dischare " Q	d the state of th	
Sub-Area			CF/YR ¹	L/YR ²	GPM ³	CFS⁴
	Slag/Fill	MWN-43A	1,487,292	42,115,436	21	0.047
4B	Slag/FIII	MWN-18A	972,137	27,527,845	14	0.031
	Sand	(see Note 5)	324,926	9,200,882	5	0.010
		MWN-45A	36,194	1,024,892	0.515	0.001
		MWN-47A	79,693	2,256,642	1.133	0.003
		MWN-09	159,385	4,513,285	2.267	0.005
		MWN-26A	152,744	4,325,231	2.172	0.005
5	Slag/Fill	MWN-34A	142,450	4,033,748	2.026	0.004
		MWN-08A	114,226	3,234,521	1.625	0.004
		MWN-49A	154,072	4,362,842	2.191	0.005
		MWN-52A	227,788	6,450,236	3.240	0.007
		MWN-07	241,734	6,845,149	3.438	0.008

- 1. Represents RFI discharge of each well. See below for discharge formula, and Tables 4-37 and 4-38 for parameter calculations.
- 2. Conversion factor: 1 CF/YR = 28.3168499 L/year.
- 3. Conversion factor: 1 L/year = 5.0227716E-7 GPM
- 4. Conversion factor: 1 GPM = 0.00222 cfs.
- 5. Derived from interpretation of data from nearby boring logs MWN-05B and MWN-50B.

Formula:

- " Q (Fill Wells) " = $X(C/Y)[K_FB/((K_SA)+(K_FB))]$
- " Q (Sand Wells) " = $X(D/Y)[K_SA/((K_SA)+(K_FB))]$

Definitions:

CF/YR = cubic feet per year

L/YR = liters per year

GPM = gallons per minute

CFS = cubic feet per second

" X " = Total Discharge for each CMS Discharge Sub-Area

"B" = Average saturated thickness of fill

" C " = Length of fill shoreline segment

" A " = Average saturated thickness of sand

" D " = Length of sand shoreline segment

"Y" = total length of CMS Discharge Sub-Area Shoreline

" K_F" = Site-wide Fill Unit Hydraulic Conductivity (6.693E-4 ft/sec)

" K_S" = Site-wide Sand Unit Hydraulic Conductivity (6.63E-5 ft/sec)

TABLE 4-41
CMS DISCHARGE RATE CALCULATIONS BY DSA

Discharge					Discharge Rate " Q "		
Sub-Area	Unit	Well I.D.	CF/YR - No Pumping ¹	CF/YR - With Pumping ²	L/YR ³	GPM⁴	CFS ⁵
		MW-2D4	799,635	799,635	22,643,138	11	0.025
		MW-2D3	375,095	375,095	10,621,514	5	0.012
2A	Slag/Fill	MW-2D2	496,149	496,149	14,049,367	7	0.016
ZA		MWS-26A	473,984	473,984	13,421,732	7	0.015
		MWS-09	392,145	392,145	11,104,311	6	0.012
	Sand/Dredge Spoil	MW-2D2B	150,915	150,915	4,273,437	2	0.005
		MWS-01	438,835	438,835	12,426,414	6	0.014
		MWS-02	390,329	390,329	11,052,884	6	0.012
	Cl = -:/[:!!	MWS-19A	220,273	144,496	4,091,657	2	0.005
	Slag/Fill -	MWS-18A	188,887	113,109	3,202,902	2	0.004
	<u> </u>	MWS-20A	171,768	171,768	4,863,915	2	0.005
2B	<u> </u>	MWS-03	196,306	196,306	5,558,760	3	0.006
	Sand/Dredge Spoil	MWS-01B	23,487	23,487	665,074	0.334	0.001
		MWS-19B	18,776	15,694	444,396	0.223	0.000
	Sand	MWS-18C	7,241	4,159	117,774	0.059	0.0001
		MWS-20B	15,828	15,828	448,202	0.225	0.000
		MWN-01	834,040	834,040	23,617,381	12	0.026
	OL /E'II	MWN-11	919,011	919,011	26,023,504	13	0.029
	Slag/Fill -	MWN-94A	437,232	437,232	12,381,021	6	0.014
3A	<u> </u>	MWN-24A	168,293	168,293	4,765,525	2	0.005
		MWN-01B	28,572	28,572	809,063	0.4	0.001
	Sand/Dredge Spoil	MWN-23B	47,698	47,698	1,350,659	1	0.002
		MWN-94B	35,783	35,783	1,013,271	0.5	0.001
		MWN-06A	1,945,383	1,898,376	53,756,028	27	0.060
	<u> </u>	MWN-05A	3,640,818	3,552,843	100,605,321	51	0.112
	Slag/Fill	MWN-04	3,505,304	3,420,603	96,860,706	49	0.108
4.4		MWN-03	4,044,349	3,946,624	111,755,952	56	0.125
4A		MWN-02	6,607,076	6,447,426	182,570,781	92	0.204
		MWN-05B	443,895	433,169	12,265,968	6	0.014
	Sand/Dredge Spoil	MWN-03B	348,163	339,750	9,620,663	5	0.011
		MWN-02B	401,125	391,432	11,084,130	6	0.012
	OL/E'II	MWN-43A	1,570,235	1,570,235	44,464,097	22	0.050
4B	Slag/Fill -	MWN-18A	1,026,350	1,026,350	29,062,997	15	0.032
	Sand	(see Note 6)	187,770	187,770	5,317,069	3	0.006

TABLE 4-41
CMS DISCHARGE RATE CALCULATIONS BY DSA

Discharge					Discharge Rate " Q "		
Sub-Area	Unit	Well I.D.	CF/YR - No Pumping ¹	CF/YR - With Pumping ²	L/YR ³	GPM⁴	CFS ⁵
		MWN-45A	36,194	0	0	0.000	0.000
		MWN-47A	79,693	37,535	1,062,875	0.534	0.001
		MWN-09	159,385	0	0	0.000	0.000
		MWN-26A	166,358	0	0	0.000	0.000
5	Slag/Fill	MWN-67A	103,932	0	0	0.000	0.000
		MWN-66A	88,326	0	0	0.000	0.000
		MWN-49A	140,790	98,633	2,792,967	1.403	0.003
		MWN-68A	219,487	219,487	6,215,169	3.122	0.007
		MWN-07	314,122	314,122	8,894,932	4.468	0.010

- 1. Represents discharge of each well without pumping. See below for discharge formula, and Tables 4-37 and 4-39 for parameter calculations.
- 2. Includes pumping of ATP area pumping wells in DSA 2B (ATP-PW1 through ATP-PW-4) and OU4 area recover wells in DSA 4A and 5 (RW-1 through RW-
- 3, RW-A through RW-I, RWS-1 through RWS-14, and RWN-1 through RWN-27). See below for discharge formula.
- 3. Conversion factor: 1 CF/YR = 28.3168499 L/year.
- 4. Conversion factor: 1 L/year = 5.0227716E-7 GPM
- 5. Conversion factor: 1 GPM = 0.00222 cfs.
- 6. Derived from interpretation of data from nearby boring logs MWN-05B and MWN-50B.

Formula:

Without Pumping

- " Q (Fill Wells) " = $X(C/Y)[K_FB/((K_SA)+(K_FB))]$
- " Q (Sand Wells) " = $X(D/Y)[K_SA/((K_SA)+(K_FB))]$

With Pumping

- " Q (Fill Wells) " = $X(C/Y)[K_FB/((K_SA)+(K_FB))] nP[KFB/((KSA)+(KFB))]$
- " Q (Sand Wells) " = $X(D/Y)[K_SA/((K_SA)+(K_FB))] nP[KSA/((KSA)+(KFB))]$

Definitions:

CF/YR = cubic feet per year

L/YR = liters per year

GPM = gallons per minute

CFS = cubic feet per second

- " X " = Total Discharge for each CMS Discharge Sub-Area
- " B " = Average saturated thickness of fill
- " C " = Length of fill shoreline segment

- " A " = Average saturated thickness of sand
- " D " = Length of sand shoreline segment
- "Y" = total length of CMS Discharge Sub-Area Shoreline
- " K_F" = Site-wide Fill Unit Hydraulic Conductivity (6.693E-4 ft/sec)
- " K_S" = Site-wide Sand Unit Hydraulic Conductivity (6.63E-5 ft/sec)
- " n " = Number of pumping wells in segment
- " P " = Pumping rate of individual pumping wells

TABLE 4-42 PAST (RFI) COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO ADJACENT WATER BODIES

										Compounds	of Concern, Load	ling Calculations 1	,2							
Discharge Sub-Area	Unit	Well I.D.	1,1- Dichloroethane	1,2,4- Trichlorobenzene	1,2,4- Trimethylbenzene	1,2- Dichloroethane	1,2- Dichlorobenzene	1,3,5- Trimethylbenzene	Acetone	Benzene	Chlorobenzene	Ethylbenzene	Isopropylbenzene	Styrene	Toluene	Trichloroethene	Vinyl Chloride	Xylenes, Total	2,6- Dinitrotoluene	Acenaphthene
			Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)
		MW-2D4	0.00020	ND	na	ND	ND	na	na	0.00367	ND	0.00107	na	na	0. 00340	ND	ND	0.00884	ND	na
		MW-2D3	0.00008	ND	na	ND	ND	na	na	0.00096	ND	0.00029	na	na	0.00089	0.00010	ND	0.00262	ND	na
2A	Slag/Fill	MW-2D2	ND	ND	na	ND	ND	na	na	0.00055	ND	ND	na	na	0.00033	ND	ND	0.00093	ND	na
	<u> </u>	MWS-26A	ND	ND	na	ND	ND	na	na	0.00023	ND	0.00043	na	na	0.00014	ND	ND	0.00298	ND	na
		MWS-09	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND	ND	na
	Sand/Dredge Spoil	MW-2D2B	ND	ND	na	ND	ND	na	na	0.00099	ND	0.0 0065	na	na	0.00051	ND	ND	0.02324	ND	na
		MWS-01	0.00020	ND	na	ND	ND	na	na	0.00501	ND	0.00157	na	na	0.00973	ND	ND	0.02619	ND	na
	<u> </u>	MWS-02	0.00055	ND	na	ND	ND	na	na	0.00093	ND	ND	na	na	0.00008	ND	ND	0.00013	ND	na
	Slag/Fill	MWS-19A	ND	ND	na	ND	ND	na	na	0.04506	ND	ND	na	na	ND	ND	ND	0.00049	ND	na
	_	MWS-18A	ND	ND	na	ND	ND	na	na	4.50844	ND	ND	na	na	ND	ND	ND	ND	ND	na
2B		MWS-20A	ND	ND	na	ND	ND	na	na	0.00097	ND	ND	na	na	ND	ND	ND	0.00004	ND	na
		MWS-03	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND	ND	na
	Sand/Dredge Spoil	MWS-01B	0.00002	ND	na	ND	ND	na	na	0.00007	ND	ND	na	na	• 0.00002	ND	ND	0.00002	ND	na
		MWS-19B	ND	ND	na	ND	ND	na	na	0.09390	ND	ND	na	na	ND	ND	ND	ND	ND	na
	Sand	MWS-18C	ND	ND	na	ND	ND	na	na	0.08718	ND	ND	na	na	0.00046	ND	ND	0.00067	ND	na
		MWS-20B	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	0.00001	ND	na
		MWN-01	ND	ND	na	ND	ND	na	na	0.00312	ND	ND	na	na	0.00129	ND	ND	0.00270	ND	na
	Slag/Fill	MWN-11	0.00023	ND	na	ND	ND	na	na	0.00070	ND	ND	na	na	ND	ND	ND	ND	ND	na
		MWN-44A	ND	ND	na	ND	ND	na	na	0.02010	ND	0.00051	na	na	0.00395	ND	ND	0.00395	ND	na
3A		MWN-24A	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND	ND	na
	Sand/Dredge Spoil	MWN-01B	ND	ND	na	ND	ND	na	na	0.00029	ND	ND	na	na	0.00011	ND	ND	• 0.00012	ND	na
	Ů,	MWN-23B	ND	ND	na	ND	ND	na	na	0.00012	ND	ND	na	na	0.00001	ND	ND	ND	ND	na
	Till	MWN-24B	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND	ND	na
		MWN-06A	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	0.00083	ND	ND	0.00206	ND	na
	L	MWN-05A	ND	ND	na	ND	ND	na	na	0.00323	0.00137	ND	na	na	0.00180	ND	ND	0.00360	ND	na
	Slag/Fill	MWN-04	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND	ND	na
4A		MWN-03	ND	ND	na	ND	ND	na	na	0.00966	ND	ND	na	na	0.00352	ND	ND	0.01104	ND	na
		MWN-02	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	0.00270	ND	ND	ND	ND	na
	0	MWN-05B	ND	ND	na	ND	ND	na	na	0.00509	0.00366	0.00060	na	na	0.00255	ND	ND	0.00318	ND	na
	Sand/Dredge Spoil	MWN-03B	ND	ND ND	na	ND	ND ND	na	na	ND	ND ND	ND	na	na	ND ND	ND ND	ND ND	ND	ND	na
		MWN-02B	ND	ND	na	ND	ND	na	na	0.00281	ND	ND	na	na	0.00040	ND	ND	0.00047	ND	na
4B	Slag/Fill -	MWN-43A	ND	ND ND	na	ND	ND ND	na	na	0.00382	ND	ND	na	na	0.00079	ND ND	ND ND	0.00109	ND	na
4B		MWN-18A	ND	ND	na	ND	ND	na	na	0.00141	ND	ND	na	na	0.00035	ND	ND	0.00062	ND	na
	Sand	(see Note 3)	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
		MWN-45A	ND	ND	na	ND	ND	na	na	0.00004	ND	ND	na	na	ND	ND	ND	ND	ND	na
	⊢	MWN-47A	ND	ND	na	ND	ND ND	na	na	0.00050	ND ND	ND	na	na	ND	ND	ND ND	ND	ND	na
	⊢	MWN-09	ND	ND	na	ND	ND ND	na	na	0.17177	ND	ND	na	na	ND ND	ND	ND	ND ND	ND	na
-	Ol/F:II	MWN-26A	ND	ND ND	na	ND	ND ND	na	na	0.04703	ND	0.00073	na	na	0.00029	ND ND	ND ND	0.00193	ND	na
5	Slag/Fill	MWN-34A ⁴	ND	ND	na	ND	ND	na	na	0.00005	ND	ND	na	na	ND	ND	ND	ND	ND	na
		MWN-08 ⁴	ND	ND	na	ND	ND	na	na	0.00027	ND	0.00129	na	na	ND	0.00006	ND	0.01094	ND	na
		MWN-49A	ND	ND	na	ND	ND	na	na	0.00007	ND	ND	na	na	ND	ND	ND	ND	ND	na
	<u> </u>	MWN-52A ⁴	ND	ND	na	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND	ND	na
	1	MWN-07	ND	ND	na	ND	ND	na	na	0.00019	ND	ND	na	na	0.00004	ND	ND	ND	ND	na

- Notes:

 1. Loading = Discharge Rate x Concentration. See Table 4-40 for discharge calculations and Tables 4-31 through 4-36 for concentrations.

 2. Compounds of Concern (COC) include any parameter detected above its respective GWQS/GV in at least one monitoring well in the RFI or 2019 CMS sampling.

 3. Discharge Sub-Area 4B wells were not advanced beyond the fill layer; as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-05B and MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.

 4. Monitoring well was not sampled during the CMS, either because it was not selected (MWN-08A and MWN-34A) or could not be located (MWN-52A), and was subsequently replaced by nearby wells MWN-66A, MWN-67A, and MWN-68A (respectively).

Loading (g/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 Loading (lb/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions: lbs/day = pounds per day na = not analyzed

ND = compound was not detected at the method detection limit

R = Sample result was rejected by third party validator.

Color Code:

= Parameter designated a Primary Compounds of Concern, bars show relative contributions of each well.

PAST (RFI) COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO ADJACENT WATER BODIES

											Compound	s of Concern, Lo	ading Calculations	s ^{1,2}								
Discharge Sub-Area	Unit	Well I.D.	Benzo(a) Anthracene	Benzo(a) Pvrene	Benzo(b) Fluoranthene	Benzo(k) Fluoranthene	Biphenyl	Bis(2- ethylhexyl)phthalate	Chrysene	Fluorene	Indeno(1,2,3-cd) Pyrene	Naphthalene	Phenanthrene	Pyridine	Total Phenolic Compounds	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Cyanide
Sub-Area			Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/dav)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/dav)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/dav)	Loading (lb/day)
		MW-2D4	ND	ND	na	na	na	ND ND	ND	0.00092	na	0.05712	0.00116	ND	0.00593	0.00057	0.00604	ND	0.00045	0.00023	0.00234	0.01061
		MW-2D3	ND	ND	na	na	na	ND	ND	0.00063	na	0.01276	0.00055	ND	0.00155	0.00027	0.00366	ND	0.00013	0.00011	0.00151	0.00498
	Slag/Fill	MW-2D2	ND	ND	na	na	na	ND	ND	ND	na	0.00135	ND	ND	ND	0.00036	0.00381	0.00003	0.00006	ND	0.00044	0.00506
2A		MWS-26A	ND	ND	na	na	na	ND	ND	0.00023	na	0.00347	0.00034	ND	ND	0.00029	0.00318	ND	0.00271	0.00073	0.00065	0.00089
		MWS-09	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	ND	ND	0.00181	ND	0.00269	ND	0.00038	ND
	Sand/Dredge Spoil	MW-2D2B	ND	ND	na	na	na	ND	ND	ND	na	0.00964	0.00043	ND	0.00499	0.00085	0.00578	0.00001	0.00258	0.00088	ND	0.00283
		MWS-01	ND	ND	na	na	na	ND	ND	0.00426	na	0.07482	0.00599	ND	ND	0.00044	0.00437	ND	0.00017	ND	0.00060	0.00898
		MWS-02	ND	ND	na	na	na	0.00025	ND	0.00057	na	0.00166	0.00093	ND	na	0.00015	0.00250	ND	0.00047	ND	0.00053	0.07986
		MWS-19A	ND	ND	na	na	na	0.00017	ND	ND	na	ND	ND	0.00021	0.00109	0.00022	0.00133	0.00005	0.00017	0.00009	0.00011	0.01878
	Slag/Fill -	MWS-18A	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	0.00483	0.00522	0.00025	0.00131	ND	0.00171	0.00024	ND	0.01707
		MWS-20A	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	ND	ND	0.00079	ND	0.00022	ND	0.00015	0.00351
2B		MWS-03	ND	ND	na	na	na	ND	ND	ND	na	0.00009	ND	ND	ND	0.00012	0.00257	ND	0.00011	ND	0.00014	0.00054
	Sand/Dredge Spoil	MWS-01B	0.000005	ND	na	na	na	ND	ND	0.00005	na	0.00274	0.00006	ND	0.00101	0.00007	0.00705	0.00001	0.00015	0.00121	ND	0.00044
		MWS-19B	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	0.01113	0.00877	0.00008	0.00019	ND	0.00138	0.00019	ND	0.00285
	Sand	MWS-18C	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	0.02414	0.00048	0.00002	0.00004	2.55E-06	0.00004	0.000013	ND	0.00322
	-	MWS-20B	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	ND	0.00001	0.00016	ND	0.00011	0.00003	ND	0.00013
		MWN-01	ND	ND	na	na	na	ND	ND	0.01406	na	0.08948	0.01989	ND	0.01364	0.00058	0.00705	ND	0.00092	ND	0.00094	0.01136
	01 /5:11	MWN-11	ND	ND	na	na	na	ND	ND	ND	na	0.00067	0.00019	ND	0.00795	0.00067	0.01545	ND	0.00017	ND	0.00163	0.01565
	Slag/Fill -	MWN-44A	0.00633	0.00484	na	na	na	ND	0.00558	0.03276	na	0.12658	0.05659	0.00745	0.00097	0.00272	0.00655	ND	0.00834	0.00331	0.00019	0.01713
3A		MWN-24A	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	0.00014	0.00210	0.00135	ND	0.00053	ND	ND	0.00054
	0 1/0 1 0 1	MWN-01B	ND	ND	na	na	na	ND	ND	0.00034	na	0.00642	0.00051	ND	ND	0.00006	0.00031	ND	0.00002	0.00007	0.00003	0.00588
	Sand/Dredge Spoil	MWN-23B	ND	ND	na	na	na	ND	ND	0.00001	na	0.00008	0.00002	ND	0.00090	0.00011	0.00073	ND	0.00002	ND	0.00007	0.00082
	Till	MWN-24B	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	ND	0.00002	0.00133	ND	0.00017	0.00002	ND	R
		MWN-06A	ND	ND	na	na	na	ND	ND	0.00212	na	0.00995	0.00498	ND	0.00474	ND	0.08096	ND	0.00070	ND	0.00139	ND
		MWN-05A	ND	ND	na	na	na	0.00211	ND	0.00441	na	0.01490	0.00683	ND	0.01012	0.00155	0.06334	ND	0.00174	ND	0.00342	ND
	Slag/Fill	MWN-04	ND	ND	na	na	na	0.00365	ND	0.00096	na	0.00329	0.00114	ND	ND	0.00251	0.01674	ND	0.01022	ND	0.00185	ND
4A	,	MWN-03	ND	ND	na	na	na	ND	ND	0.00552	na	0.01518	0.00759	0.00545	0.01552	ND	0.06891	ND	0.00076	ND	0.00724	ND
4A		MWN-02	ND	ND	na	na	na	ND	ND	0.01127	na	0.04057	0.01578	ND	0.01781	0.00316	0.12058	0.00035	0.02288	0.00282	0.01071	0.02254
		MWN-05B	ND	ND	na	na	na	ND	ND	ND	na	0.11940	ND	ND	0.04697	ND	2.65873	0.00384	0.01648	0.00201	ND	ND
	Sand/Dredge Spoil	MWN-03B	ND	ND	na	na	na	0.00025	ND	ND	na	ND	0.00007	ND	ND	0.00529	0.02398	ND	0.00179	0.00034	ND	ND
		MWN-02B	ND	ND	na	na	na	ND	ND	0.00058	na	0.01439	0.00115	ND	0.00879	0.00288	0.00437	ND	0.00022	ND	0.00042	0.00446
	Class/Eill	MWN-43A	ND	ND	na	na	na	ND	ND	ND	na	0.00662	0.00534	ND	na	ND	0.13255	ND	0.08192	0.00262	0.00181	0.00840
4B	Slag/Fill -	MWN-18A	ND	ND	na	na	na	ND	ND	0.00130	na	0.01164	0.00233	ND	na	ND	0.10760	ND	0.00115	0.00048	ND	ND
	Sand	(see Note 3)	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
		MWN-45A	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	ND	ND	0.00074	ND	0.00008	ND	0.00001	0.00180
		MWN-47A	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	ND	ND	0.00049	ND	0.00006	ND	0.00004	ND
		MWN-09	ND	ND	na	na	na	ND	ND	0.00027	na	0.00049	ND	0.00011	0.00409	0.00009	0.00409	ND	0.00007	ND	ND	3.82E-06
		MWN-26A	ND	ND	na	na	na	ND	ND	0.000086	na	0.00392	0.00003	ND	0.00113	0.00026	0.00081	ND	0.00002	0.00006	0.00005	0.00575
5	Slag/Fill	MWN-34A ⁴	ND	ND	na	na	na	0.00009	ND	ND	na	ND	ND	ND	ND	ND	0.00152	ND	0.00719	0.00007	0.00015	2.68E-06
	-	MWN-08 ⁴	ND	ND	na	na	na	0.00008	ND	ND	na	0.00137	0.00004	ND	• 0.00009	0.00009	0.00289	ND	0.00005	ND	ND	5.67E-07
		MWN-49A	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	ND	ND	0.00385	ND	0.00011	ND	ND	0.00042
		MWN-52A ⁴	ND	ND	na	na	na	ND	ND	ND	na	ND	ND	ND	ND	0.00018	0.00530	ND	0.00026	ND	ND	0.00156
		MWN-07	ND	ND	na	na	na	0.00016	ND	0.00012	na	0.00951	0.00013	0.00027	na	ND	0.01646	ND	0.00079	ND	0.00020	0.02109

- 1. Loading = Discharge Rate x Concentration. See Table 4-40 for discharge calculations and Tables 4-31 through 4-36 for concentrations.

 2. Compounds of Concern (COC) include any parameter detected above its respective GWQS/GV in at least one monitoring well in the RFI or 2019 CMS sampling.

 3. Discharge Sub-Area 4B wells were not advanced beyond the fill layer; as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-05B and MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.

 4. Monitoring well was not sampled during the CMS, either because it was not selected (MWN-08A and MWN-34A) or could not be located (MWN-52A), and was subsequently replaced by nearby wells MWN-66A, MWN-67A, and MWN-68A (respectively).

Formula/Conversion Factors:

Loading (g/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 Loading (lb/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions: lbs/day = pounds per day

na = not analyzed

ND = compound was not detected at the method detection limit

R = Sample result was rejected by third party validator.

= Parameter designated a Primary Compounds of Concern, bars show relative contributions of each well.

