

February 19, 2025

Megan Kuczka
Environmental Program Specialist - 1
New York State Department of Environmental Conservation
700 Delaware Avenue
Buffalo, NY 14209

Re: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Buffalo Color Area "D"

Site No.: 915012

Site Address: 2 Buffalo Creek Railroad

Buffalo, NY 14210

Dear Ms. Kuczka:

On behalf of South Buffalo Development Corporation, LLC (SBD), Inventum Engineering is submitting this revised periodic review report (PRR) for the Buffalo Color Area "D" Site (referred hereafter as the Site). This report documents the implementation of, and compliance with, site-specific SM requirements for the reporting period of October 5, 2023, to October 5, 2024.

The revised report incorporates comments on the PRR received from the New York State Department of Environmental Conservation (NYSDEC) in an e-mail dated February 5, 2025. The NYSDEC's comments are reproduced in the bullets below followed by Inventum's response in *italics*.

- The 2022-2023 PRR acceptance letter requested collection of water levels before and after the pumping wells are turned on, in order to confirm the effectiveness of the slurry wall and onsite cap. And include an assessment of the water elevations, confirming the effectiveness of the engineering controls. Was this conducted?

 The assessment was not conducted due to an oversight. Water levels will be collected before and after the pumping wells are turned on beginning March 2025 and the data included in the next PRR.
- Table 4
 - The concentration axis has errors for n-nitrosodidiphenylamine and 1,3-dichlorobenzene
 - o Cyande concentration for 2024 does not match the analytical
 - o Nickel concentration for 2024 does not match the analytical

The PRR has been revised in accordance with the comment.

• Attachment C – October 2024 River elevation has a formatting error. Please revise. *The PRR has been revised in accordance with the comment.*

• Attachment E – Include the discharge data for the September 2024 start-up sampling or reference the CCR.

The data table and laboratory data report have been added to Attachment E.

The forms for the site are enclosed documenting the SM requirements during the reporting period. The Institutional Controls (ICs) portion of the form (Box 6) and the Engineering Controls (ECs) portion of the form (Box 7) have been signed.

Please feel free to call with any questions or comments.

Respectfully submitted,

Todelidely

Todd Waldrop

Partner Enclosure

cc: Eugene Melnyk NYSDEC Region 9

Richard Galloway Honeywell International Inc.

Kirsten Colligan Ontario Specialty Contracting, Inc.
John Yensan South Buffalo Development, LLC
Jon Williams South Buffalo Development, LLC

Enclosure

Buffalo Color Area "D" Site Management Periodic Review Report

2 Buffalo Creek Railroad Buffalo, New York NYSDEC Site Number 915012

Dates Covered by Report: October 5, 2023 to October 5, 2024

Table of Contents

1	Site	Summary	7
	1.1	Effectiveness of the Remedial Program	7
	1.2	Compliance	8
	1.3	Recommendations	8
2	Site	Overview	9
	2.1	Site Location	9
	2.2	Chronology	9
3	Prog	gress During the Reporting Period	11
	3.1	Exposure Potential	11
	3.2	Off-Site Migration	11
	3.3	Natural Attenuation	11
4	IC/I	EC Plan Compliance Report	13
5	Moi	nitoring Plan Compliance Report	14
	5.1	Comparisons with Remedial Objectives:	14
	5.2	Monitoring Deficiencies	15
	5.3	Conclusions and Recommendations for Changes	15
6	Ope	rations and Maintenance Plan Compliance Report	15
	6.1	Components of the O&M Plan	15
	6.2	Summary of O&M Completed	15
	6.3	Evaluation of Remedial Systems	16
	6.4	O&M Deficiencies	16
	6.5	Conclusions and Recommendations	16
7	Ove	rall PRR Conclusions and Recommendations	16
	7.1	Compliance with SMP	16
	7.2	Performance and Effectiveness of the Remedy	16
	7.3	Future PRR Submittals	16
T	able		
Fi	igure		
	ATTA	CHMENT A - IC/EC CONTROLS CERTIFICATION FORM	
	ATTA	CHMENT B - SITE INSPECTIONS	
	ATTA	CHMENT C - OBSERVATION WELL HYDROGRAPHS	

ATTACHMENT D - GROUNDWATER DATA

ATTACHMENT E - DISCHARGE MONITORING REPORTS

ATTACHMENT F – GAC REACTIVIATION BILL OF LADINGS

ATTACHMENT G – PHOTOLOG

ATTACHMENT H – UPGRADED GWTF LAYOUT

ATTACHMENT I – IMPORT REQUESTS

1 Site Summary

The 18.921-acre Site is located at 2 Buffalo Creek Railroad in the City of Buffalo, County of Erie, New York. The Site is one of five areas that comprised the portion of the former Buffalo Color Corporation, which produced dyes and organic chemicals until its bankruptcy in 2005, purchased by South Buffalo development, LLC. The Site was remediated in accordance with a June 28, 1993, Order on Consent (1993 Order); index B9-0014-84-01RD, between the New York State Department of Environmental Conservation (NYSDEC) and AlliedSignal Incorporated.

Remedial investigations determined that Site soil contained concentrations of organic and inorganic substances that exceeded the NY Commercial and Industrial Soil Cleanup Objectives (SCOs). Shallow groundwater was found to contain concentrations of organic and inorganic substances that exceeded the NY Class GA standards.

The following is a summary of the remedial actions performed at the Site:

- Stabilization of the shoreline along the Buffalo River and planting appropriate vegetation to enhance aquatic and upland habitat (Note: this was modified by the Water keeper).
- Consolidation of contaminated soil on-Site, re-grading and capping of the soils.
- Construction of a hydraulic barrier (i.e., slurry wall) along the perimeter of the Site (Figure 1);
- Installation and operation of a groundwater extraction system (D-EW-1 through D-EW-4) to convey extracted groundwater to the treatment system (GWTF) located on Area A.
- Installation of an observation well network to monitor groundwater elevation and verify that an inward gradient is maintained across the hydraulic barrier. These wells are referred to with the "OW" prefix on Figure 1.
- Execution and recording of an environmental easement to restrict land use and address future exposure to any remaining contamination at the Site.
- Development and implementation of a Site Management Plan for long term management of remaining contamination.
- Maintenance and bathymetric survey of the Sediment Deposit Area

During the reporting period, the following routine Operations, Maintenance, and Monitoring (OMM) activities were completed in accordance with the (1) Site Management Plan (SMP) prepared by Mactec Engineering and Consulting P.C. dated April 20, 2015 (SMP) and/or (2) additions to the monitoring program from prior PRR approvals.

- Annual shallow groundwater sampling via a composite extraction well sample collected from the force main within the Area A groundwater treatment facility (GWTF);
- Quarterly Site inspections;
- Annual brush hog mowing of the cap performed the second week of October 2023;
- Quarterly groundwater extraction system performance monitoring;
- Quarterly observation well monitoring; and
- Annual groundwater treatment system effluent sampling for Per- and Polyfluoroalkyl Substances (PFAS) and 1,4-Dioxane.

1.1 Effectiveness of the Remedial Program

The following conclusions were developed based on data collected during the reporting period:

- The cap system is intact with suitable vegetative cover. No cover system maintenance is required at this time (Attachment G).
- A consistent inward gradient has been maintained across the hydraulic barrier based upon the comparison of observation well measurements collected outside of the hydraulic barrier (near the Buffalo River) and those collected from neighboring interior observation wells. These include during the period (July 16, 2024, through September 27, 2024) when upgrades were being made to the GWTF on Area A and the system was shut down.
- No changes were made to the groundwater extraction system within the limits of Area
 D as part of the GWTF upgrades. There were excavations (trenching) to bury new
 groundwater system conveyance piping and control wiring within the right-of-way
 between Area A and Area D as part of the GWTF upgrades. These excavations are
 detailed in the 2023-2024 PRR for Buffalo Color Corporation Site Areas A & B
 (C915230) submitted to the NYSDEC under separate cover.
- Site inspection reports indicate that the effectiveness of the knotweed (invasive plant species) barrier fabric installed within the southwestern corner of the Site has limited the knotweed from growing further inland. Evaluation of inland growth continues as part of the quarterly cover system inspections.
- A trapper was hired for the season as a precaution to control any woodchucks or other burrowing animals that could damage the cap system. Five woodchucks were caught and removed from the Site. Several burrows were identified and were filled with stone (Attachment I).
- There were no excavations (see third bullet above), change of use, or groundwater use on the Site during the reporting period.

1.2 Compliance

No areas of non-compliance have been identified.

1.3 Recommendations

No changes to the SMP are recommended. OMM activities will continue during the subsequent reporting period. There is no anticipated change in the frequency of operation of the Area D groundwater extraction system resulting from installation/upgrade of the GWTF on Area A.

2 Site Overview

2.1 Site Location

The 18.921-acre Site is located at 2 Buffalo Creek Railroad in the City of Buffalo, County of Erie, New York. The Site is bounded by the Buffalo River to the east, south, and southwest; a railroad yard to the north; and an abandoned railroad right-of-way to the northeast (Figure 1). Beyond the abandoned railroad right of way is Area A. Further the surrounding area consists of industrial and residential properties.

Originally founded as the Schoellkopf Aniline and Dye Company in 1879, the plant produced dyes and organic chemicals based primarily on aniline and various aniline derivatives. The company was reorganized into the National Aniline Chemical Company in 1916. It became one of the five companies that merged to create Allied Chemical Corporation (Allied Chemical) in 1920. The existing dye-making facility and the right to produce certain dyes and intermediates were sold by Allied Chemical to Buffalo Color Corporation on July 1, 1977. At the time of the sale, the plant was divided into eight areas designated with the letters A, B, C, D, E, F, G, and H. Buffalo Color Corporation purchased the manufacturing areas A through E, while Allied Chemical retained an acid plant (which was subsequently sold to PVS Chemicals in 1981), the research and development facility on Area F, and the parking lots on Areas G (Elk Street) and H (Smith Street).

Environmental investigation of the Area D Site began in the 1980s. In accordance with the Order on Consent, Area D finalization of the remedial investigation occurred from 1993 through 1996 and remediation occurred from 1996 through 2000. OMM activities have been conducted in accordance with a NYSDEC approved, post-remedial construction, OMM Plan for Area D (Parsons, 2001) since the completion of remediation.

In 2005, Buffalo Color Corporation filed for bankruptcy and ceased manufacturing activity. During the bankruptcy proceedings, some of the facility's production equipment was sold and removed from the Site. In conjunction with the bankruptcy, the office building and former plant hospital located at 100 Lee Street on Area B and the warehouse building (Building 322) located near Elk Street on Area E, along with some of the land under and around those buildings, were sold to other parties. Agreements are in place to preserve access rights to the land for the purposes of any required environmental investigation and remediation activities. The remaining buildings and property on Areas A, B, C, D and E were purchased by SBD in 2008. Areas A and B were subsequently sold to Heritage Discovery Center, LLC in 2010. Access rights have been retained for these areas.

2.2 Chronology

Numerous environmental investigations have been completed for the Buffalo Color property, including Area D, dating back to the 1980s. In accordance with the order on consent, finalization of the Area D remedial investigation occurred from 1993 through 1996 and remediation occurred from 1996 through 2000. Remediation of the Site began on July 24, 1996. Planting of wetland and woody vegetation to enhance aquatic and upland habitat was completed during the spring of 1999. Replanting of trees in several areas and construction of the cap, hydraulic barrier and extraction system was completed by November 2000. During the fall of 2017, Buffalo Niagara Waterkeeper along with Anchor QEA began the shoreline improvement project at Area D. Invasive plant species were removed from within 25' of the waterline and native plant species were introduced. This project continued throughout the growing season of 2018 with what the Waterkeeper termed "a final review of the project" in the Spring 2019. At the time, SBD had concerns about the effectiveness of the planting. The NYSDEC and OSC attended a site meeting with the Buffalo Niagara Waterkeeper in July 2020. It was noted during the meeting that a

tremendous amount of debris had settled over the planting area, and given the size, will not likely float away without outside influence. SBD will not make any attempts to remove this debris.

The primary remedial objectives at the Area D Site were to eliminate the potential for direct contact with impacted soils and for impacted groundwater to discharge off-Site. The key remedial actions performed for the Site are summarized below:

- Installation of a soil-bentonite slurry wall (vertical hydraulic barrier) around the Site perimeter to restrict migration of impacted shallow groundwater to the Buffalo River;
- Plugging of all pipes encountered during the remedial action using concrete;
- Installation of a Resource Conservation and Recovery Act (RCRA) compliant cap system over the entire Site to prevent soil contact and precipitation infiltration. The cap system included a flexible membrane liner, geonet drainage layer, two feet of cover soil, and 6 inches of topsoil to establish a vegetative cover;
- Excavation and dredging of soil/sediment along the Area D shoreline and placement of the removed soil/sediment within the footprint of the cap system;
- Placement of riprap along the Area D shoreline to prevent erosion of soil and sediment and migration of eroded soil and sediment to the Buffalo River;
- Placement of geotextile and riprap over the Sediment Deposit Area (SDA), an area along the western shoreline where a historic slope failure had occurred;
- Installation of a groundwater extraction system (GWES) and treatment facility (GWTF) to address hydraulic control of impacted Site groundwater, behind the Site vertical hydraulic barrier; and
- Preparation of a Site OMM Plan to provide direction towards managing the long-term remedy.

Additional remedial actions were performed to complete the Site remedy and allow closure of the 1993 Order on Consent. The following actions were approved by NYSDEC and implemented between 2014 and 2015.

- An initial bathometric survey was conducted on April 29, 2015. Additional surveys will occur every 5 years to ensure that the riprap containment structure is in place and effectively preventing potentially impacted sediment migration;
- Execution and recording of an environmental easement in favor of NYSDEC to restrict land use and address future exposure to any remaining contamination at the Site. Elements of the environmental easement include establishing engineering and institutional controls, prohibiting groundwater use, providing protocols for disturbance of Site soils and/or groundwater, and limiting future land use to commercial or industrial use; and
- Development and implementation of a Site Management Plan for long term management of the site remedy as required by the environmental easement, which includes plans for institutional and engineering controls, performance monitoring, operation and maintenance, and reporting.

3 Progress During the Reporting Period

The performance, effectiveness and protectiveness of the remedy are verified through evaluating each of the primary remedial measures.

3.1 Exposure Potential

The potential for direct exposure to impacted soils and/or groundwater is mitigated by ensuring the cap system is intact as constructed and the recorded environmental easement is adhered to. The following bulleted items summarize the objective performance evaluation of Site remedial measures towards preventing exposure to remaining contamination.

- The Site-wide inspection reports indicate that compliance with the Site institutional controls, established by the environmental easement, has been upheld. There were no excavations, change of Site use, or groundwater use that occurred during the reporting period.
- Site cover system inspection reports indicate the soil cover and cap system are intact and maintain suitable vegetation. Several small burrows were identified and filled with stone. No additional cover system maintenance is required at this time.
- Inspection sheets for the reporting period are provided as Attachment B. Inspections were conducted on a quarterly basis during the reporting period and included conditional observations of the soil cover, site slopes, surface drainage structures, access road, and extraction wells. There were no observations during the reporting period that indicate the need for cover system repair.

3.2 Off-Site Migration

Off-Site migration of impacted groundwater is mitigated by maintaining an inward hydraulic gradient between the observation wells "outside" of the VHB (i.e., closest to the Buffalo River; also referred to as exterior wells) and the observation wells "inside" the hydraulic barrier (interior wells). The risk of impacted soil migration due to slope failure along the Area D Buffalo River shoreline is mitigated through the monitoring and maintenance of riverbank vegetated slopes and structures. Additionally, the lack of potentially impacted sediment migration from the SDA is verified through bathometric survey monitoring; performed every five years. The following bulleted items summarize the objective performance evaluation of Site remedial measures towards the mitigation of off-Site contaminant migration.

- A consistent inward gradient has been maintained across the hydraulic barrier; based upon the comparison of observation well measurements collected outside of the hydraulic barrier (near the Buffalo River) and those collected from neighboring interior observation wells (Attachment C and Figures 2 through 5).
- Site cover system inspection reports indicate the Site soil cover system is intact and maintains suitable vegetation (Attachment G).

3.3 Natural Attenuation

Annual groundwater monitoring data has been collected within the reporting period and after review of the data, an apparent trend, either decreasing or increasing, has not been identified for the Area D Site.

Tabulated analytical results for the annual Area D GWTF composite sample and annual PFAS effluent sampling are provided as Table 1 and 2, respectively. GWTF effluent data was collected during the startup/commissioning period of the new GWTF on Area A (C915230) at the end of Q3 2024 (Table 5).

Laboratory data reports are in Attachment D. Groundwater elevations from the observation well pairs are provided as Table 3. Trendlines of influent concentrations overtime are provided as Table 4. Groundwater monitoring data will continue to be obtained and evaluated in the subsequent reporting period.

4 IC/EC Plan Compliance Report

IC/EC Requirements and Compliance: A series of institutional controls (IC) have been developed and are adhered to by the established Site environmental easement. These ICs are designed to:

- Implement, maintain, and monitor engineering control systems;
- Address future exposure to remaining contamination by controlling disturbances of the subsurface contamination through adherence to an approved excavation work plan;
- Prohibit Site groundwater use; and
- Limit the use and development of the Site to commercial and industrial uses only.

Engineering controls (ECs) developed for the Site consist of:

- Recorded protocols for the disturbance of Site soils and/or groundwater, and addressing potential vapor intrusion (VI) pathways of occupied structures associated with future development at the Site²:
- An integrated Site-wide cover system consisting of flexible membrane liner, geocomposite drainage layer, clean soil with a minimum thickness of 24 inches, and topsoil supporting vegetation;
- Riverbank slope stability fortifications consisting of riprap toe buttress and geotextile overlain by clean soil cover and riparian vegetation¹ to prevent erosion and migration of potentially impacted soil to the Buffalo River;
- A geotextile and riprap protective cover placed over the SDA;
- A perimeter storm water drainage system, including a series of shallow vegetated ditches, underlain with perforated drainpipe and intermittent discharge points to the Buffalo River;
- A VHB installed around the perimeter of the Site to prevent migration of contaminated groundwater to the Buffalo River; and
- A GWES to provide the required hydraulic control (as necessary) from within the VHB perimeter.

Performance of Site IC/ECs is evaluated through the following tasks:

- Documented Site-wide, cover system, and riverbank inspections to ensure the environmental
 easement is active and in force, the cover system is intact and protective to potential human
 exposure, and shoreline structures are intact and stable;
- Bathometric survey measurements collected for the SDA (5-year intervals), to ensure its internment and stability; and
- Hydraulic control behind the VHB is verified through the collection of groundwater elevation measurements from the observation well network, to confirm the presence of an inward hydraulic gradient.

The Site IC/ECs are all currently active and in force. At this time, no deficiencies have been identified with the established Site IC/ECs and no recommendations for changes are proposed.

There was no material imported to the Site during the reporting period.

 $^{^{\}rm 2}$ Area D has evolved into a wildlife habitat, no development is planned on Area D.

IC/EC Certification: The IC/EC certification forms are provided in Attachment A.

5 Monitoring Plan Compliance Report

Components of the Monitoring Plan: Routine Site monitoring activities include:

- Annual shallow groundwater sampling at the GWES (Table 1);
- Quarterly groundwater elevation measurements of the VHB observation well network;
- Quarterly Site-wide, cover system and riverbank inspections;
- SDA bathometric survey monitoring conducted every five years; and
- Annual groundwater treatment system effluent sampling for PFAS and 1,4-Dioxane (Table 2).

Summary of Monitoring Completed During Reporting Period: The following tables summarize the routine Site monitoring activities that have been completed in accordance with the SMP during the reporting period:

AREA D 2023-2024 MONITORING EVENT COMPLIANCE SUMMARY

Monitoring Type	Eraguanay	<u>2023</u>		<u>2024</u>	
Montoring Type	<u>Frequency</u>	4th	<u>1st</u>	2nd	<u>3rd</u>
Groundwater Sampling	Annual				X
Groundwater Treatment System Effluent (PFAS, 1,4-Dioxane)	Annual				X
VHB Observation Wells Groundwater Elevation Measurements	Quarterly	X	X	X	X
Site-Wide, Cover System & Riverbank Monitoring	Quarterly	X	X	X	X

AREA D SDA BATHYMETRIC SURVEY MONITORING COMPLIANCE SUMMARY YEAR

Baseline Survey	<u>2015</u>
Next Survey	2025

5.1 Comparisons with Remedial Objectives:

Natural attenuation of Site groundwater is tracked through the sampling of Site extraction wells. New York State Water Quality Standards for Surface Water and Groundwater (Table 1, cf. section 703.5 - Class GA) are the established groundwater quality objectives for the Site.

Eurofins Laboratories, Inc. in Amherst, NY performed the laboratory analysis for the collected groundwater sample (Table 1) and groundwater treatment system effluent sample (Table 2). Laboratory data reports are provided in Attachment D.

There are no established comparative standards for PFAS discharge to the BSA and the BSA discharge permit does not require sampling, testing, or reporting of PFAS in the SMR's. PFAS and 1,4-dioxane were not detected in the treated effluent sample (Table 2).

5.2 Monitoring Deficiencies

No monitoring deficiencies were noted.

5.3 Conclusions and Recommendations for Changes

No changes to the SMP are recommended at this time. OMM activities will continue during the subsequent reporting period.

6 Operations and Maintenance Plan Compliance Report

6.1 Components of the O&M Plan

The operations and maintenance requirements for the GWES are provided in the GWES operation, maintenance, and monitoring (OM&M) plan. The OM&M plan will be updated during the next reporting period to reflect construction and operation of the new GWTF. Information on non-mechanical engineering controls (i.e., soil cover system) is provided in section IV - IC/EC Plan Compliance Report.

- Monthly (Quarterly Minimum) Groundwater Extraction System Monitoring: During this activity, the O&M contractor inspects the conditions of the extraction and observation wells; records groundwater level measurements at each observation well; and records flow totalizer readings from each extraction well. This information is summarized in the observation well hydrographs Attachment C.
- Monthly (Quarterly Minimum) GWTF Treatment Plant Monitoring: Groundwater from the Area D extraction system is conveyed to the treatment plant located on Area A. The combined groundwater from Area A and Area D is combined, treated, and discharged to the BSA. Discharge samples are collected quarterly, and the data is submitted within a discharge monitoring report (DMR) to the BSA on a quarterly basis, as specified in the BSA discharge permit, with a copy provided to the NYSDEC. DMR copies, submitted within the reporting period, are provided as Attachment E.

6.2 Summary of O&M Completed

In addition to the GWES and treatment plant system monitoring activities, various repair and maintenance initiatives are routinely completed on the mechanical, electrical, and plumbing systems; to maintain performance of the GWES. Items requiring repair and maintenance include, but are not limited to, transfer pumps, submersible pumps, well casings/screens, holding tanks, pressure vessels, conveyance plumbing, filter media, activated carbon, backup generator, control/communication electrical, power supply electrical, building envelope, and personnel hygienic facilities. Annual mowing of the meadow area is completed in the third quarter and invasive knotweed is evaluated monthly.

The groundwater extraction system is operated intermittently as continuous operation is not required to maintain hydraulic control. Extraction pumps are typically operated for one day a month to flush the lines and when an effluent sample is collected for BSA permit compliance. Approximately 15,920³ gallons was extracted and treated over the reporting period.

Granular Activated Carbon (GAC) is a component of the extracted groundwater treatment prior to discharge to the BSA. GAC is changed periodically to maintain treatment capabilities. GAC was not required to be changed during the reporting period prior to installation of the upgraded GWTF. A change

³ Calculated from extraction well totalizers between 9/29/2023 and 9/30/2024.

out of the Multimedia Filter (MMF) was conducted in April 2024 prior to installation of the upgraded GWTF. The MMF was changed in order to increase OM&M operator efficiency. Bill of Ladings for the MMF media is provided as Attachment F.

6.3 Evaluation of Remedial Systems

The Area D remedial system is effectively achieving the objectives of the remedial action. Operation of the Area D groundwater extraction wells on a continual basis is not required to provide the required hydraulic control behind the VHB.

Upgrades to the GWTF were implemented through a Corrective Measures Program under the Brownfield Cleanup Program (BCP) for Area A (BCP Site No. C915230). Treatment of the Area D groundwater was included in that work. The upgraded GWTF was put into operation on September 27, 2024. There are no changes to the process operations for treatment of Area D groundwater. The process operations include particulate filtering through a multi-media sand filter and bag filters followed by treatment through GAC before discharge to the BSA. As-builts of the upgraded GWTF will be prepared during the next reporting period. A drawings showing the layout of the upgraded GWTF is included in Appendix H.

6.4 O&M Deficiencies

No deficiencies in complying with the O&M Plan have been noted.

6.5 Conclusions and Recommendations

No changes to the SMPs are recommended at this time.

7 Overall PRR Conclusions and Recommendations

7.1 Compliance with SMP

Activities completed during the reporting period complied with the requirements of the SMP.

7.2 Performance and Effectiveness of the Remedy

The condition of the cap system and consistent inward gradient across the hydraulic barrier indicate that the remedy is performing effectively.

7.3 Future PRR Submittals

It is currently expected that the next PRR will be submitted on or about November 3, 2025.

Table

Table 1

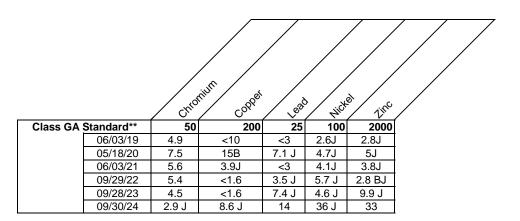
Groundwater Data Summary Buffalo Color Corporation Area D Buffalo, New York

		,2die ^c	normentene (a)	aldertere (a)	ndroberter Arill		Jene Cho	odibertere 2.CV	, latopherod	Tylene Chlor	ide kar	Antidens / Cord	-Overab	s prends	de d	7
Class GA	Standard**	3	3	3	5	1	5		5		10	1	200			-
	06/03/19	5.1J	3.3J	28	5.9J	21J	2,400	7	<50	2.7J	15	24B	<5	310		
	05/18/20	5.7 J	3.6J	32	5.5J	15J	1,800	6.3	<25	2J	<5	5.3JF1B	<5	370		
	06/03/21	4.1	3J (2.7)	26 (21)	10	11	770	7.3	<2J	2J	<5	4J	<5	510B		
	09/29/22	7.9J (5.9J)	0.78J (<5.4)	12J (9.2J)	5.7J	89	2,200	4.5 J	<8.1	<0.14	1.4J	<3.5	7 J	400		
	09/28/23	1.9 J (<18)	<22 (<0.83)	7.6 J (<20)	2.5 J	<24	2,100	5.4 J	<33	< 0.69	3.1 J	5.5 J	<5	550		
	09/30/24	<18 (<1.2)	<22 (<0.82)	<20 (<0.98)	3.2 J	<24	2,200	<0.79	<33	<0.98	<1	<3.5	11	590		

Notes: All Results are shown in ug/L.

