The electronic version of this file/report should have the file name:

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

.<u>File spillfile</u>.pdf letter. report. hw.915012 . 1989 - 08-01 REMEDIAL INVESTIG

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b Superfund - hw Spills - sp ERP - e VCP - v BCP - c

non-releasable - put .nf.pdf Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf Engineering Report (REVISED)

9150

REMEDIAL INVESTIGATION REPORT BUFFALO COLOR AREA "D"

Buffalo, New York

Morristown, New Jersey

Extra copy

Copy Z

MD

Rownbal

AUGUST 1989

BUFFALO COLOR CORPORATION

REMEDIAL INVESTIGATION REPORT BUFFALO COLOR AREA "D"

REVISED ENGINEERING REPORT

AUGUST 1989

Prepared by Allied Signal Corporation

and

Buffalo Color Corporation

.

1

:

P

Revision of The Engineering Report Dated April 1989 Which was prepared by:

Malcolm Pirnie, Inc.

S-3515 Abbott Road P.O. Box 1938 Buffalo, New York 14219

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES (CONTINUED)

2

(

•

TABLE NO.	DESCRIPTION	FOLLOWING PAGE
6-3	Analytical Methods/Surface and Groundwater, Soils and Stream Sediments	6-2
6-4	Stream Sediment Sampling Station Description	6-3 .
6-5	Summary of Contaminants Detected in Subsurface Soils	6-4
6-6	Summary of Contaminants detected in Surface Soil (0-2')6-4	4
6-7	Field Measurements of Groundwater Parameters	6-10
6-8	Field Measurements of Groundwater Parameters	6-10
6-9	Summary of Shallow Groundwater Results	6-10
6-10	Summary of Aquitard Ground WAter Results	6-10
6-11	Summary of Contaminants Detected in Surface Water	6-20
6-12	Summary of Contaminants Detected in Stream Sediments	6-20
6-13	Summary of Contaminants in Waste Residuals	6-21
6-14	Frequency of Detection in Surface Soil (0-2')6-22	
6-15	Frequency of Detections in Subsurface Soils	6-22
6-16	Frequency of Detections in Groundwater	6-22
6-17	Frequency of Detections in Stream Sediments	6-22
7-1	Contaminant Loadings to Buffalo River via Groundwater Pathway	7-3
7-2	Summary of Erosion Potential Calculations	7-7
7-3	Contaminant Loadings to the Buffalo River via Mechanical Erosion Pathway	7-7
8-1	Observed versus Allowable Contaminant Concentrations	8-5
8-1 (Al	t) Observed versus Allowable Contaminant Concentrations (Earlier Studies)	8-5
8-2	Groundwater Parameters Exceeding Enforceable Standards	8-5
8-3	Groundwater Parameters Exceeding Guidelines	8-5

.

2.2.3. Structures

The Contact Process company had buildings along both sets of railroad tracks which form the borders of Area "D". With the possible exception of Buildings 403-410, no records of these buildings have been found int he plant archives. Building 432 was built in 1917. The building may have been used in conjunction with the Edgewood Arsenal to produce Phosgene gas. It was definitely used after the 1920s for the production of Picric Acid, an unstable chemical.

Most of the structures shown in the available records were built in the 1930's and 1940's for the manufacture of detergents. It is not clear at what date the tank parks were built, but it is known that they serviced the detergents units, so it is likely that they also were built in the 1930s or 1940s.

There is no record of when the "pit" structure on the south-west shore was built or to what use it was put in the past. The structure was idle during the late 1940's and a water intake line passed over (but not into) the pit area in the early 1950's. The ribbedconcrete design of the structure suggests that it may have been used as a settling basin for incoming river water.

The railroad tracks in Area "D" are at least as old as Building 432. A tabulation of structures found in the records is presented as Table 2-2.

2.2.4. Chemical Manufacturing Processes

A tabulation of what is known about the chemical processes which were carried out in Area "D" is presented as Table 2-3. Descriptions of the known processes are given as follows:

2.2.4.1. Sulfuric Acid

Sulfur is burned to form sulfur dioxide which is passed over a vanadium catalyst with air to form sulfur trioxide which is absorbed in a circulating stream of 98-99% sulfuric acid, where it unites with the small excess of water in the acid to form more sulfuric acid.

2.2.4.2. Phosgene

Phosgene is produced by the combination of carbon monoxide and chlorine gases using activated charcoal as a catalyst.

2.2.4.3. Picric Acid

Dinitrophenol is suspended in sulfuric and nitric acid and nitrated by adding sodium nitrate to form trinitrophenol.

2.2.4.4. Detergents

Kerosene (or Alkylate) is reacted with chlorine gas to form Keryl Chloride or (Alkylchloride) which is reacted with Benzene (or Toluene) and Metallic Aluminum to form Kerylbenzene (Keryltoluene, Alkylbenzene, or Alkyltoluene). This then reacted with Sulfuric Acid to form Kerylbenzene Sulfonate (Keryltoluene Sulfonate, Alkylbenzene Sulfonate, or Alkyltoluene Sulfonate) which is dried and sold. Aluminum Chloride and Hydrogen Chloride products are neutralized with Sodium Hydroxide.

2.2.5. Solid Waste Handling Units

2.2.5.1. Weathering Area (1916-1976)

Heavy metal sludges from a variety of processes were brought to the tip of the Area "D" peninsula and piled for "weathering". The dewartered sludges were then loaded onto trucks or railroad cars and shipped to metal recyclers. A summary of those sludge-producing processes which could be found in plant records is presented in Table 2-4.

2.2.5.2. Iron Oxide Sludge Lagoons (1916-1976)

Iron-bearing solid wastes were brought through the area reclaimed from the Buffalo River at the north-eastern corner of Area "D" and handled in a similar fashion to the Weathering Area operation. Iron sludge producing processes are also shown in Table 2-4.

2.2.5.3. Incinerator Area (1922-1972)

Burnable chemical wastes, solid and liquid, were brought to Area "D" to be burned along with wood and paper from other plant activities along the river bank between the weathering area and the iron sludge ponds. Open burning pits were operated until 1954 when an incinerator was constructed at Building 448. An estimate of the quantity of wastes handled at the incinerator based on previous reports to the NYSDEC is presented in Table 2-5. Metallic hardware such as brackets and hinges were recovered from the ashes of the open-burning and incinerator operations. Neither the ash. nor the chemical residuals of the materials listed in Table 2-5 were removed from the Area D site, but were left in the burning pits until the pits filled up. They were then covered over with dirt. It is, therefore, likely, that the wells and borings taken along the shore between the iron oxide ponds and the weathering area encountered this material in their A Zone samples.

2-4

Lake Warren, and Lake Whittlesey. At Buffalo, the surficial sediments were formed in glacial Lake Warren and Lake Whittlesey. These deposits are relatively thin and consist of laminated silt, fine-to-medium sand, and clay. Remnant beach strands are commonly associated with the borders of this unit.

Glacial Deposits

Sediments of glacial origin overlie bedrock in much of the Buffalo area. An extensive ground moraine comprised of a thin silty clay to sandy till occupies much of the area. The ground moraine is marked by end moraines composed of materials of similar texture as well as sand and gravel deposits formed in ice-marginal positions or as outwash. The Buffalo and Crystal Beach end moraines border the Buffalo area to the north and south, respectively. In general, the Glacial Deposits are thin and lie unconformable atop Paleozoic bedrock.

Bedrock

The bedrock stratigraphic succession beneath Buffalo consists of rock ranging in age from Middle Devonian to Upper Silurian. The Paleozoic strata dip toward the southeast at a slope of approximately 40 feet per mile. Bedrock exposure is controlled by glacial and lacustrine erosion.

4.2.2 Regional Hydrogeology

As will be discussed in Section 4.4, groundwater is not extensively utilized in the Buffalo area due to the readily available Lake Erie water source. It should be noted that the underlying Onondaga Limestone formation does contain significant openings and in the uppermost strata is of good quality, but deteriorates with depth. If Lake Erie were not available this layer could be productive. No information could be found on the flow direction of the bedrock aquifer.

Recharge to the overburden is principally through infiltration of precipitation, however, much of the overburden contains a high fine grain content and is, therefore, relatively impermeable. The regional direction of groundwater flow is to the west and northwest toward Lake Erie, with local variations in groundwater flow directions due to the influences of topography, land use, and drainage. On a regional scale, the Glacioacustrine Deposits and the Glacial Till are considered an aquitard, thus retarding the downward migration of groundwater. material at the site. Typically, high values of electrical conductance imply the existence of conductive materials in the fill.

Figure 4-9 shows the computer-generated conductivity contours derived from the survey. Several highly conductive anomalies are observed at the site. The linear anomaly labelled "A" may be caused by a former underground trolley which was reported to have operated along the traverse. Another linear feature (B") could be due to railroad spurs. The high magnitude of readings along each of these features indicates buried metallic objects.

Another area of elevated conductivity values is in the vicinity of the lagoons ("C"), where magnetic ferrous wastes were deposited. Anomaly "D" was investigated with several test pits and was found to contain several "I" beams and other metallic objects. Additional isolated high-magnitude values primarily coincide with former rail spurs, for example, anomaly "E" occurs in an area where a rail spur is partially visible.

The "Pit Area" was also investigated with a test pit. The sides of the pit were found to be 3-4 feed deep and tocontain soils typical of the rest of Area "D".

4.3.2 Alluvium

The Waste/Fill material is underlain by Alluvium which was laid down by the Buffalo River. This unit generally consists of black to gray silty sand with trace of clay, however, grain-size textural variations to gravelly sand or sandy silt are recognized. In general, a coarsening downward sequence is present. Two sub-units of the alluvium are observed at the site: a black, brown, and red-brown clayey silt and very fine sand unit; and a lower, generally thicker and more permeable gray sand and gravel unit. Moisture conditions within the alluvium vary from moist to saturated.

Structural contours of the top of the alluvium are presented on Figure 4-10. The upper surface of the alluvium generally slopes in three directions. Sloping toward the northwest corner is due to trenching for the installation of underground utilities. Sloping toward the southwest and northeast corners is due to erosion by the Buffalo River. The alluvium ranges in thickness up to 22.0 (B-7-88) feet and averages 17.8 feet.

4-7

6.0 SITE CONTAMINATION CHARACTERIZATION

6.1 <u>METHODOLOGY</u>

The characterization of site contamination was accomplished by analysis of soil, groundwater, river water, stream sediments, and waste residuals. Samples were collected during the period of May-November, 1988. A summary of the sample collection and analysis methodology is presented below. A detailed discussion of the procedures that were used to collect and analyze all environmental samples is presented in Appendix A.2.

6.1.1 Soils

Soil samples were collected at the surface and at depth using splitspoon samplers. All surficial soil samples were collected to a depth of two (2) feet. Soil samples collected at depth were composited in accordance with the following protocol:

- For each deep boring, a Composite "A" sample was made of all of the apparently contaminated soil. The physical appearance of the soil (notably discoloration and odor) was used in conjunction with HNu total organic vapor readings to make this determination.
- At each boring, a Composite "B" sample was made of the first complete 2-foot split-spoon sample of apparently uncontaminated soil. This sample was collected within the next six (6) feet of boring sample below the Composite "A" sample.
- A "C" zone sample was made of the 2-foot split spoon sample starting six (6) feet below the top of the composite "B" sample.

If no apparently contaminated soil was encountered, no Composite "A" was collected. If the entire depth of the boring was through an apparently contaminated interval, such as the borings made to a specific depth for piezometer and monitoring well installation, then no Composite "B" and "C" was collected. For the same reason, no Composite "B" and/or "C" was collected at some of the soil borings that were terminated in the till which underlies the fill at the site. The decision to terminate all soil borings in the till was made in the field and is a deviation from the Work Plan that was approved by Buffalo Color/Allied Signal and the NYSDEC to prevent the down hole migration of contaminated fill material (see Appendix B.2). The field observations used as a basis for defining the Composite "A", "B" and "C" intervals are recorded in Appendix C.2, Boring Logs, and are summarized in Table 6-1. A Total of six (6) Composite "C" samples and eleven (11) composite "B" samples were collected. Of these, three (3) of the "C" and (1) of the "B" samples were taken in the grey silty clay glacioacustrine layer. The rest were taken in the fill and alluvium layers.

None of the glacioacustrine layer samples showed contamination, but nearly all of the samples collected in the fill or the alluvium layers showed some contamination.

Surficial soil samples were collected at nine (9) locations as shown in Figure 6-1. Soil samples were collected at depth at twenty-four (24) locations including seven (7) soil boring, four (4) piezometer installations and ten (10) monitoring well (i.e., MW-1-88 through MW-10-88) installation locations. No soil samples were collected for , chemical analysis at MW-11, MW-12, MW-13, W-6R, or the previously installed monitoring wells (i.e., W-7, W-8, W-12, W-13, W-14, W-15).

The surfical soil samples and deep soil composites were analyzed for the chemical parameters identified in Table 6-2. The analytical methods used for all analyses are summarized in Table 6-3.

6.1.2 Groundwater

Seven (7) previously installed groundwater monitoring wells (i.e., W-7, W-8, and W-9 installed May 1982 and W-12, W-13, W-14, and W-15 installed April 1983) and ten (10) wells installed during May and June 1988 (i.e., MW-1 through MW-10) as a part of this RI program were sampled on two (2) occasions: 6/22-24/88 and 8/16-18/88. Subsequently, three (3) additional wells were installed (i.e., MW-11, MW-12, and MW-13) during November 1988. Samples were collected from these wells on one (1) occasion: 11/21/88. the location of each monitoring well is shown on Figure 6-1. The screened intervals of all the wells is discussed in Section 4.1.3.

All groundwater samples were collected using stainless steel or teflon bailers. None of the groundwater samples were filtered prior to analysis. The groundwater samples were analyzed for the chemical parameters identified in Table 6-2. The analytical methods used are summarized in Table 6-3. As Table 6-2 indicates, the groundwater

1

6.3 Ground Water

The groundwater monitoring results for those parameters having at least one detected value are summarized in Tables 6-7, 6-8, 6-9 and 6-10. Two (2) hydrogeologic units were monitored: the shallow unconfined water-bearing zone and the Glacioacustrine/Till Aquitard (see Section 4.4). A discussion of the character of contamination found in each of these units is presented below.

6.3.1 Shallow Unconfined Water-Bearing Zone

The screened interval of each well installed within this zone can be summarized as follows:

- Straddling the Water Table: MW-2 MW-6 MW-3 MW-8 MW-4 MW-9 MW-5 MW-10

 Middle of Shallow Water-Bearing Zone: W-7 W-13 W-8 W-14 W-9 W-15 W-12

Top of Uppermost Confining Layer: MW-11 MW-12 MW-13

The elevation of each screened interval has been presented in Table 4-1. Field observations pertinent to visual and olfactory evidence of contamination at each well is presented in Table 4-2.

For the purpose of discussion of the character of contamination found in this zone, the Area "D" site is again divided into the areas identified in Section 6.2.

6.3.1.1 Iron Oxide Sludge Lagoons

Tow (2) wells (W-14 and W-15) were sampled on each of two (2) occasions in this area (see Figure 6-1). During the June sampling event, groundwater elevations were higher than during the August sampling

6.3.1.6 <u>Remainder of Site</u>

The two remaining wells at which groundwater samples were collected during the RI field activities are W-7, located near the northwest site boundary, and W-6R, located outside the northern site boundary adjacent to the site access road. Well W-7 is positioned at the most hydraulically upgradient location of all the wells monitored during this program.

Nine (9) volatile/semi-volatile compounds were detected in W-7, the most notable being benzene (16-210 ppb). Except for iron (42,000 - 47,000 ppb) and aluminum (2,400 ppb) metal concentrations were relatively low. The TOC (20-25 ppm), TOX (0.062-0.067 ppm) and specific conductivity (1400-1800 umhos) all reflect a relatively low level of groundwater contamination at this well.