CURRENT (CMS) COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO ADJACENT WATER BODIES

										Compounds	of Concern (0	COC), Loading Calc	ulations 1,2							
Discharge			Sample Event Year	1,1-	1,2,4-	1,2,4-	1,2-	1,2-	1,3,5-	Acetone	Benzene	Chlorobenzene	Ethylbenzene	Isopropylbenzene	Styrene	Toluene	Trichloroethene	Vinvl Chloride	Xylenes,	Acenaphthene
Sub-Area	Unit	Well I.D.	(Most Recent Data Presented in Table)	Dichloroethane	Trichlorobenzene	Trimethylbenzene	Dichloroethane	Dichlorobenzene	Trimethylbenzene									,	Total	
			Fresenteu III Table)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)
		MW-2D4	2009, 2010, 2011, 2012 2015, 2016, 2018 ⁵	ND	ND	ND	ND	ND	ND	na	ND	ND	ND	ND	na	ND	0.00011	ND	ND	ND
		MW-2D3	2009, 2010, 2011, 2012 2015, 2016, 2018 ⁵	ND	ND	0.00019	ND	ND	0.00010	na	0.00022	ND	0.00010	ND	na	0.00017	0.00004	ND	0.00071	0.00014
2A	Slag/Fill	MW-2D2	2009, 2010, 2011, 2012 2015, 2016, 2018 ⁵	ND	ND	ND	ND	ND	ND	na	ND	ND	ND	ND	na	ND	0.00005	ND	ND	ND
		MWS-26A	2013, 2016, 2018	ND	0.00003	ND	ND	ND	ND	ND	0.00005	ND	0.00011	ND						
	•	MWS-09	2012, 2019	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
	Sand/Dredge Spoil	MW-2D2B	2012, 2019 ⁶	ND ND	ND ND	0.00075	ND	ND ND	0.00023	0.00031	0.00059	ND ND	0.00052	ND ND	ND	0.00028	ND	ND	0.01549	0.00011
	Cana, 21 cago opon	MWS-01	2012, 2019 ⁶	ND ND	ND	ND	ND	ND	ND	ND.	0.00255	ND	0.00090	ND ND	0.00069	0.00270	ND	ND	0.01141	0.00031
	•	MWS-02	2015, 2017, 2018 7	ND ND	ND ND	0.00007	0.00001	ND ND	ND ND	0.00052	0.00007	ND ND	ND	ND ND	ND	ND.	ND	ND	ND	0.00001
		MWS-19A	2015, 2017, 2018 7	ND	0.00032	ND	ND	ND	ND	ND	ND	0.00001	ND	9.89E-07						
	Slag/Fill	MWS-18A	2015, 2017, 2018 7	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	0.03676	ND ND	ND	ND ND	ND	ND	ND	ND.	ND	1.16E-06
	•	MWS-20A	2015, 2017, 2018	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2B	•	MWS-03	2013, 2017, 2018	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
	Sand/Dredge Spoil	MWS-01B	2012, 2019 ⁸	ND	ND	0.00002	ND	ND	0.00001	0.00003	0.00004	ND	ND	ND ND	ND	0.00001	ND	ND	ND	0.00002
	Cana/Breage Open	MWS-19B	2015, 2017, 2018 7	ND	ND	ND	ND	ND ND	ND	ND	0.00140	ND ND	ND	ND ND	ND	ND	ND	ND	ND	1.34E-07
	Sand	MWS-18C	2015, 2017, 2018	ND ND	ND	ND	ND	ND ND	ND ND	ND	0.00003	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
	Guila	MWS-20B	2015, 2017, 2018	ND ND	ND	ND	3.79E-06	ND ND	ND ND	4.33E-06	0.00003	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
		MWN-01	2015, 2017, 2018 2012, 2019 ⁹	ND ND	ND ND	0.00091	3.79L-00	ND ND	0.00060	4.33L-00	0.000001	ND ND	ND	ND ND	ND	0.00073	ND	ND	0.00255	0.00157
	•	MWN-11	2012, 2019	ND ND	na	na	ND ND	ND ND	na	ND	0.00042	ND ND	ND	ND ND	ND	ND	ND	ND	ND	0.00137 ND
	Slag/Fill	MWN-94A	2010, 2012	ND ND	ND	0.00012	ND	ND ND	ND	ND	0.00299	ND ND	ND	ND ND	ND	ND ND	ND	ND	0.00007	0.00012
3A	•	MWN-24A	2019 2019 ⁶	ND ND	ND ND	0.00012 ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	0.00012 ND
34		MWN-01B	2012, 2019 2012, 2019 ⁹	ND ND	ND ND	0.00003	ND	ND ND	ND ND	0.00003	0.00035	ND ND	3.62E-06	0.00001	ND	0.00010	ND	ND	0.00010	0.00003
	Sand/Dredge Spoil	MWN-23B	2012, 2019 2012, 2019 ⁶	ND ND	ND ND	0.00003	ND	ND ND	0.00001	0.00003	0.00005	ND ND	ND	0.00001 ND	ND	0.00010	ND	ND	0.00010	0.00003 ND
	Sand	MWN-94B	2012, 2019	ND ND	ND ND	0.00001 ND	ND	ND ND	0.00001 ND	0.00001	0.00000	ND ND	ND	ND ND	ND	ND	ND	ND	0.00001 ND	4.90E-07
	Sanu	MWN-06A	2013	na	na	ND	na	na	ND ND	na	0.00039	na	ND ND	ND ND	na	ND	na	na	ND	0.00039
		MWN-05A		ND	ND	0.00021	ND	ND	0.00054	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0.00039 ND
	Slag/Fill	MWN-04	2012, 2019 8			0.00021 ND			0.00054 ND		ND		ND ND	ND ND		ND			ND	ND
	Slag/I III	MWN-03	2011, 2012, 2013 11	na	na	0.00032	na	na	0.00108	na	0.00392	na	0.00017	ND ND	na	0.00115	na	na		0.00101
4A	-		2011, 2012, 2013 11	na	na		na	na		na		na			na		na	na	0.00290	
		MWN-02	2011, 2012, 2013 11	na	na	0.00011	na ND	na	0.00032	na o ooooz	0.00057	na	0.00012	ND	na	0.00021	na	na	0.00094	ND 0.00450
	Cond/Drades Cosil	MWN-05B MWN-03B	2012, 2019 8	ND ND	0.00119 ND	ND ND	ND ND	0.00193	ND ND	0.00207 ND	0.00400 ND	0.00363 ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	0.00267 ND	0.00156 0.00006
	Sand/Dredge Spoil	MWN-03B MWN-02B	2011, 2012, 2013 12			ND ND		ND	ND ND		0.00804		ND ND	ND ND		0.00114				
		MWN-43A	2011, 2012, 2013 11	na ND	na ND	0.00009	na ND	na	0.00026	na	0.00804	na ND	ND ND	ND ND	na	ND	na ND	na ND	0.00117	0.00053
4B	Slag/Fill	MWN-18A	2012, 2019 8	ND ND	ND ND	0.00009	ND ND	ND ND		0.00089		ND ND	0.00024 ND							
46	Sand		2012, 2019 ⁸						0.00016	0.00123	0.00056									
	Sano	(see Note 3)		na																
		MWN-45A MWN-47A	2012, 2019 8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.00002	0.00018	ND ND	ND ND	ND ND	ND ND	0 ND	ND ND	ND ND	ND 0.00002	0 ND
	-		2012, 2019 ⁶																	
1		MWN-09	2013, 2019 ¹³	ND	ND	ND	ND	ND	ND	0	0	ND								
5	Class/Fill	MWN-26A	2010, 2012 14	ND	na	na	ND	ND	na	ND	0									
5	Slag/Fill	MWN-67A/MWN-34A 4	2019	ND	ND	na	ND	ND	na	0	0	ND	0	ND	0	0	ND	ND	0	0
1		MWN-66AR/MWN-08 ⁴	2019	ND	ND	na	ND	ND	na	0	0	ND	0	0	0	0	ND	ND	0	0
		MWN-49A	2012, 2019 ⁶	ND	ND	ND	ND	ND	ND	3.03707E-05	8.605E-06	ND								
1		MWN-68A ⁴	2019	ND	ND	na	ND	ND	na	ND										
		MWN-07	2012, 2019 ⁶	ND	ND	ND	ND	ND	ND	0.00019	ND									

- Loading = Discharge Rate x Concentration. See Table 4-41 for discharge calculations and Tables 4-31 through 4-36 for concentrations.
 Compounds of Concern (COC) include any parameter detected above its respective GWQS/GV in at least one monitoring well in the RFI or 2019 CMS sampling.
- 3. Discharge Sub-Area 4B wells were not advanced beyond the fill layer, as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-05B and MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.
- 4. Monitoring well was not sampled during the CMS, either because it was not sampled during the CMS, either because it was not selected (MWN-08A and MWN-34A) or could not be located (MWN-52A), and was subsequently replaced by nearby wells MWN-66A, MWN-67A, and MWN-68A (respectively).

 5. STARS VOCs and TCL SVOCs without phenols sampled in 2018. Added data from 2009 (1,2,4-TCB, 1,2-DCB, 1,3-DCB, 1,4-DCB), 2010 (1,1-DCA, 1,2-DCA, methylene chloride, PCE, TCE, bromomethane, vinyl chloride), 2011 (phenols, excluding pentachlorophenol), 2012 (metals), 2015 (caprolactam), and 2016 (pentachlorophenol)
- 6. TCL VOCs and TCL SVOCs with phenols sampled in 2019. Added data from 2012 (metals, 1,2,3-TMB, 1,3,5-TMB, and n-Butylbenzene).
- 7. TCL VOCs and SVOCs with phenols (excluding 2-Methylphenol), and metals sampled in 2018. Added data from 2015 (2-Methylphenol) and 2017 (1,2,4-TMB, 1,3,5-TMB, and n-Butylbenzene).
- 8. TCL VOCs and TCL SVOCs with phenols, and barium or cyanide sampled in 2019. Added data from 2012 (remaining metals, 1,2,3-TMB, 1,3,5-TMB, n-Butylbenzene).
 9. TCL VOCs and TCL SVOCs with phenols sampled in 2019. Added data from 2012 (metals) and 2011 (1,2,3-TMB, 1,3,5-TMB, and n-Butylbenzene).
 10. Metals sampled in 2012. Added data from 2010 (TCL VOCs and TCL SVOCs).
- 11. Metals sampled in 2012. Added data from 2011 (STARS VOCs, TCL SVOCs, and arsenic for MWN-02B) and 2013 (phenols).
- 12. TCL VOCs, TCL SVOCs without phenols, and selenium sampled in 2012. Added data from 2011 (remaining metals) and 2013 (phenols).
 13. TCL VOCs and TCL SVOCs with phenols sampled in 2019. Added data from 2013 (1,2,3-TMB, 1,3,5-TMB, and n-Butylbenzene).
- 14. TCL SVOCs and metals sampled in 2012. Added data from 2010 (TCL VOCs).

Formula/Conversion Factors:

Loading (g/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6

Loading (lb/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions:

lbs/day = pounds per day

na = not analyzed

ND = compound was not detected at the method detection limit

R = Sample result was rejected by third party validator.

= Parameter designated a Primary Compound of Concern, bars show relative contributions of each well.

CURRENT (CMS) COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO ADJACENT WATER BODIES

												Compounds	of Concern (COC	C), Loading Calcula	itions ^{1,2}								
Discharge			Sample Event Year	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(k)	Biphenyl	Bis(2-	Chrysene	Fluorene	Indeno(1,2,3-cd)	Naphthalene	Phenanthrene	Pyridine	Total Phenolic	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Cyanide
Sub-Area	Unit	Well I.D.	(Most Recent Data Presented in Table)	Anthracene	Pyrene	Fluoranthene	Fluoranthene		ethylhexyl)phthalate			Pyrene			,	Compounds							Loading
			r resented in rable)	Loading (lb/dav)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/dav)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	(lb/day)
		A # A / O D /	2009, 2010, 2011, 2012	(, , ,	, ,,	` ,,	, ,,	, ,,	` , , ,	(, ,	, ,,	` ,,	` ,,	` ,,	` ,,	` ''	, ,,	` , , , ,	, ,,	, ,,	, ,,	` ,,	ì
		MW-2D4	2015, 2016, 2018 ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00055	0.00356	na	0.00109	ND	ND	na
		MW-2D3	2009, 2010, 2011, 2012	ND	ND	ND	ND	0.00013	ND	ND	0.00083	ND	0.00366	0.00109	ND	0.00020	0.00038	0.00289	na	0.00013	0.00032	ND	na
	Slag/Fill		2015, 2016, 2018 5																			<u> </u>	1
2A	,	MW-2D2	2009, 2010, 2011, 2012 2015, 2016, 2018 ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00187	na	0.00042	ND	ND	na
		MWS-26A	2013, 2016, 2018	4.05E-06	ND	1.62E-06	ND	ND	ND	3.24E-06	ND	ND	ND	ND	na	ND	ND	0.00138	na	0.00081	ND	ND	na
		MWS-09	2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00001	ND	na	na	ND	0.00134	na	0.00134	ND	0.00040	na
	Sand/Dredge Spoil	MW-2D2B	2012, 2019 ⁶	0.00001	7.74E-06	0.00001	4.65E-06	0.00005	ND	8.00E-06	0.00028	2.58E-06	0.00697	0.00026	na	0.00116	0.00075	0.00150	na	ND	ND	ND	na
		MWS-01	2012, 2019 ⁶	0.00002	0.00001	0.00001	3.00E-06	0.00035	ND	0.00001	0.00158	1.50E-06	0.03528	0.00203	na	0.00061	ND	0.00270	na	ND	ND	na	na
		MWS-02	2015, 2017, 2018 ⁷	ND	ND	ND	ND	ND	0.00026	ND	0.00004	ND	0.00006	0.00003	na	ND	0.00009	0.00213	na	0.00134	na	na	0.43001
	Slag/Fill	MWS-19A	2015, 2017, 2018 7	3.95E-06	3.46E-06	4.45E-06	1.98E-06	ND	0.00009	3.95E-06	1.98E-06	2.47E-06	1.24E-06	4.45E-06	na	ND	0.00007	0.00049	na	0.00020	0.00027	na	0.00240
	, and the second	MWS-18A MWS-20A	2015, 2017, 2018 7	ND	ND ND	ND	ND ND	ND ND	ND 0.00012	ND ND	ND ND	ND ND	0.00004 ND	5.80E-07 ND	na	0.00007	0.00011	0.00034	na	0.00013	ND	na	0.00482
2B		MWS-20A MWS-03	2015, 2017, 2018 ⁷ 2012	ND ND	ND ND	ND ND	ND ND	ND ND	0.00012 ND	ND ND	ND ND	ND ND	ND ND	ND ND	na na	ND na	0.00009 0.00013	0.00060	na na	0.00045 ND	ND ND	na na	na
	Sand/Dredge Spoil	MWS-01B	2012. 2019 8	ND ND	ND	ND	ND ND	0.00001	ND ND	ND	0.00002	ND ND	0.00112	ND ND	na	0.00048	0.00013	0.00238	na	0.00036	0.00241	na	na
	Garia/Breage Opon	MWS-19B	2012, 2019	ND	ND	ND	ND ND	ND	0.00001	ND	2.68E-07	ND ND	ND	ND ND	na	ND	0.00010	0.00005	na	3.97E-06	3.60E-06	na	0.00071
	Sand	MWS-18C	2015, 2017, 2018	ND	ND	ND	ND	ND	4.13E-06	ND	ND	ND	ND	ND	na	1.64E-06	3.18E-06	0.00001	na	4.30E-06	ND	na	0.00034
		MWS-20B	2015, 2017, 2018 7	5.42E-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND	0.00001	0.00008	na	0.00001	3.33E-06	na	0.00013
		MWN-01	2012, 2019 ⁹	0.00006	4.28E-06	0.00001	2.85E-06	0.00143	ND	0.00003	0.01027	ND	0.03567	0.01855	na	0.00215	0.00071	na	na	ND	ND	0.00157	na
	Slag/Fill	MWN-11	2010, 2012 ¹⁰	ND	ND	ND	ND	ND	0.00057	ND	0.00009	ND	0.00042	0.00015	na	na	ND	na	na	0.00094	0.00047	0.00189	na
	Olag/1 III	MWN-94A	2019	ND	ND	ND	ND	ND	0.00013	ND	ND	ND	0.00165	ND	na	ND	0.00083	na	na	0.00051	0.00213	0.00009	na
3A		MWN-24A	2012, 2019 ⁶	ND	ND	ND	ND	ND	0.00005	ND	ND	ND	ND	ND	na	ND	0.00012	na	na	0.00014	0.00017	ND	na
	Sand/Dredge Spoil	MWN-01B	2012, 2019 ⁹	1.66E-06	3.91E-07	5.87E-07	2.44E-07	0.00003	ND	9.29E-07	0.00011	2.44E-07	0.00450	0.00016	na	0.00028	0.00009	na	na	ND	0.00003	0.00004	0.00100
	Cond	MWN-23B MWN-94B	2012, 2019 ⁶ 2013	ND 8.57E-07	ND ND	ND 6.73E-07	ND ND	ND ND	ND ND	ND 9.18E-07	ND 1.29E-06	ND ND	ND 2.75E-06	ND 3.80E-06	na	0.00008	0.00007 0.00004	na	na	0.00004	0.00002	0.00005	na
	Sand	MWN-94B MWN-06A	2013	0.00004	0.00003	0.00006	0.00003	ND ND	ND ND	9.18E-07 0.00005	0.00143	ND ND	2.75E-06 0.00299	0.00390	na na	na ND		na na	na na	0.00003	0.00009 na	0.00001	na na
		MWN-05A	2013, 2019 8	0.00004	0.00003 ND	0.00008	0.00003	ND	ND ND	0.00005	0.00143 ND	0.00001	ND	0.00390 ND	na	0.00053	na ND	0.06874	na	0.00608	0.00182	na ND	na
	Slag/Fill	MWN-04	2012, 2019	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	na	ND	ND	0.02341	na	0.00000	na	0.00351	na
	J.a.g.	MWN-03	2011, 2012, 2013	ND	ND	ND	ND	0.00045	ND	ND	0.00317	ND ND	0.00878	0.00655	na	0.00088	ND	0.06144	na	ND ND	na	0.00473	na
4A		MWN-02	2011, 2012, 2013 11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	0.01665	ND	0.10698	na	ND	na	0.00882	na
		MWN-05B	2012, 2019 ⁸	0.00002	2.22E-06	0.00001	2.22E-06	0.00041	0.00014	0.00001	0.00133	ND	0.07410	0.00148	na	0.01867	0.00119	1.16707	ND	0.00445	0.00170	ND	na
	Sand/Dredge Spoil	MWN-03B	2011, 2012, 2013 ¹²	ND	ND	ND	ND	ND	ND	ND	0.00004	ND	ND	0.00004	na	ND	0.00198	0.06393	na	0.00023	na	ND	na
		MWN-02B	2011, 2012, 2013 ¹¹	ND	ND	ND	ND	0.00010	ND	ND	0.00066	ND	0.01741	0.00121	na	0.00281	0.00328	0.00475	na	0.00060	na	0.00033	na
	Slag/Fill	MWN-43A	2012, 2019 ⁸	0.00004	ND	0.00001	2.69E-06	ND	ND	0.00003	ND	ND	ND	ND	na	0.00180	na	0.14438	na	ND	na	na	na
4B		MWN-18A	2012, 2019 ⁸	0.00004	0.00002	0.00005	0.00002	ND	0.00044	0.00004	ND	0.00001	ND	ND	na	0.00102	na	0.04331	na	0.00702	na	na	na
	Sand	(see Note 3)		na	na	na	na	na	na	na 0	na ND	na	na ND	na 0	na	na 0	na ND	na	na	na	na	na	na
		MWN-45A MWN-47A	2012, 2019 8	0 ND	ND ND	ND ND	ND ND	ND ND	0.00002	ND	ND ND	ND ND	ND ND	ND	na na	5.20E-06	ND ND	0.00046	na na	0.00006	na na	na na	0 na
		MWN-09	2012, 2019 ⁶ 2013, 2019 ¹³	ND ND	ND	ND ND	ND ND	ND	0.00002	ND ND	ND ND	ND ND	ND ND	ND ND	na na	5.20E-06 ND	na	0.00046 na	na	0.00006 na	na	na na	na
		MWN-26A	2013, 2019	ND ND	ND	ND	ND ND	ND	ND ND	ND	0	ND ND	ND ND	ND ND	na	na	0	0	na	ND	na	na	0
5	Slag/Fill	MWN-67A/MWN-34A ⁴	2010, 2012	0	0	0	0	0	0	0	0	ND ND	0	0	na	0	na	na	na	na	na	na	0
		MWN-66AR/MWN-08 ⁴	2019	0	0	0	0	0	0	0	0	0	0	0	na	0	na	na	na	na	na	na	0
		MWN-49A	2012, 2019 ⁶	3.37452E-07	ND	ND	ND	ND	4.38687E-05	ND	ND	ND	ND	ND	na	ND	ND	0.001518533	na	0.000337452	na	na	na
		MWN-68A ⁴	2019	ND	ND	ND	ND	ND	0.00009	ND	ND	ND	ND	ND	na	ND	na	na	na	na	na	na	na
		MWN-07	2012, 2019 ⁶	1.61E-06	ND	2.15E-06	1.61E-06	ND	ND	1.61E-06	ND	2.69E-06	ND	ND	na	ND	ND	0.00220	na	0.00215	na	na	0.00263

- 1. Loading = Discharge Rate x Concentration. See Table 4-41 for discharge calculations and Tables 4-31 through 4-36 for concentrations.

 2. Compounds of Concern (COC) include any parameter detected above its respective GWQS/GV in at least one monitoring well in the RFI or 2019 CMS sampling.

 3. Discharge Sub-Area 4B wells were not advanced beyond the fill layer, as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-05B and MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.
- 4. Monitoring well was not sampled during the CMS, either because it was not selected (MWN-08A and MWN-08A and MWN-08A) or could not be located (MWN-52A), and was subsequently replaced by nearby wells MWN-66A, MWN-67A, and MWN-68A (respectively).

 5. STARS VOCs and TCL SVOCs without phenols sampled in 2018. Added data from 2009 (1,2,4-TCB, 1,2-DCB, 1,3-DCB, 1,4-DCB), 2010 (1,1-DCA, 1,2-DCA, methylene chloride, PCE, TCE, bromomethane, chlorobenzene, chloromethane, vinyl chloride), 2011 (phenols, excluding pentachlorophenol), 2012 (metals), 2015 (caprolactam), and 2016 (pentachlorophenol)
- 6. TCL VOCs and TCL SVOCs with phenols sampled in 2019. Added data from 2012 (metals, 1,2,3-TMB, 1,3,5-TMB, and n-Butylbenzene).
- 7. TCL VOCs and SVOCs with phenols (excluding 2-Methylphenol), and metals sampled in 2018. Added data from 2015 (2-Methylphenol) and 2017 (1,2,4-TMB, 1,3,5-TMB, and n-Butylbenzene).
- 8. TCL VOCs and TCL SVOCs with phenols, and barium or cyanide sampled in 2019. Added data from 2012 (remaining metals, 1,2,3-TMB, 1,3,5-TMB, n-Butylbenzene).
 9. TCL VOCs and TCL SVOCs with phenols sampled in 2019. Added data from 2012 (metals) and 2011 (1,2,3-TMB, 1,3,5-TMB, and n-Butylbenzene).
 10. Metals sampled in 2012. Added data from 2010 (TCL VOCs and TCL SVOCs).

- 11. Metals sampled in 2012. Added data from 2011 (STARS VOCs, TCL SVOCs, and arsenic for MWN-02B) and 2013 (phenols).
- 12. TCL VOCs, TCL SVOCs without phenols, and selenium sampled in 2012. Added data from 2011 (remaining metals) and 2013 (phenols).
- 13. TCL VOCs and TCL SVOCs with phenols sampled in 2019. Added data from 2013 (1,2,3-TMB, 1,3,5-TMB, and n-Butylbenzene).
- 14. TCL SVOCs and metals sampled in 2012. Added data from 2010 (TCL VOCs).

Formula/Conversion Factors:

Loading (g/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 Loading (lb/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions:

lbs/day = pounds per day

na = not analyzed

ND = compound was not detected at the method detection limit

R = Sample result was rejected by third party validator.

= Parameter designated a Primary Compound of Concern, bars show relative contributions of each well.

																	of Concer														
Discharge		-,	Dichloroet	hane	, ,	Trichlorob	enzene	, ,	Trimethylbe	enzene	-,-	Dichloroeth	ane		ichlorober	nzene		Frimethylb	enzene		Acetone			Benzene		_	lorobenze	ne		thylbenzer	ne
Sub-Area	Unit	Loa	•	%		ading	%		ding	%		ding	%		ding	%		ding	%		pading	%		ding	%	Load	U	%		ding	%
		(lbs/	CMS	Change	RFI	/day) CMS	Change	RFI	/day) CMS	Change	RFI	/day) CMS	Change	(lbs/	CMS	Change	RFI	/day) CMS	Change	RFI	os/day) CMS	Change	RFI	(day) CMS	Change	(lbs/c	CMS	Change	RFI	/day) CMS	Change
	Slag/Fill	0.00029	ND	J.	ND	ND	na	na	0.00019	na	ND	ND ND	na	ND	ND	na	na	0.00010	na	na	ND	na	0.00540	0.00026	-95%	ND ND	ND	na	0.00179		-94%
2A	Sand/Dredge Spoil	ND	ND	na	ND	ND	na	na	0.00075	na	ND	ND	na	ND	ND	na	na	0.00023	na	na	0.00031	na	0.00099	0.00059	-40%	ND	ND	na	0.00065	0.00052	-21%
	, , , , , , , , , , , , , , , , , , ,	0.00075	ND						0.00007		ND	0.00001		ND			-					-			-99%	ND	ND				-43%
	Slag/Fill			↓	ND	ND	na	na		na			T		ND	na	na	ND	na	na	0.00052	na	4.56042	0.03970				na	0.00157	0.00090	-43%
2B	Sand/Dredge Spoil	0.00002	ND	1	ND	ND	na	na	0.00002	na	ND	ND	na	ND	ND	na	na	0.00001	na	na	0.00003	na	0.00007	0.00004	-37%	ND	ND	na	ND	ND	na
	Sand	ND	ND	na	ND	ND	na	na	ND	na	ND	0.000004	1	ND	ND	na	na	ND	na	na	0.000004	na	0.18108	0.00143	-99%	ND	ND	na	ND	ND	na
	Slag/Fill	0.0002	ND	1	ND	ND	na	na	0.00103	na	ND	ND	na	ND	ND	na	na	0.00060	na	na	ND	na	0.02393	0.00653	-73%	ND	ND	na	0.00051	ND	1
3A	Sand/Dredge Spoil	ND	ND	na	ND	ND	na	na	0.00004	na	ND	ND	na	ND	ND	na	na	0.00001	na	na	0.00004	na	0.00040	0.00040	0%	ND	ND	na	ND	3.62E-06	1
	Till/Sand ²	ND	ND	na	ND	ND	na	na	ND	na	ND	ND	na	ND	ND	na	na	ND	na	na	1.29E-05	na	ND	2.26E-06	1	ND	ND	na	ND	ND	na
	Slag/Fill	ND	ND	na	ND	ND	na	na	0.00064	na	ND	ND	na	ND	ND	na	na	0.00194	na	na	ND	na	0.01289	0.00488	-62%	0.00137	ND	↓	ND	0.00029	1
4A	Sand/Dredge Spoil	ND	ND	na	ND	0.001186	1	na	ND	na	ND	ND	na	ND	0.001927	↑	na	ND	na	na	0.00207	na	0.00790	0.01204	52%	0.00366	0.00363	-1%	0.00060	ND	↓
	Slag/Fill	ND	ND	na	ND	ND	na	na	0.00025	na	ND	ND	na	ND	ND	na	na	0.00041	na	na	0.00212	na	0.00523	0.00068	-87%	ND	ND	na	ND	ND	na
4B	Sand ³	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
5 4	SlagFill	ND	ND	na	ND	ND	na	na	ND	na	ND	ND	na	ND	ND	na	na	ND	na	na	0.00024	na	0.21994	0.00019	-100%	ND	ND	na	0.00202	ND	↓
l						1	1		1												- 1										
	TOTAL SLAG/FILL LOADINGS:	0.00128	ND	↓	ND	ND	na	na	0.00217	na	ND	0.00001		ND	ND	na	na	0.00305	na	na	0.00288	na	4.82781	0.05223	-99%	0.00137	ND	↓	0.00589	0.00129	-78%
	TOTAL SLAG/FILL LOADINGS:	0.00128	ND	1	ND	ND	na	na	0.00217	na	ND	0.00001	1	ND	ND	na	na	0.00305	na	na	0.00264	na	4.60787	0.05204	-99%	0.00137	ND	↓	0.00387	0.00129	-67%
TOTAL SA	ND/DREDGE SPOIL LOADINGS:	0.00002	ND	1	ND	0.00119	1	na	0.00081	na	ND	ND	na	ND	0.00193	1	na	0.00025	na	na	0.00245	na	0.00937	0.01308	40%	0.00366	0.00363	-1%	0.00126	0.00052	-59%
TO	TAL NATIVE SAND LOADINGS:	ND	ND	na	ND	ND	na	na	ND	na	ND	3.79E-06	↑	ND	ND	na	na	ND	na	na	0.00002	na	0.18108	0.00143	-99%	ND	ND	na	ND	ND	na

- 1. See Tables 4-42 and 4-43 for loading calculations.
- 2. The well used in the RFI was in the till layer (MWN-24B). Well MWN-94B was used in the CMS to more accurately represent loading from the native sand layer.
- 3. Discharge Sub-Area 4B wells were not advanced beyond the fill layer; as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-05B and MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.
- 4. Discharge Sub-Area 5 monitoring locations MWN-08A, MWN-09, MWN-34A, and MWN-52A were sampled during the RFI, but not during CMS; instead, wells MWN-66A, MWN-67A, and MWN-68A were used; therefore, direct comparisons between RFI & CMS loadings could not be performed.

Formula:

% Change = ([CMS]/[RFI])-1

Conversion Factors:

Loading (lbs/day) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions:

lbs/day = pounds per day

- na = not applicable or not analyzed for this compound
 R = Sample result was rejected by third party validator.
- ND = compound was not detected at the method detection limit at any wells included in the sum (where the compound was analyzed).

= recent contaminant loadings improved or generally stayed the same

= recent contaminant loadings generally degraded (by greater than 20%)

= recent contaminant loadings improved, extent of improvement unknown as the CMS concentration was non-detect.

recent contaminat loadings degraded, extent of degredation unknown as the RFI concentration was non-detect.

parameter designated a Primary Compound of Concern.

