Strong Advocates, Effective Solutions, Integrated Implementation

March 30, 2022

Mr. Andrew Zwack Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2915

Re: Tecumseh Redevelopment Inc., Lackawanna, NY Site ATP SWMU Group ECM

Annual Monitoring & Maintenance Summary Report Reporting Period January 1- December 31, 2021

Dear Mr. Zwack:

On behalf of Tecumseh Redevelopment Inc., TurnKey Environmental Restoration, LLC (TurnKey) is herein providing the Annual Monitoring and Maintenance Summary Report for the Acid Tar Pits (ATP) Solid Waste Management Unit (SWMU) Group Expedited Corrective Measure (ECM) for calendar year 2021. This summary report has been prepared in accordance with the monitoring requirements contained in the Operation, Maintenance, and Monitoring (OM&M) Plan (May 2017).

1.0 BACKGROUND

The ATP-ECM is comprised of three remedial components: a soil-bentonite slurry wall keyed into native confining soils; a cover system; and a groundwater collection and pretreatment system. The approximately 40-foot-deep soil-bentonite slurry wall (the lateral component of the containment cell), was completed in the fall of 2011 and surrounds SWMUs S-11 and S-22 (see Figure 1).

In 2012, waste/fill from SWMU S-24 was excavated, transported, and consolidated within the containment cell, and partially covered with a final low-permeability multi-layer geosynthetic cover around the perimeter with just a temporary soil cover in the center to allow addition wastes to be subsequently consolidated there. Groundwater/leachate extraction wells EW-1 and EW-2, installed within the containment cell, were activated in December 2012 (see Figure 1 for locations). Groundwater/leachate is extracted from these wells via submersible pumps and conveyed to an onsite pretreatment system incorporating oil/water separation, filtration, pH adjustment and air stripping unit processes. The pretreated water is discharged to the plant sanitary sewer and ultimately the publicly operated sewerage system under a discharge permit with Erie County Sewer District No. 6. A third

Mr. Andrew Zwack
NYSDEC
March 30, 2022
Page 2 of 6

extraction well (EW-3) originally installed within the northern portion of the containment cell was not used due to localized groundwater quality (e.g., low pH, foaming) and other waste fill characteristics (e.g., low hydraulic conductivity) proximate to the well screen. A replacement well for EW-3, deemed "EW-3R," was installed in the northwestern portion of the cell near piezometer P-62D (see Figure 1) and became operational in August 2015.

Final waste consolidation and cover system construction was completed in late 2015. This phase of the remedial work, deemed Operable Units (OU) 2 and 3 respectively, is detailed in the January 2016 Construction Completion Report (CCR) prepared by Benchmark Environmental Engineering & Science, PLLC (Benchmark) in association with TurnKey.

Downgradient Pumping Well Installation

The results of the RCRA Corrective Measures Study (CMS) indicated that prior to the construction of the ATP-ECM containment cell, contamination from the Acid Tar Pits area had migrated northerly towards Smokes Creek. Although significant improvement in groundwater quality was observed following containment cell construction, downgradient concentrations in groundwater outside the ATP containment cell remained at levels significantly above NY Groundwater Quality Standards. TurnKey prepared a conceptual remedial approach for this groundwater in a report titled "Engineering Report for Acid Tar Pit (ATP) SWMU Group Operable Unit OU-2¹ - External Groundwater Corrective Measure" dated April 2014 which was approved for implementation by the NYSDEC.

The external groundwater corrective measure called for installation of four groundwater pumping wells (PW-1 through PW-4) between the containment cell and Smokes Creek, with discharge from the external pumping wells directed via a new force main to the ATP pretreatment system. The new wells were installed and placed into service in Fall of 2015. Details of the pumping well and force main construction were provided to the Department in an April 2016 amendment to the February 2013 ATP SWMU Group Phase III Construction Completion Report. Both interior and exterior pumping well set-point elevations are controlled from the pretreatment building and are operated to maintain a delicate balance between slight drawdown from static conditions in exterior pumping wells while maintaining an inward gradient across the containment wall.

Interior Extraction Well Maintenance and Replacement

Indications of screen clogging were observed in early 2019 at the extraction wells within the containment cell. Well redevelopment work was performed in June 2019. The post-redevelopment recovery rates were similar to those observed when EW-1 and EW-3R were first installed (5 gpm and 0.4 gpm, respectively), but the recovery rate measured at EW-2 (0.2 gpm in June 2019) was nearly an order of magnitude below initial recovery rate (1.4 gpm).

-

¹ OU-2 was re-designated by the NYSDEC to OU-3 in April 2015.

Based upon the significant drop in the recovery rate at EW-2 and the comparatively low recovery rate at EW-3R, Tecumseh elected to replace those wells via over-drilling and install replacement wells with an improved screen/sand pack design at the same locations. Between the period of August - September 2019, EW-2 and EW-3R wells were over-drilled and reinstalled with replacement Schedule 80 PVC wells fitted with 20-foot PVC wedge wire (aka V-wire) screens. The wedge wire design and increased screen length² was designed to improve recovery performance by allowing a larger, more direct path for groundwater to enter the well. Wedge wire screens are also more resistant to clogging/fouling than conventional slotted screen, thereby providing greater long-term reliability.

The wells were built with one-foot sumps in the bottom followed by the 20-foot screen, with the PVC riser extending into the manhole. Sand was placed around the sump, screen and the bottom 4-feet of the riser followed by two-feet of bentonite and soil cuttings up to the bottom of the manhole. The new wells were developed using a surge and purge method employing the drill rig for surging.

Groundwater recovery rates were measured following purging. The recovery rate at EW-2 increased significantly, climbing from 0.2 gpm to 6 gpm following replacement. The recovery rate at well EW-3R increased by approximately 75% from 0.4 gpm to 0.7 gpm.

2.0 GROUNDWATER CAPTURE SYSTEM PERFORMANCE

During 2021, the groundwater elevations in the network of wells and piezometers within and surrounding the ATP containment cell was monitored on a minimum quarterly basis per the OM&M Plan. Table 1 presents groundwater elevation data obtained on March 30, June 29, September 28, and December 28, 2021. Isopotential maps corresponding to each of these events are presented as Figures 2 through 5. When generating the groundwater contours at paired wells, the well that is screened in the sand layer is used because the extraction wells and piezometers are all screened in the sand layer. We have used wells screened in the fill layer (i.e., MWS-02, MWS-03, MWS-15, and MWS-29A) to expand the view and "fill in" data points for the isopotential map where wells completed in the sand layer are fewer or farther apart.

The isopotential maps all illustrate pronounced inward gradient toward the extraction wells within the interior of the containment cell reflecting active removal of contained groundwater from contained saturated soil/fill porous media. An inward gradient across the slurry wall was achieved after the replacement wells were installed and placed back into service. This reflects effective hydraulic control being achieved by the combined effects of the lateral low-permeability slurry wall barrier, low infiltration through the geocomposite cover system, and improved interior groundwater extraction (from the redevelopment of interior groundwater extraction wells EW-1 and the replacement of interior groundwater extraction wells EW-2 and EW-3R). The isopotential maps also clearly indicate that the

TURNKEY

² Original wells were fitted with 5-foot conventional slotted screen.

exterior groundwater pumping wells (ATP- PW1, -PW2, -PW3, and -PW4) are effectively capturing impacted groundwater that escaped the ATP SWMU Group prior to implementation of the final ATP-ECM remedy.

Table 1 shows a significant elevation difference between the well pair MWS-23A and MWS-23B. The significant groundwater elevation difference between MWS-23A and MWS-23B is likely due to a zone of very dense material located between the screened zones of these two wells. When reviewing the boring log for MWS-23B there is a zone just above the sand layer that is very dense with drilling blow counts of greater than 50 blows to advance 0.4 feet. We believe this very dense layer is acting as an aquitard and causing a localized perched water table. The screened interval of MWS-23A is located above the dense layer and is able to observe the localized perch water table. The screened zone for MWS-23B is located below the dense layer and not subject to the localized perched water table.

3.0 GROUNDWATER PRETREATMENT SYSTEM PERFORMANCE

The groundwater pretreatment system was generally operated without interruption during the current monitoring period except for short-duration shutdowns related to routine maintenance (e.g., cleaning of the air stripper, changing out bag filters, etc.).

Groundwater Pretreatment System Maintenance

Major routine and non-routine maintenance events as well as alarm conditions/corrective actions taken during the reporting period are listed on Table 2. The recorded hours of operation and cycle counts for 2021 are presented for each of the extraction and pumping wells on Table 3.

Groundwater Pretreatment System Effluent Monitoring

Attachment 1 includes the April 2021 and October 2021 Semi-Annual Reports submitted to Erie County Sewer District No. 6. As presented in these reports, the pretreatment system effluent flow, pH, and regulated parameter concentrations were conformant with the permitted discharge limits during both events.

Groundwater Extraction Volumes

The pretreatment system process flow rate and total gallons treated are monitored on the process discharge line via a flow sensor and transmitter. Similarly, a flow sensor and transmitter is located on the extraction well manifold in the pretreatment building. The total flow through the pretreatment system during the period of December 27, 2020 through December 30, 2021 was approximately 534,000 gallons. For that same period, approximately 264,000 gallons of groundwater was collected by the interior extraction wells based upon the readings recorded on the extraction well flow meter. Table 4 provides a summary of the pretreatment system flow readings with monthly and yearly totals. During the current monitoring period, the interior groundwater extraction well volume was measured to be approximately 49% of the total flow processed through the pretreatment system, with the remaining 51% produced by the exterior groundwater extraction wells. As

the containment cell has dewatered, the ratio has shifted, with the interior extraction wells producing lesser amounts and the exterior extraction wells staying roughly the same with some seasonal variation.

In accordance with NYSDEC's request, Table 5 presents a summary of the volume of groundwater processed through the pretreatment system and the estimated breakdown between interior and exterior extraction well volumes beginning in 2016. Annual rainfall precipitation amounts are also summarized for this period on Table 5. Note that prior to 2019 the flows and associated ratio between interior and exterior flows was determined by multiplying the cycle counts by the approximate volume of water removed between on and off setpoints, which was assumed to include the volume of water within the well casing and surrounding sand pack. Following the installation of the interior extraction well flow meter in November 2019, the ratio between interior and exterior flow is more accurate.

4.0 GROUNDWATER QUALITY MONITORING

In accordance with the approved OM&M Plan, monitoring wells MWS-02, MWS-18A, MWS-18C, MWS-19A, MWS-19B, MWS-20A, and MWS-20B located downgradient of the containment cell are sampled annually in April for analysis of Target Compound List (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), arsenic, barium, chromium, lead, and cyanide. The primary constituents of concern (COCs) that are historically prevalent in groundwater in and around the ATP at concentrations in excess of the groundwater quality standards (GWQS) are benzene, phenolics, PAHs and cyanide.

Sample results from April 2021 are summarized on Table 6 along with historical data from prior sampling events. The groundwater monitoring laboratory analytical data package is included in Attachment 2. Time versus concentration plots for BTEX (sum of benzene, toluene, ethylbenzene, and xylene) and cyanide are in Attachment 3. The data have been entered into the NYSDEC's EQuIS database. The BTEX plot and Table 6 clearly illustrate that since the completion of the slurry wall (part of ECM remedial measures) nearly ten years ago, concentrations of these COCs in the most impacted groundwater monitoring wells (i.e., MWS-18A/C and MWS-19A/B) have decreased considerably. In fact, BTEX levels at MWS 18A/C have decreased by 97% and 97% percent, respectively, and BTEX levels at MWS 19A/B have decreased by 84% and 99% percent, respectively. Similarly, cyanide concentrations at MWS 18A/C have decreased by 50% and 90% percent, respectively, and cyanide levels at MWS 19A/B have decreased by 79% and 60% percent, respectively. Further evaluation of the BTEX data shows all wells have decreased by at least one order of magnitude and are continuing an overall downward trend. Table 6 also shows that BTEX concentrations in groundwater monitoring wells MWS-02 and MWS-20A/B that are not directly downgradient of the ATP are historically not significantly above GWQS and have a sightly decreasing trend. Phenolic concentrations in ATP area groundwater show downward trends with all downgradient monitoring wells near or below groundwater quality standards except MWS-18C. The cyanide concentrations have been trending downward and are

approaching or below the GWQS in all downgradient monitoring wells except MWS-02. The cyanide concentration at MWS-02 remains above GWQS and has been somewhat erratic but has trended downward since 2018.

5.0 COVER SYSTEM MONITORING

A completed Post-Closure Field Inspection Report is included in Attachment 4. As presented in Attachment 4, the cover system, stormwater pond, and conveyance piping are in good condition and no corrective actions are required at this time.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The groundwater pretreatment system is functioning as intended and in compliance with discharge permit limits. Significant improvement in interior extraction well performance occurred following redevelopment of EW-1 and replacement of EW-2 and EW-3R. The containment cell inward gradient was re-established across the slurry wall perimeter. The exterior groundwater extraction wells are performing as designed to control impacted groundwater immediately downgradient of the containment cell.

Please contact us if you have any questions or require additional information.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Senior Project Environmental Scientist

ec: S. Radon, (NYSDEC – Region 9)

K. Nagel (Tecumseh)

P. Werthman (TurnKey)

T. Forbes (TurnKey)

TABLES

TABLE 1 ATP GROUNDWATER PRETREATMENT SYSTEM GROUNDWATER ELEVATION SUMMARY 1,2,3

ATP ECM 2021 ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

Well Designation	Hydrogeologic Unit	03/30/21	06/29/21	09/28/21	12/28/21
MWS-02	F	574.7	574.4	574.6	575.6
MWS-03	F	573.7	573.2	573.6	574.3
MWS-10	F	576.1	575.7	576.4	577.4
MWS-10B	S	576.0	575.5	576.2	577.3
MWS-11A	S	574.3	573.8	574.4	575.2
MWS-12A	F	575.2	574.8	575.6	576.7
MWS-12B	F,S	575.3	574.6	575.4	576.5
MWS-13	F,S	574.8	574.3	574.9	576.2
MWS-14	F,S	576.0	575.9	575.8	577.4
MWS-14B	S	575.4	575.0	575.8	576.9
MWS-15		574.5	574.0	574.5	575.4
MWS-18A	F	574.7	573.7	574.3	575.1
MWS-18C	S,CS	574.9	573.9	575.1	575.5
MWS-19A	F	573.4	573.2	573.3	573.7
MWS-19B	S	573.4	573.2	573.3	573.7
MWS-20A	S	575.9	574.7	576.2	577.1
MWS-20B	S,CS	575.8	574.8	575.8	576.8
MWS-21A	F,S	575.8	575.2	576.0	577.0
MWS-21B	S	575.7	575.3	575.9	577.0
MWS-23A	F	581.9	580.8	581.2	582.2
MWS-23B	S	575.9	575.4	576.2	577.2
MWS-24AR	F,S	576.0	575.4	576.3	577.3
MWS-24B	S,C	574.8	574.5	575.1	575.8
MWS-25A	F,S	575.7	575.4	575.9	576.9
MWS-25B	F,S	575.7	575.2	575.9	577.0
MWS-29A	F	577.5	577.2	577.3	577.3
MWS-2U1B		574.4	573.9	574.5	575.3
P-61D	S	573.8	573.4	573.6	573.9
P-62D	S	574.1	573.8	573.6	573.9
P-63D	S	575.8	574.8	575.6	576.6
P-64D	S	574.0	573.7	573.4	573.9
EW-1	S	572.5	572.5	572.5	572.5
EW-2	S	572.5	572.5	572.5	572.5
EW-3 ⁴	S	574.6	572.7	572.4	572.7
EW-3R	S	572.5	572.5	572.5	572.5
PW-1	S	572.0	572.0	572.0	572.0
PW-2	S	572.0	572.0	572.0	572.0
PW-3	S	572.0	572.0	572.0	572.0
PW-4	S	573.0	572.0	572.0	572.0
SG-02	-	572.5	572.9	572.3	573.4
Lake Erie (average) 5	-	572.7	573.2	572.8	573.0

Notes:

- 1. Elevation is measured in feet; distance above mean sea level (fmsl).
- 2. Groundwater elevation corrected based on the presence of free product (i.e., LNAPL), if applicable.
- 3. Groundwater elevations for extraction wells EW-1, EW-2, EW-3R, PW-1, PW-2, PW-3, and PW-4 presented in the table are reflective of the average of "pump on" and "pump off" elevations.
- 4. Extraction well EW-3 is utilized as a monitoring well not as a pumping extraction well.
- 5. Lake Erie Elevation is an average elevation for the day and is taken from NOAA's Buffalo NY station 9063020.

Definitions:

fbTOR = feet below top of riser or reference elevation.

fmsl = feet above mean sea level.

Hydrogeologic Unit = as identified in the RFI & CMS

NM = not measured

NP = no product was observed

NA = not applicable

TABLE 2 ATP GROUNDWATER PRETREATMENT SYSTEM SUMMARY OF MAJOR AND NON-ROUTINE SYSTEM O&M EVENTS

ATP ECM 2021 ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

Date	Alarm Condition	Cause	Response/Corrective Measure
1/6/21	None	Deposit buildup in Air Stripper	Cleaned air stripper
1/29/21	None	Deposit buildup in oil/water separator	Removed sediment buildup from the oil/water
2/2/21	None	pH probe not reading properly	Installed new pH probe
2/3/21	None	Deposit buildup in EQ tank	Removed sediment buildup from the EQ tank
4/5/21	None	Alarm system no longer supported	Replace Sensaphone Alarm System
4/6/21	None	Deposit buildup in Air Stripper	Cleaned air stripper
4/13/21	None	EW-1 pump not working	Repair EW-1 pump wires
4/21/21	None	PW-4 pump not working	PW-4 water level probe stopped working. Probe was replaced on 4/23/21 and PW-4 working normal.
6/16/21	None	Deposit buildup in Air Stripper	Cleaned air stripper
10/6/21	None	PW-4 not pumping down	Clean PW-4 impellers and repair pump wires

TABLE 3 ATP GROUNDWATER PRETREATMENT SYSTEM EXTRACTION AND PUMPING WELL OPERATION SUMMARY

ATP ECM 2021 ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

Date	EW-1 Hours	EW-1 Cycles	EW-2 Hours	EW-2 Cycles	EW-3R Hours	EW-3R Cycles	PW-1 Hours	PW-1 Cycles	PW-2 Hours	PW-2 Cycles	PW-3 Hours	PW-3 Cycles	PW-4 Hours	PW-4 Cycles
1/29/2021	2696.70	536941	3299.53	76181	2549.11	105965	3868.77	831991	3010.52	247115	369.94	40483	6454.33	111032
2/26/2021	2711.52	545487	3324.22	84410	2551.61	107315	3889.81	840766	3023.58	250367	441.31	40838	6454.33	111032
3/26/2021	2731.03	556831	3347.22	92157	2553.72	108459	3903.96	846710	3033.46	253049	491.94	41099	6454.33	111033
4/30/2021	2827.54	567891	3374.50	101367	2555.07	109185	3920.62	853459	3046.09	256521	545.32	41367	6529.66	118224
5/28/2021	2844.00	576423	3394.77	107997	2556.14	109758	3930.95	858725	3055.45	259109	640.39	42440	6612.88	130982
6/25/2021	2859.00	584346	3415.79	114670	2557.50	110490	3942.02	864238	3064.94	261459	681.66	43372	6710.97	135421
7/30/2021	2875.15	593138	3442.90	122842	2558.68	111123	3959.33	872539	3079.37	264263	697.19	43790	7040.19	147385
8/27/2021	2886.80	599630	3465.50	129339	2559.25	111427	3973.32	879227	3090.40	266415	706.60	44046	7151.90	159819
9/24/2021	2847.45	605353	3489.07	135493	2559.58	111603	3985.64	885116	3101.02	268788	714.28	44246	7356.67	163328
10/29/2021	2910.05	612038	3520.64	143170	2559.97	111807	4001.80	892743	3114.46	271966	725.26	44538	7670.51	168760
11/26/2021	2922.15	618244	3551.65	149775	2560.28	111980	4016.33	899320	3126.59	274981	736.90	44856	7796.89	173995
12/30/2021	2938.00	626382	3593.85	158200	2560.69	112209	4052.91	917964	3143.00	279704	760.27	45455	8422.70	175702

TABLE 4 ATP GROUNDWATER COLLECTION AND PRETREATMENT SYSTEM SUMMARY OF PROCESS FLOW DATA

ATP ECM 2021 ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

Date	Pretreatment System Effluent Totalizer (gallons)	Monthly Total Flow (gallons)	Extraction Well Totalizer (gallons)	Extraction Well Monthly Flow (gallons)	Calculated Pumping Well Monthly Flow (gallons)
12/27/2020	10868911		455234		
1/3/2021	10879343		460892		
1/8/2021	10886553		465059		
1/15/2021	10895376	51,920	470797	27,595	24,325
1/22/2021	10907237		476920		
1/29/2021	10920831		482829		
2/5/2021	10933422		488399		
2/12/2021	10944552	41869	493988	22,327	19,542
2/19/2021	10953418	41000	499663	22,027	10,042
2/26/2021	10962700		505156		
3/5/2021	10972103		510370		
3/12/2021	10980593	34,465	515479	20,407	14,058
3/19/2021	10989044	ļ , , , , , , , , , , , , , , , , , , ,	520547	ŕ	,
3/26/2021	10997165		525563		
4/2/2021	11006113		530487		
4/9/2021	11013583		535522		
4/16/2021	11021403	48,381	540430	27,824	20,557
4/23/2021	11033375		546785		
4/30/2021	11045546		553387		
5/7/2021	11055536		558577		
5/14/2021	11067266	44,649	564329	22,358	22,291
5/21/2021	11078787		570113		
5/28/2021	11090195		575745		
6/4/2021	11101124		581211		
6/11/2021	11104298	31,040	586485	20,960	10,080
6/18/2021	11111660		591762		
6/25/2021	11121235		596705		
7/2/2021 7/9/2021	11130637 11140732	-	601526		
7/16/2021	11150787	53,555	606413	24,181	29,374
7/10/2021	11161178	33,333	611136 615968	24,101	29,374
7/30/2021	11174790		620886		
8/6/2021	11185986		625315		
8/13/2021	11198753	1	630186		
8/20/2021	11211185	48,417	634853	18,574	29,843
8/27/2021	11223207		639460		
9/3/2021	11233951		643964		
9/10/2021	11245010		648532		
9/17/2021	11255819	42,249	652798	17,386	24,863
9/24/2021	11265456		656846		
10/1/2021	11273592		661179		
10/8/2021	11282646		665401		
10/15/2021	11293953	52,418	669647	21,421	30,997
10/22/2021	11305442		673983		
10/29/2021	11317874		678267		
11/5/2021	11331219		682809		
11/12/2021	11338094	27.440	687301	40.074	40.400
11/19/2021	11346562	37,443	691784	18,274	19,169
11/26/2021	11355317		696541		
12/3/2021	11363040		701118		
12/10/2021	11371873]	705837		
12/17/2021	11382820	47,539	710716	22,877	24,662
12/23/2021	11392205]	714689		
12/30/2021	11402856		719418		
Total Volume Treated	533,945	533,945	264,184	264,184	269,761

TABLE 5 ATP GROUNDWATER TREATMENT VS. ANNUAL PRECIPITATION

ATP ECM 2021 ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

Year	Annual Precipitation (inches) 1	Total Annual Volume Treated (gallons)	Annual Volume from Extraction Wells (gallons)	Annual Volume from Pumping Wells (gallons)
2016 ²	33.87	2,422,004	788,500	1,633,500
2017 ²	48.48	1,616,120	360,674	1,255,446
2018 ²	41.64	925,430	288,160	637,270
2019 ²	47.82	1,150,231	743,800	406,431
2020	39.67	758,713	391,423	367,290
2021	40.33	533,945	264,184	269,761

Note:

- 1. Annual precipitation data from National Weather Service, Buffalo, NY historical data (https://www.weather.gov/buf/BuffaloPcpn)
- 2. Annual volume amounts from extraction and pumping wells for 2016-2018 and a portion of 2019 are incaccurate estimates prior to installation of the flow meter on the incoming force main from the interior extraction wells in November 2019.