Yellow highlighted results indicate a detection above the Class GA standard shown. Non-detects highlighted if half the reporting limit shown is above the standard.

⁽a) Analyte is reported for both VOCs (Method 624.1) and SVOCs (Method 625.1). The lower of the two reported concentrations is reported in the parenthetical regardless of method.


J - Laboratory Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B - compound was found in blank sample

F1 - MS/MSD recovery is outside acceptable limits

Table 1
Groundwater Data Summary
Buffalo Color Corporation Area D
Buffalo, New York

Table 2 PFAS Effluent Data Summary Buffalo Color Area "D" Buffalo,I NY

		Area A/D Effluent														
Analytes	Units	3/25/2021	8/19/2021	8/19/2021 (DUP)		9/29/2022	2	9/29/2022 (DUP)		9/28/2023	9/28/ (DI		9/30/202	24	9/30/20 (DUP)	
Perfluorinated Alkyl Acids (537 Mod)																
1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2)	ng/L	<37	<1.6 U	<1.6	U	<0.62	U	<0.62	U	<0.73 L	<().65 U	<1.3	U	<1.2	U
1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2)	ng/L	<93	8.1	7.3		<1.0	U	<1.0	U	<1.2 l		:1.1 U	<1.7	U	<1.7	U
2-(N-methyl perfluorooctanesulfonamido) acetic acid	ng/L	<93	<3.9 U	<3.9	U	<1.5	U	<1.5	U	<1.8 L		1.6 U	<1.6	U	<1.6	U
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine	ng/L	<93	<3.9 U	<3.9	U	<1.3	U	<1.3	U	<1.5 L		1.4 U	<1.5	U	<1.5	U
PERFLUOROBUTANESULFONIC ACID	ng/L	<37	4.7 B	5.1	В	4.6		4.6		1.2		1.3 J	< 0.49	U	< 0.49	U
PERFLUOROBUTYRIC ACID (PFBA)	ng/L	<93	6.5	6.6		5.4		5.5		4.4		4.9	<1.2	U	<1.1	U
PERFLUORODECANE SULFONIC ACID	ng/L	<37	<1.6 U	<1.6	U	< 0.32	U	< 0.32	U	<0.38 L	<().34 U	< 0.33	U	< 0.33	U
PERFLUORODECANOIC ACID (PFDA)	ng/L	<37	<1.6 U	<1.6	U	< 0.37	U	< 0.37	U	<0.43 L	<().39 U	< 0.36	U	< 0.35	U
PERFLUORODODECANOIC ACID (PFDoA)	ng/L	<37	<1.6 U	<1.6	U	< 0.39	U	< 0.39	U	<0.46 L	<().42 U	< 0.41	U	< 0.41	U
PERFLUOROHEPTANE SULFONATE (PFHpS)	ng/L	<37	3.2	3.1		< 0.33	U	< 0.33	U	<0.39 L	<().35 U	< 0.17	U	< 0.17	U
Perfluoroheptanoic Acid (PFHpA)	ng/L	<37	2.5	2.5		< 0.43	U	< 0.43	U	<0.51 L	<().46 U	< 0.36	U	< 0.35	U
PERFLUOROHEXANESULFONIC ACID	ng/L	47	56	57		2.2		2.3		2.4		2.2	< 0.38	U	< 0.37	U
PERFLUOROHEXANOIC ACID (PFHxA)	ng/L	<37	11	10		1.5	J	1.3	J	1.5		1.3 J	< 0.70	U	< 0.70	U
PERFLUORONONANOIC ACID	ng/L	<37	0.32 J	0.47	J	< 0.39	U	< 0.39	U	<0.46 L	<().42 U	<0.21	U	<0.21	U
Perfluorooctane Sulfonamide (FOSA)	ng/L	<37	<1.6 U	<1.6	U	< 0.74	U	< 0.74	U	<0.87 L	<().78 U	< 0.39	U	< 0.39	U
PERFLUOROOCTANE SULFONIC ACID	ng/L	110	170 B	160	В	<0.68	U	<0.68	U	3.6		3.7	< 0.48	U	<0.48	U
Perfluorooctanoic acid (PFOA)	ng/L	<37	6.7	7.5		<0.61	U	<0.61	U	1.4		1.6 J	< 0.39	U	< 0.39	U
PERFLUOROPENTANOIC ACID (PFPeA)	ng/L	<37	4.4	4.6		3.3		3.1		1.9		2.4	< 0.47	U	< 0.47	U
PERFLUOROTETRADECANOIC ACID (PFTeA)	ng/L	<37	<1.6 U	<1.6	U	<0.51	U	<0.51	U	<0.60 L	<().54 U	<0.29	U	< 0.29	U
PERFLUOROTRIDECANOIC ACID (PFTriA)	ng/L	<37	<1.6 U	<1.6	U	<0.38	U	< 0.38	U	<0.45 L	<().41 U	< 0.32	U	< 0.32	U
PERFLUOROUNDECANOIC ACID (PFUnA)	ng/L	<37	<1.6 U	<1.6	U	< 0.44	U	< 0.44	U	<0.52 L	<().47 U	<0.26	U	<0.26	U
SVOCs (8270 SIM)																
1,4-Dioxane	ug/L	0.51	0.3	0.34		0.14	J	0.15	J	0.2 E		0.2 B	< 0.10	U	< 0.10	U

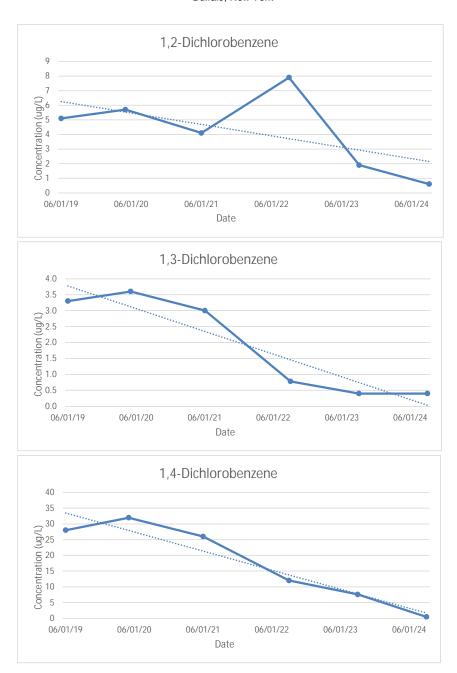
Notes:

^{1 -} Compounds Detected Above the Method Detection Limit are presented in Bold Font.

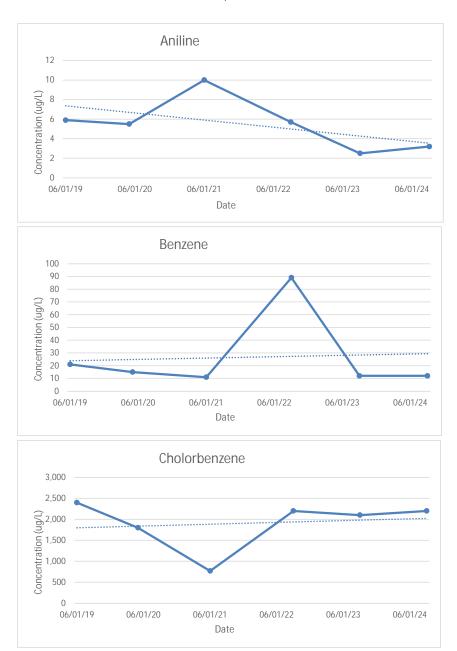
^{2 -} U - Not Detected above Method Detection Limit Shown; J = Esimated Value below the RL but above the MDL; B = analyte detected above the RL in the method blank; ng/L = nanograms per liter (parts per trillion equivalent); ug/L = micrograms per liter (parts per billion equivalent)

Table 3 Observation Well Elevation Data Summary Buffalo Color Area "D" Buffalo, New York

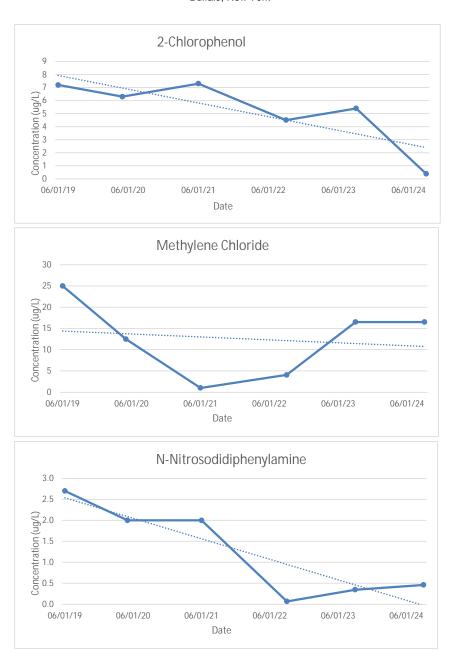
	Observation Wells - Distance Between Water Level and Top of Well Casing (ft bgs and ft. AMSL)																							
Date	D-0W-11 (ft.TOC)	D-OW-11 (ft.AMSL)	D-OW-1E (ft.TOC)	D-OW-1E (ft.AMSL)	D-OW-2I (ft.TOC)	D-OW-2I (ft.AMSL)	D-OW-2E (ft.TOC)	D-OW-2E (ft.AMSL)	D-OW-3I (ft.TOC)	D-OW-3I (ft.AMSL)	D-OW-3E (ft.TOC)	D-OW-3E (ft.AMSL)	D-OW-41 (ft.TOC)	D-OW-4I (ft.AMSL)	D-OW-4E (ft.TOC)	D-OW-4E (ft.AMSL)	D-OW-5I (ft.TOC)	D-OW-51 (ft.AIMSL)	D-OW-5E (ft.TOC)	D-OW-5E (ft.AMSL)	D-OW-61 (ft.TOC)	D-OW-61 (ft.AMSL)	D-OW-6E (ft.TOC)	D-OW-6E (ft.AMSL)
10/31/2023	16.63	570.37	10.44	571.87	17.26	570.23	10.39	571.88	17.37	570.15	10.03	571.87	17.02	570.22	10.23	571.90	16.93	570.26	9.97	571.86	18.53	570.18	10.51	571.93
11/30/2023	16.55	570.45	10.47	571.84	17.11	570.38	10.42	571.85	17.14	570.38	10.12	571.78	16.79	570.45	10.10	572.03	16.73	570.46	10.08	571.75	18.23	570.48	10.10	572.34
12/29/2023	16.44	570.56	10.74	571.57	16.95	570.54	10.7	571.57	16.98	570.54	10.31	571.59	16.67	570.57	10.46	571.67	16.56	570.63	10.19	571.64	18.13	570.58	10.66	571.78
1/30/2024	16.64	570.36	10.49	571.82	17.18	570.31	10.56	571.71	17.39	570.13	10.07	571.83	17.12	570.12	10.28	571.85	16.92	570.27	10.11	571.72	18.51	570.20	10.56	571.88
2/29/2024	17.02	569.98	10.06	572.25	17.96	569.53	10.84	571.43	17.94	569.58	9.49	572.41	17.56	569.68	9.51	572.62	17.49	569.70	9.33	572.50	19.13	569.58	10.21	572.23
3/29/2024	16.62	570.38	10.23	572.08	17.19	570.30	10.17	572.10	17.32	570.20	10.12	571.78	16.62	570.62	8.91	573.22	18.48	568.71	10.34	571.49	18.48	570.23	10.34	572.10
4/30/2024	16.57	570.43	9.37	572.94	17.17	570.32	9.31	572.96	17.31	570.21	8.99	572.91	16.93	570.31	9.22	572.91	16.81	570.38	8.97	572.86	18.46	570.25	9.50	572.94
5/31//2024	16.82	570.18	9.28	573.03	17.42	570.07	9.14	573.13	17.46	570.06	8.82	573.08	17.11	570.13	9.02	573.11	17.06	570.13	8.76	573.07	18.61	570.10	9.41	573.03
6/28/2024	16.71	570.29	9.77	572.54	17.34	570.15	9.74	572.53	17.52	570.00	9.32	572.58	17.15	570.09	9.51	572.62	17.04	570.15	9.02	572.81	18.67	570.04	9.74	572.70
9/30/2024	16.47	570.53	10.52	571.79	17.01	570.48	10.44	571.83	17.02	570.50	10.11	571.79	16.71	570.53	10.32	571.81	16.65	570.54	10.03	571.80	18.21	570.50	10.68	571.76

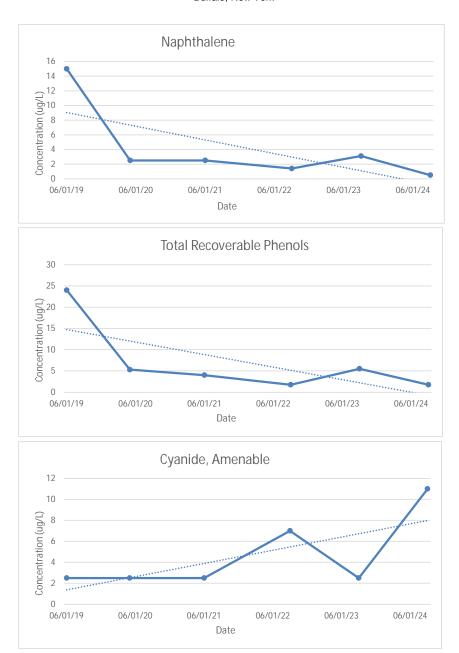

ft.TOC = feet below Top of Casing; ft. AMSL = feet above mean sea level

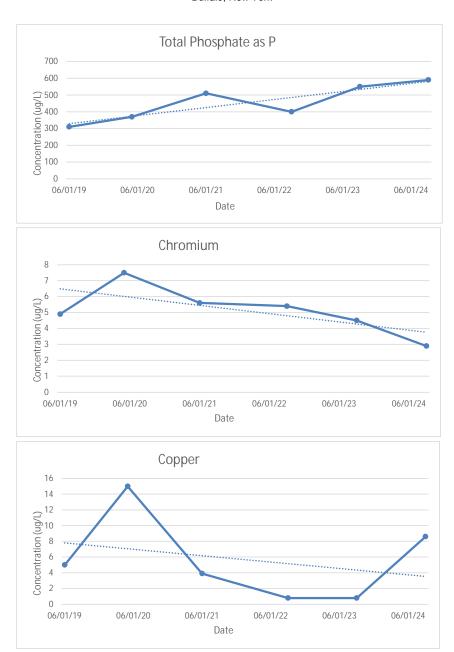
Note: Measurements were not collected during the GWTF system upgrades in July and August 2024.


Area D Observation Well Top of Casing Surveyed Elevations (ft. AMSI)

D-OW-1E 582.313 D-OW-2I 587.489 D-OW-2E 582.266 D-OW-3I 587.517 D-OW-3E 581.896 D-OW-4I 587.244 D-OW-4E 582.127 D-OW-5I 587.191 D-OW-5E 581.827 D-OW-6I 588.709 D-OW-6E 582.435







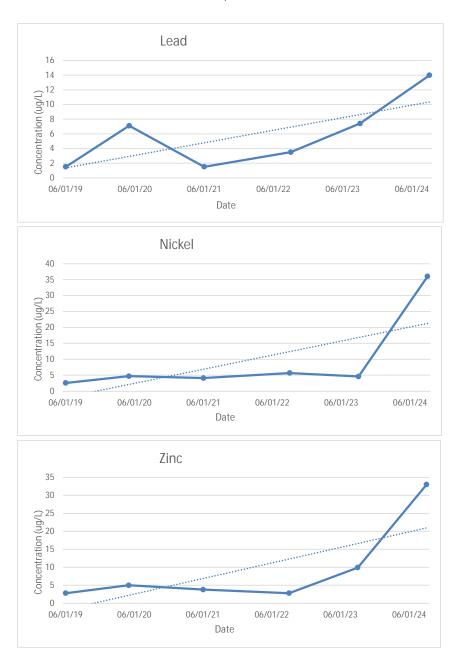


Table 5 System Startup BSA Discharge Parameters - September 27, 2024 Existing BSA Permit(20-06-BU109) Discharge Parameters

BSA Permit Parame	eter (Note 1)		stem Startup S (9/27/2024) CC BSA SUMP- 20240927 (See Note 1)		Conver Analytical I		BSA Daily Max Limit (Existin	•	Permit Compliance		Quantity	Permit Compliance
Chemical	CAS No. / Method ID	Quantity	Reporting Limit	Unit	Quantity	Unit	Quantity	Unit	Compilation	mg/L	mg/L	Compilation
рН	PH	8.2	N/A	SU	8.20	SU	5.0 - 12.0	SU	Yes			
BOD5	BOD	ND	2.0	mg/L	ND	mg/L	250	mg/L	Yes			
Total Phenol	TOTPHEN	ND	0.004	mg/L	ND	lbs/day	1.67	lbs/day	Yes	20	ND	Yes
Total Chromium	7440-47-3	ND	0.0024	mg/L	ND	lbs/day	0.83	lbs/day	Yes	40	ND	Yes
Total Copper	7440-50-8	0.0046	0.0045	mg/L	0.001	lbs/day	0.67	lbs/day	Yes	16	0.0046	Yes
Lead	7439-92-1	ND	0.0039	mg/L	ND	lbs/day	0.541	lbs/day	Yes	65	ND	Yes
Total Mercury	7439-97-6	ND	0.000042	mg/L	ND	lbs/day	0.00033	lbs/day	Yes	0.0008	ND	Yes
Total Nickel	7440-02-0	0.0041	0.003	mg/L	0.0008	lbs/day	1.17	lbs/day	Yes	14	0.0041	Yes
Zinc	7440-66-6	ND	0.0068	mg/L	ND	lbs/day	2.046	lbs/day	Yes	25	ND	Yes
Amendable Cyanide	CAN	0.026	0.005	mg/L	0.005	lbs/day	2.59	lbs/day	Yes	6.2	0.026	Yes
Total PCB	Sum Method_E608	ND	0.037	ug/L	ND	lbs/day	0.0001	lbs/day	Yes	0.002	ND	Yes
Aniline or Aniline Derivative*	62-53-3	ND	1.5	ug/L	ND	lbs/day	50	lbs/day	Yes	0.01	ND	Yes
Benzene	71-43-2	ND	0.6	ug/L	ND	lbs/day	0.059	lbs/day	Yes	0.142	ND	Yes
Chlorobenzene	108-90-7	4.2	0.48	ug/L	0.0008	lbs/day	0.129	lbs/day	Yes	0.31	0.0042	Yes
1,2-Dichlorobenzene	95-50-1	ND	0.44	ug/L	ND	lbs/day	0.197	lbs/day	Yes	0.472	ND	Yes
Fluoranthene	206-44-0	ND	1.6	ug/L	ND	lbs/day	0.0417	lbs/day	Yes	0.1	ND	Yes
Acenaphthylene	208-96-8	ND	0.87	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Naphthalene	91-20-3	ND	0.86	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Anthracene	120-12-7	ND	1.4	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Fluorene	86-73-7	ND	1	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Phenanthrene	85-01-8	ND	1.2	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Max Individual Purgeables*	Max Method_E624	4.2	NA	ug/L	0.004	mg/L	*	mg/L	Yes			
Total Suspended Solids	TSS	ND	4.0	mg/L	ND	mg/L	250	mg/L	Yes			
Total Phosphate**	7723-14-0	0.23	0.005	mg/L	0.230	mg/L	15.35	mg/L	Yes			
Total Flow	N/A	16	-	gpm	23,040	gpd	50,000	gpd	Yes			

^{*}Permit requires reporting of Aniline or Aniline Derivative and Max Individual Purgeables concentrations in excess of 0.01 mg/L.

**Analyzed by total phosphorus method SM 4500-P E
MAID - Maximum Allowable Instantaneous Discharge

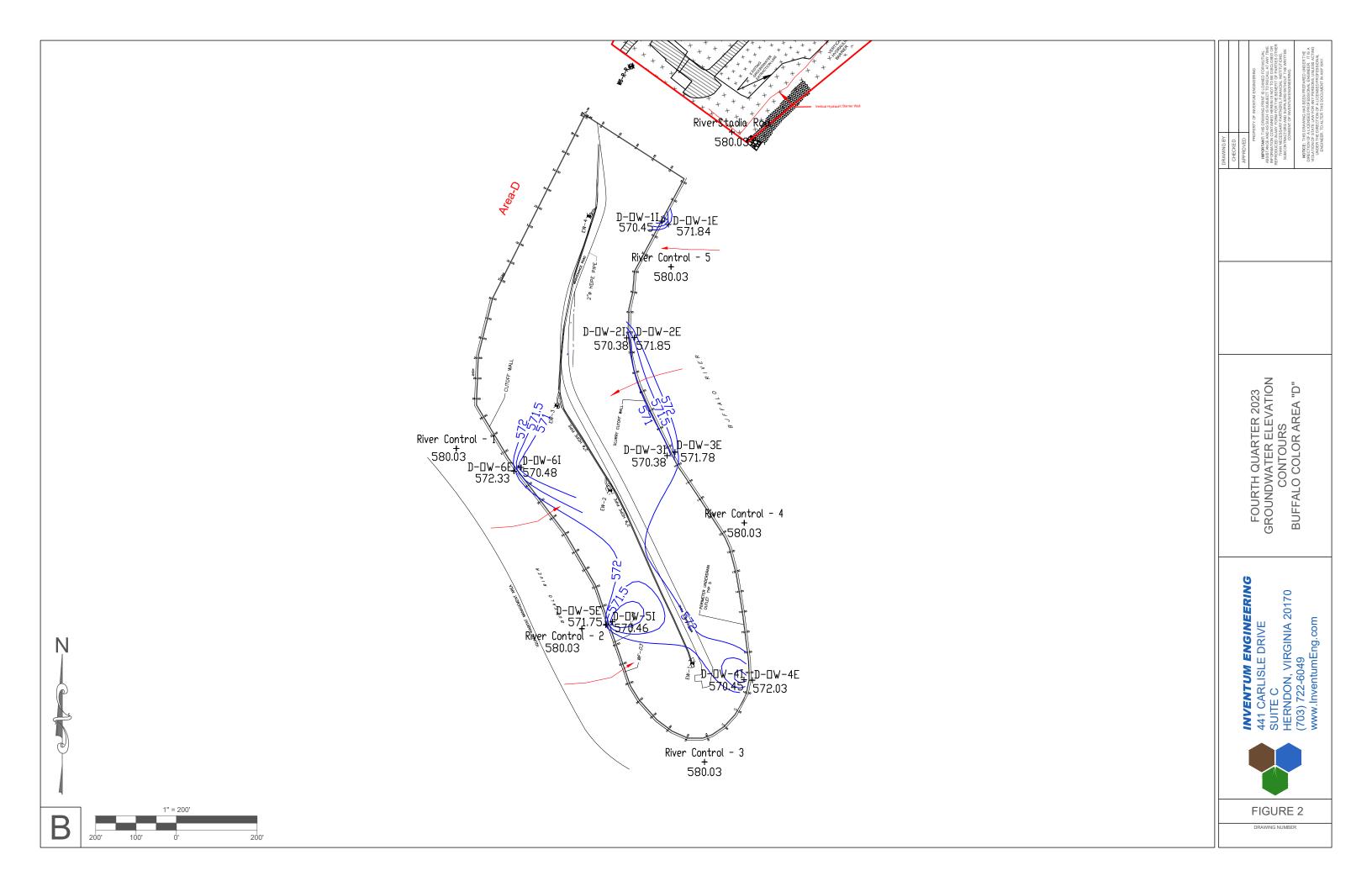
Flow Calculations		
Total Flow for Period (See Note 2) Average Flow for Period (See Note 2)	10,000 16	gallons gpm

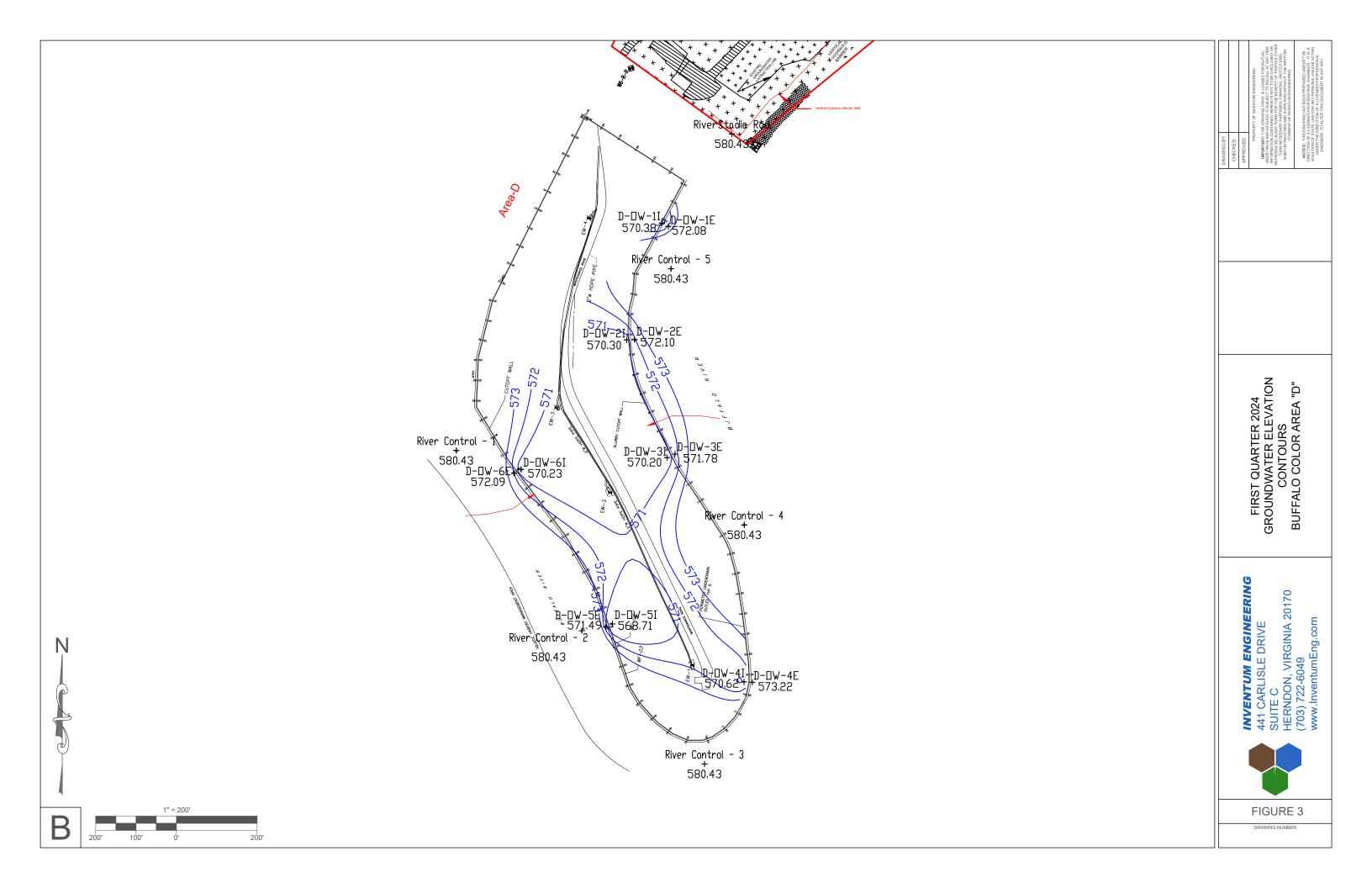
Note 1: Table format and discharge limitation calculations follow existing BSA Permit No. 20-06-BU109. "-" = Not analyzed in treatability test; "N/A" - not applicable to this example SMR.