														Co	ompounds	of Concer	m ¹												
Discharge			opropylbena	zene		Styrene		Toluene		Tı	ichloroeth	ene		inyl Chloric	de		ylenes, Tot	al	,-	-Dinitrotolu	ene	Acenapht	nene	Ben	zo(a)anthra	cene	Be	enzo(a)pyre	ene
Sub-Area	Unit		ading	%		ading	%	Loading	%		ading	%		ding	%		iding	%		ading	%	Loading	%		ading	%		ding	%
		RFI	s/day) CMS	Change	RFI	s/day) CMS	Change	(lbs/day) RFI CMS	Change	RFI	/day) CMS	Change	RFI	/day) CMS	Change	RFI	/day) CMS	Change	RFI	/day) CMS	Change	(lbs/day) RFI CMS	Change	RFI	/day) CMS	Change	RFI	/day) CMS	Change
	Slag/Fill	na	ND ND	na	na	ND	na	0.00476 0.00017	-96%	0.00010	0.00026	152%	ND	ND	na	0.01537	0.00081	-95%	ND	ND	na	na 0.0001	4 na	ND	4.05E-06	↑	ND	ND	na
2A									4404																	- 1			
	Sand/Dredge Spoil	na	ND	na	na	ND	na	0.00051 0.00028	-44%	ND	ND	na	ND	ND	na	0.02324	0.01549	-33%	ND	ND	na	na 0.0001	1 na	ND	0.00001	Î	ND	0.00001	Î
	Slag/Fill	na	ND	na	na	0.00069	na	0.00981 0.00270	-72%	ND	ND	na	ND	0.00001	1	0.02684	0.01141	-57%	ND	ND	na	na 0.0003	2 na	ND	0.00002	1	ND	0.00001	1
2B	Sand/Dredge Spoil	na	ND	na	na	ND	na	0.00002 0.00001	-40%	ND	ND	na	ND	ND	na	0.00002	ND	\downarrow	ND	ND	na	na 0.0000	2 na	4.79E-06	ND	1	ND	ND	na
	Sand	na	ND	na	na	ND	na	0.00046 ND	→	ND	ND	na	ND	ND	na	0.00068	ND	↓	ND	ND	na	na 0.0000	0 na	ND	5.42E-08	1	ND	ND	na
	Slag/Fill	na	ND	na	na	ND	na	0.00524 0.00073	-86%	ND	ND	na	ND	ND	na	0.00665	0.00262	-61%	ND	ND	na	na 0.0016	9 na	0.00633	0.00006	-99%	0.00484	4.28E-06	-100%
3A	Sand/Dredge Spoil	na	0.00001	na	na	ND	na	0.00013 0.00011	-16%	ND	ND	na	ND	ND	na	0.00012	0.00012	-6%	ND	ND	na	na 0.0000	3 na	ND	1.66E-06	1	ND	3.91E-07	1
	Till/Sand ²	na	ND	na	na	ND	na	ND ND	na	ND	ND	na	ND	ND	na	ND	ND	na	ND	ND	na	na 0.0000	0 na	ND	8.57E-07	1	ND	ND	na
4A	Slag/Fill	na	ND	na	na	ND	na	0.00885 0.00136	-85%	ND	ND	na	ND	ND	na	0.01670	0.00384	-77%	ND	0.01580	1	na 0.0014	0 na	ND	0.00009	1	ND	0.00003	1
	Sand/Dredge Spoil	na	ND	na	na	ND	na	0.00294 0.00403	37%	ND	ND	na	ND	ND	na	0.00365	0.00383	5%	ND	ND	na	na 0.0021	5 na	ND	0.00002	1	ND	2.22E-06	1
4B	Slag/Fill	na	ND	na	na	ND	na	0.00114 ND	↓	ND	ND	na	ND	ND	na	0.00171	ND	↓	ND	ND	na	na 0.0002	4 na	ND	0.00008	1	ND	0.00002	1
	Sand ³	na	na	na	na	na	na	na na	na	na	na	na	na	na	na	na	na	na	na	na	na	na na	na	na	na	na	na	na	na
5 4	SlagFill	na	ND	na	na	ND	na	0.00033 ND	\rightarrow	0.00006	ND	↓	ND	ND	na	0.01288	0.00002	-100%	ND	ND	na	na ND	na	ND	1.95E-06	1	ND	ND	na
	TOTAL SLAG/FILL		1					1		1	1									1				T	1 1				
	LOADINGS:	na	ND	na	na	0.00069	na	0.03012 0.00495	-84%	0.00016	0.00026	56%	ND	0.00001	1	0.08013	0.01870	-77%	ND	0.01580	1	na 0.0037	9 na	0.00633	0.00026	-96%	0.00484	0.00006	-99%
	TOTAL SLAG/FILL LOADINGS:	na	ND	na	na	0.00069	na	0.02980 0.00495	-83%	0.00010	0.00026	152%	ND	0.00001	1	0.06725	0.01868	-72%	ND	0.01580	1	na 0.0037	9 na	0.00633	0.00026	-96%	0.00484	0.00006	-99%
	ID/DREDGE SPOIL LOADINGS:	na	0.00001	na	na	ND	na	0.00360 0.00443	23%	ND	ND	na	ND	ND	na	0.02703	0.01944	-28%	ND	ND	na	na 0.0023	1 na	4.79E-06	0.00003	460%	ND	0.00001	1
TO	TAL NATIVE SAND LOADINGS:	na	ND	na	na	ND	na	0.00046 ND	↓	ND	ND	na	ND	ND	na	0.00068	ND	+	ND	ND	na	na 6.24E-0	7 na	ND	9.11E-07	1	ND	ND	na

- 1. See Tables 4-42 and 4-43 for loading calculations.
- 2. The well used in the RFI was in the till layer (MWN-24B). Well MWN-94B was used in the CMS to more accurately represent loading from the native sand layer.
- 3. Discharge Sub-Area 4B wells were not advanced beyond the fill layer; as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-05B and MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.
- 4. Discharge Sub-Area 5 monitoring locations MWN-08A, MWN-09A, MWN-34A, and MWN-52A were sampled during the RFI, but not during CMS; instead, wells MWN-67A, and MWN-67A, and MWN-68A were used; therefore, direct comparisons between RFI & CMS loadings could not be performed.

Formula

% Change = ([CMS]/[RFI])-1

Conversion Factors:

Loading (lbs/day) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions:

lbs/day = pounds per day

na = not applicable or not analyzed for this compound
R = Sample result was rejected by third party validator.

ND = compound was not detected at the method detection limit at any wells included in the sum (where the compound was analyzed).

= recent contaminant loadings improved or generally stayed the same

= recent contaminant loadings generally degraded (by greater than 20%)

= recent contaminant loadings improved, extent of improvement unknown as the CMS concentration was non-detect. recent contaminat loadings degraded, extent of degredation unknown as the RFI concentration was non-detect.

= parameter designated a Primary Compound of Concern.

														Compo	unds of Co	oncern 1												
Discharge	ĺ	Benz	zo(b)fluorar	thene	Benz	zo(k)fluorar	nthene		Biphenyl		Bis(2-et	hylhexyl)p	hthalate		Chrysene			Fluorene		Inden	o(1,2,3-cd) _l	pyrene	1	Naphthalen	е	Р	henanthren	ne
Sub-Area	Unit		ading	%		ading	%		ıding	%	Loa		%		ding	%	Loa	0	%		ding	%		iding	%		ding	%
			s/day)	Change		(day)	Change		/day)	Change	(lbs/	,,	Change	((day)	Change	((day)	Change		(day)	Change	(/day)	Change	(lbs/	//	Change
		RFI	CMS		RFI	CMS		RFI	CMS		RFI	CMS	_	RFI	CMS	_	RFI	CMS		RFI	CMS		RFI	CMS		RFI	CMS	
	Slag/Fill	na	1.62E-06	na	na	ND	na	na	0.00013	na	ND	ND	na	ND	3.24E-06	1	0.00179	0.00083	-53%	na	ND	na	0.07469	0.00367	-95%	0.00205	0.00109	-47%
2A	Sand/Dredge Spoil		0.00001		na	4.65E-06			0.00005		ND	ND	na	ND	0.00001		ND	0.00028			2.58E-06	na	0.00964	0.00697	-28%	0.00043	0.00000	-39%
	Sand/Dredge Spoil	na	0.00001	na	IId	4.03E-00	na	na	0.00003	na	שאו	ND	IId	שאו	0.00001		שאו	0.00026		na	2.36E-00	IIa	0.00904	0.00697	-20%	0.00043	0.00026	-39%
	Slag/Fill	na	0.00001	na	na	4.98E-06	na	na	0.00035	na	0.00042	0.00047	12%	ND	0.00001	1	0.00484	0.00162	-67%	na	3.97E-06	na	0.07657	0.03539	-54%	0.00692	0.00206	-70%
2B	Sand/Dredge Spoil	na	ND	na	na	ND	na	na	0.00001	na	ND	ND	na	ND	ND	na	0.00005	0.00002	-58%	na	ND	na	0.00274	0.00112	-59%	0.00006	ND	↓
	Sand	na	ND	na	na	ND	na	na	ND	na	ND	0.00001	†	ND	ND	na	ND	2.68E-07	↑	na	ND	na	ND	ND	na	ND	ND	na
																			'	-						-		\vdash
	Slag/Fill	na	0.00001	na	na	2.85E-06	na	na	0.00143	na	ND	0.00074	1	0.00558	0.00003	-99%	0.04683	0.01036	-78%	na	ND	na	0.21674	0.03774	-83%	0.07666	0.01869	-76%
3A	Sand/Dredge Spoil	na	5.87E-07	na	na	2.44E-07	na	na	0.00003	na	ND	ND	na	ND	9.29E-07	†	0.00035	0.00011	-68%	na	2.44E-07	na	0.00650	0.00450	-31%	0.00053	0.00016	-70%
0.71	Cana/Breage Open	TIQ.	0.07 E 07		iiu.	2.442 07		na -	0.00000		110	110		110	0.202 01	-	0.00000	0.00011	0070	iiu.	2.112 07		0.00000	0.00400	0170	0.00000	0.00010	
	Till/Sand ²	na	6.73E-07	na	na	ND	na	na	ND	na	ND	ND	na	ND	9.18E-07	1	ND	1.29E-06	1	na	ND	na	ND	2.75E-06	1	ND	3.80E-06	1
	Slag/Fill		0.00008		na	0.00004	na		0.00045		0.00570	ND		ND	0.00011		0.02428	0.00460	-81%		0.00001		0.08389	0.01176	-86%	0.03631	0.01045	-71%
4A	Siag/Fili	na	0.00008	na	na	0.00004	na	na	0.00045	na	0.00576	ND	Ţ	ND	0.00011	Т	0.02428	0.00460	-01%	na	0.00001	na	0.08389	0.01176	-00%	0.03631	0.01045	-/1%
	Sand/Dredge Spoil	na	0.00001	na	na	2.22E-06	na	na	0.00052	na	0.00025	0.00014	-44%	ND	0.00001	1	0.00058	0.00203	253%	na	ND	na	0.13379	0.09151	-32%	0.00122	0.00272	123%
	01 (5:11		0.00005						ND		NID	0.00044		NID	0.00007		0.00400	ND			0.00004		0.04000	ND			N.D.	
4B	Slag/Fill	na	0.00005	na	na	0.00002	na	na	ND	na	ND	0.00044	Î	ND	0.00007	Î	0.00130	ND	↓ ↓	na	0.00001	na	0.01826	ND	↓	0.00767	ND	↓
	Sand ³	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
																											$\overline{}$	
5 4	SlagFill	na	2.15E-06	na	na	1.61E-06	na	na	ND	na	0.00032	0.00015	-53%	ND	1.61E-06	1	0.00048	ND	↓	na	2.69E-06	na	0.01529	ND	↓	0.00020	ND	↓
					•										1							•						
	TOTAL SLAG/FILL LOADINGS:	na	0.00016	na	na	0.00007	na	na	0.00235	na	0.00650	0.00180	-72%	0.00558	0.00023	-96%	0.07951	0.01741	-78%	na	0.00003	na	0.48544	0.08856	-82%	0.12981	0.03230	-75%
	TOTAL SLAG/FILL																											
	LOADINGS:	na	0.00016	na	na	0.00007	na	na	0.00235	na	0.00618	0.00165	-73%	0.00558	0.00022	-96%	0.07903	0.01741	-78%	na	0.00003	na	0.47015	0.08856	-81%	0.12961	0.03230	-75%
TOTAL SAI	ND/DREDGE SPOIL	na	0.00002	na	na	0.00001	na	na	0.00060	na	0.00025	0.00014	-44%	ND	0.00002	1	0.00098	0.00245	151%	na	2.83E-06	na	0.15267	0.10410	-32%	0.00223	0.00314	41%
TO	LOADINGS: TAL NATIVE SAND		1			1										,												
	LOADINGS:	na	6.73E-07	na	na	ND	na	na	ND	na	ND	0.00001	1	ND	9.18E-07	1	ND	1.55E-06	1	na	ND	na	ND	2.75E-06	1	ND	3.80E-06	1

Notes:

- 1. See Tables 4-42 and 4-43 for loading calculations.
 2. The well used in the RFI was in the till layer (MWN-24B). Well MWN-94B was used in the CMS to more accurately represent loading from the native sand layer.
 3. Discharge Sub-Area 4B wells were not advanced beyond the fill layer; as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-5D, MWN-6A, & MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.
- 4. Discharge Sub-Area 5 monitoring locations MWN-08A, MWN-09, MWN-34A, and MWN-52A were sampled during the RFI, but not during CMS; instead, wells MWN-67A, and MWN-67A, and MWN-67A, and MWN-68A were used; therefore, direct comparisons between RFI & CMS loadings could not be performed.

Formula % Change = ([CMS]/[RFI])-1

Conversion Factors:

Loading (lbs/day) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions:

lbs/day = pounds per day
na = not applicable or not analyzed for this compound
R = Sample result was rejected by third party validator.

ND = compound was not detected at the method detection limit at any wells included in the sum (where the compound was analyzed).

= recent contaminant loadings improved or generally stayed the same = recent contaminant loadings generally degraded (by greater than 20%)

= recent contaminant loadings improved, extent of improvement unknown as the CMS concentration was non-detect. = recent contaminat loadings degraded, extent of degredation unknown as the RFI concentration was non-detect. = parameter designated a Primary Compound of Concern.

														Compo	unds of Co	oncern 1															
Discharge			Pyridine		Total Ph	al Phenolic Compounds			Arsenic			Barium			Cadmium			Chromium			Lead			Selenium		Cyanide					
Sub-Area	Unit	Loading		%		ding	%		ding	%	Loa	. 3	%		ding	%		ding	%	Loading		%	Loading		%	Loading %					
		(lbs/	day) CMS	Change	((lbs/day)		(lbs/day) RFI CMS		Change	(lbs/	(day) CMS	Change	(lbs/	day) CMS	Change	(day) CMS	Change	(lbs/day) RFI CMS		Change	(lbs/	/day) CMS	Change	(lbs/	day) CMS	Change			
		KFI	CIVIS	-	RFI	CMS	_				KFI	CIVIS			CIVIS	_	RFI	CIVIS			CIVIS	_				KFI	CIVIS				
	Slag/Fill	ND	ND	na	0.00748	0.00020	-97%	0.00150	0.00093	-38%	0.01850	0.01103	-40%	0.00003	na	na	0.00604	0.00380	-37%	0.00107	0.00032	-70%	0.00532	0.00040	-92%	0.02153	na	na			
2A	Sand/Dredge Spoil	ND	na	na	0.00499	0.00116	-77%	0.00085	0.00075	-12%	0.00578	0.00150	-74%	0.00001	na	na	0.00258	ND	↓	0.00088	ND	1	ND	ND	na	0.00283	na	na			
	Slag/Fill	0.00504	na	na	0.00631	0.00068	-89%	0.00118	0.00049	-59%	0.01288	0.00865	-33%	0.00005	na	na	0.00285	0.00213	-25%	0.00032	0.00027	-17%	0.00153	na	na	0.12873	0.43922	241%			
2B	Sand/Dredge Spoil	ND	na	na	0.00101	0.00048	-52%	0.00007	0.00018	143%	0.00705	0.00338	-52%	0.00001	na	na	0.00015	0.00036	133%	0.00121	0.00241	100%	ND	na	na	0.00044	na	na			
	Sand	0.03527	na	na	0.00926	1.64E-06	-100%	0.00011	0.00003	-77%	0.00040	0.00014	-64%	2.55E-06	na	na	0.00153	0.00002	-99%	0.00023	0.00001	-97%	ND	na	na	0.00620	0.00119	-81%			
	Slag/Fill	0.00745	na	na	0.02269	0.00215	-91%	0.00608	0.00166	-73%	0.03040	na	na	ND	na	na	0.00997	0.00159	-84%	0.00331	0.00278	-16%	0.00276	0.00354	28%	0.04468	na	na			
3A	Sand/Dredge Spoil	ND	na	na	0.00090	0.00036	-60%	0.00018	0.00016	-11%	0.00104	na	na	ND	na	na	0.00004	0.00004	12%	0.00007	0.00006	-14%	0.00010	0.00009	-16%	0.00670	0.00100	-85%			
	Till/Sand ²	ND	na	na	ND	na	na	0.00002	0.00004	156%	0.00133	na	na	ND	na	na	0.00017	0.00003	-80%	0.00002	0.00009	329%	ND	0.00001	1	R	na	na			
4A	Slag/Fill	0.00545	na	na	0.04819	0.01806	-63%	0.00722	ND	↓	0.35054	0.26056	-26%	0.00035	na	na	0.03630	0.01864	-49%	0.00282	0.00182	-35%	0.02461	0.01706	-31%	0.02254	na	na			
**	Sand/Dredge Spoil	ND	na	na	0.05576	0.02148	-61%	0.00818	0.00644	-21%	2.68707	1.23576	-54%	0.00384	ND	1	0.01849	0.00528	-71%	0.00234	0.00170	-27%	0.00042	0.00033	-20%	0.00446	na	na			
4B	Slag/Fill	ND	na	na	na	0.00282	na	ND	na	na	0.24015	0.18769	-22%	ND	na	na	0.08307	0.00702	-92%	0.00310	na	na	0.00042	na	na	0.00840	na	na			
	Sand ³	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na			
5 ⁴	SlagFill	0.00038	na	na	0.00532	0.00001	-100%	0.00062	ND	↓	0.03615	0.00418	-88%	ND	na	na	0.00862	0.00255	-70%	0.00013	na	na	0.00046	na	na	0.03062	0.00263	-91%			
	TOTAL SLAG/FILL	0.01831	ND		0.08999	0.02392	-73%	0.01659	0.00308	-81%	0.68861	0.47212	-31%	0.00043	na	na	0.14685	0.03574	-76%	0.01074	0.00519	-52%	0.03510	0.02101	-40%	0.25650	0.44186	72%			
	LOADINGS: TOTAL SLAG/FILL			+																											
TOTAL SAN	LOADINGS: ND/DREDGE SPOIL	0.01794	ND	↓	0.08467	0.02391	-72%	0.01598	0.00308	-81%	0.65246	0.46794	-28%	0.00043	na	na	0.13822	0.03318	-76%	0.01061	0.00519	-51%	0.03464	0.02101	-39%	0.22588	0.43922	94%			
	LOADINGS: TAL NATIVE SAND	ND	na	na	0.06266	0.02349	-63%	0.00928	0.00753	-19%	2.70094	1.24064	-54%	0.00386	ND	1	0.02127	0.00568	-73%	0.00450	0.00418	-7%	0.00052	0.00042	-19%	0.01443	0.00100	-93%			
10	LOADINGS:	0.03527	na	na	0.00926	1.64E-06	-100%	0.00013	0.00007	-45%	0.00172	0.00014	-92%	2.55E-06	na	na	0.00170	0.00005	-97%	0.00025	0.00010	-62%	ND	0.00001	1	0.00620	0.00119	-81%			

Notes:

- 1. See Tables 4-42 and 4-43 for loading calculations.
- 2. The well used in the RFI was in the till layer (MWN-24B). Well MWN-94B was used in the CMS to more accurately represent loading from the native sand layer.

 3. Discharge Sub-Area 4B wells were not advanced beyond the fill layer; as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-5D, MWN-6A, & MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.
- 4. Discharge Sub-Area 5 monitoring locations MWN-08A, MWN-09, MWN-34A, and MWN-52A were sampled during the RFI, but not during CMS; instead, wells MWN-67A, and MWN-67A, and MWN-67A, and MWN-68A were used; therefore, direct comparisons between RFI & CMS loadings could not be performed.

Formula

% Change = ([CMS]/[RFI])-1

Conversion Factors:

Loading (lbs/day) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions:

- lbs/day = pounds per day
 na = not applicable or not analyzed for this compound
 R = Sample result was rejected by third party validator.
- ND = compound was not detected at the method detection limit at any wells included in the sum (where the compound was analyzed).

= recent contaminant loadings improved or generally stayed the same = recent contaminant loadings generally degraded (by greater than 20%)

= recent contaminant loadings improved, extent of improvement unknown as the CMS concentration was non-detect.

= recent contaminat loadings degraded, extent of degredation unknown as the RFI concentration was non-detect. = parameter designated a Primary Compound of Concern.

TABLE 4-45A

CURRENT (CMS) COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO LAKE ERIE

		Lake Erie North	Lake Erie South							
Compounds of Concern	DSA 4A	(lbs/day) 1	DSA 4B (lbs/day)	DSA 2A	(lbs/day)					
Compounds of Concern	Slag/Fill	Sand/Dredge Spoils	Slag/Fill	Slag/Fill	Sand/Dredge Spoils					
1,1-Dichloroethane	ND	ND	ND	ND	ND					
1,2,4-Trichlorobenzene	ND	0.0011856	ND	ND	ND					
1,2,4-Trimethylbenzene	0.0006427	ND	0.0002458	0.0001861	0.0007487					
1,2-Dichloroethane	ND	ND	ND	ND	ND					
1,2-Dichlorobenzene	ND	0.0019266	ND	ND	ND					
1,3,5-Trimethylbenzene	0.0019410	ND	0.0004114	0.0000962	0.0002298					
Acetone	ND	0.0020748	0.0021154	ND	0.0003098					
Benzene	0.0048790	0.0120366	0.0006800	0.0002562	0.0005938					
Chlorobenzene	ND	0.0036309	ND	ND	ND					
Ethylbenzene	0.0002901	ND	ND	0.0001027	0.0005163					
Isopropylbenzene	ND	ND	ND	ND	ND					
Styrene	ND	ND	ND	ND	ND					
Toluene	0.0013573	0.0040282	ND	0.0001668	0.0002840					
Trichloroethene	ND	ND	ND	0.0002573	ND					
Vinyl Chloride	ND	ND	ND	ND	ND					
Xylenes, Total	0.0038405	0.0038327	ND	0.0008112	0.0154897					
Total VOCs	0.0129505	0.0287154	0.0034527	0.0018765	0.0181721					
Percentage	19.9%	44.1%	5.3%	2.9%	27.9%					
2,6-Dinitrotoluene	0.0157989	ND	ND	ND	ND					
Acenaphthene	0.0014024	0.0021490	0.0002364	0.0001412	0.0001110					
Benzo(a)anthracene	0.0000937	0.0000156	0.0000762	0.0000041	0.0000096					
Benzo(a)pyrene	0.0000260	0.0000022	0.0000228	ND	0.0000077					
Benzo(b)fluoranthene	0.0000832	0.0000052	0.0000537	0.0000016	0.0000121					
Benzo(k)fluoranthene	0.0000414	0.0000022	0.0000220	ND	0.0000046					
Biphenyl	0.0004523	0.0005154	ND	0.0001283	0.0000491					
Bis(2-ethylhexyl)phthalate	ND	0.0001408	0.0004389	ND	ND					
Chrysene	0.0001067	0.0000111	0.0000709	0.0000032	0.0000080					
Fluorene	0.0046020	0.0020295	ND	0.0008342	0.0002840					
Indeno(1,2,3-cd)pyrene	0.0000122	ND	0.0000123	ND	0.0000026					
Naphthalene	0.0117643	0.0915096	ND	0.0036668	0.0069704					
Phenanthrene	0.0104457	0.0027227	ND	0.0010908	0.0002582					
Pyridine	na	na	na	ND	na					
Total Phenolics	0.0180606	0.0214788	0.0028180	0.0002015	0.0011643					
Total SVOCs	0.0628893	0.1205821	0.0037512	0.0060717	0.0088816					
Percentage	31.1%	59.6%	1.9%	3.0%	4.4%					
Arsenic	ND	0.0064427	na	0.0009322	0.0007487					
Barium	0.2605648	1.2357587	0.1876926	0.0110312	0.0014973					
Cadmium	na	na	na	na	na					
Chromium	0.0186411	0.0052811	0.0070229	0.0037995	ND					
Lead	0.0018233	0.0017043	na	0.0003208	ND					
Selenium	0.0170602	0.0003348	na	0.0004025	ND					
Total Metals	0.2980895	1.2495216	0.1947155	0.0164862	0.0022460					
Percentage	16.9%	71.0%	11.1%	0.9%	0.1%					
Cyanide	na	na	na	na	na					

La	ke Erie Total
	lbs/day
	TOTAL ²
	ND
	0.001186
	0.001823
	ND
ı	0.001927
I	0.002678
	0.004500
	0.018446
I	0.003631
	0.000909
	ND
	ND
	0.005836
i i	0.000257
	ND
	0.023974
	0.065167
	100%
	0.015799
	0.004040
٠	0.000199
	0.000059
•	0.000156
	0.000070
ì	0.001145
٠	0.000580
•	0.000200
	0.007750
	0.000027
	0.113911
I	0.014517
	ND
	0 043723
	0.202176
	100%
٠	0.008124
	1.696545
_	na
	0.034745
•	0.003848
,	0.017797
	1.761059
	100%
	na

TABLE 4-45B

CURRENT (CMS) COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO SMOKES CREEK

	Sm	okes Creek (south ba	ank)	Sn	nokes Creek (north ba	ınk)	Smokes Creek Tot					
C		DSA 2B (lbs/day) 1			DSA 3A (lbs/day)		lbs/day					
Compounds of Concern	Slag/Fill	Sand/Dredge Spoils	Sand	Slag/Fill	Sand/Dredge Spoils	Sand	TOTAL ²					
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND					
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND					
1,2,4-Trimethylbenzene	0.0000668	0.0000185	ND	0.0010328	0.0000437	ND	0.001162					
1,2-Dichloroethane	0.0000140	ND	0.0000038	ND	ND	ND	0.000018					
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND					
1,3,5-Trimethylbenzene	ND	0.0000108	ND	0.0005992	0.0000139	ND	0.000624					
Acetone	0.0005208	0.0000277	0.0000043	ND	0.0000386	0.0000129	0.000604					
Benzene	0.0397036	0.0000442	0.0014272	0.0065260	0.0004049	0.0000023	0.048108					
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND					
Ethylbenzene	0.0009008	ND	ND	ND	0.0000036	ND	0.000904					
Isopropylbenzene	ND	ND	ND	ND	0.0000064	ND	0.000006					
Styrene	0.0006906	ND	ND	ND	ND	ND	0.000691					
Toluene	0.0027025	0.0000125	ND	0.0007276	0.0001059	ND	0.003548					
Trichloroethene	ND	ND	ND	ND	ND	ND	ND					
Vinyl Chloride	0.0000052	ND	ND	ND	ND	ND	0.000005					
Xylenes, Total	0.0114105	ND	ND	0.0026212	0.0001152	ND	0.014147					
Total VOCs	0.0560149	0.0001137	0.0014354	0.0115069	0.0007322	0.0000151	0.069818					
Percentage	80.2%	0.163%	2.06%	16.5%	1.05%	ND	100%					
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND					
Acenaphthene	0.0003166	0.0000209	0.0000001	0.0016891	0.0000327	0.0000005	0.002060					
Benzo(a)anthracene	0.0000190	ND	0.0000001	0.0000642	0.0000017	0.0000009	• 0.000086					
Benzo(a)pyrene	0.0000087	ND	ND	0.0000043	0.0000004	ND	0.000013					
Benzo(b)fluoranthene	0.0000120	ND	ND	0.0000071	0.0000006	0.0000007	0.000020					
Benzo(k)fluoranthene	0.0000050	ND	ND	0.0000029	0.0000002	ND	0.000008					
Biphenyl	0.0003453	0.0000112	ND	0.0014267	0.0000254	ND	0.001809					
Bis(2-ethylhexyl)phthalate	0.0004669	ND	0.0000133	0.0007421	ND	ND	0.001222					
Chrysene	0.0000145	ND	ND	0.0000285	0.0000009	0.0000009	0.000045					
Fluorene	0.0016178	0.0000221	0.0000003	0.0103591	0.0001124	0.0000013	0.012113					
Indeno(1,2,3-cd)pyrene	0.0000040	ND	ND	ND	0.0000002	ND	0.000004					
Naphthalene	0.0353910	0.0011250	ND	0.0377387	0.0044966	0.0000028	0.078754					
Phenanthrene	0.0020646	ND	ND	0.0186939	0.0001613	0.0000038	0.020924					
Pyridine	na	na	na	na	na	na	na					
Total Phenolics	0.0006758	0.0004821	0.0000016	0.0021544	0.0003621	0.0000000	0.0036761					
Total SVOCs	0.0409411	0.0016613	0.0000153	0.0729110	0.0051947	0.0000108	0.1207343					
Percentage	33.9%	1.38%	0.0127%	60.4%	4.30%	0.0089%	100%					
Arsenic	0.0004863	0.0001808	0.0000255	0.0016580	0.0001581	0.0000446	0.002553					
Barium	0.0086549	0.0033842	0.0001433	na	na	na	0.012182					
Cadmium	na	na	na	na	na	na	na					
Chromium	0.0021275	0.0003616	0.0000174	0.0015936	0.0000408	0.0000329	0.004174					
Lead	0.0002652	0.0024147	0.0000069	0.0027783	0.0000587	0.0000891	0.0 05613					
Selenium	na	na	na	0.0035435	0.0000881	0.0000053	0.003637					
Total Metals	0.0115339	0.0063413	0.0001931	0.0095733	0.0003457	0.0001719	0.028159					
Percentage	41.0%	22.5%	0.686%	34.0%	1.23%	0.611%	100%					
Cyanide	0.4392223	na	0.0011857	ND	0.0009971	na	0.441405					