ATP ECM ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

												Monitori	ng Well Locati	ion and Samr	le Date(s)								
Parameter	CAS No.	GWQS/GV ²	Units		I	1			5-02 ^{3,4}	1						1	1	1	S-18A		1	1	
Field Measurements				11/8/1999	2/28/2012	4/10/2014	4/28/2015	4/7/2016	4/11/2017	4/17/2018	4/9/2019	4/10/2020	4/27/2021	11/9/1999	2/28/2012	4/10/2014	4/28/2015	4/8/2016	4/11/2017	4/17/2018	4/9/2019	4/9/2020	4/27/2021
Dissolved Oxygen	NA	-	MG/L	1.4	4.06	NA	1.85	3.6	2.27	3.66	2.44	1.3	1.16	0.4	2.5	NA	3.63	2.08	2.77	2.1	1.56	1.56	1.34
Field pH	NA	6.5 - 8.5	S.U	11.07	10.99	10.30	10.75	10.67	11.41	10.68	11.19	11.30	11.00	9.03	9.28	9.47	8.85	8.73	10.34	9.84	8.95	9.38	8.60
Redox Potential	NA NA	-	mV	-156	-156	205	210	-81	-245	221	-243	-191	-224	-474	-103	-104	-54	-92	-1.23	-120	-178	-136	-188
Specific Conductance	NA NA	-	UMHOS/CM DEG C	2,590 14.8	2280 10.1	2053	1905 13.6	1803 11.3	2096 12.9	1639	2016	1830 11.5	1704 14.2	4,700	3323	2649 13.7	2623 13.7	2767 9.1	2470 13.2	2725	3042	2717 10.9	2928 16.8
Temperature Turbidity	NA NA	-	NTU	14.6	14.6	13.1 1.96	8.9	8.0	4.2	7.9 1.3	10.4 3.86	2.92	3.4	15.3 91	12.2 17.4	16.4	30	14.6	5.64	8.4 3.4	9.3 4.86	10.9	14.7
Volatile Organics (Method 8260B) (STARS List parameter			1410	10	14.0	1.50	0.5	0.0	7.2	1.5	3.00	2.52	5.4	31	17.4	10.4		14.0	3.04	J. 4	4.00	10.5	14.7
1,1-Dichloroethane	75-34-3	5	ug/l	8.3	9.8	1.1 J	1 J	1.2 J	3	ND	1.1 J	0.93 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	-	ND	-	-	ı	1 J	-	-	ND	ND	-	ND	-	-	-	ND	-	-	ND	ND
1,2-Dichloroethane	107-06-2	0.6	ug/l	ND	1.7	ND	0.43 J	0.91	2.6	0.21 J	0.99	0.82	ND	ND	ND	ND	ND	ND	110	ND	ND	ND	ND
1,3,5-Trimethylbenzene 1,4-Diethylbenzene	108-67-8 105-05-5	5	ug/l ug/l	-	0.54 J 0.55 J	-	-	-	ND	-	-	ND	ND	-	ND ND	-	-	-	ND	-	-	ND	ND
Acetone	67-64-1	50	ug/l	-	0.55 J	7.2	14	2	5.1	7.8	4.7 J	2.5 J	ND.	-	ND	ND.	ND	ND	ND	ND	ND	ND	ND
Benzene	71-43-2	1	ug/l	14	0.49 J	2.1	8.5	4.1	12	1	6.8	7.2	ND	140000	39000 D	4200 D	7100 D	7000 D	4600 D	1900 D	7500 D2	5000	4100 D2
Bromomethane	74-83-9	5	ug/l	ND	ND	ND	1.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	75-15-0	60	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl chloride)	74-87-3	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	156-59-2	5	ug/l	-	ND 0.37 I	ND 0.4.1	ND 0.84 I	ND 0.02 I	ND 1.5.1	ND ND	ND 0.07.1	ND 0.77 I	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Cyclohexane Ethylbenzene	110-82-7 100-41-4	5	ug/l ug/l	ND	0.37 J	0.4 J	0.84 J	0.93 J ND	1.5 J ND	ND ND	0.97 J ND	0.77 J ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Isopropylbenzene	98-82-8	5	ug/l	-	ND	ND	2.3 J	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	108-87-2	-	ug/l	-	ND	2.2 J	3.6 J	3.3 J	8.7 J	1 J	6.9 J	4.4 J	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	75-09-2	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	127-18-4	5	ug/l	ND	0.38 J	ND	ND	0.3 J	0.52 J	ND	0.35 J	0.25 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tricklereethene	108-88-3	<u>5</u> 5	ug/l	1.2 J	ND 0.57	ND ND	1.3 J	ND 0.4.1	1.1 J 1	ND ND	ND ND	0.76 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Trichloroethene Vinyl chloride	79-01-6 75-01-4	2	ug/l ug/l	ND	0.57	ND ND	0.32 J	0.4 J ND	ND	ND ND	ND ND	0.42 J	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	7.2 J	ND
Xylenes, m/p	179601-23-1	5	ug/l	- ND	ND	ND	ND	ND	0.85 J	ND	ND	ND	ND	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, o	95-47-6	5	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	1330-20-7	5	ug/l	1.9 J	ND	ND	ND	ND	0.85 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL BTEX	NA	NA	ug/l	17.1	0.49	2.1	9.8	4.1	13.95	1	6.8	7.96	ND	140000	39000	4200	7100	7000	4600	1900	7500	5000	4100
Semivolatile Organics (Method 8270C) (Base-Neutrals i		Extractables in L		Hs in red)	T	ND	ND	ND	ND	ND	ND	ND	ND	04.1	1	401	0.04.1	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol 2-Chloronaphthalene	105-67-9 91-58-7	50 10	ug/l ug/l	R ND	ND	ND ND	ND ND	ND 0.79	ND ND	ND ND	ND ND	ND ND	ND ND	21 J	- ND	1.8 J	0.81 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Methylnaphthalene	91-57-6	-	ug/l	-	0.16 J	0.65	0.21 J	1.9	2.4	0.27	1.4	1.3	ND	-	0.12 J	0.08 J	0.09 J	0.19 J	0.15 J	0.11	0.37	0.21	0.41
2-Methylphenol (o-Cresol)	95-48-7	1 *	ug/l	R	-	ND	ND	ND	ND	ND	ND	ND	ND	31	-	6.8	3.5 J	1.6 J	ND	ND	ND	ND	0.89 J
3-Methylphenol (m-Cresol) / 4-Methylphenol (p-Cresol)	108-39-4/106-44-	5 1*	ug/l	R	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	1.8 J	8.4	1.6 J	ND	ND	ND	ND	ND
Acenaphthene	83-32-9	20	ug/l	-	0.29	0.15 J	ND	0.46	0.53	0.1	0.36	0.33	ND	-	0.1 J	0.08 J	0.08 J	ND	0.09 J	0.06 J	0.18	0.14	0.18
Acenaphthylene	208-96-8 98-86-2	-	ug/l	ND	0.7 ND	0.47	ND ND	1.5	1.8	0.32	0.95	ND	ND ND	ND	0.05 J	ND 101	ND 1.1.1	ND	0.06 J	0.05 J	0.12 ND	0.07 J	0.09 J
Acetophenone Anthracene	120-12-7	50	ug/l ug/l	ND	0.18 J	0.36	0.19 J	ND 1.3 J	ND 1.3	0.13	ND 0.67	0.61	ND ND	ND.	48 ND	1.9 J 0.07 J	1.1 J 0.07 J	ND ND	0.04 J	0.04 J	0.06 J	0.02 J	0.54 J 0.05 J
Benzo(a)anthracene	56-55-3	0.002	ug/l	ND	ND	ND	ND.	ND	ND	ND	0.03 J	0.03 J	ND	ND	ND	ND	ND	ND	ND	ND	0.05 J	ND	0.02 J
Benzo(a)pyrene	50-32-8	0 (ND)	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	205-99-2	0.002	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.04 J	ND	0.02 J
Benzo(ghi)perylene	191-24-2		ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	0.01 J
Benzoic Acid Benzoic Acid	207-08-9 65-85-0	0.002	ug/l ug/l	-	ND -	ND ND	9.1 J	ND -	ND -	ND -	ND -	ND -	ND -	-	ND -	ND ND	8.2 J	ND -	ND -	ND -	ND -	ND -	0.02 J -
Bis(2-ethylhexyl)phthalate	117-81-7	5	ug/l	3.8 J	ND.	ND	2.3 J	ND	ND.	3.9	ND	3.3	1.6 J	ND.	ND	1.3 J	0.2 J	ND	ND	ND	ND	ND.	2.4 J
Caprolactam	34876-18-1	-	ug/l	-	-	ND	2.7 J	3.9 J	ND	ND	ND	ND	ND.	-	-	ND.	ND	ND	ND	ND	ND	28	ND ND
Carbazole	86-74-8	-	ug/l	-	ND	0.5 J	ND	1.1 J	1.1 J	ND	0.96 J	0.79 J	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	218-01-9	0.002	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	0.01 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	53-70-3	-	ug/l	-	ND	ND 0.84 I	ND	ND	ND	ND	ND 17.1	ND 161	ND	-	ND ND	ND	ND	ND	ND	ND	ND	ND	0.02 J
Dibenzofuran Diethyl phthalate	132-64-9 84-66-2	50	ug/l ug/l	ND	ND ND	0.81 J	ND ND	2.2 ND	ND ND	ND ND	1.7 J	1.6 J	ND ND	ND.	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Fluoranthene	206-44-0	50	ug/l	2.2 J	1.3	0.38	0.11 J	1.4 J	1.2	0.18	0.91	0.77	ND ND	ND ND	ND	0.05 J	ND	ND	ND	ND ND	0.12	0.03 J	0.04 J
Fluorene	86-73-7	50	ug/l	8.6 J	1.2	1.5	0.24	4.9	4.7	0.59	2.7	2.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J	0.05 J
Hexachloroethane	67-72-1	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)Pyrene	193-39-5	0.002	ug/l	-	ND	ND	ND 2.27	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J
Naphthalene Pentachlorophenol	91-20-3	10 1 *	ug/l	25	0.27	2.2	0.87	6	9.1	0.94	5.5	5.8	ND	ND ND	1.4	1.2 ND	1.4 ND	2.9 ND	2.8 ND	2.3 ND	4.8 ND	3.3 ND	3.8 ND
Pentachlorophenol Phenanthrene	87-86-5 85-01-8	1 ^ 50	ug/l ug/l	14	0.2	ND 2.6	0.27	ND 9.5	1.1 8.4	ND 0.49	0.52 J 4.7	0.25 J 4.8	ND ND	ND ND	0.16 J	0.12 J	0.09 J	ND ND	0.06 J	0.03 J	0.18	0.14	0.16
Phenol	108-95-2	1 *	ug/l	R	-	ND	2.5 J	ND	ND	ND	ND	ND	ND	110	-	1.4 J	12	4.2 J	ND	ND	ND	1.1 J	ND
Pyrene	129-00-0	50	ug/l	1.3 J	0.88	0.26	0.11 J	0.72	ND	0.15	0.56	0.44	ND	ND	ND	ND	ND	ND	ND	ND	0.09 J	ND	0.03 J
Pyridine	110-86-1	50	ug/l	ND	-	-	-		-	-	-	-	-	150 J	-	-	-	-	-	-	-	-	-
TOTAL PAHs	NA	NA	ug/l	51.1	5.18	8.57	2	27.68	29.43	3.17	17.78	17.99	ND	ND	3.83	1.6	1.73	3.09	3.2	2.59	6.01	3.94	4.92
TOTAL Phenolic Compounds	NA	1	ug/l	ND	ND	ND	2.5	ND	1.1	ND	0.52	0.25	ND	162	-	11.8	24.71	7.4	ND	ND	ND	1.1	0.89
Total Metals Arsenic, Total	7440-38-2	25	ug/l	2.3 B	4 J	1.33	1.88	4.4 J	6.19	1.33	1.53	1.28	1.36	7.7 B	4 J	3.71	3.95	7.5	3.57	5.43	3.75	3.21	3.32
Barium, Total	7440-36-2	1000	ug/l	37.6 B	41	42.29	38.94	33	18.5	31.95	34.31	33.92	26.53	40.6 B	24	26.03	27.56	24.7	19.76	17.41	21.82	23.54	20.46
Cadmium, Total	7440-43-9	5	ug/l	ND	-	-	-	-	-	-	-	ND	-	ND	-	-	-	-	-	-	-	ND	-
Chromium, Total	7440-47-3	50	ug/l	7.1	3 J	8.24	18.14 J	16 J	9.59	20.12	4.9	2.99	6.52	53.1	5 J	9.89	8.34	ND	3.96	6.77	0.54 J	1.75	0.65
Lead, Total	7439-92-1	25	ug/l	ND	3 J	0.27 J	0.8 J	ND	23.79	ND	ND	ND	ND	7.3	4 J	2.09	1.24	ND	3.44	ND	ND	0.46 J	ND
Selenium, Total	7782-49-2	10	ug/l	8	-	-	-		-	-	-	5.16	-	ND	-	-	-	-	-	-	-	ND	
General Chemistry	F7 40 5	200		4000	4050	9959	0440	4960	00	6440	9700	4050	4000	E20 1	445	447	220	200	220	240	460	240	007
Cyanide, Total Total Recoverable Phenolics (TRP)	57-12-5 NONE	200	ug/l ug/l	1200	1850 20 J	8250	8140 -	1860 -	92	6440	3780	1850 -	1920	530 J 130	445 250	417	330	382	332	249	162	348	<u>267</u> -
. S. A. I TOOOTOI ADIO I HOHOHOS (TIXI)	NONE	-	ug/I	IND	∠∪ J	_	_	-	-					130	200	_	1 -	-	-				-

ATP ECM ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

												Monitori	ing Wall Lacat	tion and Samp	lo Dato(s)								
Parameter	CAS No.	GWQS/GV ²	Units					MW	'S-18C			WOIIILOII	ing wen Local	tion and Samp	ie Date(s)			MWS	S-19A				
	NO.			12/19,28/00	2/28/2012	4/10/2014	4/28/2015	4/8/2016	4/11/2017	4/17/2018	4/9/2019	4/9/2020	4/27/2021	11/8/1999	2/28/2012	4/10/2014	4/28/2015	4/7/2016	4/11/2017	4/17/2018	4/9/2019	4/17/2020	4/27/2021
Field Measurements Dissolved Oxygen	NA		MG/L	NA	3.76	NA	1.57	1.83	2.03	1.84	1.11	1.33	2.56	0.5	1.71	NA	1.33	1.68	1.60	2.80	2.09	2.24	1.50
Field pH	NA NA	6.5 - 8.5	S.U	6.93	4.57	6.40	6.62	4.48	4.71	6.84	5.28	4.82	4.25	8.45	7.29	7.60	7.65	7.76	7.51	7.92	7.62	7.75	7.62
Redox Potential	NA	-	mV	-73	33	-83	-86	144	140	-78	-36	72	133	-310	-159	-147	-163	-125	-96	-57	-116	-117	-150
Specific Conductance	NA	-	UMHOS/CM	4,100	6634	3369	2746	7342	4660	3012	4110	4496	6319	4,450	2743	1957	2121	2064	2055	1612	2475	1825	2561
Temperature Turbidity	NA NA		DEG C NTU	11.2 233	12.1 39.6	13.0 107	12.4 112	10.8 73.9	13.1 124	9.0 16.6	9.8 45.6	11.9 268	15.7 112	13.3 72	10.4 10.6	15.4 2.55	13.1 3.55	11.6 6.0	12.7 6.31	9.6 49.1	11.2 3.0	10.9 3.1	13.7 2.5
Volatile Organics (Method 8260B) (STARS List paran		-	1410	233	39.0	107	112	13.5	124	10.0	43.0	200	112	12	10.0	2.55	3.33	0.0	0.51	49.1	3.0	J. 1	2.5
1,1-Dichloroethane	75-34-3	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4 J	ND	1 J	1.5 J	1 J	ND	1.4 J	ND	ND
1,2,4-Trimethylbenzene 1,2-Dichloroethane	95-63-6 107-06-2	5	ug/l	- ND	ND ND	- ND	- ND	- ND	ND ND	- ND	- ND	ND ND	ND ND	ND.	ND ND	- ND	- ND	ND	ND ND	- ND	- 0.47.1	ND ND	ND ND
1,3,5-Trimethylbenzene	108-67-8	0.6 5	ug/l ug/l	ND -	ND ND	ND -	ND -	- ND	ND ND	ND -	- ND	ND	ND	ND -	ND ND	ND -	- ND	ND	ND	ND -	0.17 J	ND ND	ND ND
1,4-Diethylbenzene	105-05-5	-	ug/l	-	ND	**	-	-	-	-	-	-	-	-	ND	-	-	-	-	-	-	-	-
Acetone	67-64-1	50	ug/l	-	ND	ND	ND	ND	ND	ND	19 D J	15 J	17 D J	-	ND	ND	ND	ND	ND	ND	1.7 J	ND	ND
Bromomethane	71-43-2 74-83-9	1 5	ug/l ug/l	65000 D R	9600 ND	340 ND	910 ND	4400 ND	1400 ND	43 ND	1200 D ND	470 ND	1600 D	1200 ND	ND ND	34 ND	70 ND	56 ND	40 ND	ND	150 ND	25 ND	190 D
Carbon disulfide	75-15-0	60	ug/l	-	660	6.3 J	24 J	480	140 J	ND	250 D	53	260 D	-	ND	ND	ND	ND	ND	ND	ND	ND	2.1 D J
Chloromethane (Methyl chloride)	74-87-3	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	4.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	156-59-2	5	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	0.77 J	ND	ND	1.1 J	ND	ND
Cyclohexane Ethylbenzene	110-82-7 100-41-4	5	ug/l ug/l	- ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	0.47 J	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	98-82-8	5	ug/l	- 140	ND	ND	ND	ND	ND	ND	ND	ND	ND	- 140	ND	ND	2.2 J	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	108-87-2	-	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	75-09-2	5	ug/l	1.1 J	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene Toluene	127-18-4 108-88-3	5 5	ug/l ug/l	ND 340 J	ND 51 J	ND ND	ND 11 J	ND 140 J	72 J	ND ND	38 D	ND 16	57 D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethene	79-01-6	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	75-01-4	2	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.84 J	ND	0.42 J	ND	0.32 J	0.21 J	0.6 J	0.09 J	0.86 D J
Xylenes, m/p	179601-23-1 95-47-6	5	ug/l	-	85 J	ND ND	9.3 J	150	54 J	ND ND	44 D	13	54 D	-	2.6	ND ND	1.5 J	1.4 J	0.78 J	ND	0.92 J	ND ND	1.8 D J
Xylenes, o Xylenes, Total	1330-20-7	5 5	ug/l ug/l	500 J	85 J	ND ND	9.3 J	150	54 J	ND ND	ND 44	ND 13	54 D	- 13 J	2.6	ND ND	1.5	1.4 J	0.78 J	ND ND	ND ND	ND ND	ND ND
TOTAL BTEX	NA NA	NA	ug/l	65840	9736	340	930.3	4690	1526	43	1282	499	1711	1213	2.6	34	71.5	57.4	40.78	13	150	25.09	190.86
Semivolatile Organics (Method 8270C) (Base-Neutral		xtractables in L	blue and PAH			1																	
2,4-Dimethylphenol 2-Chloronaphthalene	105-67-9 91-58-7	50 10	ug/l	20 J	- ND	1.8 J	5.4 ND	12 ND	4.8 J	ND ND	5.4	7.1 ND	13 ND	10 ND	- ND	ND ND	ND ND	ND ND	0.08 J	ND ND	ND ND	ND ND	ND ND
2-Methylnaphthalene	91-57-6	-	ug/l ug/l	- ND	0.23	ND	ND	ND	0.07 J	ND	0.06 J	0.05 J	0.21	- ND	ND ND	ND	ND	ND	0.08 J	ND	ND ND	0.03 J	0.26
2-Methylphenol (o-Cresol)	95-48-7	1*	ug/l	19 J	-	ND	2.3 J	8.2	ND	ND	ND	ND	5.4	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
3-Methylphenol (m-Cresol) / 4-Methylphenol (p-Cresol)	108-39-4/106-44-5	5 1*	ug/l	40 J	-	ND	9.5	31	9.9	ND	12	18	25	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene Acenaphthylene	83-32-9 208-96-8	20	ug/l ug/l	- ND	ND ND	ND ND	ND ND	0.09 J	ND ND	ND ND	0.07 J	0.03 J	0.04 J	ND.	0.09 J	ND ND	0.07 J	ND ND	0.1 0.07 J	0.04 J	0.05 J	0.04 J	0.26 0.12
Acetophenone	98-86-2	-	ug/l	-	4.6 J	2.9 J	9.3	43	11	ND	17	7.5	23	-	ND	ND	ND	ND	ND	ND	ND	ND	1.9 J
Anthracene	120-12-7	50	ug/l	ND	0.07 J	0.12 J	0.08 J	0.14 J	0.06 J	0.06 J	0.06 J	0.07 J	0.08 J	ND	0.07 J	0.07 J	0.09 J	ND	0.04 J	0.09 J	ND	0.03 J	0.48
Benzo(a)anthracene	56-55-3 50-32-8	0.002	ug/l	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.03 J	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	0.16	0.02 J	ND	1.4
Benzo(a)pyrene Benzo(b)fluoranthene	205-99-2	0 (ND) 0.002	ug/l ug/l	ND -	ND ND	ND ND	ND ND	ND	ND ND	ND ND	0.02 J	ND ND	0.02 J	ND -	0.16 J	ND ND	ND	ND ND	ND	0.14 0.18	ND ND	ND ND	1.2
Benzo(ghi)perylene	191-24-2	-	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	0.09 J	ND	ND	0.7
Benzo(k)fluoranthene	207-08-9	0.002	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	0.08 J	ND	ND	0.5
Benzoic Acid Bis(2-ethylhexyl)phthalate	65-85-0 117-81-7	- 5	ug/l	-	- ND	ND	62	- ND	- ND	-	ND.	- 1.8 J	3.3	- 4.4 J	- ND	ND	ND 6.4	- ND	ND.	3.6	- ND	- ND	2.3 J
Caprolactam	34876-18-1	- -	ug/l ug/l	ND -	ND -	22	16	ND	ND ND	5.8 ND	ND ND	ND	ND	4.4 J	ND -	ND ND	ND	ND ND	ND	ND	ND	ND ND	Z.3 J ND
Carbazole	86-74-8	-	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	218-01-9	0.002	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	ND	1.2
Dibenzo(a,h)anthracene Dibenzofuran	53-70-3 132-64-9	-	ug/l ug/l		ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	-	ND ND	ND	ND ND	ND ND	ND ND	0.04 J	ND ND	ND ND	0.26 ND
Diethyl phthalate	84-66-2	50	ug/l	ND.	ND	ND	ND	ND	ND	ND	ND	ND	0.48 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	206-44-0	50	ug/l	ND	ND	0.14 J	ND	ND	ND	ND	0.05 J	0.04 J	0.05 J	ND	0.08 J	ND	ND	ND	ND	0.24	ND	0.02 J	2.2
Fluorene	86-73-7	50	ug/l	ND	ND	ND	ND	ND	ND	ND	0.04 J	0.04 J	0.05 J	ND	ND	ND	ND	ND	0.06 J	0.08 J	ND 0.07 I	0.14	1.2
Hexachloroethane Indeno(1,2,3-cd)Pyrene	67-72-1 193-39-5	5 0.002	ug/l ug/l	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.1	0.07 J ND	ND ND	ND 0.84
Naphthalene	91-20-3	10	ug/l	ND.	0.42	0.17 J	0.23	0.53	0.21	ND	0.36	0.16	0.89	ND	ND	ND	ND	ND	0.08 J	0.05 J	ND	0.39	0.35
Pentachlorophenol	87-86-5	1*	ug/l	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
Phenol Phenol	85-01-8 108 05 2	50 1 *	ug/l	ND 200 I	ND	0.08 J	ND 20	ND 76	0.04 J	ND	0.04 J	0.08 J	0.06 J	ND 10	0.07 J	ND	ND	ND	ND	0.18	0.02 J	0.05 J	1.3
Pyrene Pyrene	108-95-2 129-00-0	50	ug/l ug/l	280 J ND	- ND	3.6 J 0.11 J	20 ND	76 ND	27 ND	ND ND	25 ND	51 0.03 J	50 0.04 J	19 ND	0.07 J	ND ND	ND ND	ND ND	ND ND	0.2	ND ND	0.02 J	ND 1.7
Pyridine	110-86-1	50	ug/l	18000 D	-	-	-	-	-	-	-	-	-	5.6 J	-	-	-	-	-	-	-	-	-
TOTAL PAHS	NA	NA	ug/l	ND	0.72	0.62	0.31	0.76	0.38	0.06	0.73	0.5	1.44	ND	0.54	0.07	0.16	ND	0.44	1.83	0.16	0.72	15.67
TOTAL Phenolic Compounds Total Metals	NA NA	1	ug/l	359	-	5.4	37.2	127.2	41.7	ND	42.4	76.1	93.4	29	-	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	7440-38-2	25	ug/l	16.1	5	6.88	9.23	118	8.98	4.47	7.49	4.1	6.38	5.9 B	7	3.45	3.5	7.1	3.01	2.76	3.42	2.48	4.5
Barium, Total	7440-39-3	1000	ug/l	31.7 B	17	22.22	19.19	15.4	13.99	16.3	18.03	21.84	18.89	35.4 B	24	20.53	25.73	25.2	22.58	20	29.26	22.79	27.97
Cadmium, Total	7440-43-9	5	ug/l	1.9 B	-	-	-	-	-	-	-	ND	-	1.4 B	-	-	-	-	-	-	-	-	-
Chromium, Total Lead, Total	7440-47-3 7439-92-1	50 25	ug/l ug/l	27.4 9.7	230 25	30.8 1.98 J	358.3 ND	240 ND	260.6 3.38 J	6.05 ND	48.75 0.35 J	159.4 ND	128.2 ND	4.5 B 2.3 B	ND 3 J	2.91 0.52 J	2.93 0.59 J	2.6 J ND	1.58 0.77 J	8.02 10.73	2.11 0.42 J	1.03 ND	2.25 2.12
Selenium, Total	7782-49-2	10	ug/l	9.7 ND	-	1.96 J	- ND	- ND	3.36 J	- ND	- 0.35 J	4.98 J	- ND	2.3 B	-	0.52 J -	0.59 J	- ND	0.77 J	-	0.42 J -	ND -	- 2.12
General Chemistry									•						•		<u> </u>					•	
Cyanide, Total	57-12-5	200	ug/l	2400 J	621	612	446	272	1050	484	1050	406	249	500	271	118	173	62	142	97	121	138	107
Total Recoverable Phenolics (TRP)	NONE	-	ug/l	360	400	-	-	-	-	-	-	-	-	6	10 J	-	-	-	-	-	-	-	-

ATP ECM ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

												Monitori	ng Well Locati	ion and Samp	ole Date(s)								
Parameter	CAS No.	GWQS/GV ²	Units			1			S-19B										S-20A				
Field Measurements				11/8/1999	2/28/2012	4/10/2014	4/28/2015	4/8/2016	4/11/2017	4/17/2018	4/9/2019	4/17/2020	4/27/2021	11/9/1999	2/28/2012	4/10/2014	4/28/2015	4/8/2016	4/11/2017	4/17/2018	4/9/2019	4/17/2020	4/27/2021
Dissolved Oxygen	NA	-	MG/L	0.4	1.53	NA	1.06	0.92	1.44	1.33	1.25	0.81	0.96	1.1	2.04	NA	3.7	4.12	2.55	2.4	2.9	1.3	1.74
Field pH	NA NA	6.5 - 8.5	S.U	5.84	5.66	6.22	6.21	6.67	6.99	7.65	6.90	6.95	7.04	9.02	9.20	9.37	9.47	9.66	9.78	10.09	9.63	9.56	9.38
Redox Potential Specific Conductance	NA NA		mV UMHOS/CM	-136 1,030	-95 7966	-43 5077	-47 4529	-67 4433	-109 3394	-141 3175	-103 4317	-110 4188	-124 4255	416 2,130	985.9	-89 926	51 656	194 895.2	111 1183	-57 1193	58 915	12 949.5	171 1377
Temperature	NA NA	-	DEG C	13.1	10.4	15.1	13.3	12.0	12.8	8.3	12.2	11.5	15.1	15.9	10.5	12.5	10.6	10.6	12.0	9.2	9.8	10.1	13.3
Turbidity	NA	-	NTU	430	25.7	22.4	30	88	128	8.3	9.4	17.2	6.8	0.1	5.23	1.69	256	7.19	5.08	2.28	2.9	2.6	1.84
Volatile Organics (Method 8260B) (STARS List paramet										_							_	_					
1,1-Dichloroethane	75-34-3 95-63-6	5	ug/l	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND
1,2,4-Trimethylbenzene 1,2-Dichloroethane	107-06-2	0.6	ug/l ug/l	ND.	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND.	ND	ND	ND	ND ND	ND
1,3,5-Trimethylbenzene	108-67-8	5	ug/l	-	ND	-	-	-	ND	-	-	ND	ND	-	ND	-	-	-	ND	-	-	ND	ND
1,4-Diethylbenzene	105-05-5	-	ug/l	-	ND	-	-	-	-	-	-	-	-	-	ND	-	-	-	-	-	-	-	-
Acetone	67-64-1	50	ug/l	-	ND	ND	ND	ND	ND	ND	ND 500 B	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	71-43-2 74-83-9	5	ug/l ug/l	27000 ND	18000 ND	2800 D	390 D	1500 D ND	5800 D	520 ND	500 D	480 ND	150 ND	33 ND	ND ND	ND ND	ND ND	0.22 J	0.63	ND ND	0.17 J	0.41 J	0.37 J
Carbon disulfide	75-15-0	60	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl chloride)	74-87-3	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	156-59-2	5	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	110-82-7	-	ug/l	- ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	0.35 J	- NID	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene Isopropylbenzene	100-41-4 98-82-8	<u>5</u>	ug/l ug/l	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND .	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND
Methyl cyclohexane	108-87-2	-	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	75-09-2	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	127-18-4	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Triablement	108-88-3	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene Vinyl chloride	79-01-6 75-01-4	<u>5</u>	ug/l ug/l	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes, m/p	179601-23-1	5	ug/l	- ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	- IND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND
Xylenes, o	95-47-6	5	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	1330-20-7	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL BTEX	NA	NA	ug/l	27000	18000	2800	390	1500	5800	520	500	480	150	34.2	ND	ND	ND	0.22	0.63	ND	0.17	0.41	0.37
Semivolatile Organics (Method 8270C) (Base-Neutrals in 2,4-Dimethylphenol	105-67-9	Extractables in b	blue and PAF ug/l	73 J		19	14	ND	ND	ND	2 J	2 J	3.3 J	ND	Τ -	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	91-58-7	10	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	91-57-6	-	ug/l	-	ND	0.09 J	ND	ND	ND	ND	ND	ND	0.12	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol (o-Cresol)	95-48-7	1*	ug/l	150 J	-	ND	ND	ND	ND	ND	ND	0.52 J	0.66 J	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
3-Methylphenol (m-Cresol) / 4-Methylphenol (p-Cresol) Acenaphthene	108-39-4/106-44- 83-32-9	.5 <u>1 *</u> 20	ug/l ug/l	200 J -	0.19 J	2.6 J 0.12 J	2.3 J ND	ND 0.11 J	0.1	0.05 J	ND 0.1	2.7 J 0.06 J	2.9 J 0.08 J	ND -	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Acenaphthylene	208-96-8	-	ug/l	ND.	0.19 J	0.12 J ND	ND ND	ND.	ND	0.03 J	ND	0.06 J	0.06 J	ND.	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Acetophenone	98-86-2	-	ug/l	-	8.4	ND	ND	ND	ND	ND	ND	0.65 J	1.2 J	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	120-12-7	50	ug/l	ND	ND	ND	ND	ND	0.05 J	0.04 J	0.04 J	0.03 J	0.05 J	ND	0.07 J	0.12 J	ND	0.21	0.08 J	0.1 J	0.07 J	0.04 J	0.02 J
Benzo(a)anthracene	56-55-3 50-32-8	0.002	ug/l	ND	ND ND	ND	ND ND	ND	0.04 J	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(a)pyrene Benzo(b)fluoranthene	205-99-2	0 (ND) 0.002	ug/l ug/l	ND -	ND	ND ND	ND ND	ND ND	0.05 J	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
Benzo(ghi)perylene	191-24-2	-	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	207-08-9	0.002	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzoic Acid	65-85-0	-	ug/l	-	-	ND	ND	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-
Bis(2-ethylhexyl)phthalate Caprolactam	117-81-7 34876-18-1	<u>5</u>	ug/l ug/l	ND -	ND -	ND ND	11 ND	ND ND	ND ND	3.4 ND	0.93 J	9.8 J	2 J	ND -	ND -	ND ND	4.2 ND	ND ND	ND ND	4 ND	ND ND	ND ND	1.9 J
Carbazole	86-74-8		ug/l	-	ND	ND	ND	ND	ND	ND	ND	9.6 3 ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	218-01-9	0.002	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	53-70-3	-	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran Diethyl phthalate	132-64-9 84-66-2	50	ug/l	ND.	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND.	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
Fluoranthene	206-44-0	50 50	ug/l ug/l	ND ND	ND ND	ND ND	ND ND	ND ND	0.07 J	ND ND	ND ND	ND ND	0.02 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Fluorene	86-73-7	50	ug/l	ND	ND	0.09 J	ND	0.12 J	0.07 J	0.1	0.1	0.06 J	0.02 0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	67-72-1	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)Pyrene	193-39-5	0.002	ug/l	- ND	ND 0.64	ND 0.52	ND 0.30	ND	ND 0.05 I	ND	ND	ND	ND 0.42	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene Pentachlorophenol	91-20-3 87-86-5	10 1 *	ug/l ug/l	ND ND	0.61	0.52 ND	0.39	ND ND	0.05 J	ND ND	ND ND	ND ND	0.42 ND	ND ND	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Phenanthrene	85-01-8	50	ug/l	ND	ND	0.12 J	0.09 J	ND	0.05 J	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.03 J	ND	ND	ND	ND
Phenol	108-95-2	1 *	ug/l	2100 D	-	1.2 J	0.59 J	ND	ND	ND	ND	1.1 J	0.69 J	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	129-00-0	50	ug/l	ND	ND	ND	ND	ND	0.06 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J
Pyridine	110-86-1	50	ug/l	3200 D	-	-	-	-	- 0.50	- 0.40	-	- 0.45	-	ND	-	- 0.40	- ND	-	- 0.44	-	- 0.07	-	-
TOTAL PAHS TOTAL Phenolic Compounds	NA NA	<u>NA</u> 1	ug/l ug/l	ND 2523	0.8	0.94 22.8	0.48 16.89	0.23 ND	0.56 ND	0.19 ND	0.24	0.15 6.32	0.83 7.55	ND ND	0.07	0.12 ND	ND ND	0.21 ND	0.11 ND	0.1 ND	0.07 ND	0.04 ND	0.04 ND
Total Metals	IVA		ug/i	2020	_	22.0	10.03	140	140	140		0.02	7.00	IND	_	140	140	140	140	140	140	140	140
Arsenic, Total	7440-38-2	25	ug/l	21.9 J	ND	4.76	3.99	18.3	6.41	5.36	5.36	4.86	4.86	ND	5	4.05	5.03	7.2	4.23	3.06	3.8	3.85	3.33
Barium, Total	7440-39-3	1000	ug/l	55.4 B	18	17.7	23.02	19	17.83	17.87	18.57	18.49	18.85	27.1 B	21	16.78	12.42	17.1	21.06	20.54	17.26	20.63	28.33
Cadmium, Total	7440-43-9	5	ug/l	ND 200 I	- 10	- 0.04	- 44.04	751	- 0.20	- 1.40	- 2.02	- 2.06	- 4.40	ND 7.6	- 10	- 47.04	-	- 1.0	-	- 45.40	- 17.00	- 10.45	- 2.4
Chromium, Total Lead, Total	7440-47-3 7439-92-1	50 25	ug/l ug/l	398 J 54	10 17	9.21 1.57 J	11.21 1.3 J	7.5 J ND	9.38 22.76	1.48 1.34	2.03	2.06 ND	1.12 0.48 J	7.6 ND	10 ND	17.84 ND	23.62 ND	1.9 ND	23.32 0.41 J	15.48 ND	17.06 ND	10.45 ND	3.1 ND
Selenium. Total	7782-49-2	10	ug/l ug/l	ND	-	1.57 J	1.3 J	ND -	- 22.70	1.34	- 1.1	ND -	0.46 J	5	- ND	- ND	ND -	ND -	0.41 J	ND -	ND -	ND -	ND -
General Chemistry			9"																				
Cyanide, Total	57-12-5	200	ug/l	820	774	468	568	317	419	266	284	407	331	120 J	-	75	29	34	124	88	33	52	43
Total Recoverable Phenolics (TRP)	NONE	-	ug/l	3700	290	-	-	-	-	-	-	-	-	ND	20 J	-	-	-	-	-	-	-	-

ATP ECM ANNUAL REPORT TECUMSEH REDEVELOPMENT, INC.