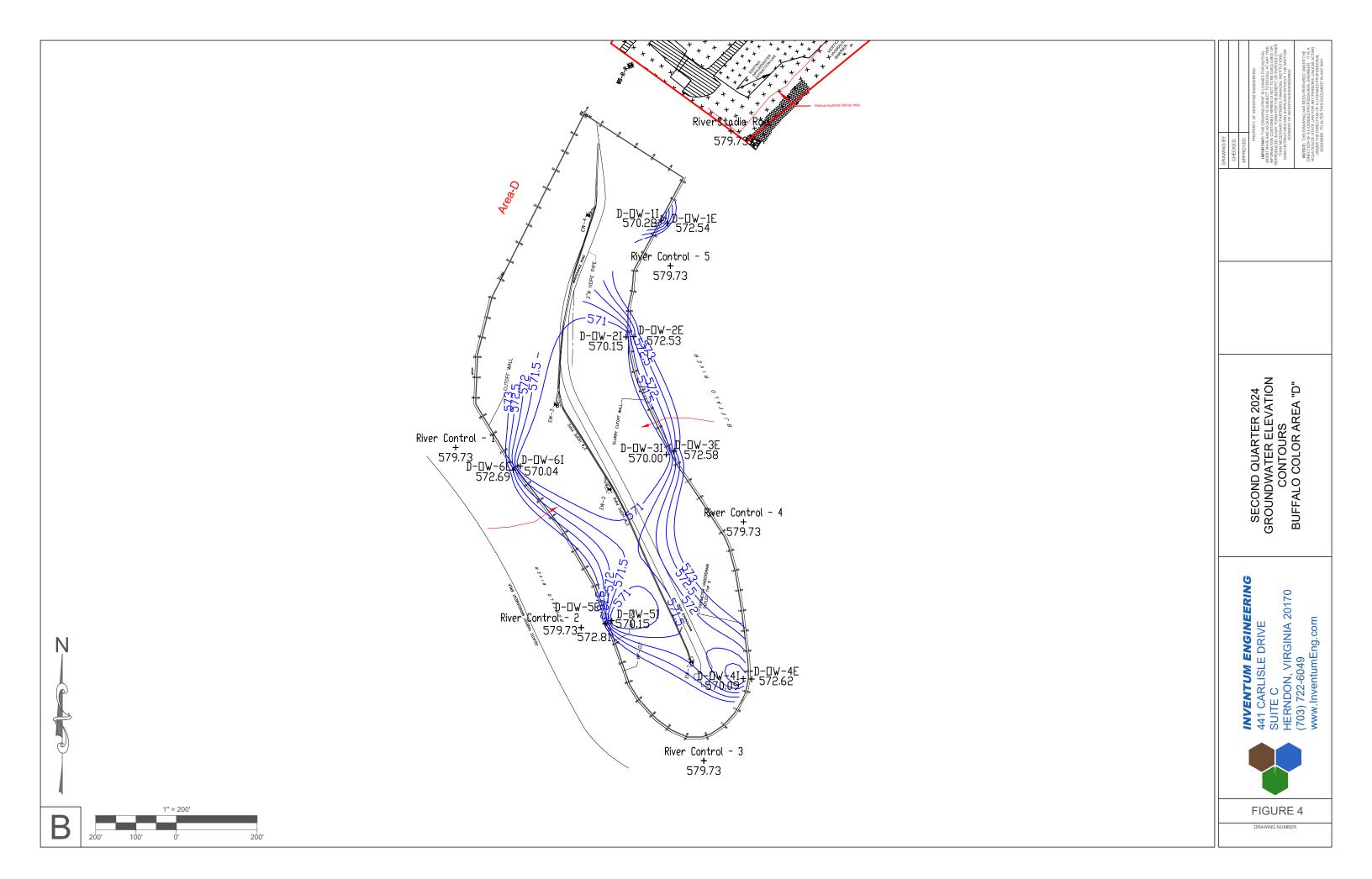
Note 2: Total and Average flow during during system startup/commissioning between 9/27/2024 and 10/4/24

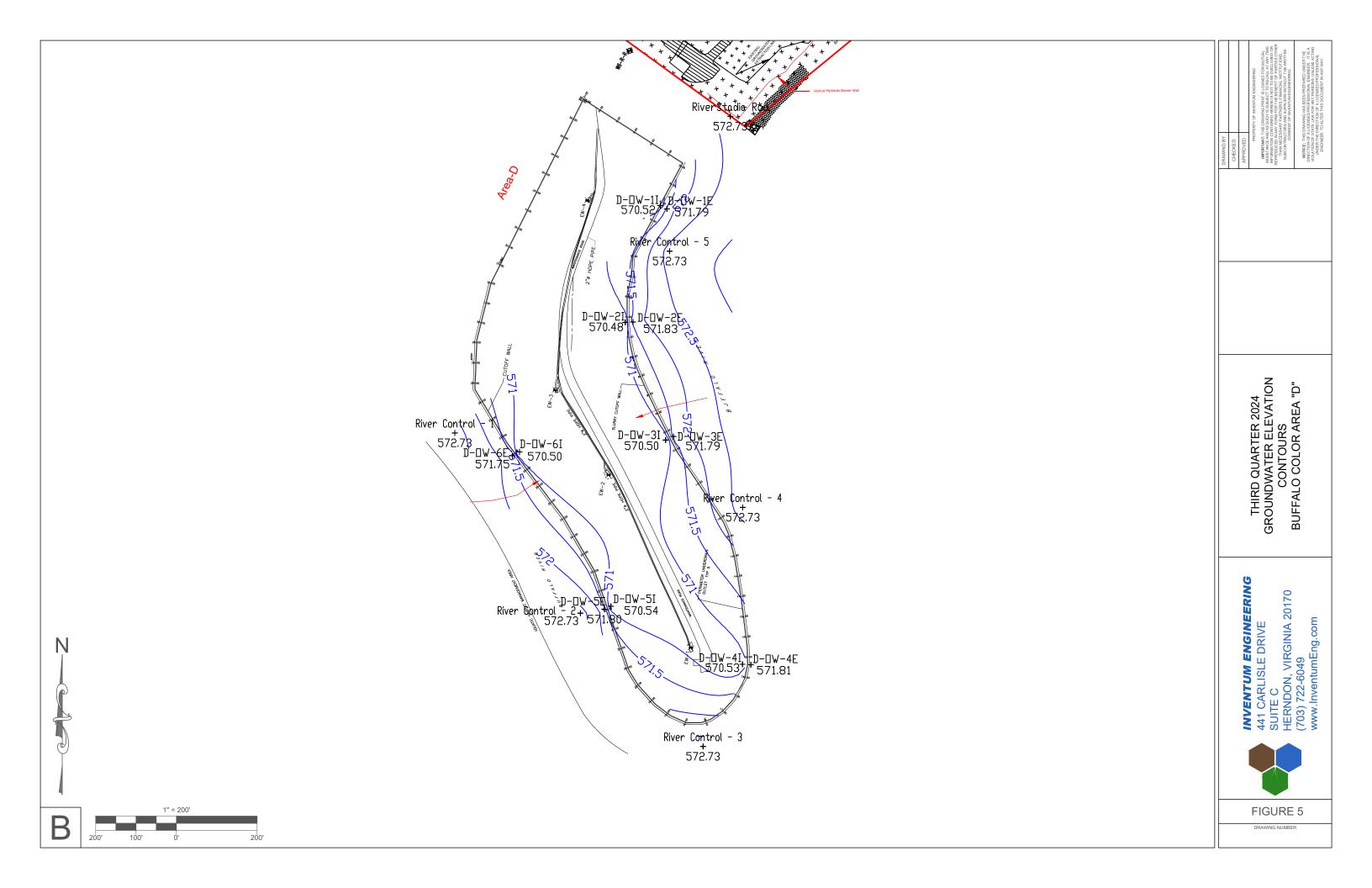
Figure

2 BUFFALO CREEK RAILROAD BUFFALO, NY


BUFFALO COLOR AREA "D"


SUITE C HERNDON, VIRGINIA 20170 www.InventumEng.com




FIGURE 01 DRAWING NUMBER

Attachments

ATTACHMENT A - IC/EC CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	915012	Site Details	Box 1	
Sit	e Name Bu	ffalo Color Area "D"			
Cit Co	e Address: 2 y/Town: Bu unty:Erie e Acreage:		Zip Code: 14210		
Re	porting Perio	od: October 05, 2023 to Oct	tober 05, 2024		
				YES	NO
1.	Is the infor	mation above correct?		X	
	If NO, inclu	de handwritten above or on	a separate sheet.		
2.		or all of the site property been nendment during this Report	en sold, subdivided, merged, or undergone ting Period?	e a	X
3.		peen any change of use at the RR 375-1.11(d))?	he site during this Reporting Period		X
4.		ederal, state, and/or local pe e property during this Report	ermits (e.g., building, discharge) been issu ting Period?	ed	X
	-		thru 4, include documentation or evide		
5.	Is the site o	currently undergoing develor	pment?		X
				Box 2	
				YES	NO
6.		ent site use consistent with that al and Industrial	he use(s) listed below?	X	
7.	Are all ICs	in place and functioning as	designed?	X	
	IF TI		JESTION 6 OR 7 IS NO, sign and date belo REST OF THIS FORM. Otherwise continu		
AC	Corrective M	easures Work Plan must be	e submitted along with this form to addres	ss these iss	sues.
Sig	inature of Ow	ner, Remedial Party or Desig	nated Representative Dat	:e	

SITE NO. 915012 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

122.16-1-10 South Buffalo Development, LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

O&M Plan IC/EC Plan

Institutional Controls

An Environmental Easement was imposed for the controlled property which:

- requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County; and
- requires compliance with the Department approved Site Management Plan.

Site Management Plan

A Site Management Plan has been prepared for the site, which includes the following:

1. an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:

Institutional Controls:

This plan includes, but may not be limited to:

- o an Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination;
- o descriptions of the provisions of the environmental easement including any land use, and groundwater use restrictions;
- o provisions for the management and inspection of the identified engineering controls;
- o maintaining site access controls and Department notification; and
- o execute necessary activities for the periodic reviews and certification of the institutional and/or engineering controls.
- 2. a Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:
- o monitoring of groundwater and riverfill cover area to assess the performance and effectiveness of the remedy; and
- o a schedule of monitoring and frequency of submittals to the Department.
- 3. an Operation and Maintenance (O&M) Plan to ensure continued operation, maintenance, optimization, monitoring, inspection, and reporting of any mechanical or physical components of the remedy. The plan includes, but is not limited to:
- o procedures for operating and maintaining the remedy;
- o compliance monitoring of treatment systems to ensure proper O&M as well as providing the data for any necessary permit or permit equivalent reporting;
- o maintaining site access controls and Department notification; and
- o providing the Department access to the site and O&M records.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

122.16-1-10

Groundwater Treatment System

Cover System

Groundwater Containment Fencing/Access Control

Engineering Controls at the site includes:

- A soil-bentonite slurry vertical hydraulic barrier wall surrounding Area "D" to contain

Engineering Control Parcel contaminated groundwater; - A multilayered soil/synthetic membrane cap on a graded base over the entire site within the limits of the slurry wall; - A contaminated groundwater extraction and treatment system with permitted discharge of treated groundwater to the Buffalo Sewer Authority sanitary sewer; - Riverbank stabilization using riprap with habitat enhancements; - An in-river cover system to isolate and contain grossly contaminated material outside the containment limits of the barrier wall within a limited stretch of riverbank; - security fencing; and - a monitoring well network. Box 5 Periodic Review Report (PRR) Certification Statements 1. I certify by checking "YES" below that: a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification; b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO X 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true: (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. 915012

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

John P. Black	441 Carlisle Drive; Ste C; He	erndon, VA
print name	print business	address
am certifying asRemedial Party		(Owner or Remedial Party)
for the Site named in the Site De	etails Section of this form	
Scole 4	2 861	02/19/2025
	Party, or Designated Representative	Date
Rendering Certification		

EC CERTIFICATIONS

Box 7

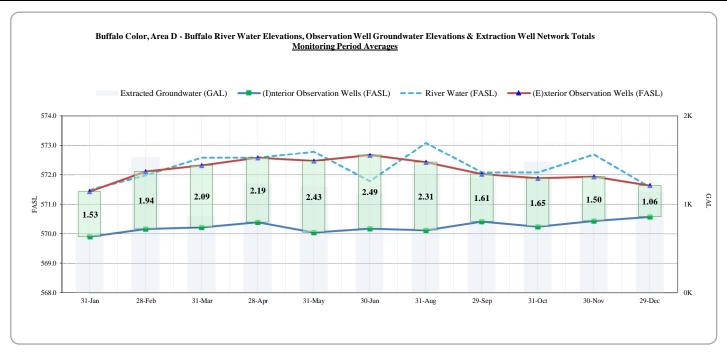
Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

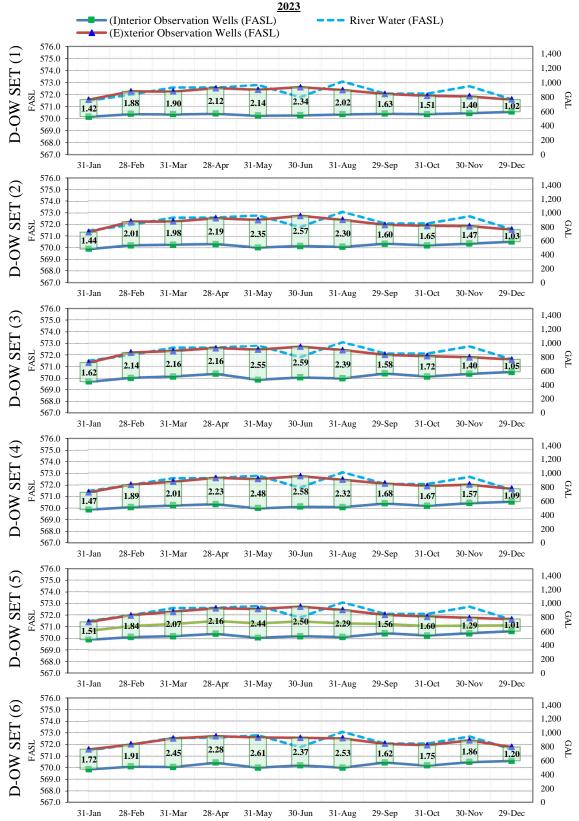
John P. Black 44	1 Carlisle Drive; Ste C; Herndon, VA
print name	print business address
m certifying as a Professional Engineer for the	Remedial Party
	(Owner or Remedial Party)
	DA SE OF NEW
A Part	02/19/2025
gnature of Professional Engineer, for the Owi	
medial Party, Rendering Certification	(Required for PE)

ATTACHMENT B - SITE INSPECTIONS

	Pre-Inspection Data							Cover System						over Sy	stem; R	iverbank	; & Sit	e-Wide	Compli	ance In	spection	n			
				,	Weathe	er		Site Co	onditions				System omment)				Riverbaı K / Comı					Complia omment)			
Date	Associate(s)	NYSDEC Invitation Extended (Yes / No / List Attendees)	Cloud Cover (Clear / Pt. Cloudy / Overcast)	Precipitation (None / Rain / Snow / Hail)	Lightning (Yes / No)	Wind (Calm / Moderate / Strong)	Temperature Range (+/- 10 Deg F Range)	Ground Surface (Dry / Damp / Wet)	Standing Snow & Ice (LOW: 1" or less / MID: 1" to 12" / HI: 12" or more)	Area D Soil Cover Integrity	Area D Grass / Vegetation	Area D Gravel Cover Integrity	Area D Outdoor Paved Areas	Area D Occupied Basement Slabs	Area D Storm Drainage System & Structures	Area D Shoreline Soil Slope Integrity	Area D Shoreline Erosion Protection (Vegetation / Riprap)	Sediment Deposit Area (SDA) Bathometric Survey (Performed Every 5 Years)	Area D Vertical Hydraulic Barrier Monitoring Program	Area D Groundwater Monitoring Program	Area D Site Records	Area D Active Site Permits	Area D O&M Schedule	Area D Institutional Site Use Restrictions	Area D Additional Notes
Fri 10/31/2023	Taylor Kunzelman	no	Overcast	None	No	Calm	36f	Damp	Low	OK	Ok	OK	None	None	OK	OK	OK		OK	OK	Ok	OK	OK	OK	
Tue11/28/2023	Taylor Kunzelman	No	Overcast	Snow	No	Moderate	25f	Damp	МоТ	OK	Ok	OK	None	None	OK	OK	OK		OK	OK	OK	OK	OK	OK	
Fri 12/29/2023	Taylor Kunzelman	No	Pt. Cloudy	None	No	Calm	41f	Wet	Low	OK	Ok	OK	None	None	OK	OK	OK		OK	OK	Ok	Ok	OK	OK	
Tue 1/30/2024	Taylor Kunzelman	No	Overcast	None	No	Calm	32f	Wet	MID	OK	Ok	OK	None	None	OK	OK	OK		OK	OK	Ok	OK	OK	OK	
Thu 2/29/2024	Taylor Kunzelman	No	Clear	None	No	Moderate	23f	Damp	Low	OK	Ok	OK	OK	None	OK	OK	OK		OK	OK	Ok	OK	OK	OK	


	Pre-Inspection Data								Area D C					over Sy	stem; R	iverbank	; & Sit	e-Wide	Compli	ance In	spection	n			
				,	Weathe	r		Site Co	onditions				System omment)				Riverbaı K / Comı					Complia omment)			
Date	Associate(s)	NYSDEC Invitation Extended (Yes / No / List Attendees)	Cloud Cover (Clear / Pt. Cloudy / Overcast)	Precipitation (None / Rain / Snow / Hail)	Lightning (Yes / No)	Wind (Calm / Moderate / Strong)	Temperature Range (+/- 10 Deg F Range)	Ground Surface (Dry / Damp / Wet)	Standing Snow & Ice (LOW: 1" or less / MID: 1" to 12" / HI: 12" or more)	Area D Soil Cover Integrity	Area D Grass / Vegetation	Area D Gravel Cover Integrity	Area D Outdoor Paved Areas	Area D Occupied Basement Slabs	Area D Storm Drainage System & Structures	Area D Shoreline Soil Slope Integrity	Area D Shoreline Erosion Protection (Vegetation / Riprap)	Sediment Deposit Area (SDA) Bathometric Survey (Performed Every 5 Years)	Area D Vertical Hydraulic Barrier Monitoring Program	Area D Groundwater Monitoring Program	Area D Site Records	Area D Active Site Permits	Area D O&M Schedule	Area D Institutional Site Use Restrictions	Area D Additional Notes
Fri 3/29/2024	Taylor Kunzelman	No	Pt. Cloudy	None	No	Calm	42f	Damp	Low	OK	Ok	OK	OK	None	OK	OK	OK		OK	OK	Ok	OK	OK	OK	
Tue 4/30/2024	Taylor Kunzelman	No	Overcast	None	No	Calm	55f	Damp	Low	OK	Ok	OK	OK	None	OK	OK	OK		OK	OK	Ok	OK	OK	OK	
Fri 5/31/204	Taylor Kunzelman	No	Clear	None	No	Calm	67f	Dry	Low	OK	Ok	OK	OK	None	OK	OK	OK		OK	OK	Ok	OK	OK	OK	D-Ew-2 totalizer acting-up and repaired.
Fri 6/28/2024	Taylor Kunzelman	No	Clear	None	N ₀	Calm	82f	Dry	Low	OK	OK	OK	OK	None	OK	OK	OK		OK	OK	Ok	OK	OK	OK	
Mon 9/30/2024	Taylor Kunzelman	No	Clear	None	N ₀	Calm	64f	Dry	Low	OK	Ok	OK	OK	None	OK	OK	OK		OK	OK	Ok	Ok	OK	None	Inspections were not recorded during the period of GWTF upgrades in July and August 2024.

ATTACHMENT C - OBSERVATION WELL HYDROGRAPHS

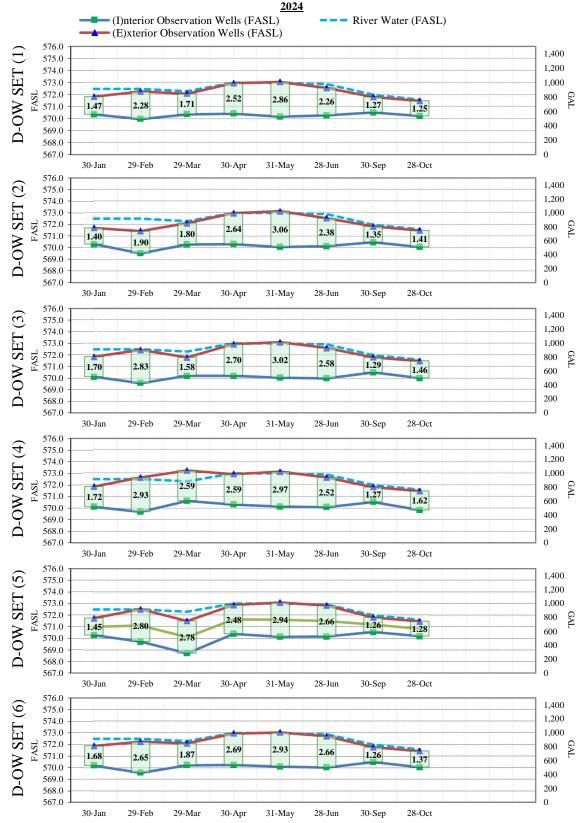


Abbreviations: River Stadia Rod (RSR), Observation Well (OW), Elevation Differential (ED), Extraction Well (EW)

2023	RIVER	D	-OW SET (1)	D	-OW SET (2)	D-	OW SET (3)	D	-OW SET (4)	D	-OW SET ((5)	D	-OW SET (6)	1	AVERAGE	S	i .		D-EW		
Date	RSR	1I	1E	1ED	2I	2E	2ED	3I	3E	3ED	4I	4E	4ED	5I	5E	5ED	61	6E	6ED	I	E	ED	1	2	3	4	TOTAL
31-Jan	571.48	570.15	571.56	1.42	569.91	571.35	1.44	569.70	571.32	1.62	569.89	571.37	1.47	569.90	571.41	1.51	569.85	571.57	1.72	569.90	571.43	1.53	270	120	130	135	655
28-Feb	571.98	570.38	572.25	1.88	570.23	572.24	2.01	570.04	572.18	2.14	570.11	572.01	1.89	570.14	571.98	1.84	570.09	572.00	1.91	570.16	572.11	1.94	270	110	863	283	1526
31-Mar	572.58	570.35	572.24	1.90	570.28	572.26	1.98	570.15	572.31	2.16	570.26	572.28	2.01	570.21	572.28	2.07	570.06	572.51	2.45	570.22	572.31	2.09	270	100	111	383	864
28-Apr	572.58	570.41	572.52	2.12	570.34	572.53	2.19	570.39	572.55	2.16	570.35	572.59	2.23	570.41	572.57	2.16	570.43	572.71	2.28	570.39	572.58	2.19	160	60	536	477	1233
31-May	572.78	570.25	572.38	2.14	570.03	572.38	2.35	569.88	572.43	2.55	570.01	572.50	2.48	570.07	572.51	2.44	569.99	572.60	2.61	570.04	572.46	2.43	340	130	491	235	1196
30-Jun	571.78	570.27	572.60	2.34	570.17	572.74	2.57	570.08	572.67	2.59	570.15	572.74	2.58	570.20	572.70	2.50	570.19	572.56	2.37	570.18	572.67	2.49	220	87	510	301	1118
31-Aug	573.08	570.35	572.36	2.02	570.10	572.40	2.30	570.00	572.39	2.39	570.11	572.44	2.32	570.14	572.43	2.29	570.00	572.53	2.53	570.12	572.42	2.31	300	104	374	546	1324
29-Sep	572.08	570.41	572.03	1.63	570.36	571.96	1.60	570.41	571.99	1.58	570.42	572.11	1.68	570.45	572.01	1.56	570.44	572.06	1.62	570.41	572.02	1.61	230	79	731	255	1295
31-Oct	572.08	570.37	571.87	1.51	570.23	571.88	1.65	570.15	571.87	1.72	570.22	571.90	1.67	570.26	571.86	1.60	570.18	571.93	1.75	570.23	571.88	1.65	320	110	497	550	1477
30-Nov	572.68	570.45	571.84	1.40	570.38	571.85	1.47	570.38	571.78	1.40	570.45	572.03	1.57	570.46	571.75	1.29	570.48	572.34	1.86	570.43	571.93	1.50	210	90	400	303	1003
29-Dec	571.58	570.56	571.57	1.02	570.54	571.57	1.03	570.54	571.59	1.05	570.57	571.67	1.09	570.63	571.64	1.01	570.58	571.78	1.20	570.57	571.63	1.06	280	170	324	361	1135
Avg Sum	572.24	570.35	572.11	1.76	570.23	572.10	1.87	570.15	572.09	1.94	570.23	572.15	1.91	570.26	572.10	1.84	570.21	572.23	2.02	570.24	572.13	1.89	2,870	1,160	4,967	3,829	12,826



Buffalo Color, Area D - Buffalo River Water Elevations, Observation Well Groundwater Elevations & Extraction Well Network Allocations



Abbreviations: River Stadia Rod (RSR), Observation Well (OW), Elevation Differential (ED), Extraction Well (EW)

2024	RIVER		-OW SET (1		11 (OW), ER	-OW SET (-OW SET (,	D	-OW SET (4)	D	-OW SET (5)	D	-OW SET (6)	I	AVERAGE:	S			D-EW		
Date	RSR	1I	1E	1ED	2I	2E	2ED	3I	3E	3ED	4I	4E	4ED	5I	5E	5ED	6I	6E	6ED	I	E	ED	1	2	3	4	TOTAL
30-Jan	572.48	570.36	571.82	1.47	570.31	571.71	1.40	570.13	571.83	1.70	570.12	571.85	1.72	570.27	571.72	1.45	570.20	571.88	1.68	570.23	571.80	1.57	260	180	708	333	1481
29-Feb	572.48	569.98	572.25	2.28	569.53	571.43	1.90	569.58	572.41	2.83	569.68	572.62	2.93	569.70	572.50	2.80	569.58	572.23	2.65	569.67	572.24	2.56	280	90	596	326	1292
29-Mar	572.28	570.38	572.08	1.71	570.30	572.10	1.80	570.20	571.78	1.58	570.62	573.22	2.59	568.71	571.49	2.78	570.23	572.10	1.87	570.07	572.13	2.05	530	108	383	540	1561
30-Apr	572.98	570.43	572.94	2.52	570.32	572.96	2.64	570.21	572.91	2.70	570.31	572.91	2.59	570.38	572.86	2.48	570.25	572.94	2.69	570.32	572.92	2.60	300	94	1018	597	2009
31-May	572.98	570.18	573.03	2.86	570.07	573.13	3.06	570.06	573.08	3.02	570.13	573.11	2.97	570.13	573.07	2.94	570.10	573.03	2.93	570.11	573.07	2.96	450	18	1089	880	2437
28-Jun	572.88	570.29	572.54	2.26	570.15	572.53	2.38	570.00	572.58	2.58	570.09	572.62	2.52	570.15	572.81	2.66	570.04	572.70	2.66	570.12	572.63	2.51	230	50	578	471	1329
30-Sep	571.98	570.53	571.79	1.27	570.48	571.83	1.35	570.50	571.79	1.29	570.53	571.81	1.27	570.54	571.80	1.26	570.50	571.76	1.26	570.51	571.79	1.28	660	10	1463	63	2196
28-Oct	571.58	570.23	571.47	1.25	570.07	571.48	1.41	570.01	571.47	1.46	569.83	571.46	1.62	570.17	571.45	1.28	570.06	571.43	1.37	570.06	571.46	1.40	3650	0	248	104	4002
	Note: Grou	ndwater El	evations wer	e not colle	cted in July	and August	2024 duris	ng GWTF u	pgrades.																		
Avg Sum	572.46	570.29	572.24	1.95	570.15	572.14	1.99	570.08	572.23	2.14	570.17	572.45	2.28	570.01	572.21	2.20	570.12	572.25	2.13	570.14	572.25	2.12	6,360	<u>550</u>	6,083	3,314	16,307

 $Buffalo\ Color, Area\ D\ -\ Buffalo\ River\ Water\ Elevations, Observation\ Well\ Groundwater\ Elevations\ \&\ Extraction\ Well\ Network\ Allocations$

ATTACHMENT D - GROUNDWATER DATA

ANALYTICAL REPORT

PREPARED FOR

Attn: Kirsten Colligan
Ontario Specialty Contracting, Inc.
140 Lee St.
Buffalo, New York 14210
Generated 10/7/2024 3:42:06 PM

JOB DESCRIPTION

Buffalo Color Area D Annual Influent Buffalo Color Area D Annual Influent

JOB NUMBER

480-223845-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 10/7/2024 3:42:06 PM

Authorized for release by Anton Gruning, Project Management Assistant I Anton.Gruning@et.eurofinsus.com Designee for

John Schove, Project Manager II John.Schove@et.eurofinsus.com (716)504-9838

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	22
Lab Chronicle	24
Certification Summary	25
Method Summary	26
Sample Summary	27
Detection Limit Exceptions Summary	28
Chain of Custody	29
Receipt Checklists	30

2

4

6

8

10

12

1/

15

Definitions/Glossary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Job ID: 480-223845-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

^1+ Initial Calibration Verification (ICV) is outside acceptance limits, high biased.