TABLE 4-45C

CURRENT (CMS) COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO SHIP CANAL

	Ship Canal
Compounds of Concern	DSA 5 (lbs/day) 1
	Slag/Fill
1,1-Dichloroethane	ND
1,2,4-Trichlorobenzene	ND
1,2,4-Trimethylbenzene	ND
1,2-Dichloroethane	ND
1,2-Dichlorobenzene	ND
1,3,5-Trimethylbenzene	ND
Acetone	0.0002405
Benzene	0.0001884
Chlorobenzene	ND
Ethylbenzene	ND
Isopropylbenzene	ND
Styrene	ND
Toluene	ND
Trichloroethene	ND
Vinyl Chloride	ND
Xylenes, Total	0.0000180
Total VOCs	0.0004469
Percentage	100%
2,6-Dinitrotoluene	ND
Acenaphthene	ND
Benzo(a)anthracene	0.000019
Benzo(a)pyrene	ND
Benzo(b)fluoranthene	0.0000021
Benzo(k)fluoranthene	0.000016
Biphenyl	ND
Bis(2-ethylhexyl)phthalate	0.0001500
Chrysene	0.000016
Fluorene	ND
Indeno(1,2,3-cd)pyrene	0.0000027
Naphthalene	ND
Phenanthrene	ND
Pyridine	na
Total Phenolics	0.000052
Total SVOCs	0.0001652
Percentage	100%
Arsenic	ND
Barium	0.0041776
Cadmium	na
Chromium	0.0025511
Lead	na
Selenium	na
Total Metals	0.0067286
Percentage	100%
Cyanide	0.0026330

S	hip Canal Total
	lbs/day
	TOTAL ²
	ND
	0.000241
	0.000188
	ND
	ND ND
	ND 0.000040
	0.000018
	0.000447 100%
	100% ND
	ND ND
	0.000002
•	ND
	0.000002
1	0.000002
	ND
	0.000150
)	0.000002
	ND
	0.000003
	ND
	ND
	na
	0.000005
	0.000165
	100%
	ND
	0.004178
	na
	0.0025 51
	na
	na 0.006730
	0.006729 100%
	0.002633

TABLE 4-45D

CURRENT (CMS) COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO ALL WATER BODIES

	TOTALS												
Compounds of Concern		lbs/d	lay ¹										
Compounds of Concern	Slag/Fill	Sand/Dredge Spoils	Sand	All ²									
1,1-Dichloroethane	ND	ND	ND	ND									
1,2,4-Trichlorobenzene	ND	0.001186	ND	0.001186									
1,2,4-Trimethylbenzene	0.002174	0.000811	ND	0.002985									
1,2-Dichloroethane	0.000014	ND	0.000004	0.000018									
1,2-Dichlorobenzene	ND	0.001927	ND	0.001927									
1,3,5-Trimethylbenzene	0.003048	0.000254	ND	0.003302									
Acetone	0.002877	0.002464	0.000017	0.005358									
Benzene	0.052233	0.013082	0.001429	0.066745									
Chlorobenzene	ND	0.003631	ND	0.003631									
Ethylbenzene	0.001294	0.000520	ND	0.001814									
Isopropylbenzene	ND	0.000006	ND	0.000006									
Styrene	0.000691	ND	ND	0.000691									
Toluene	0.004954	0.004431	ND	0.009385									
Trichloroethene	0.000257	ND	ND	0.000257									
Vinyl Chloride	0.000005	ND	ND	0.000005									
Xylenes, Total	0.018701	0.019438	ND	0.038139									
Total VOCs	0.0862484	0.0477485	0.0014505	0.1354474									
Percentage	63.7%	35.3%	1.07%	100%									
2,6-Dinitrotoluene	0.015799	ND	ND	0.015799									
Acenaphthene	0.003786	0.002314	0.000001	0.006100									
Benzo(a)anthracene	0.000259	0.000028	0.000001	0.000288									
Benzo(a)pyrene	0.000062	0.000010	ND	0.000072									
Benzo(b)fluoranthene	0.000160	0.000019	0.000001	0.000179									
Benzo(k)fluoranthene	0.000073	0.000007	ND	0.000080									
Biphenyl	0.002353	0.000601	ND	0.002954									
Bis(2-ethylhexyl)phthalate	0.001798	0.000141	0.000013	0.001952									
Chrysene	0.000225	0.000021	0.000001	0.000247									
Fluorene	0.017413	0.002449	0.000002	0.019864									
Indeno(1,2,3-cd)pyrene	0.000031	0.000003	ND	0.000034									
Naphthalene	0.088561	0.104104	0.000003	0.192668									
Phenanthrene	0.032295	0.003146	0.000004	0.035445									
Pyridine	ND	na	na	na									
Total Phenolics	0.0239155	0.0234874	0.0000016	0.0474045									
Total SVOCs	0.1867296	0.1363305	0.0000261	0.3230862									
Percentage	57.8%	42.2%	0.00808%	100%									
Arsenic	0.003076	0.007575	0.000070	0.010722									
Barium	0.472121	1.240640	0.000143	1.712905									
Cadmium	na	na	ND	ND									
Chromium	0.035736	0.005716	0.000050	0.041502									
Lead	0.005188	0.004267	0.000096	0.009550									
Selenium	0.021006	0.000428	0.000005	0.021440									
Total Metals	0.5371270	1.2586265	0.0003651	1.7961185									
Percentage	29.9%	70.1%	0.0203%	100%									
Cyanide	0.441855	0.000997	0.001186	0.444038									
Total (lbs/day):	1.25	1.44	0.00303	2.70									

Total (lbs/day): Percentage:

1.25 1.44 0.00303 2.70 46.4% 53.5% 0.112% 100%

Notes:

- 1. See Tables 4-42 and 4-43 for loading calculations.
- 2. Bars show relative contribution of each compound to total VOCs, SVOCs, and metals for each waterbody.

Definitions:

na = Not applicable or not analyzed for this compound

ND = Compound was not detected at the method detection limit at any wells included in the sum (where the compound was analyzed).

Color Code:

= Parameter designated a Primary Compound of Concern.

TABLE 4-46

SWMU WASTE/FILL & USACE SAND/DREDGE SPOIL MATERIAL CONTAINING COMPOUNDS AT CONCENTRATIONS EXCEEDING PART 375 PROTECTION OF GROUNDWATER SCOs¹

		VOCs																	SV	DCs (ΈΔΗ	ls in	RFD)							Metals							Ot	her
					Т	T	, 				1		l	l	1	l	T	T	T	 	(i Ai)	3 111	I	1		1	1	1	1					leta				Ot.	
Groundwater Discharge Sub-area	Benzene	1 1-Dichlomethane	1,2-Dichloroethane	1.1.1-Trichloroethane	Ethylbenzene	Methylene chloride	Methylene chionae	Metnyl Etnyl Ketone	Toluene	Trichloroethene	Xylenes, total	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzofuran	2-Methylphenol	3- and 4-Methylphenol	4-Methylphenol	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Arsenic	Barium	Cadmium	Lead	Mercury	Nickel	Selenium	Cyanide	TCLP Hazardous
DSA 2A					<u> </u>																																		
S-1	•	1			•	•	•	•	•		•	•	•		•	•	•	•	•					•	•	•	•	•	•	•					•	•	•		
S-2																																	•	•					
S-3 (HWMU 2)															•				•														•	•			•		
S-4 (portion)																																	•	•	•				1
S-5	•								•		•																						•						
S-6	•				•	•	•		•	•																							•	•					
S-7/S-20	•		•																														•	•			•		
S-8 (portion) - empty															•		•	•	•														•	•					1
S-21																																	•	•		•			
S-27															•		•		•														•		•		•		
USACE Dredge Spoils															•		•	•	•							•	•		•				•		•				
DSA 2B																																							
S-4 (portion)																																	•	•	•				
S-8 (portion) - empty															•		•	•	•														•	•					
S-11	•			•	•	•	•	•	•	•	•				•		•		•		•	•	•				•		•		•		•	•	•		•	•	1
S-22	•	•		•	•	•		•	•	•	•				•		•		•		•	•	•				•		•		•		•	•	•		•	•	
USACE Dredge Spoils															•		•	•	•							•	•		•				•		•				
DSA 3A																																							
P-8 (Tank Farm)						•	•								•	•	•	•	•						•	•	•		•					•	•		•		
S-24 (NFA)	•								•		•				•	•	•	•	•			•				•	•		•		•				•		•		
P-74D															•	•	•	•	•							•										•			
P-75 (portion)	•				•	•	•		•		•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•		•			•	•			•

TABLE 4-46 SWMU WASTE/FILL & USACE SAND/DREDGE SPOIL MATERIAL CONTAINING COMPOUNDS AT CONCENTRATIONS EXCEEDING PART 375 PROTECTION OF GROUNDWATER SCOs 1

					VC	OCs												S	voc	Cs (F	PAHs	in l	RED))									N	/leta	ls			Oth	ier
Groundwater Discharge Sub-area	Benzene	1,1-Dichloroethane	1,2-Dichloroethane	1,1,1-Trichloroethane	Ethylbenzene	Methylene chloride	Methyl Ethyl Ketone	Toluene	Trichloroethene	Xylenes, total	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene		Benzo(k)fluoranthene	Chrysene	Dibenzofuran	2-Methylphenol	3- and 4-Methylphenol	4-Methylphenol	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Arsenic	Barium	Cadmium	Lead	Mercury	Nickel	Selenium	Cyanide	TCLP Hazardous
USACE Dredge Spoils			L						L	L	L	L		•	L	•	<u> </u>	•	•							•	•		•		L		•		•	上		Ш	
DSA 4A																																							
P-74 (A, B, & C)														•	•	•	• •	•	•							•										•		Ш	
P-75 (portion)	•				•	•		•		•	•	•	•	•	•	•	• •	•	•	•				•	•	•	•	•	•	•		•			•	•			•
S-10														•		•	1		•														•		•		•		
S-12 ²																																							
S-13 (HWMU 1A) ³																																							
S-14	•				•	•	•	•		•	•	•		•	•	•		•	•					•	•	•	•	•		•			•	•					
S-15														•																									
S-16 (HWMU 1B) ⁴																																						•	
S-17														•		•		•	•														•		•				
S-18 (AOCs A, B, C)														•					•														•	•	•	•	•		
S-19														•		•			•																	•	•		
S-23	•					•		•		•		•	•	•	•	•		•	•					•	•	•	•	•	•	•					•				•
S-28														•					•	Ì																			
USACE Dredge Spoils														•		•		•	•							•	•		•				•		•				
DSA 4B																																							
S-25																																	•						
S-26 (portion)	•				•	•		•		•	•	•		•	•	•		•	•	•				•	•	•	•	•		•									
USACE Dredge Spoils														•		•		•	•							•	•		•				•		•				

TABLE 4-46

SWMU WASTE/FILL & USACE SAND/DREDGE SPOIL MATERIAL CONTAINING COMPOUNDS AT CONCENTRATIONS EXCEEDING PART 375 PROTECTION OF GROUNDWATER SCOs 1

					V	OCs												S	voc	cs (F	PAH	s in I	RED)										N	/letal	s			Ot	her
Groundwater Discharge Sub-area	Benzene	1,1-Dichloroethane	1,2-Dichloroethane	1,1,1-Trichloroethane	Ethylbenzene	Methylene chloride	Methyl Ethyl Ketone	Toluene	Trichloroethene	Xylenes, total	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)ovrene	Benzo(h)fluoranthene	Denzo(b)finoranthere	Benzo(k)fluoranthene	Chrysene	Dibenzofuran	2-Methylphenol	3- and 4-Methylphenol	4-Methylphenol	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Arsenic	Barium	Cadmium	Lead	Mercury	Nickel	Selenium	Cyanide	TCLP Hazardous
DSA 5																																							
P-7														•		•	•	•	•										•										
P-9																																							•
P-10														•	•	•	•	•	•							•	•											•	
P-11	•				•			•		•																	•						•		•				
P-11A ⁵																																							
P-12	•				•			•		•																	•								•				
P-18 (A and B)														•		•	•	•	•										•				•	•			•	•	•
S-26 (portion)	•					•					•	•		•	•	•	•	•	•	•				•	•	•	•	•		•					•				

Notes:

- 1. Compounds detected in surface and/or subsurface waste/fill at each SWMU exceeding the Protection of Groundwater SCO are shown.
- 2. RFI: Part V SWMU Assessment Report for SWMU S-12 is an asbestos landfill only.
- 3. RFI: Part V SWMU Assessment Report for SWMU S-13 (HWMU 1A) did not report surface/subsurface soil/fill results as this is a closed landfill.

 4. RFI: Part V SWMU Assessment Report for SWMU S-16 (HWMU 1B) did not report surface soil/fill results as this is a closed landfill. Subsurface results were presented for total metals only; only cyanide exceeded the Part 375 Protection of GW SCO.
- 5. Soil data associated with SWMU P-11A was not collected during the RFI or CMS.

1. RFI: Part V - SWMU Assessment Reports and/or CMS Report (December 2011).

TABLE 4-47 DETERMINATION OF POTENTIAL GROUNDWATER CONTAMINATION SOURCES

			,	voc	s				-		OCs				Me	tals	Other
Groundwater Discharge Sub-Area	Downgradient Wells	Benzene	Ethylbenzene	Toluene	Trichloroethene	Xylenes, total	Anthracene	Benzo(a)anthracene		Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Indeno(1,2,3-cd)pyrene	Naphthalene	Arsenic	Lead	Cyanide
DSA 2A				<u>. </u>													
S-1	MWS-09, MWS-26A																
S-2	MWS-26A, MW-2D2, MW-2D2B, MW-2D2D																
S-3 (HWMU 2)	MW-2D2, MW-2D2B, MW-2D2D, MW-2D3, MW-2D4																
S-4 (portion)	MW-2D4																e. No /-2D4).
S-5	MWS-15, MWS-09, MWS-26A																
S-6	MWS-13, MWS-15, MWS-09, MWS-26A																
S-7/S-20	MWS-15, MW-2U1, MW-2U1B, MW-2D2, MW-2D2B, MW-2D2D, MW-2D3, MW-2D4																
S-8 (portion) - empty	MWS-11A					T				T							
S-11/S-22 (ATP-ICM)	MWS-14A , MWS-14B Primary groundwater flow from S-11/S-22 is north and northwesterly.			Ī												\Box	
USACE Dredge Spoils	MW-2D2B, MW-2U1B, MWS-26A, MWS-29A			<u> </u>												\vdash	
DSA 2B	MW-2020, MW-2010, MW-20A, MW-20A	_	<u> </u>		<u> </u>	<u> </u>	<u> </u>										
S-4 (portion)	MWS-01, MWS-01B	т	Т	Т	Т	Т	П		П	П	Π	Г	Π				
S-11/S-22 (ATP-ICM)	MWS-18A, MWS-18C, MWS-19A, MWS-19B, MWS-20A, MWS-20B, MWS-23A, MWS-23B, MWS-10, MWS-10B, MWS-21A, MSWS-21B																
USACE Dredge Spoils	MWS-01B															\Box	
DSA 3A		_	<u> </u>			<u>I</u>				l		<u> </u>					
P-8 (Tank Farm)	MWN-84A, MWN-82A	Π	Π	Π	I	l											
S-10	MWN-01, MWN-01B, MWN-23B															\Box	
S-24 (NFA)	MWN-24A, MWN-24B, MWN-44A																
P-74D	MWN-17A, MWN-17B, MWN-94A, MWN-94B																
P-75 (portion)	MWN-17A, MWN-17B, MWN-83A, MWN-94A, MWN-94B																
USACE Dredge Spoils	BCP-ORC-1, MWN-01B, MWN-23B, WT1-03, WT1-04, WT1-05R																
DSA 4A			<u> </u>	<u> </u>		<u> </u>	<u> </u>										
P-75 (portion)	MWN-37A, MWN-38A, MWN-39A			I													
S-10	MWN-22B, MWN-41A, MWN-07, MWN-01B, WTI-07, MWN-02, MWN-02B																
S-14	WT8-01, WT8-02																
S-15	MWN-35A																
S-17	MWN-12															\Box	
S-18 (AOCs A, B, C)	MWN-05A, MWN-05B, MWN-05D																
S-23	MW-1D1, MW-1D6, MW-1D7, MW-1D8																
S-28	MWN-35A																
USACE Dredge Spoils	MWN-02B, MWN-03B, MWN-05B, MWN-13B, MWN-13C, MWN-14B, MWN-22B, WT1-01, WT1-02, WT1-06, WT1-07, WT8-01, WT8-02																
DSA 4B																	
S-26 (portion)	MWN-18A					1										Ш	
USACE Dredge Spoils	MWN-43A						L						L				
DSA 5																	
P-11	MWN-21A, MWN-21B, MWN-21C, MWN-32A, MWN-19A, MWN-19B, MWN-30A, MWN-53A, MWN-54A, MWN-55A																
P-11A ³	MWN-34A, MWN-08, MWN-49A, MWN-49B, MWN-68A, MWN-76A, MWN-79A, MWN-78A															Щ	<u> </u>
P-12	MWN-21A, MWN-21B, MWN-21C, MWN-32A, MWN-19A, MWN-19B, MWN-30A, MWN-53A, MWN-54A, MWN-55A															Щ	
P-18 (A and B)	MWN-45A, MWN-47A		_			_										Ш	
S-26 (portion)	MWN-52A, MWN-52B, MWN-07		1			1	Ī									, 1	l

- Compounds detected in surface and/or subsurface waste/fill at each SWMU exceeding the Protection of Groundwater SCO are shown.
 Downgradient wells in RED indicate those wells screened within and representative of the USACE sand/dredge spoil unit.
 No soil data was collected from SWMU P-11A during RFI or CMS. Highlighted compounds reflect groundwater contaminants.

⁼ Compound detected in SWMU waste/fill or USACE sand/dredge spoil material above the Part 375 GWP SCO and downgradient groundwater concentration detected above the Class GA GWQS/GV.

PROJECTED PRIMARY COMPOUNDS OF CONCERN MASS LOADING TO ADJACENT WATER BODIES MASS LOADINGS AFTER IMPLEMENTATION OF GROUNDWATER ALTERNATIVE 3 SECONDARY & TERTIARY GROUNWATER EXTRACTION AND TREATMENT

												F	Primary Compo	unds of Conce	n Detected in G	Froundwater 1,2,3									
Discharge Sub-Area	Unit	Well I.D.	Benzene	Ethylbenzene	Toluene	Xylenes, Total	TOTAL BTEX	Total BTEX without Selected Well Segments	Percent Change	Naphthalene	Total Naphthalene	Naphthalene without Selected Well Segments	Percent Change	Barium	Total Barium	Total Barium without Selected Well Segements	Percent Change	Cyanide	Total Cyanide	Total Cyanide without Selected Well Segements	Percent Change	Phenolic compounds (total phenols)	Total Phenois	Total Phenols without Selected Well Segments	Percent Change
			Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Percent (%)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Percent (%)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Percent (%)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Percent (%)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Percent (%)
		MW-2D4	ND	ND	ND	ND				ND				0.00356				na				ND			
	Slag/Fill	MW-2D3	0.00022	0.00010	0.00017	0.00071				0.00366				0.00289				na				0.00020			
2A	Siag/Fill	MW-2D2	ND	ND	ND	ND	0.0182	0.0013	93	ND	0.01099	0.00402	63	0.00187	0.01253	0.01103	12	na	na	na	na	ND	0.00138	0.00021	85
		MWS-26A	0.00003	ND	ND	0.00011				0.00035				0.00138				na				0.00001			
		MWS-09	ND	ND	ND	ND				0.00001				0.00134				na				na			
	Sand/Dredge Spoil	MW-2D2B	0.00059	0.00052	0.00028	0.01549				0.00697				0.00150				na				0.00116			
		MWS-01	0.00255	0.00090	0.00270	0.01141				0.03528				0.00270				na				0.00064			
		MWS-02	0.00007	ND	ND	ND				0.00006				0.00213				0.43001				ND			
	Slag/Fill	MWS-19A	0.00032	ND	ND	ND				1.24E-06				0.00049				0.00240				ND			
	Clagii III	MWS-18A	0.03676	ND	ND	ND				0.00004				0.00034				0.00482				0.00007			
2B		MWS-20A	ND	ND	ND	ND	0.0562	0.0385	31	ND	3.65E-02	1.09E-04	99.7	0.00060	0.01218	0.00396	67	0.00200	0.4404	0.0104	98	ND	0.0012	0.0001	94
		MWS-03	ND	ND	ND	ND		******		ND	*****			0.00238				na				na			
	Sand/Dredge Spoil	MWS-01B	0.00004	ND	0.00001	ND				0.00112				0.00338				na				0.00048			
	0 1	MWS-19B	0.00140	ND	ND	ND				ND				0.00005				0.00071				ND			
	Sand	MWS-18C	0.00003	ND	ND	ND				ND				0.00001				0.00034				1.64E-06			
		MWS-20B	0.000001	ND	ND	ND				ND				0.00008				0.00013				ND 0.00045			
		MWN-01	0.00342	ND	0.00073	0.00255				0.03567				na				na				0.00215			
	Slag/Fill	MWN-11	0.00011	ND ND	ND	ND 0.00007				0.00042 0.00165			:	na				na				na			
3A		MWN-94A MWN-24A	0.00299 ND	ND ND	ND ND	0.00007 ND	0.0105	0.00325	69	0.00003	0.04232	2.16E-03	95	na	na			na	0.0010	0.0000	100	ND ND	0.00252	0.00008	97
JA.		MWN-01B	0.00035	3.62E-06	0.00010	0.00010	0.0103	0.00323	05	0.00003	0.04232	2.10L=00	93	na na	IId	na	na	na 0.00100	0.0010	0.0000	100	0.00028	0.00232	0.00000	31
	Sand/Dredge Spoil	MWN-23B	0.00035	3.62E-06 ND	0.00010	0.00010				0.00450				na				na				0.00028	-		
	Sand	MWN-94B	0.00000	ND ND	ND	0.00001 ND				2.75E-06				na				na				na			
	Sund	MWN-06A	0.00040	ND ND	ND	ND ND				0.00306				na	i			na				ND.			
1		MWN-05A	ND	ND ND	ND	ND ND	1			0.00034				0.07044				na				0.00054	†		
1	Slag/Fill	MWN-04	ND	ND ND	ND	ND ND	1			ND				0.02399				na				ND	1		
1	2.29/1	MWN-03	0.00401	0.00017	0.00118	0.00297	1			0.00899				0.06296			_	na	na	na	na	0.00090	1		
4A		MWN-02	0.00059	0.00012	0.00021	0.00096	0.03101	0.0185	40	ND	0.10617	0.08833	17	0.10963	1.53338	1.41887	7	na		***		0.01707	0.04052	0.02058	49
		MWN-05B	0.00410	ND	0.00296	0.00273				0.07593				1.19597				na				0.01914			
1	Sand/Dredge Spoil	MWN-03B	ND	ND	ND	ND	1			ND				0.06551				na				ND	1		
1		MWN-02B	0.00823	ND	0.00117	0.00119	1			0.01784				0.00487				na				0.00288			

- Notes:
 1. Loading = Discharge Rate x Concentration. See Table 4-41 for discharge calculations and Tables 4-31 through 4-36 for concentrations.
 2. Only Primary Compounds of Concern are shown on this table.
 3. Table 4-43 Current CMS COC Mass Loading from CMS Area Groundwater to Adjacent Water Bodies was used as base table to develop Projected Mass Loadings after Secondary and Tertiary Groundwater Extraction and Treatment

Definitions:

Ibs/day - pounds per day
na = not analyzed
ND = compound was not detected at the method detection limit
Total BTEX = total benzene, toluene, ethylbenzene, and xylene concentrations

Color Code:

= Well Shoreline Segment Selected for Groundwater Extraction and Treatment. See Plate 4-19 for Shoreline Segments and Plate 5-2 for extraction well locations.

TABLE 5-1
POTENTIAL CHEMICAL-SPECIFIC STANDARDS, CRITERIA, AND GUIDANCE (SCGs)

Standard, Criteria or Guidance	Citation or Reference	Description	Applicability
Groundwater:			
RCRA Groundwater Protection Standards and Maximum Concentration Limits	40 CFR 264, Subpart F	Criteria for groundwater consumption.	On-site groundwater use is prohibited. Potentially relevant for off-site groundwater quality.
NYSDEC Groundwater Quality Standards and Groundwater Effluent Limitations	6NYCRR Parts 703.5 and 703.6	Groundwater quality criteria.	Applicable to on-site and off-site groundwater quality.
Ambient Water Quality Standards and Guidance Values	TOGS 1.1.1, October 1993, reissued 1998	Groundwater water quality standards and guidance values.	Applicable to on-site and off-site groundwater quality.
Surface Water:			
NYSDEC Surface Water Quality Standards	6NYCRR Parts 703.5 and 703.6	Surface water quality criteria.	Applicable to on-site and off-site surface water quality.
Ambient Water Quality Standards and Guidance Values	TOGS 1.1.1, October 1993, reissued 1998	Surface water quality standards and guidance values.	Applicable to on-site and off-site surface water quality.
Soil/Fill:			
NYSDEC Environmental Remedial Programs Regulations	6NYCRR Part 375-6.8(b)	Soil Cleanup Objectives based on human health, ecological protection, and groundwater protection.	Applicable to soil/fill.
DER-10 / Technical Guidance for Site Investigation and Remediation Chapters 4 & 5	NYSDEC Program Policy (May 3, 2010)	Guidance provides an overview of the site investigation and remediation process.	Applicable to soil/fill.
NYSDEC CP-51/Soil Cleanup Guidance	NYSDEC Policy (October 21, 2010)	Policy provides the framework and procedures for the selection of soil cleanup levels.	Applicable to soil/fill.
USEPA Preliminary Remediation Goals	EPA Region IX, Oct. 2002, updated per EPA Toxicity Guidance Memo (12/12/04)	Presents residential and non- residential soil cleanup goals based on human health criteria and groundwater protection.	Potentially relevant.
USEPA Soil Screening Guidance	Technical Background Document and Users Guide, May 1996 revisions	Guidance for developing risk-based, soil screening levels for protection of human health for Superfund sites.	Potentially relevant.
USEPA CAMU Regulations	40 CFR 264.552 promulgated February 16, 1993 (58 FR 8658)	RCRA Corrective measure regulations regarding Corrective Action Management Units (CAMUs) to facilitate treatment, storage, and disposal of hazardous wastes managed for implementing cleanup. The 2000 amendments "grandfathered" certain categories of CAMUs.	Applicable to grandfathered SW-CAML and HW-CAMU.

TABLE 5-1 POTENTIAL CHEMICAL-SPECIFIC STANDARDS, CRITERIA, AND GUIDANCE (SCGs)

Standard, Criteria or Guidance	Citation or Reference	Description	Applicability
Sediment:			
NYSDEC Screening and Assessment of Contaminated Sediment	NYSDEC Division of Fish, Wildlife and Marine Resources, Bureau of Habitat (June 24, 2014)	Provide sediment guidance values to determine whether a given sediment is toxic and poses a risk to aquatic life.	Applicable to sediment.