	CAS												
Parameter	No.	GWQS/GV ²	Units	11/9/1999	2/28/2012	4/10/2014	4/28/2015	4/8/2016	S-20B 4/11/2017	4/17/2018	4/9/2019	4/17/2020	4/27/2021
Field Measurements				11/3/1333	2/20/2012	4) 10/2014	4/20/2010	4/0/2010	4/11/2017	4/11/2010	4/3/2013	4/11/2020	4/21/2021
Dissolved Oxygen	NA	-	MG/L	0.4	2.11	NA	0.85	2.04	1.81	2.01	1.83	0.85	1.27
Field pH	NA NA	6.5 - 8.5	S.U	7.29	7.38	7.63	7.63	7.49	7.23	8.48	7.58	7.35	7.88
Redox Potential Specific Conductance	NA NA	-	mV UMHOS/CM	204 2,500	-150 1329	-170 1447	-180 1076	-118 1375	-58 1275	-196 1058	-167 1385	-129 1480	-197 1639
Temperature	NA	-	DEG C	13.2	10.7	13.5	10.9	10.2	12.7	9.6	10.7	11.0	14.2
Turbidity	NA	-	NTU	146	11.1	26.6	3.92	20.4	9.52	22.2	3.02	20.2	2.03
Volatile Organics (Method 8260B) (STARS List parameter				NID	ND	NID.	110	1.5	ND	ND	N.D.	NID	ND
1,1-Dichloroethane 1,2,4-Trimethylbenzene	75-34-3 95-63-6	5 5	ug/l ug/l	ND -	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND
1,2-Dichloroethane	107-06-2	0.6	ug/l	ND	ND	2.5	2.2	2.2	2.8	1.4	2.3	1.8	1.6
1,3,5-Trimethylbenzene	108-67-8	5	ug/l	-	ND	-	-	-	ND	-	-	ND	ND
1,4-Diethylbenzene	105-05-5	-	ug/l	-	ND	- ND	-	- 471	-	-	-	-	- ND
Acetone Benzene	67-64-1 71-43-2	50 1	ug/l ug/l	- ND	ND ND	0.28 J	0.63 J	1.7 J 0.32 J	0.5	1.6 J 0.23 J	2.1 J 0.28 J	0.26 J	0.35 J
Bromomethane	74-83-9	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	75-15-0	60	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl chloride)	74-87-3	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene Cyclohexane	156-59-2 110-82-7	<u>5</u>	ug/l ug/l	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	100-41-4	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	98-82-8	5	ug/l	-	ND	ND	2.3 J	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	108-87-2	-	ug/l	- 0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride Tetrachloroethene	75-09-2 127-18-4	5 5	ug/l ug/l	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene	127-18-4	<u>5</u>	ug/I ug/I	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND
Trichloroethene	79-01-6	5	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	75-01-4	2	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, m/p	179601-23-1	5	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, o Xylenes, Total	95-47-6 1330-20-7	5 5	ug/l ug/l	2.5 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TOTAL BTEX	NA	NA NA	ug/l	2.5	ND	0.28	0.63	0.32	0.5	0.23	0.28	0.26	0.35
Semivolatile Organics (Method 8270C) (Base-Neutrals in						,v				-	-		
2,4-Dimethylphenol	105-67-9	50	ug/l	ND	-	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene 2-Methylnaphthalene	91-58-7 91-57-6	10 	ug/l	ND	- ND	ND	ND	ND	ND	ND	ND	ND 0.04 I	ND 0.00 I
2-Methylphenol (o-Cresol)	95-48-7	 1*	ug/l ug/l	ND.	ND -	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04 J ND	0.03 J ND
3-Methylphenol (m-Cresol) / 4-Methylphenol (p-Cresol)	108-39-4/106-44-5	1 *	ug/l	ND	-	ND	ND	1.3 J	ND	ND	ND	ND	ND
Acenaphthene	83-32-9	20	ug/l	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	208-96-8	-	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetophenone Anthracene	98-86-2 120-12-7	50	ug/l ug/l	ND.	0.09 J	0.17 J	ND 0.07 J	0.23 J	0.05 J	ND 0.1 J	ND ND	0.09 J	0.07 J
Benzo(a)anthracene	56-55-3	0.002	ug/l	ND	ND	ND	ND	ND	0.02 J	0.02 J	ND	0.06 J	ND
Benzo(a)pyrene	50-32-8	0 (ND)	ug/l	ND	ND	0.11 J	ND	ND	ND		ND	0.04 J	ND
Benzo(b)fluoranthene	205-99-2	0.002	ug/l	-	ND	0.08 J	ND	ND	ND	ND	ND	0.06 J	0.07 J
Benzo(ghi)perylene Benzo(k)fluoranthene	191-24-2 207-08-9	0.002	ug/l ug/l	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.03 J 0.02 J	ND ND
Benzoic Acid	65-85-0	-	ug/l	-	-	ND	ND	-	-	-	-	-	-
Bis(2-ethylhexyl)phthalate	117-81-7	5	ug/l	ND	ND	ND	5.6	ND	ND	ND	ND	ND	1.9 J
Caprolactam	34876-18-1	-	ug/l	-	-	ND	ND	ND	ND	24	ND	ND	ND
Carbazole Chrysene	86-74-8 218-01-9	0.002	ug/l ug/l	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04 J	ND ND
Dibenzo(a,h)anthracene	53-70-3	-	ug/l ug/l	ND -	ND	ND	ND	ND	ND	ND	ND	0.04 J	ND
Dibenzofuran	132-64-9	-	ug/l		ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	84-66-2	50	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	206-44-0	50 50	ug/l	ND	ND	0.09 J	ND	0.07 J	ND	ND	ND	0.08 J	ND 0.03 I
Fluorene Hexachloroethane	86-73-7 67-72-1	50 5	ug/l ug/l	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.03 J	0.02 J ND
Indeno(1,2,3-cd)Pyrene	193-39-5	0.002	ug/l	-	ND	ND	ND	ND	ND	ND	ND	0.03 J	ND
Naphthalene	91-20-3	10	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07 J
Pentachlorophenol	87-86-5	1*	ug/l	ND	- ND	ND	ND	ND	ND	ND	ND	ND	0.31 J
Phenanthrene Phenol	85-01-8 108-95-2	50 1 *	ug/l ug/l	ND ND	ND	ND ND	ND ND	ND ND	0.02 J	ND ND	ND ND	0.05 J ND	ND ND
Pyrene	129-00-0	50	ug/l	ND ND	- ND	0.09 J	ND ND	0.06 J	ND ND	ND ND	ND ND	0.07 J	ND
Pyridine	110-86-1	50	ug/l	ND	-	-	-	-	-	-	-	-	-
TOTAL PAHs	NA	NA	ug/l	ND	0.09	0.54	0.07	0.36	0.09	0.12	ND	0.64	0.26
TOTAL Phenolic Compounds	NA	1	ug/l	ND	-	ND	ND	1.3	ND	ND	ND	ND	0.31
Total Metals Arsenic, Total	7440-38-2	25	ug/l	3.9 B	7	3.71	3.59	6.6	2.87	2.93	3.2	3.22	3.28
Barium, Total	7440-39-3	1000	ug/l	54.7 B	31	39.08	24.7	39	33.75	30.93	34.84	56.76	39.29
Cadmium, Total	7440-43-9	5	ug/l	ND	-	-	-	-	-	-	-	-	-
Chromium, Total	7440-47-3	50	ug/l	37.6	3 J	10.49	1.57	5.3	1.23	3.36	0.59 J	5.36	0.7 J
Lead, Total Selenium, Total	7439-92-1 7782-49-2	25 10	ug/l	10.2 ND	ND -	4.43	0.14	ND -	0.35 J	1.23 J	ND -	1.94	ND -
General Chemistry	1102-49-2	10	ug/l	IAD		-							
Cyanide, Total	57-12-5	200	ug/l	44 J	-	47	48	38	68	47	28	51	17
Total Recoverable Phenolics (TRP)	NONE	-	ug/l	ND	40	-	-	-	-	-	-	_	-

Page 4 of 5

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
- 2. NYSDEC Class "GA" Groundwater Quality Standards/Guldance Values (GWQS/GV) as per 6 NYCRR Part 703.
- 3. Acid extractables for recent groundwater were analyzed via Method 8270 in August 2013.
- 4. Surrogate recoveries for SVOC Acid Extractables were below acceptance criteria, re-extraction was performed outside holding time of 7 days, but within 14 days for analysis. Therefore, re-extracted results are presented as estimated (J qualified).

- Qualifier Key:

 B = The analyte was detected above the reporting limit in the associated method blank.

 J = Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs)
- ND = Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- R = Sample result was rejected by a third party validator.
- D = Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- = Not analyzed for this parameter
- * = The general standard of 1.0 ug/L for phenolic compounds was used.

- = concentration exceeds the GWQS/GV, but is less than 10 times the GWQS/GV = concentration exceeds 10 times the GWQS/GV, but is less than 100 times the GWQS/GV
- = concentration exceeds 100 times the GWQS/GV

FIGURES

ATTACHMENT 1

REPORTS TO ERIE COUNTY SEWER DISTRICT NO. 6

Strong Advocates, Effective Solutions, Integrated Implementation

May 3, 2021

Ms. Laura Surdej Erie County Sewer/Southtown's Sewage Treatment Plant 260 Lehigh Ave. Lackawanna, NY 14218

Re: ECSD No.6 Discharge Permit LA-03

Semi-Annual Report (October 2020 - April 2021)

Lackawanna, New York

Dear Ms. Surdej:

TurnKey Environmental Restoration, LLC (TurnKey) has prepared the following certification statement for the April 2021 Semi-Annual Monitoring Report on behalf of our client, Tecumseh Redevelopment Inc., in accordance with Erie County Sewer District No. 6 (ECSD No.6), Permit No. LA-03:

I certify, under penalty of law, that this document and all attachments were prepared under/by direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Senior Project Environmental Scientist

Strong Advocates, Effective Solutions, Integrated Implementation

May 3, 2021

Ms. Laura Surdej Erie County Sewer/Southtown's Sewage Treatment Plant 260 Lehigh Ave Lackawanna, NY 14218

Re: ECSD No.6 Discharge Permit LA-03 –Semi-Annual Report (October 2020 – April 2021) Lackawanna, New York

Dear Ms. Surdej:

TurnKey Environmental Restoration, LLC (TurnKey) has prepared this correspondence on behalf of our client, Tecumseh Redevelopment Inc., in accordance with Erie County Sewer District No. 6 (ECSD No. 6) Permit No. LA-03, effective July 1, 2018. As required by the permit, this semi-annual report summarizes flow, pH and compliance sample results for the report period from October 30, 2020 through April 30, 2021.

Turnkey personnel recorded totalizer (total gallons) and pH readings weekly during the reporting period. Table 1 summarizes the total volume (gallons), calculated daily flow (gallons per day) and pH readings.

On April 8, 2021 TurnKey personnel collected an effluent (outfall) water sample and submitted the sample under chain-of-custody command to Alpha Analytical for laboratory analysis in accordance with the discharge permit. Table 2 summarizes the analytical results; Attachment 1 contains the Laboratory Analytical Report. As indicated on Table 2 all parameter detections meet corresponding permitted discharge limits.

As of April 30, 2021 a total of 11,045,546 gallons of water has been pre-treated and discharged to the ECSD No.6 collection and conveyance system. The calculated daily flow for the reporting period has ranged between 1,045 and 3,518 GPD, well below permitted flows of up to 45,000 GPD. The pH readings have been between 5.65 and 6.54 standard units, with a permitted operating range of 5 and 12 standard units.

Please contact us if you have any questions or require additional information.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Senior Project Environmental Scientist

TABLES

TABLE 1 SUMMARY OF EFFLUENT FLOW AND pH

ATP GROUNDWATER PRE-TREATMENT SYSTEM Tecumseh Redevelopment, Inc. Lackawanna, New York

Date	Totalizer (gallons)	Total Gallons this event	Calculated GPD (gallons/day)	рН
Permit Limits:			45,000 GPD	5-12
10/30/20	10,729,470	14,070	3,518	5.72
11/6/20	10,745,059	15,589	2,598	6.54
11/13/20	10,760,209	15,150	2,164	5.81
11/20/20	10,775,974	15,765	2,252	5.80
11/27/20	10,794,360	18,386	2,627	5.74
12/4/20	10,812,354	17,994	2,571	5.83
12/11/20	10,829,491	17,137	2,448	6.00
12/18/20	10,848,392	18,901	2,700	5.85
12/27/20	10,868,911	20,519	2,280	5.65
1/3/21	10,879,343	10,432	1,739	5.87
1/8/21	10,886,553	7,210	1,442	6.02
1/15/21	10,895,376	8,823	1,260	6.00
1/21/21	10,907,237	11,861	1,977	5.92
1/29/21	10,920,831	13,594	1,699	6.10
2/5/21	10,933,422	12,591	2,099	6.27
2/12/21	10,944,552	11,130	1,590	6.37
2/19/21	10,953,418	8,866	1,267	6.29
2/26/21	10,962,700	9,282	1,326	6.11
3/5/21	10,972,103	9,403	1,045	6.12
3/12/21	10,980,593	8,490	1,213	6.17
3/19/21	10,989,044	16,941	2,420	6.14
3/26/21	10,997,165	16,572	2,367	6.07
4/2/21	11,006,113	8,948	1,491	6.04
4/9/21	11,013,583	7,470	1,067	6.09
4/16/21	11,021,403	15,290	2,184	6.07
4/23/21	11,033,375	19,792	2,827	6.06
4/30/21	11,045,546	12,171	1,739	6.19

TABLE 2

SUMMARY OF EFFLUENT WATER ANALYTICAL DATA

ATP GROUNDWATER PRE-TREATMENT SYSTEM Tecumseh Redevelopment, Inc. Lackawanna, New York

Parameter ¹	Effluent 04/08/21	Discharge Permit Limitations ²
Volatile Organic Compounds (VOCs - Method	624) - mg/L	
Benzene	0.0092	
Bromomethane	0.0061 J	
TOTAL VOCs (mg/L)	0.01530	
Metal Compounds (Method 200.7 Rev 4.4) - m	g/L ³	
Arsenic	0.006	Monitor
Barium	0.027	Monitor
Cadmium	0.003 J	Monitor
Iron	91.5	Monitor
Selenium	0.019	Monitor
Titanium	0.005 J	Monitor
General Chemistry - mg/L		
Cyanide, Total	0.499	Monitor
Ammonia (as N)	43.4	Monitor
Phenolics, Total Recoverable	0.21	Monitor
Sulfate	1800	Monitor
pH	6.1	5-12
Total Toxic Organic Pollutants (TTO) 4	0.0153	2.13

Notes:

- 1. Only those parameters detected are presented in this table; all others were reported as non-detect.
- 2. Per Erie County Sewer District No. 6 Discharge Permit LA-03 (July 2018)
- 3. Metals include Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Sb, Se, Ti, and Zn
- 4. TTO is determined by totaling the reported compound concentrations detected via EPA Method 624.1

Definitions:

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

ATTACHMENT 1

Laboratory Data

ANALYTICAL REPORT

Lab Number: L2117698

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Tom Forbes
Phone: (716) 856-0599

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Report Date: 04/15/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04152116:06

Project Name: ATP PRE-TREATMENT OM&M

Project Number:

T007-019-222

Lab Number: L2117698 Report Date: 04/15/21

Alpha Sample ID Sample Location Collection Date/Time Client ID Matrix

L2117698-01

EFFLUENT

WATER

1951 HAMBURG TURNPIKE

Receive Date

04/08/21 11:15 04/08/21

Project Name:ATP PRE-TREATMENT OM&MLab Number:L2117698Project Number:T007-019-222Report Date:04/15/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:04152116:06

Project Name:ATP PRE-TREATMENT OM&MLab Number:L2117698Project Number:T007-019-222Report Date:04/15/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics by Method 624

L2117698-01D: The sample has elevated detection limits due to the dilution required by the sample matrix. Sample is cloudy and has particles.

L2117698-01D: Due to the matrix of the sample (foam generation during purging/analysis), the laboratory used Anti-Foam solution in the sample and associated QC.

Total Metals

The WG1484459-3 MS recovery, performed on L2117698-01, is outside the acceptance criteria for selenium (132%). A post digestion spike was performed and was within acceptance criteria.

The WG1484459-3 MS recovery for iron (0%), performed on L2117698-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Willelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 04/15/21

ORGANICS

VOLATILES

Serial_No:04152116:06

L2117698

04/15/21

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

SAMPLE RESULTS

Date Collected: 04/08/21 11:15

Lab ID: L2117698-01 D

Client ID: EFFLUENT

Sample Location: 1951 HAMBURG TURNPIKE

Date Received: 04/08/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 04/09/21 19:44

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	5.0	2.8	5
1,1-Dichloroethane	ND		ug/l	7.5	2.0	5
Chloroform	ND		ug/l	5.0	1.9	5
Carbon tetrachloride	ND		ug/l	5.0	1.2	5
1,2-Dichloropropane	ND		ug/l	18	2.3	5
Dibromochloromethane	ND		ug/l	5.0	1.4	5
1,1,2-Trichloroethane	ND		ug/l	7.5	1.7	5
2-Chloroethylvinyl ether	ND		ug/l	50	1.7	5
Tetrachloroethene	ND		ug/l	5.0	1.3	5
Chlorobenzene	ND		ug/l	18	1.5	5
1,2-Dichloroethane	ND		ug/l	7.5	2.4	5
1,1,1-Trichloroethane	ND		ug/l	10	1.4	5
Bromodichloromethane	ND		ug/l	5.0	1.4	5
trans-1,3-Dichloropropene	ND		ug/l	7.5	1.6	5
cis-1,3-Dichloropropene	ND		ug/l	7.5	1.7	5
1,3-Dichloropropene, Total	ND		ug/l	7.5	1.6	5
Bromoform	ND		ug/l	5.0	1.1	5
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.0	5
Benzene	9.2		ug/l	5.0	1.9	5
Toluene	ND		ug/l	5.0	1.6	5
Ethylbenzene	ND		ug/l	5.0	1.4	5
Chloromethane	ND		ug/l	25	5.2	5
Bromomethane	6.1	J	ug/l	25	6.1	5
Vinyl chloride	ND		ug/l	5.0	1.9	5
Chloroethane	ND		ug/l	10	1.8	5
1,1-Dichloroethene	ND		ug/l	5.0	1.5	5
trans-1,2-Dichloroethene	ND		ug/l	7.5	1.6	5
Trichloroethene	ND		ug/l	5.0	1.7	5

Serial_No:04152116:06

04/15/21

Project Name: ATP PRE-TREATMENT OM&M Lab Number: L2117698

Project Number: T007-019-222

SAMPLE RESULTS

Date Collected: 04/08/21 11:15

Report Date:

Lab ID: L2117698-01 D

Client ID: EFFLUENT Date Received: 04/08/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor						
Volatile Organics by GC/MS - Westborough Lab												
1,2-Dichlorobenzene	ND		ug/l	25	1.4	5						
1,3-Dichlorobenzene	ND		ug/l	25	1.4	5						
1,4-Dichlorobenzene	ND		ug/l	25	1.4	5						
Acrolein	ND		ug/l	40	9.1	5						
Acrylonitrile	ND		ug/l	50	1.7	5						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	107		60-140	
Fluorobenzene	102		60-140	
4-Bromofluorobenzene	93		60-140	

Project Name: ATP PRE-TREATMENT OM&M Lab Number: L2117698

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 04/09/21 14:22

Analyst: GT

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sampl	e(s): 01	Batch:	WG1485337-4
Methylene chloride	ND		ug/l	1.0	0.56
1,1-Dichloroethane	ND		ug/l	1.5	0.40
Chloroform	ND		ug/l	1.0	0.38
Carbon tetrachloride	ND		ug/l	1.0	0.24
1,2-Dichloropropane	ND		ug/l	3.5	0.46
Dibromochloromethane	ND		ug/l	1.0	0.27
1,1,2-Trichloroethane	ND		ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND		ug/l	10	0.35
Tetrachloroethene	ND		ug/l	1.0	0.26
Chlorobenzene	ND		ug/l	3.5	0.30
1,2-Dichloroethane	ND		ug/l	1.5	0.47
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29
Bromodichloromethane	ND		ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND		ug/l	1.5	0.31
Bromoform	ND		ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20
Benzene	ND		ug/l	1.0	0.38
Toluene	ND		ug/l	1.0	0.31
Ethylbenzene	ND		ug/l	1.0	0.28
Chloromethane	ND		ug/l	5.0	1.0
Bromomethane	1.6	J	ug/l	5.0	1.2
Vinyl chloride	ND		ug/l	1.0	0.38
Chloroethane	ND		ug/l	2.0	0.37
1,1-Dichloroethene	ND		ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33
Trichloroethene	ND		ug/l	1.0	0.33
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28

Project Name: ATP PRE-TREATMENT OM&M Lab Number: L2117698

> Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 04/09/21 14:22

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westk	orough Lat	o for sampl	e(s): 01	Batch:	WG1485337-4	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	

	Acceptance						
Surrogate	%Recovery	Qualifier Criteria					
Pentafluorobenzene	105	60-140					
Fluorobenzene	96	60-140					
4-Bromofluorobenzene	95	60-140					

Lab Control Sample Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number: L2117698

Parameter	LCS %Recovery	LCSI Qual %Recov		•	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Batch:	WG1485337-3			
Methylene chloride	95	-	60-140	-	28	
1,1-Dichloroethane	100	-	50-150	-	49	
Chloroform	100	-	70-13	; -	54	
Carbon tetrachloride	90	-	70-13	-	41	
1,2-Dichloropropane	105	-	35-16	; -	55	
Dibromochloromethane	85	-	70-13	; -	50	
1,1,2-Trichloroethane	100	-	70-13	-	45	
2-Chloroethylvinyl ether	105	-	1-225	-	71	
Tetrachloroethene	100	-	70-13	-	39	
Chlorobenzene	85	-	65-13	; -	53	
1,2-Dichloroethane	105	-	70-13	-	49	
1,1,1-Trichloroethane	100	-	70-13	-	36	
Bromodichloromethane	95	-	65-13	; -	56	
trans-1,3-Dichloropropene	95	-	50-15	-	86	
cis-1,3-Dichloropropene	100	-	25-179	-	58	
Bromoform	75	-	70-13	-	42	
1,1,2,2-Tetrachloroethane	100	-	60-14	-	61	
Benzene	105	-	65-13	; -	61	
Toluene	105	-	70-13	-	41	
Ethylbenzene	95	-	60-14	-	63	
Chloromethane	90	-	1-205	-	60	
Bromomethane	80	-	15-18		61	
Vinyl chloride	90	-	5-195	-	66	

Lab Control Sample Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number:

L2117698

Report Date:

04/15/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG1	485337-3					
Chloroethane	100		-		40-160	-		78	
1,1-Dichloroethene	100		-		50-150	-		32	
trans-1,2-Dichloroethene	100		-		70-130	-		45	
Trichloroethene	95		-		65-135	-		48	
1,2-Dichlorobenzene	95		-		65-135	-		57	
1,3-Dichlorobenzene	90		-		70-130	-		43	
1,4-Dichlorobenzene	90		-		65-135	-		57	
Acrolein	120		-		60-140	-		30	
Acrylonitrile	110		-		60-140	-		60	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	111			60-140
Fluorobenzene	100			60-140
4-Bromofluorobenzene	93			60-140

METALS

04/08/21 11:15

Not Specified

04/08/21

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: ATP PRE-TREATMENT OM&M L2117698 **Report Date:** 04/15/21

Project Number: T007-019-222

SAMPLE RESULTS

Lab ID: L2117698-01 Client ID: **EFFLUENT**

Sample Location: 1951 HAMBURG TURNPIKE

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.050	0.007	1	04/12/21 11:1	1 04/14/21 16:10	EPA 3005A	19,200.7	BV
Arsenic, Total	0.006		mg/l	0.005	0.002	1	04/12/21 11:1	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Barium, Total	0.027		mg/l	0.010	0.002	1	04/12/21 11:1	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Beryllium, Total	ND		mg/l	0.005	0.001	1	04/12/21 11:1	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Cadmium, Total	0.003	J	mg/l	0.005	0.001	1	04/12/21 11:1	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Chromium, Total	ND		mg/l	0.010	0.002	1	04/12/21 11:1	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Copper, Total	ND		mg/l	0.010	0.002	1	04/12/21 11:1	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Iron, Total	91.5		mg/l	0.050	0.009	1	04/12/21 11:1	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Lead, Total	ND		mg/l	0.010	0.003	1	04/12/21 11:1	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Mercury, Total	ND		mg/l	0.00020	0.00009	1	04/12/21 11:57	7 04/13/21 14:01	EPA 245.1	3,245.1	OU
Nickel, Total	ND		mg/l	0.025	0.002	1	04/12/21 11:11	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Selenium, Total	0.019		mg/l	0.010	0.004	1	04/12/21 11:11	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Silver, Total	ND		mg/l	0.007	0.003	1	04/12/21 11:11	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Titanium, Total	0.005	J	mg/l	0.010	0.002	1	04/12/21 11:11	1 04/14/21 13:33	EPA 3005A	19,200.7	EW
Zinc, Total	ND		mg/l	0.050	0.002	1	04/12/21 11:11	1 04/14/21 13:33	EPA 3005A	19,200.7	EW

Serial_No:04152116:06

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number:

L2117698

Report Date: 04/15/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansfie	ld Lab for sample(s)	: 01 Batch	: WG14	484459-	1				
Antimony, Total	ND	mg/l	0.050	0.007	1	04/12/21 11:11	04/14/21 16:00	19,200.7	BV
Arsenic, Total	ND	mg/l	0.005	0.002	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Barium, Total	ND	mg/l	0.010	0.002	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Beryllium, Total	ND	mg/l	0.005	0.001	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Cadmium, Total	ND	mg/l	0.005	0.001	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Chromium, Total	ND	mg/l	0.010	0.002	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Copper, Total	ND	mg/l	0.010	0.002	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Iron, Total	ND	mg/l	0.050	0.009	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Lead, Total	ND	mg/l	0.010	0.003	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Nickel, Total	ND	mg/l	0.025	0.002	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Selenium, Total	ND	mg/l	0.010	0.004	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Silver, Total	ND	mg/l	0.007	0.003	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Titanium, Total	ND	mg/l	0.010	0.002	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW
Zinc, Total	ND	mg/l	0.050	0.002	1	04/12/21 11:11	04/14/21 13:09	19,200.7	EW

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG14	184463-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	04/12/21 11:57	04/13/21 13:41	3,245.1	OU

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number: L2117698

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1484459-2				
Antimony, Total	107	-	85-115	-		
Arsenic, Total	113	-	85-115	-		
Barium, Total	103	-	85-115	-		
Beryllium, Total	104	-	85-115	-		
Cadmium, Total	111	-	85-115	-		
Chromium, Total	102	-	85-115	-		
Copper, Total	107	-	85-115	-		
Iron, Total	96	-	85-115	-		
Lead, Total	112	-	85-115	-		
Nickel, Total	102	-	85-115	-		
Selenium, Total	113	-	85-115	-		
Silver, Total	107	-	85-115	-		
Titanium, Total	105	-	85-115	-		
Zinc, Total	109	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1484463-2				
Mercury, Total	99	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number:

L2117698

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Recove Qual Limit	•	Qual	RPD Limits
otal Metals - Mansfield Lab	o Associated san	nple(s): 01	QC Batch	ID: WG1484459	9-3	QC Sample	: L2117698-01	Client ID: Ef	FFLUENT		
Antimony, Total	ND	0.5	0.554	111		-	-	75-125	5 -		20
Arsenic, Total	0.006	0.12	0.154	123		-	-	75-125	5 -		20
Barium, Total	0.027	2	2.12	105		-	-	75-125	5 -		20
Beryllium, Total	ND	0.05	0.052	103		-	-	75-125	5 -		20
Cadmium, Total	0.003J	0.051	0.056	109		-	-	75-125	5 -		20
Chromium, Total	ND	0.2	0.198	99		-	-	75-125	5 -		20
Copper, Total	ND	0.25	0.271	108		-	-	75-125	5 -		20
Iron, Total	91.5	1	89.8	0	Q	-	-	75-125	5 -		20
Lead, Total	ND	0.51	0.512	100		-	-	75-125	5 -		20
Nickel, Total	ND	0.5	0.480	96		-	-	75-125	5 -		20
Selenium, Total	0.019	0.12	0.177	132	Q	-	-	75-125	5 -		20
Silver, Total	ND	0.05	0.059	118		-	-	75-125	5 -		20
Titanium, Total	0.005J	1	1.06	106		-	-	75-125	5 -		20
Zinc, Total	ND	0.5	0.506	101		-	-	75-125	; -		20

Matrix Spike Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number:

L2117698

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1484459-7	QC Sample:	: L2117770-01	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.570	114	-	-	75-125	-	20
Arsenic, Total	ND	0.12	0.139	116	-	-	75-125	-	20
Barium, Total	0.041	2	2.09	102	-	-	75-125	-	20
Beryllium, Total	ND	0.05	0.052	105	-	-	75-125	-	20
Cadmium, Total	ND	0.051	0.056	110	-	-	75-125	-	20
Chromium, Total	0.008J	0.2	0.207	104	-	-	75-125	-	20
Copper, Total	0.124	0.25	0.387	105	-	-	75-125	-	20
Iron, Total	0.609	1	1.54	93	-	-	75-125	-	20
Lead, Total	0.048	0.51	0.592	107	-	-	75-125	-	20
Nickel, Total	0.013J	0.5	0.508	102	-	-	75-125	-	20
Selenium, Total	ND	0.12	0.136	113	-	-	75-125	-	20
Silver, Total	ND	0.05	0.055	109	-	-	75-125	-	20
Titanium, Total	0.010J	1	1.06	106	-	-	75-125	-	20
Zinc, Total	0.110	0.5	0.646	107	-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1484463-3	QC Sample:	: L2117810-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00524	105	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number: L2117698