Well W-7 is located inside Area "D" beside what were roadways and railroad sidings. The possibility of spillage from these sources was discussed in Section 2.2.6. The low levels of contamination found at this location are probably attributable to 70 or more years of chemical traffic in the immediate area.

The groundwater at W-6R contains numerous organic compounds in the low ppb concentration range. The groundwater collected from this well was observed to be black in color and to have a slight odor. Notable organic contaminants detected included:

benzene	480	-	500	ppb
toluene	88	-	110	ppb
benzidine	ND	-	90	ppb
chlorobenzene	17	-	24	ppb
naphthalene	14	-	16	ppb
xylene	ND	-	10	ppb
1-naphthylamine	6		9	ppb
1,4-dichlorobenzene	3	-	5	ppb
1,2-dichlorobenzene	3		4	ppb

Metals present include:

Iron		6,900	-	8,100	ppb
Aluminum		NR	-	2,800	ppb
Zinc		390	-	430	ppb
Copper	1	80	-	160	ppb
Chromium		50	-	90	ppb
Lead		60	-	80	ppb

Well W-6R is located on idle DL&W Railroad property alongside the roadway leading into Area "D". Figures 4-15 and 4-16 and indicate that this well is immediately downgradient from the currently operational railroad property which form the north-western boundary of Area "D". Well W-6R could also be included in maps similar to Figures 2-3 or 2-4 which indicate potential spillage from past truck or railroad spillage.

6.3.2 Glacioacustrine/Till Aquitard

i

ł

Two wells (MW-1-88 and MW-7-88) were installed in the glacial till to monitor the ground water quality of the lower portion of the aquitard that underlies the site. As previously discussed, a continuous glaciolacustrine/till aquitard is present beneath the site and groundwater in this zone exhibits a vertically upward hydraulic gradient (see Section 4.4). These factors would be expected to retard the downward migration of contaminants from the fill.

The analytical data for monitoring wells MW-1-88 and MW-7-88 summarized in Table 6-10 does not present clear evidence that the galciolacustrine till has been contaminated.

6.4 <u>Surface Water</u>

The surface water sampling results for those parameters having at least one detected value are summarized in Table 6-11. As indicated, most of the volatiles detected were also detected in the instrument, blanks analyzed as a part of the quality control protocol. As discussed previously, acetone was present as a result of its use in field cleaning of sampling equipment.

These results are comparable to those of recent stream surveillance of the Buffalo River which were conducted by NYDEC and presented in the recently published Buffalo River Remedial Action Plan, and earlier by Buffalo Color corporation. These results have been incorporated into Table 8-1 (Alt.)

The surface water sampling locations are shown in Figure 6-2. The designated "upstream" (SW UP) and "downstream" (SW Down) sampling locations were named on the basis of normal flow direction in the Buffalo river. However, as has been discussed, flow reversals sometimes occur in the river (see Sections 4.4.2.2 and 5.0). During the 8/19/88 sampling event, such a flow reversal was occurring.

6.5 <u>Stream Sediments</u>

As discussed in Sections 4.4.2.1 and 5.1, flow direction reversals occur in the Buffalo River as a result of lake seiches. This situation might be expected to have some influence on sediment transport and distribution. However, since flow velocity is low during such flow reversals, the major sediment transport process is likely more a function of sediment scour that occurs during the spring melt/runoff and major storm events. The problem is complicated by the fact that the U.S. Army Corps of Engineers dredges the river bottoms, removing 100,000 - 200,000 tons of sediments per year. This may change the location and direction of subsequent deposition of sediments re-suspended during dredging. The discussion of the stream sediment sampling results is presented in this context.

The results of analysis of sediments collected from the bed of the Buffalo River just offshore of Area "D" for those parameters having at least one detected value are summarized in Table 6-12. As indicated in Table 6-12, the principal contaminants found in the sediments were eleven (11) PAH compounds, naphthalene, nitrobenzene, and metals, especially iron, copper, lead, chromium, and zinc.

These data are comparable to the results of river sediment sampling beside Area D which are presented in a recent study conducted by NYDEC and Erie County Department of Environment and Planning as part of the Niagara River. Area Sediments (December 1987). These data have also been incorporated into Table 8-1 (Alt).

Several trends are apparent with respect to the spatial distribution of the semi volatile organics and metals found in the sediments. First is the occurrence of 1,2-dichlorobenzene, nitrobenzene, and naphthalene at sediment sampling stations 4 and 5. As shown in Figure 6-2, these two stations are located adjacent to the incineration area where the same semi volatile organics are present in high concentration in the soil (see Section 6.2.2).

Another trend was the steadily increasing concentrations of EOX and metals from Station No. 1 through Station No. 6 (see Figure 6-2). Finally, the highest concentration of PAH compounds and chromium was found at Station No. 8, located in the sediment depositional zone on the west side of the peninsula.

6.6 Waste Residues

Analysis of the two (2) tar-like waste residue samples collected from the shore on the east and west sides of Area "D" yielded inconsistent results. Thirteen (13) PAH compounds and two (2) phthalates were analytically detected in the west tar sample (see Table 6-13). A split sample of this material taken by NYDEC also showed total PAH levels of several hundred ppm. The discrepancies between the split samples of the tars is indicative of the difficulty encountered in trying to reproduce "soil" sampling results. The heterogeneity of the samples can result in highly different lab results on even intensively homogenized soil samples. Please note that if a 100 gram soil sample is split in half, a 1 mg chunk of a chemical slipping into one split sample instead of the other can make a 20 ppm difference in the reported results. In a tar-like sample, the probability of finding such chunks of chemicals is enhanced.

In contrast to the above, only bis (2-ethylhexyl)phthalate was reported to be present in the east tar sample. The iron content of this sample was determined to be 52 percent, indicating its probable identity as steel slag.

7.2.3 Ground Water

:

Contaminant loadings to the Buffalo River via the groundwater pathway were calculated for the Area "D" site using Darcy's Law and concentration data presented in Section 6.0. Considerations made in the performance of these calculations included:

- only groundwater in the uppermost saturated zone is contributing contaminants to the Buffalo River;
- the quantity of contaminants present in the uppermost saturated zone was not corrected for potential background sources (viz.hydraulically upgradient and bedrock sources); and
- loading calculations were made for the following groups of parameters:
 - total volatile organic compounds (VOCs), excluding acetone and methylene chloride,
 - . polynuclear aromatic hydrocarbons (PAHs) and phthalates,
 - . other semi-volatile organic compounds (SVOCs),
 - . total iron
 - . total metals (viz.Sb, As, Be, Cd, Cr, Cu, Pb, Hg, Ni, Se, Ag, Tl, Zn), excluding iron,
 - . total organic carbon (TOC), and
 - . total organic halogens (TOX).
- The elevation of the bottom of the uppermost saturated zones is a consistent, equal to the average elevation of clay shown in Table 4-5. The elevations of the tops of the uppermost saturated zones are measurements made shortly before the day of sampling. These data are presented in Table 4-3.
- The width of each section of the uppermost saturated zone was set equal to the length of corresponding shoreline.
- The river-front perimeter of Area "D" was subdivided into six sections, each measured by a group of monitoring wells in the uppermost saturated zone.
 - . Iron Oxide Lagoon Area (Wells W-14, W-15)
 - . Incinerator Area (MW-4-88, MW-9-88, MW-12-88, MW-13-88)
 - . Between incinerator and weathering areas (MW-10-88)
 - . Weathering Area (W-12, W-13)
 - . West Shore (Southern End) (MW-2-88, MW-3-88, W-9)
 - . West Shore (Northern End) (MW-5-88, MW-6-88)

7-3

All of the data collected during the present RI from these monitoring wells were utilized to calculate average concentrations of the above specified groups of contaminants in groundwater entering the Buffalo River from Area "D" as summarized in Table 7-1. A tabulation of all of the calculations is presented in Table 7-4 in Appendix E.3. No non-aqueous phase liquids were found in measurable quantities at any of the peripheral wells.

The overall estimates of this calculation are comparable to earlier ones.

Estimator	Date	Organics (P	ounds/Day) Metals	
Buffalo Color (Phase 1)	Jun 1984		9.0	
NYSDEC (Buffalo River RAP)	Mar 1989	3.9	0.5	
Remedial Investigation	Aug 1989	12.8	1.3	

7.2.4 Mechanical Erosion

The erosion potential of the river bank along the periphery of the Area "D" site was calculated using the Universal Soil Loss Equation (USLE) as developed by the United States Department of Agriculture (USDA) and summarized in USEPA (1982). Major assumptions used in the performance of these calculations included:

- . that no vegetation exists on the river bank;
- . that the fill material contains less than 0.5 percent organics; and
- . that river scour increases the erosion potential by 25 percent along the eastern bank and by 10 percent along the southwestern bank.

The river bank along the periphery of the Area "D" site was segregated into six (6) areas to facilitate performance of the calculations and use of area-specific soil/waste fill characteristics. The six areas included: the iron oxide sludge pond area, the incineration area, the weathering area, the southwest bank, the area between the iron oxide sludge pond and the incineration area, and the area between the weathering area and the incineration area. No attempt was made to estimate the amount of waste fill which is eroding below the water surface. Erosion potential calculations are presented in Appendix E.1 along with a figure illustrating how the river bank was segregated into the above designated areas for calculation purposes.

Contaminant loadings to the Buffalo River via the mechanical erosion pathway were calculated using the erosion potential calculations and soil/fill contaminant concentration data presented in Section 6.0

Table 7-1

BUFFALO COLOR CORPORATION AREA "D"

GROUNDWATER LOADINGS TO THE BUFFALO RIVER

Pounds/Day

:

1

:

- -	IRON OXIDE LAGOON AREA	INCIN- ERATOR AREA	INCIN./ WEATHER. AREA	WEATH- ERING AREA	WEST SHORE (SOUTH)	WEST SHORE (NORTH)	AREA D TOTAL
PAH/PHTHALATES	0.000	0.003	0.000	0.000	0.001	0.000	0.004
OTHER SEMI-VOLATILE ORGANICS	0.102	0.161	0.000	0.001	0.149	0.000	0.413
VOLATILE ORGANICS	0.005	0.016	0.000	0.000	0.013	0.000	0.034
TOTAL METALS LESS IRON	0.245	0.002	0.002	0.029	1.052	0.000	1.329
IRON	0.428	0.071	0.010	0.098	31.125	0.003	31.735
TOTAL ORGANIC CARBON	0.821	1.619	0.006	0.034	10.300	0.005	12.784
TOTAL ORGANIC HALOGEN	0.001	0.024	0.000	0.000	0.017	0.000	0.041
FLOW (Gallons/Day)	1284	11127	21	125	12283	15	24856

Detailed calculations presented in Appendix E.4 Table 7-4

The presence of an oily sheen, odor, HNu reading, or other visible sign of contamination was not observed at any of the underground utilities found. Approximate locations of observed underground utilities are presented on Figure 7-2.

7.3 Contaminant Loadings

7.3.1 Free-Product Migration

The 1982 finding of a 6-8 foot layer of kerosene-like material, floating on the water table at Well W-8 is confirmed.

Well W-8 is located in Area D about 15 feet south of the former Tank Park 910. That cluster of tanks had been surrounded by a concrete dike, but had an earthen floor. Table 2-3 indicates that kerosene is known to have been stored in tanks in Area D. It is therefore, probable that the material in W-8 is from a spill which occurred in Tank Park 910 sometime during its active life.

Table 2-2 indicates that Tank Park 910 was installed in 1953 and Table 2-3 shows that detergents manufacturing in Area D ended in 1974. Any spill in Tank Park 910 would, therefore, have occurred between these dates.

Free-product migration is generally governed by the viscosity and density of the product, relative permeability of the formation, and the rate at which ground water flows through the formation. Soluble constituents of the free-product are conservatively assumed to move at the same rate as groundwater flow. The organic contaminant plume is, expected to migrate in a southerly and southwesterly direction.

Figures 4-15 and 4-16 indicate that this would carry groundwater bearing dissolved constituents from W-8 toward monitoring well MW-5-89. In response to gradients of 0.00081 to 0.00194 ft/ft. Hydraulic conductivity measured at well MW-5-89 (Table 4-7) gives a value of 0.000137 cw/sec. Converting these data to migration rates gives values between 0.1 and 0.3 feet per year.

Applying the above rate of migration to the above dates of spill, we calculate that the distance travelled by groundwater from beneath Tank Park 910 lies between 2 and 11 feet. This is far short of the distance to MW-5-89 and further short of the distance to the river bank.

The movement of the floating organic phase itself is even slower than the groundwater, owing to the relative viscosities and densities of kerosene and water. The immobility of the organic phase is verified by the fact that the organic phase was not found in downgradient monitoring wells MW-3-88, MW-5-88, or MW-6-88 which are screened at the water table.

Analysis of the organic phase in W-8 shown in Table 6-9 indicated the presence of constituents which have some solubility in water. The table below shows that those constituents which were detected in both rounds of organic phase sampling were "non-detected" in the groundwater at MW-5-88 except for parameters probably related to the apparent laboratory contamination of glassware and equipment which also affected the blank samples.

Comparison of W-8 Organic Phase with MW-5-88 Groundwater

	W- Organi Concen PP	B C-Phase tration B	MW-5-88 Groundwater Concentration PPB			
Xylene	3,276	В	4.5	В		
Fluoranthene	2,651		-			
Methylene Chloride	917	BB	4.0	BBJ		
Acetone	550		-			
Benzene	394		-			
Chlorobenzene	363					
Pyrene	156		-			
Toluene	149	BBJ	< 0.1	BJ		

Comments: B Contaminant present in laboratory blank

J Value of sample estimated by laboratory

- Not detected in groundwater

The history of Area D described in Section 2 and the frequency of soil boring observations of stained or odorous soils indicate a reasonably high probability of finding evidence of non-aqueous phase liquids at many locations on the site. For this reason, we believe that it is unsound to infer that because "NAPL" is found at two locations, there is evidence of migration between the two points.

7-6A

7.3.2 Groundwater

Calculated contaminant loadings to the Buffalo River from the Area "D" site via the groundwater pathway are summarized in Table 7-1. Examination of the data in Table 7-1 indicates that as much as 17.4 pounds of iron and 2.0 pounds of other metals are being discharged daily to the Buffalo River via groundwater. However, these numbers may be un-representatively high due to the high turbidity/suspended solids content of the groundwater quality samples collected during this investigation. Soluble metals data was not collected (see Section 6.0). Further examination of Table 7-1 indicates that halogenated organics are a minor amount (viz. less than 2 percent) of the total organic carbon being discharged to the Buffalo River. The data also indicate that PAHs and phthalates re a relatively minor amount (viz. less than 5 percent) of the total semi-volatile organic compounds being discharged to the Buffalo River. via groundwater.

۱

8.0 Public Health and Environmental Concerns

This section presents an assessment of public health and environmental concerns at the Buffalo Color Area "D" site. The objectives of this assessment are to evaluate potential human health and environmental impacts associated with exposure to contaminants associated with the site.

The three factors which govern the potential risk of hazardous wastes to human health and the environment are:

- 1) the presence of contaminants;
- 2) actual or potential paths of exposure to these contaminants; and
- 3) human and/or environmental receptors in the exposure paths.

A discussion of potential pathways of exposure and potential receptors of contaminants that may be migrating off-site from the Area "D" is presented in Section 8.1. An evaluation of specific site contaminants potentially affecting human health is presented in Section 8.2. Potential environmental impacts, including a review of the literature pertinent to environmental quality of the Buffalo River, is presented in Section 8.3.