TABLE 5-1 POTENTIAL CHEMICAL-SPECIFIC STANDARDS, CRITERIA, AND GUIDANCE (SCGs)

Standard, Criteria or Guidance	Citation or Reference	Description	Applicability
Air:			
New York State Air Quality Classifications and Standards	6NYCRR Parts 256 and 257	Establishes air quality standards protective of public health.	Potentially applicable to intrusive activities that may release constituents to air.
National Primary and Secondary Ambient Air Quality Standards (NAAQS)	40 CFR Part 50	Establishes primary and secondary ambient air quality standards to protect public health and welfare.	Potentially applicable to intrusive activities.
New York State DOH Soil Vapor Intrusion Guidance	New York State DOH, Oct. 2006 (updated May 2017)	Establishes sub-slab and indoor air thresholds for sites impacted by VOCs.	Potentially relevant to portions of CMS Area with subsurface VOCs.
Multiple Media/Other:			
USEPA Integrated Risk Information System (IRIS)	www.epa.gov/iris	Database of human health effects that may result from exposure to various substances found in the environment.	To be considered.

TABLE 5-2 POTENTIAL LOCATION-SPECIFIC STANDARDS, CRITERIA, AND GUIDANCE (SCGs)

Standard, Requirement, Criteria or Limitation	Citation or Reference	Description	Applicability
Other:			
National Historic Preservation Act	16 CFR Part 470	Requires avoiding impacts on cultural resources having historical significance.	Not applicable; no historic features or structures in CMS area
NYSDEC Environmental Remedial Programs	6NYCRR Part 375-6.4 Restricted use soil cleanup objectives for protection of public health	Requires consideration of future land use in remedy selection and soil cleanup criteria.	Applicable to soil/fill.

TABLE 5-3 POTENTIAL ACTION-SPECIFIC STANDARDS, CRITERIA, AND GUIDANCE (SCGs)

Standard, Requirement, Criteria or Limitation	Citation or Reference	Description	Applicability
Groundwater:			
Clean Water Act, National Pretreatment Standards	40 CFR 403.5	General pretreatment regulations for discharge to POTWs.	Potentially applicable for alternatives involving discharges of groundwater to POTW.
Surface water:			
Protection of Waters	6NYCRR Part 608	Regulations for protecting surface water bodies from intrusive activities in the surface water body or along the banks	Potentially applicable for alternatives involving work in or on the banks of the surface water body
Stormwater:			
SPDES General Permit for Stormwater Discharges from Construction Activity	GP-0-15-002 January 29, 2015 - January 28, 2020	Regulations for stormwater discharges from intrusive construction/remedial activities	Potentially applicable for alternatives involving intrusive ground work.
Air:			
NYSDEC DER-10; Appendix 1B - Fugitive Dust and Particulate Monitoring	DER-10 / Technical Guidance for Site Investigation and Remediation (May 3, 2010 Program Policy)	Establishes guidance for community air monitoring and controls to monitor and mitigate fugitive dusts during intrusive activities at NY State inactive hazardous waste sites.	Applicable to intrusive activities that may release contaminants to air.
OSHA General Industry Air Contaminants Standard	29 CFR 1910.1000	Establishes Permissible Exposure Limits for workers exposed to airborne contaminants.	Applicable to intrusive activities that may release contaminants to air.
Solid, Hazardous, and Non-l	Hazardous Waste:		
NYSDEC Inactive Hazardous Waste Disposal Sites	6NYCRR Part 375	Establishes procedures for inactive hazardous waste disposal site identification, classification, and investigation activities, as well as remedy selection and interim remedial actions.	To be considered.
NY State Solid Waste Transfer Permits	6NYCRR Part 364	Establishes procedures to protect the environment from mishandling and mismanagement of all regulated waste transported from a site of generation to the site of ultimate treatment, storage, or disposal.	Potentially applicable for alternatives involving off-site disposal.
DOT Rules for Hazardous Materials Transport	(49 CFR 107, 171.1 - 171.5).	Establishes requirements for shipping of hazardous materials.	Potentially applicable for alternatives involving off-site disposal
Occupational Safety and Health Act (29 USC 651 et seq.)	29 CFR Part 1910 and 1926	Describes procedures for maintaining worker safety.	Applicable to site construction activities.
USEPA CAMU Regulations	40 CFR 264.552 promulgated February 16, 1993 (58 FR 8658)	RCRA Corrective measure regulations regarding Corrective Action Management Units (CAMUs) to facilitate treatment, storage, and disposal of hazardous wastes managed for implementing cleanup. The 2000 amendments "grandfathered" certain categories of CAMUs.	Applicable to grandfathered SW-CAMU and HW-CAMU.

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES SFA ZONES 2 & 3 SUB-AREAS

Alternatives by CAMU and SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
SFA ZONE 2 SUB-AREA:								
IMPOIUNDMENTS AND SW-CAMU								
Alternative 1: Grandfathered SW-CAMU	24-acre SW-CAMU. Pull back existing waste along western and northern slag bluff in SWMUs S-1 thru S-4 to create minimum 50-ft separation distance between waste and edge of bluff. Consolidate 27,000 to 150,000 CY of solid waste from various SWMUs plus slag from other areas of the Site to provide a minimum 4% grade into SWMUs S-1 thru S-6, S-7/20 and S-27 under geocomposite cover system similar to grandfathered application with hummocky profile. Install revetment for shoreline protection.	Protective of public health and the environment as wastes will be moved from several SWMUs, consolidated into SW-CAMU and placed beneath geosynthetic cap; thereby isolating waste from direct contact and reducing/eliminating migration potential.	Compliant with SCGs; SW-CAMU will be constructed and operated in accordance with 1993 CAMU Rule.	Effective and permanent in the long term with maintenance, and engineering and institutional controls.	Reduces mobility of contamination by consolidation of waste under geosynthetic cover with stormwater drainage improvements. Does not reduce toxicity or volume of waste.	This CAMU will be operated (open) for a period of 5-6 years to allow for consolidation of SWMUs waste/fills, followed by final cover construction in year 7. Impact to the community will be limited as community air monitoring will be completed, and dust suppression and typical landfill O&M techniques will be employed. Off-site truck traffic will increase due to the need to import soil and other materials (~2,000 truck loads) for the final cover system.	This involves the use of proven technologies and construction methodologies. Construction of final cap will need to occur during the spring/summer/fall construction season.	30-yr Present Worth Cost: \$18,800,000; Capital Cost: \$18,300,000; 30-yr O&M Cost: \$460,000
Alternative 2: Close In-Place SWMUs S-1, S-2, S-3, S-4, S-5, S-6, Use SWMU S-7 & S-20 for SW- CAMU, Incorporate Waste from S-27 to the impoundments beneath cover system.	4.3 acre SW-CAMU in the footprint of SWMU-S7/20 consisting of a low-permeability geocomposite liner, leachate collection system and low-permeability cover. Relocate between 27,000 and 115,000 CY of waste/slag fill from various SWMUs across the CMS area for encapsulation in the SW-CAMU. Close in-place SWMUs (S-1 to S-6, the "impoundments"). Waste from SWMUs S-27 and SWMU-S-7/20, and demolition and construction debris from the Tecumseh Site (Est. 15,000 to 94,000 CY) plus slag generated from the Site would be relocated into the impoundments to provide minimum grades beneath a low-premeability geocompsite cover (same construction as used for the SW-CAMU).	Protective of public health and the environment as wastes will be moved from several SWMUs, consolidated into SW-CAMU and placed between low permeability liner and cap with leachate collection nominally 40 feet above the water table; thereby isolating waste from direct contact and eliminating migration potential. Reduced foot print easier to maintain.	Compliant with SCGs; SW-CAMU will be constructed and operated in accordance with 1993 CAMU Rule.	Effective and permanent in the long term with maintenance, and engineering and institutional controls.	Reduces mobility of contamination by stabilization of the wastes prior to consolidation into the SW-CAMU (geosynthetic liner, leachate collection and of waste under geosynthetic cover with stormwater drainage improvements. Does not reduce toxicity or volume of waste.	This CAMU will be operated (open) for a period of 5-6 years to allow for consolidation of SWMUs waste/fills, followed by final cover construction in year 7. Impact to the community will be limited as community air monitoring will be completed, and dust suppression and typical landfill O&M techniques will be employed. Off-site truck traffic will increase due to the need to import soil and other materials (~2,000 truck loads) for the final cover system.	This involves the use of proven technologies and construction methodologies. Construction of final cap will need to occur during the spring/summer/fall construction season.	This is the most cost effective method for proper on-site management of residual solid waste requires further action throughout the CMS Area. 30-yr Present Worth Cost: \$17,500,000; Capital Cost: \$16,900,000; 30-yr O&M Cost: \$610,000
SFA ZONE 3 SUB-AREA:								
SWMU S-10 Slag Quench Area J								
Alternative 1: No Further Action	No further action; leave pit as-is	Protective of public health and the environment.	Compliant with SCGs; slag meets ISCOs and site-specific SCOs.	This alternative is effective in the long- term and a permanent remedy for managing the SWMU slag; however, a physical hazard remains.	No impact; therefore no need for reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no capital or O&M costs associated with this alternative.
Alternative 2: Cover In-Place	Grade the sides of the pit to eliminate vertical drop and steep side slopes	Protective of public health and the environment. Added protection from physical hazard.	Compliant with SCGs; slag meets ISCOs and site-specific SCOs.	This alternative is effective in the long- term and a permanent remedy for managing the SWMU slag and physical hazard.	No impact; therefore no need for reduction in toxicity, mobility, or volume of contamination.	Filling and grading of the SWMU is a short-term action on the order of one month. Short-term exposures to workers and the community would be effectively controlled through implementation of community air monitoring, PPE, and dust controls.	No technical or administrative implementability issues are associated with alternative.	Total Capital Cost: \$134,000; No O&M Costs.

TABLE 5-5
Page 1 of 4

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES SFA ZONE 4 SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
SFA ZONE 4 SUB-AREA:								
SWMU S-12 Asbestos Landfill L								
Alternative 1: No Further Action (NFA)	The bagged asbestos waste would remain within the existing landfill. The eroding cover of fine slag (1- to 3-foot thick) would remain.	Not protective of public health and the environment as the existing cap is eroding and may eventually expose/ release waste to the environment.	Not compliant with SCGs. While the landfill was operated and closed following permit requirements, the eroding cap no longer complies with these requirements.	No long-term effectiveness or permanence. Eroding of slag cover is expected to continue.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no capital or O&M costs associated with the NFA alternative.
Alternative 2: Excavate and Consolidate in SW-CAMU	Excavate and consolidate the asbestos waste into the SW-CAMU.	Protective of public health and the environment in the long-term as the asbestos waste will be removed from the SWMU and encapsulated in the SW-CAMU (liner, leachate collection, geocomposite CAMU cover system).	Compliant with SCGs long-term. May exceed SCGs in short-term during excavation and handling.	Effective and permanent once the waste is consolidated in the SW-CAMU celll; subject to continuing cap OM&M, and engineering and institutional controls	Long-term mobility of contamination would be reduced as the asbestos-containing bags would be overpacked in plastic and sealed before placing in the SW-CAMU cell. No reduction in toxicity or volume of contamination.	This alternative is expected to require 2 to 3 months for completion. Short-term risks to workers and the community exist under this alternative due to potential exposure to friable asbestos if bags are damaged or become damaged during removal. Dust suppression, prudent construction & transportation techniques, and PPE would lower these risks. However, the risks of asbestos release remains higher than Alternatives 1 and 3. Short-term risks to the environment from exposed asbestos entering the atmosphere would be discovered through monitoring and controlled.	No administrative implementability issues are associated with the alternative. Although this alternative is technically implementable, extreme care must be taken to prevent the release of asbestos during excavation, transportation, and interment at the SW-CAMU.	significant short-term risk of asbestos release during excavation and handling with no added protection to the environment. However, by utilizing safe work practices and PPE, the removal of the asbestos can be done safely and relocating the waste to the SW-CAMU has the advantage of opening up land for slag reclamation and redevelopment, and makes the admissistration of the waste easier as it would be located in the SW-CAMU.
Alternative 3: Upgrade Cover System	Upgrade cap by adding sufficient slag for 1- foot slag cover; mound cap to promote drainage away from this area thereby eliminating potential for cap erosion	Protective of public health and the environment with maintenance of the cap.	Compliant with SCGs; once repaired, the cap will exceed permit requirements	Effective and permanent in the long term with cap maintenance, and engineering and institutional controls.	Reduces potential short- and long-term mobility of asbestos by repairing eroded cap. No reduction in toxicity or volume of contamination.	This alternative is expected to require one to two weeks for construction of cap improvements. Short-term exposures will be minimized through proper use of PPE, safe work practices, and dust control.	No technical or administrative implementability issues are associated with alternative.	This is the most cost effective means for achieving the goal of long-term permanent storage of the asbestos waste. 30-yr Present Worth Cost: \$31,000; Capital Cost: \$22,000; 30-yr O&M Cost: \$8,000.
Alternative 2: Excavate and Off-Site Disposal at TSDF	Similar to Alternative 2 except waste is transported to a TSDF	Protective of public health and the environment in the long-term as the asbestos waste will be removed from the SWMU and encapsulated at commercial TSDF (liner, leachate collection, geocomposite cover system).	Compliant with SCGs long-term. May exceed SCGs in short-term during excavation and handling.	Effective and permanent once the waste is consolidated in a commercial TSDF	Long-term mobility of contamination would be reduced as the asbestos-containing bags would be overpacked in plastic and sealed before transporting offsite. No reduction in toxicity or volume of contamination.	This alternative is expected to require 2 to 3 months for completion. Short-term risks to workers and the community exist under this alternative due to potential exposure to friable asbestos if bags are damaged or become damaged during removal. Dust suppression, prudent construction & transportation techniques, and PPE would lower these risks. However, the risks of asbestos release remains higher than Alternatives 1 and 3. Short-term risks to the environment from exposed asbestos entering the atmosphere would be discovered through monitoring and controlled.	No administrative implementability issues are associated with the alternative. Although this alternative is technically implementable, extreme care must be taken to prevent the release of asbestos during excavation, transportation, and off-site transportation.	Excavating and transporting the waste has a significant but controllable short-term risk of asbestos release during excavation and handling with no added protection to the environment. However, by utilizing safe work practices and PPE, the removal of the asbestos can be done safely and relocating the waste off-site has the advantage of opening up land for slag reclamation and redevelopment. Capital Cost: \$150,000; No annual O&M costs.
SWMU S-13 (HWMU1A)								
Alternative 1: No Further Action	This SWMU was closed in accordance with NYSDEC requirements, which included a cap consisting of slag to provide grade for promoting drainage, 2 feet of low-permeability clay (<1x10 ⁻⁷ cms), 60 mil-HDPE geomembrane, 1.5-foot thick vegetative support soil layer, and 6 inches of topsoil. Landfill 30-year post-closure care began January 1989.	Protective of public health and the environment as the waste is contained under a low permeability cap and waste sits above the groundwater table.	Compliant with SCGs; VOC and PAH concentrations in groundwater downgradient of Unit are decreasing or staying the same	Effective and permanent in the long term with continued post-closure O&M, and engineering and institutional controls.	No reduction in toxicity or volume of contamination. Mobility is reduced by cover system.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no capital costs associated with the NFA alternative. 30-Year O&M Cost: \$31,000
Alternative 2: Excavate, Transport and Dispose off-Site at TSDF	Excavate.load, and transport the estimated 5,600-23,000 CY of hazardous waste offsite to commercial TSDF. Backfill with slag or grade area to reduce physical hazards. Costs include provisions for off-site disposal as hazardous waste and as hazardous TENORM waste.		Compliant with SCGs; removal would meet ISCOs with exception of some VOCs and naphthalene in groundwater localized to the unit.	Provides long-term effectiveness and permanence	Would reduce the volume of waste onsite, would not affect the toxicity or volume of waste. Once reloacted to a TSDF with cover, the mobility of the soluble constituents in the waste fill may be further reduced as there would be a bottom liner and leachate collection; although, the reduction in mobility from its current situation is expected to be minor and would potentially result in short-term mobility of wastes (odors, volatiles and dust) during excavation, transportation, and off-site consolidation in TSDF.	Remedial implementation time is expected to require 2-3 months. Public health and the environment would potentially be impacted during the excavation, transportation and consolidation as the waste would be exposed to precipitation and atmospheric conditions. Dust suppression, prudent construction & transportation techniques, and proper use of PPE would help mitigate these risks.	No technical or administrative implementability issues are associated with alternative, other than potential complications from TENORM waste which may protract identifying an appropriate out-of-state disposal facility.	Capital Cost: \$13,000,000 to 52,000,000 depending upon the TENORM conditions; No annual O&M costs.
SWMU S-14 General Rubble Landfill I	N							
Alternative 1: No Further Action	No further action; leave waste in-place.	Not protective of public health and the environment. Although primarily in the subsurface where direct contact, and exposure to wind or storm water erosion, total PAH concentrations exceed CP-51 SCO.	Subsurface samples exceed CP-51 total PAH concentration of 500 mg/kg in samples up to 16 fbgs below top of mound. Surface samples did not contain exceedances of ISCOs.	Does not provide long-term effectiveness and permanence.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no capital or O&M costs associated with the NFA alternative.

TABLE 5-5 Page 2 of 4

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES SFA ZONE 4 SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
SFA ZONE 4 SUB-AREA:								
Alternative 2: Excavate and Consolidate in SW-CAMU	Excavate PAH-impacted slag (~16,000 CY) and consolidate in SW-CAMU.	Protective of public health and the environment as the slag/fill exceeding ISCOs and CP-51 SCO would be moved from the SWMU and encapsulated in the SW-CAMU cell (liner, leachate collection and low-permeability cover.)	Compliant with SCGs	Provides long-term effectiveness and permanence, provided lower 20 feet of mound are not impacted.	Reduces mobility of contamination as PAH impacted slag would be placed in SW-CAMU containment cell (liner, leachate collection, and low permeability cover); however, toxicity or volume of contamination would not be reduced.	Short-term exposures to workers during excavation and disposition of the waste in the SW-CAMU would be effectively controlled through PPE, safe work practices, and dust control measures. There are no significant risks to the community, workers, or the environment.	Excavations in slag/fill can be extremely difficult particularly if the excavation needs to proceed beyond 20 feet into the mound and/or involves molten slag. No administrative implementability issues are associated with alternative, once the SW-CAMU has been constructed.	Consolidation in SW-CAMU is not as cost-effective as NFA. Capital Cost: \$365,000; Annual O&M costs are associated with the SW-CAMU.
Alternative 3: Geocompsite Cover System	Grade residuals, cap in-place with a demarcation layer, bedding layer, 30-mil GCL liner, 12" barrier protection layer. Engineering and institutional controls required.	Protective of public health and the environment as the waste will be contained beneath a low-permeability cover.	PAH impacts would remain beneath the cover system.	Provides long-term effectiveness and permanence.	Reduces mobility of contamination as PAH-impacted slag would be contained beneath a low-permeability cover similar to that used for the SW-CAMU; however, toxicity or volume of contamination would not be reduced.	Short-term exposures to workers during grading of slag/fill would be effectively controlled through PPE and dust controls. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative.	Low permeability cap is equally effective as consolidation in SW-CAMU or offsite TSDF. Present Worth Cost: \$177,000; Capital Cost: \$166,000; 30-yr OM&M costs for Cap Maintenance: \$15,000.
Alternatives 4A Excavation and Off- Site Disposal of Entire Mound Contents	Excavate entire mound contents (est. at 57,000 CY), Load, transport off-site at TSDF. TENORM considerations for disposal of material	Protective of public health and the environment as the waste will be reloacted off-site and disposed in a lined, cell with leachate collection and a low permeability cap.	Compliant with SCGs	Provides long-term effectiveness and permanence.	Reduces mobility of contamination as PAH impacted slag would be placed in TSDF containment cell (liner, leachate collection, and low permeability cover); however, toxicity or volume of contamination would not be reduced.	Short-term exposures to workers during grading of slag/fill would be effectively controlled through PPE and dust controls. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative, other than potential complications from TENORM waste which may protract identifying an appropriate out-of-state disposal facility.	Off-site disposal is the most expensive cost option for this SWMU remediation. Present Worth Cost: \$7,800,000 to \$50,000,000 assuming waste is high TENORM and non-hazardous.
Alternatives 4B: Slag/Scrap Steel Reclamation; Excavation and Off- Site Disposal at TSDF for PAH- Impacted Slag/Fill	Reclaim slag/scrap steel; PAH-impacted slag/fill; load and transport off-site for disposal at TSDF (est. 16,000 CY). TENORM considerations for disposal of material	Protective of public health and the environment as the waste will be reloacted off-site and disposed in a lined, cell with leachate collection and a low permeability cap.	Compliant with SCGs	Provides long-term effectiveness and permanence.	Reduces mobility of contamination as PAH impacted slag would be placed in TSDF containment cell (liner, leachate collection, and low permeability cover); however, toxicity or volume of contamination would not be reduced.	Short-term exposures to workers during grading of slag/fill would be effectively controlled through PPE and dust controls. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative, other than potential complications from TENORM waste which may protract identifying an appropriate out-of-state disposal facility.	This alternative is also expensive but less than Alternative 4A. Present Worth Cost: \$2,800,000 to \$15,000,000 assuming waste is high TENORM and non-hazardous.
SWMU S-15 General Rubble Landfill	0							
Alternative 1: No Further Action	Leave in place the estimated 1,000 CY of debris consisting of tires, bricks, steel, etc. that resides on the surface of this SWMU.	Not protective of public health and the environment as the debris is a nuisance condition.	Compliant with SCGs; only one slight exceedance of Protection of Groundwater SCO.	Does not provide long-term effectiveness and permanence due to nuisance condition.	There are no exceedances of the ISCOs	No short-term impacts are associated with implementation of the NFA alternative.	No technical or administrative implementability issues are associated with the NFA alternative.	There are no capital or O&M costs associated with the NFA alternative.
Alternative 2: Remove Debris for Salvage with Unsalvageable C&D Debris to SFA Zone 2 Impoundments	Reclaim salvageable materials with leftover debris consolidated into SFA Zone 2 Impoundments prior to cap installation. This alternative allows this SWMU area to be opened for slag reclamation or redevelopment.	Protective of public health and the environment. Improves Site conditions by removing solid waste (e.g., tires) and enhances natural resource recovery by reclaiming salvageable materials (e.g.,	Compliant with SCGs; alternative removes nuisance condition.	Provides long-term effectiveness and permanence.	There are no exceedances of the ISCOs	Short-term exposures to workers during removal of salvageable material would be effectively controlled through PPE and dust controls. There are no significant risks to the community or	No technical or administrative implementability issues are associated with this alternative.	This is the most cost effective alternative for dealing with the debris in this SWMU The capital costs associated with salvaging debris and relocation of the unsalvageable materials to the impoundments are estimated at \$26,000.
Alternative 3: Remove Debris for Salvage with Unsalvageable C&D Debris to OFF-Site TSDF	Essentially the same as Alternative 2; Except send unsuitable materials to off-site TSDF	steel)				environment.		This is the most expensive alternative. The capital costs associated with salvaging debris and relocation of the unsalvageable materials to an off-site TSDF are estimated at \$75,000.
Alternative 4: Cover In-Place	Reclaim salvageable materials; grade remaining C&D cap in-place with a minimum 12" BUD slag.	Protective of public health and the environment by eliminating direct contact and reducing/eliminating migration potential from wind and stormwater migration.	Compliant with SCGs; alternative removes nuisance condition.	Provides long-term effectiveness and permanence.	There are no exceedances of the ISCOs	Short-term exposures to workers during removal of salvageable material would be effectively controlled through PPE and dust controls. There are no significant risks to the community or environment.	No technical or administrative implementability issues are associated with this alternative.	Recovering recyclables and covering debris with a slag cap is more costly than Alternatives 1 and 2. Present Worth Cost: \$34,000; Capital Cost: \$26,000; 30-yr OM&M costs for Cap Maintenance; \$7,700.
SWMU S-16, S-23 and AOC-D								
Alternative 1: No Further Action	To remain in SWMU S-16, an estimated 6,000 CY of spent pickle liquor (SPL)-impacted slag; PVC cover damaged in 2005. To remain in SWMU-23 and ACO-D, an estimated 9,500 CY of coal tar impacted slag	Not protective of public health and the environment due to the significantly damaged cover system and presence of potentially hazardous waste fill at or near the surface of the Unit.	SWMU S-16: Slag/fill compliant with ISCOs and the samples did not fail hazardous waste characteristics per EP Toxicity testing. Downgradient groundwater impacts observed. SWMU S-23 is tar-waste buried beneath slag cover contains exceedances of CP-51 SCO for total PAHs. Two tar samples (RFI) exhibited hazardous waste characteristics for benzene. Samples of tar waste from AOC-D did not exhibit hazardous waste characteristics. Slag fill samples collected adjacent to and beneath the tar waste fill in S-23 and AOC-D did not contain any significant concentrations of benzene.	NFA is not a long term and permanent remedy.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of the NFA alternative.	No technical or administrative implementability issues are associated with the NFA alternative.	There are no capital or O&M costs associated with this alternative.