Parameter	Native Sample Du	plicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1484459-4	QC Sample:	L2117698-01	Client ID:	EFFLUENT	
Arsenic, Total	0.006	0.008	mg/l	20		20
Barium, Total	0.027	0.027	mg/l	1		20
Beryllium, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.003J	0.003J	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Iron, Total	91.5	90.2	mg/l	1		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	0.019	0.018	mg/l	6		20
Silver, Total	ND	ND	mg/l	NC		20
Titanium, Total	0.005J	0.005J	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1484459-4	QC Sample:	L2117698-01	Client ID:	EFFLUENT	
Antimony, Total	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number:

L2117698

Parameter	Native Sample Du	iplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1484459-	8 QC Sample:	L2117770-01	Client ID: DI	UP Sample
Arsenic, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	0.008J	0.008J	mg/l	NC	20
Copper, Total	0.124	0.122	mg/l	2	20
Lead, Total	0.048	0.048	mg/l	0	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.110	0.108	mg/l	2	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1484463-	4 QC Sample:	L2117810-01	Client ID: DI	UP Sample
Mercury, Total	ND	ND	mg/l	NC	20

L2117698

Lab Serial Dilution
Analysis
Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Report Date: 04/15/21

Lab Number:

Parameter	Native Sample	Serial Dilution	Units	% D	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG148445	9-6 QC Sample:	L2117698-01	Client ID: I	EFFLUENT	
Iron, Total	91.5	85.0	mg/l	7		20

INORGANICS & MISCELLANEOUS

Serial_No:04152116:06

Project Name: ATP PRE-TREATMENT OM&M Lab Number: L2117698

SAMPLE RESULTS

Lab ID: L2117698-01 Date Collected: 04/08/21 11:15

Client ID: EFFLUENT Date Received: 04/08/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat)								
Cyanide, Total	0.499		mg/l	0.005	0.001	1	04/10/21 13:50	04/12/21 11:42	121,4500CN-CE	CR
pH (H)	6.1		SU	-	NA	1	-	04/12/21 17:22	121,4500H+-B	AS
Nitrogen, Ammonia	43.4		mg/l	0.750	0.240	10	04/14/21 03:38	04/14/21 19:34	44,350.1	AT
Sulfate	1800		mg/l	1000	140	100	04/14/21 16:54	04/14/21 16:54	121,4500SO4-E	JB
Phenolics, Total	0.21		mg/l	0.030	0.006	1	04/12/21 07:24	04/12/21 11:21	4,420.1	KP

Serial_No:04152116:06

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number:

L2117698

Report Date: 04/15/21

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG14	84736-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	04/10/21 13:50	04/12/21 11:26	121,4500CN-CE	CR CR
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG14	84977-1				
Phenolics, Total	ND		mg/l	0.030	0.006	1	04/12/21 07:24	04/12/21 10:22	4,420.1	KP
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG14	85892-1				
Nitrogen, Ammonia	ND		mg/l	0.075	0.024	1	04/14/21 03:38	04/14/21 19:17	44,350.1	AT
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG14	86158-1				
Sulfate	1.7	J	mg/l	10	1.4	1	04/14/21 16:54	04/14/21 16:54	121,4500SO4-E	JB

Lab Control Sample Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number:

L2117698

Report Date:

04/15/21

Parameter	LCS %Recovery Qu	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1484736-2					
Cyanide, Total	97	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1484977-2					
Phenolics, Total	101	-		70-130	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1485336-1					
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1485892-2					
Nitrogen, Ammonia	96	-		90-110	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1486158-2					
Sulfate	100	-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number:

L2117698

Report Date:

04/15/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - V	Westborough Lab As	sociated samp	ole(s): 01	QC Batch ID: \	WG14847	36-4	QC Sample: L21	17615-0	01 Client	ID: MS	Sampl	е
Cyanide, Total	ND	0.2	0.189	94		-	-		90-110	-		30
General Chemistry - V	Westborough Lab As	sociated samp	ole(s): 01	QC Batch ID: \	WG14849	77-4	QC Sample: L21	18151-0	01 Client	ID: MS	Sampl	е
Phenolics, Total	ND	0.4	0.34	84		-	-		70-130	-		20
General Chemistry - V	Westborough Lab As	sociated samp	ole(s): 01	QC Batch ID: \	WG14858	92-4	QC Sample: L21	17605-0	03 Client	ID: MS	Sampl	е
Nitrogen, Ammonia	0.180	4	3.66	87	Q	-	-		90-110	-		20
General Chemistry - V	Westborough Lab As	sociated samp	ole(s): 01	QC Batch ID: \	WG14861	58-4	QC Sample: L21	18406-0	02 Client	ID: MS	Sampl	е
Sulfate	16.	40	56	100		-	-		55-147	-		14

Lab Duplicate Analysis Batch Quality Control

Project Name: ATP PRE-TREATMENT OM&M

Project Number: T007-019-222

Lab Number: L2117698 04/15/21

Report Date:

Parameter	Native S	Sample	Duplicate Sam	ple Units	s RPD	Qua	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1484736-3	QC Sample:	L2117615-01	Client ID:	DUP Sample
Cyanide, Total	NE)	ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1484977-3	QC Sample:	L2118151-01	Client ID:	DUP Sample
Phenolics, Total	NE)	0.013J	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1485336-2	QC Sample:	L2117698-01	Client ID:	EFFLUENT
pH (H)	6.7	1	6.1	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1485892-3	QC Sample:	L2117605-03	Client ID:	DUP Sample
Nitrogen, Ammonia	0.18	30	0.222	mg/l	21	Q	20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1486158-3	QC Sample:	L2118406-02	Client ID:	DUP Sample
Sulfate	16	i.	15	mg/l	6		14

Serial_No:04152116:06

Project Name: ATP PRE-TREATMENT OM&M

YES

Project Number: T007-019-222

Lab Number: L2117698 **Report Date:** 04/15/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2117698-01A	Vial Na2S2O3 preserved	Α	NA		4.3	Υ	Absent		624.1(3)
L2117698-01B	Vial Na2S2O3 preserved	Α	NA		4.3	Υ	Absent		624.1(3)
L2117698-01C	Vial Na2S2O3 preserved	Α	NA		4.3	Υ	Absent		624.1(3)
L2117698-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	4.3	Υ	Absent		BA-UI(180),NI-UI(180),SB-UI(180),AG- UI(180),ZN-UI(180),TI-UI(180),SE-UI(180),FE- UI(180),HG-U(28),CD-UI(180),CR-UI(180),BE- UI(180),AS-UI(180),CU-UI(180),PB-UI(180)
L2117698-01E	Plastic 500ml H2SO4 preserved	Α	<2	<2	4.3	Υ	Absent		NH3-350(28)
L2117698-01F	Amber 1000ml H2SO4 preserved	Α	<2	<2	4.3	Υ	Absent		NY-TPHENOL-420(28)
L2117698-01G	Plastic 500ml unpreserved	Α	7	7	4.3	Υ	Absent		SO4-4500(28),PH-4500(.01)
L2117698-01H	Plastic 250ml NaOH preserved	Α	>12	>12	4.3	Υ	Absent		TCN-4500(14)

Project Name: ATP PRE-TREATMENT OM&M Lab Number: L2117698 T007-019-222 **Report Date: Project Number:** 04/15/21

GLOSSARY

Acronyms

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:ATP PRE-TREATMENT OM&MLab Number:L2117698Project Number:T007-019-222Report Date:04/15/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:ATP PRE-TREATMENT OM&MLab Number:L2117698Project Number:T007-019-222Report Date:04/15/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:ATP PRE-TREATMENT OM&MLab Number:L2117698Project Number:T007-019-222Report Date:04/15/21

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:04152116:06

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Ацен	A	NEW YORK CHAIN OF CUSTODY	Albany, NY 12205: 14 Walker V	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information			1	ı	Date I in L		1 4	110	1/2	(211760	i8
Westborough, I 8 Walkup TEL: 508-896 FAX: 508-896	Dr. 8-9220	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Location:	ATP Pre-trea		Л	CIRCUTAL.		ASP-	A S (1 F	ile)	_	ASP-E	3 5 (4 File)	Billing Inf Sam	formation ne as Client Inf	fo
Client Inform	mation		Project #	T007-019-22	2				_	_				-	Discount of the last of the la	Cita Informati	20
		Environmental	(Use Project name as P	roject#)				1000	latory	-0.000	ireme	100				Site Information	
		urg Turnpike,Ste300	Project Manager:	Candace For	x			_	NY TO			_	NY Pa		Please ide	entify below locate disposal facilitie	ion of s
Buffalo, NY 1			ALPHAQuote #:					_	AWQ			_	NY CF	-51			
	16-856-05	99	Turn-Around Time				Herick					-	Other		Disposal F		227
Fax:			Standar	rd 🔀	Due Date	2			NY Ur						□ NJ	□ N	14. A
A Line of the second	orbes@be	nchmarkturnkey.com	Rush (only if pre approve	d) 🔲	# of Days				NYC :	Sewer	Discha	rge			Othe	011	NA
	_	en previously analyze						ANA	LYSIS						Sample	Filtration	0
	Sb,As,Ba	requirements/comm Be,Cd,Cr,Cu,Fe,Pb,F or TAL.						624 PP List	Metals, Total*	Ammonia	pH,Sulfate	Phenolics	Cyanide		☐ Don ☐ Lab Preserv ☐ Lab	to do ration	a l B o t
ALPHA L	ah ID		0.000	Coll	ection	Sample	Sampler's	6	Me	1	1	-					j
(Lab Use		Sa	ample ID	Date	Time	Matrix	Initials								Sample 3	Specific Comme	ents e
17698		EFFLUENT		4-821	1115	Water	BMG	×	х	×	х	х	x				8
11618	01																
	501511	9															_
										_			_				_
	E Bless																
													_				_
													_				_
																	-
Preservative C A = None B = HCI	ode:	Container Code P = Plastic A = Amber Glass	Westboro: Certification Mansfield: Certification			Co	ontainer Type	v	Р	Р	Р	А	Р		and	se print clearly completely. Sa	imples car
$C = HNO_3$ $D = H_2SO_4$		V = Vial G = Glass B = Bacteria Cup					Preservative	Н	С	D	А	D	E		turna	ne logged in an around time clo until any amb	ock will no
E = NaOH F = MeOH		C = Cube	Relinquishe	d By:	Dat	te/Time		Rece	eived E	Ву:			Dat	e/Time		lved. BY EXEC	
G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/N O = Other	аОН	O = Other E = Encore D = BOD Bottle	Brockbre			1/1135	5		UN	- 1	Me			01100	TO	S COC, THE C S READ AND A BE BOUND BY KMS & CONDI	AGREES ALPHA'S
Form No: 01-2 Page 34 of		iept-2013)					1			L	_		-				

Strong Advocates, Effective Solutions, Integrated Implementation

November 2, 2021

Ms. Laura Surdej Erie County Sewer/Southtown's Sewage Treatment Plant 260 Lehigh Ave. Lackawanna, NY 14218

Re: ECSD No.6 Discharge Permit LA-03 Rev. 1 (10/27/21)

Semi-Annual Report (May 2021 – October 2021)

Lackawanna, New York

Dear Ms. Surdej:

TurnKey Environmental Restoration, LLC (TurnKey) has prepared the following certification statement for the October 2021 Semi-Annual Monitoring Report on behalf of our client, Tecumseh Redevelopment Inc., in accordance with Erie County Sewer District No. 6 (ECSD No.6), Permit No. LA-03 Rev. 1 (10/27/21):

I certify, under penalty of law, that this document and all attachments were prepared under/by direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Senior Project Environmental Scientist

Strong Advocates, Effective Solutions, Integrated Implementation

November 2, 2021

Ms. Laura Surdej Erie County Sewer/Southtown's Sewage Treatment Plant 260 Lehigh Ave Lackawanna, NY 14218

Re: ECSD No.6 Discharge Permit LA-03, Rev. 1 (10/27/21)

Semi-Annual Report (May 2021 – October 2021)

Lackawanna, New York

Dear Ms. Surdej:

TurnKey Environmental Restoration, LLC (TurnKey) has prepared this correspondence on behalf of our client, Tecumseh Redevelopment Inc., in accordance with Erie County Sewer District No. 6 (ECSD No. 6) Permit No. LA-03, Rev. 1 (10/27/21). As required by the permit, this semi-annual report summarizes flow, pH and compliance sample results for the report period from May 1, 2021 through October 29, 2021.

Turnkey personnel recorded totalizer (total gallons) and pH readings weekly during the reporting period. Table 1 summarizes the total volume (gallons), calculated daily flow (gallons per day) and pH readings.

On October 25, 2021 TurnKey personnel collected an effluent (outfall) water sample and submitted the sample under chain-of-custody command to Alpha Analytical for laboratory analysis in accordance with the discharge permit. Table 2 summarizes the analytical results; Attachment 1 contains the Laboratory Analytical Report. As indicated on Table 2 all parameter detections meet corresponding permitted discharge limits.

As of October 29, 2021 a total of 11,317,874 gallons of water has been pre-treated and discharged to the ECSD No.6 collection and conveyance system. The calculated daily flow for the reporting period has ranged between 1,505 and 5,866 GPD, well below permitted flows of up to 45,000 GPD. The flow meter was subjected to third party annual calibration on May 13, 2021. The calibration certificate is presented as Attachment 2. The pH readings have been between 5.75 and 7.13 standard units, with a permitted operating range of 5 and 12 standard units.

Please contact us if you have any questions or require additional information.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Senior Project Environmental Scientist

TABLES

TABLE 1 SUMMARY OF EFFLUENT FLOW AND pH

ATP GROUNDWATER PRE-TREATMENT SYSTEM Tecumseh Redevelopment, Inc. Lackawanna, New York

Date	Totalizer (gallons)	Total Gallons this event	Calculated GPD (gallons/day)	рН
Permit Limits:		45,000 GPD		5-12
5/7/21	11,055,536	22,161	3,166	6.10
5/14/21	11,067,266	21,720	3,103	6.20
5/21/21	11,078,787	23,251	3,322	6.12
5/28/21	11,090,195	22,929	3,276	6.17
6/4/21	11,101,124	22,337	3,723	6.20
6/11/21	11,104,298	14,103	2,015	6.17
6/18/21	11,111,660	10,536	1,505	5.90
6/25/21	11,121,235	16,937	2,420	6.22
7/2/21	11,130,637	18,977	2,711	6.10
7/9/21	11,140,732	19,497	2,785	6.14
7/16/21	11,150,787	20,150	2,879	5.91
7/23/21	11,161,178	20,446	2,921	5.79
7/30/21	11,174,790	24,003	3,429	5.75
8/6/21	11,185,986	24,808	4,135	5.94
8/13/21	11,185,986	11,196	1,599	5.82
8/20/21	11,198,753	12,767	1,824	6.11
8/27/21	11,211,185	25,199	3,600	5.80
9/3/21	11,233,951	35,198	5,866	5.84
9/10/21	11,245,010	33,825	4,832	5.82
9/17/21	11,255,819	21,868	3,124	5.80
9/24/21	11,265,456	20,446	2,921	5.79
10/1/21	11,273,592	17,773	2,539	6.95
10/8/21	11,282,646	17,190	2,456	7.13
10/15/21	11,293,953	20,361	2,909	5.91
10/22/21	11,305,442	22,796	3,257	5.88
10/29/21	11,317,874	23,921	3,417	5.80

TABLE 2

SUMMARY OF EFFLUENT WATER ANALYTICAL DATA

ATP GROUNDWATER PRE-TREATMENT SYSTEM Tecumseh Redevelopment, Inc. Lackawanna, New York

Parameter ¹	Effluent	Discharge Permit Limitations ²					
Parameter	1010=101						
V 1 (1) 0 1 0 1 (1) 0 1 (1)	10/25/21						
Volatile Organic Compounds (VOCs - Method 624) - mg/L							
1,1-Dichloroethane	0.006						
1,2-Dichloroethane	0.012						
Benzene	0.51						
TOTAL VOCs (mg/L)	0.5280						
Semi-Volatile Organic Compounds (SVOCs - Method 625) - mg/L							
2,4-Dimethylphenol	0.00335 J						
Phenol	0.00371 J						
Naphthalene	0.00398						
TOTAL SVOCs (mg/L)	0.01104 J						
Polychlorinated Biphenyls (PCBs) (Method 6	608)- mg/L						
All Compounds Non-Detect							
Organochlorine Pesticide Compounds (Meth-	od 608) - mg/L						
All Compounds Non-Detect							
Metal Compounds (Method 200.7 Rev 4.4) - m	g/L ³						
Arsenic	0.003 J	0.18					
Barium	0.026	Monitor					
Chromium	0.005 J	4.85					
Iron	67.3	Monitor					
Lead	0.004 J	0.4					
Titanium	0.006 J	Monitor					
TOTAL Metals (mg/L)	67.34 J	Monitor					
General Chemistry - mg/L							
Cyanide, Total	0.616	Monitor					
Ammonia (as N)	37.7	Monitor					
Phenolics, Total Recoverable	0.11	Monitor					
Sulfate	2000	Monitor					
Oil & Grease	3.8	100					
pH ⁴	6.1	5-12					
Total Toxic Organic Pollutants (TTO) 4	0.54	2.13					

Notes:

- 1. Only those parameters detected are presented in this table; all others were reported as non-detect.
- 2. Per the Erie County Sewer District No. 6 Discharge Permit LA-03 Rev. 1 (10/27/21)
- 3. Metals include Ag, As, Ba, Be, Cd, Cr, Fe, Cu, Hg, Ni, Pb, Sb, Se, Ti, and Zn
- 4. TTO is determined by totaling the reported compound concentrations detected via EPA Methods 608, 624, & 625.

Definitions:

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

ATTACHMENT 1

Laboratory Data

ANALYTICAL REPORT

Lab Number: L2158360

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Report Date: 11/02/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11022109:57

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number:

L2158360

Report Date:

11/02/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2158360-01	SYSTEM EFFLUENT	WATER	1951 HAMBURG TURNPIKE	10/25/21 15:50	10/25/21

Serial No:11022109:57

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

Project Number: T0071-021-222 Report Date: 11/02/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.						

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

Case Narrative (continued)

Report Revision

November 02, 2021: The Semivolatile and Volatile Organics analyte lists have been amended.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 11/02/21

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L2158360

11/02/21

Project Name: Lab Number: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

SAMPLE RESULTS

Report Date:

Lab ID: L2158360-01 D Date Collected: 10/25/21 15:50

Client ID: Date Received: 10/25/21 SYSTEM EFFLUENT 1951 HAMBURG TURNPIKE Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 10/27/21 10:08

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	4.0	2.2	4	
1,1-Dichloroethane	6.0		ug/l	6.0	1.6	4	
Chloroform	ND		ug/l	4.0	1.5	4	
Carbon tetrachloride	ND		ug/l	4.0	0.98	4	
1,2-Dichloropropane	ND		ug/l	14	1.9	4	
Dibromochloromethane	ND		ug/l	4.0	1.1	4	
1,1,2-Trichloroethane	ND		ug/l	6.0	1.4	4	
2-Chloroethylvinyl ether	ND		ug/l	40	1.4	4	
Tetrachloroethene	ND		ug/l	4.0	1.0	4	
Chlorobenzene	ND		ug/l	14	1.2	4	
1,2-Dichloroethane	12		ug/l	6.0	1.9	4	
1,1,1-Trichloroethane	ND		ug/l	8.0	1.1	4	
Bromodichloromethane	ND		ug/l	4.0	1.1	4	
trans-1,3-Dichloropropene	ND		ug/l	6.0	1.2	4	
cis-1,3-Dichloropropene	ND		ug/l	6.0	1.3	4	
1,3-Dichloropropene, Total	ND		ug/l	6.0	1.2	4	
Bromoform	ND		ug/l	4.0	0.86	4	
1,1,2,2-Tetrachloroethane	ND		ug/l	4.0	0.81	4	
Benzene	510		ug/l	4.0	1.5	4	
Toluene	ND		ug/l	4.0	1.2	4	
Ethylbenzene	ND		ug/l	4.0	1.1	4	
Chloromethane	ND		ug/l	20	4.2	4	
Bromomethane	ND		ug/l	20	4.9	4	
Vinyl chloride	ND		ug/l	4.0	1.5	4	
Chloroethane	ND		ug/l	8.0	1.5	4	
1,1-Dichloroethene	ND		ug/l	4.0	1.2	4	
trans-1,2-Dichloroethene	ND		ug/l	6.0	1.3	4	
Trichloroethene	ND		ug/l	4.0	1.3	4	

11/02/21

Project Name: Lab Number: ATP PRE-TRAETMENT OM&M L2158360

Project Number: T0071-021-222

SAMPLE RESULTS

Date Collected: 10/25/21 15:50

Report Date:

Lab ID: L2158360-01 D Client ID: SYSTEM EFFLUENT Date Received: 10/25/21

Sample Location: Field Prep: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
1,2-Dichlorobenzene	ND		ug/l	20	1.1	4
1,3-Dichlorobenzene	ND		ug/l	20	1.1	4
1,4-Dichlorobenzene	ND		ug/l	20	1.1	4
Acrolein	ND		ug/l	32	7.3	4
Acrylonitrile	ND		ua/l	40	1.3	4

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	100	60-140	
Fluorobenzene	110	60-140	
4-Bromofluorobenzene	97	60-140	

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

> Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 10/27/21 06:31

Analyst: GT

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01 Batch:	WG1564327-4
Methylene chloride	ND	ug/l	1.0	0.56
1,1-Dichloroethane	ND	ug/l	1.5	0.40
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
1,2-Dichloropropane	ND	ug/l	3.5	0.46
Dibromochloromethane	ND	ug/l	1.0	0.27
1,1,2-Trichloroethane	ND	ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND	ug/l	1.5	0.31
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	ND	ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
Trichloroethene	ND	ug/l	1.0	0.33
1,2-Dichlorobenzene	ND	ug/l	5.0	0.28

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

> Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 10/27/21 06:31

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	o for samp	e(s): 01	Batch:	WG1564327-4	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	

Surrogate	%Recovery	Acceptance Qualifier Criteria
Pentafluorobenzene	98	60-140
Fluorobenzene	104	60-140
4-Bromofluorobenzene	96	60-140

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number: L2158360

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	564327-3				
Methylene chloride	100		-		60-140	-		28
1,1-Dichloroethane	105		-		50-150	-		49
Chloroform	105		-		70-135	-		54
Carbon tetrachloride	100		-		70-130	-		41
1,2-Dichloropropane	115		-		35-165	-		55
Dibromochloromethane	95		-		70-135	-		50
1,1,2-Trichloroethane	95		-		70-130	-		45
2-Chloroethylvinyl ether	150		-		1-225	-		71
Tetrachloroethene	90		-		70-130	-		39
Chlorobenzene	90		-		65-135	-		53
1,2-Dichloroethane	120		-		70-130	-		49
1,1,1-Trichloroethane	105		-		70-130	-		36
Bromodichloromethane	100		-		65-135	-		56
trans-1,3-Dichloropropene	95		-		50-150	-		86
cis-1,3-Dichloropropene	100		-		25-175	-		58
Bromoform	80		-		70-130	-		42
1,1,2,2-Tetrachloroethane	95		-		60-140	-		61
Benzene	110		-		65-135	-		61
Toluene	105		-		70-130	-		41
Ethylbenzene	100		-		60-140	-		63
Chloromethane	120		-		1-205	-		60
Bromomethane	100		-		15-185	-		61
Vinyl chloride	95		-		5-195	-		66

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number:

L2158360

Report Date:

11/02/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG1	564327-3					
Chloroethane	105		-		40-160	-		78	
1,1-Dichloroethene	95		-		50-150	-		32	
trans-1,2-Dichloroethene	95		-		70-130	-		45	
Trichloroethene	105		-		65-135	-		48	
1,2-Dichlorobenzene	90		-		65-135	-		57	
1,3-Dichlorobenzene	90		-		70-130	-		43	
1,4-Dichlorobenzene	90		-		65-135	-		57	
Acrolein	102		-		60-140	-		30	
Acrylonitrile	112		-		60-140	-		60	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	99			60-140
Fluorobenzene	108			60-140
4-Bromofluorobenzene	92			60-140

SEMIVOLATILES

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

SAMPLE RESULTS

Lab ID: L2158360-01 Date Collected: 10/25/21 15:50

Client ID: SYSTEM EFFLUENT Date Received: 10/25/21
Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 10/27/21 09:20

Analyst: JG

10/29/21 04:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	ND		ug/l	2.00	0.407	1
Benzidine ¹	ND		ug/l	20.0	12.1	1
1,2,4-Trichlorobenzene	ND		ug/l	5.00	1.49	1
Hexachlorobenzene	ND		ug/l	2.00	0.952	1
Bis(2-chloroethyl)ether	ND		ug/l	2.00	0.600	1
2-Chloronaphthalene	ND		ug/l	2.00	0.319	1
3,3'-Dichlorobenzidine	ND		ug/l	5.00	0.457	1
2,4-Dinitrotoluene	ND		ug/l	5.00	0.636	1
2,6-Dinitrotoluene	ND		ug/l	5.00	0.631	1
Azobenzene¹	ND		ug/l	2.00	0.889	1
Fluoranthene	ND		ug/l	2.00	0.736	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.00	0.371	1
4-Bromophenyl phenyl ether	ND		ug/l	2.00	0.447	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.00	0.822	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.00	0.585	1
Hexachlorobutadiene	ND		ug/l	2.00	0.921	1
Hexachlorocyclopentadiene ¹	ND		ug/l	10.0	1.36	1
Hexachloroethane	ND		ug/l	2.00	0.973	1
Isophorone	ND		ug/l	5.00	0.546	1
Naphthalene	3.98		ug/l	2.00	0.896	1
Nitrobenzene	ND		ug/l	2.00	0.788	1
NDPA/DPA ¹	ND		ug/l	2.00	0.783	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.00	0.630	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20	1.70	1
Butyl benzyl phthalate	ND		ug/l	5.00	0.670	1
Di-n-butylphthalate	ND		ug/l	5.00	0.631	1
Di-n-octylphthalate	ND		ug/l	5.00	0.633	1
Diethyl phthalate	ND		ug/l	5.00	0.717	1

11/02/21

Dilution Factor

Project Name: Lab Number: ATP PRE-TRAETMENT OM&M L2158360

Project Number: T0071-021-222

SAMPLE RESULTS

Date Collected: 10/25/21 15:50

MDL

Report Date:

RL

Lab ID: L2158360-01

Date Received: Client ID: SYSTEM EFFLUENT 10/25/21 1951 HAMBURG TURNPIKE Sample Location: Field Prep: Not Specified

Qualifier

Units

Result

Sample Depth:

Parameter

raiailletei	Result	Qualifici	Offica	IXL	WIDE	Dilution Lactor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Dimethyl phthalate	ND		ug/l	5.00	1.40	1	
Benzo(a)anthracene	ND		ug/l	2.00	0.665	1	
Benzo(a)pyrene	ND		ug/l	2.00	0.610	1	
Benzo(b)fluoranthene	ND		ug/l	2.00	0.741	1	
Benzo(k)fluoranthene	ND		ug/l	2.00	0.739	1	
Chrysene	ND		ug/l	2.00	0.668	1	
Acenaphthylene	ND		ug/l	2.00	0.930	1	
Anthracene	ND		ug/l	2.00	0.791	1	
Benzo(ghi)perylene	ND		ug/l	2.00	0.672	1	
Fluorene	ND		ug/l	2.00	0.927	1	
Phenanthrene	ND		ug/l	2.00	0.818	1	
Dibenzo(a,h)anthracene	ND		ug/l	2.00	0.687	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.00	0.633	1	
Pyrene	ND		ug/l	2.00	0.728	1	
n-Nitrosodimethylamine ¹	ND		ug/l	2.00	0.407	1	
2,4,6-Trichlorophenol	ND		ug/l	5.00	0.607	1	
p-Chloro-m-cresol ¹	ND		ug/l	2.00	0.533	1	
2-Chlorophenol	ND		ug/l	2.00	0.513	1	
2,4-Dichlorophenol	ND		ug/l	5.00	0.554	1	
2,4-Dimethylphenol	3.35	J	ug/l	5.00	0.851	1	
2-Nitrophenol	ND		ug/l	5.00	0.604	1	
4-Nitrophenol	ND		ug/l	10.0	0.834	1	
2,4-Dinitrophenol	ND		ug/l	20.0	1.21	1	
4,6-Dinitro-o-cresol	ND		ug/l	10.0	1.20	1	
Pentachlorophenol	ND		ug/l	5.00	0.622	1	
Phenol	3.71	J	ug/l	5.00	0.262	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	42	25-87
Phenol-d6	31	16-65
Nitrobenzene-d5	81	42-122
2-Fluorobiphenyl	84	46-121
2,4,6-Tribromophenol	116	45-128
4-Terphenyl-d14	99	47-138

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

> Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 10/29/21 02:35
 Extraction Date:
 10/27/21 09:20

Analyst: JG

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	6 - Westborough	n Lab for s	ample(s):	01	Batch:	WG1563688-1	
Acenaphthene	ND		ug/l	:	2.00	0.407	
Benzidine ¹	ND		ug/l		20.0	12.1	
1,2,4-Trichlorobenzene	ND		ug/l		5.00	1.49	
Hexachlorobenzene	ND		ug/l		2.00	0.952	
Bis(2-chloroethyl)ether	ND		ug/l		2.00	0.600	
2-Chloronaphthalene	ND		ug/l		2.00	0.319	
3,3'-Dichlorobenzidine	ND		ug/l		5.00	0.457	
2,4-Dinitrotoluene	ND		ug/l		5.00	0.636	
2,6-Dinitrotoluene	ND		ug/l		5.00	0.631	
Azobenzene ¹	ND		ug/l		2.00	0.889	
Fluoranthene	ND		ug/l		2.00	0.736	
4-Chlorophenyl phenyl ether	ND		ug/l		2.00	0.371	
4-Bromophenyl phenyl ether	ND		ug/l		2.00	0.447	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.00	0.822	
Bis(2-chloroethoxy)methane	ND		ug/l		5.00	0.585	
Hexachlorobutadiene	ND		ug/l		2.00	0.921	
Hexachlorocyclopentadiene ¹	ND		ug/l		10.0	1.36	
Hexachloroethane	ND		ug/l		2.00	0.973	
Isophorone	ND		ug/l	;	5.00	0.546	
Naphthalene	ND		ug/l		2.00	0.896	
Nitrobenzene	ND		ug/l		2.00	0.788	
NDPA/DPA ¹	ND		ug/l		2.00	0.783	
n-Nitrosodi-n-propylamine	ND		ug/l		5.00	0.630	
Bis(2-ethylhexyl)phthalate	ND		ug/l		2.20	1.70	
Butyl benzyl phthalate	ND		ug/l		5.00	0.670	
Di-n-butylphthalate	ND		ug/l		5.00	0.631	
Di-n-octylphthalate	ND		ug/l		5.00	0.633	
Diethyl phthalate	ND		ug/l		5.00	0.717	
Dimethyl phthalate	ND		ug/l		5.00	1.40	