F1 MS and/or MSD recovery exceeds control limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 30 10/7/2024

Case Narrative

Client: Ontario Specialty Contracting, Inc. Project: Buffalo Color Area D Annual Influent

Job ID: 480-223845-1 Eurofins Buffalo

Job Narrative 480-223845-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/30/2024 4:05 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.7°C.

GC/MS VOA

Method 624.1_PREC: The following sample was diluted to bring the concentration of target analytes within the calibration range: BCC Area D Influent (480-223845-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1_PREC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-726739.

Method 625.1_PREC: The following sample was diluted due to color, appearance, and viscosity: BCC Area D Influent (480-223845-1). Elevated reporting limits (RL) are provided.

Method 625.1_PREC: The continuing calibration verification (CCV) associated with batch 480-726818 recovered above the upper control limit for 4,6-Dinitro-2-methylphenol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: BCC Area D Influent (480-223845-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCBs

Method 608.3_PCB_PREC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-726863.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 420.4_NP: The initial calibration verification (ICV) associated with batch 480-727021 recovered above the upper control limit for Phenolics, Total Recoverable. The samples associated with this ICV were non-detects for the affected analytes; therefore, the data have been reported.BCC Area D Influent (480-223845-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Job ID: 480-223845-1

Page 5 of 30 10/7/2024

Detection Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Lab Sample ID: 480-223845-1

Job ID: 480-223845-1

Client Sample ID: BCC Area D Influent

Analyte	Result Qualit	fier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chlorobenzene	2200	200	19	ug/L	40	624.1	Total/NA
Aniline	3.2 J	48	1.8	ug/L	5	625.1	Total/NA
Chromium	0.0029 J	0.0040	0.0024	mg/L	1	200.7 Rev 4.4	Total/NA
Copper	0.0086 J	0.010	0.0045	mg/L	1	200.7 Rev 4.4	Total/NA
Lead	0.014	0.010	0.0039	mg/L	1	200.7 Rev 4.4	Total/NA
Nickel	0.0036 J	0.010	0.0034	mg/L	1	200.7 Rev 4.4	Total/NA
Zinc	0.033	0.010	0.0068	mg/L	1	200.7 Rev 4.4	Total/NA
Cyanide, Amenable	0.011	0.010	0.0050	mg/L	1	SM 4500 CN G	Total/NA
Total Phosphate as P	0.59	0.010	0.0050	mg/L as P	1	SM 4500 P E	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-223845-2

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Client Sample ID: BCC Area D Influent

Date Collected: 09/30/24 00:00 Date Received: 09/30/24 16:05 Lab Sample ID: 480-223845-1

Matrix: Water

Job ID: 480-223845-1

Method: EPA 624.1 - Volatil Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		200	15	ug/L			10/01/24 22:16	40
1,1,2,2-Tetrachloroethane	ND		200	10	ug/L			10/01/24 22:16	40
1,1,2-Trichloroethane	ND		200	19	ug/L			10/01/24 22:16	40
1,1-Dichloroethane	ND		200	24	ug/L			10/01/24 22:16	40
1,1-Dichloroethene	ND		200	34	ug/L			10/01/24 22:16	40
1,2-Dichlorobenzene	ND		200	18	ug/L			10/01/24 22:16	40
1,2-Dichloroethane	ND		200	24	ug/L			10/01/24 22:16	40
1,2-Dichloroethene, Total	ND		400	130	ug/L			10/01/24 22:16	40
1,2-Dichloropropane	ND		200	24	ug/L			10/01/24 22:16	40
1,3-Dichlorobenzene	ND		200	22	ug/L			10/01/24 22:16	40
1,4-Dichlorobenzene	ND		200	20	ug/L			10/01/24 22:16	40
2-Chloroethyl vinyl ether	ND		1000	74	ug/L			10/01/24 22:16	40
Acrolein	ND		4000	700	ug/L			10/01/24 22:16	40
Acrylonitrile	ND		4000	76	ug/L			10/01/24 22:16	40
Benzene	ND		200	24	ug/L			10/01/24 22:16	40
Bromoform	ND		200	19	ug/L			10/01/24 22:16	40
Bromomethane	ND		200	48	ug/L			10/01/24 22:16	40
Carbon tetrachloride	ND		200	20	ug/L			10/01/24 22:16	40
Chlorobenzene	2200		200	19	ug/L			10/01/24 22:16	40
Dibromochloromethane	ND		200	17	ug/L			10/01/24 22:16	40
Chloroethane	ND		200	35	ug/L			10/01/24 22:16	40
Chloroform	ND		200	22	ug/L			10/01/24 22:16	40
Chloromethane	ND		200	25	ug/L			10/01/24 22:16	40
cis-1,3-Dichloropropene	ND		200	13	ug/L			10/01/24 22:16	40
Bromodichloromethane	ND		200	21	ug/L			10/01/24 22:16	40
Ethylbenzene	ND		200	19	ug/L			10/01/24 22:16	40
Methylene Chloride	ND		200	33	ug/L			10/01/24 22:16	40
Tetrachloroethene	ND		200	14	ug/L			10/01/24 22:16	40
Toluene	ND		200	18	ug/L			10/01/24 22:16	40
trans-1,3-Dichloropropene	ND		200	18	ug/L			10/01/24 22:16	40
Trichloroethene	ND		200	24	ug/L			10/01/24 22:16	40
Trichlorofluoromethane	ND		200	18	ug/L			10/01/24 22:16	40
Vinyl chloride	ND		200	30	ug/L			10/01/24 22:16	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		68 - 130			_		10/01/24 22:16	40
4-Bromofluorobenzene (Surr)	98		76 - 123					10/01/24 22:16	40
Toluene-d8 (Surr)	99		77 - 120					10/01/24 22:16	40
Dibromofluoromethane (Surr)	95		75 - 123					10/01/24 22:16	40

Method: El A 020:1 - Ochilvo	iathe organic compound							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND ND	48	0.98	ug/L		10/01/24 12:56	10/02/24 14:04	5
1,2-Dichlorobenzene	ND	48	1.2	ug/L		10/01/24 12:56	10/02/24 14:04	5
1,2-Diphenylhydrazine	ND	48	0.93	ug/L		10/01/24 12:56	10/02/24 14:04	5
1,3-Dichlorobenzene	ND	48	0.82	ug/L		10/01/24 12:56	10/02/24 14:04	5
1,4-Dichlorobenzene	ND	48	0.98	ug/L		10/01/24 12:56	10/02/24 14:04	5
2,2'-oxybis[1-chloropropane]	ND	24	1.0	ug/L		10/01/24 12:56	10/02/24 14:04	5
2,4,6-Trichlorophenol	ND	24	1.2	ug/L		10/01/24 12:56	10/02/24 14:04	5
2,4-Dichlorophenol	ND	24	0.92	ug/L		10/01/24 12:56	10/02/24 14:04	5
·								

Eurofins Buffalo

Page 7 of 30 10/7/2024

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Client Sample ID: BCC Area D Influent

Date Collected: 09/30/24 00:00 Date Received: 09/30/24 16:05 Lab Sample ID: 480-223845-1

Matrix: Water

Job ID: 480-223845-1

Method: EPA 625.1 - Semivo Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dimethylphenol	ND		24	1.7	ug/L		10/01/24 12:56	10/02/24 14:04	5
2,4-Dinitrophenol	ND		48	6.0	ug/L		10/01/24 12:56	10/02/24 14:04	5
2,4-Dinitrotoluene	ND		24	1.9	ug/L		10/01/24 12:56	10/02/24 14:04	5
2.6-Dinitrotoluene	ND		24		ug/L		10/01/24 12:56	10/02/24 14:04	5
2-Chloronaphthalene	ND		24	1.1	ug/L		10/01/24 12:56	10/02/24 14:04	5
2-Chlorophenol	ND		24		ug/L		10/01/24 12:56	10/02/24 14:04	5
2-Nitrophenol	ND		24	0.83	•			10/02/24 14:04	5
3,3'-Dichlorobenzidine	ND		24		ug/L			10/02/24 14:04	5
4,6-Dinitro-2-methylphenol	ND		48		ug/L			10/02/24 14:04	5
4-Bromophenyl phenyl ether	ND		24		ug/L			10/02/24 14:04	5
4-Chloro-3-methylphenol	ND		24		ug/L			10/02/24 14:04	5
4-Chlorophenyl phenyl ether	ND		24		ug/L			10/02/24 14:04	5
4-Nitrophenol	ND		48		ug/L			10/02/24 14:04	5
Acenaphthene	ND		24	0.96				10/02/24 14:04	5
Acenaphthylene	ND		24	1.0	ug/L		10/01/24 12:56	10/02/24 14:04	5
Aniline	3.2		48		ug/L			10/02/24 14:04	5
Anthracene	ND	J	24		ug/L ug/L			10/02/24 14:04	5
Benzidine	ND		380		ug/L ug/L			10/02/24 14:04	5
	ND ND				•			10/02/24 14:04	
Benzo[a]anthracene			24		ug/L				5
Benzo[a]pyrene	ND		24		ug/L			10/02/24 14:04	5
Benzo[b]fluoranthene	ND		24		ug/L			10/02/24 14:04	5
Benzo[g,h,i]perylene	ND		24		ug/L			10/02/24 14:04	5
Benzo[k]fluoranthene	ND		24		ug/L			10/02/24 14:04	5
Bis(2-chloroethoxy)methane	ND		24		J			10/02/24 14:04	5
Bis(2-chloroethyl)ether	ND		24	1.1	ug/L			10/02/24 14:04	5
Bis(2-ethylhexyl) phthalate	ND		48		ug/L			10/02/24 14:04	5
Butyl benzyl phthalate	ND		24		J			10/02/24 14:04	5
Chrysene	ND		24		ug/L			10/02/24 14:04	5
Decane	ND		48		ug/L		10/01/24 12:56	10/02/24 14:04	5
Di-n-butyl phthalate	ND		24	1.9	ug/L		10/01/24 12:56	10/02/24 14:04	5
Di-n-octyl phthalate	ND		24		ug/L			10/02/24 14:04	5
Dibenz(a,h)anthracene	ND		24		ug/L			10/02/24 14:04	5
Diethyl phthalate	ND		24		ug/L			10/02/24 14:04	5
Dimethyl phthalate	ND		24	1.1				10/02/24 14:04	5
Fluoranthene	ND		24	1.9	ug/L		10/01/24 12:56	10/02/24 14:04	5
Fluorene	ND		24	1.2	ug/L		10/01/24 12:56	10/02/24 14:04	5
Hexachlorobenzene	ND		24	1.2	ug/L		10/01/24 12:56	10/02/24 14:04	5
Hexachlorobutadiene	ND		24	1.2	ug/L		10/01/24 12:56	10/02/24 14:04	5
Hexachlorocyclopentadiene	ND		24	2.5	ug/L		10/01/24 12:56	10/02/24 14:04	5
Hexachloroethane	ND		24	0.71	ug/L		10/01/24 12:56	10/02/24 14:04	5
Indeno[1,2,3-cd]pyrene	ND		24	1.8	ug/L		10/01/24 12:56	10/02/24 14:04	5
Isophorone	ND		24	0.88	ug/L		10/01/24 12:56	10/02/24 14:04	5
N-Nitrosodi-n-propylamine	ND		24	1.1	ug/L		10/01/24 12:56	10/02/24 14:04	5
N-Nitrosodimethylamine	ND		48	0.68	ug/L		10/01/24 12:56	10/02/24 14:04	5
N-Nitrosodiphenylamine	ND		24	0.98	ug/L		10/01/24 12:56	10/02/24 14:04	5
Naphthalene	ND		24	1.0	ug/L		10/01/24 12:56	10/02/24 14:04	5
Nitrobenzene	ND		24	0.96	ug/L		10/01/24 12:56	10/02/24 14:04	5
Pentachlorophenol	ND		48	3.8	ug/L		10/01/24 12:56	10/02/24 14:04	5
Phenanthrene	ND		24		ug/L		10/01/24 12:56	10/02/24 14:04	5

Eurofins Buffalo

10/7/2024

Page 8 of 30

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Client Sample ID: BCC Area D Influent

Date Collected: 09/30/24 00:00

Date Received: 09/30/24 16:05

Lab Sample ID: 480-223845-1

Matrix: Water

Job ID: 480-223845-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		24	0.42	ug/L		10/01/24 12:56	10/02/24 14:04	5
Pyrene	ND		24	1.7	ug/L		10/01/24 12:56	10/02/24 14:04	5
n-Octadecane	ND		48	1.4	ug/L		10/01/24 12:56	10/02/24 14:04	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	102		52 - 151				10/01/24 12:56	10/02/24 14:04	- 5
2-Fluorobiphenyl	75		44 - 120				10/01/24 12:56	10/02/24 14:04	5
2-Fluorophenol	41		17 - 120				10/01/24 12:56	10/02/24 14:04	5
Nitrobenzene-d5	63		15 - 314				10/01/24 12:56	10/02/24 14:04	5
p-Terphenyl-d14	71		22 - 125				10/01/24 12:56	10/02/24 14:04	5
Phenol-d5	30		8 - 424				10/01/24 12:56	10/02/24 14:04	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.057	0.036	ug/L		10/02/24 12:56	10/03/24 15:45	1
PCB-1221	ND		0.057	0.036	ug/L		10/02/24 12:56	10/03/24 15:45	1
PCB-1232	ND		0.057	0.036	ug/L		10/02/24 12:56	10/03/24 15:45	1
PCB-1242	ND		0.057	0.036	ug/L		10/02/24 12:56	10/03/24 15:45	1
PCB-1248	ND		0.057	0.036	ug/L		10/02/24 12:56	10/03/24 15:45	1
PCB-1254	ND		0.057	0.030	ug/L		10/02/24 12:56	10/03/24 15:45	1
PCB-1260	ND		0.057	0.030	ug/L		10/02/24 12:56	10/03/24 15:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	79		10 - 120				10/02/24 12:56	10/03/24 15:45	1
Tetrachloro-m-xylene	74		10 - 126				10/02/24 12:56	10/03/24 15:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.0029	J	0.0040	0.0024	mg/L		10/02/24 08:14	10/02/24 16:06	1
Copper	0.0086	J	0.010	0.0045	mg/L		10/02/24 08:14	10/02/24 16:06	1
Lead	0.014		0.010	0.0039	mg/L		10/02/24 08:14	10/02/24 16:06	1
Nickel	0.0036	J	0.010	0.0034	mg/L		10/02/24 08:14	10/02/24 16:06	1
Zinc	0.033		0.010	0.0068	mg/L		10/02/24 08:14	10/02/24 16:06	1

Method: EPA 245.1 - Mercury (CV	/AA)							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00020	0.000042	mg/L		10/02/24 10:05	10/02/24 15:16	1
Ganaral Chamistry								

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolics, Total Recoverable (EPA	ND	^1+ F1	0.010	0.0035	mg/L			10/03/24 09:57	1
420.4)									
Cyanide, Amenable (SM 4500 CN	0.011		0.010	0.0050	mg/L			10/05/24 17:30	1
G)									
Total Phosphate as P (SM 4500 P	0.59		0.010	0.0050	mg/L as P			10/01/24 19:46	1
F)									

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Client Sample ID: TRIP BLANK

Date Collected: 09/30/24 00:00 Date Received: 09/30/24 16:05 Lab Sample ID: 480-223845-2

Matrix: Water

Job ID: 480-223845-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/01/24 21:03	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/01/24 21:03	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/01/24 21:03	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/01/24 21:03	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/01/24 21:03	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/01/24 21:03	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/01/24 21:03	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/01/24 21:03	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/01/24 21:03	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/01/24 21:03	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/01/24 21:03	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/01/24 21:03	1
Acrolein	ND		100	17	ug/L			10/01/24 21:03	1
Acrylonitrile	ND		100	1.9	ug/L			10/01/24 21:03	1
Benzene	ND		5.0	0.60	ug/L			10/01/24 21:03	1
Bromoform	ND		5.0	0.47	ug/L			10/01/24 21:03	1
Bromomethane	ND		5.0	1.2	ug/L			10/01/24 21:03	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/01/24 21:03	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/01/24 21:03	1
Dibromochloromethane	ND		5.0		ug/L			10/01/24 21:03	1
Chloroethane	ND		5.0	0.87	ug/L			10/01/24 21:03	1
Chloroform	ND		5.0		ug/L			10/01/24 21:03	1
Chloromethane	ND		5.0	0.64	ug/L			10/01/24 21:03	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/01/24 21:03	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/01/24 21:03	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/01/24 21:03	1
Methylene Chloride	ND		5.0		ug/L			10/01/24 21:03	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/01/24 21:03	1
Toluene	ND		5.0	0.45	ug/L			10/01/24 21:03	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/01/24 21:03	1
Trichloroethene	ND		5.0	0.60	ug/L			10/01/24 21:03	1
Trichlorofluoromethane	ND		5.0		ug/L			10/01/24 21:03	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/01/24 21:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 130			-		10/01/24 21:03	1
4-Bromofluorobenzene (Surr)	99		76 - 123					10/01/24 21:03	1
Toluene-d8 (Surr)	99		77 - 120					10/01/24 21:03	1
Dibromofluoromethane (Surr)	99		75 - 123					10/01/24 21:03	1

Surrogate Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

Lab Sample ID Client Sample ID (68-130) (76-123) (77-120) (75-123) 480-223845-1 BCC Area D Influent 99 98 99 95
100 2020 45 1
480-223845-1 BCC Area D Influent 99 98 99 95
480-223845-2 TRIP BLANK 102 99 99 99
LCS 480-726771/6 Lab Control Sample 99 99 101
MB 480-726771/8 Method Blank 101 100 100 100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Accept						
		TBP	FBP	2FP	NBZ	TPHd14	PHL	
Lab Sample ID	Client Sample ID	(52-151)	(44-120)	(17-120)	(15-314)	(22-125)	(8-424)	
480-223845-1	BCC Area D Influent	102	75	41	63	71	30	
LCS 480-726739/2-A	Lab Control Sample	117	92	57	92	101	42	
LCSD 480-726739/3-A	Lab Control Sample Dup	117	93	58	94	99	43	
MB 480-726739/1-A	Method Blank	96	90	56	87	102	39	

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPHd14 = p-Terphenyl-d14

PHL = Phenol-d5

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		DCBP2	TCX2						
Lab Sample ID	Client Sample ID	(10-120)	(10-126)						
480-223845-1	BCC Area D Influent	79	74						
LCS 480-726863/2-A	Lab Control Sample	60	89						
LCSD 480-726863/3-A	Lab Control Sample Dup	57	87						
MB 480-726863/1-A	Method Blank	57	80						

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Eurofins Buffalo

Job ID: 480-223845-1

MB MB

Project/Site: Buffalo Color Area D Annual Influent

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-726771/8

Matrix: Water

Analysis Batch: 726771

Client Sample ID: Method Blank

Job ID: 480-223845-1

Prep Type: Total/NA

Analyta	Popult	Ouglifier	RL	MDI	Unit	D	Droporod	Analyzad	Dil Fac
Analyte		Qualifier					Prepared	Analyzed	DII Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			10/01/24 19:50	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			10/01/24 19:50	1
1,1,2-Trichloroethane	ND		5.0		ug/L			10/01/24 19:50	1
1,1-Dichloroethane	ND		5.0		ug/L			10/01/24 19:50	1
1,1-Dichloroethene	ND		5.0		ug/L			10/01/24 19:50	1
1,2-Dichlorobenzene	ND		5.0		ug/L			10/01/24 19:50	1
1,2-Dichloroethane	ND		5.0		ug/L			10/01/24 19:50	1
1,2-Dichloroethene, Total	ND		10		ug/L			10/01/24 19:50	1
1,2-Dichloropropane	ND		5.0		ug/L			10/01/24 19:50	1
1,3-Dichlorobenzene	ND		5.0		ug/L			10/01/24 19:50	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/01/24 19:50	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/01/24 19:50	1
Acrolein	ND		100	17	ug/L			10/01/24 19:50	1
Acrylonitrile	ND		100	1.9	ug/L			10/01/24 19:50	1
Benzene	ND		5.0	0.60	ug/L			10/01/24 19:50	1
Bromoform	ND		5.0	0.47	ug/L			10/01/24 19:50	1
Bromomethane	ND		5.0	1.2	ug/L			10/01/24 19:50	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/01/24 19:50	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/01/24 19:50	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/01/24 19:50	1
Chloroethane	ND		5.0	0.87	ug/L			10/01/24 19:50	1
Chloroform	ND		5.0	0.54	ug/L			10/01/24 19:50	1
Chloromethane	ND		5.0	0.64	ug/L			10/01/24 19:50	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/01/24 19:50	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/01/24 19:50	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/01/24 19:50	1
Methylene Chloride	ND		5.0		ug/L			10/01/24 19:50	1
Tetrachloroethene	ND		5.0		ug/L			10/01/24 19:50	1
Toluene	ND		5.0		ug/L			10/01/24 19:50	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			10/01/24 19:50	1
Trichloroethene	ND		5.0		ug/L			10/01/24 19:50	1
Trichlorofluoromethane	ND		5.0		ug/L			10/01/24 19:50	1
Vinyl chloride	ND		5.0		ug/L			10/01/24 19:50	1
,	.15		0.0	00	J				

MB	MB

Surrogate	%Recovery Qual	ifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	68 - 130	10/01/24 19:5	0 1
4-Bromofluorobenzene (Surr)	100	76 - 123	10/01/24 19:5	0 1
Toluene-d8 (Surr)	100	77 - 120	10/01/24 19:5	0 1
Dibromofluoromethane (Surr)	100	75 - 123	10/01/24 19:5	0 1

Lab Sample ID: LCS 480-726771/6

Matrix: Water

Analysis Batch: 726771

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	 20.0	20.8		ug/L		104	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.3		ug/L		101	46 - 157	
1,1,2-Trichloroethane	20.0	19.6		ug/L		98	52 - 150	

Eurofins Buffalo

Page 12 of 30

Project/Site: Buffalo Color Area D Annual Influent

Job ID: 480-223845-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-726771/6

Matrix: Water

Analysis Batch: 726771

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	20.2		ug/L		101	59 - 155	
1,1-Dichloroethene	20.0	20.2		ug/L		101	1 - 234	
1,2-Dichlorobenzene	20.0	20.3		ug/L		102	18 - 190	
1,2-Dichloroethane	20.0	19.6		ug/L		98	49 - 155	
1,2-Dichloropropane	20.0	20.0		ug/L		100	1 - 210	
1,3-Dichlorobenzene	20.0	20.0		ug/L		100	59 - 156	
1,4-Dichlorobenzene	20.0	20.0		ug/L		100	18 - 190	
2-Chloroethyl vinyl ether	20.0	20.3	J	ug/L		102	1 - 305	
Benzene	20.0	20.1		ug/L		101	37 - 151	
Bromoform	20.0	23.5		ug/L		118	45 - 169	
Bromomethane	20.0	20.5		ug/L		103	1 - 242	
Carbon tetrachloride	20.0	21.3		ug/L		107	70 - 140	
Chlorobenzene	20.0	20.0		ug/L		100	37 - 160	
Dibromochloromethane	20.0	21.9		ug/L		110	53 - 149	
Chloroethane	20.0	21.0		ug/L		105	14 - 230	
Chloroform	20.0	20.1		ug/L		100	51 - 138	
Chloromethane	20.0	21.7		ug/L		108	1 - 273	
cis-1,3-Dichloropropene	20.0	21.0		ug/L		105	1 - 227	
Bromodichloromethane	20.0	20.9		ug/L		104	35 - 155	
Ethylbenzene	20.0	20.1		ug/L		100	37 - 162	
Methylene Chloride	20.0	20.1		ug/L		100	1 - 221	
Tetrachloroethene	20.0	20.3		ug/L		102	64 - 148	
Toluene	20.0	19.9		ug/L		100	47 - 150	
trans-1,3-Dichloropropene	20.0	21.1		ug/L		106	17 - 183	
Trichloroethene	20.0	20.1		ug/L		101	71 - 157	
Trichlorofluoromethane	20.0	23.6		ug/L		118	17 - 181	
Vinyl chloride	20.0	22.8		ug/L		114	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		68 - 130
4-Bromofluorobenzene (Surr)	99		76 - 123
Toluene-d8 (Surr)	99		77 - 120
Dibromofluoromethane (Surr)	101		75 - 123