8.1 Potential Receptors

Potential human exposure may result from contaminants present at the site or from contaminants emanating from the site (e.g., via groundwater, surface run-off, air, etc.). Potential human exposure points are addressed below on a media-specific basis.

<u>Contaminated Soil</u> - The Buffalo Color Area "D" site is located on a peninsula in the Buffalo River. A guarded security fence is located to the north and west of the site that limits entry onto the site to authorized personnel only. The site is not readily accessible to Buffalo Color employees or the general public from land. The steep banks of the south and east sides of Area "D" discourage entry from the Buffalo River. A

8-1

security fence blocks entry from the smooth-banked west side. Area "D" is patrolled eight (8) times per day by uniformed security. Under a trespass scenario, trespassers could be exposed to contaminated soil by dermal contact or ingestion (i.e., if contaminated soil is transferred to the hands, it could be ingested during activities such as eating or smoking).

<u>Contaminated Groundwater</u> - The Area "D" site is located in the City of Buffalo. Area residents are supplied with water by the City of Buffalo Department of Public Works, Water Division. There are no known potable water wells in the area, therefore, ingestion of contaminated groundwater is not a human exposure route of concern at the site.

<u>Contaminated Surface Water</u> - Any surface water contaminants from the site would flow east and empty into Lake Erie, approximately 4 miles downstream. There are no known surface water intakes on the Buffalo River downstream of the site. The closest downstream surface water intake used for potable supply is located near the confluence of Lake Erie and the Niagara river.

The impact of surface water contamination adjacent to the site would be lessened considerably by natural dilution within the stream system. This dilution results from a number of processes, including mechanical dispersion and physical/chemical/biological reductions (e.g., due to adsorption, settlement, volatilization, decay, etc.).

<u>Air Contamination</u> - Receptors considered potentially at risk from air contamination at the site are persons trespassing on the site. The greatest potential risk would result from volatilization of organics in surface soil. HNu readings taken during soil sampling indicated that there was some volatilization of organics in soil.

۰.

8-2

<u>Summary</u> - Based upon the foregoing discussions, the most likely human exposure pathways identified at the site are ingestion, dermal contact and inhalation of contaminants in surface soils by trespassers.

8.2 Public Health Impacts

8.2.1 Regulatory Standards and Guidelines

Potential impacts posed by surface water and groundwater contamination are identified on the basis of comparison of observed contaminant concentrations at the site with applicable federal and state standards and guidelines. These regulations and guidelines are the following:

- New York State Water Quality Regulations (Title 6, Parts 701 and 703).
- Secondary Drinking Water Regulation (40 CFR, Part 143)
- NYSDEC Ambient Water Quality Guidance Values (TOGS 1.1.1 4/1/87)
- Safe Drinking Water Act, Recommended Maximum Contaminant Levels
- Clean Water Act, Water Quality Criteria for Human Health
- NYSDOH Sanitary Code Drinking Water Supplies 10 NYCRR Subpart 5-1 (1989)

Since there are currently no applicable standards or guidelines relating to soil contamination, the potential impacts of soil contamination have not been addressed.

8.2.1.1 Applicable Water Quality Standards and Criteria - Surface water in the State of New York is classified by the New York State Department of Environmental Conservation (NYSDEC) according to the "Best Usage of Waters". The reach of the Buffalo River from the River's mouth to the City of Buffalo West Seneca border is designated as Class "D". New York State Water Quality Regulations (6NYCRR, Part 701) identify the best usage of Class "D" surface water as follows:

> "The waters are suitable for fishing. The water quality shall be suitable for primary and secondary contact recreation even though other factors may limit the use for that purpose. Due to such natural conditions a intermittency of flow, water conditions not conducive to propagation of game fishery or stream bed conditions, the waters will not support fish propagation".

> > 8-3

1

All groundwater in New York State are designated by NYSDEC as Class "GA". New York State Water Quality Regulations (6NYCRR, Part 703) identify the best usage of Class GA groundwater as follows:

"The best usage of Class GA waters is as a source of potable water supply. Class GA waters are fresh groundwater found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock".

According to these regulations, standards applicable to Class GA ground water shall be the most stringent of those from the following four sources:

- 1) New York State Water Quality Regulations (6NYCRR, Part 703)
- Maximum Contaminant Levels (MCLs) for drinking water promulgated by the New York State Department of Health (10NYCRR, Subpart 5-1, Public Water Supplies).
- Standards for raw water promulgated by the New York State Department of Health (10NYCRR, Part 170, Sources of Water Supply).
- 4) Maximum Contaminant Levels for drinking water promulgated as Primary Drinking Water Regulations by the U.S. Environmental Protection Agency (USEPA) pursuant to the Safe Drinking Water Act (40 CFR, Part 141).

In addition to the preceding enforceable standards for surface water and groundwater, the USEPA has issued water quality guidelines referred to as Secondary Drinking Water Regulations (40 CFR, Part 143). The NYSDEC also has Ambient Water Quality Guidance Values from their Division of Water Technical and Operational Guidance Series, referred to as TOGS 85-W-38. In addition, there are guidelines pursuant to the Clean Water and Safe Drinking Water Acts which are summarized in the USEPA's Guidance on Feasibility Studies Under CERCLA (USEPA, 1985b) which include the following:

1) Secondary Drinking Water Regulations (applicable to groundwater)

8-4

ŧ

- 2) Ambient Water Quality Guidance Values (applicable to groundwater)
- 3) Safe Drinking Water Act, Recommended Maximum Contaminant Levels (applicable to groundwater).
- 4) Clean Water Act, Water Quality Criteria for Human Health -- Fish and Drinking Water (applicable to surface water)
- 5) Clean Water Act, Water Quality Criteria for Human Health -Adjusted for Drinking Water Only (applicable to groundwater)

8.2.1.2 Comparison with Standards and Guidelines

Table 8-1 summarizes observed versus allowable concentrations of hazardous surface water and groundwater contaminants at the site. For each of the chemical parameters included as part of the analytical program during the present RI, Table 8-1 lists its laboratory detection limit, its maximum observed concentration in surface water and groundwater samples, and the corresponding enforceable limits and non-enforceable guidelines applicable to these contaminants. For comparative purposes, the maximum observed oil and sediment concentrations for each contaminant are also presented.

Groundwater and surface water parameters detected in excess of the applicable standards and guidelines are summarized in Tables 8-2 through 8-4. As indicated, the most prevalent contaminants in groundwater at the site include volatile organics (viz., benzene, toluene, chlorobenzene, and xylene) and metals, (viz., arsenic, cadmium, chromium, lead and zinc). Most of the volatile organics are in violation of the recently revised 10 NYCRR Subpart 5-1, Public Water Supplies regulations, whereas most of the metals are in violation of the New York State Water Quality REgulations (6NYCRR, Part 703). As indicated in Table 8-3, the compounds that exceeded applicable guidelines most frequently include 2chlorophenol, antimony and arsenic.

The data presented in Table 8-4 indicates a much lower incidence of contaminants in surface water than groundwater, based on a comparison with applicable standards and guidelines. However, it should be noted that it is impractical to access the water quality of the river adjacent to the site based on one round of sampling.

8-5

ł

- Chromium concentrations of 0.1-0.2 mg/lg were reported in fish from the segment of the Buffalo River from the Cazenovia Creek confluence to Lake Erie.
- High concentrations of benzanthracene (up to 127.5mg/kg) and benzyprene (up to 2.46 mg/kg) were reported in a carp and goldfish composite sample collected near the mouth of the Buffalo River.

Data from 1980 indicated the following for macrophytes:

- The greatest number of metals (nine) found in Cladophora (analgal macrophyte) at concentrations above detection limits occurred at a site located near to the entrance to the Buffalo Ship Canal in the Buffalo river.
- Mercury was reported in only two Cladophora samples. One sample was collected at the Ship Canal location mentioned above.
- The highest concentrations of arsenic (35.0 ug/g), chromium (16 ug/g), cobalt (4.0 ug/g), copper (20.0 ug/g), and lead (41.0ug/g) were found in Cladophora from the Ship Canal location indicating metals pollution in this area.

A recent examination of the fish population of the Buffalo River (Adrian and Merckel,1989) demonstrated the presence of 29 species which were observed in a sampling of 3,510 fish. The species found were:

Gizzard Shad Pumpkinseed Golden Shiner Goldfish Emerald Shiner Carp Brown Bullhead White Perch Smallmouth Bass White Sucker Golden Redhorse Spottail Shiner Largemouth Bass White Bass Yellow Perch Rock Bass Freshwater Drum Northern Hog Sucker Rainbow Trout Alewife Common Shiner Quillback Carpsucker Muskellunge Black Crapple Creek Chub Northern Pike Coho Salmon White Crapple Brown Trout

The study also reported evidence of spawning in the river. Larva from 9 separate taxa were identified.

8-9

8.3.1.3 Sediments

Although improved water quality has enhanced biota recovery, a continuing problem documented in the literature is contaminated sediments. Sediment transport to Lake Erie is very slow because of low water levels in the Buffalo River and high water levels in Lake Erie. The higher the lake, the lower the average amount of discharge from the river. This phenomena results in stagnant conditions, and during the summer months when precipitation is low and evaporation high, the River actually flows upstream (Oleszko 1975). This results in the possibility that a site may not only contribute to downstream contamination, but upstream contamination as well.

NYSDEC investigators have claimed (Litten, 1987) that if transport from the river occurs at all, it would happen during rare high-flow conditions. However, attempts to sample these events; viz. Longabucco and Carich (1982) and Meredith and Rumer (1986) were successful. These reports do concur, however, in demonstrating that the bottom of the river does have significant year to year rearrangement of sediments.

The only known measurement of natural fish bioaccumulation of contaminants from Buffalo River sediments is presented the Niagara River Area Sediments study by NYSDEC (Litten, December 1987). That study showed inconclusive results from four pesticides. The only compound family detected in the sediment was not detected in the fish and three pesticides detected in the fish were not detected in the sediment.

8-9A

TABLE	8-1
-------	-----

Page 1 of 9

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS

....

		Ground Water				Surface Water			Sediment	Soil	
Substance	Detec- tion Limit (ug/l)] Max. Conc.] (ug/l) ⁽⁴⁾	Enforce able Limit (ug/l)	- (1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg) ⁽⁴⁾	Max. Conc. (ug/kg)	
<u>Volatiles</u>											
Chloromethane	10	ND(4) 5	5-1	0	ND		0	N	A(7)	NA
Bromomethane	10	ND	5	5-1	0	ND		0	N	A	NA
Vinyl Chloride	10	6	2	MCL	0#	ND		0	N	Α	NA
Chloroethane	10	ND	5	5-1		ND			N	A	NA
Methylene Chloride	5	15,000()	8) 5	5-1	[50]	ND		<u> </u>	N	A	NA
Acetone	10	15,000(8) 50	5-1		22,000			N	A	NA
Carbon Disulfide	5	43	50	5-1		ND			N	A	NA
1,1-Dichloroethene	5	8	5	5-1	7.	0 2			- N	A	NA
1,1-Dichloroethane	5	ND	5	5-1		ND			N	A	NA
1,2-Dichloroethene (total)) 5	19	5	5-1	[50]	5			N	A	NA
Chloroform	5	24	50	5-1	0	ND		0	N	A	NA
1,2-Dichloroethane	5	ND	5	5-1	0#	ND		0	N	A	NA
2-Butanone (or MEK)	10	260	50	5-1		ND				A	NA
1,1,1-Trichloroethane	5	ND	5	5-1	19,000	ND	•	18,400	N	A	NA
Carbon Tetrachloride	5	ND	5	703.5	0	ND		0	N	A	NA
Vinyl Acetate	10	ND	50	5-1		ND			N	A	NA
Bromodichloromethane	5	7	50	5-1	0	ND		0	N	A	NA
1,1,2,1-Tetrachloroethane	5	ND	5	5-1		ND			N	A	NA
1,2-Dichloropropane	5	ND	5	5-1		ND			N	A	NA

	c	BSERVED VE	Page 2 of 9								
		Ground Water				Surface Water			Sediment	Soil	
Substance	Detec- tion Limit (ug/l)	Max. Conc. (ug/l)	Enforce able Limit (ug/1)	- (1) Source	Guide- line Limit(2)	Max. Conc. (ug/1)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/1)	/ Max. Conc. (ug/kg)	Max. Conc. (ug/kg)	
<u> Volatiles (continued)</u>											
Trichloroethene	5	3	5	5-1	0#	ND		[11]		NA	NA
Dibromochloromethane	5	ND	50	5-1	· 0	ND		0		NA	NA
1,1,2-Trichloroethane	5	ND	5	5-1	0	ND		Ó		NA	NA
Benzene	5	28,000	NT	703.5	0#	ND		[6]		NA	NA
cis,1,3-Dichloropropene	5	ND	5	5-1	87,000	ND		87,000	· ·	NA	NJ
2-Chloroethyl Vinyl Ether	10	ND	50	5-1	. 0	ND		0		NA	NA
Bromoform	5	ND	50	5-1	0	ND		0		NA	NA
2-Hexanone	10	ND	50	5-1	[50]	ND				NA	NI
4-Methyl-2-pentanone	10	24	50	5-1		ND	·····	[50]		NA	NZ
Tetrachloroethene	5	ND	5	5-1	0#	ND		[1]		NA	NA
Toluene	5	4,700	5	5-1	[50]	ND		14,300	-	NA	NA
Chlorobenzene	5	48,000	5	5-1	[20]	ND	50	488	•	NA	NA
Ethyl Benzene	5	43,000	5	5-1	2,400	ND		1,400		NA	N7
Styrene	5	ND	5	5-1		ND		•		NA	NA
Total Xylenes	5	1,700	5	5-1		6				NA	NA
Acrolein	400	ND	50	5-1		ND				NA	NA
Acrolynitrile	400	ND	50	5-1		ND				NA	NA

TABLE	8-1	Con	't
-------	-----	-----	----

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS

0

•

Page 3 of 9

.