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

> Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 10/29/21 02:35
 Extraction Date:
 10/27/21 09:20

Analyst: JG

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/MS	S - Westborough	n Lab for sample(s):	01 Batch:	WG1563688-1
Benzo(a)anthracene	ND	ug/l	2.00	0.665
Benzo(a)pyrene	ND	ug/l	2.00	0.610
Benzo(b)fluoranthene	ND	ug/l	2.00	0.741
Benzo(k)fluoranthene	ND	ug/l	2.00	0.739
Chrysene	ND	ug/l	2.00	0.668
Acenaphthylene	ND	ug/l	2.00	0.930
Anthracene	ND	ug/l	2.00	0.791
Benzo(ghi)perylene	ND	ug/l	2.00	0.672
Fluorene	ND	ug/l	2.00	0.927
Phenanthrene	ND	ug/l	2.00	0.818
Dibenzo(a,h)anthracene	ND	ug/l	2.00	0.687
Indeno(1,2,3-cd)pyrene	ND	ug/l	2.00	0.633
Pyrene	ND	ug/l	2.00	0.728
n-Nitrosodimethylamine1	ND	ug/l	2.00	0.407
2,4,6-Trichlorophenol	ND	ug/l	5.00	0.607
p-Chloro-m-cresol ¹	ND	ug/l	2.00	0.533
2-Chlorophenol	ND	ug/l	2.00	0.513
2,4-Dichlorophenol	ND	ug/l	5.00	0.554
2,4-Dimethylphenol	ND	ug/l	5.00	0.851
2-Nitrophenol	ND	ug/l	5.00	0.604
4-Nitrophenol	ND	ug/l	10.0	0.834
2,4-Dinitrophenol	ND	ug/l	20.0	1.21
4,6-Dinitro-o-cresol	ND	ug/l	10.0	1.20
Pentachlorophenol	ND	ug/l	5.00	0.622
Phenol	ND	ug/l	5.00	0.262

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

> Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1
Analytical Date: 10/29/21 02:35 Extraction Date: 10/27/21 09:20

Analytical Date: 10/29/21 02:35 Extraction Date:

Analyst: JG

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1563688-1

Acceptance Surrogate %Recovery Qualifier Criteria 2-Fluorophenol 35 25-87 Phenol-d6 26 16-65 Nitrobenzene-d5 42-122 64 2-Fluorobiphenyl 67 46-121 2,4,6-Tribromophenol 80 45-128 4-Terphenyl-d14 83 47-138

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number: L2158360

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Assoc	ated sample(s)	: 01 Batch:	WG1563688	3-3			
Acenaphthene	75		-		60-132	-	48	
Benzidine ¹	30		-		0-70	-	30	
1,2,4-Trichlorobenzene	74		-		57-130	-	50	
Hexachlorobenzene	94		-		8-142	-	55	
Bis(2-chloroethyl)ether	69		-		43-126	-	108	
2-Chloronaphthalene	79		-		65-120	-	24	
3,3'-Dichlorobenzidine	37		-		8-213	-	108	
2,4-Dinitrotoluene	112		-		48-127	-	42	
2,6-Dinitrotoluene	110		-		68-137	-	48	
Azobenzene ¹	72		-		44-115	-	23	
Fluoranthene	83		-		43-121	-	66	
4-Chlorophenyl phenyl ether	83		-		38-145	-	61	
4-Bromophenyl phenyl ether	92		-		65-120	-	43	
Bis(2-chloroethoxy)methane	76		-		49-165	-	54	
Hexachlorobutadiene	73		-		38-120	-	62	
Hexachlorocyclopentadiene ¹	71		-		7-118	-	35	
Hexachloroethane	65		-		55-120	-	52	
Isophorone	73		-		47-180	-	93	
Naphthalene	69		-		36-120	-	65	
Nitrobenzene	77		-		54-158	-	62	
NDPA/DPA ¹	83		-		45-112	-	36	
n-Nitrosodi-n-propylamine	69		-		14-198	-	87	
Bis(2-ethylhexyl)phthalate	94		-		29-137	-	82	

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number: L2158360

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbord	ugh Lab Associa	ited sample(s): 0	1 Batch:	WG1563688	3-3			
Butyl benzyl phthalate	90		-		1-140	-		60
Di-n-butylphthalate	89		-		8-120	-		47
Di-n-octylphthalate	91		-		19-132	-		69
Diethyl phthalate	86		-		1-120	-		100
Dimethyl phthalate	89		-		1-120	-		183
Benzo(a)anthracene	78		-		42-133	-		53
Benzo(a)pyrene	73		-		32-148	-		72
Benzo(b)fluoranthene	82		-		42-140	-		71
Benzo(k)fluoranthene	83		-		25-146	-		63
Chrysene	79		-		44-140	-		87
Acenaphthylene	78		-		54-126	-		74
Anthracene	80		-		43-120	-		66
Benzo(ghi)perylene	80		-		1-195	-		97
Fluorene	80		-		70-120	-		38
Phenanthrene	79		-		65-120	-		39
Dibenzo(a,h)anthracene	82		-		1-200	-		126
Indeno(1,2,3-cd)pyrene	76		-		1-151	-		99
Pyrene	82		-		70-120	-		49
n-Nitrosodimethylamine ¹	36		-		15-68	-		17
2,4,6-Trichlorophenol	89		-		52-129	-		58
p-Chloro-m-cresol¹	79		-		68-130	-		73
2-Chlorophenol	71		-		36-120	-		61
2,4-Dichlorophenol	84		-		53-122	-		50

Project Name: ATP PRE-TRAETMENT OM&M

Project Number:

T0071-021-222

Lab Number:

L2158360

Report Date:

11/02/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associ	ated sample(s)	: 01 Batch:	WG1563688	8-3				
2,4-Dimethylphenol	73		-		42-120	-		58	
2-Nitrophenol	96		-		45-167	-		55	
4-Nitrophenol	52		-		13-129	-		131	
2,4-Dinitrophenol	92		-		1-173	-		132	
4,6-Dinitro-o-cresol	111		-		56-130	-		203	
Pentachlorophenol	84		-		38-152	-		86	
Phenol	33		-		17-120	-		64	

Surrogate	LCS L %Recovery Qual %Rec	CSD overy Qual	Acceptance Criteria
2-Fluorophenol	45		25-87
Phenol-d6	33		16-65
Nitrobenzene-d5	81		42-122
2-Fluorobiphenyl	84		46-121
2,4,6-Tribromophenol	109		45-128
4-Terphenyl-d14	95		47-138

PCBS

10/29/21

Cleanup Date:

Project Name: ATP PRE-TRAETMENT OM&M **Lab Number:** L2158360

SAMPLE RESULTS

Lab ID: L2158360-01 Date Collected: 10/25/21 15:50

Client ID: SYSTEM EFFLUENT Date Received: 10/25/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 10/29/21 09:17
Extraction Date: 10/27/21 11:43
Cleanup Method: EPA 3665A

Analyst: CW Cleanup Date: 10/28/21 Cleanup Method: EPA 3660B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab						
Aroclor 1016	ND		ug/l	0.050	0.008	1	Α
Aroclor 1221	ND		ug/l	0.050	0.011	1	Α
Aroclor 1232	ND		ug/l	0.050	0.023	1	Α
Aroclor 1242	ND		ug/l	0.050	0.018	1	Α
Aroclor 1248	ND		ug/l	0.050	0.023	1	Α
Aroclor 1254	ND		ug/l	0.050	0.008	1	Α
Aroclor 1260	ND		ug/l	0.050	0.017	1	Α

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	65		37-123	А				
Decachlorobiphenyl	51		38-114	Α				
2,4,5,6-Tetrachloro-m-xylene	129	Q	37-123	В				
Decachlorobiphenyl	38		38-114	В				

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

> Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 10/27/21 08:59

Analyst: CW

Extraction Method: EPA 608.3
Extraction Date: 10/26/21 21:13
Cleanup Method: EPA 3665A
Cleanup Date: 10/27/21
Cleanup Method: EPA 3660B
Cleanup Date: 10/27/21

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1563536	-1
Aroclor 1016	ND		ug/l	0.050	0.008	Α
Aroclor 1221	ND		ug/l	0.050	0.011	Α
Aroclor 1232	ND		ug/l	0.050	0.023	Α
Aroclor 1242	ND		ug/l	0.050	0.018	Α
Aroclor 1248	ND		ug/l	0.050	0.023	Α
Aroclor 1254	ND		ug/l	0.050	0.008	Α
Aroclor 1260	ND		ug/l	0.050	0.017	Α

	Acceptance							
Surrogate	%Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	128	Q	37-123	А				
Decachlorobiphenyl	139	Q	38-114	Α				
2,4,5,6-Tetrachloro-m-xylene	118		37-123	В				
Decachlorobiphenyl	111		38-114	В				

Project Name: ATP PRE-TRAETMENT OM&M

Lab Number: L2158360

Project Number: T0071-021-222

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s):	01 Batch:	WG1563536-2	2				
Aroclor 1016	96		-		50-140	-		36	Α
Aroclor 1260	100		-		8-140	-		38	Α

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria Column
2,4,5,6-Tetrachloro-m-xylene	88		37-123 A
Decachlorobiphenyl	95		38-114 A
2,4,5,6-Tetrachloro-m-xylene	82		37-123 B
Decachlorobiphenyl	79		38-114 B

PESTICIDES

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

SAMPLE RESULTS

Lab ID: L2158360-01 Date Collected: 10/25/21 15:50

Client ID: SYSTEM EFFLUENT Date Received: 10/25/21
Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 10/28/21 13:58

Extraction Date: 10/27/21 08:25
Cleanup Method: EPA 3620B

Analyst: SDC Cleanup Date: 10/28/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC	- Westborough Lab						
Delta-BHC	ND		ug/l	0.020	0.005	1	Α
Lindane	ND		ug/l	0.020	0.003	1	Α
Alpha-BHC	ND		ug/l	0.020	0.004	1	Α
Beta-BHC	ND		ug/l	0.020	0.009	1	Α
Heptachlor	ND		ug/l	0.020	0.005	1	Α
Aldrin	ND		ug/l	0.020	0.005	1	Α
Heptachlor epoxide	ND		ug/l	0.020	0.007	1	Α
Endrin	ND		ug/l	0.040	0.004	1	Α
Endrin aldehyde	ND		ug/l	0.040	0.017	1	Α
Endrin ketone ¹	ND		ug/l	0.040	0.005	1	Α
Dieldrin	ND		ug/l	0.040	0.003	1	Α
4,4'-DDE	ND		ug/l	0.040	0.003	1	Α
4,4'-DDD	ND		ug/l	0.040	0.008	1	Α
4,4'-DDT	ND		ug/l	0.040	0.008	1	Α
Endosulfan I	ND		ug/l	0.020	0.008	1	Α
Endosulfan II	ND		ug/l	0.040	0.003	1	Α
Endosulfan sulfate	ND		ug/l	0.040	0.017	1	Α
Methoxychlor ¹	ND		ug/l	0.100	0.008	1	Α
Toxaphene	ND		ug/l	0.400	0.126	1	Α
Chlordane	ND		ug/l	0.200	0.042	1	Α
cis-Chlordane ¹	ND		ug/l	0.020	0.005	1	Α
trans-Chlordane ¹	ND		ug/l	0.020	0.008	1	Α

Project Name: Lab Number: ATP PRE-TRAETMENT OM&M L2158360

Project Number: T0071-021-222 **Report Date:** 11/02/21

SAMPLE RESULTS

Lab ID: Date Collected: L2158360-01 10/25/21 15:50

Date Received: Client ID: 10/25/21 SYSTEM EFFLUENT Sample Location: Field Prep: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Column Parameter

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		47-124	Α
Decachlorobiphenyl	48		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	69		47-124	В
Decachlorobiphenyl	35		32-167	В

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

> Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 10/28/21 15:13

Analyst: SDC

Extraction Method: EPA 608.3
Extraction Date: 10/27/21 00:35
Cleanup Method: EPA 3620B
Cleanup Date: 10/27/21

arameter	Result	Qualifier	Units	RL	MDL	Column
Organochlorine Pesticides by G	C - Westboroug	h Lab for	sample(s):	01 Batch:	WG156356	2-1
Delta-BHC	ND		ug/l	0.020	0.005	Α
Lindane	ND		ug/l	0.020	0.003	Α
Alpha-BHC	ND		ug/l	0.020	0.004	Α
Beta-BHC	ND		ug/l	0.020	0.009	Α
Heptachlor	ND		ug/l	0.020	0.005	Α
Aldrin	ND		ug/l	0.020	0.005	Α
Heptachlor epoxide	ND		ug/l	0.020	0.007	Α
Endrin	ND		ug/l	0.040	0.004	Α
Endrin aldehyde	ND		ug/l	0.040	0.017	А
Endrin ketone ¹	ND		ug/l	0.040	0.005	Α
Dieldrin	ND		ug/l	0.040	0.003	Α
4,4'-DDE	ND		ug/l	0.040	0.003	Α
4,4'-DDD	ND		ug/l	0.040	0.008	Α
4,4'-DDT	ND		ug/l	0.040	0.008	Α
Endosulfan I	ND		ug/l	0.020	0.008	Α
Endosulfan II	ND		ug/l	0.040	0.003	Α
Endosulfan sulfate	ND		ug/l	0.040	0.017	Α
Methoxychlor ¹	ND		ug/l	0.100	0.008	Α
Toxaphene	ND		ug/l	0.400	0.126	Α
Chlordane	ND		ug/l	0.200	0.042	А
cis-Chlordane ¹	ND		ug/l	0.020	0.005	А
trans-Chlordane ¹	ND		ug/l	0.020	0.008	Α

Project Name: Lab Number: ATP PRE-TRAETMENT OM&M L2158360

Project Number: Report Date: 11/02/21 T0071-021-222

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 127,608.3 Analytical Date: 10/28/21 15:13

Analyst: SDC

Extraction Method: EPA 608.3 10/27/21 00:35 **Extraction Date:** Cleanup Method: EPA 3620B

Cleanup Date: 10/27/21

Column RLResult Qualifier Units MDL **Parameter** Organochlorine Pesticides by GC - Westborough Lab for sample(s): 01 Batch: WG1563562-1

			Acceptanc	e
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79		47-124	Α
Decachlorobiphenyl	91		32-167	A
2,4,5,6-Tetrachloro-m-xylene	66		47-124	В
Decachlorobiphenyl	90		32-167	В

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number: L2158360

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPI Qual Limi	
Organochlorine Pesticides by GC - W	estborough Lab Assoc	iated sample(s): 01 Batch	: WG1563562-2			
Delta-BHC	84	-	19-140	-	52	А
Lindane	87	-	32-140	-	39	А
Alpha-BHC	91	-	37-140	-	36	А
Beta-BHC	106	-	17-147	-	44	А
Heptachlor	79	-	34-140	-	43	Α
Aldrin	78	-	42-140	-	35	А
Heptachlor epoxide	82	-	37-142	-	26	А
Endrin	108	-	30-147	-	48	А
Endrin aldehyde	70	-	30-150	-	30	А
Endrin ketone ¹	108	-	30-150	-	30	А
Dieldrin	93	-	36-146	-	49	А
4,4'-DDE	86	-	30-145	-	35	А
4,4'-DDD	97	-	31-141	-	39	А
4,4'-DDT	101	-	25-160	-	42	А
Endosulfan I	84	-	45-153	-	28	А
Endosulfan II	90	-	1-202	-	53	А
Endosulfan sulfate	86	-	26-144	-	38	А
Methoxychlor ¹	126	-	30-150	-	30	А
cis-Chlordane ¹	88	-	45-140	-	35	А
trans-Chlordane ¹	110	-	45-140	-	35	А

Project Name: ATP PRE-TRAETMENT OM&M

Lab Number:

L2158360

Project Number: T0071-021-222

Report Date:

11/02/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1563562-2

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery G	Acceptance Qual Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82		47-124	Α
Decachlorobiphenyl	81		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	68		47-124	В
Decachlorobiphenyl	79		32-167	В

METALS

10/25/21 15:50

Date Collected:

Project Name: Lab Number: ATP PRE-TRAETMENT OM&M L2158360 **Report Date:** 11/02/21

Project Number: T0071-021-222

SAMPLE RESULTS

Lab ID: L2158360-01

Client ID: SYSTEM EFFLUENT Date Received: 10/25/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
field Lab										
ND		mg/l	0.050	0.007	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
0.003	J	mg/l	0.005	0.002	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
0.026		mg/l	0.010	0.002	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
ND		mg/l	0.005	0.001	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
ND		mg/l	0.005	0.001	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
0.005	J	mg/l	0.010	0.002	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
ND		mg/l	0.010	0.002	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
67.3		mg/l	0.050	0.009	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
0.004	J	mg/l	0.010	0.003	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
ND		mg/l	0.00020	0.00009	1	10/28/21 10:18	10/28/21 13:33	EPA 245.1	3,245.1	AC
ND		mg/l	0.025	0.002	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
ND		mg/l	0.010	0.004	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
ND		mg/l	0.007	0.003	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
0.006	J	mg/l	0.010	0.002	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
ND		mg/l	0.050	0.002	1	10/28/21 09:23	10/28/21 20:42	EPA 3005A	19,200.7	GD
	ND 0.003 0.026 ND 0.005 ND 67.3 0.004 ND	Field Lab ND 0.003 J 0.026 ND ND 0.005 J ND 67.3 0.004 J ND ND ND ND ND ND ND ND ND N	ND mg/l 0.003 J mg/l 0.026 mg/l ND mg/l ND mg/l 0.005 J mg/l ND mg/l 67.3 mg/l ND mg/l 0.006 J mg/l	field Lab ND mg/l 0.050 0.003 J mg/l 0.005 0.026 mg/l 0.010 ND mg/l 0.005 ND mg/l 0.010 ND mg/l 0.010 67.3 mg/l 0.050 0.004 J mg/l 0.002 ND mg/l 0.00220 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.007 0.006 J mg/l 0.010	ND mg/l 0.050 0.007 0.003 J mg/l 0.005 0.002 0.026 mg/l 0.010 0.002 ND mg/l 0.005 0.001 ND mg/l 0.005 0.001 0.005 J mg/l 0.010 0.002 ND mg/l 0.010 0.002 67.3 mg/l 0.050 0.009 0.004 J mg/l 0.010 0.003 ND mg/l 0.0020 0.00009 ND mg/l 0.010 0.004 ND mg/l 0.010 0.004 ND mg/l 0.010 0.004 ND mg/l 0.010 0.003 0.006 J mg/l 0.010 0.002	Result Qualifier Units RL MDL Factor field Lab ND mg/l 0.050 0.007 1 0.003 J mg/l 0.005 0.002 1 0.026 mg/l 0.010 0.002 1 ND mg/l 0.005 0.001 1 ND mg/l 0.005 0.001 1 ND mg/l 0.010 0.002 1 ND mg/l 0.050 0.009 1 0.004 J mg/l 0.010 0.003 1 ND mg/l 0.0020 0.0009 1 ND mg/l 0.0025 0.002 1 ND mg/l 0.010 0.004 1 ND <td>Result Qualifier Units RL MDL Factor Prepared ND mg/l 0.050 0.007 1 10/28/21 09:23 0.003 J mg/l 0.005 0.002 1 10/28/21 09:23 0.026 mg/l 0.010 0.002 1 10/28/21 09:23 ND mg/l 0.005 0.001 1 10/28/21 09:23 ND mg/l 0.005 0.001 1 10/28/21 09:23 ND mg/l 0.010 0.002 1 10/28/21 09:23 ND mg/l 0.010 0.002 1 10/28/21 09:23 67.3 mg/l 0.050 0.009 1 10/28/21 09:23 ND mg/l 0.010 0.003 1 10/28/21 09:23 ND mg/l 0.0020 0.00099 1 10/28/21 10:18 ND mg/l 0.0025 0.002 1 10/28/21 09:23 ND mg/l 0.010 0.004</td> <td>Result Qualifier Units RL MDL Factor Prepared Analyzed field Lab ND mg/l 0.050 0.007 1 10/28/21 09:23 10/28/21 20:42 0.003 J mg/l 0.005 0.002 1 10/28/21 09:23 10/28/21 20:42 0.026 mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 0.004 J mg/l 0.050 0.009 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.010 0.003 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.0025 0.0002 1 10/28/21 09:23 10/28/21 20:42</td> <td>Result Qualifier Units RL MDL Factor Prepared Analyzed Method field Lab ND mg/l 0.050 0.007 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A 0.003 J mg/l 0.005 0.002 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A 0.026 mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A 67.3 mg/l 0.050 0.009 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.010 0.003 1 10/28/21</td> <td> ND</td>	Result Qualifier Units RL MDL Factor Prepared ND mg/l 0.050 0.007 1 10/28/21 09:23 0.003 J mg/l 0.005 0.002 1 10/28/21 09:23 0.026 mg/l 0.010 0.002 1 10/28/21 09:23 ND mg/l 0.005 0.001 1 10/28/21 09:23 ND mg/l 0.005 0.001 1 10/28/21 09:23 ND mg/l 0.010 0.002 1 10/28/21 09:23 ND mg/l 0.010 0.002 1 10/28/21 09:23 67.3 mg/l 0.050 0.009 1 10/28/21 09:23 ND mg/l 0.010 0.003 1 10/28/21 09:23 ND mg/l 0.0020 0.00099 1 10/28/21 10:18 ND mg/l 0.0025 0.002 1 10/28/21 09:23 ND mg/l 0.010 0.004	Result Qualifier Units RL MDL Factor Prepared Analyzed field Lab ND mg/l 0.050 0.007 1 10/28/21 09:23 10/28/21 20:42 0.003 J mg/l 0.005 0.002 1 10/28/21 09:23 10/28/21 20:42 0.026 mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 0.004 J mg/l 0.050 0.009 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.010 0.003 1 10/28/21 09:23 10/28/21 20:42 ND mg/l 0.0025 0.0002 1 10/28/21 09:23 10/28/21 20:42	Result Qualifier Units RL MDL Factor Prepared Analyzed Method field Lab ND mg/l 0.050 0.007 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A 0.003 J mg/l 0.005 0.002 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A 0.026 mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.005 0.001 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.010 0.002 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A 67.3 mg/l 0.050 0.009 1 10/28/21 09:23 10/28/21 20:42 EPA 3005A ND mg/l 0.010 0.003 1 10/28/21	ND

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number:

L2158360

Report Date: 11/02/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01 Batch	n: WG1	563899-	1				
Antimony, Total	ND	mg/l	0.050	0.007	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Arsenic, Total	ND	mg/l	0.005	0.002	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Barium, Total	ND	mg/l	0.010	0.002	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Beryllium, Total	ND	mg/l	0.005	0.001	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Cadmium, Total	ND	mg/l	0.005	0.001	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Chromium, Total	ND	mg/l	0.010	0.002	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Copper, Total	ND	mg/l	0.010	0.002	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Iron, Total	ND	mg/l	0.050	0.009	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Lead, Total	ND	mg/l	0.010	0.003	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Nickel, Total	ND	mg/l	0.025	0.002	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Selenium, Total	ND	mg/l	0.010	0.004	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Silver, Total	ND	mg/l	0.007	0.003	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Titanium, Total	ND	mg/l	0.010	0.002	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD
Zinc, Total	ND	mg/l	0.050	0.002	1	10/28/21 09:23	10/28/21 18:53	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	nsfield Lab for sample(s):	01 Batc	h: WG15	563906-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	10/28/21 10:18	10/28/21 12:54	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number: L2158360

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1563899-2				
Antimony, Total	95	-	85-115	-		
Arsenic, Total	104	-	85-115	-		
Barium, Total	100	•	85-115	-		
Beryllium, Total	103	•	85-115	-		
Cadmium, Total	100	•	85-115	-		
Chromium, Total	98	•	85-115	-		
Copper, Total	97	•	85-115	-		
Iron, Total	95	-	85-115	-		
Lead, Total	97	-	85-115	-		
Nickel, Total	96	-	85-115	-		
Selenium, Total	103	-	85-115	-		
Silver, Total	102	-	85-115	-		
Titanium, Total	99	-	85-115	-		
Zinc, Total	99	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1563906-2				
Mercury, Total	96	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number: L2158360

arameter	Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lal	o Associated san	nple(s): 01	QC Batch	ID: WG1563899	9-3	QC Sample:	L2158480-01	Clien	t ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.480	96		-	-		75-125	-		20
Arsenic, Total	ND	0.12	0.132	110		-	-		75-125	-		20
Barium, Total	0.059	2	2.05	100		-	-		75-125	-		20
Beryllium, Total	ND	0.05	0.050	101		-	-		75-125	-		20
Cadmium, Total	ND	0.053	0.053	99		-	-		75-125	-		20
Chromium, Total	ND	0.2	0.195	98		-	-		75-125	-		20
Copper, Total	0.003J	0.25	0.247	99		-	-		75-125	-		20
Iron, Total	0.089	1	1.04	95		-	-		75-125	-		20
Lead, Total	ND	0.53	0.499	94		-	-		75-125	-		20
Nickel, Total	ND	0.5	0.471	94		-	-		75-125	-		20
Selenium, Total	ND	0.12	0.131	109		-	-		75-125	-		20
Silver, Total	ND	0.05	0.049	98		-	-		75-125	-		20
Titanium, Total	0.006J	1	1.02	102		-	-		75-125	-		20
Zinc, Total	0.026J	0.5	0.519	104		-	-		75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number: L2158360

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch I	D: WG1563899-7	QC Sample	e: L2158480-02	Client ID: MS Sa	ample	
Antimony, Total	ND	0.5	0.473	95	-	-	75-125	-	20
Arsenic, Total	ND	0.12	0.132	110	-	-	75-125	-	20
Barium, Total	0.059	2	2.06	100	-	-	75-125	-	20
Beryllium, Total	ND	0.05	0.051	103	-	-	75-125	-	20
Cadmium, Total	ND	0.053	0.053	99	-	-	75-125	-	20
Chromium, Total	ND	0.2	0.197	98	-	-	75-125	-	20
Copper, Total	0.003J	0.25	0.248	99	-	-	75-125	-	20
Iron, Total	0.385	1	1.31	92	-	-	75-125	-	20
Lead, Total	ND	0.53	0.499	94	-	-	75-125	-	20
Nickel, Total	ND	0.5	0.471	94	-	-	75-125	-	20
Selenium, Total	ND	0.12	0.129	108	-	-	75-125	-	20
Silver, Total	ND	0.05	0.050	101	-	-	75-125	-	20
Titanium, Total	0.015	1	1.03	102	-	-	75-125	-	20
Zinc, Total	0.017J	0.5	0.513	103	-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch I	D: WG1563906-3	QC Sample	e: L2158623-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00458	92	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number:

L2158360

Report Date:

11/02/21

Parameter	Native Sample Dup	licate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1563899-4	QC Sample:	L2158480-01	Client ID:	DUP Sample	
Iron, Total	0.089	0.100	mg/l	12		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1563899-8	QC Sample:	L2158480-02	Client ID:	DUP Sample	
Iron, Total	0.385	0.368	mg/l	5		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1563906-4	QC Sample:	L2158623-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

SAMPLE RESULTS

Lab ID: L2158360-01 Date Collected: 10/25/21 15:50

Client ID: SYSTEM EFFLUENT Date Received: 10/25/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Cyanide, Total	0.616		mg/l	0.010	0.003	2	10/26/21 07:30	10/26/21 13:52	121,4500CN-CE	JO
pH (H)	6.1		SU	-	NA	1	-	10/26/21 21:33	121,4500H+-B	AS
Nitrogen, Ammonia	37.7		mg/l	0.750	0.240	10	10/27/21 00:21	10/27/21 21:54	121,4500NH3-BH	I AT
Oil & Grease, Hem-Grav	3.8		mg/l	2.0	0.46	1	10/29/21 14:00	10/29/21 17:30	140,1664B	TL
Phenolics, Total	0.11		mg/l	0.030	0.016	1	10/27/21 07:28	10/27/21 11:37	4,420.1	KP
Anions by Ion Chromato	graphy - Wes	borough	Lab							
Sulfate	2000		mg/l	100	45.4	100	-	10/28/21 19:00	44,300.0	AT

Project Name: ATP PRE-TRAETMENT OM&M Lab Number: L2158360

> Method Blank Analysis Batch Quality Control

Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab for	sample(s): 01	Batch:	WG15	63004-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	10/26/21 07:30	10/26/21 13:57	121,4500CN-CE	JO
General Chemistry - West	borough Lab for	sample(s): 01	Batch:	WG15	63529-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.024	1	10/27/21 00:21	10/27/21 21:11	121,4500NH3-BH	TA H
General Chemistry - West	borough Lab for	sample(s): 01	Batch:	WG15	63633-1				
Phenolics, Total	ND	mg/l	0.030	0.016	1	10/27/21 07:28	10/27/21 10:51	4,420.1	KP
Anions by Ion Chromatogi	aphy - Westboro	ugh Lab for sar	mple(s):	01 B	atch: WG1	564599-1			
Sulfate	ND	mg/l	1.00	0.454	1	-	10/28/21 17:40	44,300.0	AT

2.0

0.46

1

10/29/21 14:00

10/29/21 17:30

General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1564960-1

ND

TL

140,1664B

Oil & Grease, Hem-Grav

Lab Control Sample Analysis Batch Quality Control

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number:

L2158360

Report Date:

11/02/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 E	Batch: WG1563004-2					
Cyanide, Total	91		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 E	Batch: WG1563529-2					
Nitrogen, Ammonia	92		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 E	Batch: WG1563530-1					
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	01 E	Batch: WG1563633-2					
Phenolics, Total	105		-		70-130	-		
Anions by Ion Chromatography - Westb	orough Lab Associated	l samp	ple(s): 01 Batch: W	G15645	99-2			
Sulfate	98		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 E	Batch: WG1564960-2)				
Oil & Grease, Hem-Grav	101		-		78-114	-		18

Matrix Spike Analysis Batch Quality Control

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number:

L2158360

Report Date: 11/02/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
General Chemistry - Westbo	rough Lab Associ	iated samp	ole(s): 01	QC Batch ID: \	WG1563	004-4	QC Sample: L21	57493-01 Clie	nt ID: MS	Sample
Cyanide, Total	0.011	0.2	0.190	89	Q	-	-	90-110	-	30
General Chemistry - Westbo	rough Lab Associ	iated samp	ole(s): 01	QC Batch ID: \	WG1563	529-4	QC Sample: L21	57305-01 Clie	nt ID: MS	Sample
Nitrogen, Ammonia	0.024J	4	3.55	89		-	-	80-120	-	20
General Chemistry - Westbo	rough Lab Associ	iated samp	ole(s): 01	QC Batch ID: \	WG1563	633-4	QC Sample: L21	58360-01 Clie	nt ID: SYS	STEM EFFLUENT
Phenolics, Total	0.11	0.4	0.42	78		-	-	70-130	-	20
Anions by Ion Chromatograp Sample	hy - Westborougl	n Lab Asso	ociated san	nple(s): 01 Q0	C Batch I	D: WG1	564599-3 QC S	Sample: L21570	051-02 Cli	ient ID: MS
Sulfate	18.6	8	26.0	92		-	-	90-110	-	20
General Chemistry - Westbo	rough Lab Associ	iated samp	ole(s): 01	QC Batch ID: \	WG15649	960-4	QC Sample: L21	53475-169 CI	ent ID: MS	Sample Sample
Oil & Grease, Hem-Grav	0.75J	38.8	36	92		-	-	78-114	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222

Lab Number:

L2158360

Report Date: 11/02/21

Parameter	Nati	ive S	ample	Duplicate Sam	nple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1563004-3	QC Sample:	L2155923-01	Client ID:	DUP Sample
Cyanide, Total		ND		0.002J	mg/	NC		30
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1563529-3	QC Sample:	L2157305-01	Client ID:	DUP Sample
Nitrogen, Ammonia		0.024	1J	0.098	mg/	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1563530-2	QC Sample:	L2158249-01	Client ID:	DUP Sample
рН		6.8		6.9	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1563633-3	QC Sample:	L2158360-01	Client ID:	SYSTEM EFFLUEN
Phenolics, Total		0.11		0.11	mg/	0		20
nions by Ion Chromatography - Westb	orough Lab Associated	d sam	nple(s): 01 C	C Batch ID: WG	1564599-4	QC Sample: L	2157051-0	2 Client ID: DUP
Sulfate		18.6	3	18.5	mg/	1		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1564960-3	QC Sample:	L2153475-168	3 Client ID	: DUP Sample
Oil & Grease, Hem-Grav		ND		ND	mg/	NC NC		18

Serial_No:11022109:57 *Lab Number:* L2158360

Project Name: ATP PRE-TRAETMENT OM&M

Project Number: T0071-021-222 Report Date: 11/02/21

YES

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2158360-01A	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(3)
L2158360-01B	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(3)
L2158360-01C	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(3)
L2158360-01D	Plastic 250ml unpreserved	Α	7	7	3.4	Υ	Absent		PH-4500(.01)
L2158360-01E	Plastic 250ml NaOH preserved	Α	>12	>12	3.4	Υ	Absent		TCN-4500(14)
L2158360-01F	Plastic 250ml HNO3 preserved	А	<2	<2	3.4	Υ	Absent		SB-UI(180),BA-UI(180),NI-UI(180),AG- UI(180),ZN-UI(180),TI-UI(180),FE-UI(180),SE- UI(180),HG-U(28),CD-UI(180),CR-UI(180),BE- UI(180),CU-UI(180),AS-UI(180),PB-UI(180)
L2158360-01G	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.4	Υ	Absent		NH3-4500(28)
L2158360-01H	Amber 950ml H2SO4 preserved	Α	<2	<2	3.4	Υ	Absent		SO4-300(28),TPHENOL-420(28)
L2158360-01I	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		NYPCB-608-2L(365)
L2158360-01J	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		NYPCB-608-2L(365)
L2158360-01K	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		PESTICIDE-608.3(7)
L2158360-01L	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		PESTICIDE-608.3(7)
L2158360-01M	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		625.1(7)
L2158360-01N	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		625.1(7)
L2158360-01O	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		NYPCB-608-2L(365)
L2158360-01P	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		NYPCB-608-2L(365)
L2158360-01Q	Amber 1000ml HCl preserved	Α	NA		3.4	Υ	Absent		NY-OG-1664-LOW(28)
L2158360-01R	Amber 1000ml HCl preserved	Α	NA		3.4	Υ	Absent		NY-OG-1664-LOW(28)

Project Name: Lab Number: ATP PRE-TRAETMENT OM&M L2158360 T0071-021-222 **Report Date: Project Number:** 11/02/21

GLOSSARY

Acronyms

LOQ

MS

RPD

STLP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples. - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:ATP PRE-TRAETMENT OM&MLab Number:L2158360Project Number:T0071-021-222Report Date:11/02/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:ATP PRE-TRAETMENT OM&MLab Number:L2158360Project Number:T0071-021-222Report Date:11/02/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:ATP PRE-TRAETMENT OM&MLab Number:L2158360Project Number:T0071-021-222Report Date:11/02/21

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:11022109:57

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	05	Page	f 1		Date in	Rec'	d (0 12	161	21		ALPHA Job# L 2 \ 5 8 3 6 0
Westborough, MA 01581	Mansfield, MA 02048	Project Information		Sasta Sa	BIL, L		Deliv	erable	S	Tiple !	dyc.		I E		Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name:	ATP Pre-trea	atment OM&	M			ASP	A			ASP.	-В		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3285	Project Location:	1951 Hambi	urg Turnpike	(-11::		EQu	IS (1 F	File)		EQu	IS (4 F	ile)	PO#
Client Information		Project #	T0071-021-2	7.5.5.5			V	Othe	r						
Client: Benchma	rk Environmental	(Use Project name as F	Project #)				Regu	ulatory	Requ	iireme	nt			Park :	Disposal Site Information
Address: 2558 Ham	burg Turnpike,Ste300	Project Manager:	Candace Fo	x				NY T	OGS			NY P	art 375		Please identify below location of
Buffalo, NY 14218		ALPHAQuote #:] AWQ	Stand	ards		NYC	P-51		applicable disposal facilities.
Phone: 716-856-0	599	Turn-Around Time						NYR	estricte	ed Use	4	Other	33		Disposal Facility:
Fax:		Standa	rd 🗌	Due Date	9:			NYU	nrestric	cted Us	e				□ NJ □ NY
Email: 05 Morbes@t	oenchmarkturnkey.com	Rush (only if pre approve	d)	# of Days	S:			NYC	Sewer	Discha	rge				Other: NA
These samples have	been previously analyze	ed by Alpha					ANA	LYSIS	3				w.	-	Sample Filtration o
	c requirements/comm a,Be,Cd,Cr,Cu,Fe,Pb,F		P	CB has an R	RL of 65 ppt		PP List	Metals, Total	Ammonia	PEST/PCB/625 PP Li	Phenolics (+12P)	0&G	Cyanide	pH,Sulfate	☐ Done ☐ Lab to do Preservation ☐ Lab to do
riease specify metal	3 OF TALL						624 P	Metals	Amn	EST/P	Pher	ŏ	Cya	pH,S	(Please Specify below)
ALPHA Lab ID	Sa	mple ID	Coll	ection	Sample	Sampler's	1						1		Sample Specific Comments
(Lab Use Only)			Date	Time	Matrix	Initials	_	-	-	809		-	\vdash	-	Sample Specific Comments
58360-01	System Effluent		10-25-21	1550	Water	Bure	x	х	×	×	×	x	×	×	11
							-	+	-	+	-	+-	+	+	-
							-	+	-	+	-	+	+	+	-
				-			\vdash	+	-	-	+	-	+	+	
				-	-	-	\vdash	+	+	+	+	+-	+	+	
Mind the state of				-			\vdash	+-	+-	4	+	+	+	+	
			1	-	-	-	-	+	+	+	+	+-	+	+	
							\vdash	+	+	+	+	+	+	+	
							-	+	+	+	+	+	+	+	
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification Mansfield: Certification				ntainer Type Preservative	ľ	Р	Р	A	A	A	Р	Р	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will no
E = NaOH	B = Bacteria Cup C = Cube			_		_	H	C	D	Н	D	B	E	A	start until any ambiguities are
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	O = Other E = Encore D = BOD Bottle	Relinquished By: Date Brock Green 10-25 21		1630	39	Rece	A)	K	1	10/	-		00	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.	
Form No: 01-25 (rev. 30-5	Sent-2013)														

ATTACHMENT 2

Flow Meter Calibration Certificate

Cold Spring Environmental

3248 Buffalo Rd., Varysburg, N.Y. 14167

Ph: 716-863-7052

May 13, 2021

Ref: Flow Meter Calibration

Dear Mr. Greene

Calibration Date: May 12, 2021

Site location: Pretreatment Building

Equipment Model:Signet GF 8550

Equipment type: Closed Pipe impellor

Equipment S/N: 61009161010 Measuring device: 2 inch pipe

Output type: none

Totalizer multiplier: 1 gallon

Initial Readings:

Meter Flow Rate 4.5 GPM

Totalizer 11 gallons Water meter 10 gallons

Difference 11%

After Adjustment:

Readings:

Meter Flow Rate 4.5 GPM

Totalizer 10 gallons Water meter 10 gallons

Difference 0%

Readings:

Meter Flow Rate 2.2 GPM

Totalizer 10 gallons Water meter 10 gallons

Difference 0%

Please contact me with any questions.

Sincerely, Jon Wolak

716-863-7052

jonwolak@yahoo.com

ATTACHMENT 2

GROUNDWATER MONITORING LABORATORY ANALYTICAL DATA PACKAGE

ANALYTICAL REPORT

Lab Number: L2121696

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Tom Forbes
Phone: (716) 856-0599

Project Name: ATP GWS

Project Number: T0071-020-222

Report Date: 05/06/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696 **Report Date:** 05/06/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2121696-01	MWS-02	WATER	1951 HAMBURG TURNPIKE	04/27/21 16:30	04/28/21
L2121696-02	MWS-18A	WATER	1951 HAMBURG TURNPIKE	04/27/21 15:00	04/28/21
L2121696-03	MWS-18C	WATER	1951 HAMBURG TURNPIKE	04/27/21 15:30	04/28/21
L2121696-04	MWS-19A	WATER	1951 HAMBURG TURNPIKE	04/27/21 14:40	04/28/21
L2121696-05	MWS-19B	WATER	1951 HAMBURG TURNPIKE	04/27/21 14:00	04/28/21
L2121696-06	MWS-20A	WATER	1951 HAMBURG TURNPIKE	04/27/21 10:00	04/28/21
L2121696-07	MWS-20B	WATER	1951 HAMBURG TURNPIKE	04/27/21 10:45	04/28/21

Project Name:ATP GWSLab Number:L2121696Project Number:T0071-020-222Report Date:05/06/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:ATP GWSLab Number:L2121696Project Number:T0071-020-222Report Date:05/06/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2121696-04: The collection date and time on the chain of custody was 27-APR-21 14:00; however, the collection date/time on the container label was 27-APR-21 14:40. At the client's request, the collection date/time is reported as 27-APR-21 14:40.

L2121696-05: The collection date and time on the chain of custody was 27-APR-21 14:40; however, the collection date/time on the container label was 27-APR-21 14:00. At the client's request, the collection date/time is reported as 27-APR-21 14:00.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kun L. Winter Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 05/06/21

ORGANICS

VOLATILES

L2121696

04/27/21 16:30

Not Specified

04/28/21

Project Name: ATP GWS

Project Number: T0071-020-222

SAMPLE RESULTS

Report Date: 05/06/21

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2121696-01

Client ID: MWS-02

Sample Location: 1951 HAMBURG TURNPIKE

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/04/21 00:20

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-01 Date Collected: 04/27/21 16:30

Client ID: MWS-02 Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	82	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	99	70-130	

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-02 D2 Date Collected: 04/27/21 15:00

Client ID: MWS-18A Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/05/21 00:04

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	.ab					
Benzene	4100		ug/l	50	16.	100
Surrogate			% Recovery	Qualifier		otance teria

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	101		70-130
Toluene-d8	113		70-130
4-Bromofluorobenzene	87		70-130
Dibromofluoromethane	107		70-130

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-02 D Date Collected: 04/27/21 15:00

Client ID: MWS-18A Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/04/21 01:44

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	50	14.	20	
1,1-Dichloroethane	ND		ug/l	50	14.	20	
Chloroform	ND		ug/l	50	14.	20	
Carbon tetrachloride	ND		ug/l	10	2.7	20	
1,2-Dichloropropane	ND		ug/l	20	2.7	20	
Dibromochloromethane	ND		ug/l	10	3.0	20	
1,1,2-Trichloroethane	ND		ug/l	30	10.	20	
Tetrachloroethene	ND		ug/l	10	3.6	20	
Chlorobenzene	ND		ug/l	50	14.	20	
Trichlorofluoromethane	ND		ug/l	50	14.	20	
1,2-Dichloroethane	ND		ug/l	10	2.6	20	
1,1,1-Trichloroethane	ND		ug/l	50	14.	20	
Bromodichloromethane	ND		ug/l	10	3.8	20	
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20	
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20	
Bromoform	ND		ug/l	40	13.	20	
1,1,2,2-Tetrachloroethane	ND		ug/l	10	3.3	20	
Benzene	4500	Е	ug/l	10	3.2	20	
Toluene	ND		ug/l	50	14.	20	
Ethylbenzene	ND		ug/l	50	14.	20	
Chloromethane	ND		ug/l	50	14.	20	
Bromomethane	ND		ug/l	50	14.	20	
Vinyl chloride	ND		ug/l	20	1.4	20	
Chloroethane	ND		ug/l	50	14.	20	
1,1-Dichloroethene	ND		ug/l	10	3.4	20	
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20	
Trichloroethene	ND		ug/l	10	3.5	20	
1,2-Dichlorobenzene	ND		ug/l	50	14.	20	

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: D Date Collected: 04/27/21 15:00 L2121696-02

Client ID: Date Received: 04/28/21 MWS-18A

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	50	14.	20
1,4-Dichlorobenzene	ND		ug/l	50	14.	20
Methyl tert butyl ether	ND		ug/l	50	14.	20
p/m-Xylene	ND		ug/l	50	14.	20
o-Xylene	ND		ug/l	50	14.	20
cis-1,2-Dichloroethene	ND		ug/l	50	14.	20
Styrene	ND		ug/l	50	14.	20
Dichlorodifluoromethane	ND		ug/l	100	20.	20
Acetone	ND		ug/l	100	29.	20
Carbon disulfide	ND		ug/l	100	20.	20
2-Butanone	ND		ug/l	100	39.	20
4-Methyl-2-pentanone	ND		ug/l	100	20.	20
2-Hexanone	ND		ug/l	100	20.	20
Bromochloromethane	ND		ug/l	50	14.	20
1,2-Dibromoethane	ND		ug/l	40	13.	20
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20
Isopropylbenzene	ND		ug/l	50	14.	20
1,2,3-Trichlorobenzene	ND		ug/l	50	14.	20
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20
Methyl Acetate	ND		ug/l	40	4.7	20
Cyclohexane	ND		ug/l	200	5.4	20
1,4-Dioxane	ND		ug/l	5000	1200	20
Freon-113	ND		ug/l	50	14.	20
Methyl cyclohexane	ND		ug/l	200	7.9	20

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	76	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	89	70-130	

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-03 D Date Collected: 04/27/21 15:30

Client ID: MWS-18C Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/04/21 02:05

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	1600		ug/l	5.0	1.6	10
Toluene	57		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-03 D Date Collected: 04/27/21 15:30

Client ID: MWS-18C Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	54		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	17	J	ug/l	50	15.	10
Carbon disulfide	260		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	ND		ug/l	100	2.7	10
1,4-Dioxane	ND		ug/l	2500	610	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	80	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	93	70-130	

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-04 D Date Collected: 04/27/21 14:40

Client ID: MWS-19A Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/04/21 02:26

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2	
Chloroform	ND		ug/l	5.0	1.4	2	
Carbon tetrachloride	ND		ug/l	1.0	0.27	2	
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2	
Dibromochloromethane	ND		ug/l	1.0	0.30	2	
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2	
Tetrachloroethene	ND		ug/l	1.0	0.36	2	
Chlorobenzene	ND		ug/l	5.0	1.4	2	
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2	
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2	
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2	
Bromodichloromethane	ND		ug/l	1.0	0.38	2	
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2	
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2	
Bromoform	ND		ug/l	4.0	1.3	2	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2	
Benzene	190		ug/l	1.0	0.32	2	
Toluene	ND		ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Chloromethane	ND		ug/l	5.0	1.4	2	
Bromomethane	ND		ug/l	5.0	1.4	2	
Vinyl chloride	0.86	J	ug/l	2.0	0.14	2	
Chloroethane	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2	
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2	
Trichloroethene	ND		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2	

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: D Date Collected: 04/27/21 14:40 L2121696-04

Client ID: Date Received: 04/28/21 MWS-19A Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westk	oorough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	1.8	J	ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	2.1	J	ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	79	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	92	70-130	

04/27/21 14:00

Not Specified

04/28/21

Project Name: ATP GWS

Project Number: T0071-020-222

SAMPLE RESULTS

Lab Number: L2121696

Report Date: 05/06/21

Date Collected:

Date Received:

Field Prep:

Lab ID: L2121696-05

Client ID: MWS-19B

Sample Location: 1951 HAMBURG TURNPIKE

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/04/21 00:40

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	150		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/27/21 14:00 L2121696-05

Client ID: Date Received: 04/28/21 MWS-19B

Field Prep: Sample Location: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.35	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	79		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	87		70-130	

L2121696

04/27/21 10:00

Not Specified

04/28/21

Project Name: ATP GWS

Project Number: T0071-020-222

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 05/06/21

Lab ID: L2121696-06

Client ID: MWS-20A

Sample Location: 1951 HAMBURG TURNPIKE

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/04/21 01:02

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.37	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-06 Date Collected: 04/27/21 10:00

Client ID: MWS-20A Date Received: 04/28/21

Result

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

i didilictoi					2	
Volatile Organics by GC/MS - Westbe	orough Lab					
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1	
p/m-Xylene	ND	ug/l	2.5	0.70	1	
o-Xylene	ND	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	
Styrene	ND	ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1	
Acetone	ND	ug/l	5.0	1.5	1	
Carbon disulfide	ND	ug/l	5.0	1.0	1	
2-Butanone	ND	ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1	
2-Hexanone	ND	ug/l	5.0	1.0	1	
Bromochloromethane	ND	ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1	
Isopropylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl Acetate	ND	ug/l	2.0	0.23	1	
Cyclohexane	ND	ug/l	10	0.27	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
Freon-113	ND	ug/l	2.5	0.70	1	
Methyl cyclohexane	ND	ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	81	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	95	70-130	

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-07 Date Collected: 04/27/21 10:45

Client ID: MWS-20B Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/04/21 01:23

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	1.6		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.35	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/27/21 10:45 L2121696-07

Date Received: 04/28/21 Client ID: MWS-20B

Result

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

i didilictoi					2	
Volatile Organics by GC/MS - Westbe	orough Lab					
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1	
p/m-Xylene	ND	ug/l	2.5	0.70	1	
o-Xylene	ND	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	
Styrene	ND	ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1	
Acetone	ND	ug/l	5.0	1.5	1	
Carbon disulfide	ND	ug/l	5.0	1.0	1	
2-Butanone	ND	ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1	
2-Hexanone	ND	ug/l	5.0	1.0	1	
Bromochloromethane	ND	ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1	
Isopropylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl Acetate	ND	ug/l	2.0	0.23	1	
Cyclohexane	ND	ug/l	10	0.27	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
Freon-113	ND	ug/l	2.5	0.70	1	
Methyl cyclohexane	ND	ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	84	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	97	70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/03/21 19:18

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-07 Batch:	WG1494246-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/03/21 19:18

Analyst: AJK

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS - West	oorough Lab	for sample(s):	01-07	Batch:	WG1494246-5
1,4-Dichlorobenzene	ND	ug	/I	2.5	0.70
Methyl tert butyl ether	ND	ug	/I	2.5	0.70
p/m-Xylene	ND	ug	/I	2.5	0.70
o-Xylene	ND	ug	/I	2.5	0.70
cis-1,2-Dichloroethene	ND	ug	/I	2.5	0.70
Styrene	ND	ug	/I	2.5	0.70
Dichlorodifluoromethane	ND	ug	/I	5.0	1.0
Acetone	ND	ug	/I	5.0	1.5
Carbon disulfide	ND	ug	/I	5.0	1.0
2-Butanone	ND	ug	/I	5.0	1.9
4-Methyl-2-pentanone	ND	ug	/I	5.0	1.0
2-Hexanone	ND	ug	/I	5.0	1.0
Bromochloromethane	ND	ug	/I	2.5	0.70
1,2-Dibromoethane	ND	ug	/I	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug	/I	2.5	0.70
Isopropylbenzene	ND	ug	/I	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug	/I	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug	/I	2.5	0.70
Methyl Acetate	ND	ug	/I	2.0	0.23
Cyclohexane	ND	ug	/I	10	0.27
1,4-Dioxane	ND	ug	/I	250	61.
Freon-113	ND	ug	/I	2.5	0.70
Methyl cyclohexane	ND	ug	/I	10	0.40

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/03/21 19:18

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-07 Batch: WG1494246-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 77 70-130 Toluene-d8 92 70-130 4-Bromofluorobenzene 102 70-130 Dibromofluoromethane 92 70-130

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/04/21 17:48

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02 Batch:	WG1494635-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/04/21 17:48

Analyst: LAC

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	stborough Lab	for sample(s): 02	Batch:	WG1494635-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/04/21 17:48

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1494635-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 104 70-130 Toluene-d8 110 70-130 4-Bromofluorobenzene 70-130 93 Dibromofluoromethane 103 70-130

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch: W0	G1494246-3 WG1494246-4		
Methylene chloride	82		84	70-130	2	20
1,1-Dichloroethane	89		96	70-130	8	20
Chloroform	83		84	70-130	1	20
Carbon tetrachloride	78		79	63-132	1	20
1,2-Dichloropropane	96		99	70-130	3	20
Dibromochloromethane	78		80	63-130	3	20
1,1,2-Trichloroethane	87		93	70-130	7	20
Tetrachloroethene	83		82	70-130	1	20
Chlorobenzene	97		100	75-130	3	20
Trichlorofluoromethane	82		85	62-150	4	20
1,2-Dichloroethane	76		80	70-130	5	20
1,1,1-Trichloroethane	81		86	67-130	6	20
Bromodichloromethane	80		83	67-130	4	20
trans-1,3-Dichloropropene	80		90	70-130	12	20
cis-1,3-Dichloropropene	80		85	70-130	6	20
Bromoform	72		82	54-136	13	20
1,1,2,2-Tetrachloroethane	90		100	67-130	11	20
Benzene	99		100	70-130	1	20
Toluene	90		94	70-130	4	20
Ethylbenzene	98		99	70-130	1	20
Chloromethane	97		96	64-130	1	20
Bromomethane	61		68	39-139	11	20
Vinyl chloride	93		91	55-140	2	20

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch: WG	G1494246-3 WG1494246-4		
Chloroethane	110		120	55-138	9	20
1,1-Dichloroethene	92		99	61-145	7	20
trans-1,2-Dichloroethene	96		93	70-130	3	20
Trichloroethene	91		93	70-130	2	20
1,2-Dichlorobenzene	94		98	70-130	4	20
1,3-Dichlorobenzene	99		98	70-130	1	20
1,4-Dichlorobenzene	97		100	70-130	3	20
Methyl tert butyl ether	75		83	63-130	10	20
p/m-Xylene	105		110	70-130	5	20
o-Xylene	100		110	70-130	10	20
cis-1,2-Dichloroethene	92		96	70-130	4	20
Styrene	105		110	70-130	5	20
Dichlorodifluoromethane	63		63	36-147	0	20
Acetone	87		94	58-148	8	20
Carbon disulfide	93		91	51-130	2	20
2-Butanone	100		96	63-138	4	20
4-Methyl-2-pentanone	83		87	59-130	5	20
2-Hexanone	87		100	57-130	14	20
Bromochloromethane	83		85	70-130	2	20
1,2-Dibromoethane	86		94	70-130	9	20
1,2-Dibromo-3-chloropropane	64		77	41-144	18	20
Isopropylbenzene	110		110	70-130	0	20
1,2,3-Trichlorobenzene	85		88	70-130	3	20

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number:

L2121696

Report Date:

05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	•			WG1494246-3		TO D	<u> </u>		
1,2,4-Trichlorobenzene	85	(a).	93	11011012100	70-130	9		20	
Methyl Acetate	93		100		70-130	7		20	
Cyclohexane	99		100		70-130	1		20	
1,4-Dioxane	80		88		56-162	10		20	
Freon-113	94		93		70-130	1		20	
Methyl cyclohexane	89		98		70-130	10		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	79	82	70-130
Toluene-d8	96	95	70-130
4-Bromofluorobenzene	99	102	70-130
Dibromofluoromethane	92	95	70-130

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	2 Batch: WG1	494635-3	WG1494635-4		
Methylene chloride	93		91		70-130	2	20
1,1-Dichloroethane	96		94		70-130	2	20
Chloroform	97		96		70-130	1	20
Carbon tetrachloride	81		83		63-132	2	20
1,2-Dichloropropane	120		120		70-130	0	20
Dibromochloromethane	91		100		63-130	9	20
1,1,2-Trichloroethane	110		110		70-130	0	20
Tetrachloroethene	120		120		70-130	0	20
Chlorobenzene	110		110		75-130	0	20
Trichlorofluoromethane	81		78		62-150	4	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	94		92		67-130	2	20
Bromodichloromethane	87		87		67-130	0	20
trans-1,3-Dichloropropene	88		96		70-130	9	20
cis-1,3-Dichloropropene	91		90		70-130	1	20
Bromoform	86		94		54-136	9	20
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20
Benzene	100		100		70-130	0	20
Toluene	120		110		70-130	9	20
Ethylbenzene	110		110		70-130	0	20
Chloromethane	69		68		64-130	1	20
Bromomethane	110		110		39-139	0	20
Vinyl chloride	120		110		55-140	9	20

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	n Lab Associated	sample(s): (02 Batch: WG1	1494635-3	WG1494635-4			
Chloroethane	93		94		55-138	1	20	
1,1-Dichloroethene	92		90		61-145	2	20	
trans-1,2-Dichloroethene	95		95		70-130	0	20	
Trichloroethene	100		100		70-130	0	20	
1,2-Dichlorobenzene	100		110		70-130	10	20	
1,3-Dichlorobenzene	100		110		70-130	10	20	
1,4-Dichlorobenzene	100		110		70-130	10	20	
Methyl tert butyl ether	83		83		63-130	0	20	
p/m-Xylene	105		105		70-130	0	20	
o-Xylene	105		105		70-130	0	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Styrene	105		105		70-130	0	20	
Dichlorodifluoromethane	80		77		36-147	4	20	
Acetone	89		95		58-148	7	20	
Carbon disulfide	84		85		51-130	1	20	
2-Butanone	110		110		63-138	0	20	
4-Methyl-2-pentanone	130		140	Q	59-130	7	20	
2-Hexanone	110		120		57-130	9	20	
Bromochloromethane	110		110		70-130	0	20	
1,2-Dibromoethane	100		110		70-130	10	20	
1,2-Dibromo-3-chloropropane	88		100		41-144	13	20	
Isopropylbenzene	93		94		70-130	1	20	
1,2,3-Trichlorobenzene	110		110		70-130	0	20	

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number:

L2121696

Report Date:

05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	•				WG1494635-4	10.2			
1,2,4-Trichlorobenzene	110	,	110		70-130	0		20	
Methyl Acetate	87		90		70-130	3		20	
Cyclohexane	120		120		70-130	0		20	
1,4-Dioxane	110		114		56-162	4		20	
Freon-113	89		86		70-130	3		20	
Methyl cyclohexane	98		99		70-130	1		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	97	70-130
Toluene-d8	110	111	70-130
4-Bromofluorobenzene	88	91	70-130
Dibromofluoromethane	101	101	70-130

SEMIVOLATILES

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-01 Date Collected: 04/27/21 16:30

Client ID: MWS-02 Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/03/21 08:17

Analytical Method: 1,8270D Extraction Date: 05/03/21 08:17
Analytical Date: 05/04/21 04:35

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	1.6	J	ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	
Dibenzofuran	ND		ug/l	2.0	0.50	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1	
Acetophenone	ND		ug/l	5.0	0.53	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1	

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/27/21 16:30 L2121696-01

Client ID: Date Received: 04/28/21 MWS-02

Field Prep: Sample Location: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	34	10-120
Nitrobenzene-d5	58	23-120
2-Fluorobiphenyl	64	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	63	41-149

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-01 Date Collected: 04/27/21 16:30

Client ID: MWS-02 Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/03/21 08:19
Analytical Date: 05/05/21 21:00

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	0.02	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.03	J	ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	0.08	J	ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	0.04	J	ug/l	0.10	0.01	1
Anthracene	0.03	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	0.06	J	ug/l	0.10	0.01	1
Phenanthrene	0.05	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	0.03	J	ug/l	0.10	0.02	1
2-Methylnaphthalene	0.03	J	ug/l	0.10	0.02	1
Pentachlorophenol	0.35	J	ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-01 Date Collected: 04/27/21 16:30

Client ID: MWS-02 Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	65		21-120
Phenol-d6	53		10-120
Nitrobenzene-d5	83		23-120
2-Fluorobiphenyl	89		15-120
2,4,6-Tribromophenol	123	Q	10-120
4-Terphenyl-d14	114		41-149

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-02 Date Collected: 04/27/21 15:00

Client ID: MWS-18A Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/03/21 08:17