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-726739/1-A

Matrix: Water

Analysis Batch: 726818

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 726739

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	10	0.21	ug/L		10/01/24 12:56	10/02/24 11:59	1
1,2-Dichlorobenzene	ND	10	0.26	ug/L		10/01/24 12:56	10/02/24 11:59	1
1,2-Diphenylhydrazine	ND	10	0.20	ug/L		10/01/24 12:56	10/02/24 11:59	1
1,3-Dichlorobenzene	ND	10	0.17	ug/L		10/01/24 12:56	10/02/24 11:59	1
1,4-Dichlorobenzene	ND	10	0.21	ug/L		10/01/24 12:56	10/02/24 11:59	1
2,2'-oxybis[1-chloropropane]	ND	5.0	0.21	ug/L		10/01/24 12:56	10/02/24 11:59	1
2,4,6-Trichlorophenol	ND	5.0	0.25	ug/L		10/01/24 12:56	10/02/24 11:59	1
2,4-Dichlorophenol	ND	5.0	0.19	ug/L		10/01/24 12:56	10/02/24 11:59	1

Eurofins Buffalo

Page 13 of 30

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726739/1-A

Matrix: Water

Analysis Batch: 726818

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 726739

Analyte	MB Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dimethylphenol	ND		5.0		ug/L	<u>-</u>	10/01/24 12:56		1
2,4-Dinitrophenol	ND		10		ug/L		10/01/24 12:56		1
2,4-Dinitrotoluene	ND		5.0		ug/L		10/01/24 12:56	10/02/24 11:59	1
2,6-Dinitrotoluene	ND		5.0		ug/L		10/01/24 12:56		1
2-Chloronaphthalene	ND		5.0		ug/L		10/01/24 12:56		1
2-Chlorophenol	ND		5.0		ug/L		10/01/24 12:56		1
2-Nitrophenol	ND		5.0		ug/L		10/01/24 12:56	10/02/24 11:59	1
3,3'-Dichlorobenzidine	ND		5.0		ug/L		10/01/24 12:56	10/02/24 11:59	1
4,6-Dinitro-2-methylphenol	ND		10		ug/L		10/01/24 12:56		1
4-Bromophenyl phenyl ether	ND		5.0		ug/L		10/01/24 12:56		1
4-Chloro-3-methylphenol	ND		5.0		ug/L			10/02/24 11:59	1
4-Chlorophenyl phenyl ether	ND		5.0		ug/L		10/01/24 12:56		1
4-Nitrophenol	ND		10		ug/L		10/01/24 12:56	10/02/24 11:59	1
Acenaphthene	ND		5.0		ug/L		10/01/24 12:56		
Acenaphthylene	ND		5.0		ug/L		10/01/24 12:56		1
Aniline	ND		10		ug/L		10/01/24 12:56	10/02/24 11:59	1
Anthracene	ND		5.0		ug/L		10/01/24 12:56	10/02/24 11:59	
Benzidine	ND		80		ug/L		10/01/24 12:56	10/02/24 11:59	1
Benzo[a]anthracene	ND		5.0		ug/L		10/01/24 12:56	10/02/24 11:59	1
Benzo[a]pyrene	ND		5.0		ug/L			10/02/24 11:59	1
Benzo[b]fluoranthene	ND		5.0		ug/L			10/02/24 11:59	1
Benzo[g,h,i]perylene	ND		5.0		ug/L			10/02/24 11:59	1
Benzo[k]fluoranthene	ND		5.0		ug/L			10/02/24 11:59	· 1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L			10/02/24 11:59	1
Bis(2-chloroethyl)ether	ND		5.0		ug/L			10/02/24 11:59	. 1
Bis(2-ethylhexyl) phthalate	ND		10		ug/L			10/02/24 11:59	
Butyl benzyl phthalate	ND		5.0		ug/L			10/02/24 11:59	. 1
Chrysene	ND		5.0		ug/L		10/01/24 12:56		1
Decane	ND		10		ug/L		10/01/24 12:56		·
Di-n-butyl phthalate	ND		5.0		ug/L		10/01/24 12:56		. 1
Di-n-octyl phthalate	ND		5.0		ug/L			10/02/24 11:59	1
Dibenz(a,h)anthracene	ND		5.0		ug/L			10/02/24 11:59	·
Diethyl phthalate	ND		5.0		ug/L			10/02/24 11:59	1
Dimethyl phthalate	ND		5.0		ug/L			10/02/24 11:59	1
Fluoranthene	ND		5.0		ug/L			10/02/24 11:59	·
Fluorene	ND		5.0		ug/L			10/02/24 11:59	. 1
Hexachlorobenzene	ND		5.0		ug/L			10/02/24 11:59	1
Hexachlorobutadiene	ND		5.0		ug/L		10/01/24 12:56		
Hexachlorocyclopentadiene	ND		5.0		ug/L		10/01/24 12:56		. 1
Hexachloroethane	ND		5.0		ug/L		10/01/24 12:56		. 1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L		10/01/24 12:56		
Isophorone	ND		5.0		ug/L		10/01/24 12:56		. 1
N-Nitrosodi-n-propylamine	ND		5.0		ug/L		10/01/24 12:56		. 1
N-Nitrosodimethylamine	ND		10		ug/L		10/01/24 12:56	10/02/24 11:59	
N-Nitrosodiphenylamine	ND		5.0		ug/L		10/01/24 12:56		1
Naphthalene	ND		5.0		ug/L			10/02/24 11:59	1
Nitrobenzene	ND ND		5.0		ug/L			10/02/24 11:59	
Pentachlorophenol	ND ND		10		ug/L ug/L			10/02/24 11:59	1
Phenanthrene	ND		5.0		ug/L			10/02/24 11:59	1

Eurofins Buffalo

3

4

6

8

10

12

14

15

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726739/1-A

Matrix: Water

Analysis Batch: 726818

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-223845-1

Prep Batch: 726739

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		5.0	0.088	ug/L		10/01/24 12:56	10/02/24 11:59	1
Pyrene	ND		5.0	0.35	ug/L		10/01/24 12:56	10/02/24 11:59	1
n-Octadecane	ND		10	0.30	ug/L		10/01/24 12:56	10/02/24 11:59	1
	МВ	МВ							
Surrogato	%Recovery	Qualifier	l imite				Propared	Analyzod	Dil Fac

Surrogate Limits Prepared Analyzed 96 10/01/24 12:56 10/02/24 11:59 2,4,6-Tribromophenol 52 - 151 90 10/01/24 12:56 10/02/24 11:59 2-Fluorobiphenyl 44 - 120 2-Fluorophenol 56 17 - 120 10/01/24 12:56 10/02/24 11:59 Nitrobenzene-d5 87 15 - 314 10/01/24 12:56 10/02/24 11:59 p-Terphenyl-d14 102 22 - 125 10/01/24 12:56 10/02/24 11:59 Phenol-d5 39 8 - 424 10/01/24 12:56 10/02/24 11:59

Lab Sample ID: LCS 480-726739/2-A

Matrix: V

Analysis

Client Sample ID: Lab Control Sample

Water					Prep Type: Total/NA
is Batch: 726818					Prep Batch: 726739
	Spike	LCS LCS			%Rec
	Added	Result Qualifier	Unit	D %Rec	Limits

	Spike	LUS	LUS			%Rec	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
1,2,4-Trichlorobenzene	40.0	32.0		ug/L	80	44 - 142	
1,2-Dichlorobenzene	40.0	30.1		ug/L	75	32 - 129	
1,3-Dichlorobenzene	40.0	27.6		ug/L	69	1 - 172	
1,4-Dichlorobenzene	40.0	28.2		ug/L	70	20 - 124	
2,2'-oxybis[1-chloropropane]	40.0	32.6		ug/L	81	36 - 166	
2,4,6-Trichlorophenol	40.0	40.3		ug/L	101	37 - 144	
2,4-Dichlorophenol	40.0	40.2		ug/L	101	39 - 135	
2,4-Dimethylphenol	40.0	40.2		ug/L	100	32 - 120	
2,4-Dinitrophenol	80.0	106		ug/L	133	1 - 191	
2,4-Dinitrotoluene	40.0	49.6		ug/L	124	39 - 139	
2,6-Dinitrotoluene	40.0	42.9		ug/L	107	50 - 158	
2-Chloronaphthalene	40.0	35.3		ug/L	88	60 - 120	
2-Chlorophenol	40.0	35.8		ug/L	89	23 - 134	
2-Nitrophenol	40.0	43.7		ug/L	109	29 - 182	
3,3'-Dichlorobenzidine	40.0	46.2		ug/L	116	1 - 262	
4,6-Dinitro-2-methylphenol	80.0	108		ug/L	135	1 - 181	
4-Bromophenyl phenyl ether	40.0	41.0		ug/L	102	53 - 127	
4-Chloro-3-methylphenol	40.0	41.2		ug/L	103	22 - 147	
4-Chlorophenyl phenyl ether	40.0	37.8		ug/L	95	25 - 158	
4-Nitrophenol	80.0	44.6		ug/L	56	1 - 132	
Acenaphthene	40.0	36.4		ug/L	91	47 - 145	
Acenaphthylene	40.0	39.1		ug/L	98	33 - 145	
Aniline	40.0	32.6		ug/L	81	40 - 120	
Anthracene	40.0	41.8		ug/L	104	27 - 133	
Benzo[a]anthracene	40.0	42.4		ug/L	106	33 - 143	
Benzo[a]pyrene	40.0	41.1		ug/L	103	17 - 163	
Benzo[b]fluoranthene	40.0	42.5		ug/L	106	24 - 159	
Benzo[g,h,i]perylene	40.0	43.7		ug/L	109	1 - 219	
Benzo[k]fluoranthene	40.0	40.7		ug/L	102	11 - 162	
Bis(2-chloroethoxy)methane	40.0	39.4		ug/L	99	33 - 184	
Bis(2-chloroethyl)ether	40.0	35.9		ug/L	90	12 - 158	

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-223845-1

Prep Batch: 726739

52 - 120

102

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 726739

	78 4	14 - 142	2	34
	78 3	32 - 129	3	38
	72	1 - 172	4	37
	73 2	20 - 124	3	40
	85 3	36 - 166	4	36
1	05 3	37 ₋ 144	4	20
1	01 3	39 - 135	1	23
1	00 3	32 - 120	0	18
1	37	1 - 191	3	29
1	25 3	39 - 139	1	20

Lab Sample ID: LCS 480-726739/2-A

Matrix: Water

Analysis Batch: 726818

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bis(2-ethylhexyl) phthalate	40.0	43.1		ug/L		108	8 - 158	
Butyl benzyl phthalate	40.0	42.8		ug/L		107	1 - 152	
Chrysene	40.0	42.0		ug/L		105	17 - 168	
Di-n-butyl phthalate	40.0	42.3		ug/L		106	1 - 120	
Di-n-octyl phthalate	40.0	45.7		ug/L		114	4 - 146	
Dibenz(a,h)anthracene	40.0	41.5		ug/L		104	1 - 227	
Diethyl phthalate	40.0	41.4		ug/L		103	1 - 120	
Dimethyl phthalate	40.0	40.7		ug/L		102	1 - 120	
Fluoranthene	40.0	42.3		ug/L		106	26 - 137	
Fluorene	40.0	38.9		ug/L		97	59 - 121	
Hexachlorobenzene	40.0	41.5		ug/L		104	1 - 152	
Hexachlorocyclopentadiene	40.0	25.4		ug/L		63	5 - 120	
Hexachloroethane	40.0	25.3		ug/L		63	40 - 120	
Indeno[1,2,3-cd]pyrene	40.0	42.2		ug/L		105	1 - 171	
Isophorone	40.0	40.7		ug/L		102	21 - 196	
N-Nitrosodi-n-propylamine	40.0	37.6		ug/L		94	1 - 230	
N-Nitrosodiphenylamine	40.0	41.2		ug/L		103	54 - 125	
Naphthalene	40.0	35.9		ug/L		90	21 - 133	
Nitrobenzene	40.0	36.1		ug/L		90	35 - 180	
Pentachlorophenol	80.0	86.7		ug/L		108	14 - 176	
Phenanthrene	40.0	40.6		ug/L		102	54 - 120	
Phenol	40.0	18.9		ug/L		47	5 - 120	

40.0

40.9

ug/L

LCS LCS

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol			52 - 151
2-Fluorobiphenyl	92		44 - 120
2-Fluorophenol	57		17 - 120
Nitrobenzene-d5	92		15 - 314
p-Terphenyl-d14	101		22 - 125
Phenol-d5	42		8 - 424

Lab Sample ID: LCSD 480-726739/3-A

Matrix: Water

Pyrene

Analysis Batch: 726818

Analysis Batch: 726616							Prep Ba	itcn: //	26/39
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	40.0	31.4		ug/L		78	44 - 142	2	34
1,2-Dichlorobenzene	40.0	31.1		ug/L		78	32 - 129	3	38
1,3-Dichlorobenzene	40.0	28.8		ug/L		72	1 - 172	4	37
1,4-Dichlorobenzene	40.0	29.1		ug/L		73	20 - 124	3	40
2,2'-oxybis[1-chloropropane]	40.0	33.9		ug/L		85	36 - 166	4	36
2,4,6-Trichlorophenol	40.0	42.0		ug/L		105	37 - 144	4	20
2,4-Dichlorophenol	40.0	40.5		ug/L		101	39 - 135	1	23
2,4-Dimethylphenol	40.0	40.1		ug/L		100	32 - 120	0	18
2,4-Dinitrophenol	80.0	110		ug/L		137	1 - 191	3	29
2,4-Dinitrotoluene	40.0	50.2		ug/L		125	39 - 139	1	20
2,6-Dinitrotoluene	40.0	43.4		ug/L		109	50 - 158	1	17

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Job ID: 480-223845-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-726739/3-A

Matrix: Water

Analysis Batch: 726818

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 726739

Analysis Batch. 720010	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	_		Jnit	D	%Rec	Limits	RPD	Limit
2-Chloronaphthalene	40.0	35.7		ıg/L		89	60 - 120	1	30
2-Chlorophenol	40.0	36.9	Ų	ıg/L		92	23 - 134	3	26
2-Nitrophenol	40.0	44.5	ι	ıg/L		111	29 - 182	2	28
3,3'-Dichlorobenzidine	40.0	47.6	ι	ıg/L		119	1 - 262	3	31
4,6-Dinitro-2-methylphenol	80.0	106		ıg/L		133	1 - 181	2	30
4-Bromophenyl phenyl ether	40.0	41.2	l	ıg/L		103	53 - 127	0	16
4-Chloro-3-methylphenol	40.0	41.4	ı	ıg/L		103	22 - 147	1	16
4-Chlorophenyl phenyl ether	40.0	39.5	· · · · · · · · · · · · · · · · · · ·	ıg/L		99	25 - 158	4	15
4-Nitrophenol	80.0	45.3	ι	ıg/L		57	1 - 132	2	24
Acenaphthene	40.0	37.1	ι	ıg/L		93	47 - 145	2	25
Acenaphthylene	40.0	39.2		ıg/L		98	33 - 145	0	22
Aniline	40.0	33.6		ıg/L		84	40 - 120	3	30
Anthracene	40.0	40.9	ı	ıg/L		102	27 - 133	2	15
Benzo[a]anthracene	40.0	42.0		ıg/L		105	33 - 143	1	15
Benzo[a]pyrene	40.0	41.5	ı	ıg/L		104	17 - 163	1	15
Benzo[b]fluoranthene	40.0	40.3		ıg/L		101	24 - 159	5	17
Benzo[g,h,i]perylene	40.0	42.2		ıg/L		105	1 - 219	4	19
Benzo[k]fluoranthene	40.0	40.6		ıg/L		101	11 - 162	0	19
Bis(2-chloroethoxy)methane	40.0	39.6		ıg/L		99	33 - 184	0	23
Bis(2-chloroethyl)ether	40.0	37.6		ıg/L		94	12 - 158	5	33
Bis(2-ethylhexyl) phthalate	40.0	44.4		ıg/L		111	8 - 158	3	15
Butyl benzyl phthalate	40.0	42.4		ıg/L		106	1 - 152	1	15
Chrysene	40.0	41.8		ıg/L		104	17 - 168	1	15
Di-n-butyl phthalate	40.0	42.0		ıg/L		105	1 - 120	1	15
Di-n-octyl phthalate	40.0	45.8	ı	ıg/L		115	4 - 146	0	15
Dibenz(a,h)anthracene	40.0	41.5		ıg/L		104	1 - 227	0	18
Diethyl phthalate	40.0	42.5		ıg/L		106	1 - 120	3	15
Dimethyl phthalate	40.0	41.6		ıg/L		104	1 - 120	2	15
Fluoranthene	40.0	41.4		ıg/L		103	26 - 137	2	15
Fluorene	40.0	39.5		ıg/L		99	59 - 121	1	18
Hexachlorobenzene	40.0	40.3		ıg/L		101	1 - 152	3	15
Hexachlorocyclopentadiene	40.0	25.2		ıg/L		63	5 - 120	1	50
Hexachloroethane	40.0	26.3		ıg/L		66	40 - 120	4	43
Indeno[1,2,3-cd]pyrene	40.0	41.6		ıg/L		104	1 - 171	1	17
Isophorone	40.0	41.5		ıg/L		104	21 - 196	2	21
N-Nitrosodi-n-propylamine	40.0	38.4		ıg/L		96	1 - 230	2	23
N-Nitrosodiphenylamine	40.0	40.6		ıg/L		102	54 - 125	1	15
Naphthalene	40.0	36.0		ıg/L		90	21 - 133	0	31
Nitrobenzene	40.0	37.1		ıg/L		93	35 - 180	3	27
Pentachlorophenol	80.0	88.7		ıg/L		111	14 - 176	2	21
Phenanthrene	40.0	39.5		ıg/L		99	54 - 120	3	16
Phenol	40.0	19.2		ıg/L		48	5 - 120	2	36
Pyrene	40.0	40.4		ıg/L		101	52 - 120	1	15

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol			52 - 151
2-Fluorobiphenyl	93		44 - 120
2-Fluorophenol	58		17 - 120

Eurofins Buffalo

2

3

+

6

ŏ

10

12

14

15

Project/Site: Buffalo Color Area D Annual Influent

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-726739/3-A

Matrix: Water

Analysis Batch: 726818

Client Sample ID: Lab Control Sample Dup

Job ID: 480-223845-1

Prep Batch: 726739

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Surrogate Limits Nitrobenzene-d5 94 15-314 p-Terphenyl-d14 99 22 - 125 Phenol-d5 43 8 - 424

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-726863/1-A

Matrix: Water

Analysis Batch: 726989

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 726863

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac PCB-1016 0.038 ug/L 10/02/24 12:56 10/03/24 14:50 ND 0.060 PCB-1221 ND 0.038 ug/L 10/03/24 14:50 0.060 10/02/24 12:56 PCB-1232 ND 0.060 0.038 ug/L 10/02/24 12:56 10/03/24 14:50 1 PCB-1242 ND 0.060 0.038 ug/L 10/02/24 12:56 10/03/24 14:50 PCB-1248 ND 0.060 0.038 ug/L 10/02/24 12:56 10/03/24 14:50 PCB-1254 ND 0.060 0.031 ug/L 10/02/24 12:56 10/03/24 14:50 PCB-1260 ND 0.060 0.031 ug/L 10/02/24 12:56 10/03/24 14:50

MB MB Qualifier Limits Surrogate %Recovery DCB Decachlorobiphenyl 57 10 - 120 10 - 126

80

Dil Fac Prepared Analyzed 10/02/24 12:56 10/03/24 14:50 10/02/24 12:56 10/03/24 14:50

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-726863/2-A

Matrix: Water

Analyte

Tetrachloro-m-xylene

Analysis Batch: 726989

LCS LCS Spike %Rec Added Result Qualifier Unit D %Rec Limits 69 - 123

PCB-1016 1.00 1.18 118 ug/L PCB-1260 1.00 1.04 ug/L 104 69 - 120 LCS LCS

Surrogate %Recovery Qualifier I imits DCB Decachlorobiphenyl 60 10 - 120 Tetrachloro-m-xylene 89 10 - 126

Lab Sample ID: LCSD 480-726863/3-A

Matrix: Water

Analysis Batch: 726989

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 726863

Prep Type: Total/NA

Prep Batch: 726863

LCSD LCSD %Rec RPD Spike **Analyte** Added Result Qualifier Unit %Rec Limits **RPD** Limit PCB-1016 1.00 1.03 103 69 - 123 30 ug/L 14 PCB-1260 1.00 1.02 ug/L 102 69 - 120 2 30

LCSD LCSD Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl 57 10 - 120 Tetrachloro-m-xylene 87 10 - 126

Eurofins Buffalo

Project/Site: Buffalo Color Area D Annual Influent

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-726763/1-A

Matrix: Water

Analysis Batch: 726950

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-223845-1

Prep Batch: 726763

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	ND		0.0040	0.0024	mg/L		10/02/24 08:14	10/02/24 16:02	1
Copper	ND		0.010	0.0045	mg/L		10/02/24 08:14	10/02/24 16:02	1
Lead	ND		0.010	0.0039	mg/L		10/02/24 08:14	10/02/24 16:02	1
Nickel	ND		0.010	0.0034	mg/L		10/02/24 08:14	10/02/24 16:02	1
Zinc	ND		0.010	0.0068	mg/L		10/02/24 08:14	10/02/24 16:02	1

MD MD

Lab Sample ID: LCS 480-726763/2-A

Matrix: Water

Analysis Batch: 726950

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 726763

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit Limits %Rec Chromium 0.500 0.508 mg/L 85 - 115 102 0.488 Copper 0.500 mg/L 98 85 - 115 Lead 0.500 0.502 mg/L 100 85 - 115 Nickel 0.511 0.500 mg/L 102 85 - 115 0.500 0.539 Zinc mg/L 108 85 - 115

RL

0.00020

Spike

Added

0.00669

MDL Unit

0.000042 mg/L

LCS LCS

0.00638

Result Qualifier

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 480-726802/1-A

Matrix: Water

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 726906

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 726802

Dil Fac

Analyzed

Lab Sample ID: LCS 480-726802/2-A

Matrix: Water

Analysis Batch: 726906

10/02/24 10:05 10/02/24 15:01 **Client Sample ID: Lab Control Sample**

Prepared

95

Prep Type: Total/NA

Prep Batch: 726802

%Rec Limits D %Rec 85 - 115

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-727021/16

Matrix: Water

Analysis Batch: 727021

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

MB MB

ND

Result Qualifier

Analyte Result Qualifier RI **MDL** Unit Prepared Analyzed Dil Fac ND ^1+ Phenolics, Total Recoverable 0.010 0.0035 mg/L 10/03/24 09:49

Lab Sample ID: MB 480-727021/46

Matrix: Water

Analysis Batch: 727021

Client Sample ID: Method Blank Prep Type: Total/NA

Unit

mg/L

MB MB

Result Qualifier Analyte RL **MDL** Unit Prepared Analyzed Dil Fac 0.010 Phenolics, Total Recoverable ND ^1+ 0.0035 mg/L 10/03/24 11:40

Eurofins Buffalo

Project/Site: Buffalo Color Area D Annual Influent

Job ID: 480-223845-1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: BCC Area D Influent

Client Sample ID: BCC Area D Influent

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: BCC Area D Influent

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 420.4 - Phenolics, Total Recoverable (Continued)

Lab Sample ID: LCS 480-727021/17

Matrix: Water

Analysis Batch: 727021

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec 0.100 0.0992 ^1+ Phenolics, Total Recoverable mg/L 99 90 - 110

Lab Sample ID: LCS 480-727021/47

Matrix: Water

Analysis Batch: 727021

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 0.100 0.0904 ^1+ 90 - 110 Phenolics, Total Recoverable mg/L 90

Lab Sample ID: 480-223845-1 MS

Matrix: Water

Analysis Batch: 727021

Sample Sample Spike MS MS %Rec Result Qualifier Added Limits Analyte Result Qualifier Unit %Rec Phenolics, Total Recoverable ND ^1+ F1 0.100 0.113 F1 ^1+ mg/L

Lab Sample ID: 480-223845-1 DU

Matrix: Water

Analysis Batch: 727021

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Phenolics. Total Recoverable ND ^1+ F1 ND ^1+ mg/L 20

Method: SM 4500 P E - Phosphorus

Lab Sample ID: MB 480-726788/27

Matrix: Water

Analysis Batch: 726788

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Total Phosphate as P ND 0.010 0.0050 mg/L as P 10/01/24 19:46

Lab Sample ID: LCS 480-726788/28

Matrix: Water

Analysis Batch: 726788

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits Total Phosphate as P 0.200 0.190 90 - 110 95 mg/L as P

Lab Sample ID: 480-223845-1 MS

Matrix: Water

Analysis Batch: 726788

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Total Phosphate as P 0.59 0.500 1.07 mg/L as P 96 52 - 148

Eurofins Buffalo

10/7/2024

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223845-1

Project/Site: Buffalo Color Area D Annual Influent

Method: SM 4500 P E - Phosphorus (Continued)

Lab Sample ID: 480-223845-1 MSD **Client Sample ID: BCC Area D Influent Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 726788											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Phosphate as P	0.59		0.500	1.07		mg/L as P	_	95	52 - 148	0	20

QC Association Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

GC/MS VOA

Analysis Batch: 726771

Lab Sample ID 480-223845-1	Client Sample ID BCC Area D Influent	Prep Type Total/NA	Matrix Water	Method 624.1	Prep Batch
480-223845-2	TRIP BLANK	Total/NA	Water	624.1	
MB 480-726771/8	Method Blank	Total/NA	Water	624.1	
LCS 480-726771/6	Lab Control Sample	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 726739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223845-1	BCC Area D Influent	Total/NA	Water	625	
MB 480-726739/1-A	Method Blank	Total/NA	Water	625	
LCS 480-726739/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 480-726739/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 726818