TABLE 5-5 Page 3 of 4

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES SFA ZONE 4 SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness			
SFA ZONE 4 SUB-AREA:											
Alternative 2: Excavate and Dispose Off-Site	Same as Alternative 2 except the hazardous waste would be disposed off-site at a TSDF.	Protective of public health and the environment as the waste will be removed, treated, and contained in a secure off-site landfill.	Compliant with SCGs for slag/fill; groundwater impacts would be monitored for natural attenuation.	Provides long-term effectiveness and permanence. This alternative is more protective than Alternatives 1 or 3.	Toxicity, mobility, and volume of contamination on-site would be permanently reduced. The waste would be treated off-site at the TSDF prior to land disposal and/or the waste would be recycled (used for fuel); therefore, the mobility, toxicity, and possibly the volume of waste would ultimately be reduced.	This remedial effort is expected to require ~8 to 12 months. Short term releases to the groundwater are expected during the removal action due to increases in infiltration of water contacting soluble waste constituents and shortened distances of travel as the excavation proceeds with depth. Commingling of the waste will be inevitable as the waste will need to be excavated simultaneously. Short-term exposure to workers during excavation and transporting of the waste would be effectively controlled through PPE, dust controls, and performance of community air monitoring to assess migration of airborne vapors and particulates. Minor potential for disruption of community due to truck traffic and transporting hazardous waste on city roads.	Very deep excavation (~40ft) may required to remove the SPL sludge from S-16. Technically feasible, but extremely difficult with a large over excavation required, complicated by the presence of S-23 that surround S-16 on three sides. Administrative implementability issues include the need for off-site disposal approval by the TSDF and potential complications from TENORM waste which may protract identifying an appropriate out-of-state disposal facility.	Not a cost effective alternative to achieving the RAO for the SWMUs as the cost is a factor of 10+ times the cost of Alternative 3. Capital Cost: \$9,000,000 to \$35,000,000 depending upon the TENORM considerations. No annual O&M costs.			
Alternative 3: Contain In-Place under Geocomposite Cover System	Construct geocomposite cover system consisting of: geotextile cushion, 40-mil HDPE liner, drainage layer, 12-inch barrier protection soil, and 6-inch vegetated topsoil layer.	Protective of public health and the environment as the waste will be contained beneath low-permeability cover system and graded to promote storm drainage away from the area. S-16 distance to groundwater from base of impacted slag a minimum of 10 feet. S-23 distance to groundwater from base of tar waste is a minimum of 20 +feet. Downgradient groundwater impacts expected to improve with reduced infiltration due to cover system.	Does not meet SCGs; however, low permeability cover, physical barrier, and institutional controls will prevent direct contact with waste. Groundwater impacts are localized and marginal in this area, and are expected to significantly improve in response to covering the wastes.	Effective and permanent in the long term with cap maintenance, and engineering and institutional controls.	Reduces mobility of contamination through physical isolation; however, toxicity or volume of contamination is not reduced.	Estimated construction time is 2-3 months. Short-term exposures to workers during construction of the cap would be effectively controlled through PPE. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative.	Containing the waste in-place is a cost- effective approach as a similar degree of protection is achieved and is significantly less than off-site disposal. 30-yr present worth cost: \$501,000; Capital Cost: \$470,000; 30-yr O&M Cost: \$31,000.			
SWMU S-17 Vacuum Carbonate Landfill Q											
Alternative 1: No Further Action	Non-hazarous liquid waste (spent carbonate waste liquid containing thiocyanate, cyanide, and selenium) disposed in two parallel trenches excavated in slag approx. 300 feet long, 6-10 feet wide, and 2-4 feet deep would remain as-is.	Protective of public health and the environment as the only exceedance of an ISCO was mercury found in one slag fill sample at a depth of 6 to 7 fbgs.	Generally compliant with SCGs; only one sample exceeded an ISCO (mercury) in the subsurface but did not exhibit hazardous waste characteristics (TCLP). Mercury was not part of the waste stream that was disposed in this SWMU. Mercury not detected in downgradient groundwater.	Provides long-term effectiveness and permanence due to the depth of the one mercury detection and the unlikely probability of any widespread mercury contamination of the slag.	No reduction in toxicity, mobility, or volume of contamination. However, mercury is generally not mobile in subsurface unsaturated fill slag.	No short-term impacts are associated with implementation of the NFA alternative.	No technical or administrative implementability issues are associated with the NFA alternative.	There are no capital costs associated with the NFA alternative.			
Alternative 2: Placement of Supplemental Slag Cover	Grading and placement of a minimum 12" slag over SWMU area to prevent direct contact and eliminate potential physical safety hazards.	Protective of public health and the environment. Increased cover thickness over waste/fill with one ISCO exceedance reduces direct exposure potential and physical hazard.	Generally compliant with SCGs; one sample exceeded ISCO for mercury but did not fail the TCLP test. Mercury not detected in downgradient groundwater.	Provides long-term effectiveness and permanence with institutional controls.	No reduction in toxicity or volume of contamination. No reduction in mobility as mercury is generally immobile in unsaturated subsurface slag fill.	Remedial action would require ~ 2 weeks. Short-term exposures to workers during construction of the slag cover would be effectively controlled through PPE and dust controls. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative.	Present Worth Cost: \$47,000 Capital Cost: \$39,000. OMM Costs \$7,700 for 30 years of cap maintenance			
Alternative 3: Excavate and Dispose Off-Site at TSDF	Excavation of mercury-impacted slag/fill, loading and transportation off-site to TSDF. Consideration for TENORM.	Protective of public health and the environment as the waste will be removed from the site and relocated to a commercial TSDF in a cell with liner, leachate collection and low-permeability cover.	Compliant with SCGs	Provides long-term effectiveness and permanence.	Eliminates mobility of contamination due to relocation to off-site TSDF, but does not reduce toxicity or volume of contamination.	Excavation, loading and transportation of waste is a short-term action on the order of one week. Short-term exposures to workers and the community would be effectively controlled through implementation of community air monitoring, PPE and dust controls. The RAO would be achieved once the waste has relocated off-site.	No technical or administrative implementability issues are associated with alternative, other than potential complications from TENORM waste which may protract identifying an appropriate out-of-state disposal facility.	Off-site disposal is more costly that Alternatives 1 and 2. Capital Cost: \$82,000 to \$1,200,000; No annual O&M costs. High cost reflects TENORM considerations.			
SWMU S-18 (AOC-A) Lime Dust and I	Kish Landfill										
Alternative 1: No Further Action	The exposed piles of lime dust and Kish placed on the slag fill surface would remain as-is	Not protective of public health or the environment due to potential exposure to lead-bearing waste (TCLP > 5mg/L) waste and elevated levels of lead (>ISCO) on the ground surface.	Not compliant with SCGs; exceedances of ISCO for lead.	No long-term effectiveness or permanence.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no costs associated with the NFA alternative.			
Alternative 2: Excavate and Consolidate Lead-Impacted Waste Exceeding ISCO and Lime Waste in SW-CAMU	Excavate waste/fill with lead >ISCO & lime piles and consolidate in SW-CAMU; remainder of slag could be reclaimed.	Protective of public health and the environment as the waste will be moved from the SWMU and encapsulated in SW-CAMU.	Compliant with SCGs; residuals would meet ISCOs.	Provides long-term effectiveness and permanence with proper SW-CAMU OM&M.	Reduces mobility of contamination through physical isolation in SW-CAMU. Volume and toxicity of contamination unaffected.	Remedial action is expected to require approximately 1-2 months for completion. Short-term exposures to workers during waste excavation and relocation would be effectively controlled through PPE, safe work practices, and dust controls. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative. The SW-CAMU need to be prepared to receive this waste.	This is a cost effective alternative that achieves the RAOs and provides improved level of protection over Alternatives 1 and 4. Capital Cost: \$117,000; no annual O&M cost.			

Page 4 of 4

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES

SFA ZONE 4 SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
SFA ZONE 4 SUB-AREA:								
Alternative 3: Excavate Lead- Impacted Waste Exceeding ISCO and Lime Waste and Dispose Off- Site	Excavate waste/fill with lead >ISCO & lime piles and consolidate in SW-CAMU; TENORM considerations for off-site disposal.	Protective of public health and the environment as the waste will be moved from the SWMU and encapsulated in off-site TSDF	Compliant with SCGs; residuals would meet ISCOs.	Provides long-term effectiveness and permanence	Reduces mobility of contamination through physical isolation in TSDF. Volume and toxicity of contamination unaffected.	Remedial action is expected to require approximately 1-2 months for completion. Short-term exposures to workers during waste excavation and relocation would be effectively controlled through PPE, safe work practices, and dust controls. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative other than potential complications from TENORM waste which may protract identifying an appropriate out-of-state disposal facility.	This is more costly than alternatives 1 and 2, the low cost (non-TENORM) is approximately the same as Alternative 4. Capital Cost: \$646,000 to \$3,700,000 depending upon TENORM consideration; no annual O&M cost.
Alternative 4: Low-Permeability Cover System	A geocomposite liner would be installed consisting of 30-mil GCL, geocushion geotextile, and one foot of BUD slag or select fill would be placed over the remaining lead- and lime-impacted waste/fill (entire SWMU footprint) with no slag reclamation or redevelopment.	The cover would require maintenance to eliminate direct exposure risks.	Waste/fill left in place exceed ISCOs.	Effective and permanent in the long term with cap maintenance, and engineering and institutional controls.	The toxicity, mobility, and volume of contamination in the remaining waste/fill would not be reduced.	Remedial action is expected to require approximately 1 month for completion. Short-term exposures to workers during cap placement would be effectively controlled through PPE, safe work practices, and dust controls. There are no significant risks to the community, workers, or the environment.	No technical implementability issues are associated with alternative. Administrative implementability issues include the need for NYSDEC approval for containing waste/fill in-place.	This is more expensive than Alternative 2, and is approximately the same as Alterantive 3 non-TENORM cost. Long-term maintenance would be required and slag reclamation would be prohibited. 30-yr Present Worth Cost: \$601,000; Capital Cost: \$570,000; 30-yr O&M Cost: \$31,000.
SWMU S-28 "Drum" Landfill								
Alternative 1: No Further Action	No corrective measures on SWMU	Protective of public health and the environment as no drums or contamination were found during test trench investigation	Compilant with SCGs; slag fill samples only identified benzo(a)pyrene at a concentration slightly above the ISCO; no samples exceeded site-specific SCOs or Protection of Groundwater	This alternative is effective in the long- term and a permanent remedy.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this NFA alternative.	No technical or administrative implementability issues are associated with the NFA alternative.	There are no capital or O&M costs associated with the NFA alternative.

TABLE 5-6 Page 1 of 2

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES COAL, COKE, & ORE HANDLING & STORAGE SUB-AREA AND TANK FARM SWMU GROUP SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
COAL, COKE & ORE HANDLING AN	D STORAGE SUB-AREA							
SWMU S-19 Murphy's Mountain								
Alternative 1: No Further Action	Pile containing an estimated 51,000 CY of slag and C&D debris would remain in-place.	Protective of public health and the environment.	Two slag/fill samples slightly exceeded benzo(a)pyrene ISCO; Protection of GW SCOs exceed for 3 PAHs, nickel, and selenium.	Provides long-term effectiveness and permanence.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no capital or O&M costs associated with the NFA alternative.
Alternative 2: Excavate, Reclaim Slag/Scrap Metal and Relocate Unsuitable Materials to SW-CAMU	Excavate, reclaim slag and scrap metals, reuse slag as on-site backfill or sell as slag product. Assumes 10,000 CY of unsuitable materials will be identified and dealt with according to the SFMP.	Protective of public health and the environment.	Two slag/fill samples slightly exceeded benzo(a)pyrene ISCO; Protection of GW SCOs exceed for 3 PAHs, nickel, and selenium.	Provides long-term effectiveness and permanence. Improves Site redevelopment potential by removing the slag pile thereby opening up 10 acres of land.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts.	No technical or administrative implementability issues are associated with alternative.	Total Capital Cost: \$310,000; No O&M costs
Alternative 3: Cover In-Place	Grade residuals, cap in-place with a minimum of 12" of slag. Engineering and institutional controls required.	Protective of public health and the environment by eliminating direct contact and reducing/eliminating migration potential from wind and storm water erosion.	Two slag/fill samples slightly exceeded benzo(a)pyrene ISCO; Protection of GW SCOs exceed for 3 PAHs, nickel, and selenium.	Provides long-term effectiveness and permanence.	No reduction in toxicity, mobility, or volume of contamination.	Short-term exposures to workers during grading and cap placement would be effectively controlled through PPE and dust controls. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative.	Covering debris with a slag cap is more costly than Alternatives 1 and 2. Present Worth Cost: \$350,000; Capital Cost: \$319,000; 30-yr O&M costs for Cap Maintenance; \$31,000.
Alternatives 4 Excavation and Off- Site Disposal at TSDF	Excavate entire mound contents (est. at 51,000 CY), Load, transport off-site at TSDF. TENORM considerations for disposal of material	Protective of public health and the environment as the waste will be reloacted off-site and disposed in a lined, cell with leachate collection and a low permeability cap.	Compliant with SCGs	Provides long-term effectiveness and permanence.	Reduces mobility of contamination as PAH impacted slag would be placed in TSDF containment cell (liner, leachate collection, and low permeability cover); however, toxicity or volume of contamination would not be reduced.	Short-term exposures to workers during grading of slag/fill would be effectively controlled through PPE and dust controls. There are no significant risks to the community, workers, or the environment.	No technical or administrative implementability issues are associated with alternative, other than potential complications from TENORM waste which may protract identifying an appropriate out-of-state disposal facility.	Off-site disposal is the most expensive cost option for this SWMU remediation. Present Worth Cost: \$7,000,000 to \$45,000,000 assuming waste is high TENORM and non-hazardous.
SWMU S-25 Landfill/Impoundment	under North End of Coal Pile							
Alternative 1: No Further Action	1.4-acre SWMU formerly used to store scrap metal for reclamation would remain as-is.	Protective of public health and the environment.	Slag samples are compliant with ISCOs and site specific background for arsenic.	Provides long-term effectiveness and permanence.	There are no exceedances of the ISCOs	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no capital or O&M costs associated with the NFA alternative.
TANK FARM SWMU GROUP SUB-A	DEA							
SWMU GROUP P-8, 74, 75 Tank Fa								
Tank Farm Slag/Fill								
Alternative 1: No Further Action	No corrective measures to address the approx. 4-acre area containing petroleum and coal tar constituents in slag fil.	Not protective of public health or the environment due to potential exposure to SVOC-impacted slag at the ground surface.	Not compliant with SCGs; SVOCs exceed ISCOs and gross impact observed.	This alternative is not effective in the long-term or a permanent remedy.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no capital or O&M costs associated with the NFA alternative.
Alternative 2:Excavate Petroleum Source Material and Consolidate in SW-CAMU, Excavate Mercury- Impacted Slag/Fill and Dispose Off- Site	Excavate, stabilize NAPL-impacted slag/fill (primarily No. 6 oil), and place into SW-CAMU (est. volume 70,000 CY). Excavate mercury-impactred slag/fill, load and transport off-site to TSDF for disposal (est. volume 1,800 CY). TENORM is a complicating factor for the mercury impacted slag/fill to be sent off-site for disposal. Partially backfill and grade area for restoration.	Protective of public health and the environment as the waste will be removed from the SWMU and encapsulated in an engineered containment cell with liner, leachate collection and low-permeability cover system.	Compliant with SCGs, removal would meet ISCOs.	Effective and permanent for contaminated slag/fill removal. Localized residual groundwater contamination will exist.	Reduces mobility and toxicity of contamination through stabilization of NAPL and physical isolation in an engineered cell. Volume of contamination would not be reduced.	This remedial effort is expected to extend over a 12-month period due to the cemented nature and depth of impacted slag/fill. During removal activities, release of petroleum products to the groundwater will be unavoidable as the product will become mobilized once pockets of NAPL are encountered. Additionally, odors and vapors will be generated from this operation. Short-term exposures to workers during excavation and disposition of the waste in the SW-CAMU would be effectively controlled through safe work practices, PPE, and dust controls; although use of explosives would add risk to workers. Risks to the community would be controlled by implementation of the community air monitoring plan.	Although technically implementable, excavation of the slag/fill would be extremely difficult and slow as the slag was placed in a molten state (making it massive and compact) throughout much of this area. Potential complications from TENORM waste which may protract identifying an appropriate out-of-state disposal facility.	Consolidation in SW-CAMU is most cos effective approach to achieve RAOs. Provides protection to the environment but residual groundwater issue remains. Capital Cost: \$5,100,000 to \$6,400,000; No annual O&M cost.

TABLE 5-6 Page 2 of 2

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES COAL, COKE, & ORE HANDLING & STORAGE SUB-AREA AND TANK FARM SWMU GROUP SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
Alternative 3: Excavate Petroleum- Impacted and Mercury-Impacted Slag/Fill and Off-Site Disposal	Essentially the same as Alternative 2 except all impacted sla/fill would be sent offsite for disposal at a TSDF. TENORM is a complicating factor for all slag/fill to be sent off-site for disposal.	Protective of public health and the environment as the waste will be removed from the SWMU and encapsulated in an engineered containment cell with liner, leachate collection and low-permeability cover system.	Compliant with SCGs, removal would meet ISCOs.	Effective and permanent for contaminated slag/fill removal. Localized residual groundwater contamination will exist.	Reduces mobility and toxicity of contamination through stabilization of NAPL and physical isolation below a low permeability geosynthetic cover; volume of contamination would not be reduced.		Although technically implementable, excavation of the slag/fill would be extremely difficult and slow as the slag was placed in a molten state (making it massive and compact) throughout much of this area. Potential complications from TENORM waste that will require identifying a facility that can handle the waste volumes.	

TABLE 5-7 Page 1 of 3

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES FORMER COKE PLANT & BY-PRODUCTS FACILITY SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
FORMER COKE PLANT & BY-PRO	DUCTS FACILITY SUB-AREA							
SWMU GROUP P-1 to P-6								
Alternative 1: No Further Action	NFA entails leaving the six open-topped concrete quench pits containing water and residual sediment as-is.	Not protective of public health and the environment due to the physical hazards associated with the unprotected sidewalls and potential for falling into the pits.	Not compliant with SCGs as residuals would remain in pits; minor exceedances of ISCOs.	Does not provide long-term effectiveness or permanence	No reduction in toxicity, mobility, or volume of contamination with the NFA alternative.	No short-term impacts are associated with implementation of the NFA alternative.	No technical or administrative implementability issues are associated with the NFA alternative.	There are no capital or O&M costs associated with the NFA alternative.
Alternative 2: Clean-out Pits and Consolidate in SW-CAMU	Pump-out approx. 200,000 gallons of water, pretreat if necessary, and discharge to ECSD #6 via sanitary sewer. Remove residuals (~195 CY) for solidification and consolidation in SW-CAMU. Remove above grade pit walls and backfill to grade with slag.	Protective of public health and the environment.	Compliant with SCGs	Effective and permanent.	Permanent reduction in toxicity, mobility, and volume of impounded water through treatment and off-site disposal. Solid residuals may require dewatering and possibly solidification thereby increasing their volume prior to consolidation in the SW-CAMU; however, toxicity and mobility would be reduced through stabilization and consolidation beneath geocomposite cover system.	Short-term exposure to workers during removal of residuals would be effectively controlled through safe work practices, use of PPE, and dust controls. Risks to the community would be controlled by implementation of the community air monitoring plan.	Readily implementable once the SW-CAMU has been constructed. Administrative implementability issues include receiving approval from ECSD #6 for discharge of pretreated water.	Consolidation in SW-CAMU is a cost- effective approach; provides equal level of protection as Alternatives 3 and 4. Capital Cost: \$145,000; no O&M costs.
Alternative 3: Backfill Quench Pits	Pump-out water, pretreat water if necessary, and discharge to ECSD #6 via sanitary sewer. Leave solid residuals inplace and backfill to grade with slag; remove aboveground portion of pits.	Protective of public health and the environment.	Compliant with SCGs	Effective and permanent.	Permanent reduction in toxicity, mobility, and volume of impounded water through treatment and off-site disposal. No reduction in toxicity, mobility, or volume of solid residuals.	Short-term exposure to workers during water treatment and backfilling of the tanks would be effectively controlled through safe work practices, use of PPE, and dust controls. Risks to the community would be controlled by implementation of the community air monitoring plan.	No technical implementability issues are associated with alternative. Administrative implementability issues include receiving approval from ECSD #6 for discharge of pretreated water.	Consolidation in-place is a cost- effective approach; provides equal level of protection as Alternatives 2 and 4. Capital Cost: \$139,000. No O&M costs.
Alternative 4: Excavation and Off- Site Disposal at TSDF	Pump-out water, pretreat water if necessary, and discharge to ECSD #6 via sanitary sewer. Remove residuals (~195 CY) for solidification, transportation and disposal off-site at TSDF. Backfill to grade with slag; remove aboveground portion of pits.	Protective of public health and the environment.	Compliant with SCGs	Effective and permanent.	Permanent reduction in toxicity, mobility, and volume of impounded water through treatment and off-site disposal. No reduction in toxicity, mobility, or volume of solid residuals.	Short-term exposure to workers during water treatment and backfilling of the tanks would be effectively controlled through safe work practices, use of PPE, and dust controls. Risks to the community would be controlled by implementation of the community air monitoring plan.	No technical implementability issues are associated with alternative. Administrative implementability issues include receiving approval from ECSD #6 for discharge of pretreated water.	Off-site disposal is the most costly of the alternatives. Capital Cost: \$171,000. No O&M costs.
SWMU GROUP P-7/P-9/P-10								
Alternative 1: No Further Action	No further action to remove hazardous residuals from P-9 or tar-impacted residuals from P-7 and P-10	Not protective of public health and the environment.	Not compliant with SCGs; P-9 residuals (~1,000 CY) exceed ISCOs and the tar portion contains leachable levels of benzene > 5 mg/L. P-10 contains ~200 CY of tar-impacted surface slag/fill with total PAHs > 500 mg/kg.	Does not provide long-term effectiveness or permanence	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of the NFA alternative.	No technical or administrative implementability issues are associated with the NFA alternative.	There are no capital or O&M costs associated with the NFA alternative.
Alternative 2: Excavate, Treat (if necessary) and Consolidate Residuals in SW-CAMU	Excavate non-haz residuals from P-7 (-800 CY) and P-10 (-200 CY), treat if required to solidify the residuals so they can be transported to SW-CAMU for consolidation; backfill P-7 with slag.	Protective of public health and the environment	Compliant with SCGs	Effective and permanent	Mobility of waste residuals would be reduced through placement in SW-CAMU (low-permeability geocomposite liner, leachate collection and low-permeability cover); however, volume of contamination will not be reduced.	This remedial effort is expected to require ~1 month. Short-term exposure for workers during removal of residuals would be effectively controlled through PPE and dust controls. Risks to the community would be controlled by implementation of the community air monitoring plan.	Technically implementable once the SW-CAMU has been constructed. Administrative implementability issues include requiring approval from ECSD #6 for discharge of P-7 water.	This is the most cost effective and protective solution for the managing SWMU wastes. Capital Cost: \$88,000; no annual O&M cost. Fractional cost for construction and O&M of SW-CAMU not included with the cost estimate.
Alternative 3: Construct Geocomposite Cover System	Leave residuals in place and construct geocomposite cover system consisting of: geotextile cushion, 60-mil HDPE liner, 12-inch barrier protection layer, and 6-inch seeded topsoil layer.	Protective of public health and the environment with maintenance of the cap.	Does not meet media specific SCGs; however, geocomposite cover system, and institutional controls will prevent direct contact with the waste.	Effective and permanent in the long term with maintenance of the cap, and engineering and institutional controls.	Reduces mobility of contamination through physical isolation, but does not reduce the toxicity or volume of contamination.	This remedial effort is expected to require ~1 month. Short-term exposure for workers during removal of residuals would be effectively controlled through PPE and dust controls. Risks to the community would be controlled by implementation of the community air monitoring plan.	No technical implementability issues are associated with alternative. Administrative implementability issues include the need for NYSDEC approval for containing the waste in-place.	This is more expensive than Alternative 2, and requires long-term maintenance institutional and engineering controls that are not required for Alternatives 2 or 4. 30-yr Present Worth Cost: \$106,000; Capital Cost: \$91,000; 30-yr O&M Cost: \$15,000.

TABLE 5-7 Page 2 of 3

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES FORMER COKE PLANT & BY-PRODUCTS FACILITY SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
Alternative 4: Excavate and Off-Site Disposal at TSDF	Similar to Alternative 2 except residuals would be disposed off-site instead of consolidating on-site. TENORM considerations may complicate disposal of residuals off-site.	Protective of public health and the environment	Compliant with SCGs.	Effective and permanent	Mobility of cheical consitiuents in residuals would be reduced through placement in engineered off-site containment cell; however, volume of contamination will not be reduced.	This remedial effort is expected to require ~1 month. Short-term exposure for workers during removal of residuals would be effectively controlled through PPE and dust controls. Risks to the community would be controlled by implementation of the community air monitoring plan.	Technically implementable. Administrative implementability issues include requiring approval from ECSD #6 for discharge of P-7 water, and TENORM considerations.	This is much more expensive than managing wastes on-site per Alternative 2 and does not provide additional benefit. Capital Cost: \$205,000 to \$788,000; no annual O&M cost.
COKE PLANT BY-PRODUCTS SUE	3-AREA							
OPERABLE UNIT 4 (P-11, P-12, P-	11A)							
Alternative 1: No Further Action	Shut-down SVE operations in the P-11 area. Groundwater pump and treatment to continue.	Not protective of public health and the environment due to residual levels of contamination (e.g., tar) in the surface soils.	Not compliant with chemical-specific SCGs.	Not a long-term effective or permanent alternative.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of the NFA alternative.	No technical or administrative implementability issues are associated with the NFA alternative.	There are no capital or O&M costs associated with the NFA alternative.
Alternative 2A: Vegetated Soil Cover	Install a one foot vegetated soil cap over the OU-4 area (27 acres). The cap will prevent direct contact with the surficial materials in this area and will be designed to provide a hummocky appearance with vegetation including trees to provide a natural setting. Most if not all structure will be demolished. Groundwater pump and treatment will continue.	Protective of public health and the environment.	Compliant with SCGs by preveting direct contact with surficial materials.	Effective and permanent in the long term with cap maintenance.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	This is equally effective as Alternative 2B but is more costly. 30-yr Present Worth Cost: \$1,680,000; Capital Cost: \$1,640,000; 30-yr O&M Cost: \$31,000.
Alternative 2B: BUD-Approved Slag Cover	Essentially the same as Alternative 2A, except slag would be used in lieu of a vegetated soil cover, landscaping would not be done.	Protective of public health and the environment.	Compliant with SCGs by preveting direct contact with surficial materials.	Effective and permanent in the long term with cap maintenance.	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	This is equally effective as Alternative 2A and is lower cost. 30-yr Present Worth Cost: \$1,040,000; Capital Cost: \$1,020,000; 30-yr O&M Cost: \$8,000.
SWMU S-26 Fill Area Near Coke Ba	attery No. 8							
Alternative 1: No Further Action	NFA would leave the coal-tar impacted slag/fill in place.	Protective of public health and the environment due to de minimis quantity of tar waste which is buried beneath 6 feet of slag above the water table which thereby eliminates concerns from direct human contact and threats to groundwater.	Not fully compliant with chemical- specific SCGs but de minimis quantity of tar waste present at a depth of 6 to 7 feet.	Long-term effective and permanent alternative with institutional controls (Soil Fill Management Plan).	No reduction in toxicity, mobility, or volume of contamination.	No short-term impacts are associated with implementation of this alternative.	No technical or administrative implementability issues are associated with alternative.	There are no costs associated with the NFA alternative
Alternative 2: Excavation and Off- Site Disposal in TSDF	Excavate ~20,000 CY of coal-tar impacted slag/fill proximate to 60" water line to 16 fbgs. Load and transport to off-site TSDF. TENORM consideration; backfill with BUD slag or other fill meeting ISCOs.	Protective of public health and the environment as the waste will be moved from the SWMU and contained in a secure impoundment.	Compliant with SCGs.	Effective and permanent	Reduces mobility of contamination, but does not reduce toxicity or volume of contamination.	Potential damage to the 60" industrial water line and shut-down of the line during remediation is a concern for the businesses served by the water supply. Short-term exposures to workers during excavation and transfer of waste to disposal location would be effectively controlled through PPE and dust controls. There are no significant risks to the community, workers, or the environment.	Technical implementability concern excavating proximate to 60" industrial water line. Administrative implementability is associated with shutting down the water, impacting local businesses. TENORM is a consideration for the disposal of the waste slag/fill.	This is not a cost effective means for handling the tar waste due to proximity to major water industrial line. Capital Cost: \$3,600,000 to \$18,200,000; no annual O&M cost.

TABLE 5-7 Page 3 of 3

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES FORMER COKE PLANT & BY-PRODUCTS FACILITY SUB-AREA

Alternative by SWMU	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
Alternative 3: Excavation and Relocation to SW-CAMU	Similar to Alternative 2; waste relocated to SW-CAMU.	Protective of public health and the environment as the waste will be moved from the SWMU and contained in a secure impoundment.	Compliant with SCGs.	Effective and permanent	Reduces mobility of contamination, but does not reduce toxicity or volume of contamination.	Potential damage to the 60" industrial water line and shut-down of the line during remediation is a concern for the businesses served by the water supply. Short-term exposures to workers during excavation and transfer of waste to disposal location would be effectively controlled through PPE and dust controls. There are no significant risks to the community, workers, or the environment.	Technical implementability concern excavating proximate to 60° industrial water line. Administrative implementability is associated with shutting down the water, impacting local businesses.	This is not a cost effective means for handling the tar waste due to proximity to major water industrial line. Capital Cost: \$1,170,000; no annual O&M cost.