		Ground Water				Surface Water			Sediment S	Soil	
Substance	Detec- tion Limit (ug/1)	Max. Conc. (ug/l)	Enforce able Limit (ug/l)	- (1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/1)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)	Max. Conc. (ug/kg)	
<u>Semi-Volatiles</u>											
Phenol	10	77	50	5-1	3,500	ND		3,500	NI	ND	
Aniline	10	660	50	5-1		ND			NA	. NA	
bis(2-Chloroethyl)ether	10	ND	1	703.5	0	ND		0	NI	ND	
2-Chlorophenol	10	1,800	50	5-1	0.	1 ND		0.	1 NI	ND	
1,3-Dichlorobenzene	10	49	5	5-1	470	ND	50	400	NI	ND	
1,4-Dichlorobenzene	10	4,900	5	5- <u>1</u>	470	ND	50	400	NI	13,000	
Benzyl Alcohol	10	ND	50	5-1					NE	ND	
1,2-Dichlorobenzene	10	21,000	5	5-1	470	ND	50	400	1,200	110,000	
2-Methylphenol	10	47	50	5-1		ND			NI	ND	
bis(2-Chloroisopropyl)ethe	er 10	ND	50	5-1	34.	7 ND		34.	7 NI	ND	
4-Methylphenol	10	ND	50	5-1		ND			- NI	ND	
N-Nitroso-dipropylamine	10	24	50	5-1		ND			NI	ND	
Hexachloroethane	10	ND	50	5-1	0	ND		0	NI	ND	
Nitrobenzene	10	15	50	5-1	[130]	ND		19,800	600	1,100,000	
Isophorone	10	ND	50	5-1	5,200	ND		5,700	NE	ND	
2-Nitrophenol	10	ND	50	5-1		ND			NE	ND	
2,4-Dimethylphenol	10	130	50	5-1	400	ND		400	NE	ND	
Benzoic Acid	50	18	50	5-1		ND			- ND	ND	

TABLE 8-1 Con't

		Ground Water				Surface Water			Sediment		Soil	
Substance	Detec- tion Limit (ug/l)	Max. Conc. (ug/1)	Enforce able Limit (ug/l)	(1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/1)	Max.) Conc. (ug/kg)	Max. Conc. (ug/kg)		
Semi-Volatiles (Continued)	-											
Bis(2-Chloroethoxyl)metham	ie 10	20	50	5-1	0	ND		0		ND	ND	
2,4-Dichlorophenol	10	ND	50	5-1	[0.3]	ND				ND	ND	
1,2,4-Trichlorobenzene	10	1,200	5	5-1		ND	50			ND	150,000	
Naphthalene	10	4,900	50	5-1		ND				880	470,000	
4-Chloroaniline	10	11,000	50	5-1	<u> </u>	ND				ND	ND	
Hexachlorobutadiene	10	ND	50	5-1	0	ND		0		ND	ND	
4-Chloro-3-methylphenol	10	7	50	5-1	3,000	ND		3,000		ND	ND	
2-Methylnaphthalene	10	16	50	5-1		ND -		·		ND	ND	
Hexachlorocyclopentadiene	10	ND	50	5-1	206	ND		206		ND	ND	
2,4,6-Trichlorophenol	10	ND	50	5-1	0	ND		0		ND	ND	
2,4,5-Trichlorophenol	50	ND	50	5-1	2,600	ND		2,600	-	ND	ND	
2-Chloronaphthalene	10	ND	50	5-1	[10]	ND		·		ND	140,000	
2-Nitroaniline	50	4	50	5-1	·····	ND				ND	1.100	
Dimethyl Phthalate	10	ND	50	5-1	350,000	ND		313,000		ND	ND	
Acenaphthylene	10	15	50	5-1		ND		·		240	16,000	
3-Nitroaniline	50	ND	50	5-1		ND				ND	ND	
Acenaphthene	10	26	50	5-1	20	ND		20,	.	ND	400	
2,4-Dinitrophenol	50	ND	50	5-1	70	ND		70		ND	3,400	
4-Nitrophenol	50	ND	50	5-1		ND				ND	ND	
Dibenzofuran	10	13	50	5-1		ND				ND	ND	

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS

۰.

(Revised)

۸,

Page 4 of 9

TABLE	8-1	-	cont.
-------	-----	---	-------

۰.

Page 5 of 9

. •

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS

Det t Lin Substance (uç	Ground Water						Surface Water			So:	i1
	etec- tion imit ug/l)	Max. Conc. (ug/l)	Enforce- able Limit (ug/l)	(1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/1)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)]	Max. Conc. (ug/kg)
Semi-Volatiles (continued)											
2.4-Dinitrotoluene	10	2,000	50	5-1		ND				ND	ND
2.6-Dinitrotoluene	10	1,700	50	5-1		ND				ND	ND
Diethylphthalate	10	. 4	50	5-1	434,000	ND		350,000		ND	NE
4-Chlorophenyl Phenyl Ether	10	ND	50	5-1		ND				ND	ND
Fluorene	10	24	50	5-1		ND				ND	25,000
4-Nitroaniline	50	ND	50	5-1		ND				ND	ND
4,6-Dinitro-2-methylphenol	50	ND	50	5-1		ND				ND	ND
N-nitrosodiphenylamine	10	15	50	5-1	0	ND		0		ND	NĽ
4-Bromophenyl Phenyl Ether	10	ND	50	5-1		ND				ND	NE
Hexachlorobenzene	10	ND	0.35	5 703.5	0	ND		0		ND	NE
Pentachlorophenol	50	2	50	5-1	1,010	ND		1,010	-	ND	NI ATA AAA
Phenanthrene	10	63	50	5-1		ND				940	270,000
Anthracene	10	14	50	5-1	[50]	ND				610	4,800
Di-n-butylphthalate	10	1	50	5-1	44,000	ND		34,000		ND	760
Fluoranthene	50	54	50	5-1		ND			1	,700	330,000
Benzidine	50	- 360	50	5-1	0	ND	0.1	0	-	ND	NI
Pyrene	10	24	50	5-1		ND		·	1	,200	310,000

TABLE 8-1 Con't

÷

۰.

Page 6 of 9

De L: Substance (1		Gr	ound Wat	er			Surface	Water	Sediment	Sc)il
	etec- tion imit ug/l)	Max. Conc. (ug/l)	Enforce able Limit (ug/l)	(1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)		Max. Conc. (ug/kg)
Semi-Volatiles - continued											
Butvl Benzvl Phthalate	10	ND	50	5-1	[50]	ND				ND	ND
3,3'-Dichlorobenzidine	20	ND	50	5-1	0	ND		0		ND	ND
Benzo(a)anthracene	10	12	50	5-1		ND				740	180,000
bis(2-ethyl hexyl)phthalate	10	52	50	5-1	21,000	12		15,000		ND	1,900
Chrysene	10	11	50	5-1		ND				580	180,000
Di-n-octyl Phthalate	10	ND	50	5-1		ND				ND	65
Benzo(b)fluoranthene	10	0.3	50	5-1	[0.002]	ND				590	150,000
Benzo(k)fluoranthene	10	0.6	50	5-1	[0.002]	ND				ND	140,000
Benzo(a)pyrene	10	7	NT	703.5	[0.002]	ND	<u></u>	[0.0012]		320	140,000
Indeno(1,2,3-cd)pyrene	10	ND	50	5-1		ND			-	240	77,000
Dibenz(a,h)anthracene	10	ND ND	50	5-1		ND				ND	830
Benzo(g,h,i)perylene	10	ND	50	5-1		ND				250	63,000
1-Naphthyamine	10	42,000	50	5-1		ND				NA	NA

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS

	(DESERVED VI	ERSUS AI		CONTAMINA	NT CONCE	NTRATIONS		Page 7	of 9
		Gre	ound Wat	er			Surface	Water	Sediment S	oil
Substance	Detec- tion Limit (ug/l)	Max. Conc. (ug/l)	Enforce able Limit (ug/l)	;- (1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)	Max. Conc. (ug/kg)
Metals, Cyanide, Hex	. Chromium, T(DC, TOX								
Aluminum	200	67,000				1,140			NA	NA
Antimony	50	124			[3]	ND		146	38,000	119,000
Arsenic	2	1,820	25	703.5	0	ND	60	0	138,000	2,860,000
Barium	100	1,020	1,000	703.5		76			NA	NA
Beryllium	3	7			0	ND	1,000(6)	1.	1 1,300	NA
Cadmium	3	127	10	703.5	10	ND	2(6)	10	2,500	24,000
Chromium	9	2,140	50	5-1	50	28	279(6)	508	952,000	1,990,000
Copper	10	78,700	700	170.4	1,000	ND	16(6)	1,000	5,050,000	14,500,000
Iron	1,800	405,000	300	5-1	-	2,170	300	·	32,409,000	537,000,000
Lead	1	3,030	25	703.5	50	13	131(6)	50	- 497,000	83,200,000
Magnesium	2,000	59,700				12.800			NA	NA
Manganese	54	21,300	300	5-1		212		;	NA	NA
Mercury	0.13	3 50	2	703.5	10	ND		144	45,000	14,000
Nickel	15	830			15.	4 ND	126(6)	13,400	100,000	467,000

TABLE 8-1 Con't

• •

TABLE 8-1 Con't

.

		OBSERVED VI	ERSUS ALI	LOWABLE	CONTAMINAI	NT CONCE	NTRATIONS			
		Gre	ound Wate	er			Surface	Water	Sediment S	oil
Substance	Detec- tion Limit (ug/l)	Max. Conc. (ug/l)	Enforce- able Limit (ug/l)	(1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/1)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)	Max. Conc. (ug/kg)
METALS, CYANIDE, HEX. TOX, TOX (Continued)	CHROMIUM,									
Selenium Silver Thallium	2 5 2	10 13 94	10 50	5-1 703.5	10 50 17.8	ND ND 8 10	7(6) 20	10 50 13	ND NA 3,600	21,000 NA 66,000
Zinc Cyanide	2 10	9,950 56	300 100	170.4 170.4	5,000 200	138 19	434(6) 20	5 200	1,100,000 NA	3,320,000 NA
Hexavalent Chromium TOC TOX (EOX)	6 3,000 5	130 2,350,000 27,200	50	703.5	50	10 13,000 53	16		NA NA 63,000	NA NA 2,780,000

Page 8 of 9

.

...

-

NOTES:

.

- (1) Sources for the Enforceable Limits are as follows:
 - 703.5 6 NYCRR Water Quality Regulations, Part 703.5 Classes and Quality Standards for Ground Water
 - 5-1 10 NYCRR Subpart 5 Public Water Supplies
 - 170.4 10 NYCRR, Part 170.4 Sources of Water Supply Standards of Raw Water Quality
 - MCL Maximum Contaminant Levels for drinking water promulgated under the Safe Drinking Water Act
- (2) All Guideline Limits are from the Clean Water Act except as noted by an * which are from 40 CFR, Part 143.3 Environmental Protection Agency National Secondary Drinking Water Regulations - Secondary Maximum Contaminant Levels; or by a # which are from: 40 CFR Part 141 Recommended Maximum Contaminant Levels; or by [] which are from NYSDEC Division of Water Technical and Operational Series (85-W-38).
- (3) All Surface Water Enforceable Limits are from: 6 NYCRR Water Quality Regulations Part 701.19 Classes and Standards for Fresh Surface Waters.
- (4) ND = Not Detected ug/l (liquid) = ppb ug/kg (Solid) = ppb
- (5) NT = Not detectable by tests as referenced in 703.4
- (6) Calculated based on assumed hardness of 144 mg/l
- (7) NA = Not Analyzed
- (8) Methylene Chloride and Acetone were introduced as field and laboratory contaminants.

TABLE 8-1 (Alternate)

•

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS (From other studies)⁽⁹⁾

		Gre	ound Wat	er		Surf	ace Water		Sediment	Soil	
Substance	Detec- tion Limit (ug/l)	Max. Conc. (ug/l)(4)	Enforce able Limit (ug/l)	(1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)(4)	Max. Conc. (ug/kg)	
Volatiles											
Chloromethane	10	NA	(4) 5	5-1	0	ND		0	ND	(7)	NA
Bromomethane	10	NA	5	5-1	0	ND		0	ND		NA
Vinyl Chloride	10	NA	2	MCL	0#	ND		0	ND		NA
Chloroethane	10	NA	5	5-1		ND			ND		NA
Methylene Chloride	5	NA	5	5-1	[50]	NA			NA	······	NA
Acetone	10	NA	50	5-1		NA			ND		NA
Carbon Disulfide	5	NA	50	5-1		NA			ND		NA
1,1-Dichloroethene	5	NA	5	5-1	7.0) ND			ND		NA
1,1-Dichloroethane	5	NA	5	5-1		ND			ND		NA
1,2-Dichloroethene (total)	5	NA	5	5-1	[50]	ND			ND		NA
Chloroform	5	NA	50	5-1	0	3		0	2,900		NA
1,2-Dichloroethane	5	NA	5	5-1	0#	ND		0	- ND		NA
2-Butanone (or MEK)	10	NA	50	5-1		NA			NA		NA
1,1,1-Trichloroethane	5	NA	5	5-1	19,000	ND		18,400	ND		NA
Carbon Tetrachloride	5	NA	5	703.5	Ø	ND		0	ND		NA
Vinyl Acetate	10	NA	50	5-1		NA			NA		NA
Bromodichloromethane	5	NA	50	5-1	0	ND		0	ND		NA
1,1,2,1-Tetrachloroethane	5	NA	5	5-1		ND			- ND		NA
1,2-Dichloropropane	5	NA	5	5-1		ND		•	ND		NA
trans-1,2-Dichloropropene	5	NA	50	5-1	87,000	ND		87,000	ND		NA

Page 1 of 9

69

Page 2 of 9

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS (From other studies)

			G	round W	ater			Surface	Water	Sediment	Soil	
	Detec-			Enforce	- /4 \		·	Enforce-	Guide-			
Substance	Limit (ug/l)	Max. Conc. (ug/1)		able Limit (ug/l)	(I) Source	line Limit(2)	Max. Conc. (ug/1)	able Limit(3) (ug/1)	Limit(2) (ug/1)	Max. Conc. (ug/kg)	Conc. (ug/kg)	
Volatiles-(continued)												
Trichloroethene	5		NA	5	5-1	0#	3		[11]	2,900	1	ND
Dibromochloromethane	5		NA	50	5-1	0	ND		0	11,333]	NA
1,1,2-Trichloroethane	5		NA	5	5-1	0	ND		0	ND	1	NA
Benzene	5		NA	NT	703.5	0#	3		[6]	3,800	i	NA
cis,1,3-Dichloropropene	5	· ··••	NA	5	5-1	87,000	ND	<u> </u>	87,000	ND]	NA
2-Chloroethyl Vinyl Ether	10		NA	50	5-1	0	ND		0	ND]	NA
Bromoform	5		NA	50	5-1	0	ND		0	ND	1	NA
2-Hexanone	10		NA	50	5-1	[50]	NA			NA	1	NA
4-Methyl-2-pentanone	10		NA	50	5-1		NA		[50]	NA		NA
Tetrachloroethene	5		ND	5	5-1	0#	ND		[1]	ND	1	NA
Toluene	5		NA	5	5-1	[50]	ND		14,300	- 5,488	1	NA
Chlorobenzene	5		NA	5	5-1	[20]	ND	50	488	9,983	1	ND
Ethyl Benzene	5	·····	NA	5	5-1	2,400	ND		1,400	238]	NA
Styrene	5		NA	5	5-1		NA			ND	1	NA
Total Xylenes	5		NA	5	5-1		ND			1,648	1	NA
Acrolein	400		NA	50	5-1		NA			NA	1	NA
Acrolynitrile	400		NA	50	5-1		NA			NA]	NA

Page 3 of 9

...