Lab Sample ID 480-223845-1	Client Sample ID BCC Area D Influent	Prep Type Total/NA	Matrix Water	Method 625.1	Prep Batch 726739
MB 480-726739/1-A	Method Blank	Total/NA	Water	625.1	726739
LCS 480-726739/2-A	Lab Control Sample	Total/NA	Water	625.1	726739
LCSD 480-726739/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	726739

GC Semi VOA

Prep Batch: 726863

Lab Sample ID 480-223845-1	Client Sample ID BCC Area D Influent	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 480-726863/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-726863/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-726863/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 726989

Lab Sample ID 480-223845-1	Client Sample ID BCC Area D Influent	Prep Type Total/NA	Matrix Water	Method 608.3	Prep Batch 726863
MB 480-726863/1-A	Method Blank	Total/NA	Water	608.3	726863
LCS 480-726863/2-A	Lab Control Sample	Total/NA	Water	608.3	726863
LCSD 480-726863/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	726863

Metals

Prep Batch: 726763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223845-1	BCC Area D Influent	Total/NA	Water	200.7	
MB 480-726763/1-A	Method Blank	Total/NA	Water	200.7	
LCS 480-726763/2-A	Lab Control Sample	Total/NA	Water	200.7	

Prep Batch: 726802

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-223845-1	BCC Area D Influent	Total/NA	Water	245.1	
	MB 480-726802/1-A	Method Blank	Total/NA	Water	245.1	
	LCS 480-726802/2-A	Lab Control Sample	Total/NA	Water	245.1	

Eurofins Buffalo

Page 22 of 30 10/7/2024

3

Job ID: 480-223845-1

5

4

6

7

a

10

12

13

14

15

16

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Buffalo Color Area D Annual Influent

Metals

Analysis Batch: 726906

La	b Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
48	0-223845-1	BCC Area D Influent	Total/NA	Water	245.1	726802
ME	3 480-726802/1-A	Method Blank	Total/NA	Water	245.1	726802
LC	S 480-726802/2-A	Lab Control Sample	Total/NA	Water	245.1	726802

Analysis Batch: 726950

Lab Sample ID 480-223845-1	Client Sample ID BCC Area D Influent	Prep Type Total/NA	Matrix Water	Method 200.7 Rev 4.4	Prep Batch 726763
MB 480-726763/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	726763
LCS 480-726763/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	726763

General Chemistry

Analysis Batch: 726788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223845-1	BCC Area D Influent	Total/NA	Water	SM 4500 P E	
MB 480-726788/27	Method Blank	Total/NA	Water	SM 4500 P E	
LCS 480-726788/28	Lab Control Sample	Total/NA	Water	SM 4500 P E	
480-223845-1 MS	BCC Area D Influent	Total/NA	Water	SM 4500 P E	
480-223845-1 MSD	BCC Area D Influent	Total/NA	Water	SM 4500 P E	

Analysis Batch: 727021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223845-1	BCC Area D Influent	Total/NA	Water	420.4	
MB 480-727021/16	Method Blank	Total/NA	Water	420.4	
MB 480-727021/46	Method Blank	Total/NA	Water	420.4	
LCS 480-727021/17	Lab Control Sample	Total/NA	Water	420.4	
LCS 480-727021/47	Lab Control Sample	Total/NA	Water	420.4	
480-223845-1 MS	BCC Area D Influent	Total/NA	Water	420.4	
480-223845-1 DU	BCC Area D Influent	Total/NA	Water	420.4	

Analysis Batch: 727251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223845-1	BCC Area D Influent	Total/NA	Water	SM 4500 CN G	

Job ID: 480-223845-1

Lab Chronicle

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Lab Sample ID: 480-223845-1

Client Sample ID: BCC Area D Influent Date Collected: 09/30/24 00:00 Date Received: 09/30/24 16:05

Matrix: Water

Job ID: 480-223845-1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		40	726771	AXK	EET BUF	10/01/24 22:16
Total/NA	Prep	625			726739	LSC	EET BUF	10/01/24 12:56
Total/NA	Analysis	625.1		5	726818	JMM	EET BUF	10/02/24 14:04
Total/NA	Prep	3510C			726863	LSC	EET BUF	10/02/24 12:56
Total/NA	Analysis	608.3		1	726989	H9RU	EET BUF	10/03/24 15:45
Total/NA	Prep	200.7			726763	ET	EET BUF	10/02/24 08:14
Total/NA	Analysis	200.7 Rev 4.4		1	726950	BMB	EET BUF	10/02/24 16:06
Total/NA	Prep	245.1			726802	ESB	EET BUF	10/02/24 10:05
Total/NA	Analysis	245.1		1	726906	ESB	EET BUF	10/02/24 15:16
Total/NA	Analysis	420.4		1	727021	CLT	EET BUF	10/03/24 09:57
Total/NA	Analysis	SM 4500 CN G		1	727251	DLG	EET BUF	10/05/24 17:30
Total/NA	Analysis	SM 4500 P E		1	726788	GW	EET BUF	10/01/24 19:46

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-223845-2 Date Collected: 09/30/24 00:00

Matrix: Water

Date Received: 09/30/24 16:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	726771	AXK	EET BUF	10/01/24 21:03

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Job ID: 480-223845-1

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date	
New York	NELAP	10026	03-31-25	

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
245.1	245.1	Water	Mercury
624.1		Water	1,2-Dichloroethene, Total
625.1	625	Water	1,2-Dichlorobenzene
625.1	625	Water	1,3-Dichlorobenzene
625.1	625	Water	1,4-Dichlorobenzene
SM 4500 CN G		Water	Cyanide, Amenable

Method Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Buffalo Color Area D Annual Influent Job ID: 480-223845-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET BUF
625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET BUF
608.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET BUF
200.7 Rev 4.4	Metals (ICP)	EPA	EET BUF
245.1	Mercury (CVAA)	EPA	EET BUF
420.4	Phenolics, Total Recoverable	EPA	EET BUF
SM 4500 CN G	Cyanide, Amenable	SM	EET BUF
SM 4500 P E	Phosphorus	SM	EET BUF
200.7	Preparation, Total Metals	EPA	EET BUF
245.1	Preparation, Mercury	EPA	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
625	Liquid-Liquid Extraction	EPA	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

10/7/2024

_

А

5

7

9

12

10

15

Sample Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Buffalo Color Area D Annual Influent

Job ID: 480-223845-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-223845-1	BCC Area D Influent	Water	09/30/24 00:00	09/30/24 16:05
480-223845-2	TRIP BLANK	Water	09/30/24 00:00	09/30/24 16:05

Quantitation Limit Exceptions Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Buffalo Color Area D Annual Influent

Job ID: 480-223845-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
625.1	2,4-Dinitrotoluene	Water	Total/NA	ug/L	5.0	10
625.1	4-Nitrophenol	Water	Total/NA	ug/L	10	15
625.1	Hexachlorocyclopentadiene	Water	Total/NA	ug/L	5.0	10

-0

4

5

6

0

9

1 1

12

14

15

Client Information Clent Contact	1 1	Kurzelmun	Lab PM: Schove, John R	ة 8			Carrier	Carrier Tracking No(s):		COC No:	0
	0		E-Mail:				State of	State of Origin:		400-196706-8 Page:	316.1
Specialty Contracting, Inc.		PWSID:	0000	all	orinsus.co		-	100		1 of 1	7. 0
ess: Lee St.	Due Date Requested:				-	Alianysis	Kequested			Preservation Co.	1/0
	TAT Requested (days):									S - H2SO4 D - HNO3	, i
	S すめんけんしん Compliance Project: A Yes A No	٠ المال ١			224	979				N - None B - NaOH	
16-856-3332	PO#: 67607				9 - AOV		ejq				
kcolligan@oscinc.com	WO#:			d			lenem				
Project Name: OSC- Former Buffalo Color Sites/ Event Desc: Buffalo Color Area 48003159	Project #: 48003159	/		se eter			4 ,ebin		STOR		
Site: New York	SSOW#:			ldsorld					latros	Other:	
	Jones	Sample Matrix Type (Wavater, Sasolid,	× 9 = 8 beneath 1.	E - Total	oceal Reco -	PCB_PREC	CN_E, 4500_		To 19dmu¥	_	
Sample Identification	Sample Date Time	G=grab) DT=Tissue, A=Air	FIGI		-				l latoT		Special Instructions (Note:
BCC Area D Influent	()	servation	100	۵	z		8 8		X		illett dettolls/Note:
TRIP BLANK	1-50-49	+		<u>لا</u>	<i>ب</i> د	メ	7				
		(5 Water	<u> </u>		×						
4								-			
	SAD.										
								480-223845 Chain of Custody	5 Chain o	f Custody	
									8 28		
Possible Hazard Identification											
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison B Deliverable Requested: I. III. IV Other (snecify)	Unknown	Radiological	San	nple Disp	le Disposal (A 1 Retum To Client	ee may I	e assessed if sam	d if samples	are retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab	1 month)
Empty Kit Relinquished by:			Spe	Special Instructions/QC Requirements:	ctions/QC	Require	ments:			0.194	Months
	Date:		Time:				ž	Method of Shipment:			
Relinquished by	9-30-34 16	Soo conj		Regeived by	1/22	5		Date/Time	:	1605	Company
Relinquished by:		Company		Received (%)		P		Date/Time	je:		Company
Custody Seals Intact: Custody Seal No	oate/ IIIIe.	Сотрапу		Received by:				Date/Time	ië:		Company
	<i>></i> ,			Cooler Temperature(s) °C and Other Remarks	erature(s)	C and Other	r Remarks	H12	727		
								4	1		

HRE

350

eurofins Influent.

Chain of Custody Record

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Environment Testing

Login Sample Receipt Checklist

Client: Ontario Specialty Contracting, Inc.

Job Number: 480-223845-1

Login Number: 223845 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

Creator. Stopa, Erik S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	osc
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

4

6

_

11

13

14

PREPARED FOR

Attn: Kirsten Colligan
Ontario Specialty Contracting, Inc.
140 Lee St.
Buffalo, New York 14210
Generated 10/8/2024 10:44:28 AM

JOB DESCRIPTION

Area A/D Effluent

JOB NUMBER

480-223843-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 10/8/2024 10:44:28 AM

Authorized for release by Anton Gruning, Project Mana

Anton Gruning, Project Management Assistant I

Anton.Gruning@et.eurofinsus.com

Designee for

John Schove, Project Manager II

John.Schove@et.eurofinsus.com

(716)504-9838

2

3

4

6

7

15

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Isotope Dilution Summary	11
QC Sample Results	13
QC Association Summary	19
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	27

Definitions/Glossary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Glossary

LOQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOF)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Limit of Quantitation (DoD/DOE)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Job ID: 480-223843-1

Page 4 of 28 10/8/2024

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project: Area A/D Effluent

Job ID: 480-223843-1 Eurofins Buffalo

Job Narrative 480-223843-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/30/2024 4:05 PM. Unless otherwise noted below, the samples arrived in good condition. The temperatures of the 2 coolers at receipt time were 10.8°C and 12.4°C.

GC/MS Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PFAS

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Job ID: 480-223843-1

Page 5 of 28 10/8/2024

Detection Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Client Sample ID: Area A/D Effluent Lab Sample ID: 480-223843-1

No Detections.

Client Sample ID: Area A/D Effluent D Lab Sample ID: 480-223843-2

No Detections.

Job ID: 480-223843-1

Method: SW846 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

13C4 PFOS

13C5 PFNA

13C5 PFPeA

13C8 FOSA

1802 PFHxS

d3-NMeFOSAA

d5-NEtFOSAA

M2-6:2 FTS

Client Sample ID: Area A/D Effluent

Date Collected: 09/30/24 14:45 Date Received: 09/30/24 16:05 Lab Sample ID: 480-223843-1

Matrix: Water

Job ID: 480-223843-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dioxane	ND		0.20	0.10	ug/L		10/01/24 13:04	10/02/24 15:06	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Dioxane-d8	30		15 - 110				10/01/24 13:04	10/02/24 15:06	
Method: EPA 537 (modified) -	Fluorinated	Alkyl Sub	stances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1H,1H,2H,2H-perfluorodecanesulfonic	ND		1.9	1.3	ng/L		10/04/24 09:13	10/04/24 21:01	
acid (8:2)									
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		4.8	1.7	ng/L		10/04/24 09:13	10/04/24 21:01	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.5	ng/L		10/04/24 09:13	10/04/24 21:01	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.6	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.49	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorobutanoic acid (PFBA)	ND		4.8	1.2	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	0.33	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorodecanoic acid (PFDA)	ND		1.9	0.36	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.41	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluoroheptanesulfonic acid (PFHpS)	ND		1.9	0.17	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.36	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.38	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.70	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorononanoic acid (PFNA)	ND		1.9	0.21	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorooctanesulfonamide (PFOSA)	ND		1.9	0.39	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.48	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorooctanoic acid (PFOA)	ND		1.9	0.39	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluoropentanoic acid (PFPeA)	ND		1.9	0.47	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.29	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.32	ng/L		10/04/24 09:13	10/04/24 21:01	
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.26	ng/L		10/04/24 09:13	10/04/24 21:01	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFDA	99		50 - 150				10/04/24 09:13	10/04/24 21:01	
13C2 PFDoA	86		50 - 150				10/04/24 09:13	10/04/24 21:01	
13C2 PFHxA	101		50 ₋ 150				10/04/24 09:13	10/04/24 21:01	
13C2 PFTeDA	82		50 - 150				10/04/24 09:13	10/04/24 21:01	
13C2 PFUnA	92		50 - 150				10/04/24 09:13	10/04/24 21:01	
13C3 PFBS	96		50 - 150				10/04/24 09:13	10/04/24 21:01	
13C4 PFBA	103		50 - 150				10/04/24 09:13	10/04/24 21:01	
13C4 PFHpA	97		50 - 150				10/04/24 09:13	10/04/24 21:01	
13C4 PFOA	99		50 ₋ 150				10/04/24 09:13	10/04/24 21:01	

Eurofins Buffalo

10/04/24 09:13 10/04/24 21:01

10/04/24 09:13 10/04/24 21:01

10/04/24 09:13 10/04/24 21:01

10/04/24 09:13 10/04/24 21:01

10/04/24 09:13 10/04/24 21:01

10/04/24 09:13 10/04/24 21:01

10/04/24 09:13 10/04/24 21:01

10/04/24 09:13 10/04/24 21:01

Page 7 of 28

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

96

98

102

93

98

108

110

100

3

F

6

8

10

12

13

1

10/8/2024

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223843-1

Project/Site: Area A/D Effluent

Client Sample ID: Area A/D Effluent Lab Sample ID: 480-223843-1

Date Collected: 09/30/24 14:45

Matrix: Water

Date Received: 09/30/24 16:05

Method: EPA 537 (modified) - Fluorinated Alkyl Substances (Continued)

 Isotope Dilution
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 M2-8:2 FTS
 99
 50 - 150
 10/04/24 09:13
 10/04/24 21:01
 1

5

6

R

9

11

13

14

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Perfluoropentanoic acid (PFPeA)

Perfluorotetradecanoic acid (PFTeA)

Perfluorotridecanoic acid (PFTriA)

Client Sample ID: Area A/D Effluent D Lab Sample ID: 480-223843-2

Method: SW846 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

ND

ND

ND

Date Collected: 09/30/24 15:00 **Matrix: Water** Date Received: 09/30/24 16:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		10/01/24 13:04	10/02/24 15:27	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	29		15 - 110				10/01/24 13:04	10/02/24 15:27	1
Method: EPA 537 (modified) -	Fluorinated	Alkyl Sub	stances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		1.9	1.2	ng/L		10/04/24 09:13	10/04/24 21:25	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		4.8	1.7	ng/L		10/04/24 09:13	10/04/24 21:25	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.5	ng/L		10/04/24 09:13	10/04/24 21:25	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.6	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.49	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorobutanoic acid (PFBA)	ND		4.8	1.1	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	0.33	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.35	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.41	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluoroheptanesulfonic acid (PFHpS)	ND		1.9	0.17	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.35	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.37	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.70	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.21	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorooctanesulfonamide (PFOSA)	ND		1.9	0.39	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.48	ng/L		10/04/24 09:13	10/04/24 21:25	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.39	ng/L		10/04/24 09:13	10/04/24 21:25	1

` ,				•			
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.26 ng/L	10/04/24 09:13	10/04/24 21:25	1
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C2 PFDA	97	·	50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C2 PFDoA	88		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C2 PFHxA	99		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C2 PFTeDA	83		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C2 PFUnA	94		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C3 PFBS	97		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C4 PFBA	101		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C4 PFHpA	95		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C4 PFOA	98		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C4 PFOS	97		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C5 PFNA	98		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C5 PFPeA	100		50 - 150		10/04/24 09:13	10/04/24 21:25	1
13C8 FOSA	95		50 - 150		10/04/24 09:13	10/04/24 21:25	1
1802 PFHxS	99		50 - 150		10/04/24 09:13	10/04/24 21:25	1
d3-NMeFOSAA	107		50 - 150		10/04/24 09:13	10/04/24 21:25	1
d5-NEtFOSAA	112		50 - 150		10/04/24 09:13	10/04/24 21:25	1
M2-6:2 FTS	101		50 - 150		10/04/24 09:13	10/04/24 21:25	1

1.9

1.9

1.9

0.47 ng/L

0.29 ng/L

0.32 ng/L

Eurofins Buffalo

10/8/2024

10/04/24 09:13 10/04/24 21:25

10/04/24 09:13 10/04/24 21:25

10/04/24 09:13 10/04/24 21:25

Page 9 of 28

Job ID: 480-223843-1

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223843-1

Project/Site: Area A/D Effluent

Client Sample ID: Area A/D Effluent D Lab Sample ID: 480-223843-2

Date Collected: 09/30/24 15:00 Matrix: Water Date Received: 09/30/24 16:05

Method: EPA 537 (modified) - Fluorinated Alkyl Substances (Continued)

 Isotope Dilution
 %Recovery Multiple
 Limits
 Prepared
 Analyzed
 Dil Fac

 M2-8:2 FTS
 102
 50 - 150
 10/04/24 09:13
 10/04/24 21:25
 1

5

6

8

10

10

13

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Job ID: 480-223843-1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Matrix: Water Prep Type: Total/NA

		DXE	Percent Isotope Dilution Recovery (Acceptance Limits)
Lab Camada ID	Olient Comple ID	(15-110)	
Lab Sample ID	Client Sample ID	(15-110)	
480-223843-1	Area A/D Effluent	30	
480-223843-1 MS	Area A/D Effluent MS	30	
480-223843-1 MSD	Area A/D Effluent MSD	29	
480-223843-2	Area A/D Effluent D	29	
LCS 480-726740/2-A	Lab Control Sample	29	
MB 480-726740/1-A	Method Blank	29	
Surrogate Legend			
DXE = 1,4-Dioxane-d8			

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)	
		PFDA	PFDoA	PFHxA	PFTDA	PFUnA	C3PFBS	PFBA	C4PFHA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
480-223843-1	Area A/D Effluent	99	86	101	82	92	96	103	97
480-223843-1 MS	Area A/D Effluent MS	97	90	101	83	96	99	104	99
480-223843-1 MSD	Area A/D Effluent MSD	96	85	99	79	91	96	100	95
480-223843-2	Area A/D Effluent D	97	88	99	83	94	97	101	95
LCS 200-209276/2-A	Lab Control Sample	99	92	101	86	97	93	102	96
MB 200-209276/1-A	Method Blank	101	91	102	87	97	98	106	99
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFOA	PFOS	PFNA	PFPeA	PFOSA	PFHxS	d3NMFOS	d5NEFO
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
480-223843-1	Area A/D Effluent	99	96	98	102	93	98	108	110
480-223843-1 MS	Area A/D Effluent MS	102	101	100	104	96	102	113	118
480-223843-1 MSD	Area A/D Effluent MSD	97	97	97	100	92	99	106	110
480-223843-2	Area A/D Effluent D	98	97	98	100	95	99	107	112
LCS 200-209276/2-A	Lab Control Sample	100	97	99	101	89	96	110	119
MB 200-209276/1-A	Method Blank	102	104	101	104	94	101	113	116
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		M262FTS	M282FTS	•			-	-	

		M262FTS	M282FTS	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	
480-223843-1	Area A/D Effluent	100	99	
480-223843-1 MS	Area A/D Effluent MS	105	107	
480-223843-1 MSD	Area A/D Effluent MSD	101	99	
480-223843-2	Area A/D Effluent D	101	102	
LCS 200-209276/2-A	Lab Control Sample	100	104	
MB 200-209276/1-A	Method Blank	107	103	

Surrogate Legend

PFDA = 13C2 PFDA

PFDoA = 13C2 PFDoA

PFHxA = 13C2 PFHxA

PFTDA = 13C2 PFTeDA

PFUnA = 13C2 PFUnA

C3PFBS = 13C3 PFBS

PFBA = 13C4 PFBA

C4PFHA = 13C4 PFHpA

Eurofins Buffalo

Page 11 of 28

-

3

4

6

7

Q

10

12

Isotope Dilution Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

PFOA = 13C4 PFOA

PFOS = 13C4 PFOS

PFNA = 13C5 PFNA

PFPeA = 13C5 PFPeA

PFOSA = 13C8 FOSA PFHxS = 18O2 PFHxS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Job ID: 480-223843-1

2

4

5

6

7

8

9

11

40

14

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223843-1

Project/Site: Area A/D Effluent

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Lab Sample ID: MB 480-726740/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 726815

Prep Type: Total/NA

Prep Batch: 726740

MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 10/01/24 13:04 10/02/24 13:40 1,4-Dioxane ND 0.20 0.10 ug/L

MB MB

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,4-Dioxane-d8 29 15 - 110 10/01/24 13:04 10/02/24 13:40

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Matrix: Water Analysis Batch: 726815 Prep Batch: 726740

%Rec Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits

1,4-Dioxane 2.00 2.20 ug/L 110 40 - 140

LCS LCS

Lab Sample ID: LCS 480-726740/2-A

Isotope Dilution %Recovery Qualifier Limits 1,4-Dioxane-d8 15 - 110 29

Lab Sample ID: 480-223843-1 MS Client Sample ID: Area A/D Effluent MS

Matrix: Water Prep Type: Total/NA

Analysis Batch: 726815 Prep Batch: 726740

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit Limits D %Rec 2.00 40 - 140 1,4-Dioxane ND 2 24 ug/L 112

MS MS

Isotope Dilution %Recovery Qualifier Limits 15 - 110 1.4-Dioxane-d8 30

Lab Sample ID: 480-223843-1 MSD Client Sample ID: Area A/D Effluent MSD

Matrix: Water

Analysis Batch: 726815 **Prep Batch: 726740**

%Rec **RPD** Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 1,4-Dioxane ND 2.00 107 40 - 140 20 2.14 ug/L

MSD MSD Isotope Dilution Qualifier

%Recovery Limits 1,4-Dioxane-d8 15 - 110 29

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 200-209276/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 209279 Prep Batch: 209276

ı		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		2.0	1.3	ng/L		10/04/24 09:13	10/04/24 18:11	1
	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		5.0	1.8	ng/L		10/04/24 09:13	10/04/24 18:11	1
	N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.6	ng/L		10/04/24 09:13	10/04/24 18:11	1
	N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.7	ng/L		10/04/24 09:13	10/04/24 18:11	1
	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.51	ng/L		10/04/24 09:13	10/04/24 18:11	1

Eurofins Buffalo

Page 13 of 28 10/8/2024 Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Job ID: 480-223843-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 200-209276/1-A

Matrix: Water

Analysis Batch: 209279

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 209276

	MD	MB MB									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Perfluorobutanoic acid (PFBA)	ND		5.0	1.2	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.34	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorodecanoic acid (PFDA)	ND		2.0	0.37	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.43	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluoroheptanesulfonic acid (PFHpS)	ND		2.0	0.18	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.37	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.39	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.73	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorononanoic acid (PFNA)	ND		2.0	0.22	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorooctanesulfonamide (PFOSA)	ND		2.0	0.41	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.50	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorooctanoic acid (PFOA)	ND		2.0	0.41	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.30	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.33	ng/L		10/04/24 09:13	10/04/24 18:11	1		
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.27	ng/L		10/04/24 09:13	10/04/24 18:11	1		
	MB	MB									

						-
	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFDA	101		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C2 PFDoA	91		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C2 PFHxA	102		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C2 PFTeDA	87		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C2 PFUnA	97		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C3 PFBS	98		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C4 PFBA	106		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C4 PFHpA	99		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C4 PFOA	102		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C4 PFOS	104		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C5 PFNA	101		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C5 PFPeA	104		50 - 150	10/04/24 09:13	10/04/24 18:11	1
13C8 FOSA	94		50 - 150	10/04/24 09:13	10/04/24 18:11	1
1802 PFHxS	101		50 - 150	10/04/24 09:13	10/04/24 18:11	1
d3-NMeFOSAA	113		50 - 150	10/04/24 09:13	10/04/24 18:11	1
d5-NEtFOSAA	116		50 - 150	10/04/24 09:13	10/04/24 18:11	1
M2-6:2 FTS	107		50 - 150	10/04/24 09:13	10/04/24 18:11	1
M2-8:2 FTS	103		50 - 150	10/04/24 09:13	10/04/24 18:11	1

Lab Sample ID: LCS 200-209276/2-A

Matrix: Water

Analysis Batch: 209279

Client Sample ID: Lab Control Sample	•
Prep Type: Total/NA	4

Prep Batch: 209276

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1H,1H,2H,2H-perfluorodecanesul	38.4	44.4		ng/L		116	70 - 130	
fonic acid (8:2)								
1H,1H,2H,2H-perfluorooctanesulf	38.0	42.6		ng/L		112	60 - 140	
onic acid (6:2)								
N-ethylperfluorooctanesulfonami	40.0	40.3		ng/L		101	70 - 130	
doacetic acid (NEtFOSAA)								

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Job ID: 480-223843-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 200-209276/2-A