Page 1 of 2

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES WATERCOURSES AND GROUNDWATER DISCHARGE SUB-AREAS

Reduction in Toxicity, Mobility or Long-Term Effectiveness & Alternative by Watercourse and Volume of Contamination three Treatment Summary of Alternative Overall Protectiveness of Public Health and the Environment Compliance with SCGs Short-Term Impacts & Effectiveness Cost-Effectiveness Groundwater DischargeSub- Area WATERCOURSES Smokes Creek An ICM was completed in the Lower Reach in 2009 by removing soft sedime The ICM substantially removed the and placing the sediments in the USCOE most contaminated sediments from the Lower Reach Alternative 1: No Confined Disposal Facility at the north No technical or administrative There are no costs associated with Provides long-term effectiveness and Lower Reach. Sediments were placed No short-term impacts are associated Further Action, beyond the Completed ICM side of the Tecumseh property. After dredging, the chemical nature of sedime NFA. Biennial dredging is not part of the CMS. Protective of human health and the environment Compliant with SCGs implementability issues are associated into the USCOE Confined Disposal with implementation of this alternative Facility for containment; thereby in the Lower Reach contains similar reducing mobility of contamination compounds and concentrations to the evels that exist in the Upper Reach. Maintenance dredging to restore the floodway is required to be performed by others. As part of restoration of the flood No technical implementability issues Compound concentrations in the Upper Short-term impacts include disruption are associated with alternative. control design stream configuration, residual contamination in the Upper Reach Provides long-term effectiveness and Reach and the sediments would likely the bottom sediments that will impact There are no costs associated with the Upper Reach Alternative 1: Administrative implementability issues Protective of human health and the environmen Compliant with SCGs permanence together with corrective be placed into the USACE CDF; wildlife; impacts will be controlled by Upper Reach as dredging is the include USACE approval for the Maintenance Dredging will be removed to the depth dredged. measures along Smokes Creek. thereby reducing toxicity, and mobility implementing sediment control responsibility of others. maintenance dredging and disposal in Dredged spoils are anticipated to be placed in CDF at the north end of the techniques such as silt curtains. Tecumseh site North Return Water Trench Protective of public health and the environment based on the human No technical or administrativ Provides long-term effectiveness and There is no significant contamination i No short-term impacts are associated There are no costs associated with Compliant with SCGs. Alternative 1: No Further Action health & ecological risk assessment.1 Residual contamination is isolated implementability issues are associated mplemented in the NRWT permanence the NRWT. with implementation of this alternative rom discharging from NRWT into an environmental receptor. with alternative Short-term exposures to workers during debris removal and backfilling would be Removal of C&D debris from the NRWT: Protective of public health and the environment based on the human effectively controlled through PPF dust No technical or administrative install concrete bulkhead at northern property limit; backfill with slag or other fill There is no significant contamination the NRWT. Provides long-term effectiveness and Alternative 2: Remove Debris Compliant with SCGs Capital Cost: \$183,000. No O&M Costs controls, and safe work practices. health & ecological risk assessment. 1 Residual contamination is isolated implementability issues are associated permanence. from discharging from NRWT into an environmental receptor. There are no significant risks to the with alternative. meeting ISCOs. community, workers, or the environment. South Return Water Trench Sediment results from the SRWT showed Similar types of compounds at similar concentrations (same or the presence of SVOCs, PCBs, and No technical or administrativ Not protective of public health based on the public health risk magnitude) are detected in Smokes Creek and SRWT. The NFA does not provide long-term No reduction in toxicity, mobility, or No short-term impacts are associated There are no costs associated with Alternative 1: No Further Action several inorganic compounds similar to implementability issues are associated sediments in the SRWT are more isolated from the public as a weir effectiveness or permanence volume of contamination with implementation of this alternative NFA those identified in the sediments in with alternative exists limiting water craft access to the trench. Smokes Creek. Mechanical/hydraulic dredging to remove contaminated sediments (est. 8,000 CY), dewater, and dispose in SW-CAMU or the Sediment removal is technically Protective of public health and the environment. However, the flow Long-term effectiveness and Reduces mobility of contamination Short-term impacts to aquatic wildlife Compliant with SCGs; impacted sediment will be removed. Actionthrough physical isolation in SW-CAMU implementable using proven Alternative 2: Dredge Sediment and conditions in Smokes Creek will at times (e.g., flooding during spring permanence depends on maintenance Capital Cost: \$690.000 to \$1.370.000 USACE CDF at the north end of the will occur during removal/capping as technologies. Administrative Consolidate in SW-CAMU, CDF or thaws) reverse flow into the SRWT potentially causing recontamination the sediments. Therefore, dredging would occur following maintenance specific SCGs required for working within the stream include dredging of Smokes Creek occuring or CDF, and reduces volume through sediment will become entrained in the Tecumseh Site. Option provided for offntability issues include the approval of the NYSDEC and USACE. prior to implementation of this dewatering of sediment; no reduction site disposal at TSDF. Restore channel by need for USACE and NYSDEC water. Sediment migration will be dredging of Smokes Creek. alternative. toxicity. placing filter fabric and 12 inches of 2"+-sized BUD-Approved slag. limited by using temporary silt curtains during sediment removal. Silt curtains approval of this removal action will be installed immediately downgradient of the work area, reducing the area affected. Silt curtain will be removed and moved as necessary and at least daily to enable Protective of public health and the environmental by capping Sediment capping is technically Long-term effectiveness and contaminated sediment reducing potential impact to the food chain.

However, the flow conditions in Smokes Creek will at times (e.g., flooding implementable using proven technologies. Administrative trapped aquatic wildlife to escape the Not compliant with chemical-specific SCGs. Action-specific SCGs permanence depends on maintenance Total Present Worth: \$331,000; Capital work zone. Minimal disturbance to Alternative 3: Contain In-Place place with a nominal 0.5- to 1-ft cover required for working within the stream include approval of the dredging of Smokes Creek occuring through capping; no reduction in toxic Cost: \$254,000; \$77,000 for 30-years of during spring thaws) reverse flow into the SRWT thereby potentially terrestrial animals is expected as the implementability issues include the NYSDEC and USACE causing recontamination of the sediment. Therefore, dredging would oc sides of the trench are sheet-piled or need for USACE and NYSDEC alternative. following maintenance dredging of Smokes Creek. brick lined and nearly vertical. approval of the capping.

Page 2 of 2

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES WATERCOURSES AND GROUNDWATER DISCHARGE SUB-AREAS

Alternative by Watercourse and Groundwater DischargeSub- Area	Summary of Alternative	Overall Protectiveness of Public Health and the Environment	Compliance with SCGs	Long-Term Effectiveness & Permanence	Reduction in Toxicity, Mobility or Volume of Contamination through Treatment	Short-Term Impacts & Effectiveness	Implementability	Cost-Effectiveness
GROUNDWATER DISCHARGE SUB	-AREAS							
Discharge Sub-Areas 2A, 2B, 3A,	4A, 4B, and 5 (not previously addressed)							
Alternative 1: No Further Action	No further action	This is protective of public health. The use of groundwater on the CMS area and the entire former Bethlehem Steel property is restricted to remedial purposes only under a deed restriction. Thus, public health impacts from groundwater consumption is not a factor. This may not be protective of environment if groundwater quality degradation occurs.	This is mostly compliant with SCGs (i.e., the NYS GWQS) at the property limits. Residual levels of groundwater contamination are expected to continue to diminish due to the proposed consolidation of wastes into the SW CAMUs, Off-Site TSDF, or close/cover in place.	Not effective in the long-term since monitoring of the groundwater would not be performed.	The consolidation of the wastes into the SW CAMUs, Off-Site TSDF, or close/cover in place proposed will reduce the toxicity, leaching and volume of contamination to the groundwater; however, this would not be confirmed without monitoring.	There is no short term impacts or effectiveness associated with implemention of this alternative.	No technical or administrative implementability issues are associated with the NFA alternative.	There are no costs associated with the NFA alternative.
Alternative 2: Monitored Natural Attenuation	Implementation of the Long-Term Groundwater Monitoring Plan	Inis alternative is protective of numan health and the environment. The use of groundwater on the CMS area and the entire former Bethlehem Steel property is restricted to remedial purposes only under a deed restriction. Thus, public health impacts from groundwater consumption is not a factor. As discussed in Section 4.8.7.1, of the 123 wells in which comparative data was available from the RFI and CMS, over 50% of the wells have shown improvement in the 20 year period. Therefore, natural attenuation is occurring. This may not be protective of environment if groundwater quality degradation occurs which would be monitored under this alternative and addressed, if necessary. This alternative coupled with the consolidation of wastes into the SW CAMUs, Off-Site TSDF, or close/cover in place proposed will remove and /or isolate groundwater contamination source areas and allow natural attenuation further enhance groundwater quality within the CMS area	This alterative is mostly compliant with SCGs (i.e., NYSDEC GWQS) at the property limits. Residual levels of contamination are expected to continue to diminish and this alternative coupled with the consolidation of wastes into the SW CAMUs, Off-Site TSDF, or close/cover in place proposed will remove and for isolate groundwater contamination source areas and allow natural attenuation further enhance groundwater quality within the CMS area. Complinace with SCG would be monitored under this alternative.	This alternative is effective in the long-term as the groundwater will be monitored and, if necessary, the remedial approach can be adjusted if groundwater conditions change. Long-term monitoring is expected to show decreasing trends in the contaminant levels as have been seen over the past 20 years with over 50% of the wells indicating improving groundwater quality conditions.	As discussed in Section 4.8.7.1, over 50% of the wells that that have comparative date from the RFI and CMS have shown improvement in the past 20 year period. Therefore, natural attenuation is occurring. Continued reduction in toxicity, mobility and volume would be monitored under this alternative. This alternative coupled with the consolidation of wastes into the SW CAMUs, Off-Site TSDF, or close/cover in place proposed will reduce the toxicity, mobility and volume of groundwater contamination source areas and to the groundwater, which would be confirmed through monitoring.	Inere are no snort-term impacts associated with implementation of this alternative. This alternative coupled with the groundwater use institutional control and SW CAMU, Off-Site TSDF disposal, and close/cover system installations proposed will generally meet the short-term goals discussed in Section 3.3 — Groundwater Quality Objectives by preventing, minimizing, or eliminating: unacceptable exposes to contaminated groundwater; source of groundwater contamination; and spread of contamination. The short-term impacts and effectiveness would be monitored under this alternative.	No technical or administrative implementability issues are associated with this alternative.	This is a cost effective method for managing the residual groundwater contamination. 30-yr Present Worth Cost: \$976,000; Capital Cost \$126,000; 30-yr Present Worth O&M Costs \$850,000.
Alternative 3: Secondary and Tertiery Groundwater Extraction & Treatment	Installation of groundwater extraction wells (estimated at 26, subject to further engineering analysis) in DSAa 2A, 2B, 3A and 4A to collect groundwater contamination that has migrated from source areas to protect discharge to surface water bodies (e.g., Lake Erie), Groundwater collected would be conveyed via force main to the existing ATP and/or OU-4 treatment systems.	This alternative is protective of human health and the environment. The use of groundwater on the CMS area and the entire former Bethlehem Steel property is restricted to remedial purposes only under a deed restriction. Thus, public health impacts from groundwater consumption is not a factor. The secondary GWE&T of contamination migrating from source areas will reduce groundwater contaminant levels. The tertiary GWE&T of groundwater discharging along the water bodies will reduce contaminant loadings to the water bodies. Thus, the secondary and tertiary GWE&T will further protect the environment. This alternative coupled with the consolidation of wastes into the SW CAMU or Off-Site TSDF disposal (as appropriate) or close/cover in place will eliminate sources of groundwater contamination present in the subsurface (SW CAMU/Off-Site TSDF disposal) and eliminate infiltration contact with source materials (close/cover in place) which will reduce migration of contaminants into the groundwater.	This alternative is mostly compliant with SCGs (i.e., the NYS GWQS) at the property limits. Secondary and tertiary GWE&T will further reduce contaminants in the groundwater associated with source areas and the contaminant mass loadings to the surface water bodies. Groundwater contaminant levels are expected to further reduce with the removal and consolidation of source areas in to the SW CAMU, Off-Site TSDF disposal, and close/cover system installations proposed. This alternative coupled with the groundwater use institutional control and SW CAMU, Off-Site TSDF disposal, and close/cover system installations proposed will meet the short-term goals discussed in Section 3.3 — Groundwater Quality Objectives by preventing, minimizing, or eliminating: unacceptable exposes to contaminated groundwater; source of groundwater contamination; and spread of contamination; The long-term goals are met by protecting human health and the environment; achieve cleanup objectives appropriate to current and future expected land use (industrial); and remediate the sources of releases.	This alternative is effective in the long-term as the groundwater will be extracted and treated downgradient of source areas and along water body discharge locations to reduce contaminant loadings. This alternative coupled with the groundwater use institutional control, SW CAMU, Off-Site TSDF disposal, and close/cover system installations proposed will eliminated sources and is expected to show decreasing trends in the groundwater contaminant levels and water body loadings as source areas will be removed. Monitoring will be completed as part of the LTGWMP and, if necessary, the remedial approach can be adjusted if groundwater conditions change.	The secondary & tertiary GE&T of groundwater will reduce the toxicity, mobility and volume of contaminants present in the groundwater and discharging to the water bodies. The consolidation of the wastes into the SW CAMU, Off-Site TSDF disposal, or covering the wastes in-place proposed will reduce the toxicity, leaching and volume of source contamination to the groundwater. This would be confirmed through the implementation of the LTGWMP.	There are no short-term impacts associated with implementation of this alternative. As discussed in compliance with SCGs section, this alternative coupled with the groundwater use institutional control and SW CAMU, Off-Site TSDF disposal, and close/cover system installations proposed the short-term goals by preventing, minimizing, or eliminating: unacceptable exposes to contaminated groundwater; source of groundwater contamination; and spread of contamination.	No technical or administrative Implementability issues are associated with this alternative. Need to increase discharge quantity from the ATP treatment system to accommodate the increased flow (with ECSD #6) and/or obtain an underground injection permit from USEPA for the treated groundwater.	This is a cost effective method for managing groundwater migration from source areas and reducing the contaminant mass loadings to the surface water bodies. Total Capital Cost: \$1,410,000. The 30 yr O&M Costs for treatment of groundwater are covered under the ATP and OU-4 OMM (Estimated at \$1,500,000 each, for a total of \$3,000,000 refer to Table 5-9).

Notes: 1. RFI, URS.

TABLE 5-9
SUMMARY OF RECOMMENDED CORRECTIVE MEASURES AND ESTIMATED COSTS

SWMU Name	SWMU Designation	SMWU Description	Waste/Fill Characterization and Estimated Volume	Description of Recommended Corrective Measures	Capital Cost ^{1, 2}	Operation & Maintenance Costs (present worth) 1,2	Total Estimated Cost of Recommended Alternative ^{1,}	Notes and Assumptions
SFA ZONE 2 SUB-AREA:								
Closure of Impoundments S-1, S-2, S-3, S-4, S-5, & S-6 and construct SW-CAMU in SWMU S-7/20	S-1, S-2, S-3, S-4, S-5, S- 6, S-7/-20 & S-27	The Impoundments: Approx.11.5 acres of this area designated for closure in-place; SW-CAMU consisting of S-7/-20 approx. 4.3 acres.	Impoundments: Estimated in-place volume of residuals in S-1 to S-6 = 570,000 CY, relocate waste from SWMU S-27 (up to 24,000 CY), 14,000 to 35,000 CY of waste from SWMU S-7/20 and C&D debris from Tecumseh site. SW-CAMU In-place volume of residuals in S-7/20 = 283,000 CY; consolidate 27,000 to 115,000 CY of solid waste from other SWMUs	Alternative 2: Close In-Place SWMUs S-1, S-2, S-3, S-4, S-5, S-6 and Reduced SW-CAMU Footprint Enhanced with Base Liner and Leachate Collection System- Construct reverment along shoreline; close impoundments by relocating SWMU S-27 waste, S-7/20 wastes, and C&D debris into SWMUs S-1 to S-6, grade waste to otain a minimum 4% slope and install low-premeability geocompsite vegetated cover. Construct SW-CAMU low permeability geocomposite liner, leachate collection system, consolidate solid waste/fill from selected SWMUs & C&D debris over a 7-year period; construct geosynthetic/soil cover system, and storm water controls.	\$15,980,000	\$1,480,000	\$17,500,000	30-year post-closure period. Capital costs includes revetment and slope stabilization of Approx. \$4,500,000
SFA ZONE 3 SUB-AREA:								
Slag Quench Area J	S-10	Approx. 3-acre open pit historically used for staging and quenching molten slag from BOF (quenching fluid including water and weak ammonia liquor)	No waste present	<u>Alternative 2: Cover In-Place</u> - Grade pit to create stable side slopes and eliminate physical hazard posed by deep depression	\$134,000	\$0	\$134,000	Allows this area to released for slag reclamation
SFA ZONE 4 SUB-AREA:								
Asbestos Landfill	S-12	Asbestos Landfill L: 100' L x 25' W x 16' D (Permitted LF No. 2278; Facility No. 15S12); bagged, tagged, and sealed asbestos	Approx. 450 CY of bagged asbestos	Alternative 2: Excavate and Consolidate in SW-CAMU - Relocate bagged asbestos to SW-CAMU, grade depression to remove physical hazards	\$73,000	\$0	\$73,000	
Coal Tar Sludge Landfill (HWMU-1A)	S-13	HWMU-1A closed in October 1988 under Consent Order. Waste covered with Part 373 multi-layer geosynthetic/ soil cover system 9 feet thick; groundwater at approx. 40 fbgs	Approx. 5,600 to 23,000 CY of sludge, slag, coke fines, coal tar tank bottoms, and acid tar from 1 to 13 fbgs	<u>Alternative 1: No Further Action</u> - Includes continued monitoring and cap maintenance for 30-year post-closure period	\$0	\$31,000	\$31,000	Assume 30-year post-closure period
General Rubble Landfill N	S-14	Mound covering approx. 1 acre; 35-45 feet above surrounding grade with steeply-sloped sides; groundwater 40-50 fbgs (from base of mound)	Approx. 57,000 CY of slag with scrap, construction debris, wood, and glass; estimated 16,000 CY of PAH-impacted slag (>500 mg/kg total PAHs)	Alternative 2: Excavate and Consolidate PAH- Impacted Waste/Fill in SW-CAMU - Excavate impacted waste approx. 16 feet from top of mound in central area of SWMU; reclaim slag under BUD	\$365,000	\$0	\$365,000	Quantity of impacted slag expected to vary as lower approx. 20 feet of mound not investigated
General Rubble Landfill O	S-15	Approx. 150' by 60' pile of deposited metal/debris intermingled with slag fill; groundwater approx. 24 fbgs (from base of pile)	Approx. 1,000 CY of scrap metal/billets, brick, rubble, steel/iron buttons, and tires mixed with slag. No exceedances of ISCOs	Alternative 2: Remove Debris for Salvage with Unsalvageable Debris to SW-CAMU and/or Off-Site Disposal - Recycle scrap metal and tires offsite; consolidate debris in SW-CAMU; reclaim slag under BUD	\$26,000	\$0	\$26,000	

TABLE 5-9 SUMMARY OF RECOMMENDED CORRECTIVE MEASURES AND ESTIMATED COSTS

SWMU Name	SWMU Designation	SMWU Description	Waste/Fill Characterization and Estimated Volume	Description of Recommended Corrective Measures	Capital Cost ^{1, 2}		Operation & Maintenance Costs (present worth) 1, 2			Notes and Assumptions		
SFA ZONE 4 SUB-AREA:												
SPL Landfill (HWMU-1-B) and Adjacent Tar Pit	S-16, S-23 & AOC-D	S16: HWMU-1B, Lime Stabilized Spent Pickle Liquor (SPL) Landfill; SPL sprayed onto limerich slag; approx. 0.25 acres; 30-mil PVC moisture barrier installed over waste in 1986, cover destroyed by wind in 2005. S-23: Tar pit around three sides of S-16 with portion of deposit in AOC-D; extends 1-17 fbgs, 6-ft avg. thickness	S-16: Approx. 6,000 CY of SPL- impacted slag; no exceedances of ISCOs; not hazardous S-23 and AOC-D: Approx. 10,000 CY of tar waste fill; S-23 samples exhibited hazardous waste characteristic for benzene; total PAHs >500 mg/kg, gross impact	Alternative 3: Construct Geocomposite Cover System - Relocate tar waste from AOC-D to S-23 foot print; grade and cap S-16/S-23 waste with low- permeability geosynthetic/soil cover system	\$470,000		\$470,000 \$3		\$31,000	\$501,000		Quantity of waste associated with S- 23 expected to increase as limits of waste appear to extend beneath SWMU S-14 footprint
Vacuum Carbonate Blowdown Landfill Q	S-17	Two parallel trenches (approx. 300' L x 6-10' W x 2-4' D) used for disposal of vacuum carbonate blowdown solution containing thiocyanate, cyanide, and selenium from coke oven gas desulfurization process; liquid quantities disposed are unknown	Mercury detected above ISCO in one sample; mercury not a known constituent of waste stream; mercury not detected in nearest downgradient well (MWN-12). Volume of mercury-impacted slag/fill not know, assumed 1,000 CY	Alternative 3: Excavate and Disposa Off-Site at <u>TSDF</u> - Excavate mercuty-impacted slag fill and dipose off-Site at TSDF, grade area to eliminate physical safety hazard	\$82,000	\$1,200,000	\$0	\$82,000	\$1,200,000	Higher of two costs reflects off-site disposal of mercury-impacted slag/fill as TENORM non-hazardous waste		
Lime Dust and Kish Landfill R	S-18; AOC-A	Irregular shaped area with surficial waste piles	Approx. 1,800 CY of lead above ISCO and 2,400 CY of spent lime impacted residuals in AOC-A	Alternative 2: Excavate and Consolidate Lead- Impacted and Lime Waste in SW-CAMU - Relocate waste to SW-CAMU with lined cell, leachate collection and beneath low-permeability geosynthetic/soil cover system	\$117	000 \$0		\$117,000				
Drum Landfill	S-28	Identified in RFI as a pit; however, area is relatively flat and moderately vegetated	No drums found; one slight exceedance of ISCO for benzo(a)pyrene	Alternative 1: No Further Action - Option to reclaim slag under BUD	\$6	\$0 \$0		\$0		Slag reclamation not considered a remedial cost		
COAL, COKE & ORE HANDLING	G AND STORAGE SUB-A	REA:										
Landfill AA (Murphy's Mountain)	S-19	Stockpiled slag with C&D debris constructed as a wind break for coal storage area; approx. 15' H x 1,300' L x 350' W covering 10 acres	Estimated 51,000 CY of steel-making slag mixed with C&D debris; one slight exceedance of ISCO for benzo(a)pyrene	Alternative 1: No Further Action OR Alternative 2: Excavate, Reclaim Slag/Scrap Metal and Relocate Unsuitable Materials to SW-CAMU or Dispose Off-Site at TSDF- Resell processed slag and reclaimed scrap metal under SFMP. Unsuitable fill to be deposited into SW-CAMU or sent off-Site to TSDF	\$310	,000,	\$0	\$310	0,000	Slag reclamation not considered a remedial cost		
Landfill Impoundment Under North End of Coal Pile	S-25	Approx. 1.4-acre circular area west of Coke Oven Battery No. 8 used for storage of scrap metal	Area generally flat, no depression, covered by coal fines; no suspect fill materials or exceedances of ISCOs	Alternative 1: No Further Action - Area may be developed in accordance with City zoning requirements	\$0		\$0	\$0				
TANK FARM SWMU GROUP SU	JB-AREA											
Tank Farm	P-8, P-74 & P-75	Approx. 18.6-acre former waste oil storage area (P-8); solid fuel mix storage piles (P-74); and No. 6 fuel oil and petroleum tar ASTs (P-75); very dense slag impacted by No. 6 oil and other petroleum products (some surface) in two main areas; vicinity GW is marginally impacted by BTEX	Approx.; 2,400-3,200 CY of near- surface PAH-impacted material and 400 CY of near-surface mercury-impacted material	Alternative 2: Excavate Petroleum Source Slagand Consolidate in SW-CAMU; Excavate Mercury-Impacted Slag/Fill and Dispose Off-Site - Approximately 22,000 to 55,000 CY of petroleum-impacted slag/fill (used 70,000 CY for costing due to excavation difficulty and cross-contamination); 1,800 CY of mercury-impacted slag/fill; grade and partially backfill excavations	\$5,100,000	\$6,400,000	\$0	\$5,100,000	\$6,400,000	Higher of two costs reflects off-site disposal of mercury-impacted slag/fill as TENORM non-hazardous waste		

TABLE 5-9 SUMMARY OF RECOMMENDED CORRECTIVE MEASURES AND ESTIMATED COSTS

SWMU Name	SWMU Designation	SMWU Description	Waste/Fill Characterization and Estimated Volume	Description of Recommended Corrective Measures	Capital Cost ^{1, 2}	Operation & Maintenance Costs (present worth) 1,2	Total Estimated Cost of Recommended Alternative ^{1,}	Notes and Assumptions
FORMER COKE PLANT & BY-F	PRODUCTS FACILITY SUI	B-AREA:						
Coke Quench Tanks (P-1 thru P-5), Lime Sludge Settling Basin (P-6)	P-1 through P-6	P-1 through P-5 are reinforced concrete pits that received and recycled quench water used in coke-making operations; P-6 is a reinforced concrete pit used as a lime sludge settling basin	Approx. 220,000 gallons of water; approx. 195 CY of residuals	Alternative 3: Backfill Quench Pits - Collect and pretreat water (if necessary) prior to conveyance and discharge to ECSD #6; backfill pits with slag or other fill meeting ISCOs	\$139,000	\$0	\$139,000	
Lime Sludge Settling Basin (P-7) & Tar Spill (P-10)	P-7 & P-10	P-7 is below grade reinforced concrete pit, backfilled with slag in ~1960	Approx. 800 CY of PAH-impacted residuals in P-7; and approx. 200 CY of PAH/tar-impacted surface waste material in P-10	Alternative 2: Excavate, Treat (if necessary) and Consolidate Residuals in SW-CAMU - Excavate approx. 1,000 CY of PAH-impacted slag/fill and relocated to SW-CAMU (lined cell, leachate collection and beneath low-permeability geosynthetic/soil cover system)	\$88,000	\$0	\$88,000	
FORMER COKE PLANT & BY-F	PRODUCTS FACILITY SUI	3-AREA:						
OPERABLE UNIT 4								
Benzol Plant Tank Storage Sub-		P-11 and P-11A are the former Benzol Plant areas for the site. P-12 was the area of a	Slag/fill impacted by Benzol spills with residual LNAPL	Alternative 2: Vegetated Soil Cover (Continued operation of existing soil vapor extraction system in SWMU P-11 to address source areas, and long-term operation of groundwater collection wells and on-site treatment)	\$1,640,000	\$31,000	\$1,680,000	
Area	P-11, P-11A, & P-12	former tar spill. Area of OU-4 is approx. 27 acres with surficial impacts of tar	Groundwater impacted by Benzol product	Long-term groundwater collection and treatment	\$0	\$1,500,000	\$1,500,000	Capital costs for groundwater collection and treatment have been expended by Tecumseh; OMM costs for SVE off-gas collection/treatment and groundwater treatment are carrieunder OU-4; and are included here fo completeness.
OTHER SWMUs:								
Fill Area near Coke Battery No. 8	S-26	SWMU approx. 8.2 acres; 3.8 acres owned by Tecumseh (S-26T) and 4.2 acres by GTC (S-26G); slag/fill from 0-16 fbgs overlying interbedded sand and clay; 60-inch industrial water line runs along northern boundary serving local businesses	Tar identified in one boring (S26-B-03 from 4-7') proximate to 60" industrial water line. Approx. 0.5-acre area with elevated PIDs, mothball odor, and sheen in smear and saturated zones	Alternative 1: No Further Action - Tar impacts are at depth thus no direct contact risks, and only low levels of PAHs in groundwater sample, PAHs are not mobile in groundwater.	\$0	\$0	\$0	

TABLE 5-9 SUMMARY OF RECOMMENDED CORRECTIVE MEASURES AND ESTIMATED COSTS

SWMU Name	SWMU Designation	SMWU Description	Waste/Fill Characterization and Estimated Volume	Description of Recommended Corrective Measures	Capital Cost ^{1, 2}	Operation & Maintenance Costs (present worth) 1,2	Total Estimated Cost of Recommended Alternative ^{1,}	Notes and Assumptions
WATERCOURSES:								
Smokes Creek	Smokes Creek Lower Reach	ICM completed to remove contaminated sediments for the purpose of improving drainage channel flow conditions and to reduce the 100-year flood plain in Lackawanna. ICM was successful in removing impacted sediment.	Post-dredging sample analyses detected VOCs, SVOCs, inorganics, and PCBs. Compound concentrations are comparable between the Upper and Lower reaches.	No Further Action - Beyond biennial mechanical dredging of accumulated sediments at the Lake Erie outlet to maintain the navigability and flow characteristics of the Creek (not part of CMS)	\$0	\$0	\$0	
	Smokes Creek Upper Reach	Sediments in the Upper Reach have been dredged in 2015 under contract with NYSDEC to improve the flow capacity of the channel and to remove contaminated sediments	Approx. 40,300 CY of sediment		\$0	\$0	\$0	Not part of the CMS
North Return Water Trench	NRWT	3,100 foot long trench of which approx. 1,400 LF on Tecumseh Site; approx. 10 feet wide and 10 feet deep with concrete and wood lining the bottom. One-half of trench on Tecumseh property covered with asphalt and concrete; no longer used for drainage.	Contains approx. 100 CY of debris consisting of wood, bricks and general trash	Alternative 2: Remove Debris - Mechanically remove debris and dispose in SW-CAMU; putrescible wastes to be disposed off-site. Backfill NRWT with slag or other fill material meeting ISCOs.	\$183,000	\$0	\$183,000	
South Return Water Trench	SRWT	Man-made drainage channel approx. 5,000 LF that dishcarges to Smokes Creek	Detected similar concentrations of VOCs, PCBs, total metals, and cyanide in Smokes Creek Upper and Lower Reaches; SVOC (PAH) concentrations are marginally elevated over concentrations in Smokes Creek. Estimate approx. 8,000 CY of sediments.	Alternative 2: Dredge Sediment Consolidate in SW-CAMU or CDF - Dredge sediments, Dewater, Load and Transport sediments to SW-CAMU. Restore channel by placing filter fabric and 2 inch plus BUD-Approved Slag	\$690,000	\$0	\$690,000	
CMS Area-Wide Groundwater	CMS Area Wide	Primary areas of groundwater contamination have been addressed by OU-4 and the ATP-ECM including the internal and external groundwater collection wells. There are much	Not applicable	Alternative 2: Monitored Natural Attenuation and Alternative 3 Secondary and Tertiary Groundwater Extraction and Treatment - Involves modifications to and execution of the LTGWM Plan, with evaluation of trends in GW concentrations in response to remediation of wastes by relocating wastes to the SW-CAMU, capping by low-	\$1,536,000	\$850,000	\$2,386,000	Assumes 61 wells (+123 wells for water level only); annual sampling 30 years. Includes installation of 26 groundwater collection wells with conveyance tot he ATP or OU-4 groundwater treatment systems
ATP Groundwater Collection and Treatment	CMS Area-Wide	groundwater collection wells. There are much less significant areas of groundwater contamination in Groundwater Discharge Sub-Areas 2A, 3A, 4A, 4B, and 5 (i.e., secondary and tertiary impacts).	Not applicable	permeability geocomposite covers for several of the SWMUs, and the results of groundwater pumping and treatment at OU-4 and at the ATP; Focused groundwater collection and treatment from areas of the site where secondary and tertiary groundwater contamination is migratring to surface water	\$0	\$1,500,000	\$1,500,000	Costs for groundwater treatment are carried under the ATP-ECM. They are provided here for completeness and includes the costs associated with the collection and treatment of groundwater from the 26 wells recommended under Alternative 2 above
				TOTALS	\$26,900,000 \$29,000,000	\$5,400,000	\$32,400,000 \$34,500,000	

- 1. The total costs exclude costs expended by Tecumseh associated with Interim Corrective Measures (e.g., Smokes Creek) and Expedited Corrective Measures (e.g., ATP-ECM, OU-4 groundwater corrective measure)
- 2. Present worth costs calculated using a discount factor of 5%.