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS (From other studies)

D L Substance (Gr	ound Wat	er			Surface	Water	Sediment	Soil	
	Detec- tion Limit (ug/1)	Max. Conc. (ug/l)	Enforce able Limit (ug/l)	;- (1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/1)	Max. Conc. (ug/kg)	Max. Conc (ug/	kg)
<u>Semi-Volatiles</u>											
Phenol	10	NA	50	5-1	3,500	ND		3,500		ND	N
Aniline	10	651,000	50	5-1	•	NA		•		ND	N
bis(2-Chloroethyl)ether	10	NA	1	703.5	0	ND		0		ND	N
2-Chlorophenol	10	NA	50	5-1	0.3	1 ND		0.	.1	ND	N
1,3-Dichlorobenzene	10	NA	5	5-1	470	ND	50	400	1	,898	N
1,4-Dichlorobenzene	10	NA	5	5-1	470	ND	50	400	3	, 448	NI
Benzyl Alcohol	10	NA	50	5-1		NA				ND	N
1,2-Dichlorobenzene	10	NA	5	5-1	470	ND	50	400	3	,925	N
2-Methylphenol	10	NA	50	5-1		NA				ND	Ni
bis(2-Chloroisopropyl)ethe	r 10	NA	50	5-1	34.'	7 ND		34.	.7 -	ND	N
4-Methylphenol	10	NA	50	5-1		NA				ND	N
N-Nitroso-dipropylamine	10	NA	50	5-1		ND				ND	N
Hexachloroethane	10	NA	50	5-1	0	ND		0		ND	N
Nitrobenzene	10	NA	50	5-1	[130]	ND		19,800		ND	N
Isophorone	10	NA	50	5-1	5,200	ND		5,700		ND	N
2-Nitrophenol	10	NA	- 50	5-1		ND				ND	Ni
2,4-Dimethylphenol	10	NA	50	5-1	400	ND		4 00	••	ND	N
Benzoic Acid	50	NA	50	5-1		NA				ND	NZ

٠

Page 4 of 9

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS (From other studies)

I Substance (Semi-Volatiles (Continued)		G	round Wat	er			Surface	Water	Sediment S	oil
	Detec- tion Limit (ug/l)	Max. Conc. (ug/1)	Enforce able Limit (ug/l))- (1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)	Max. Conc. (ug/kg)
Semi-Volatiles (Continued)	•									
Bis(2-Chloroethoxyl)methan	ie 10	N	A 50	5-1	0	ND		0	NI) N1
2,4-Dichlorophenol	10	N	A 50	5-1	[0.3]	ND			NE) NI
1,2,4-Trichlorobenzene	10	N	A 5	5-1		ND	50		62,901	. NI
Naphthalene	10	N	A 50	5-1		ND			324,000	NI NI
4-Chloroaniline	10	N	A 50	5-1		NA		<u> </u>	NE) N1
Hexachlorobutadiene	10	NI	A 50	5-1	0	ND		0	ND) N <i>I</i>
4-Chloro-3-methylphenol	10	N	A 50	5-1	3,000	ND		3,000	ND	NZ NZ
2-Methylnaphthalene	10	N	A 50	5-1		NA			ND	NI NI
Hexachlorocyclopentadiene	10	N	A 50	5-1	206	ND		206	ND	NI NI
2,4,6-Trichlorophenol	10	N	A 50	5-1	0	ND		0	ND	NI NI
2,4,5-Trichlorophenol	50	N	A 50	5-1	2,600	ND		2,600	ND	NI NI
2-Chloronaphthalene	10	NI	A 50	5-1	[10]	ND			- 4,000	N <i>F</i>
2-Nitroaniline	50	Ni	A 50	5-1	- +	NA	.	······	ND	N1
Dimethyl Phthalate	10	N	A 50	5-1	350,000	ND		313,000	ND	N N I
Acenaphthylene	10	N	A 50	5-1		ND	•		26,245	N7
3-Nitroaniline	50	N	A 50	5-1		NA			ND	N7
Acenaphthene	10	NI	A 50	5-1	20	ND		20	44,700	- N2
2,4-Dinitrophenol	50	N	A 50	5-1	70	ND		7Q	ND	NI NI
4-Nitrophenol	50	N	A 50	5-1		ND			ND	NF NF
Dibenzofuran	10	N	A 50	5-1		NA			ND	N <i>F</i>

				TAB	LE 8-1 (A	lt) - co	ont.		D	
		OBSERVED V	VERSUS ALL round Wate	OWABLE (r	CONTAMINA From othe	NT CONCE r studie	NTRATIONS s) Surface	Water	Page 5 Sediment S	or 9 oil
I Substance Semi-Volatiles (continued)	Detec- tion Limit (ug/1)	Max. Conc. (ug/l)	Enforce- able Limit (ug/l)	(1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/1)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)	Max. Conc. (ug/kg)
<u>Semi-Volatiles (continued)</u>										
2,4-Dinitrotoluene	10	NI	A 50	5-1		ND			ND	ND
2,6-Dinitrotoluene	10	NJ	A 50	5-1		ND			ND	NA
Diethylphthalate	10	N	A 50	5-1	434,000	ND		350,000	533	NA
4-Chlorophenyl Phenyl Ethe	r 10	NJ	A 50	5-1		ND			ND	NA
Fluorene	10	NI	A 50	5-1		ND			42,300	NA
4-Nitroaniline	50	N	A 50	5-1		NA			ND	ND
4,6-Dinitro-2-methylphenol	50	NI	A 50	5-1		NA			ND	· NA
N-nitrosodiphenylamine	10	NI	A 50	5-1	0	ND		0	7,099	NA
4-Bromophenyl Phenyl Ether	10	NI	A 50	5-1		ND			ND	NA
Hexachlorobenzene	10	NI	A 0.35	703.5	0	ND		0	ND	NA
Pentachlorophenol	50	NI	A 50	5-1	1,010	ND		1,010	ND	NA
Phenanthrene	10	N	A 50	5-1		ND			- 83,700	3,940
Anthracene	10	NI	D 50	5-1	[50]	. 4			119,000	9,590
Di-n-butylphthalate	10	NI	A 50	5-1	44,000	ND		34,000	6,496	NA
Fluoranthene	50	NI	D 50	5-1		4			102,000	10,210
Benzidine	50	240	50	5-1	0	ND	0.1	0	ND	4,520
Pyrene	10	NI	D 50	5-1		4			36,928	6,730

(Revised)

-

·

Page 6 of 9

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS (From other studies)

De Li Substance (u		G	round Wat	er			Surface	Water	Sediment S	oil
	etec- tion imit ug/l)	Max. Conc. (ug/l)	Enforce able Limit (ug/l))- (1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/1)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)	Max. Conc. (ug/kg)
<u>Semi-Volatiles - continued</u>										
Butyl Benzyl Phthalate	10	N	A 50	5-1	[50]	ND			192	NA
3,3'-Dichlorobenzidine	20	N.	A 50	5-1	0	ND		0	ND	NA
Benzo(a)anthracene	10	N.	A 50	5-1		ND			51,800	6,310
<pre>bis(2-ethyl hexyl)phthalate</pre>	10	N	A 50	5-1	21,000	ND		15,000	18,216	NA
Chrysene	10	N	D 50	5-1		6			39,500	4,630
Di-n-octyl Phthalate	10	N	A 50	5-1		ND			ND	NA
Benzo(b)fluoranthene	10	N	A 50	5-1	[0.002]	ND			96,896	NA
Benzo(k)fluoranthene	10	N	A 50	5-1	[0.002]	ND			30,900	NA
Benzo(a) pyrene	10	N	D NT	703.5	[0.002]	ND		[0.0012]	72,496	7,740
Indeno(1,2,3-cd)pyrene	10	N	A 50	5-1		ND			- 41,600	ND
Dibenz(a,h)anthracene	10	N	A 50	5-1		ND			28,000	ND
Benzo(g,h,i)perylene	10	N	A 50	5-1		ND			26,600	ND
1-Naphthyamine	10	49,60	0 50	5-1		43			NA	57,300

..

.

Page 7 of 9

\ O

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS (From other studies)

Substance		Gro	ound Wat	er			Surface	Water	Sediment S	oil	
	Detec- tion Limit (ug/l)	Max. Conc. (ug/l)	Enforce able Limit (ug/l)	(1) Source	Guide- line Limit(2)	Max. Conc.) (ug/l)	Enforce- able Limit(3) (ug/1)	Guide- line Limit(2) (ug/l)	Max. 2) Conc. (ug/kg)	Max. Conc. (ug/kg)	
Metals, Cyanide, He	x. Chromium, T(DC, TOX									
Aluminum	2,000	67.000				NA			11,893	N	
Antimony	50	124			[3]	ND		146	ND	N	
Arsenic	2	1.820	25	703.5	0	68	360	0	17.075	1,870,000	
Barium	100	1,020	1,000	703.5		NA		-	130,500	NJ	
Beryllium	3	7			0	3	1,100(6)	1.	1 4,095	NA	
Cadmium	3	127	10	703.5	10	3	2(6)	10	33,900	NZ	
Calcium	200	450,000				NA	-		36,000,000	NZ	
Chromium	9	2,140	50	5-1	50		279(6)	508	306,000	1,050,000	
	430	40				NT R	Б		- 14 750	BYT	
Copper	430 10	78 700	700	170 /	1 000	NA ND	16(6)	1 000	3 010 000	6 200 000	
Tron	1 800	405 000	300	5-1	1,000	ND	300	1,000	326 000 000	0,200,000	
Lead	1,000	3,030	25	703.5	50	145	131(6)	50	5,080,000	57,600,000	
Magnesium	2.000	71.100				NA			12,000.000	NI	
Manganese	54	21,300	300	5-1		NA	300	-	- 3,290,000	N/ N/	
Mercury	0.1	3 50	2	703.5	10	ND		144	72,700	138,000	
Nickel	15	830			15.	4 11	126(6)	13,400	375,000	187,000	

.

Page 8 of 9

OBSERVED VERSUS ALLOWABLE CONTAMINANT CONCENTRATIONS (From other studies)

		Ground Water					Surface	Water	Sediment S	loil	
Detec- tion Limit Substance (ug/1)		Max. Conc. (ug/l)	Enforce- able Limit (ug/l)	(1) Source	Guide- line Limit(2)	Max. Conc. (ug/l)	Enforce- able Limit(3) (ug/l)	Guide- line Limit(2) (ug/l)	Max. Conc. (ug/kg)	Max. Conc. (ug/kg)	
METALS, CYANIDE, HEX. CH TOX, TOX (Continued)	ROMIUM,										
Selenium	2	10	10	5-1	10	ND		10	ND	NA	
Silver	5	40	50	703.5	50	ND	7(6)	50	5 430	NA	
Sodium	1.000	592 450		10010		NΔ	,	50	800 000	NA	
Thallium	2	94			17.8	B ND	20	13	NA	NA	
Vanadium	170	NΔ		<u> </u>		חוא			27 250	NA	
Zinc	2	9,950	300	170 4	5 000	74	434(6)	5	4 290 000	4 400 000	
Cyanide	10	56	100	170.4	200	NA	20	200	- 4,875	1,400,000 NA	
Hexavalent Chromium	6	130	50	703.5	50	NA	16		NA	3,160	
TOC	3,000	2,350,000	••		20	18.000			NA NA	3,100 NA	
TOX (EOX)	5	27,200				50			NA	NA	

Page 9 of 9

NOTES:

Sources for the Enforceable Limits are as follows:
 703.5 6 NYCRR Water Quality Regulations, Part 703.5 Classes and Quality Standards for Ground Water
 5-1 10 NYCRR Subpart 5 - Public Water Supplies
 170.4 10 NYCRR, Part 170.4 Sources of Water Supply - Standards of Raw Water Quality
 MCL Maximum Contaminant Levels for drinking water promulgated under the Safe Drinking Water Act

- (2) All Guideline Limits are from the Clean Water Act except as noted by an * which are from 40 CFR, Part 143.3 Environmental Protection Agency National Secondary Drinking Water Regulations - Secondary Maximum Contaminant Levels; or by a # which are from: 40 CFR Part 141 Recommended Maximum Contaminant Levels; or by [] which are from NYSDEC Division of Water Technical and Operational Series (85-W-38).
- (3) All Surface Water Enforceable Limits are from: 6 NYCRR Water Quality Regulations Part 701.19 Classes and Standards for Fresh Surface Waters.
- (4) ND = Not Detected ug/l (liquid) = ppb ug/kg (Solid) = ppb
- (5) NT = Not detectable by tests as referenced in 703.4
- (6) Calculated based on assumed hardness of 144 mg/l
- (7) NA = Not Analyzed
- (9) "Other studies" are:

Buffalo Color Corporation, <u>Area D Groundwater Monitoring Data</u>, (1979-1982)
Buffalo Color Corporation, <u>Area D Engineering Reports</u>, (1981-1984)
N.Y.S. Dept. of Environmental Conservation, <u>Draft Buffalo River Remediation Plan</u>, (March 1987), which cites:
U.S. Army Corps of Engineers, <u>Buffalo District Sediment Sampling</u>, (1981)
U.S. Environmental Protection Agency, <u>Region V Sediment Sampling</u>, (1981)
N.Y.S. Dept. of Environmental Conservation, <u>Sediment Sampling</u>, (1983)
Erie County Environmental Compliance Services, <u>Sediment Sampling</u>, (1985)
N.Y.S. Dept. of Environmental Conservation, <u>River Monitoring</u>, (1982-1986)
N.Y.S. Dept. of Environmental Conservation, <u>Niagara River Area Sediments</u>, (December 1987)

Table	8-2
-------	-----

`O

Groundwater Parameters Exceeding Enforceable Limits

	Max. GW.	Conc. (µg/l)	Enforceable Limits Exceeded				<u>Max Soil Conc. (µg/kg)</u>		
	RI	Other(8)	Conc.	Source	<u>No. of</u>	Samples	RI	Other	
	<u>Study</u>	<u>Studies</u>	<u>(µg/l)</u>	(1)	RI	<u>Other</u>	<u>Study</u>	<u>Studies</u>	
						,			
Benzene	28,000	NA	NT(S)	703.5	31/39	-/-	NA	NA	
Chlorobenzene	48,000	NA	5	5-1	22/39	-/-	NA	ND	
Ethylbenzene	43,000	NA	5	5-1	9/39	-/-	NA	NA	
1,2-Dichlorobenzene	21,000	NA	5	5-1	6/39	-/-	110,000	ND	
1,4-Dichlorobenzene	4,900	NA	5	5-1	8/39	-/-	13,000	ND	
Toluene	4,700	NA	5	5-1	12/39	-/-	NA	NA	
1-Naphthylamine	42,000	49,600	50	5-1	9/39	10/18	NA	57,300 🧃	
Aniline	660	651,000	50	5-1	4/22	21/24	NA	NA	
Xylene	1,700	NA	5	5-1	21/39	-/-	NA	NA	
1,2,4-Trichlorobenzene	1,200	NA	5	5-1	4/39	-/-	150,000	ND	
4-Chloroaniline	11,000	NA	50	5-1	2/39	-/-	ND	NA	
Benzidine	360	240	50	5-1	2/39	3/18	ND	4,520	
Naphthalene	4,900	NA	50	5-1	3/39	-/-	420,000	1,850	
2,4-Dinitrotoluene	2,000	6,270	50	5-1	1/22	3/18	ND	ND	
2-Chlorophenol	1,800	NA	50	5-1	2/39	-/-	ND	ND	
2,6-Dinitrotoluene	1,700	NA	50	5-1	2/39	-/-	ND	NA	
1,3-Dichlorobenzene	49	NA	5	5-1	1/39	-/-	ND	ND	
2-Butanone	260	NA	50	5-1	1/39	-/-	NA	NA	
1,2-Dichloroethene	19	NA	5	5-1	5/39	-/-	- NA	NA	
Vinyl Chloride	6	NA	2	MCL	1/39	-/-	NA	NA	
Benzo(a) Pyrene	7	ND	NT(5)	703.5	1/39	0/18	140,000	7,740	
1,1-Dichloroethene	8	NA	5	5-1	1/39	-/-	NA	NA	
2,4-Dimethylphenol	130	NA	50	5-1	3/39	-/-	ND	NA	
Phenol	77	NA	50	5-1	2/39	-/-	ND	NA	
Phenanthrene	63	NA	50	5-1	2/39	0/18	270,000	9,590	
Fluoranthene	54	NA	50	5-1	2/39	-/-	330,000	10,210	
bis(2-Ethylhexylphthalate)	52	NA	50	5-1	1/39	-/-	- 1,900	NA	
Iron	405,000	388,000	300	5-1	39/39	30/41	537,000,000	NA	
Copper	78,700	110,000	700	170.4	8/39	5/24	14,500,000	6,200,000	
Lead	3,030	2,650	25	703.5	24/39	15/24	83,800,000	57,600,000	
Arsenic	1,820	801	25	703.5	22/39	20/24	2,860,000	1,870,000	
Zinc	9,950	17,100	300	170.4	19/39	13/24	3,320,000	4,400,000	
Manganese	21,300	5,560	300	5-1	17/22	10/10	NA	NA	
Chromium	2.140	397	50	703.5	13/39	13/24	1,990,000	1,050,000	
Mercury	50	5	2	703.5	9/39	3/18	14,000	138,000	
Cadmium	127	20	10	703.5	12/39	4/24	24,800	NA	
Hexavalent Chromium	130	319	50	703.5	4/39	10/18	NA	NA	
Barium	1,020	NA :	1,000	703.5	1/39	-/-	NA	NA	

•••

.