Matrix: Water

Analysis Batch: 209279

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 209276

Analysis Batch. 200210	Omilia	1.00	1.00	1.00			%Page
Analysis	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec Limits
Analyte			Qualifier				
N-methylperfluorooctanesulfona	40.0	40.6		ng/L		102	70 - 130
midoacetic acid (NMeFOSAA) Perfluorobutanesulfonic acid	35.5	40.5		na/l		114	70 - 130
(PFBS)	33.3	40.5		ng/L		114	70 - 130
Perfluorobutanoic acid (PFBA)	40.0	45.1		ng/L		113	70 - 130
Perfluorodecanesulfonic acid	38.6	47.1		ng/L		122	70 - 130
(PFDS)				J			
Perfluorodecanoic acid (PFDA)	40.0	43.4		ng/L		109	70 - 130
Perfluorododecanoic acid	40.0	45.2		ng/L		113	70 - 130
(PFDoA)				•			
Perfluoroheptanesulfonic acid	38.1	42.9		ng/L		113	70 - 130
(PFHpS)							
Perfluoroheptanoic acid (PFHpA)	40.0	44.6		ng/L		111	70 - 130
Perfluorohexanesulfonic acid (PFHxS)	36.6	40.8		ng/L		112	70 - 130
Perfluorohexanoic acid (PFHxA)	40.0	43.1		ng/L		108	70 - 130
Perfluorononanoic acid (PFNA)	40.0	43.0		ng/L		108	70 - 130
Perfluorooctanesulfonamide	40.0	44.5		ng/L		111	70 - 130
(PFOSA)				_			
Perfluorooctanesulfonic acid	37.1	41.9		ng/L		113	70 - 130
(PFOS)							
Perfluorooctanoic acid (PFOA)	40.0	43.7		ng/L		109	70 - 130
Perfluoropentanoic acid (PFPeA)	40.0	45.5		ng/L		114	70 - 130
Perfluorotetradecanoic acid	40.0	44.1		ng/L		110	70 - 130
(PFTeA)							
Perfluorotridecanoic acid	40.0	39.9		ng/L		100	70 - 130
(PFTriA)							
Perfluoroundecanoic acid	40.0	44.9		ng/L		112	70 - 130
(PFUnA)							

I CS	I CS

LUS	LUS	
%Recovery	Qualifier	Limits
99		50 - 150
92		50 ₋ 150
101		50 - 150
86		50 - 150
97		50 - 150
93		50 - 150
102		50 - 150
96		50 - 150
100		50 - 150
97		50 - 150
99		50 - 150
101		50 - 150
89		50 - 150
96		50 - 150
110		50 - 150
119		50 - 150
100		50 - 150
104		50 - 150
	%Recovery 99 92 101 86 97 93 102 96 100 97 99 101 89 96 110 119	92 101 86 97 93 102 96 100 97 99 101 89 96 110 119

Eurofins Buffalo

__

3

5

b

10

12

14

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223843-1

Project/Site: Area A/D Effluent

Analysis Batch: 209279

Matrix: Water

Lab Sample ID: 480-223843-1 MS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Client Sam	ple ID: Area A/D Effluent MS
One it out	pic ib. Aica Ab Liliaciit ilio

Prep Type: Total/NA Prep Batch: 209276

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	ND		36.2	40.0		ng/L		110	60 - 140	
1H,1H,2H,2H-perfluorooctanesulf onic acid (6:2)	ND		35.9	38.0		ng/L		106	50 - 150	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		37.8	39.4		ng/L		104	60 - 140	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		37.8	38.6		ng/L		102	60 - 140	
Perfluorobutanesulfonic acid (PFBS)	ND		33.5	37.9		ng/L		113	60 - 140	
Perfluorobutanoic acid (PFBA)	ND		37.8	42.3		ng/L		112	60 - 140	
Perfluorodecanesulfonic acid (PFDS)	ND		36.4	42.2		ng/L		116	60 - 140	
Perfluorodecanoic acid (PFDA)	ND		37.8	42.3		ng/L		112	60 - 140	
Perfluorododecanoic acid (PFDoA)	ND		37.8	41.6		ng/L		110	60 - 140	
Perfluoroheptanesulfonic acid (PFHpS)	ND		36.0	41.2		ng/L		115	60 - 140	
Perfluoroheptanoic acid (PFHpA)	ND		37.8	41.8		ng/L		111	60 - 140	
Perfluorohexanesulfonic acid (PFHxS)	ND		34.5	37.7		ng/L		109	60 - 140	
Perfluorohexanoic acid (PFHxA)	ND		37.8	41.4		ng/L		110	60 - 140	
Perfluorononanoic acid (PFNA)	ND		37.8	39.9		ng/L		106	60 - 140	
Perfluorooctanesulfonamide (PFOSA)	ND		37.8	42.2		ng/L		112	60 - 140	
Perfluorooctanesulfonic acid (PFOS)	ND		35.0	38.5		ng/L		110	60 - 140	
Perfluorooctanoic acid (PFOA)	ND		37.8	41.6		ng/L		110	60 - 140	
Perfluoropentanoic acid (PFPeA)	ND		37.8	42.7		ng/L		113	60 - 140	
Perfluorotetradecanoic acid (PFTeA)	ND		37.8	42.5		ng/L		113	60 - 140	
Perfluorotridecanoic acid (PFTriA)	ND		37.8	37.3		ng/L		99	60 - 140	
Perfluoroundecanoic acid (PFUnA)	ND		37.8	40.7		ng/L		108	60 - 140	
	MS	MS								

e Dilution	%Recovery	Qualifier	Limits
PFDA	97		50 - 150
PFDoA	90		50 - 150
PFHxA	101		50 - 150
PFTeDA	83		50 - 150
PFUnA	96		50 - 150
PFBS	99		50 - 150
PFBA	104		50 - 150
PFHpA	99		50 - 150
PFOA	102		50 - 150
PFOS	101		50 - 150
PFNA	100		50 - 150
PFPeA	104		50 - 150
OSA	96		50 - 150
PFHxS	102		50 - 150
eFOSAA	113		50 - 150
PFOS PFNA PFPeA FOSA PFHxS	101 100 104 96 102		

Eurofins Buffalo

Page 16 of 28

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Job ID: 480-223843-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 480-223843-1 MS

Lab Sample ID: 480-223843-1 MSD

Matrix: Water

Analysis Batch: 209279

Client Sample ID: Area A/D Effluent MS

Prep Type: Total/NA Prep Batch: 209276

MS MS Isotope Dilution %Recovery Qualifier Limits d5-NEtFOSAA 118 50 - 150 M2-6:2 FTS 105 50 - 150 M2-8:2 FTS 107 50 - 150

Client Sample ID: Area A/D Effluent MSD

Prep Batch: 209276

Matrix: Water Prep Type: Total/NA Analysis Batch: 209279

Analysis Batch: 209279	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec	atch: 2	09276 RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	ND		39.8	47.2		ng/L		118	60 - 140	16	30
1H,1H,2H,2H-perfluorooctanesulf onic acid (6:2)	ND		39.5	42.2		ng/L		107	50 - 150	11	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		41.5	46.9		ng/L		113	60 - 140	17	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		41.5	46.8		ng/L		113	60 - 140	19	30
Perfluorobutanesulfonic acid (PFBS)	ND		36.8	41.9		ng/L		114	60 - 140	10	30
Perfluorobutanoic acid (PFBA)	ND		41.5	47.6		ng/L		115	60 - 140	12	30
Perfluorodecanesulfonic acid (PFDS)	ND		40.0	46.3		ng/L		116	60 - 140	9	30
Perfluorodecanoic acid (PFDA)	ND		41.5	45.1		ng/L		109	60 - 140	6	30
Perfluorododecanoic acid (PFDoA)	ND		41.5	45.8		ng/L		110	60 - 140	10	30
Perfluoroheptanesulfonic acid (PFHpS)	ND		39.5	45.9		ng/L		116	60 - 140	11	30
Perfluoroheptanoic acid (PFHpA)	ND		41.5	46.4		ng/L		112	60 - 140	10	30
Perfluorohexanesulfonic acid (PFHxS)	ND		37.9	41.0		ng/L		108	60 - 140	8	30
Perfluorohexanoic acid (PFHxA)	ND		41.5	45.3		ng/L		109	60 - 140	9	30
Perfluorononanoic acid (PFNA)	ND		41.5	44.3		ng/L		107	60 - 140	10	30
Perfluorooctanesulfonamide (PFOSA)	ND		41.5	47.6		ng/L		115	60 - 140	12	30
Perfluorooctanesulfonic acid (PFOS)	ND		38.5	42.5		ng/L		110	60 - 140	10	30
Perfluorooctanoic acid (PFOA)	ND		41.5	46.0		ng/L		111	60 - 140	10	30
Perfluoropentanoic acid (PFPeA)	ND		41.5	47.5		ng/L		114	60 - 140	11	30
Perfluorotetradecanoic acid (PFTeA)	ND		41.5	47.1		ng/L		114	60 - 140	10	30
Perfluorotridecanoic acid (PFTriA)	ND		41.5	42.7		ng/L		103	60 - 140	13	30
Perfluoroundecanoic acid (PFUnA)	ND		41.5	45.0		ng/L		108	60 - 140	10	30

Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFDA	96		50 - 150
13C2 PFDoA	85		50 - 150
13C2 PFHxA	99		50 - 150
13C2 PFTeDA	79		50 - 150
13C2 PFUnA	91		50 - 150
13C3 PFBS	96		50 - 150

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223843-1

Project/Site: Area A/D Effluent

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 480-223843-1 MSD Client Sample ID: Area A/D Effluent MSD Prep Type: Total/NA

Matrix: Water

Analysis Batch: 209279				Prep Batch: 209276
	MSD	MSD		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C4 PFBA	100		50 - 150	
13C4 PFHpA	95		50 - 150	
13C4 PFOA	97		50 - 150	
13C4 PFOS	97		50 - 150	
13C5 PFNA	97		50 ₋ 150	
13C5 PFPeA	100		50 ₋ 150	
13C8 FOSA	92		50 - 150	
1802 PFHxS	99		50 ₋ 150	
d3-NMeFOSAA	106		50 ₋ 150	
d5-NEtFOSAA	110		50 - 150	
M2-6:2 FTS	101		50 ₋ 150	
M2-8:2 FTS	99		50 - 150	
_				

Eurofins Buffalo

10/8/2024

Page 18 of 28

QC Association Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Éffluent

Job ID: 480-223843-1

GC/MS Semi VOA

Prep Batch: 726740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223843-1	Area A/D Effluent	Total/NA	Water	3510C	
480-223843-2	Area A/D Effluent D	Total/NA	Water	3510C	
MB 480-726740/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-726740/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-223843-1 MS	Area A/D Effluent MS	Total/NA	Water	3510C	
480-223843-1 MSD	Area A/D Effluent MSD	Total/NA	Water	3510C	

Analysis Batch: 726815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223843-1	Area A/D Effluent	Total/NA	Water	8270D SIM ID	726740
480-223843-2	Area A/D Effluent D	Total/NA	Water	8270D SIM ID	726740
MB 480-726740/1-A	Method Blank	Total/NA	Water	8270D SIM ID	726740
LCS 480-726740/2-A	Lab Control Sample	Total/NA	Water	8270D SIM ID	726740
480-223843-1 MS	Area A/D Effluent MS	Total/NA	Water	8270D SIM ID	726740
480-223843-1 MSD	Area A/D Effluent MSD	Total/NA	Water	8270D SIM ID	726740

LCMS

Prep Batch: 209276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223843-1	Area A/D Effluent	Total/NA	Water	3535	
480-223843-2	Area A/D Effluent D	Total/NA	Water	3535	
MB 200-209276/1-A	Method Blank	Total/NA	Water	3535	
LCS 200-209276/2-A	Lab Control Sample	Total/NA	Water	3535	
480-223843-1 MS	Area A/D Effluent MS	Total/NA	Water	3535	
480-223843-1 MSD	Area A/D Effluent MSD	Total/NA	Water	3535	

Analysis Batch: 209279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223843-1	Area A/D Effluent	Total/NA	Water	537 (modified)	209276
480-223843-2	Area A/D Effluent D	Total/NA	Water	537 (modified)	209276
MB 200-209276/1-A	Method Blank	Total/NA	Water	537 (modified)	209276
LCS 200-209276/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	209276
480-223843-1 MS	Area A/D Effluent MS	Total/NA	Water	537 (modified)	209276
480-223843-1 MSD	Area A/D Effluent MSD	Total/NA	Water	537 (modified)	209276

Lab Chronicle

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Client Sample ID: Area A/D Effluent Lab Sample ID: 480-223843-1

Date Collected: 09/30/24 14:45 **Matrix: Water** Date Received: 09/30/24 16:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3510C			726740	LSC	EET BUF	10/01/24 13:04
Total/NA	Analysis	8270D SIM ID		1	726815	JMM	EET BUF	10/02/24 15:06
Total/NA	Prep	3535			209276	MLK	EET BUR	10/04/24 09:13
Total/NA	Analysis	537 (modified)		1	209279	BWC	EET BUR	10/04/24 21:01

Client Sample ID: Area A/D Effluent D

Lab Sample ID: 480-223843-2 **Matrix: Water** Date Collected: 09/30/24 15:00

Date Received: 09/30/24 16:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3510C			726740	LSC	EET BUF	10/01/24 13:04
Total/NA	Analysis	8270D SIM ID		1	726815	JMM	EET BUF	10/02/24 15:27
Total/NA	Prep	3535			209276	MLK	EET BUR	10/04/24 09:13
Total/NA	Analysis	537 (modified)		1	209279	BWC	EET BUR	10/04/24 21:25

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Job ID: 480-223843-1

Accreditation/Certification Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Job ID: 480-223843-1

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-25

Laboratory: Eurofins Burlington

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
New York	NELAI	Р	10391	03-31-25
The fellowing englyte		. 4 . 1 4 . 41 1 . 1		
0 ,	s are included in this repo does not offer certification	,	not certified by the governing authori	ity. This list may include a
0 ,	•	,	not certified by the governing authori Analyte	ity. This list may include a
for which the agency	does not offer certification	I.	, , ,	

Л

Ī

6

Ω

9

11

13

Ш

Method Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Area A/D Effluent

Job ID: 480-223843-1

Method	Method Description	Protocol	Laboratory
8270D SIM ID	Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)	SW846	EET BUF
537 (modified)	Fluorinated Alkyl Substances	EPA	EET BUR
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
3535	Solid-Phase Extraction (SPE)	SW846	EET BUR

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Eurofins Buffalo

9

12

1/

Sample Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Area A/D Effluent

Job ID: 480-223843-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-223843-1	Area A/D Effluent	Water	09/30/24 14:45	09/30/24 16:05
480-223843-2	Area A/D Effluent D	Water	09/30/24 15:00	09/30/24 16:05

Client Information	Sampler:	Lab PM:	Carrier Tracking No(s):	COCN
Client Contact:		Schove, John R	050	480-198761-34770.1
Kirsten Colligan Company	18-081-116	John.Schove@et.eurofinsus.com	State of Origin:	Page: Page 1 of 1
Ontario Specialty Contracting, Inc.	PWSID:	Lobocuso Disvision	٦.	Job# dol
Address: 140 Lee St.	Due Date Requested: 2023	PA CICLER IN THE CASE OF THE C	paisanh	Preservation Codes:
City. Buffalo	TAT Requested (days):			N - None
State, Zip NY, 14210	Compliance Project: A Yes A No			
Phone 766-3333	80919	San S		
Email: kcolligan@oscinc.com		10		
Project Name: OSC- Former Buffalo Color Sites - 37745	Project #: 48003159	ن)راز) ard Lis	sieni	
Site: New York	SSOW#:	hnat2	coup	Other:
Sample Identification	Sample Matrix Type (wears, Sample (C=comp, cowessholl) Sample Date Time G=creah	Matrix (wowas, wowas, wowas, on the Filtered S around, on the Filtered S of the Filt	îo TedmuM lisî	
	X		01	Special Instructions/Note:
Area A/D Effluent	9-22-24 14'45 C water	×		
Area A/D Effluent MS	14.80 (2	22		
Area A/D Effluent MSD	2	? ×		
Area A/D Effluent D	_	X		
)			
			480-223843 Chain of Custody	dy
ant	Poison B	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retained	ed longer than 1 month)
I, III, IV, Other (specify)		Special Instructions/QC Requirements:	oosal By Lab	Archive For Months
Empty Kit Relinquished by: Relinquished by:	Date:	Time:	Method of Shipment:	
3	Date/Time:	Received by Class	DateTime 7/30	/605 Company
Relinquished by:	Date/Time: Company		Date/Time:	Сотрапу
Custody Seals Intact: Custody Seal No.: 1 CU LCB	27:170	Cooler Temperature(s) °C and Other Re		Company
		17.4, 10.8 IR#SC	18*5C 1ce	

L

コンストーの

🔅 eurofins

Chain of Custody Record

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

10 Hazelwood Drive

Environment Testing

Eurofins Buffalo 10 Hazelwood Drve Amherst, NY 14228-2298 Phone 716-691-2600 Fax 716-691-7991		Shain o	Chain of Custo	ſ	cord		480-223	843 Cha	480-223843 Chain of Custody	1		eurofins	Environment Testing
Client Information (Sub Contract Lab)	sampier			Lab PM Schov	Lab PM Schove, John R	•				{		. 3 No .0-89629 1	
Crient Contact: Shipping/Receiving	Phone.			E-Mail John	E-Mail John Schove@et.eurofinsus.com	et.eurofins	us.com	σZ	State of Origin New York			Page: Page 1 of 1	
Company TestAmerica Laboratories, Inc.					Accreditations Required (See note) NELAP - New York	s Required (S lew York	see note)					Job #*	
Address. Suite 11,	Due Date Requested: 10/14/2024	ÿ					Analysis	is Regnested	ested			Preservation Codes:	les:
City South Burlington	TAT Requested (days):	ıys):											
State, Zip VT, 05403	7				54								
Phone 802-660-1990(Tel) 802-660-1919(Fax)	PO#:										*		
	#OM				(0)						* \$		
Project Name. OSC- Former Buffalo Color Sites - 37745	Project #: 48003159				98 OL V						:1enls)		
Site Honeywell- Buffalo Sites	:#MOSS				sp (V						nos la	Other:	
			Sample	Matrix	W/SW) Tedr		
Sample identification - Client ID (Lah ID)	Sommon Out	Sample		(W=water, S=solid, O=waste/oil	leld Filt erform FC_IDA/: nalytes)						uM Isto		
	Sample Date		Preservation Code:	BT=Tissue, A=Air) tion Code;			*				īΧ	Special	Special Instructions/Note:
Area A/D Effluent (480-223843-1)	9/30/24	14:45 Fastern	ŋ	Water	×						2		
Area A/D Effluent (480-223843-1MS)	9/30/24	14:45 Fastern	ŋ	Water	×				-		0		
Area A/D Effluent (480-223843-1MSD)	9/30/24	14.45 Eastern	O	Water	×						Ŋ		
Area A/D Effluent D (480-223843-2)	9/30/24	15.00 Eastern	O	Water	×						N		
									_		7		
Note Since laboratory accreditations are subject to change. Eurofins Environment Testing Northeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment base is shipped base to the Eurofins Environment Testing Northeast, LLC alteritoris will be provided. Any other places to analysis/sets/marity being analyzed, the sample must be shipped based for other instructions will be provided Any other places to the instructions will be provided Any other places to accreditation in mediately. If all requested accreditations are current to date, return the some Chain of Custody attention to analysis Northeast, LLC attention immediately. If all requested accreditations are current to date, return the some Chain of Custody attention to analysis Northeast LLC attention immediately. If all requested accreditations are current to date, return the some Chain of Custody attention to analysis of the control of the	Int Testing Northeast, Leadysis/tests/matrix bei	LC places the organization of the equested accre	Dwnership of me samples must	ethod, analyte of the shipped ba	& accreditation to the Europe turn the sign	n compliance offins Environreed Chain of C	upon our su ment Testing	bcontract lab Northeast, L	oratories Th LC laboratory	is sample shi	pment is fo uctions wil	owarded under chair	r-of-custody If the laboratory hanges to accreditation
Possible Hazard Identification					Sample	Disposal	(A fee m	ay be ass	essed if s	amples ar	e retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	(month)
Unconfirmed Delivership Decured 1 11 11 IV Otton (1997)						Return To Client	Strent	să 	Disposal By Lab	ab [☐ Arch	Archive For	Months
being able requested 1, 11, 11, 10, Other (specify)	Primary Deliverable Rank: 2	able Rank: 2			Special	Special Instructions/QC Requirements:	ns/QC Rec	juirements					
Empty Kit Relinquished by:		Date:			Time:				Method o	Method of Shipment:			
Fall dark for U. V. Fall d	10-1-24	Je 06		Company	Rece	Received by:	6			Date/Time.	1 6/0	Actions.	Company ETA-BUT
reiniqualed by	Date/Time.		0	Company	Rec	Received by:				Date/Time.			Company
ı	Date/Time		0	Company	Rec	Received by				Date/Time.			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	Victoria de la companya de la compan				8	Cooler Temperature(s) °C and Other Remarks	rre(s) °C and	Other Rema	l s				
													Ver: 05/06/2024

Login Sample Receipt Checklist

Client: Ontario Specialty Contracting, Inc.

Job Number: 480-223843-1

Login Number: 223843 List Source: Eurofins Buffalo

List Number: 1

Creator: Stapleton, Kaitlyn

Creator. Stapleton, Kaitiyn		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	12.4, 10.8 IR#SC ice
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	Ontatio Specialty Contracting
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

3

4

6

8

10

12

13

Login Sample Receipt Checklist

Client: Ontario Specialty Contracting, Inc.

Job Number: 480-223843-1

List Number: 223843 List Source: Eurofins Burlington
List Number: 2 List Creation: 10/02/24 06:47 PM

Creator: Devarney, Hilary

Creator: Devarney, Hilary		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>Lab does not accept radioactive samples.</td>	True	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	2533899
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.3°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

J

4

6

9

11

13

14

12

14

16

ANALYTICAL REPORT

PREPARED FOR

Attn: Kirsten Colligan
Ontario Specialty Contracting, Inc.
140 Lee St.
Buffalo, New York 14210
Generated 10/9/2024 12:11:01 PM

JOB DESCRIPTION

Quarterly BSA SUMP Buffalo Color - Quarterly Sump

JOB NUMBER

480-223804-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 10/9/2024 12:11:01 PM

Authorized for release by Anton Gruning, Project Management Assistant I Anton.Gruning@et.eurofinsus.com

Designee for

John Schove, Project Manager II <u>John.Schove@et.eurofinsus.com</u> (716)504-9838

16

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	16
QC Sample Results	17
QC Association Summary	30
Lab Chronicle	33
Certification Summary	35
Method Summary	36
Sample Summary	37
Detection Limit Exceptions Summary	38
Chain of Custody	39
Receipt Checklists	40

3

4

6

R

46

11

13

15

16

Definitions/Glossary

Client: Ontario Specialty Contracting, Inc.
Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier

Qualifier Qualifier Description

Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
^+	Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
F1	MS and/or MSD recovery exceeds control limits.
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

EDL

LOD

Abbreviation	These commonly used abbreviations may or may not be present in this report.							
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis							
%R	Percent Recovery							
CFL	Contains Free Liquid							
CFU	Colony Forming Unit							
CNF	Contains No Free Liquid							
DER	Duplicate Error Ratio (normalized absolute difference)							
Dil Fac	Dilution Factor							
DL	Detection Limit (DoD/DOE)							
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample							
DLC	Decision Level Concentration (Radiochemistry)							

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 40 10/9/2024

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project: Quarterly BSA SUMP

Job ID: 480-223804-1 Eurofins Buffalo

Job Narrative 480-223804-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/28/2024 4:46 PM. Unless otherwise noted below, the samples arrived in good condition. The temperature of the cooler at receipt time was 15.4°C.

GC/MS VOA

Method 624.1_PREC: The following Volatile sample was composited by the laboratory on 09/30/2024 as requested by the client: BCC BSA SUMP-EFFLUENT (480-223804-3). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

Method 624.1_PREC: The continuing calibration verification (CCV) associated with batch 480-726617 recovered above the upper control limit for Acrolein. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: TRIP BLANK (480-223804-2) and BCC BSA SUMP-EFFLUENT (480-223804-3).

Method 624.1_PREC: The following Volatile sample was composited by the laboratory on 10/01/2024 as requested by the client: BCC BSA SUMP-INFLUENT (480-223804-1). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

Method 624.1_PREC: The following sample was diluted to bring the concentration of target analytes within the calibration range: BCC BSA SUMP-INFLUENT (480-223804-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1_PREC: The following sample was diluted due to color, appearance, viscosity, etc.: BCC BSA SUMP-INFLUENT (480-223804-1). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCB

Method 608.3_PCB_PREC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-726627.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 420.4_NP: The laboratory control sample (LCS) and continuous control verification (CCV) for analytical batch 480-727121 recovered outside control limits for the following analytes Total Recoverable Phenolics. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.BCC BSA SUMP-EFFLUENT (480-223804-3)

Eurofins Buffalo

Page 5 of 40 10/9/2024

Job ID: 480-223804-1

4

5

7

8

9

11

13

14

1 %

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project: Quarterly BSA SUMP

Job ID: 480-223804-1 (Continued)

Eurofins Buffalo

Job ID: 480-223804-1

Method 420.4_NP: The method requirement for no headspace was not met. The following samples were analyzed with headspace in the sample container(s): BCC BSA SUMP-INFLUENT (480-223804-1) and BCC BSA SUMP-EFFLUENT (480-223804-3).

Method 5210B: The glucose-glutamic acid standard (LCS) recovered outside the recovery limits specified in the method in batch 480-726525. The method holding time had expired, therefore the analysis was not repeated. The data was qualified and reported.

Method 5210B: The correction factor for the Seeded Control Blank (SCB) for batch 480-726525 was outside the method range of 0.6 to 1.0 mg/L. Thus, there is added uncertainty for the associated sample results.

Method 5210B: Reanalysis of the following sample was performed outside of the analytical holding time due to under or over depletion: BCC BSA SUMP-INFLUENT (480-223804-1).

Method 5210B: The glucose-glutamic acid standard (LCS) recovered outside the recovery limits specified in the method in batch 480-726525. The method holding time had expired, therefore the analysis was not repeated. The data was gualified and reported.