TABLE 5-10 SWMU SLAG/FILL QUANTITIES AND POTENTIAL DISPOSITION

Site	OMMI I-	Estima		Volume (CY) and sposition	l Potential	A
Sub-Area	SWMUs	SW-CAMU Close In- Place OFF-SITE TSDF Other			Other	Comments
	S-1		81,500			
σ	S-2		96,200			Residuals consisting of iron oxide mill scale, water quality control station sludges, dredged spoils from Smokes Creek, and other solid
₩	S-3		120,000			waste. SWMUs S-1, S-2, S-3, S-4, S-5, and S-6 to remain in-place and covered with low-permeability geocomposite cover. Approx.
SW	S-4		150,000			14,000 to 35,000 CY of S-7/20 & 24,000 CY of S-27 wastes are
ле 2	S-5		54,000			proposed to be moved from current location and consolidated in the impoundments to provide materials to raise subgrade prior to installing
ıoz-	S-6		66,300			the cover system to promote postive stormwater drainage. SWMU S7/20 to be location for SW-CAMU for relocation of wastes from other
A A	S-7/20	283,000			See Comment	areas of the CMS into a cell consisting of a low-permeability
0)	S-8			None		geocomposite liner, leachate collection and vegetated low-permeability geocompsite cover system.
	S-27				24,000	
SFA Zone 3 - SWMUs	S-10			None	SWMU did not contain wastes materials: slag/fill did not contain exceedances of ISCOs or site-specific SCOs.	
RS .	S-12	450				Bagged asbestos
	S-13		23,000			Tar-waste mixed with slag; SWMU covered with geocomposite cover system. Has been closed for 30 years.
- SWMUs	S-14	16,000			41,000	Slag, bricks, concrete, wire, and demolition debris in mound consisting of 57.000 CY. Assumes 16,000 CY of slag/fill impacted with PAHs; 41,000CY of slag/scrap to be reclaimed. See Note 1.
SWMUs	S-15	1,000				Scrap metal, bricks, billets and tires. Scrap metal to be salvaged. Tires to be disposed or recycled off-site. Quantity reflects non- salvageable material only.
Coke Plant SWMUs SWMUs SWMUs SWMUs SWMUs SWMUs SWMUs SWMUs SWMUs SWMUs SWMUs SWMUs	Group S-16/23		16,000			See Notes 1 and 2. ~6,000 CY of spent pickle liquor impacted slag in S-16; ~9,500 CY of tar-impacted slag in S-23. Volume of tar-impacted slag beneath and adjacent to S-14 footprint is not defined.
	S-17			1,000		Non-hazardous waste slag impacted with spent carbonate waste liquid. Volume of impacted slag is unknown as only one sample contained an exceedance of ISCOs (Hg). Assumed 1,000 CY of slag impacted by mercury.
	S-18	4,200				Residuals in SWMU footprint contains non-hazardous waste fill with exceedances of Pb ISCO (AOC-A) and weathered lime waste.
	S-28			None		"Suspected" drum disposal area; no drums or suspect waste materials found: slag does not contain exceedances of ISCOs or the site-specific SCOs.
Coal Field WMUs	S-19	10,000			41,000	Slag and demolition debris pile (51,000 CY). One parameter in two sample slightly exceeded its ISCO but less than site specific SCO. Designated for reuse after slag/scrap reclamation as on-site fill. Potential reuse to fi
	S-25			None		Former metal scrap and salvage pile location. Residual slag did not exceed ISCOs.
Tank Farm SWMUs	Group P-8, 74, 75	70,000 1,800			Estimated 70,000 CY of petroleum-impacted slag (primarily No. 6 oil). Some fill contains NAPL above the water table. Mercury-impacted (1,800 CY) slag would be designated for off-site disposal.	
	GROUP P-1 to P-6			None		Residuals do not contain exceedances of ISCOs or the site-specific SCOs.
SWMI	P-7 & P-10	1,000				Waste fill in P-7 is contaminated slag (~800 CY); P-10 is PAH- and tarimpacted slag (~200 cy).
Coke Plant	OU-4 (P-11, P-11A, & P12)			None		Groundwater Final Remedy consisting of groundwater pumping and treatment installed and operational by March 2019. Source area remediation consisting of soil vapor extraction in P-11 underway as ICM March 2019.
	S-26			None		See Note 4. Residual slag impacted with PAHs.
	Totals	386,000	607,000	2,800	106,000	

- Notes:

 1. Volume shown is estimate from existing data. Amount exceeding SCOs may be higher.

 2. Spent pickle liquor waste in S-16 has been petitioned to be delisted, on the basis it has been treated with lime-rich slag.

 3. Volume of waste shown is average estimate. Actual amount may vary significantly from this estimate.

 4. Tar waste identified in 1 of 137 slag/fill samples to be segregated, if encountered, and handled as hazardous waste.

TABLE 5-11

EXISTING CONDITION AND POST-CONSTRUCTION INFILTRATION ESTIMATES IMPOUNDMENT AREA AND SW-CAMU

SWMU	AREA (SF)	INFILTRATI	TOTAL REDUCTION		
SWINO	AREA (SF)	EXISTING CONDITION	POST-CONSTRUCTION CONDITION ²	OF INFILTRATION	
S-1	59,000	457,000	820		
S-2	49,000	380,000	680		
S-3	155,000	1,201,000	2,160		
S-4	61,000	473,000	850		
S-5	40,000	310,000	560	99.82%	
S-6	33,000	256,000	460		
S-7/20	166,000	1,286,000	2,310		
S-27	40,000	310,000	560		
TOTAL SW-CAMU	603,000	4,673,000	8,400		

- 1. Existing conditions and post-cover infiltration rates estimed using the Hydrologic Evaluation of Landfill Performance (HELP)
- 2. Cover includes a 6" topsoil layer, 12" barrier protection layer, geosynthetic drainage layer, 40 mil HDPE layer & 6" bedding layer.

EXISTING CONDITION AND POST-CONSTRUCTION INFILTRATION ESTIMATES SWMU S-14

		INFILTRA	ATION (GAL/YEA	R) ²	TOTAL DEDI	ICTION OF		
SWMU	AREA (SF) 1	EXISTING CONDITION		STRUCTION DITION	TOTAL REDUCTION OF INFILTRATION			
	, ,	No Cover	Geosynthetic Cover ³	Soil Cover ⁴	No Cover vs Geosynthetic Cover	No Cover vs Soil Cover		
S-14	22,000	170,000	310	121,000	99.82%	28.82%		

- 1. Areal extent of identified PAHs.
- 2. Existing conditions and post-cover infiltration rates estimated using the Hydrologic Evaluation of Landfill Performance (HELP) Model.
- 3. Cover includes a 6" topsoil layer, 12" barrier protection layer, geosynthetic drainage layer, 40 mil HDPE layer & 6" bedding layer.
- 4. Cover includes a 6" topsoil layer and 6" soil K=1E-5 cm/s.

EXISTING CONDITION AND POST-CONSTRUCTION INFILTRATION ESTIMATES SWMU GROUP S-16 AND 23

		INFILTRATI	ON (GAL/YEAR) ²	TOTAL REDUCTION		
SWMU	AREA (SF) ¹	EXISTING CONDITION	POST-CONSTRUCTION CONDITION	OF INFILTRATION		
		No Cover	Geosynthetic Cover ³	No Cover vs Geosynthetic Cover		
SWMU S-16 and 23	62,000	480,000	860	99.82%		

- 1. Area includes SWMU S-16, S-23, and AOC-D.
- 2. Existing conditions and post-cover infiltration rates estimed using the Hydrologic Evaluation of Landfill Performance (HELP)
- 3. Cover includes a 6" topsoil layer, 12" barrier protection layer, geosynthetic drainage layer, 40 mil HDPE layer & 6" bedding layer.

Page 1 of 2

									Compoun	ds of Concern	(COC), Loading Cal	Iculations 1,2,3							
Discharge			1,1-	1,2,4-	1,2,4-	1,2-	1,2-	1,3,5-	Acetone	Benzene	Chlorobenzene	Ethylbenzene	Isopropylbenzene	Styrene	Toluene	Trichloroethene	Vinyl Chloride	Xylenes,	Acenaphthene
Sub-Area	Unit	Well I.D.	Dichloroethane Loading	Trichlorobenzene Loading	Trimethylbenzene Loading	Dichloroethane Loading	Dichlorobenzene Loading	Trimethylbenzene Loading	Loading	Loading	Loading	Loading	Loading	Loading	Loading	Loading	Loading	Total Loading	Loading
			(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
		MW-2D4	ND	ND	ND	ND	ND	ND	na	ND	ND	ND	ND	na	ND	0.0000002	ND	ND	ND
		MW-2D3	ND	ND	0.0000003	ND	ND	0.0000002	na	0.0000004	ND	0.0000002	ND	na	0.0000003	0.000001	ND	0.0000013	0.000003
2A	Slag/Fill	MW-2D2	ND	ND	ND	ND	ND	ND	na	ND	ND	ND	ND	na	ND	0.0000001	ND	ND	ND
		MWS-26A	ND	ND	ND	ND	ND	ND	ND	0.0000001	ND	ND	ND	ND	ND	0.0000001	ND	0.0000002	ND
		MWS-09	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
	Sand/Dredge Spoil	MW-2D2B	ND	ND	0.00000	ND	ND	0.00000	0.00000	0.00000	ND	0.00000	ND	ND	0.00000	ND	ND	0.00000	0.00000
		MWS-01	ND	ND	ND	ND	ND	ND	ND	0.00000	ND	0.00000	ND	0.00000	0.00000	ND	ND	0.00000	0.00000
		MWS-02	ND	ND	0.00000	0.00000	ND	ND	0.00000	0.00000	ND	ND	ND	ND	ND	ND	ND	ND	0.00000
	01 /5:11	MWS-19A	ND	ND	ND	ND	ND	ND	ND	0.00000	ND	ND	ND	ND	ND	ND	0.00000	ND	0.00E+00
	Slag/Fill	MWS-18A	ND	ND	ND	ND	ND	ND	ND	0.00000	ND	ND	ND	ND	ND	ND	ND	ND	0.00E+00
		MWS-20A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2B		MWS-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Sand/Dredge Spoil	MWS-01B	ND	ND	0.00000	ND	ND	0.00000	0.00000	0.00000	ND	ND	ND	ND	0.00000	ND	ND	ND	0.00000
		MWS-19B	ND	ND	ND	ND	ND	ND	ND	0.00000	ND	ND	ND	ND	ND	ND	ND	ND	0.00E+00
	Sand	MWS-18C	ND	ND	ND	ND	ND	ND	ND	0.00000	ND	ND	ND	ND	ND	ND	ND	ND	ND
		MWS-20B	ND	ND	ND	3.79E-06	ND	ND	4.33E-06	0.000001	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Slag/Fill Sand/Dredge Spoil	MWN-01	ND	ND	0.00000	ND	ND	0.00000	ND	0.00000	ND	ND	ND	ND	0.00000	ND	ND	0.00000	0.00000
		MWN-11	ND	na	na	ND	ND	na	ND	0.00006	ND	ND	ND	ND	ND	ND	ND	ND	ND
		MWN-94A	ND	ND	0.00006	ND	ND	ND	ND	0.00150	ND	ND	ND	ND	ND	ND	ND	0.00003	0.00006
3A		MWN-24A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		MWN-01B	ND	ND	0.00000	ND	ND	ND	0.00000	0.00000	ND	0.00E+00	0.00000	ND	0.00000	ND	ND	0.00000	0.00000
	Sand/Dreage Spoil	MWN-23B	ND	ND	0.00001	ND	ND	0.00001	0.00001	0.00005	ND	ND	ND	ND	0.00001	ND	ND	0.00001	ND
	Sand	MWN-94B	ND	ND	ND	ND	ND	ND	0.00001	0.00000	ND	ND	ND	ND	ND	ND	ND	ND	4.90E-07
		MWN-06A	na	na	ND	na	na	ND	na	0.00039	na	ND	ND	na	ND	na	na	ND	0.00039
		MWN-05A	ND	ND	0.0000004	ND	ND	0.0000010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Slag/Fill	MWN-04	na	na	ND	na	na	ND	na	ND	na	ND	ND	na	ND	na	na	ND	ND
4A		MWN-03	na	na	0.000001	na	na	0.000002	na	0.00001	na	0.0000003	ND	na	0.000002	na	na	0.00001	0.000002
		MWN-02	na	na	0.00000	na	na	0.00000	na	0.00000	na	0.00000	ND	na	0.00000	na	na	0.00000	ND
		MWN-05B	ND	0.00119	ND	ND	0.00193	ND	0.00207	0.00400	0.00363	ND	ND	ND	0.00289	ND	ND	0.00267	0.00156
	Sand/Dredge Spoil	MWN-03B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00006
		MWN-02B	na	na	ND	na	na	ND	na	0.00000	na	ND	ND	na	0.00000	na	na	0.00000	0.00000
	Slag/Fill	MWN-43A	ND	ND	0.00009	ND	ND	0.00026	0.00089	0.00012	ND	ND	ND	ND	ND	ND	ND	ND	0.00024
4B		MWN-18A	ND	ND	0.00008	ND	ND	0.00008	0.00061	0.00028	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Sand	(see Note 4)	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
		MWN-45A	ND	ND ND	ND	ND ND	ND ND	ND ND	ND 0.00000	0	ND ND	ND	ND	ND	0	ND ND	ND	ND 0.00000	0
		MWN-47A MWN-09	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00000	0.00000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00000 ND	ND ND
		MWN-09 MWN-26A	ND ND	ND na		ND ND	ND ND	na ND	0 ND	0 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0 0
5	Slag/Fill		ND ND	na ND	na na	ND ND	ND ND	na na	0	0	ND ND	0	ND ND	0	0	ND ND	ND ND	0	0
J	Siay/Fill	MWN-67A/MWN-34A 5	ND ND	ND ND	na na	ND ND	ND ND	na na	0	0	ND ND	0	0	0	0	ND ND	ND ND	0	0
		MWN-66AR/MWN-08 ⁵ MWN-49A	ND ND	ND ND	ND	ND ND	ND ND	ND	0	0	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND
		MWN-49A MWN-68A ⁵	ND ND	ND ND	na ND	ND	ND ND	na	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		MWN-68A	ND ND	ND ND	ND	ND ND	ND ND	ND	0.00019	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		IVIVVIN-U/	ND	IND	IND	טאו	IND	טאו	0.00019	ND	IND	IND	IND	ND	ND	NU	IND	טאו	טאו

PROJECTED COC MASS LOADINGS FROM CMS AREA GROUNDWATER TO ADJACENT WATER BODIES AFTER PROPOSED CORRECTIVE ACTIONS

- Notes:

 1. Loading = Discharge Rate x Concentration. See Table 4-41 for discharge calculations and Tables 4-31 through 4-36 for concentrations.

 2. Compounds of Concern (COC) include any parameter detected above its respective GWQS/GV in at least one monitoring well in the RFI or 2019 CMS sampling.

 3. Table 4-43 Current CMS COC Mass Loading from CMS Area Groundwater to Adjacent Water Bodies was used as base table to develop Projected Mass Loadings after Proposed Corrective Actions.

 4. Discharge Sub-Area 4B wells were not advanced beyond the fill layer; as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.

 5. Monitoring well was not sampled during the CMS, either because it was not selected (MWN-08A and MWN-34A) or could not be located (MWN-52A), and was subsequently replaced by nearby wells MWN-66A, MWN-67A, and MWN-68A (respectively).

Formula/Conversion Factors:
Loading (g/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6
Loading (lb/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

lbs/day = pounds per day
na = not analyzed
ND = compound was not detected at the method detection limit

Color Code:

= Parameter designated a Primary Compound of Concern.
= Well Location/Shoreline Segment to be addressed by Capping, consolidation, waste removal. Assume 99.8% reduction to contaminant loading within shoreline segment.
= Well Location/Shoreline Segment to be addressed by tertiary groundwater extraction and treatment along shoreline segments. Assume 100% reduction to contaminant loading within shoreline segment.
= Well Location/Shoreline Segment to be addressed by secondary groundwater extraction and treatment. Assume 50% reduction to contaminant loading within shoreline segment.

											Compounds	of Concern (COC), Loading Calculati	ons ^{1,2,3}								
Discharge	1114	W-III D	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(k)	Biphenyl	Bis(2-	Chrysene	Fluorene	Indeno(1,2,3-cd)	Naphthalene	Phenanthrene	Pyridine	Total Phenolic	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Cyanide
Sub-Area	Unit	Well I.D.	Anthracene	Pyrene	Fluoranthene	Fluoranthene		ethylhexyl)phthalate	_		Pyrene				Compounds							Loading
			Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	Loading (lb/day)	(lb/day)
		MW 0D4	, ,,		· · · · · · · ·	, ,,	, ,,		1	. ,,		, ,,	` ',	, ,,		. ,,	` ,	` ,,		, ,,	` ,,	
		MW-2D4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0000010	0.00001	na	0.000002	ND	ND	na
		MW-2D3	ND	ND	ND	ND	0.0000002	ND	ND	0.0000015	ND	0.00001	0.0000020	ND	0.0000004	0.0000007	0.00001	na	0.0000002	0.0000006	ND	na
2A	Slag/Fill																					
24		MW-2D2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0000034	na	0.0000008	ND	ND	na
		MWS-26A	7.30E-09	ND	2.92E-09	ND	ND	ND	5.84E-09	ND	ND	ND	ND	na	ND	ND	0.0000025	na	0.0000015	ND	ND	na
		MWS-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00000002	ND	na	na	ND	0.0000024	na	0.0000024	ND	0.0000007	na
	Sand/Dredge Spoil	MW-2D2B	0.00000	0.00E+00	0.00000	0.00E+00	0.00000	ND	0.00E+00	0.00000	0.00E+00	0.00000	0.00000	na	0.00000	0.00000	0.00000	na	ND	ND	ND	na
		MWS-01	0.00000	0.00000	0.00000	0.00E+00	0.00000	ND	0.00000	0.00000	0.00E+00	0.00000	0.00000	na	0.00000 ND	ND	0.00000	na	ND 2 22222	ND	na	na
		MWS-02 MWS-19A	ND 0.00E+00	0.00E+00	ND 0.00E+00	ND 0.00E+00	ND ND	0.00000	ND 0.00E+00	0.00000 0.00E+00	ND 0.00E+00	0.00000 0.00E+00	0.00000 0.00E+00	na	ND ND	0.00000	0.00000	na	0.00000	na 0.00000	na	0.00000
	Slag/Fill	MWS-18A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	ND ND	0.00000 ND	ND	ND	0.00E+00	0.00000	0.00E+00	na na	0.00000	0.00000	0.00000	na na	0.00000	0.00000 ND	na na	0.00000
		MWS-20A	ND	ND	ND	ND	ND	0.00012	ND	ND	ND	ND	0.00E+00	na	ND	0.00009	0.00060	na	0.00045	ND	na	0.00200
2B		MWS-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na	0.00013	0.00238	na	ND	ND	na	na
	Sand/Dredge Spoil	MWS-01B	ND ND	ND	ND	ND	0.00000	ND ND	ND	0.00000	ND	0.00000	ND	na	0.00000	0.00000	0.00000	na	0.00000	0.00000	na	na
		MWS-19B	ND	ND	ND	ND	ND	0.00000	ND	0.00E+00	ND	ND	ND	na	ND	0.00000	0.00000	na	0.00E+00	0.00E+00	na	0.00000
	Sand	MWS-18C	ND	ND	ND	ND	ND	0.00E+00	ND	ND	ND	ND	ND	na	0.00E+00	0.00E+00	0.00000	na	0.00E+00	ND	na	0.00000
		MWS-20B	5.42E-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND	0.00001	0.00008	na	0.00001	3.33E-06	na	0.00013
	Slag/Fill	MWN-01	0.00000	0.00E+00	0.00000	0.00E+00	0.00000	ND	0.00000	0.00000	ND	0.00000	0.00000	na	0.00000	0.00000	na	na	ND	ND	0.00000	na
		MWN-11	ND	ND	ND	ND	ND	0.00028	ND	0.00004	ND	0.00021	0.00007	na	na	ND	na	na	0.00047	0.00024	0.00094	na
		MWN-94A	ND	ND	ND	ND	ND	0.00006	ND	ND	ND	0.00082	ND	na	ND	0.00041	na	na	0.00025	0.00107	0.00004	na
3A		MWN-24A	ND	ND 0.005:00	ND	ND	ND	0.00005	ND	ND	ND	ND	ND	na	ND 0.00000	0.00012	na	na	0.00014	0.00017	ND	na
	Sand/Dredge Spoil	MWN-01B MWN-23B	0.00E+00 ND	0.00E+00	0.00E+00 ND	0.00E+00 ND	0.00000 ND	ND ND	0.00E+00 ND	0.00000 ND	0.00E+00 ND	0.00000 ND	0.00000 ND	na	0.00000	0.00000	na	na	ND 0.00004	0.00000	0.00000	0.00000
	Sand	MWN-94B	8.57E-07	ND ND	6.73E-07	ND ND	ND ND	ND ND	9.18E-07	1.29E-06	ND ND	2.75E-06	3.80E-06	na na	0.00008 na	0.00007	na na	na na	0.00004	0.00002	0.00005 0.00001	na na
-	Janu	MWN-06A	0.00004	0.00003	0.00006	0.00003	ND	ND ND	0.00005	0.00143	ND ND	0.00299	0.00390	na	ND	na	na	na	0.00086	na	na	na
		MWN-05A	0.000001	ND	0.00000003	0.00000002	ND	ND ND	0.0000001	ND	0.00000002	ND ND	ND	na	0.000001	ND	0.00012	na	0.00001	0.000003	ND	na
	Slag/Fill	MWN-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND	ND	0.00004	na	0.00002	na	0.00001	na
4A	· ·	MWN-03	ND	ND	ND	ND	0.000001	ND	ND	0.00001	ND	0.00002	0.00001	na	0.000002	ND	0.00011	na	ND	na	0.00001	na
4A		MWN-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	0.00000	ND	0.00000	na	ND	na	0.00000	na
		MWN-05B	0.00002	2.22E-06	0.00001	2.22E-06	0.00041	0.00014	0.00001	0.00133	ND	0.07410	0.00148	na	0.01867	0.00119	1.16707	ND	0.00445	0.00170	ND	na
	Sand/Dredge Spoil	MWN-03B	ND	ND	ND	ND	ND	ND	ND	0.00004	ND	ND	0.00004	na	ND	0.00198	0.06393	na	0.00023	na	ND	na
		MWN-02B	ND	ND	ND	ND	0.00000	ND	ND	0.00000	ND	0.00000	0.00000	na	0.00000	0.00000	0.00000	na	0.00000	na	0.00000	na
4B	Slag/Fill	MWN-43A MWN-18A	0.00004 0.00002	ND 0.00004	0.00001	2.69E-06	ND ND	ND 0.00000	0.00003	ND ND	ND 0.000000	ND ND	ND ND	na	0.00180	na	0.14438	na	ND 0.00054	na	na	na
46	Sand	(see Note 4)	0.00002 na	0.00001 na	0.00002 na	0.00001 na	na	0.00022 na	0.00002 na	na	0.000006 na	na	na	na na	0.00051 na	na na	0.02166 na	na na	0.00351 na	na na	na na	na na
-	Janu	MWN-45A	0	ND	ND	ND ND	ND	0	0	ND ND	ND ND	ND	0	na	0	ND ND	0	na	0	na	na	0
		MWN-47A	ND	ND	ND	ND	ND	0.00000	ND	ND	ND	ND	ND	na	0.00E+00	ND	0.00000	na	0.00000	na	na	na
		MWN-09	ND	ND	ND	ND	ND	0	ND	ND	ND	ND	ND	na	ND	na	na	na	na	na	na	na
		MWN-26A	ND	ND	ND	ND	ND	ND	ND	0	ND	ND	ND	na	na	0	0	na	ND	na	na	0
5	Slag/Fill	MWN-67A/MWN-34A 5	0	0	0	0	0	0	0	0	ND	0	0	na	0	na	na	na	na	na	na	0
		MWN-66AR/MWN-08 ⁵	0	0	0	0	0	0	0	0	0	0	0	na	0	na	na	na	na	na	na	0
		MWN-49A	0	ND	ND	ND	ND	0	ND	ND	ND	ND	ND	na	ND	ND	0	na	0	na	na	na
		MWN-68A ⁵	ND	ND	ND	ND	ND	0.00009	ND	ND	ND	ND	ND	na	ND	na	na	na	na	na	na	na
		MWN-07	1.61E-06	ND	2.15E-06	1.61E-06	ND	ND	1.61E-06	ND	2.69E-06	ND	ND	na	ND	ND	0.00220	na	0.00215	na	na	0.00263

- Notes:

 1. Loading = Discharge Rate x Concentration. See Table 4-41 for discharge calculations and Tables 4-31 through 4-36 for concentrations.

 2. Compounds of Concern (COC) include any parameter detected above its respective GWQS/GV in at least one monitoring well in the RFI or 2019 CMS sampling.

 3. Table 4-43 Current CMS COC Mass Loading from CMS Area Groundwater to Adjacent Water Bodies was used as base table to develop Projected Mass Loadings after Proposed Corrective Actions.

 4. Discharge Sub-Area 4B wells were not advanced beyond the fill layer; as a result the depth and thickness of the underlying sand layer was derived from interpretation from nearby wells (i.e., MWN-05B & MWN-50B). Even though it is assumed that a sand unit exists, there are no sand wells installed within this CMS Discharge Sub-Area; therefore, only the wells in the screened fill unit could be utilized for loading calculations.

 5. Monitoring well was not sampled during the CMS, either because it was not selected (MWN-08A and MWN-34A) or could not be located (MWN-52A), and was subsequently replaced by nearby wells MWN-66A, MWN-67A, and MWN-68A (respectively).

Formula/Conversion Factors: Loading (g/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 Loading (lb/yr) = Discharge Rate (L/YR) x Concentration (ug/L) x 1.0E-6 x 2.205E-3

Definitions
|lbs/day = pounds per day
na = not analyzed
ND = compound was not detected at the method detection limit

Color Code:

= Parameter designated a Primary Compound of Concern.
= Well Location/Shoreline Segment to be addressed by Capping, consolidation, waste removal. Assume 99.8% reduction to contaminant loading within shoreline segment.
= Well Location/Shoreline Segment to be addressed by tertiary groundwater extraction and treatment along shoreline segments. Assume 100% reduction to contaminant loading within shoreline segment.
= Well Location/Shoreline Segment to be addressed by secondary groundwater extraction and treatment. Assume 50% reduction to contaminant loading within shoreline segment.