Footnotes refer to Table 8-2

APPENDIX C.1

EM TERRAIN CONDUCTIVITY SURVEY

1

:

Ł

•

Because the entire Buffalo Color Area "D" property contains sources of electromagnetic noise, no background readings could be obtained. Readings considered to be regionally background were taken near the northern boundary of South Park in Buffalo. The park is approximately three (3) miles from the Buffalo Color property. Ten readings, ranging from 22 to 26 mmhos/meter were taken at the park and are considered to be indicative of background values.

Readings on the peninsula property ranged from 22 to greater than 300 mmhos/meter. The values were computer contoured and are presented as Figure 4-9. Values greater than 300 mmhos/meter or stations where no reading could be found due to excess interference were given values of 300, indicating high-magnitude anomaly. Although Figure C.1.1 shows a high degree of irregularity over the entire peninsula, five noteworthy locations were further inspected. Comparison with plant records, visual inspection, and trenching with a back-hoe brought back no information inconsistant with the known history of the site.

C.1-2

APPENDIX E.3

1

:

CALCULATION OF CONTAMINANT LOADINGS TO THE BUFFALO RIVER VIA GROUNDWATER MIGRATION

(Revised)

.

..

1

0

.

IRON OXIDE LAGOON AREA

-

.

.

-

.

TOX (ug/l) TOX (Lbs/Year)	- 27 0.11	180 0.69	160 0.00	5440 0.01	
TOC (Lbs/Year) TOTAL ORGANIC HALOGEN	212.45	419.62	1.19	0.97	
TOTAL ORGANIC CARBON TOC (mg/l)	53	110	650	500	
IRON (ug/l) IRON (Lbs/Year)	3940 15.79	405000 1545	47500 0.09	22500 0.04	
IRON	147.95	54.00	0.00	0.00	
HEXAVALENT CHROMIUM	36908	10 14155	370	44	
SILVER Thallium Zinc	57 3370	15 4390	5 36 72	37	
MERCURY Nickel Selenium	21 630	10 760	90		
CHROMIUM Copper Lead	679 27800 2480	805 3220 3030	24 49 22	7	
ARSENIC Beryllium Cadmium	1620 127	1820	35 16		
TOTAL METALS (ug/1)	-	58	21		
VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (lbs/Year)	650 2.61	316 1.21	3120 0.01	1436 0.00	
BTHYLBENZENE Xylene		2		23	
4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE			620	320	
2-BOTANONS BROMODICHLOROETHANE TRICHLOROETHENE BENZENE		250	1000	510	
1,1-DICHLOROBTHENE 1,2-DICHLOROBTHENE CHLOROFORM		7			
METHYLENE CHLORIDE ACETONE CARBON DISULFIDE	650	8 47	800 510	91 92	
VOLATILE ORGANICS (ug/1) VINYL CHLORIDE	•				
PAH/PHTHALATES (Lbs/Year) OTHER SEMI-VOLATILES (ug/l) OTHER SEMI-VOL. (Lbs/Year)	0.048 16000 64.14	0.057 5607 21.39	0.002 43200 0.08	0.001 10506 0.02	
1-NAPHTHYLAMINE ANILINE PAH/PHTHALATES (ug/1)	16000	5600	42000	9100 660 328	
BENZO (B) FLUORANTHENB BENZO (R) FLUORANTHENB BENZO (A) PYRENB BENZIDINB				7 360	
BENZO (A) ANTHRACENB BIS (2-ETHYLHEXYL) PHTHALATE CHRYSENB			-3	12 6 11	
DI-n-BUTYLPHTHALATB PLUORANTHENE PYRENE			18	35 24	
N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENANTHRENE NATHDACENE			63	6 59	
2,6-NITROTOLUENE DIETHYL PHTHALATE FLOURENE			24	17	
ACENAPHTHENE DIBENZOFURAN 2,4-NITROTOLUENE			26	14 13	
e-CHLORO-J-METHYLPHENOL 2-METHYLNAPHTHALENE 2-NITROANILINE ACENADUTHYLEND				10	
1,2,4-TRICHLOROBENZENE NAPHTHALENE 4-CHLOROANILINE	12	15	1200 670	270 130	
2,4-DIMETHYLPHENOL BENZOIC ACID BIS (2-CHLOROBTHYL) OXYMETHAN	B				
2-MBTHYLPHENOL N-NITROSO-DI-n-PROPYLAMINE NITROBENZENE		4		18 69	
2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE		1			
SEMI-VOL. ORGANICS (ug/1) PHENOL	-				
HYDR. CONDUCTIVITY (cm/sec) FLOW RATE (Gal/Day)	0.0413 1316.0	0.0413	0.0007	0.0007	
SAMPLE DATE (1988) AQUIPER BLEVATION (Peet) Shorbling perimeter (Peet)	6-24 572.97 173	8-18 572.37 173	6-24 571.74 255	8-18 572.39 255	
SAMPLE NUMBER	W-14	w-14	W-15	W-15	

. .

.

,

LOADING TO RIVER DUE TO GW MIGRATION

SAMPLE NUMBER W- SAMPLE DATE (1988) 6- AQUIFER DEPTH (Feet) 57. SHORELINE PERIMETER (Feet) GRADIENT (Feet/Feet) 0.00 HYDR. CONDUCTIVITY (cm/sec) 0.00 FLOW RATE (Gal/Day) 60 	12 W-1 23 8-1 2.9 57 200 2 004 0.00 031 0.00 5.1 6	12 W-1 17 6-2 2.7 572. 2004 0.00 31 0.00 4.0 60 4.0 60 5.0 5.0 15	3 W- 3 8- 83 572 004 0.0 29 0.0 .9 6 .9 6 .9 6 .9 .9 .9 .9 .9 .9 .0 .9 .9 .0 .0 .9 .0 .0 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	13 17 .68 204 004 0029 0.2 15
SEMI-VOL. ORGANICS (ug/l) PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-METHYLPHENOL N-NITROSO-DI-n-PROPYLAMINE NITROBUZENE 2,4-DIMETHYLPHENOL BENSOIC ACID BIS(2-CHLOROBENZENE 1,2.4-TRICHLOROBENZENE NAPHTHALENE 4-CHLORO-J-METHYLPHENOL 2-METHYLNAPHTHALENE 2-MITROANILINE ACENAPHTYLENE ACENAPHTYLENE 3,4-NITROTOLUENE 2,6-NITROTOLUENE 2,6-NITROTOLUENE 2,6-NITROTOLUENE 2,6-NITROTOLUENE 2,6-NITROTOLUENE 2,6-NITROTOLUENE 2,6-NITROTOLUENE DIETHYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE ANTTRACENE DI-n-BUTYLPHTHALATE PLOORANTHENE		20	10 4 5000 1	15 .700
PHENOL 2-CHLOROPHENOL 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE 2-METHYLPHENOL N-NITROSO-DI-n-PROPYLAMINE NITROBENZENE 2, 4-DIMETHYLPHENOL BENZOIC ACID BIS (2-CHLOROETHYL)OXYMETHANE 1, 2, 4-TRICHLOROBENZENE NAPHTHALENE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROANILINE 3.4-NITROTOLUENE DIETHYL PHTHALATE PLOURENE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE DI-n-BUTYLPHTHALATE PLOORANTHENE PLODENE		20 15	10 4 000 1	15 .
2-CHLOROPHENOL 1, 3-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 2-METHYLPHENOL N-NITROSO-DI-n-PROPYLAMINE NITROSO-DI-n-PROPYLAMINE NITROSO-DI-n-PROPYLAMINE NITROSO-DI-N-PROPYLAMINE 1, 2, 4-DIMETHYLPHENOL BMZOIC ACID BIS (2-CHLOROETHYL)OXYMETHANE 1, 2, 4-TAICHLOROBENZENE NAPHTHALENE 4-CHLORO-J-METHYLPHENOL 2-MITROANILINE 4-CHLORO-J-METHYLPHENOL 2-MITROANILINE A-CHLORO-J-METHYLPHENOL 2-MITROANILINE ACENAPHTHENE DIBENZOFURAN 2, 4-NITROTOLUENE 3, 6-NITROTOLUENE 3, 6-NITROTOLUENE DIETHYL PHTNALATE PLOURENE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE DI-n-BUTYLPHTNALATE PLOURANTHENE PUORANTHENE		20 15	10 4 2000 1	15 .
2.4-DIMETHYPHENOL BENZOIC ACID BIS(2-CHLOROETHYL)OXYMETHANE 1.3.4-TRICHLOROBENZENE NAPHTHALENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE 2-MITROANILINE ACENAPHTHYLENE ACENAPHTHYLENE DIBENZOFURAN 2.4-NITROTOLUENE 2.6-NITROTOLUENE 2.6-NITROTOLUENE DIETHYL PHTNALATE PLOURENE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE DI-n-BUTYLPHTNALATE PLOURENE ANTHRACENE DI-N-BUTYLPHTNALATE PLOURENE		20	4 000 000 1	.700
2-METHVLNAPHTHALENE 2-METHVLNAPHTHALENE 2-NITROANILINE ACENAPHTHYLENE ACENAPHTHYLENE DIBENZOFURAN 2,4-NITROTOLUENE DIETHYL PHTHALATE PLOURENE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE DI-n-BUTYLPHTHALATE FLUORANTHENE PUOPENE		20 15	4 000 500 1	.700
DIBENZOFUKAN 2,4-NITROTOLUENE 3,6-NITROTOLUENE DIETHYL PHTHALATE FLOURENE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENANTHRENE ANTHRACEME DI-n-BUTYLPHTHALATE FLUORANTHENE PUDENU		20 15	000 000 1	.700
PLOURENE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENANTHRENE ANTHRACEME DI-n-BUTYLPHTHALATE FLUORANTHENE SUBSUM				
DVDVND				
BENZO (A) ANTHRACENE BIS (3-ETHYLHEXYL) PHTHALATE CHRYSENE BENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE BENZO (K) FLUORANTHENE BENZO (A) PYRENE BENZIDINE		52		
1-NAPHTHYLAMINE ANILINE				
PAH/PHTHALATES (Lbs/Year) 0. OTHER SEMI-VOLATIES (ug/l) OTHER SEMI-VOL.(Lbs/Year) 0	000 0. 0.00 0	010 0.	000 0 514 .65	0.000 1715 0.31
VOLATILE ORGANICS (ug/1)				
VINYL CHLORIDE Methylene Chloride Acetone	1 54	7 110	6 24	7 16
CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE		1 4		1 3
BROMODICHLOROETHANE TRICHLOROETHENE				
BENZENE 4-Methyl-2-Pentanone	0.1		0.4	2
TOLUENE O CHLOROBENZENE . ETHYLBENZENE	0.09	_	1 1	3
XYLENB				6
VOLATILE ORGANICS (ug/1) 55 VOLATILE ORGANICS (lbs/Year) 0	.19 .01 0	129 3 .03 0	0.01	37 0.01
TOTAL METALS (ug/1)		5		7
ARSENIC Beryllium Cadmium	18 6	25	460 6 21	933 24
CHROMIUM COPPER LEAD 2 MEDICITRY	203 330 390 1 50	197 306 28 390 3	62 600 7 312 2 1	201 8700 573 5 2
NICKEL SELENIUM	60	60	460	830
SILVER THALLIUM	9	390 -	8	5610
HEXAVALENT CHROMIUM		130	6	82
TOTAL METALS (ug/l) 4 TOTAL METALS (Lbs/Year) 0 IRON	286 3 .85 0	506 32 .68 6	397 8 .01 1	6965 5.94
IRON (ug/1) 45 IRON (Lbs/Year) 8	000 72	200 75 .08 13	000 23 .92 4	3000 2.71
TOTAL ORGANIC CARBON (mg/1)				
TOC (mg/l) TOC (Lbs/Year) 5	27 .35 6	33 .44 5	31 .75 7	39 7.15
T. ORGANIC HALOGEN (ug/1) TOX (ug/1) TOX (Lbs/Year) 0	29 .01 0	15 .00 0	36 .01 0	21 0.00

WEATHERING AREA/INCINERATOR AREA

•			
SAMPLE NUMBER	MW-10	MW-10	
AQUIFER DEPTH (Feet)	573.13	572.83	
SHORELINE PERIMETER (Peet) GRADIENT (Peet/Feet)	240 0.0011	240 0.0011	
HYDR. CONDUCTIVITY (cm/sec) FLOW RATE (Gal/Day)	0.0003	0.0003	
SEMI-VOL. ORGANICS (ug/1)			
2-CHLOROPHENOL			
1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE			
1,2-DICHLOROBENZENE			
N-NITROSO-DI-n-PROPYLAMINE			
2,4-DIMETHYLPHENOL			
BENZOIC ACID BIS(2-CHLOROETHYL)OXYMETHANE			
1,2,4-TRICHLOROBENZENE NAPHTHALENE			
4-CHLOROANILINE			
2-METHYLNAPHTHALBNE			
2-NITROANILINE ACENAPHTHYLENB			
ACENAPHTHENE DIBENZOFURAN			
2,4-NITROTOLUENE			
DIETHYL PHTHALATE			
N-NITROSODIPHENYLAMINE			
PENTACHLOROPHENOL Phenanthrene			
ANTHRACENE DI-n-Butylphthalate			
PLUORANTHENE PYDENB			
BENZO (A) ANTHRACENE		_	
BIS (2-ETHYLHEXYL) PHTHALATE CHRYSENE		7	
BENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE			
BENZO (A) PYRENE BENZIDINE			
1-NAPHTHYLAMINE			
ANILINE			
PAH/PHTHALATES (ug/l) PAH/PHTHALATES (Lbs/Year)	0.000	7 0.000	
OTHER SEMI-VOLATILES (ug/1) OTHER SEMI-VOL (Lbs/Year)	0	0 00	
VINUL CHIOTER			
METHYLENE CHLORIDE	2 19	10 55	
ACETONE Carbon disulfide			
1,1-DICHLOROBTHENE 1,2-DICHLOROETHENE		1	
CHLOROFORM 2-BUTANONF		•	
BROMODICHLOROETHANE			
TRICHLOROETHENE BENZENE	0.7		
4-METHYL-2-PENTANONE Toluene	0.4		
CHLOROBENZENE ETHYLBENZENE	•••		
XYLBNB		6	
VOLATILE ORGANICS (ug/1)	22.1	76	
VOLATILE ORGANICS (1bs/Year)	0.00	0.00	
TOTAL METALS (ug/1)		•	
ANTIMONY		. 5	
BERYLLIUM	1560	440	
CADMIUM Chromium	49 44	14 30	
COPPER LEAD	1800	3710	
MERCURY			
SELENIUM	370	430	
SILVER Thallium	8		
ZINC HEXAVALENT CHROMIUM	4180	5290	
MARTANDIL CREVILOR			
TOTAL METALS (Ug/l) TOTAL METALS (Lbs/Year)	8088 0.51	9942 0.62	
IRON			
TRON (ug/1)	80500	A4800	
IRON (Lbs/Year)	5.12	2.78	
TOTAL ORGANIC CARBON			
TOC (mg/l)	36	19	
TOC (Lbs/Year)	2.23	1.99	•
TOTAL ORGANIC HALOGEN			
TOX (ug/1)	220	290	
TOX (Lbs/Year)	0.01	0.02	