Analytical Method: 1,8270D Extraction Date: 05/03/21 08:17
Analytical Date: 05/04/21 04:57

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbook	rough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	2.4	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	0.54	J	ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-02 Date Collected: 04/27/21 15:00

Client ID: Date Received: 04/28/21 MWS-18A

Sample Location: Field Prep: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	0.89	J	ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	65		21-120	
Phenol-d6	51		10-120	
Nitrobenzene-d5	83		23-120	
2-Fluorobiphenyl	84		15-120	
2,4,6-Tribromophenol	130	Q	10-120	
4-Terphenyl-d14	96		41-149	

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-02 Date Collected: 04/27/21 15:00

Client ID: MWS-18A Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/03/21 08:19
Analytical Date: 05/05/21 21:20

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - W	estborough La	ab				
Acenaphthene	0.18		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.04	J	ug/l	0.10	0.02	1
		J				
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	3.8		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	0.09	J	ug/l	0.10	0.01	1
Anthracene	0.05	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.01	J	ug/l	0.10	0.01	1
Fluorene	0.05	J	ug/l	0.10	0.01	1
Phenanthrene	0.16		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.02	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1
Pyrene	0.03	J	ug/l	0.10	0.02	1
2-Methylnaphthalene	0.41		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-02 Date Collected: 04/27/21 15:00

Client ID: MWS-18A Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	68		21-120
Phenol-d6	58		10-120
Nitrobenzene-d5	88		23-120
2-Fluorobiphenyl	91		15-120
2,4,6-Tribromophenol	142	Q	10-120
4-Terphenyl-d14	116		41-149

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-03 Date Collected: 04/27/21 15:30

Client ID: MWS-18C Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/03/21 08:17

Analytical Method: 1,8270D Extraction Date: 05/03/21 08:17
Analytical Date: 05/04/21 06:06

Analyst: JG

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3,3 - Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4 - Dinitrotoluene ND ug/l 5.0 1.2 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.93 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorosethoxy)methane ND ug/l 5.0 0.50 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadlene ND ug/l 5.0 0.59 1 Isophorone ND ug/l 5.0 0.59 1 NItrobenzene ND ug/l 5.0 0.42 1 NItrobenzene ND ug/l 5.0 0.44 1 n-Nitrobenzene ND ug/l 5.0 0.44 1 Isicz-ethylhexyl)phthalate ND ug/l	Semivolatile Organics by GC/MS - W	estborough Lab					
2,4 - Dinitrotoluene ND ug/l 5.0 1.2 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.93 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorosporpyl)ether ND ug/l 2.0 0.53 1 Bis(2-chlorosthoxyl)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 NItrobenzane ND ug/l 5.0 0.42 1 NItrobenzane ND ug/l 5.0 0.64 1 ND-Patrylphenylphthalate ND ug/l 5.0 0.64 1 Bis(2-chloraphylphthalate ND ug/l 5.0 </td <td>Bis(2-chloroethyl)ether</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.0</td> <td>0.50</td> <td>1</td>	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorospropylether ND ug/l 2.0 0.53 1 Bis(2-chlorosthoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Isophorone ND ug/l 5.0 0.50 1 NItrobenzene ND ug/l 5.0 0.77 1 NDPA/DPA ND ug/l 5.0 0.64 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-chlyflexyl)phthalate 3.3 ug/l 5.0 0.64 1 Bis(2-chlyflexyl)phthalate ND ug/l 5.0 0.53 1 Di-n-butylphthalate ND ug/l 5.0	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.60 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 3.3 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 5.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 3.3 Ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroisopropyl)ether ND Ug/l 2.0 0.53 1	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane ND Ug/l 5.0 0.50 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND ug/l 20 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 3.3 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 Eighenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Sophorone ND Ug/l 5.0 1.2 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 3.3 ug/l 3.0 1.5 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 3.3 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.80 <td< td=""><td>Isophorone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.2</td><td>1</td></td<>	Isophorone	ND		ug/l	5.0	1.2	1
ND Ug/l 5.0 0.64 1	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate 3.3 ug/l 3.0 1.5 1	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND ug/l 5.0 1.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate 0.48 J ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone 23. ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	3.3		ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate 0.48 J ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23 ug/l 5.0 0.53 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate 0.48 J ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23. ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23 ug/l 5.0 0.53 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23 ug/l 5.0 0.53 1	Diethyl phthalate	0.48	J	ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23 ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23. ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23. ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23. ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23. ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone 23. ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone 23. ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	23.		ug/l	5.0	0.53	1
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-03 Date Collected: 04/27/21 15:30

Client ID: Date Received: 04/28/21 MWS-18C

Sample Location: Field Prep: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	13.		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	50.		ug/l	5.0	0.57	1
2-Methylphenol	5.4		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	25.		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	76		21-120	
Phenol-d6	62		10-120	
Nitrobenzene-d5	101		23-120	
2-Fluorobiphenyl	97		15-120	
2,4,6-Tribromophenol	157	Q	10-120	
4-Terphenyl-d14	114		41-149	

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-03 Date Collected: 04/27/21 15:30

Client ID: MWS-18C Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/03/21 08:19
Analytical Date: 05/05/21 21:39

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	0.04	J	ua/l	0.10	0.01	1				
·		J	ug/l							
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1				
Fluoranthene	0.05	J	ug/l	0.10	0.02	1				
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1				
Naphthalene	0.89		ug/l	0.10	0.05	1				
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1				
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1				
Chrysene	ND		ug/l	0.10	0.01	1				
Acenaphthylene	ND		ug/l	0.10	0.01	1				
Anthracene	0.08	J	ug/l	0.10	0.01	1				
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1				
Fluorene	0.05	J	ug/l	0.10	0.01	1				
Phenanthrene	0.06	J	ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1				
Pyrene	0.04	J	ug/l	0.10	0.02	1				
2-Methylnaphthalene	0.21		ug/l	0.10	0.02	1				
Pentachlorophenol	ND		ug/l	0.80	0.01	1				
Hexachlorobenzene	ND		ug/l	0.80	0.01	1				
Hexachloroethane	ND		ug/l	0.80	0.06	1				

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: Date Collected: L2121696-03 04/27/21 15:30

Date Received: Client ID: 04/28/21 MWS-18C Sample Location: Field Prep: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	75		21-120
Phenol-d6	65		10-120
Nitrobenzene-d5	104		23-120
2-Fluorobiphenyl	99		15-120
2,4,6-Tribromophenol	168	Q	10-120
4-Terphenyl-d14	132		41-149

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-04 Date Collected: 04/27/21 14:40

Client ID: MWS-19A Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/03/21 08:17

Analytical Method: 1,8270D Extraction Date: 05/03/21 08:17

Analytical Date: 05/04/21 08:22

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	2.3	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	1.9	J	ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-04 Date Collected: 04/27/21 14:40

Client ID: Date Received: 04/28/21 MWS-19A

Field Prep: Sample Location: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	56	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	104	10-120
4-Terphenyl-d14	74	41-149

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-04 Date Collected: 04/27/21 14:40

Client ID: MWS-19A Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/03/21 08:19
Analytical Date: 05/06/21 04:10

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	0.26		ug/l	0.10	0.01	1				
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1				
Fluoranthene	2.2		ug/l	0.10	0.02	1				
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1				
Naphthalene	0.35		ug/l	0.10	0.05	1				
Benzo(a)anthracene	1.4		ug/l	0.10	0.02	1				
Benzo(a)pyrene	1.2		ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	1.7		ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	0.50		ug/l	0.10	0.01	1				
Chrysene	1.2		ug/l	0.10	0.01	1				
Acenaphthylene	0.12		ug/l	0.10	0.01	1				
Anthracene	0.48		ug/l	0.10	0.01	1				
Benzo(ghi)perylene	0.70		ug/l	0.10	0.01	1				
Fluorene	1.2		ug/l	0.10	0.01	1				
Phenanthrene	1.3		ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	0.26		ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	0.84		ug/l	0.10	0.01	1				
Pyrene	1.7		ug/l	0.10	0.02	1				
2-Methylnaphthalene	0.26		ug/l	0.10	0.02	1				
Pentachlorophenol	ND		ug/l	0.80	0.01	1				
Hexachlorobenzene	ND		ug/l	0.80	0.01	1				
Hexachloroethane	ND		ug/l	0.80	0.06	1				

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-04 Date Collected: 04/27/21 14:40

Client ID: MWS-19A Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	81		21-120
Phenol-d6	67		10-120
Nitrobenzene-d5	114		23-120
2-Fluorobiphenyl	105		15-120
2,4,6-Tribromophenol	168	Q	10-120
4-Terphenyl-d14	131		41-149

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-05 Date Collected: 04/27/21 14:00

Client ID: MWS-19B Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/03/21 08:17

Analytical Method: 1,8270D Extraction Date: 05/03/21 08:17

Analytical Date: 05/04/21 05:20

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	2.0	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	1.2	J	ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: Date Collected: 04/27/21 14:00

Client ID: MWS-19B Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	3.3	J	ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	0.69	J	ug/l	5.0	0.57	1
2-Methylphenol	0.66	J	ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	2.9	J	ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	69		21-120	
Phenol-d6	53		10-120	
Nitrobenzene-d5	98		23-120	
2-Fluorobiphenyl	94		15-120	
2,4,6-Tribromophenol	141	Q	10-120	
4-Terphenyl-d14	106		41-149	

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/27/21 14:00 L2121696-05

Client ID: Date Received: 04/28/21 MWS-19B Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 05/03/21 08:19 Analytical Method: 1,8270D-SIM Analytical Date:

Analyst: DV

05/05/21 21:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	Vestborough La	ab				
Acenaphthene	0.08	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	0.02	J	ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	0.42		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND			0.10	0.03	1
	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene			ug/l			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	0.05	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	0.14		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	0.12		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-05 Date Collected: 04/27/21 14:00

Client ID: MWS-19B Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	78		21-120
Phenol-d6	66		10-120
Nitrobenzene-d5	113		23-120
2-Fluorobiphenyl	104		15-120
2,4,6-Tribromophenol	168	Q	10-120
4-Terphenyl-d14	129		41-149

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-06 Date Collected: 04/27/21 10:00

Client ID: MWS-20A Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/02/21 14:34

Analytical Method: 1,8270D Extraction Date: 05/02/21 14:34
Analytical Date: 05/04/21 02:44

Analyst: JG

Semivolatile Organics by GC/MS - Westbor Bis(2-chloroethyl)ether 3,3'-Dichlorobenzidine	ND ND ND		ug/l	2.2		
3,3'-Dichlorobenzidine	ND		ug/l	0.0		
·				2.0	0.50	1
	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	1.9	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/27/21 10:00 L2121696-06

Date Received: 04/28/21 Client ID: MWS-20A

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	oorough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	21-120
Phenol-d6	52	10-120
Nitrobenzene-d5	90	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	74	10-120
4-Terphenyl-d14	77	41-149

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-06 Date Collected: 04/27/21 10:00

Client ID: MWS-20A Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

05/06/21 11:53

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/02/21 14:36

Analyst: DV

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	ND		ug/l	0.10	0.05	1			
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	ND		ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	0.02	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	ND		ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	0.02	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/27/21 10:00 L2121696-06

Date Received: 04/28/21 Client ID: MWS-20A

Sample Location: Field Prep: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	39	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	49	23-120
2-Fluorobiphenyl	64	15-120
2,4,6-Tribromophenol	58	10-120
4-Terphenyl-d14	72	41-149

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-07 Date Collected: 04/27/21 10:45

Client ID: MWS-20B Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/03/21 08:17

Analytical Method: 1,8270D Extraction Date: 05/03/21 08:17
Analytical Date: 05/04/21 05:43

Analyst: JG

3,3 - Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4 - Dinitrotoluene ND ug/l 5.0 1.2 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.93 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorosthosy)methane ND ug/l 5.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadlene ND ug/l 5.0 0.59 1 Hexachlorocyclopentadlene ND ug/l 5.0 0.69 1 Nitrobenzarene ND ug/l 5.0 0.69 1 NItrobenzarene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3,3 - Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4 - Dinitrotoluene ND ug/l 5.0 1.2 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.93 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorosthosy)methane ND ug/l 5.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadlene ND ug/l 5.0 0.59 1 Hexachlorocyclopentadlene ND ug/l 5.0 0.69 1 Nitrobenzarene ND ug/l 5.0 0.69 1 NItrobenzarene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l	Semivolatile Organics by GC/MS - We	estborough Lab					
2,4-Dinitrotoluene ND ug/l 5.0 1.2 1 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Ekromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.59 1 Isophorone ND ug/l 5.0 0.59 1 Isophorone ND ug/l 5.0 0.59 1 Isophorone ND ug/l 5.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
ND	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Horden ND ug/l 5.0 0.69 1 Horden ND ug/l 5.0 0.77 1 NItrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 5.0 0.64 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
A-Bromophenyl phenyl ether ND	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Isophorone ND ug/l 2.0 0.77 1 Isophorone ND ug/l 2.0 0.77 1 NItrobenzene ND ug/l 2.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-chly/lexy/l)phthalate 1.9 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-otylphthalate ND ug/l 5.0 0.38 1 Di-n-otylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.46 1 Bis(2-chlorosaniline ND ug/l 5.0 0.86 1 4-Chlorosaniline ND ug/l 5.0 0.50 1 4-Nitrosaniline ND ug/l 5.0 0.80 1 4-Nitrosaniline ND ug/l 5.0 0.50 1 4-Nitrosaniline ND ug/l 5.0 0.80 1 4-Nitrosaniline ND ug/l 5.0 0.50 1	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis (2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 20 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Dien-butylphthalate ND	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND Ug/l 20 0.69 1 1 1 1 1 1 1 1 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Suphorone ND Ug/l 5.0 1.2 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.1 1 1 2-Nitroaniline ND ug/l 5.0 1.1 1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 A-Nitroaniline ND ug/l 5.0 0.80 1 A-Nitroaniline ND ug/l 5.0 0.80 1 A-Nitroaniline ND ug/l 5.0 0.50 1 A-Nitroaniline ND ug/l 5.0 0.50 1 A-Nitroaniline ND ug/l 5.0 0.80 1 A-Nitroaniline ND ug/l 5.0 0.80 1 A-Nitroaniline ND ug/l 5.0 0.50 1 A-Nitroaniline ND ug/l 5.0 0.50 1 A-Nitroaniline ND ug/l 5.0 0.80 1 A-Nitroaniline ND ug/l 5.0 0.50 1	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Di-machyl phthalate ND ug/l 5	Isophorone	ND		ug/l	5.0	1.2	1
ND	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 <td>n-Nitrosodi-n-propylamine</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>0.64</td> <td>1</td>	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cytylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 1.8 1 4-Chloroaniline ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone ND ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	1.9	J	ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Biphenyl ND ug/l 2.0 0.46 1	Diethyl phthalate	ND		ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1
· · · · · · · · · · · · · · · · · · ·	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: Lab Number: ATP GWS L2121696

Project Number: Report Date: T0071-020-222 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-07 Date Collected: 04/27/21 10:45

Client ID: Date Received: 04/28/21 MWS-20B

Sample Location: Field Prep: 1951 HAMBURG TURNPIKE Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	64		21-120
Phenol-d6	47		10-120
Nitrobenzene-d5	82		23-120
2-Fluorobiphenyl	85		15-120
2,4,6-Tribromophenol	124	Q	10-120
4-Terphenyl-d14	96		41-149

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-07 Date Collected: 04/27/21 10:45

Client ID: MWS-20B Date Received: 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/03/21 08:19
Analytical Date: 05/05/21 22:18

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.07	J	ug/l	0.10	0.05	1			
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	ND		ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	0.07	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	0.02	J	ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	ND		ug/l	0.10	0.02	1			
2-Methylnaphthalene	0.03	J	ug/l	0.10	0.02	1			
Pentachlorophenol	0.31	J	ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 **Report Date:** 05/06/21

SAMPLE RESULTS

Lab ID: L2121696-07 Date Collected: 04/27/21 10:45

Client ID: MWS-20B Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	66		21-120	
Phenol-d6	56		10-120	
Nitrobenzene-d5	98		23-120	
2-Fluorobiphenyl	96		15-120	
2,4,6-Tribromophenol	145	Q	10-120	
4-Terphenyl-d14	108		41-149	

Project Name: ATP GWS **Project Number:**

T0071-020-222

Lab Number:

L2121696

Report Date: 05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/04/21 00:22

Analyst:

ΕK

Extraction Method: EPA 3510C 05/02/21 14:34 **Extraction Date:**

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	06	Batch:	WG1493452-1	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.50	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.6	
2,4-Dinitrotoluene	ND		ug/l		5.0	1.2	
2,6-Dinitrotoluene	ND		ug/l		5.0	0.93	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.49	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.38	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.50	
Hexachlorocyclopentadiene	ND		ug/l		20	0.69	
Isophorone	ND		ug/l		5.0	1.2	
Nitrobenzene	ND		ug/l		2.0	0.77	
NDPA/DPA	ND		ug/l		2.0	0.42	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.64	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.5	
Butyl benzyl phthalate	ND		ug/l		5.0	1.2	
Di-n-butylphthalate	ND		ug/l		5.0	0.39	
Di-n-octylphthalate	ND		ug/l		5.0	1.3	
Diethyl phthalate	ND		ug/l		5.0	0.38	
Dimethyl phthalate	ND		ug/l		5.0	1.8	
Biphenyl	ND		ug/l		2.0	0.46	
4-Chloroaniline	ND		ug/l		5.0	1.1	
2-Nitroaniline	ND		ug/l		5.0	0.50	
3-Nitroaniline	ND		ug/l		5.0	0.81	
4-Nitroaniline	ND		ug/l		5.0	0.80	
Dibenzofuran	ND		ug/l		2.0	0.50	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44	
Acetophenone	ND		ug/l		5.0	0.53	
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.61	
p-Chloro-m-cresol	ND		ug/l		2.0	0.35	

Project Number: T0071-020-222

Lab Number:

L2121696

Report Date: 05/06/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/04/21 00:22

Analyst: EK

Extraction Method: EPA 3510C Extraction Date: 05/02/21 14:34

Qualifier RL MDL **Parameter** Result Units Batch: WG1493452-1 Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 06 2-Chlorophenol ND ug/l 2.0 0.48 2,4-Dichlorophenol ND ug/l 5.0 0.41 2,4-Dimethylphenol ND ug/l 5.0 1.8 2-Nitrophenol ND ug/l 10 0.85 ND 0.67 4-Nitrophenol ug/l 10 2,4-Dinitrophenol ND ug/l 20 6.6 4,6-Dinitro-o-cresol ND ug/l 10 1.8 Phenol ND ug/l 5.0 0.57 2-Methylphenol ND 5.0 0.49 ug/l 3-Methylphenol/4-Methylphenol ND 5.0 0.48 ug/l 2,4,5-Trichlorophenol ND 0.77 ug/l 5.0 Carbazole ND ug/l 2.0 0.49 Atrazine ND ug/l 10 0.76 Benzaldehyde ND ug/l 5.0 0.53 Caprolactam ND ug/l 10 3.3 ND 2,3,4,6-Tetrachlorophenol ug/l 5.0 0.84

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	72	21-120
Phenol-d6	59	10-120
Nitrobenzene-d5	112	23-120
2-Fluorobiphenyl	97	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	101	41-149

Project Number: T0071-020-222

Lab Number:

L2121696

Report Date: 05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 05/04/21 13:33

Analyst: JRW

Extraction Method: EPA 3510C Extraction Date: 05/02/21 14:36

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/M	S-SIM - Westbo	rough Lab	for sample	e(s): 06	Batch: WG14934	54-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: ATP GWS Lab Number: L2121696

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 05/04/21 13:33 Extraction Date: 05/02/21 14:36

Analyst: JRW

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 06 Batch: WG1493454-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	64	21-120
Phenol-d6	55	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	98	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	125	41-149

Project Number: T0071-020-222

Lab Number:

L2121696

Report Date: 05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/03/21 23:14

Analyst: EK

Extraction Method: EPA 3510C Extraction Date: 05/03/21 08:17

Parameter	Result	Qualifier	Units	RL	M	DL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-05,07	Batch:	WG1493602-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0	.50
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1	.6
2,4-Dinitrotoluene	ND		ug/l	5.0	1	.2
2,6-Dinitrotoluene	ND		ug/l	5.0	0	.93
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0	.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0	.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0	.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0	.50
Hexachlorocyclopentadiene	ND		ug/l	20	0	.69
Isophorone	ND		ug/l	5.0	1	.2
Nitrobenzene	ND		ug/l	2.0	0	.77
NDPA/DPA	ND		ug/l	2.0	0	.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0	.64
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1	.5
Butyl benzyl phthalate	ND		ug/l	5.0	1	.2
Di-n-butylphthalate	ND		ug/l	5.0	0	.39
Di-n-octylphthalate	ND		ug/l	5.0	1	.3
Diethyl phthalate	ND		ug/l	5.0	0	.38
Dimethyl phthalate	ND		ug/l	5.0	1	.8
Biphenyl	ND		ug/l	2.0	0	.46
4-Chloroaniline	ND		ug/l	5.0	1	.1
2-Nitroaniline	ND		ug/l	5.0	0	.50
3-Nitroaniline	ND		ug/l	5.0	0	.81
4-Nitroaniline	ND		ug/l	5.0	0	.80
Dibenzofuran	ND		ug/l	2.0	0	.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0	.44
Acetophenone	ND		ug/l	5.0	0	.53
2,4,6-Trichlorophenol	ND		ug/l	5.0	0	.61
p-Chloro-m-cresol	ND		ug/l	2.0	0	.35

Project Number: T0071-020-222

Lab Number:

L2121696

Report Date: 05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/03/21 23:14

Analyst: EK

Extraction Method: EPA 3510C Extraction Date: 05/03/21 08:17

arameter	Result	Qualifier	Units	RL	MD	L
semivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01-05,07	Batch:	WG1493602-1
2-Chlorophenol	ND		ug/l	2.0	0.4	18
2,4-Dichlorophenol	ND		ug/l	5.0	0.4	11
2,4-Dimethylphenol	ND		ug/l	5.0	1.	8
2-Nitrophenol	ND		ug/l	10	0.0	35
4-Nitrophenol	ND		ug/l	10	0.6	67
2,4-Dinitrophenol	ND		ug/l	20	6.	6
4,6-Dinitro-o-cresol	ND		ug/l	10	1.	8
Phenol	ND		ug/l	5.0	0.5	57
2-Methylphenol	ND		ug/l	5.0	0.4	19
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.4	18
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.7	77
Carbazole	ND		ug/l	2.0	0.4	19
Atrazine	ND		ug/l	10	0.7	76
Benzaldehyde	ND		ug/l	5.0	0.5	53
Caprolactam	ND		ug/l	10	3.	3
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.0	34

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	43	21-120
Phenol-d6	32	10-120
Nitrobenzene-d5	51	23-120
2-Fluorobiphenyl	58	15-120
2,4,6-Tribromophenol	61	10-120
4-Terphenyl-d14	69	41-149

Project Number: T0071-020-222

Lab Number:

Report Date:

L2121696 05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM 05/04/21 15:45

Analyst:

DV

Extraction Method: EPA 3510C

Extraction Date: 05/03/21 08:19

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S-SIM - Westbo	rough Lab	for sample(s	s): 01-05,07	Batch:	WG1493604-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: ATP GWS Lab Number: L2121696

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 05/04/21 15:45 Extraction Date: 05/03/21 08:19

Analyst: DV

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-05,07 Batch: WG1493604-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	43	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	54	15-120
2,4,6-Tribromophenol	66	10-120
4-Terphenyl-d14	59	41-149

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	:
Semivolatile Organics by GC/MS - Westb	orough Lab Associ	ated sample(s):	06 Batch:	WG1493452-2	WG1493452-3			
Bis(2-chloroethyl)ether	65		65		40-140	0	30	
3,3'-Dichlorobenzidine	64		63		40-140	2	30	
2,4-Dinitrotoluene	73		76		48-143	4	30	
2,6-Dinitrotoluene	79		79		40-140	0	30	
4-Chlorophenyl phenyl ether	62		64		40-140	3	30	
4-Bromophenyl phenyl ether	63		62		40-140	2	30	
Bis(2-chloroisopropyl)ether	81		80		40-140	1	30	
Bis(2-chloroethoxy)methane	77		72		40-140	7	30	
Hexachlorocyclopentadiene	61		61		40-140	0	30	
Isophorone	80		77		40-140	4	30	
Nitrobenzene	84		81		40-140	4	30	
NDPA/DPA	68		70		40-140	3	30	
n-Nitrosodi-n-propylamine	88		82		29-132	7	30	
Bis(2-ethylhexyl)phthalate	90		92		40-140	2	30	
Butyl benzyl phthalate	88		87		40-140	1	30	
Di-n-butylphthalate	78		77		40-140	1	30	
Di-n-octylphthalate	95		98		40-140	3	30	
Diethyl phthalate	73		74		40-140	1	30	
Dimethyl phthalate	77		73		40-140	5	30	
Biphenyl	70		66		40-140	6	30	
4-Chloroaniline	75		78		40-140	4	30	
2-Nitroaniline	82		81		52-143	1	30	
3-Nitroaniline	63		68		25-145	8	30	

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s)	: 06 Batch:	WG1493452-2	2 WG1493452-3		
4-Nitroaniline	65		65		51-143	0	30
Dibenzofuran	64		65		40-140	2	30
1,2,4,5-Tetrachlorobenzene	66		64		2-134	3	30
Acetophenone	71		71		39-129	0	30
2,4,6-Trichlorophenol	75		68		30-130	10	30
p-Chloro-m-cresol	89		82		23-97	8	30
2-Chlorophenol	70		66		27-123	6	30
2,4-Dichlorophenol	74		74		30-130	0	30
2,4-Dimethylphenol	75		76		30-130	1	30
2-Nitrophenol	90		91		30-130	1	30
4-Nitrophenol	54		57		10-80	5	30
2,4-Dinitrophenol	65		61		20-130	6	30
4,6-Dinitro-o-cresol	69		73		20-164	6	30
Phenol	56		55		12-110	2	30
2-Methylphenol	68		70		30-130	3	30
3-Methylphenol/4-Methylphenol	72		72		30-130	0	30
2,4,5-Trichlorophenol	81		67		30-130	19	30
Carbazole	76		75		55-144	1	30
Atrazine	90		89		40-140	1	30
Benzaldehyde	65		61		40-140	6	30
Caprolactam	47		43		10-130	9	30
2,3,4,6-Tetrachlorophenol	65		68		40-140	5	30

Project Name: ATP GWS Batch Quali

Lab Number:

L2121696

Project Number: T0071-020-222

Report Date:

05/06/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 06 Batch: WG1493452-2 WG1493452-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	76	73	21-120
Phenol-d6	60	59	10-120
Nitrobenzene-d5	106	106	23-120
2-Fluorobiphenyl	90	88	15-120
2,4,6-Tribromophenol	81	90	10-120
4-Terphenyl-d14	90	99	41-149

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

ameter	LCS %Recovery	Qual %	LCSD Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
mivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	sociated sample(s	s): 06 Bat	ch: WG1493454-2 WG1	1493454-3	
Acenaphthene	80		86	40-140	7	40
2-Chloronaphthalene	78		84	40-140	7	40
Fluoranthene	91		103	40-140	12	40
Hexachlorobutadiene	66		72	40-140	9	40
Naphthalene	74		80	40-140	8	40
Benzo(a)anthracene	83		89	40-140	7	40
Benzo(a)pyrene	90		98	40-140	9	40
Benzo(b)fluoranthene	90		103	40-140	13	40
Benzo(k)fluoranthene	92		97	40-140	5	40
Chrysene	83		93	40-140	11	40
Acenaphthylene	82		89	40-140	8	40
Anthracene	85		94	40-140	10	40
Benzo(ghi)perylene	85		91	40-140	7	40
Fluorene	85		91	40-140	7	40
Phenanthrene	82		90	40-140	9	40
Dibenzo(a,h)anthracene	92		99	40-140	7	40
Indeno(1,2,3-cd)pyrene	89		93	40-140	4	40
Pyrene	90		102	40-140	13	40
2-Methylnaphthalene	81		87	40-140	7	40
Pentachlorophenol	77		84	40-140	9	40
Hexachlorobenzene	73		79	40-140	8	40
Hexachloroethane	64		70	40-140	9	40

Lab Control Sample Analysis

Project Name: ATP GWS

Batch Quality Control

Lab Number:

L2121696

Project Number:

T0071-020-222

Report Date:

05/06/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 06 Batch: WG1493454-2 WG1493454-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qu	Acceptance al Criteria
2-Fluorophenol	70	76	21-120
Phenol-d6	60	63	10-120
Nitrobenzene-d5	89	97	23-120
2-Fluorobiphenyl	95	103	15-120
2,4,6-Tribromophenol	88	103	10-120
4-Terphenyl-d14	123	140	41-149

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

arameter	LCS %Recove	ry Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS	- Westborough Lab As	sociated sample(s)	: 01-05,07	Batch: WG	1493602-2 WG	1493602-3			
Bis(2-chloroethyl)ether	39	Q	38	Q	40-140	3		30	
3,3'-Dichlorobenzidine	50		57		40-140	13		30	
2,4-Dinitrotoluene	55		69		48-143	23		30	
2,6-Dinitrotoluene	52		58		40-140	11		30	
4-Chlorophenyl phenyl ether	55		62		40-140	12		30	
4-Bromophenyl phenyl ether	60		70		40-140	15		30	
Bis(2-chloroisopropyl)ether	29	Q	30	Q	40-140	3		30	
Bis(2-chloroethoxy)methane	42		43		40-140	2		30	
Hexachlorocyclopentadiene	46		47		40-140	2		30	
Isophorone	40		44		40-140	10		30	
Nitrobenzene	40		41		40-140	2		30	
NDPA/DPA	56		66		40-140	16		30	
n-Nitrosodi-n-propylamine	39		44		29-132	12		30	
Bis(2-ethylhexyl)phthalate	46		63		40-140	31	Q	30	
Butyl benzyl phthalate	53		70		40-140	28		30	
Di-n-butylphthalate	53		63		40-140	17		30	
Di-n-octylphthalate	47		76		40-140	47	Q	30	
Diethyl phthalate	62		76		40-140	20		30	
Dimethyl phthalate	60		70		40-140	15		30	
Biphenyl	48		52		40-140	8		30	
4-Chloroaniline	34	Q	34	Q	40-140	0		30	
2-Nitroaniline	52		62		52-143	18		30	
3-Nitroaniline	45		57		25-145	24		30	