1

Table 7-4 d

LOADING TO RIVER DUE TO GW MIGRATION

INCINERATOR AREA

SAMPLE NUMBER	MW-4	MW-4	MW-9	MW-9	MW-12	MW-13
SAMPLE DATE (1988)	6-23	8-18	6-23	8-17	11-21	11-21
AQUIFER DEPTH (Feet)	572.95	572.85	573.31	573.01	572.4	572.04
GRADIENT (Feet/Feet)	0.0018	211	116	0 0018	0 0018	0 0018
HYDR. CONDUCTIVITY (cm/sec)	0.0005	0.0005	0.0018	0.0024	0.0029	0.0007
FLOW RATE (Gal/Day)	52.3	51.9	135.5	132.3	152.0	72.0
SEMI-VOL. ORGANICS (ug/1)						
PHENOL	_					
2-CHLOROPHENOL	1800	1200				
1, 3-DICHLOROBENZENE		49	1			
1,4-DICHLOROBENZENE	4900	510	5	6		
1,2-DICHLOROBENZENE	21000	920	5	•		
N-NITROSO-DI-D-PROPYLAMINE		47				
NITROBENZENE						
2,4-DIMETHYLPHENOL	94	130	4			
BENZOIC ACID	-					
1.2 A-TRICHLOROBENZENE	5 75	•				
NAPHTHALENE	33	•	5		1	4900
4-CHLOROANILINE				8	22	11000
4-CHLORO-3-METHYLPHENOL						
2-METHYLNAPHTHALENE						
ACENA PHTHYLENE						
ACENAPHTHENE					•	
DIBENZOFURAN						
2,4-NITROTOLUENE						
DIRTHYL PHTHALATR						•
FLOURENE	*					
N-NITROSODIPHENYLAMINE	4					
PENTACHLOROPHENOL	2					
PRENANTHRENE	3					
DI-n-BUTYLPHTHALATE	1				1	
FLUORANTHENE	î				-	
PYRENE	1					
BENZO (A) ANTHRACENE	1	-		-		
CHRYSENB	⊿ 1	,		,	17	
BENZO (B) FLUORANTHENE	-					
BENZO (K) FLUORANTHENE						
BENZO (A) PYRENE						
1-NAPHTHYLAMINE	2800	300	97	16	23	
ANILINE			• ·			
						250000
PAH/PHTHALATES (ug/1)	48	7	5	7	19	4900
OTHER SEMI-VOLATILES (107/1)	0.008	0.001	0.002	0.003	0.009	1.074
(ug/1)	20022	2104	114	.40	60	261000
OTHER SEMI-VOL. (Lbs/Year)	4.88	0.50	0.05	0.01	0.02	57 22
OTHER SEMI-VOL. (Lbs/Year)	4.88	0.50	0.05	0.01	0.02	57.22
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1)	4.88	0.50	0.05	0.01	0.02	57.22
OTHER SEMI-VOL.(Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE	4.88	0.50	0.05	0.01	0.02	57.22
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDE	4.88	0.50	0.05	0.01	0.02	57.22
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE	4.88 15000 5400	0.50	0.05 3 14000	0.01 88 93	0.02 	57.22 58 2000
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1.1-DICHLOROFTHENE	4.88 15000 5400	0.50	0.05 3 14000	0.01 88 93	0.02 15 0	57.22 58 2000
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,1-DICHLOROSTHENE 1,2-DICHLOROSTHENE	4.88 15000 5400	0.50 10 2	0.05	0.01 88 93	0.02 15 0	57.22 58 2000
VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM	4.88 	0.50 10 2 6	0.05	0.01 88 93 8 19 24	0.02 15 0	57.22 58 2000
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE	4.88 - 15000 5400	0.50 10 2 6	0.05	0.01 88 93 8 19 24	0.02 15 0	57.22 58 2000 260
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TPLCULOROETHANE	4.88 - 15000 5400	0.50 10 2 6	0.05 3 14000	0.01 88 93 8 19 24 7	0.02 15 0	57.22 58 2000 260
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,2-DICHLOROSTHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICKLOROETHENE BENZENE	4.88 	0.50 10 2 6	0.05	0.01 88 93 8 19 24 7	0.02 15 0	57.22 58 2000 260 3
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENB CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE	4.88 - 15000 5400	0.50 10 2 6 3	0.05 14000 14	0.01 88 93 8 19 24 7 10	0.02 15 0	57.22 58 2000 260 3 820
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1, 2-DICHLOROETHENE 1, 2-DICHLOROETHENE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE	4.88 15000 5400	0.50 10 2 6 3 1	0.05 3 14000 14	0.01 88 93 8 19 24 7 10 21	0.02 15 0	57.22 58 2000 260 3 820 24 4700
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE CHLOROBENZENE	4.88 15000 5400 170 37000	0.50 10 2 6 3 1 38	0.05 3 14000 14 560 320	0.01 888 93 8 19 24 7 10 21 420	0.02 15 0 12 82	57.22 58 2000 260 3 820 24 4700 7700
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMOJICHLOROETHANE TRICKLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE SYLENE	4.88 15000 5400 1700 43000	0.50 10 2 6 3 1 38 130	0.05 3 14000 14 560 320 41	0.01 88 93 8 19 24 7 10 21 420 6	0.02 15 0 12 82	57.22 58 2000 260 3 820 24 4700 7700 350
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,1-DICHLOROBTHENE 1,2-DICHLOROBTHENE BROMODICHLOROBTHENE BROMODICHLOROBTHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENE XYLENE	4.88 - 15000 5400 37000 43000 1700	0.50 10 2 6 3 1 3 8 130	0.05 3 14000 14 560 320 41 1200	0.01 88 93 8 19 24 7 10 21 420 6 120	0.02 15 0 12 82	57.22 58 2000 260 3 820 24 4700 7700 350 39
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1, 1-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE EHYLLBENZENE XYLENE VOLATILE ORGANICS (ug/l)	4.88 	0.50 10 2 6 3 1 38 130 130	0.05 3 14000 14 560 320 41 1200 16138	0.01 88 93 8 19 24 7 10 21 420 6 120 816	0.02 15 0 12 82 109	57.22 58 2000 260 3 820 7700 350 39 15954
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1, 1-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHENE CHLOROFORM 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLEZZENE XYLENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year)	4.88 15000 5400 37000 43000 1700 102270 16.29	0.50 10 2 6 3 1 38 130 190 0.03	0.05 3 14000 14 560 320 41 1200 16138 6.66	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33	0.02 15 0 12 82 109 0.05	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1, 2-DICHLOROETHENE 1, 2-DICHLOROETHENE BENCHODICHLOROETHANE TRICHLOROBTHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE XYLENE VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1)	4.88 15000 5400 37000 43000 1700 16.29	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33	0.02 15 0 12 82 109 0.05	57.22 58 2000 260 3 820 24 4700 7700 350 350 39 15954 3.50
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLENENEXENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) TOTAL METALS (ug/l)	4.88 15000 5400 100270 16.29	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33	0.02 15 0 12 82 109 0.05	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROBTHENE 1,2-DICHLOROBTHENE BROMODICHLOROETHANE TRICHLOROBTHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE XYLENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year) 	4.88 15000 5400 1700 43000 1700 1700 16.29	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66	0.01 888 93 8 19 24 7 10 21 420 6 6 120 816 0.33	0.02 15 0 12 82 109 0.05	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1, 2-DICHLOROBTHENE 1, 2-DICHLOROBTHENE CHLOROPORM 2-BUTANONE BROMODICHLOROBTHENE BBROMODICHLOROBTHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE SYLENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERVLIUM	4.88 15000 5400 1700 1700 1700 102270 16.29 144	0.50 10 2 6 3 1 38 130 0.03 190 0.03	0.05 3 14000 14 560 320 41 1200 16138 6.66	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33	0.02 15 0 12 82 109 0.05	57.22 58 2000 260 3 820 24 4700 7700 350 350 39 15954 3.50 277
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENS CHLOROBENZENE ETHYLBENZENE XYLENE VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/1) ANTIMONY ARSENIC BERYLLIUM CADMIUM	4.88 15000 5400 1700 1700 1700 16.29 144 8	0.50 10 2 6 3 1 38 130 0.03 127 5	0.05 3 14000 14 560 320 41 1200 16138 6.66 7	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42	0.02 15 0 12 82 109 0.05 14	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50 277
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1, 2-DICHLOROETHENE 1, 2-DICHLOROETHENE BROMODICHLOROETHANE TRICHLOROBTHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE YOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) ANTIMONY ARSENIC BERYLLIUM CADMIUM	4.88 15000 5400 1000 102270 16.29 144 8 40	0.50 10 2 6 3 1 38 130 190 0.03 127 5 61	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36	0.02 15 0 12 82 109 0.05 14	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50 277 21
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE BROMODICHLOROETHANE TRICKLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENB ETHYLBENZENB YULATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) TOTAL METALS (ug/1) ANTIMONY ARSENIC BERYLLIUM CADMUM COPPER LEAD	4.88 15000 5400 1002 102270 144 8 40 422	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141	0.02 15 0 12 82 109 0.05 14 13 24	57.22 58 2000 260 3 820 24 4700 7700 350 350 350 15954 3.50 277 71
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROBTHENE 1,2-DICHLOROBTHENE BROMODICHLOROBTHENE BROMODICHLOROBTHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE SYLENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERYLIUN CADMUM COPPER LEAD MERCURY	4.88 15000 5400 102270 16.29 144 8 40 422 66	0.50 10 2 6 3 13 130 190 0.03 127 5 61 745 37	0.05 3 14000 14 560 320 41 1200 16138 5.66 7 7 16 79 32	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 816 0.33 19 42 36 141 11	0.02 15 0 12 82 109 0.05 14 13 24	57.22 58 2000 260 3 24 4700 7700 350 39 15954 3.50 277 277 71 119
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1, 1-DICHLOROETHENE 1, 2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE SYLENE VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) TOTAL METALS (ug/1) ANTIMONY ARSENIC BERVLIUM CADMIUM CADMIUM COPPER LEAD MERCURY NICKEL	4.88 15000 5400 100270 16.29 144 8 40 422 66 50	0.50 10 2 6 3 13 13 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30	0.02 15 0 12 82 109 0.05 14 13 24	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50 277 71 119 250
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLDENZENE XYLENE VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/1) ANTIMONY ARSENIC BERYLLIUM CADMIUM CHCOMIUM COPPER LEAD MERCURY NICKEL SELENIUM	4.88 15000 5400 1700 1700 1700 16.29 144 8 40 422 66 50	0.50 10 2 6 3 138 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30	0.02 15 0 12 82 109 0.05 14 13 24	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50 277 71 119 250
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICKLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/l) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERVLLIUM CADMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER	4.88 15000 5400 1700 43000 1700 16229 164 150 105 105 105 105 105 105 105	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30	0.02 15 0 12 82 109 0.05 14 13 24 11	57.22 58 2000 260 3 224 4700 7700 350 39 15954 3.50 277 71 119 250 13
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE BROMODICHLOROETHANE TRICKLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE XYLENE VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) TOTAL METALS (ug/1) TOTAL METALS (ug/1) ANTIMONY ARSENIC BENYLIN CADDUM CADDUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM	4.88 15000 5400 1700 1700 1700 102270 16.29 144 8 40 422 66 50 775	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 41 1200 16138 6.66 7 7 16 79 32 5	0.01 888 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30	0.02 15 0 12 82 109 0.05 14 13 24 11	57.22 58 2000 260 3 24 4700 7700 350 399 15954 3.50 277 71 119 250 13
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROBTHENE 1,2-DICHLOROBTHENE BROMODICHLOROBTHENE BERVADURK ETHYL-2-PENTANONE TOLUENE CHLOROBENZENE SETHYL-2-PENTANONE TOLUENE CHLOROBENZENE STYLENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERVLIUM CADMUM CAPBER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC	4.88 15000 5400 102270 16.29 144 8 40 422 66 50 775 6	0.50 10 2 6 3 13 130 190 0.03 127 5 61 745 37 60 891 6	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156	0.01 88 93 8 19 24 7 10 21 420 816 0.33 19 42 36 141 11 30 143 15	0.02 15 0 12 82 109 0.05 14 13 24 11 49	57.22 58 2000 260 3 820 24 4700 7700 350 399 15954 3.50 277 71 119 250 13 90
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE SULENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/l) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERVLIUM CADMIUM CADMIUM CADMIUM CADMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC	4.88 15000 5400 102270 16.29 144 8 40 422 66 50 775 6	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156	0.01 88 93 8 19 24 7 10 21 420 816 0.33 19 42 36 141 11 30 143 15	0.02 15 0 12 82 109 0.05 14 13 24 11 49	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50 277 71 119 250 13 90
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1.1-DICHLOROETHENE 1.2-DICHLOROETHENE BROMODICHLOROETHENE BROMODICHLOROETHANE TRICKLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) TOTAL METALS (ug/1) TOTAL METALS (ug/1) MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC HEXAVALENT CHROMIUM COPPER LEAD	4.88 15000 5400 1000 1700 16.29 16.29 16.55 10.227 16.55 10.227 10.2270 15.55 10.227 10.2270 15.55 10.227 10.2270 15.55 10.227 10.2270 15.55 10.227 10.2270 15.55 10.227 10.2270 15.55 10.227 10.2270 15.55 10.227 10.2270 15.55 10.257 10.2270 15.55 10.257 10.25	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437	0.02 15 0 12 82 109 0.05 14 13 24 11 49 	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50 277 71 119 250 13 90. 820
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDB ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE BROMODICHLOROETHENE BROMODICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENB YULANE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERYLLIUM CADMUM COPPER LEAD MEKCURY NICKEL SELENIUM SILVER THALLIUM ZINC HEXAVALENT CHROMIUM TOTAL METALS (ug/l) TOTAL METALS (ug/l)	4.88 15000 5400 1000 1700 1012.29 1012.29 1012.29 1012.29 1012.20 10	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12	0.01 888 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18	0.02 15 0 12 82 109 0.05 14 13 24 11 49 111 0.05	57.22 58 2000 260 3 20 24 4700 7700 350 39 15954 3.50 277 71 119 250 13 90 .18
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE STYLBENZENE VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (lbs/Year) 	4.88 15000 5400 100270 16.29 144 8 40 40 40 22 66 50 775 6 1511 0.24	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 16138 6.66 7 7 16 79 32 5 156 295 0.12	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18	0.02 15 0 12 82 109 0.05 14 13 24 11 49 	57.22 58 2000 260 820 30 24 4700 7700 350 399 15954 3.50 277 71 119 250 13 90 .18
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1, 2-DICHLOROETHENE 1, 2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BENCADICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE STYLENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERVLIUM CARDIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC HEXAVALENT CHROMIUM TOTAL METALS (ug/l) TOTAL	4.88 15000 5400 102270 16.29 144 8 40 422 66 50 775 6 1511 0.24 0.24	0.50 10 2 6 3 13 13 130 190 0.03 127 5 61 745 37 60 891 6 1932 0.31 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 6.66 7 7 32 5 156 295 0.12	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18	0.02 15 0 12 82 109 0.05 14 13 24 11 49 	57.22 58 2000 260 3 820 7700 350 399 15954 3.50 277 71 119 250 13 90
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/1) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLBENZENE ETHYLBENZENE VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) VOLATILE ORGANICS (ug/1) TOTAL METALS (ug/1) TOTAL METALS (ug/1) MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC TOTAL METALS (ug/1) TOTAL MET	4.88 15000 5400 1000 102270 1000 1	0.50 10 2 6 3 1 38 130 	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930	0.01 88 93 8 19 24 7 10 21 420 816 0.33 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900	0.02 15 0 12 82 109 0.05 14 13 24 11 49 111 0.05 15500	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50 2777 71 119 250 13 90
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1, 2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ETHYLENE VOLATILE ORGANICS (ug/l) TOTAL METALS (ug/l) TOTAL METALS (ug/l) MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC HETALS (ug/l) TOTAL METALS (ug/l)	4.88 15000 5400 1700 1700 1700 1700 102.70 102.70 102.70 102.29 102.66 50 775 6 1511 0.24 62000 9.87	0.50 10 2 6 3 1 38 130 190 0.03 127 5 61 745 37 60 891 6 1932 0.31 76300 12.05	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930 3.68	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900 9.23	0.02 15 0 12 82 109 0.05 14 13 24 11 49 111 0.05 15500 7.18	57.22 58 2000 260 3 220 24 4700 7700 350 399 15954 3.50 277 71 119 250 13 90
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULPIDE 1, 2-DICHLOROETHENE 1, 2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE XYLENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) NOTAL METALS (ug/l) ANTIMONY ARSENIC BERYLLUN CAROMUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC HEXAVALENT CHROMIUM COTAL METALS (ug/l) TOTAL METALS (ug/l) TOTAL METALS (ug/l) IRON IRON IRON IRON IRON IRON	4.88 15000 5400 100270 16.29 144 8 40 422 66 50 775 6 775 6 50 775 6 50 775 6 50 775 6 50 775 6 50 775 6 50 775 6 50 775 6 50 775 6 50 775 75 75 75 75 75 75 75 75 7	0.50 10 2 6 3 1 38 130 190 0.03 127 5 51 745 37 60 891 6 1932 0.31 76300 12.05	0.05 3 14000 14 560 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930 3.68	0.01 888 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900 9.23	0.02 15 0 12 82 109 0.05 14 13 24 11 49 111 0.05 15500 7.18	57.22 58 2000 260 3 260 3 24 4700 7700 350 399 15954 3.50 277 71 119 250 13 90 820 0.18 8900 1.95
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROBTHENE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHANE TRICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE STHYLBENZENE YOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERVLIUN CADMUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM TOTAL METALS (ug/l) TOTAL ORGANIC CARBON TOTAL ORGANIC CARBON	4.88 15000 5400 100270 16.29 144 8 40 40 102270 16.29 144 8 40 40 40 102270 16.29 144 8 40 40 40 40 40 40 40 40 40 40	0.50 10 2 6 3 1 190 0.03 190 0.03 127 5 61 745 37 60 891 6 1932 0.31 76300 12.05	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930 3.68	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900 9.23	0.02 15 0 12 82 109 0.05 14 13 24 11 49 	57.22 58 2000 260 820 30 24 4700 7700 350 39 15954 3.50 277 71 119 250 13 90 .18 8900 1.95
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1, 2-DICHLOROETHENE 1, 2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHENE BROMODICHLOROETHENE DENZENE 4-METHYL-2-PENTANONE TOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) NICKEL SERVLIUM CARDMUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC HEAVAULENT CHROMIUM TOTAL METALS (ug/l) </td <td>4.88 15000 5400 102270 102270 102270 102270 144 8 40 422 66 50 775 6 1511 0.24 62000 9.87 </td> <td>0.50 10 2 6 3 13 13 130 190 0.03 127 5 61 745 37 60 891 6 1932 0.31 76300 12.05 200</td> <td>0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930 3.68 295</td> <td>0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900 9.23 54</td> <td>0.02 15 0 12 82 109 0.05 14 13 24 11 49 </td> <td>57.22 58 2000 260 3 820 24 4700 7700 350 399 15954 3.50 277 71 119 250 13 90 0.18 8900 1.95 2350</td>	4.88 15000 5400 102270 102270 102270 102270 144 8 40 422 66 50 775 6 1511 0.24 62000 9.87 	0.50 10 2 6 3 13 13 130 190 0.03 127 5 61 745 37 60 891 6 1932 0.31 76300 12.05 200	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930 3.68 295	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900 9.23 54	0.02 15 0 12 82 109 0.05 14 13 24 11 49 	57.22 58 2000 260 3 820 24 4700 7700 350 399 15954 3.50 277 71 119 250 13 90 0.18 8900 1.95 2350
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHENE 2-BUTANONE BROMODICHLOROETHENE CHLOROBENZENE ETHYLENE CHLOROBENZENE ETHYLENE VOLATILE ORGANICS (ug/l) TOTAL METALS (ug/l) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERVLIUM CARONUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM IRON IRON IRON IRON IRON IRON IROFALE	4.88 15000 5400 1000	0.50 10 2 6 3 1 38 130 190 0.03 127 5 61 745 37 60 891 6 1932 0.31 76300 12.05 200 31.59	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930 3.68 20.22	0.01 88 93 8 19 24 7 10 210 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900 9.23 54 21.76	0.02 15 0 12 82 109 0.05 14 13 24 11 49 111 0.05 15500 7.18 23.15 5	57.22 58 2000 260 3 820 24 4700 7700 350 39 15954 3.50 277 71 119 250 13 90 .18 8900 1.95 .2350 515.21
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1, 2-DICHLOROETHENE 1, 2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE ZYLENE -VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (lbs/Year) TOTAL METALS (ug/l) ANTIMONY ARSENIC BERYLLUM CAROMUM COPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC HEXAVALENT CHROMIUM TOTAL METALS (LDs/Year) IRON	4.88 15000 5400 1000 1700 102.29	0.50 10 2 6 3 1 38 130 190 0.03 127 5 61 745 37 60 891 6 1932 0.31 76300 12.05 200 31.59	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930 3.68 20.22	0.01 88 93 8 19 24 7 10 21 420 6 120 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900 9.23 54 21.76	0.02 15 0 12 82 109 0.05 14 13 24 11 49 111 0.05 15500 7.18 50 23.15 5	57.22 58 2000 260 3 260 3 20 24 4700 7700 350 39 15954 3.50 277 71 119 250 13 90 .250 13 90 .1595 .21 .2350 .2350 .2350
OTHER SEMI-VOL. (Lbs/Year) VOLATILE ORGANICS (ug/l) VINYL CHLORIDE METHYLENB CHLORIDE ACETONE CARBON DISULFIDE 1, 2-DICHLOROETHENE 1, 2-DICHLOROETHENE CHLOROFORM 2-BUTANONE BROMODICHLOROETHENE BENZENE 4-METHYL-2-PENTANONE TOLUENE CHLOROBENZENE XYLENE VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) VOLATILE ORGANICS (ug/l) NOTAL METALS (ug/l) ANTIMONY ARSENIC BERYLLUM CAROMUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER TOTAL METALS (ug/l) TOTAL METALS (ug/l) TOTAL METALS (ug/l) TOTAL METALS (ug/l) IRON IRON USATILE TOTAL ORGANIC CARBON TOC TOTAL ORGANIC CARBON TOC TOTAL ORGANIC CARBON	4.88 15000 5400 100270 10270 10270 100	0.50 10 2 6 3 1 38 130 190 0.03 127 5 61 745 37 60 891 6 1932 0.31 76300 12.05 200 31.59 27200	0.05 3 14000 14 560 320 41 1200 16138 6.66 7 7 16 79 32 5 156 295 0.12 8930 3.68 20.22 400	0.01 888 93 8 19 24 7 10 21 420 816 0.33 19 42 36 141 11 30 143 15 437 0.18 22900 9.23 54 21.76	0.02 15 0 12 82 109 0.05 14 13 24 11 49 111 0.05 15500 7.18 23.15 5 23.15 5	57.22 58 2000 260 3 260 3 24 4700 7700 350 39 15954 3.50 277 71 119 250 13 90 1.95 820 0.18 8900 1.95 2350 1.95 2350

Table 7-4 e	CLOADING	TOTRI	ER DUE	TO GW M	IGRATION
•	CWB:	T SHORE	(NORTH		
SAMPLE NUMBE Sample Date (1988	K MW-5	nw-5 8-17	6-22	8-16	
AQUIFER DEPTH (Feet SHORELINE PERIMETER (Feet) 572.78) 288	572.83 288	572.88 178	572.68 178	
GRADIENT (Feet/Feet YDR. CONDUCTIVITY (cm/sec	<pre>> 0.0009 > 0.0001</pre>	0.0009	0.0009	0.0009	
FLOW RATE (Gal/Day) 9.2	9.2	5.7	5.6	
SEMI-VOL. ORGANICS (ug/1)				
IENOL					
3-DICHLOROBENZENE					•
, 4-DICHLOROBENZENE , 2-DICHLOROBENZENE					
-METHYLPHENOL -NITROSO-DI-n-PROPYLAMINE					
TROBENZENE	11	5			
ENZOIC ACID	NF				
, 2, 4-TRICHLOROBENZENE					
CHLOROANILINE					
·Chloro-3-Methylphenol -Methylnaphthalene					
NITROANILINE ENAPHTHYLENE					
:ENAPHTHENE I BENZOPURAN					
, 4-NITROTOLUENE					
IETHYL PHTHALATE					
-NITROSODIPHENYLAMINE					
HENANTHRENE					
THRACENE (-n-Butylphthalate					
LUORANTHENE Yrene					
3NZO (A) ANTHRACENE IS (2-ETHYLHEXYL) PHTHALATE	5		5	5	
RYSENE ENZO (B) FLUORANTHENE					
NZO (K) PLUORANTHENE					
NZIDINE					
NILINE					
AH/PHTHALATES (ug/1)	5	 0	5	5	
AH/PHTHALATES (Lbs/Year) THER SEMI-VOLATILES (ug/l	0.000 .) 11	0.000 5	0.000	0.000	
THER SEMI-VOL. (Lbs/Year)	0.00	0.00	0.00	0.00	
VOLATILE ORGANICS - (ug/1	.)				
INYL CHLORIDE	4		•	6	
CETONE	380	120	5	19	
,1-DICHLOROBTHENE				1	
, 2-dichloroethene Hloroform		3		3	
-BUTANONE ROMODICHLOROETHANE					
RICHLOROETHENE	1	1	1	,	
-METHYL-2-PENTANONE			3		
HLOROBENZENB	2		1		
YLENE		6		9	
OLATILE ORGANICS (ug/1)	388	139	12	40	·.
OLATILE-ORGANICS={1bs/Yea	r)=0.01	0.00		0.7,0,0>	
TOTAL METALS (ug/1)					
INTIMONY REBNIC	20		76		
BRYLLIUM	20		- 35	66	
CHROMIUM		16	5 25	45	
EAD	20	25 11	40 68	137 217	
IERCURY IICKEL	40		1 40	2 40	
BLENIUM Ilver			-	16	
HALLIUM	Q A	8 <i>4</i>	21 1	453	
EXAVALENT CHROMIUM	7	25	دين 7	•JJ	
OTAL METALS (ug/1)	184	163	434	932	
UTAL METALS (LDS/Year)	0.01	0.00	0.01	0.02	
IRON					
RON (ug/l) RON (Lbs/Year)	30100 0.84	32600 0.92	4960 0.09	18800 0.32	
TOTAL ORGANIC CAPPON					
(me/l)					•
COC (Lbs/Year)	32 0.90	74 2.08	13 0.23	27 0.46	
TOTAL ORGANIC HALOGEN		***-***			
NOX (ug/l)	83	85	35	26	

.

CLOADING TO RIVER-DUB TO GW MIGRATION

WEST_SHORE_(SOUTH)

SAMPLE NUMBER Sample Date (1988)	6-22	MW-2 8-16	MW-3 6-22	MW-3 8-16	W-9 6-24	W-9 8-16
AQUIFER DEPTH (Feet)	573.73	573.25	573.01	572.46	572.9	572.5
GRADIENT (Feet/Feet)	0.0057	333	302	302	262	262
HYDR. CONDUCTIVITY (cm/sec)	0.0230	0.0230	0.0016	0.0016	0.0034	0.0034
FEGW RATE (Gal/Day)	12191		113.4	108.4	209.2	202.4
(SEMI-VOLORGANICS_(ug/1)						
PHENOL			57	77		
2-CHLOROPHENOL			5	7	1	
1, 4-DICHLOROBENZENE			130	220		
1, 2-DICHLOROBENZENE			52	96	2	
N-NITROSO-DI-n-PROPYLAMINE		24		6		
NITROBENZENE						
BENZOIC ACID			18	13		
BIS (2-CHLOROETHYL) OXYMETHAN	IE	20				
NAPHTHALENE		4	30	43		
4-CHLOROANILINE		25			_	
2-METHYLNAPHTHALENE				•	1	•
2-NITROANILINE						
ACENAPHTHENE						
DIBENZOFURAN 2.4-NITROTOLUENE						
2,6-NITROTOLUENB						
DIETHYL PHTHALATE FLOURENE	15					. •
N-NITROSODIPHENYLAMINE	13					
PENTACHLOROPHENOL PHENANTHRENE						
ANTHRACENE						
DI-n-BUTYLPHTHALATE FLUORANTHENE				1		
PYRENE						
BENZO(A)ANTHRACENE BIS(2-ETHYLHEXYL)PHTHALATE	•				E	
CHRYSENB					5	
BENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE						
BENZO (A) PYRENE						
BENZIDINE 1-NAPHTHYLAMINE	2900	240				
ANILINE	2500	460				
PAH/PHTHALATES (ug/1)						
PAH/PHTHALATES (Lbs/Year)	0.557	0.143	0.010	0.017	0.003	0.000
OTHER SEMI-VOLATILES (ug/1)	2900	769	262	444	10	0
LVOLATILE_ORGANICS (ug/1)	<u>×</u>					
VINYL CHLORIDE						
METHYLENE CHLORIDE	2	4	2000	6 740	190	9
CARBON DISULFIDE	1				190	0.5
1,1-DICHLOROETHENE 1,2-DICHLOROETHENE		٦		2	,	1
CHLOROFORM		Ĵ		•	+	5
2-BUTANONE BROMODICHLOROETHANE						
TRICHLOROBTHENE						
BENZENE 4-METHYL-2-PENTANONS	6	8	28000	1100	24	45
TOLUENE	1	1	160	20	1	1
CHLOROBENZENE ETHYLBENZENE	6	9	3600	750	130	220
XYLENB	ī	8	750	130		10
VOLATILE ORGANICS (ug/1)	24		35710	2972		
VOLATILE-ORGANICS=(1bs/Year)	=0.789	=1.18	-12:33-	-0.98-	0.22	<u>_0.22</u>
TOTAL METALS-(ug/1)-						
ANTIMONY Arsenic	24	37	45		52	31
BERYLLIUM		17	2		11	
CADMIUM	2140	1340	27	20		21
COPPER	860	520	20	16	15	16
LEAD Mercury	4 670 50	13	40		4. C	
NICKEL	180	90				
SILVER						
THALLIUM	0050		777	۶g	94 38	23
HEXAVALENT CHROMIUM	9950	4590	160	8	50	7
MORAL MORAL 0 (10-13)	16204			126	232	
TOTAL METALS (Ug/1) TOTAL_METALS_(Lbs/Year)	-601-69-	-244-98-	-0713	_0.04-	0.15	-0-06
TRAN						
1KON	-					÷
IRON (ug/l)	381000	254000-	_14100-	-15300-	23700	30500
-1KON						
TOTAL ORGANIC CARBON						
TOC (mg/1)	- 120	95	96	190	44	62
TOC(Lbs/Year)	4456		-33.15-	-62-71	28.03	38.22
TOTAL ORGANIC HALOGEN						
TOTAD GROANIC REBOODA	-					
	4					E 4 4
TOX (ug/1) TOX (Lbs/Year)	160	140	$\frac{1310}{-0.45}$	$\frac{1610}{-0.53}$	240	520

RECEIVED SEP 6 1989 N.Y.S. DEPT. OF CONSERVATION ENVIRONMENTALION

ŧ

0

0

. ..