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Reco Qual Limit	•	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbo	orough Lab Associa	ated sample(s)	: 01-05,07 E	Batch: WG1493602-2	WG1493602-3		
4-Nitroaniline	52		66	51-143	3 24		30
Dibenzofuran	51		57	40-140	11		30
1,2,4,5-Tetrachlorobenzene	51		53	2-134	4		30
Acetophenone	44		45	39-129	9 2		30
2,4,6-Trichlorophenol	58		62	30-130	7		30
p-Chloro-m-cresol	50		59	23-97	17		30
2-Chlorophenol	45		45	27-123	3 0		30
2,4-Dichlorophenol	50		56	30-130	11		30
2,4-Dimethylphenol	46		50	30-130	8		30
2-Nitrophenol	48		50	30-130	9		30
4-Nitrophenol	44		61	10-80	32	Q	30
2,4-Dinitrophenol	69		73	20-130	6		30
4,6-Dinitro-o-cresol	67		81	20-164	19		30
Phenol	30		34	12-110	13		30
2-Methylphenol	42		44	30-130	5		30
3-Methylphenol/4-Methylphenol	43		50	30-130	15		30
2,4,5-Trichlorophenol	59		66	30-130	11		30
Carbazole	53	Q	68	55-144	4 25		30
Atrazine	87		112	40-140	25		30
Benzaldehyde	41		41	40-140	0		30
Caprolactam	21		28	10-130	29		30
2,3,4,6-Tetrachlorophenol	57		67	40-140	16		30

Lab Control Sample Analysis

Project Name: ATP GWS

Batch Quality Control

Lab Number:

L2121696

Project Number:

T0071-020-222

Report Date:

05/06/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05,07 Batch: WG1493602-2 WG1493602-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	45	48	21-120
Phenol-d6	36	41	10-120
Nitrobenzene-d5	47	52	23-120
2-Fluorobiphenyl	59	61	15-120
2,4,6-Tribromophenol	76	93	10-120
4-Terphenyl-d14	61	76	41-149

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696

Report Date: 05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - W	estborough Lab	Associated samp	ole(s): 01-05,07	Batch:	WG1493604-2	WG1493604-3	
Acenaphthene	50		51		40-140	2	40
2-Chloronaphthalene	48		49		40-140	2	40
Fluoranthene	66		60		40-140	10	40
Hexachlorobutadiene	37	Q	41		40-140	10	40
Naphthalene	46		48		40-140	4	40
Benzo(a)anthracene	68		63		40-140	8	40
Benzo(a)pyrene	70		63		40-140	11	40
Benzo(b)fluoranthene	70		62		40-140	12	40
Benzo(k)fluoranthene	62		60		40-140	3	40
Chrysene	62		58		40-140	7	40
Acenaphthylene	50		49		40-140	2	40
Anthracene	60		56		40-140	7	40
Benzo(ghi)perylene	74		68		40-140	8	40
Fluorene	55		53		40-140	4	40
Phenanthrene	55		52		40-140	6	40
Dibenzo(a,h)anthracene	77		71		40-140	8	40
Indeno(1,2,3-cd)pyrene	78		72		40-140	8	40
Pyrene	66		61		40-140	8	40
2-Methylnaphthalene	48		49		40-140	2	40
Pentachlorophenol	72		58		40-140	22	40
Hexachlorobenzene	46		43		40-140	7	40
Hexachloroethane	39	Q	43		40-140	10	40

Project Name: ATP GWS

WS Batch Q

Lab Number:

L2121696

Project Number:

T0071-020-222

Report Date:

05/06/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-05,07 Batch: WG1493604-2 WG1493604-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	46	50	21-120
Phenol-d6	41	42	10-120
Nitrobenzene-d5	58	62	23-120
2-Fluorobiphenyl	54	54	15-120
2,4,6-Tribromophenol	80	76	10-120
4-Terphenyl-d14	72	66	41-149

METALS

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

SAMPLE RESULTS

 Lab ID:
 L2121696-01
 Date Collected:
 04/27/21 16:30

 Client ID:
 MWS-02
 Date Received:
 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	ield Lab										
Arsenic, Total	0.00136		mg/l	0.00050	0.00016	1	05/01/21 06:16	05/03/21 15:07	EPA 3005A	1,6020B	CD
Barium, Total	0.02653		mg/l	0.00050	0.00017	1	05/01/21 06:16	05/03/21 15:07	EPA 3005A	1,6020B	CD
Chromium, Total	0.00652		mg/l	0.00100	0.00017	1	05/01/21 06:16	05/03/21 15:07	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/01/21 06:16	05/03/21 15:07	EPA 3005A	1,6020B	CD

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

SAMPLE RESULTS

 Lab ID:
 L2121696-02
 Date Collected:
 04/27/21 15:00

 Client ID:
 MWS-18A
 Date Received:
 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00332		mg/l	0.00050	0.00016	1	05/01/21 06:16	6 05/03/21 15:12	EPA 3005A	1,6020B	CD
Barium, Total	0.02046		mg/l	0.00050	0.00017	1	05/01/21 06:16	6 05/03/21 15:12	EPA 3005A	1,6020B	CD
Chromium, Total	0.00065	J	mg/l	0.00100	0.00017	1	05/01/21 06:16	6 05/03/21 15:12	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/01/21 06:16	6 05/03/21 15:12	EPA 3005A	1,6020B	CD

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

SAMPLE RESULTS

 Lab ID:
 L2121696-03
 Date Collected:
 04/27/21 15:30

 Client ID:
 MWS-18C
 Date Received:
 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00638		mg/l	0.00050	0.00016	1	05/01/21 06:16	05/03/21 15:17	EPA 3005A	1,6020B	CD
Barium, Total	0.01889		mg/l	0.00050	0.00017	1	05/01/21 06:16	05/03/21 15:17	EPA 3005A	1,6020B	CD
Chromium, Total	0.1282		mg/l	0.00100	0.00017	1	05/01/21 06:16	05/03/21 15:17	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/01/21 06:16	05/03/21 15:17	EPA 3005A	1,6020B	CD

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

SAMPLE RESULTS

 Lab ID:
 L2121696-04
 Date Collected:
 04/27/21 14:40

 Client ID:
 MWS-19A
 Date Received:
 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansi	field Lab										
Arsenic, Total	0.00450		mg/l	0.00050	0.00016	1	05/01/21 06:16	05/03/21 15:22	EPA 3005A	1,6020B	CD
Barium, Total	0.02797		mg/l	0.00050	0.00017	1	05/01/21 06:16	05/03/21 15:22	EPA 3005A	1,6020B	CD
Chromium, Total	0.00225		mg/l	0.00100	0.00017	1	05/01/21 06:16	05/03/21 15:22	EPA 3005A	1,6020B	CD
Lead, Total	0.00212		mg/l	0.00100	0.00034	1	05/01/21 06:16	05/03/21 15:22	EPA 3005A	1,6020B	CD

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

SAMPLE RESULTS

 Lab ID:
 L2121696-05
 Date Collected:
 04/27/21 14:00

 Client ID:
 MWS-19B
 Date Received:
 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	0.00486		mg/l	0.00050	0.00016	1	05/01/21 06:10	6 05/03/21 15:27	EPA 3005A	1,6020B	CD
Barium, Total	0.01885		mg/l	0.00050	0.00017	1	05/01/21 06:10	6 05/03/21 15:27	EPA 3005A	1,6020B	CD
Chromium, Total	0.00112		mg/l	0.00100	0.00017	1	05/01/21 06:10	6 05/03/21 15:27	EPA 3005A	1,6020B	CD
Lead, Total	0.00048	J	mg/l	0.00100	0.00034	. 1	05/01/21 06:10	6 05/03/21 15:27	EPA 3005A	1,6020B	CD

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

SAMPLE RESULTS

 Lab ID:
 L2121696-06
 Date Collected:
 04/27/21 10:00

 Client ID:
 MWS-20A
 Date Received:
 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00333		mg/l	0.00050	0.00016	1	05/01/21 06:16	05/03/21 15:32	EPA 3005A	1,6020B	CD
Barium, Total	0.02833		mg/l	0.00050	0.00017	1	05/01/21 06:16	05/03/21 15:32	EPA 3005A	1,6020B	CD
Chromium, Total	0.00310		mg/l	0.00100	0.00017	1	05/01/21 06:16	05/03/21 15:32	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/01/21 06:16	05/03/21 15:32	EPA 3005A	1,6020B	CD

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

SAMPLE RESULTS

 Lab ID:
 L2121696-07
 Date Collected:
 04/27/21 10:45

 Client ID:
 MWS-20B
 Date Received:
 04/28/21

Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00328		mg/l	0.00050	0.00016	1	05/01/21 06:16	6 05/03/21 15:37	EPA 3005A	1,6020B	CD
Barium, Total	0.03929		mg/l	0.00050	0.00017	1	05/01/21 06:16	6 05/03/21 15:37	EPA 3005A	1,6020B	CD
Chromium, Total	0.00070	J	mg/l	0.00100	0.00017	1	05/01/21 06:16	6 05/03/21 15:37	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/01/21 06:16	6 05/03/21 15:37	EPA 3005A	1,6020B	CD

Project Name: Lab Number: ATP GWS L2121696 Project Number: T0071-020-222

Report Date: 05/06/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-07	Batch: WO	314919	68-1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	05/01/21 06:16	05/03/21 13:50	1,6020B	CD
Barium, Total	ND	mg/l	0.00050	0.00017	1	05/01/21 06:16	05/03/21 13:50	1,6020B	CD
Chromium, Total	ND	mg/l	0.00100	0.00017	1	05/01/21 06:16	05/03/21 13:50	1,6020B	CD
Lead, Total	ND	mg/l	0.00100	0.00034	1	05/01/21 06:16	05/03/21 13:50	1,6020B	CD

Prep Information

Digestion Method: EPA 3005A

Project Name: ATP GWS

Project Number:

T0071-020-222

Lab Number:

L2121696

Report Date:

05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-07 Batc	ch: WG1491	968-2					
Arsenic, Total	107		-		80-120	-		
Barium, Total	105		-		80-120	-		
Chromium, Total	102		-		80-120	-		
Lead, Total	108		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: ATP GWS

T0071-020-222

Project Number:

GWS ______

Lab Number:

L2121696

Report Date: 05/06/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-07	QC Bate	ch ID: WG149	1968-3	WG149196	8-4 QC Sam	ple: L2120900-01	Clien	t ID: MS Sample
Arsenic, Total	ND	0.12	0.1313	109		0.1293	108	75-125	2	20
Barium, Total	0.0558	2	2.089	102		2.150	105	75-125	3	20
Chromium, Total	ND	0.2	0.1973	99		0.2049	102	75-125	4	20
Lead, Total	ND	0.51	0.5405	106		0.5386	106	75-125	0	20

INORGANICS & MISCELLANEOUS

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-01 Date Collected: 04/27/21 16:30

Client ID: MWS-02 Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	1.92		mg/l	0.050	0.018	1	05/05/21 13:25	05/05/21 15:50	1,9010C/9012B	CR

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-02 Date Collected: 04/27/21 15:00

Client ID: MWS-18A Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	0.267		mg/l	0.005	0.001	1	05/05/21 13:25	05/05/21 15:51	1,9010C/9012B	CR CR

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-03 Date Collected: 04/27/21 15:30

Client ID: MWS-18C Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	0.249		mg/l	0.005	0.001	1	05/05/21 13:25	05/05/21 15:52	1,9010C/9012B	CR

Project Name: ATP GWS Lab Number: L2121696

Project Number: T0071-020-222 Report Date: 05/06/21

SAMPLE RESULTS

Lab ID: Date Collected: L2121696-04 04/27/21 14:40

Client ID: MWS-19A Date Received: 04/28/21 Not Specified Sample Location: 1951 HAMBURG TURNPIKE Field Prep:

Sample Depth:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	0.107		mg/l	0.005	0.001	1	05/05/21 13:25	05/05/21 15:55	1,9010C/9012B	CR

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-05 Date Collected: 04/27/21 14:00

Client ID: MWS-19B Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	0.331		mg/l	0.005	0.001	1	05/05/21 13:25	05/05/21 15:56	1,9010C/9012B	CR

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-06 Date Collected: 04/27/21 10:00

Client ID: MWS-20A Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab								
Cyanide, Total	0.043	mg/l	0.005	0.001	1	05/05/21 13:25	05/05/21 15:57	1,9010C/9012B	CR

Project Name: ATP GWS Lab Number: L2121696

SAMPLE RESULTS

Lab ID: L2121696-07 Date Collected: 04/27/21 10:45

Client ID: MWS-20B Date Received: 04/28/21 Sample Location: 1951 HAMBURG TURNPIKE Field Prep: Not Specified

Sample Depth:

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab								
Cyanide, Total	0.017	mg/l	0.005	0.001	1	05/05/21 13:25	05/05/21 16:00	1,9010C/9012B	CR

Project Name: ATP GWS Lab Number: L2121696

> Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab for sam	ple(s): 01	I-07 Ba	tch: WC	G1494272-1				
Cvanide Total	ND	ma/l	0.005	0.001	1	05/05/21 13:25	05/05/21 15:42	1.9010C/901	2B CR

Lab Control Sample Analysis Batch Quality Control

Project Name: ATP GWS

Lab Number:

L2121696

Project Number: T

T0071-020-222

Report Date:

05/06/21

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01-07	Batch: WG1494272	2-2 WG1494272-3			
Cyanide, Total	97	98	85-115	1	20	

Matrix Spike Analysis Batch Quality Control

Project Name: ATP GWS

Lab Number:

Project Number: T0071-020-222 Report Date:

05/06/21

L2121696

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD tual Limits
General Chemistry - Westborou MWS-20A	gh Lab Asso	ociated samp	ole(s): 01-07	QC Batch II	D: WG1	494272-4	WG1494272-5	QC Sample: L212	21696-06	Client ID:
Cyanide, Total	0.043	0.2	0.245	101		0.226	91	80-120	8	20

Project Name: ATP GWS

Project Number: T0071-020-222

Lab Number: L2121696 Report Date: 05/06/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2121696-01A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-01B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-01C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.1	Υ	Absent		BA-6020T(180),CR-6020T(180),PB- 6020T(180),AS-6020T(180)
L2121696-01E	Plastic 250ml NaOH preserved	Α	>12	>12	3.1	Υ	Absent		TCN-9010(14)
L2121696-01F	Amber 250ml unpreserved	Α	10	10	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-01G	Amber 250ml unpreserved	Α	10	10	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-02A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-02B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-02C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.1	Υ	Absent		BA-6020T(180),CR-6020T(180),PB- 6020T(180),AS-6020T(180)
L2121696-02E	Plastic 250ml NaOH preserved	Α	>12	>12	3.1	Υ	Absent		TCN-9010(14)
L2121696-02F	Amber 250ml unpreserved	Α	9	9	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-02G	Amber 250ml unpreserved	Α	9	9	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-03A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-03B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-03C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-03D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.1	Υ	Absent		BA-6020T(180),CR-6020T(180),PB- 6020T(180),AS-6020T(180)
L2121696-03E	Plastic 250ml NaOH preserved	Α	>12	>12	3.1	Υ	Absent		TCN-9010(14)
L2121696-03F	Amber 250ml unpreserved	Α	5	5	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-03G	Amber 250ml unpreserved	Α	5	5	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-04A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2121696

Report Date: 05/06/21

Project Name: ATP GWS

Project Number: T0071-020-222

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2121696-04B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-04C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-04D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.1	Υ	Absent		BA-6020T(180),CR-6020T(180),PB- 6020T(180),AS-6020T(180)
L2121696-04E	Plastic 250ml NaOH preserved	Α	>12	>12	3.1	Υ	Absent		TCN-9010(14)
L2121696-04F	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-04G	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-05A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-05B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-05C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-05D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.1	Υ	Absent		BA-6020T(180),CR-6020T(180),PB- 6020T(180),AS-6020T(180)
L2121696-05E	Plastic 250ml NaOH preserved	Α	>12	>12	3.1	Υ	Absent		TCN-9010(14)
L2121696-05F	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-05G	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-06A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-06B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-06C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-06D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.1	Υ	Absent		BA-6020T(180),CR-6020T(180),PB- 6020T(180),AS-6020T(180)
L2121696-06E	Plastic 250ml NaOH preserved	Α	>12	>12	3.1	Υ	Absent		TCN-9010(14)
L2121696-06F	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-06G	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-07A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-07B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-07C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2121696-07D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.1	Υ	Absent		BA-6020T(180),CR-6020T(180),PB- 6020T(180),AS-6020T(180)
L2121696-07E	Plastic 250ml NaOH preserved	Α	>12	>12	3.1	Υ	Absent		TCN-9010(14)
L2121696-07F	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2121696-07G	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)

Lab Number: L2121696

Report Date: 05/06/21

Container Information Initial Final Temp Frozen

Container ID Container Type Cooler pH pH deg C Pres Seal Date/Time Analysis(*)

Project Name:

ATP GWS

Project Number: T0071-020-222

Project Name: Lab Number: ATP GWS L2121696 **Project Number:** T0071-020-222 **Report Date:** 05/06/21

GLOSSARY

Acronyms

LOQ

MS

RPD

STLP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples. - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:ATP GWSLab Number:L2121696Project Number:T0071-020-222Report Date:05/06/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

receipt, if applicable.

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:ATP GWSLab Number:L2121696Project Number:T0071-020-222Report Date:05/06/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 ATP GWS
 Lab Number:
 L2121696

 Project Number:
 T0071-020-222
 Report Date:
 05/06/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

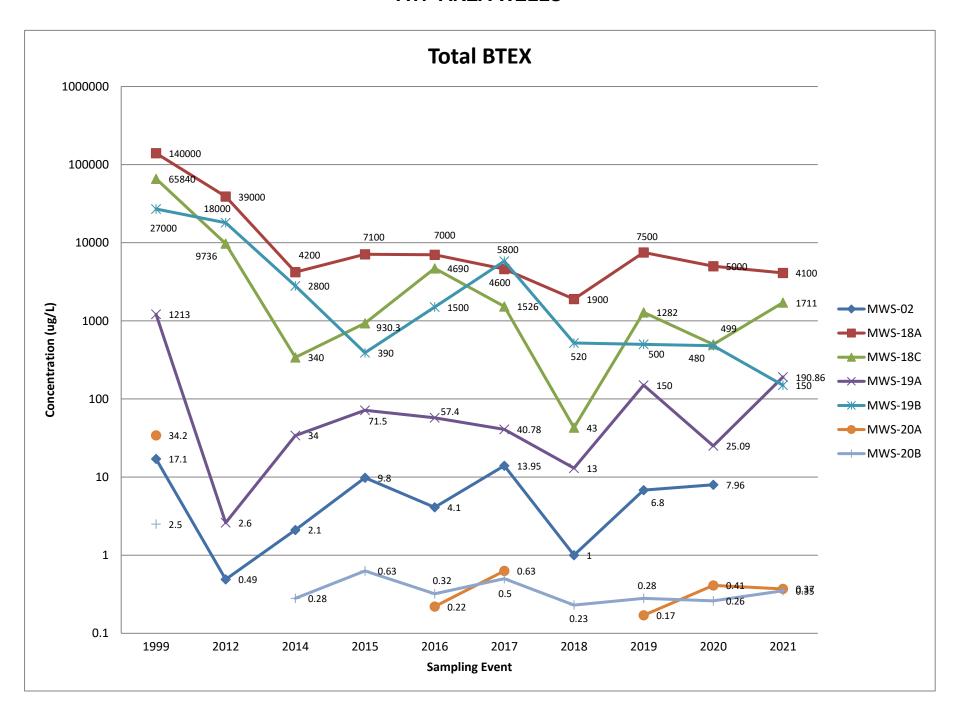
EPA 245.1 Hg

SM2340B

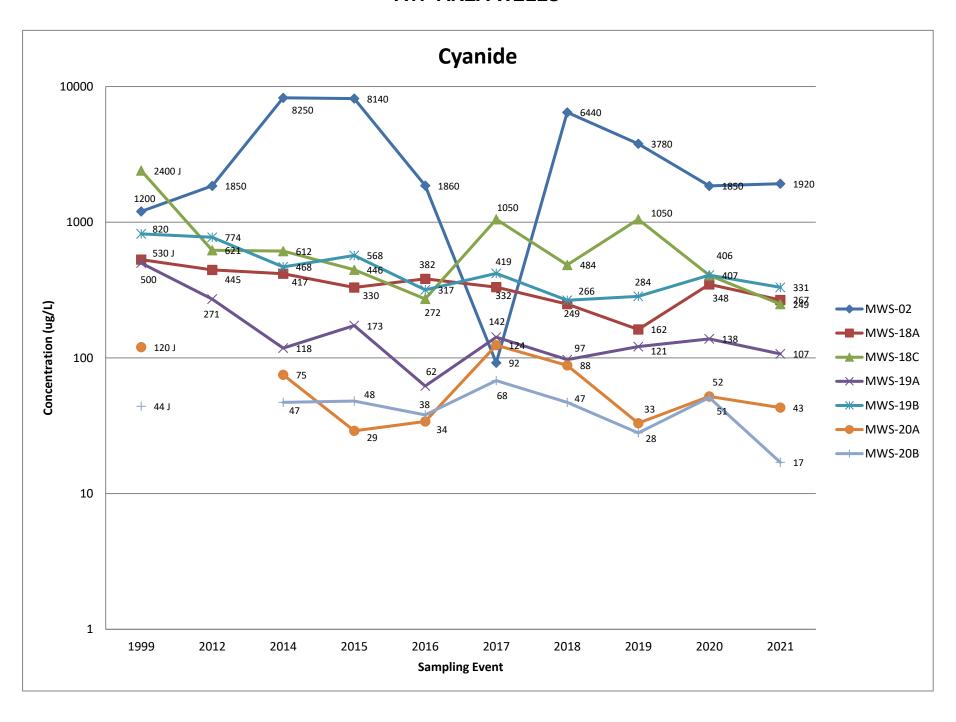
For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113


	NEW YORK	Service Centers			Pag	e 1	212	Silveri	1981		TIS TO		A SER	Indiana series	Mark Control
ALPHA CHAIN OF CUSTODY		Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			of 1	Date Rec'd in Lab			129/21			ALPHA Job # / 21211/9/0			
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	South Control	A STATE OF THE STA	3		Deli	verable	es	S Miles			ALL	Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	ATP GWS			e profession and	T	ASP	0.000	DI-NT		ASP-B		Same as Client Info	
FAX: 506-898-9193	FAX: 508-822-3288	Project Location:		urg Turnpike	·		1 =		IS (1	File)		EQuIS (4	File)	PO#	
Client Information	THE WHITE	Project #	T0071-020-	DATE OF THE PARTY			1 7	Othe	300	,			,		
The same of the sa	rk Environmental	(Use Project name as F					NAME OF TAXABLE PARTY.	NAME OF TAXABLE PARTY.		uireme	nt	-		Disposal Site Information	
Address: 2558 Ham	burg Turnpike,Ste300	Project Manager:	Candace Fo)X			-	NYT	The same of			NY Part 375	5	Westerlands wanted assessment as	
Buffalo, NY 14218 Phone: 716-856-0599		ALPHAQuote #: Turn-Around Time				AWQ Standards			NY CP-51			Please identify below location of applicable disposal facilities.			
					10 1		NY Restricted Use						Disposal Facility:		
Fax:		Standar	rd 🔀	Due Dat	e.		1 -	-		cted Us				□ NJ □ NY	
Email: tforbes@t	enchmarkturnkey.com	Rush (only if pre approve	The state of the s	# of Day	2000		1 =			Discha				Other: NA	
These samples have t	been previously analyze	ed by Alpha				ANALYSIS				Sample Filtration					
	c requirements/comm						1	T	Т	Т	П		T	Done	- °
Total Metals: arsenic, Please specify Metals	barium, chromium, lead	d					TCL VOC	Metals, Total*	TCL SVOC	Cyanide				Lab to do Preservation Lab to do (Please Specify below)	a I B o t
ALPHA Lab ID		nple ID Colle	lection	Sample	Sampler's	1	Σ			1 1			0.0000 8030 A000 600.00 A000 A000 A000 A000 A000 A	1	
(Lab Use Only)	1900	npie ID	Date	Time	Matrix	Initials	1							Sample Specific Comments	е
21696-0	MW5-02		4-27-21	1630	Water	CEH	×	x	×	x			\top		7
-02	MWS-18A		4-27-21	1500	Water	CEH	x	×	x	x					7
-03	MW5-18C		4-27-21	1530	Water	CEH	x	x	x	×					7
-04	MW5 -19A		4-27-21	1400	Water	CEH	x	x	x	x			\top		7
-05	MW5-19B		4-27-21	1440	Water	CEH	x	x	x	x					7
-06	MW5-20A		4-27-21	1000	Water	CEH	x	x	x	x					7
FO-	MWS-20B		4-27-21	1045	Water	CEH	x	x	x	x					7
188 000 0 88 3															Ť
											\vdash		\top		1
									T						\top
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No: MA935 Mansfield: Certification No: MA015				ntainer Type Preservative	H C D E turnal			Please print clearly, legib and completely. Samples not be logged in and turnaround time clock wil	s can				
F = MeOH	C = Cube	, Relinquished	By:	Date/Time				Received By:			/ /Date/Time			start until any ambiguities are	
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	O = Other E = Encore D = BOD Bottle	Chatu Hochat		4-27-2	1/1700	800	JAN AML 45451 1107 THIS			resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREE	r Es				
O = Other		00		4-01-1	1170	11/	111		-	1	10	1121 01	-15	TO BE BOUND BY ALPH	
Form No: 01-25 (rev. 30-Se	ept-2013)				/				1					TERMS & CONDITIONS	F

ATTACHMENT 3


CONCENTRATION PLOT

ATP AREA WELLS

ATP AREA WELLS

ATTACHMENT 4

POST-CLOSURE FIELD INSPECTION REPORT

Field Inspection Report Post-Remedial Operation, Maintenance & Monitoring Plan

Property Name: ATP SWMU Group ECM	Project No.:								
Client: Tecumseh Redevelopment, Inc.									
Property Address: 2303 Hamburg Turnpike	City, State: L	₋ackawanna, NY	Zip Code: 14218						
Preparer's Name: Brock Greene	Date/Time:	6-17-21							
CERTIFICATION									
The results of this inspection were discussed with the have been identified and noted in this report, and a scompleted. Proper implementation of these corrections Manager, agreed upon, and scheduled.	supplemental C	orrective Action	Form has been						
Preparer / Inspector: Brock breine		Date: 6-17-2(
Signature: /////									
Next Scheduled Inspection Date:	2022								
ATP Containment Cell and Pretreatment Buildin	g Access	1							
1. Is the access road in need of repair?	yes	no	□ N/A						
2. Sufficient signage posted (No Trespassing)?	☑ yes	☐ no	□ N/A						
3. Has there been any noted or reported trespassing	g? □ yes	no	□ N/A						
Please note any irregularities/ changes in site acce	ess and security	: None	Đ						
Final Surface Cover / Vegetation The integrity of the vegetative soil cover or other surf	face coverage (e.g., slag) over t	the entire Site must						
be maintained. The following documents the condition	on of the above	ı.							
1 1 1	yes oil cour	□ no	□ N/A						
2. Evidence of erosion?	yes	no	□ N/A						
3. Cracks visible in slag perimeter road?	yes	no	□ N/A						
4. Evidence of distressed vegetation/turf?	yes	no	□ N/A						
5. Evidence of unintended traffic and/or rutting?	_ yes	no	□ N/A						
6. Evidence of uneven settlement and/or ponding?	yes yes	no	□ N/A						
	— ,		_						

Field Inspection Report Post-Remedial Operation, Maintenance & Monitoring Plan

Ī	Final Surface Cover / Vegetation	1					
7.	Damage to any surface coverage?	₩ no	□ N/A				
	Extraction Well access roads (3) in stable ves ondition?	☐ no	□ N/A				
ΡI	lease provide more information below.						
	Cover is in good	d condi	tion				
,	Storm Water Pond	11.00					
1.	Is there water accumulation in the pond?	res 🔽 no		N/A			
2.	Is there sign of erosion or loss of oversized slag on						
sic	deslopes of pond?	res 🗹 no		N/A			
3.	Are the inlet or outlet structures/pipes clogged with						
de	ebris?	res 🔽 no] N/A			
	Is there sign of erosion on the emergency spillway	9					
an	nd the down chute to Smokes Creek?	res no		N/A			
lf y	yes to any questions 2 through 4 above, please provide more	information b	elow.				
	One Want Manitarian and Maintaran						
(Gas Vent Monitoring and Maintenance		9				
A	Are there signs of stressed vegetation around gas vents?	_yes	no	□ N/A			
		1					
1	s gas vent currently intact and operational?	Wyes	□ no	□ N/A			
Has regular maintenance and monitoring been documented and enclosed or referenced?							
		□yes	☐ no	₩ N/A			
	Δ1	Λ.					
	100 maintenance has been requ	uined, ven	t remain	s intact			
	No maintenance has been requeated and free of blockage.						

Field Inspection Report Post-Remedial Operation, Maintenance & Monitoring Plan

Conveyance Piping Leak Detection			
Are there signs of a groundwater/leachate leak in the cleanout manholes?	∐yes	no	□ N/A
Is there evidence of a leak having occurred before this inspection date?	□yes	no	□ N/A
This space for Notes and Comments			
ν.			
Please include the following Attachments:			
1. Photographs			

SITE PHOTOGRAPHS

Photo 1:

Photo 3:

Photo 2:

Photo 4:

Photo 1: ATP Treatment Building (Looking north)

Photo 2: ATP control Panel (Looking southeast)

Photo 3: ATP Treatment Building (Looking west)

Photo 4: ATP Treatment Building (Looking northeast)

SITE PHOTOGRAPHS

Photo 5:

Photo 7:

Photo 6:

Photo 8:

Photo 5: East side of containment cell (Looking south)

Photo 6: East side of containment cell (Looking north)

Photo 7: West side of containment cell (Looking north)

Photo 8: West side of containment cell (Looking south)

SITE PHOTOGRAPHS

Photo 9:

Photo 11:

Photo 10:

Photo 12:

Photo 9: Dry stormwater pond (Looking northwest)

Photo 10: Outlet structure for the stormwater pond (Looking north)

Photo 11: Inlet structure for the stormwater pond (Looking north)

Photo 12: Gas vent at the top of the containment cell (Looking west)