Method SM4500_H+: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: BCC BSA SUMP-INFLUENT (480-223804-1) and BCC BSA SUMP-EFFLUENT (480-223804-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 6 of 40 10/9/2024

Detection Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Lab Sample ID: 480-223804-1

Lab Sample ID: 480-223804-2

Lab Sample ID: 480-223804-3

Client Sample ID: BCC BSA SUMP-INFLU	JENT
--------------------------------------	------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,4-Dichlorobenzene	180	J	200	20	ug/L	40	624.1	Total/NA
Chlorobenzene	1900		200	19	ug/L	40	624.1	Total/NA
1,3-Dichlorobenzene	13	J	200	3.5	ug/L	5	625.1	Total/NA
1,4-Dichlorobenzene	160	J	200	4.1	ug/L	5	625.1	Total/NA
2-Chlorophenol	20	J	100	3.3	ug/L	5	625.1	Total/NA
Acenaphthene	68	J	100	4.1	ug/L	5	625.1	Total/NA
Fluorene	24	J	100	5.0	ug/L	5	625.1	Total/NA
N-Nitrosodiphenylamine	17	J	100	4.1	ug/L	5	625.1	Total/NA
Phenolics, Total Recoverable	0.021		0.010	0.0035	mg/L	1	420.4	Total/NA
Total Suspended Solids	8.4		4.0	4.0	mg/L	1	SM 2540D	Total/NA
Cyanide, Amenable	0.043		0.010	0.0050	mg/L	1	SM 4500 CN G	Total/NA
pH	8.3	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.1	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Phosphorus	0.16		0.010	0.0050	mg/L as P	1	SM 4500 P E	Total/NA
Biochemical Oxygen Demand	13.0	*+	6.0	6.0	mg/L	1	SM 5210B	Total/NA

Client Sample ID: TRIP BLANK

<u> </u>									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	0.81	J	5.0	0.48	ug/L	1	_	624.1	Total/NA

Client Sample ID: BCC BSA SUMP-EFFLUENT

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I) Method	Prep Type
Chlorobenzene	4.2	J	5.0	0.48	ug/L	1	624.1	Total/NA
Copper	0.0046	J	0.010	0.0045	mg/L	1	200.7 Rev 4.4	Total/NA
Nickel	0.0041	J	0.010	0.0034	mg/L	1	200.7 Rev 4.4	Total/NA
Cyanide, Amenable	0.026		0.010	0.0050	mg/L	1	SM 4500 CN G	Total/NA
рН	8.2	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.3	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Phosphorus	0.23		0.010	0.0050	mg/L as P	1	SM 4500 P E	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-223804-1

Matrix: Water

Job ID: 480-223804-1

Client Sample ID: BCC BSA SUMP-INFLUENT

Date Collected: 09/27/24 12:05 Date Received: 09/28/24 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		200	15	ug/L			10/01/24 20:14	40
1,1,2,2-Tetrachloroethane	ND		200	10	ug/L			10/01/24 20:14	40
1,1,2-Trichloroethane	ND		200	19	ug/L			10/01/24 20:14	40
1,1-Dichloroethane	ND		200	24	ug/L			10/01/24 20:14	40
1,1-Dichloroethene	ND		200	34	ug/L			10/01/24 20:14	40
1,2-Dichlorobenzene	ND		200	18	ug/L			10/01/24 20:14	40
1,2-Dichloroethane	ND		200	24	ug/L			10/01/24 20:14	40
1,2-Dichloroethene, Total	ND		400	130	ug/L			10/01/24 20:14	40
1,2-Dichloropropane	ND		200	24	ug/L			10/01/24 20:14	40
1,3-Dichlorobenzene	ND		200	22	ug/L			10/01/24 20:14	40
1,4-Dichlorobenzene	180	J	200		ug/L			10/01/24 20:14	40
2-Chloroethyl vinyl ether	ND		1000	74	ug/L			10/01/24 20:14	40
Acrolein	ND		4000	700	ug/L			10/01/24 20:14	40
Acrylonitrile	ND		2000	76	ug/L			10/01/24 20:14	40
Benzene	ND		200		ug/L			10/01/24 20:14	40
Bromodichloromethane	ND		200	21	ug/L			10/01/24 20:14	40
Bromoform	ND		200		ug/L			10/01/24 20:14	40
Bromomethane	ND		200		ug/L			10/01/24 20:14	40
Carbon tetrachloride	ND		200		ug/L			10/01/24 20:14	40
Chlorobenzene	1900		200		ug/L			10/01/24 20:14	40
Chloroethane	ND		200	35	ug/L			10/01/24 20:14	40
Chloroform	ND		200	22	ug/L			10/01/24 20:14	40
Chloromethane	ND		200	25	ug/L			10/01/24 20:14	40
cis-1,3-Dichloropropene	ND		200	13	ug/L			10/01/24 20:14	40
Dibromochloromethane	ND		200	17	ug/L			10/01/24 20:14	40
Ethylbenzene	ND		200	19	ug/L			10/01/24 20:14	40
Methylene Chloride	ND		200	33	ug/L			10/01/24 20:14	40
Tetrachloroethene	ND		200	14	ug/L			10/01/24 20:14	40
Toluene	ND		200		ug/L			10/01/24 20:14	40
trans-1,3-Dichloropropene	ND		200	18	ug/L			10/01/24 20:14	40
Trichloroethene	ND		200	24	ug/L			10/01/24 20:14	40
Trichlorofluoromethane	ND		200		ug/L			10/01/24 20:14	40
Vinyl chloride	ND		200		ug/L			10/01/24 20:14	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		68 - 130			-		10/01/24 20:14	40
4-Bromofluorobenzene (Surr)	97		76 - 123					10/01/24 20:14	40
Dibromofluoromethane (Surr)	99		75 - 123					10/01/24 20:14	40
Toluene-d8 (Surr)	99		77 - 120					10/01/24 20:14	40

Method: FPA	. 625 1 - Semivola	tile Organic (Compounds (GC/MS)	

Michiga. El A CEC. 1 - Comito	idine Organie Compo	unus (Conno)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND ND	200	4.1	ug/L		10/02/24 09:12	10/03/24 17:28	5
1,2-Dichlorobenzene	ND	200	5.2	ug/L		10/02/24 09:12	10/03/24 17:28	5
1,2-Diphenylhydrazine	ND	200	3.9	ug/L		10/02/24 09:12	10/03/24 17:28	5
1,3-Dichlorobenzene	13 J	200	3.5	ug/L		10/02/24 09:12	10/03/24 17:28	5
1,4-Dichlorobenzene	160 J	200	4.1	ug/L		10/02/24 09:12	10/03/24 17:28	5
2,2'-oxybis[1-chloropropane]	ND	100	4.2	ug/L		10/02/24 09:12	10/03/24 17:28	5
2,4,6-Trichlorophenol	ND	100	5.0	ug/L		10/02/24 09:12	10/03/24 17:28	5
2,4-Dichlorophenol	ND	100	3.9	ug/L		10/02/24 09:12	10/03/24 17:28	5

Eurofins Buffalo

10/9/2024

Page 8 of 40

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-INFLUENT

Lab Sample ID: 480-223804-1 Date Collected: 09/27/24 12:05 **Matrix: Water**

Date Received: 09/28/24 16:46

Method: EPA 625.1 - Semivo Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dimethylphenol	ND		100	7.0		=		10/03/24 17:28	Diria
2,4-Dinitrophenol	ND		200	25				10/03/24 17:28	
2,4-Dinitrotoluene	ND		100	8.1	ug/L			10/03/24 17:28	
2-Chloronaphthalene	ND		100		-			10/03/24 17:28	
			100	3.3				10/03/24 17:28	
2-Chlorophenol	20 ND	J	100		Ū				
2-Nitrophenol				3.5	ug/L			10/03/24 17:28	
3,3'-Dichlorobenzidine	ND		100	8.0				10/03/24 17:28	
4,6-Dinitro-2-methylphenol	ND		200	9.0	·			10/03/24 17:28	
4-Bromophenyl phenyl ether	ND		100	7.0	ug/L			10/03/24 17:28	
4-Chloro-3-methylphenol	ND		100		ug/L			10/03/24 17:28	
4-Chlorophenyl phenyl ether	ND		100		ug/L			10/03/24 17:28	
4-Nitrophenol	ND		200	9.7	•			10/03/24 17:28	
Acenaphthene	68	J	100	4.1				10/03/24 17:28	
Acenaphthylene	ND		100	4.4	ug/L		10/02/24 09:12	10/03/24 17:28	
Aniline	ND		200	7.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Anthracene	ND		100	7.0	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzidine	ND		1600	270	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[a]anthracene	ND		100	5.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[a]pyrene	ND		100	6.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[b]fluoranthene	ND		100	6.0	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[g,h,i]perylene	ND		100	7.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[k]fluoranthene	ND		100	6.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Bis(2-chloroethoxy)methane	ND		100	3.8	ug/L		10/02/24 09:12	10/03/24 17:28	
Bis(2-chloroethyl)ether	ND		100	4.7	ug/L		10/02/24 09:12	10/03/24 17:28	
Bis(2-ethylhexyl) phthalate	ND		200		ug/L		10/02/24 09:12	10/03/24 17:28	
Butyl benzyl phthalate	ND		100		ug/L		10/02/24 09:12	10/03/24 17:28	
Chrysene	ND		100	5.0	-			10/03/24 17:28	
Dibenz(a,h)anthracene	ND		100		ug/L			10/03/24 17:28	
Diethyl phthalate	ND		100					10/03/24 17:28	
Dimethyl phthalate	ND		100					10/03/24 17:28	
Di-n-butyl phthalate	ND		100	8.0				10/03/24 17:28	
Di-n-octyl phthalate	ND		100	6.0				10/03/24 17:28	
Fluoranthene	ND		100	8.0	ug/L			10/03/24 17:28	
Fluorene	24		100	5.0				10/03/24 17:28	
Hexachlorobenzene	ND	.	100		ug/L			10/03/24 17:28	
			100		•				
Hexachlorobutadiene	ND ND		100		ug/L			10/03/24 17:28	
Hexachlorocyclopentadiene Hexachloroethane					ug/L			10/03/24 17:28	
	ND		100		ug/L			10/03/24 17:28	
Indeno[1,2,3-cd]pyrene	ND		100		ug/L			10/03/24 17:28	
Isophorone	ND		100		ug/L			10/03/24 17:28	
Naphthalene -	ND		100		ug/L			10/03/24 17:28	
Decane	ND		200	8.0	·			10/03/24 17:28	
Nitrobenzene	ND		100	4.1				10/03/24 17:28	
N-Nitrosodimethylamine	ND		200		Ü			10/03/24 17:28	
N-Nitrosodi-n-propylamine	ND		100		•			10/03/24 17:28	
N-Nitrosodiphenylamine	17	J	100		ug/L			10/03/24 17:28	
n-Octadecane	ND		200	6.0	ug/L		10/02/24 09:12	10/03/24 17:28	
Pentachlorophenol	ND		200	16	ug/L		10/02/24 09:12	10/03/24 17:28	
Phenanthrene	ND		100	6.0	ug/L		10/02/24 09:12	10/03/24 17:28	

Eurofins Buffalo

Job ID: 480-223804-1

Page 9 of 40 10/9/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-223804-1

Client Sample ID: BCC BSA SUMP-INFLUENT Date Collected: 09/27/24 12:05

Matrix: Water

Job ID: 480-223804-1

Date Received: 09/28/24 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		100	1.8	ug/L		10/02/24 09:12	10/03/24 17:28	
Pyrene	ND		100	7.0	ug/L		10/02/24 09:12	10/03/24 17:28	
2,6-Dinitrotoluene	ND		100	5.0	ug/L		10/02/24 09:12	10/03/24 17:28	Ę
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	73		52 - 151				10/02/24 09:12	10/03/24 17:28	
2-Fluorobiphenyl	64		44 - 120				10/02/24 09:12	10/03/24 17:28	
2-Fluorophenol	42		17 - 120				10/02/24 09:12	10/03/24 17:28	
Nitrobenzene-d5	53		15 - 314				10/02/24 09:12	10/03/24 17:28	
Phenol-d5	28		8 - 424				10/02/24 09:12	10/03/24 17:28	
o-Terphenyl-d14	47		22 - 125				10/02/24 09:12	10/03/24 17:28	
Method: EPA 608.3 - Polychlor	inated Bipl	nenyls (PC	Bs) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1221	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1232	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1242	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1248	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1254	ND		0.057	0.030	•		09/30/24 13:14	10/01/24 12:46	
PCB-1260	ND		0.057	0.030			09/30/24 13:14	10/01/24 12:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	20		10 - 120					10/01/24 12:46	
Tetrachloro-m-xylene	52		10 - 126					10/01/24 12:46	•
Method: EPA 200.7 Rev 4.4 - M	letals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	ND		0.0040	0.0024	mg/L		09/30/24 08:02	09/30/24 18:29	
Copper	ND		0.010	0.0045	-		09/30/24 08:02	09/30/24 18:29	
Lead	ND		0.010	0.0039	mg/L		09/30/24 08:02	09/30/24 18:29	
Nickel	ND		0.010	0.0034			09/30/24 08:02	09/30/24 18:29	
Zinc	ND		0.010	0.0068	-		09/30/24 08:02	09/30/24 18:29	
Method: EPA 245.1 - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000042	mg/L		09/30/24 10:04	09/30/24 13:58	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolics, Total Recoverable (EPA 420.4)	0.021		0.010	0.0035	mg/L			10/04/24 13:50	
Cyanide, Amenable (SM 4500 CN G)	0.043		0.010	0.0050	mg/L			10/05/24 17:30	,
Phosphorus (SM 4500 P E)	0.16		0.010	0.0050	mg/L as P			10/01/24 19:46	,
Biochemical Oxygen Demand (SM	13.0	*+	6.0		mg/L as i			09/28/24 14:15	,
5210B)									
Biochemical Oxygen Demand (SM 5210B)	ND	Н	6.0	6.0	mg/L			10/03/24 13:15	•
						_			D11 F -
Analyte	Result	Qualifier	RL	KL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Buffalo

10/9/2024

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-INFLUENT Lab Sample ID: 480-223804-1

Date Collected: 09/27/24 12:05

Matrix: Water

Date Received: 09/28/24 16:46

General Chemistry (Continued) Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	8.3	HF	0.1	0.1	SU			09/29/24 14:20	1
Temperature (SM 4500 H+ B)	19.1	HF	0.001	0.001	Degrees C			09/29/24 14:20	1

4

5

6

10

40

13

15

16

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Client Sample ID: TRIP BLANK

Date Received: 09/28/24 16:46

Lab Sample ID: 480-223804-2 Date Collected: 09/27/24 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	MD		5.0	0.39	ug/L			09/30/24 15:09	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/30/24 15:09	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/30/24 15:09	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/30/24 15:09	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/30/24 15:09	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/30/24 15:09	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/30/24 15:09	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/30/24 15:09	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/30/24 15:09	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/30/24 15:09	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/30/24 15:09	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/30/24 15:09	1
Acrolein	ND		100	17	ug/L			09/30/24 15:09	1
Acrylonitrile	ND		100	1.9	ug/L			09/30/24 15:09	1
Benzene	ND		5.0	0.60	ug/L			09/30/24 15:09	1
Bromodichloromethane	ND		5.0	0.54	ug/L			09/30/24 15:09	1
Bromoform	ND		5.0	0.47	ug/L			09/30/24 15:09	1
Bromomethane	ND		5.0	1.2	ug/L			09/30/24 15:09	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/30/24 15:09	1
Chlorobenzene	0.81	J	5.0	0.48	ug/L			09/30/24 15:09	1
Chloroethane	ND		5.0	0.87	ug/L			09/30/24 15:09	1
Chloroform	ND		5.0	0.54	ug/L			09/30/24 15:09	1
Chloromethane	ND		5.0	0.64	ug/L			09/30/24 15:09	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/30/24 15:09	1
Dibromochloromethane	ND		5.0	0.41	ug/L			09/30/24 15:09	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/30/24 15:09	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/30/24 15:09	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/30/24 15:09	1
Toluene	ND		5.0	0.45	ug/L			09/30/24 15:09	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/30/24 15:09	1
Trichloroethene	ND		5.0	0.60	ug/L			09/30/24 15:09	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			09/30/24 15:09	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/30/24 15:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		68 - 130			-		09/30/24 15:09	1
4-Bromofluorobenzene (Surr)	99		76 - 123					09/30/24 15:09	1
Dibromofluoromethane (Surr)	95		75 - 123					09/30/24 15:09	1
Toluene-d8 (Surr)	99		77 - 120					09/30/24 15:09	1

Client: Ontario Specialty Contracting, Inc.
Project/Site: Quarterly BSA SUMP

ND

ND

ND

4.2 J

Client Sample ID: BCC BSA SUMP-EFFLUENT

Date Collected: 09/27/24 12:00 Date Received: 09/28/24 16:46

Bromomethane

Carbon tetrachloride

Chlorobenzene

Vinyl chloride

Lab Sample ID: 480-223804-3

Matrix: Water

Job ID: 480-223804-1

09/30/24 15:33

09/30/24 15:33

09/30/24 15:33

09/30/24 15:33

Method: EPA 624.1 - Volatil	le Organic Compounds (GC	C/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			09/30/24 15:33	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			09/30/24 15:33	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			09/30/24 15:33	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			09/30/24 15:33	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			09/30/24 15:33	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			09/30/24 15:33	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			09/30/24 15:33	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			09/30/24 15:33	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			09/30/24 15:33	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			09/30/24 15:33	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			09/30/24 15:33	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			09/30/24 15:33	1
Acrolein	ND	100	17	ug/L			09/30/24 15:33	1
Acrylonitrile	ND	50	1.9	ug/L			09/30/24 15:33	1
Benzene	ND	5.0	0.60	ug/L			09/30/24 15:33	1
Bromodichloromethane	ND	5.0	0.54	ug/L			09/30/24 15:33	1
Bromoform	ND	5.0	0.47	ug/L			09/30/24 15:33	1

5.0

5.0

5.0

1.2 ug/L

0.51 ug/L

0.48 ug/L

0.75 ug/L

Chloroethane	ND	5.0	0.87 ug/L	09/30/24 15:33
Chloroform	ND	5.0	0.54 ug/L	09/30/24 15:33
Chloromethane	ND	5.0	0.64 ug/L	09/30/24 15:33
cis-1,3-Dichloropropene	ND	5.0	0.33 ug/L	09/30/24 15:33
Dibromochloromethane	ND	5.0	0.41 ug/L	09/30/24 15:33
Ethylbenzene	ND	5.0	0.46 ug/L	09/30/24 15:33
Methylene Chloride	ND	5.0	0.81 ug/L	09/30/24 15:33
Tetrachloroethene	ND	5.0	0.34 ug/L	09/30/24 15:33
Toluene	ND	5.0	0.45 ug/L	09/30/24 15:33
trans-1,3-Dichloropropene	ND	5.0	0.44 ug/L	09/30/24 15:33
Trichloroethene	ND	5.0	0.60 ug/L	09/30/24 15:33
Trichlorofluoromethane	ND	5.0	0.45 ug/L	09/30/24 15:33

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		68 - 130		09/30/24 15:33	1
4-Bromofluorobenzene (Surr)	99		76 - 123		09/30/24 15:33	1
Dibromofluoromethane (Surr)	99		75 - 123		09/30/24 15:33	1
Toluene-d8 (Surr)	101		77 - 120		09/30/24 15:33	1

5.0

	idino organio componio	(, , , , , , , , , , , , , , , , , , ,						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND ND	40	0.82	ug/L		10/02/24 09:12	10/03/24 17:55	1
1,2-Dichlorobenzene	ND	40	1.0	ug/L		10/02/24 09:12	10/03/24 17:55	1
1,2-Diphenylhydrazine	ND	40	0.78	ug/L		10/02/24 09:12	10/03/24 17:55	1
1,3-Dichlorobenzene	ND	40	0.69	ug/L		10/02/24 09:12	10/03/24 17:55	1
1,4-Dichlorobenzene	ND	40	0.82	ug/L		10/02/24 09:12	10/03/24 17:55	1
2,2'-oxybis[1-chloropropane]	ND	20	0.84	ug/L		10/02/24 09:12	10/03/24 17:55	1
2,4,6-Trichlorophenol	ND	20	1.0	ug/L		10/02/24 09:12	10/03/24 17:55	1
2,4-Dichlorophenol	ND	20	0.77	ug/L		10/02/24 09:12	10/03/24 17:55	1

Eurofins Buffalo

Page 13 of 40

2

3

6

8

10

12

14

110

16

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-EFFLUENT Lab Sample ID: 480-223804-3 **Matrix: Water**

Date Collected: 09/27/24 12:00 Date Received: 09/28/24 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dimethylphenol	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 17:55	
2,4-Dinitrophenol	ND		40	5.0	ug/L		10/02/24 09:12	10/03/24 17:55	
2,4-Dinitrotoluene	ND		20	1.6	ug/L		10/02/24 09:12	10/03/24 17:55	•
2-Chloronaphthalene	ND		20	0.91	ug/L		10/02/24 09:12	10/03/24 17:55	
2-Chlorophenol	ND		20	0.66	ug/L		10/02/24 09:12	10/03/24 17:55	
2-Nitrophenol	ND		20	0.70	ug/L		10/02/24 09:12	10/03/24 17:55	
3,3'-Dichlorobenzidine	ND		20	1.6	ug/L		10/02/24 09:12	10/03/24 17:55	
4,6-Dinitro-2-methylphenol	ND		40	1.8	ug/L		10/02/24 09:12	10/03/24 17:55	
4-Bromophenyl phenyl ether	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 17:55	
4-Chloro-3-methylphenol	ND		20	1.1	ug/L		10/02/24 09:12	10/03/24 17:55	
4-Chlorophenyl phenyl ether	ND		20	1.3	ug/L		10/02/24 09:12	10/03/24 17:55	
4-Nitrophenol	ND		40		-		10/02/24 09:12	10/03/24 17:55	
Acenaphthene	ND		20	0.81	ug/L		10/02/24 09:12	10/03/24 17:55	
Acenaphthylene	ND		20	0.87	ug/L		10/02/24 09:12	10/03/24 17:55	
Aniline	ND		40		ug/L		10/02/24 09:12	10/03/24 17:55	
Anthracene	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 17:55	
Benzidine	ND		320		ug/L		10/02/24 09:12	10/03/24 17:55	,
Benzo[a]anthracene	ND		20		ug/L		10/02/24 09:12	10/03/24 17:55	
Benzo[a]pyrene	ND		20		ug/L		10/02/24 09:12	10/03/24 17:55	
Benzo[b]fluoranthene	ND		20		ug/L			10/03/24 17:55	
Benzo[g,h,i]perylene	ND		20		ug/L		10/02/24 09:12	10/03/24 17:55	
Benzo[k]fluoranthene	ND		20		ug/L			10/03/24 17:55	
Bis(2-chloroethoxy)methane	ND		20		ug/L			10/03/24 17:55	
Bis(2-chloroethyl)ether	ND		20		ug/L			10/03/24 17:55	
Bis(2-ethylhexyl) phthalate	ND		40		ug/L			10/03/24 17:55	
Butyl benzyl phthalate	ND		20		ug/L			10/03/24 17:55	
Chrysene	ND		20		ug/L			10/03/24 17:55	
Dibenz(a,h)anthracene	ND		20		ug/L			10/03/24 17:55	
Diethyl phthalate	ND		20		ug/L			10/03/24 17:55	
Dimethyl phthalate	ND		20		ug/L			10/03/24 17:55	
Di-n-butyl phthalate	ND		20		ug/L			10/03/24 17:55	
Di-n-octyl phthalate	ND		20		ug/L			10/03/24 17:55	
Fluoranthene	ND		20		ug/L			10/03/24 17:55	
Fluorene	ND		20		ug/L			10/03/24 17:55	
Hexachlorobenzene	ND		20		ug/L			10/03/24 17:55	
Hexachlorobutadiene	ND		20		ug/L			10/03/24 17:55	
Hexachlorocyclopentadiene	ND		20		ug/L			10/03/24 17:55	
Hexachloroethane	ND		20		ug/L			10/03/24 17:55	
Indeno[1,2,3-cd]pyrene	ND		20		ug/L			10/03/24 17:55	
Isophorone	ND		20		ug/L			10/03/24 17:55	
Naphthalene	ND		20		ug/L			10/03/24 17:55	
Decane	ND		40		ug/L			10/03/24 17:55	,
Nitrobenzene	ND		20		ug/L			10/03/24 17:55	,
N-Nitrosodimethylamine	ND		40		ug/L			10/03/24 17:55	,
N-Nitrosodi-n-propylamine	ND ND		20		ug/L			10/03/24 17:55	
N-Nitrosodi-n-propylamine	ND		20		ug/L			10/03/24 17:55	
n-Octadecane	ND		40		ug/L ug/L			10/03/24 17:55	· · · · · · .
	IND		40		-				
Pentachlorophenol	ND		40	2 7	ug/L		10/02/24 00:12	10/03/24 17:55	•

Eurofins Buffalo

Job ID: 480-223804-1

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-EFFLUENT Lab Sample ID: 480-223804-3

Date Collected: 09/27/24 12:00 **Matrix: Water** Date Received: 09/28/24 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		20	0.35	ug/L		10/02/24 09:12	10/03/24 17:55	1
Pyrene	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 17:55	1
2,6-Dinitrotoluene	ND		20	1.0	ug/L		10/02/24 09:12	10/03/24 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	52		52 - 151				10/02/24 09:12	10/03/24 17:55	
2-Fluorobiphenyl	66		44 - 120				10/02/24 09:12	10/03/24 17:55	1
2-Fluorophenol	47		17 - 120				10/02/24 09:12	10/03/24 17:55	1
Nitrobenzene-d5	59		15 - 314				10/02/24 09:12	10/03/24 17:55	
Phenol-d5	33		8 - 424				10/02/24 09:12	10/03/24 17:55	
p-Terphenyl-d14	59		22 - 125				10/02/24 09:12	10/03/24 17:55	
Method: EPA 608.3 - Polychlo	rinated Rink	nenvis (PC	Bs) (GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.058	0.037	ug/L		09/30/24 13:14	10/01/24 13:04	1
PCB-1221	ND		0.058	0.037	-		09/30/24 13:14	10/01/24 13:04	
PCB-1232	ND		0.058	0.037	J		09/30/24 13:14	10/01/24 13:04	
PCB-1242	ND		0.058	0.037	ug/L		09/30/24 13:14	10/01/24 13:04	
PCB-1248	ND		0.058	0.037	ug/L		09/30/24 13:14	10/01/24 13:04	
PCB-1254	ND		0.058	0.030	ug/L		09/30/24 13:14	10/01/24 13:04	
PCB-1260	ND		0.058	0.030			09/30/24 13:14	10/01/24 13:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenvl	36		10 - 120				09/30/24 13:14	10/01/24 13:04	
DCB Decachlorobiphenyl Tetrachloro-m-xylene	36 66		10 - 120 10 - 126					10/01/24 13:04	1 1
, ,	66 Metals (ICP)		10 - 126						1
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte	Metals (ICP) Result	Qualifier	10 - 126		Unit	_ <u>D</u>	09/30/24 13:14 Prepared	10/01/24 13:04 Analyzed	Dil Fac
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N	66 Metals (ICP)	Qualifier	10 - 126 RL 0.0040	0.0024	mg/L	_ <u>D</u>	09/30/24 13:14 Prepared 09/30/24 08:02	10/01/24 13:04 Analyzed 09/30/24 18:30	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte	Metals (ICP) Result ND 0.0046		10 - 126	0.0024 0.0045	mg/L mg/L	_ <u>D</u>	09/30/24 13:14 Prepared 09/30/24 08:02	10/01/24 13:04 Analyzed	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium	Metals (ICP) Result ND		10 - 126 RL 0.0040	0.0024	mg/L mg/L	_ <u>D</u>	09/30/24 13:14 Prepared 09/30/24 08:02 09/30/24 08:02	10/01/24 13:04 Analyzed 09/30/24 18:30	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium Copper	Metals (ICP) Result ND 0.0046	J	10 - 126 RL 0.0040 0.010	0.0024 0.0045	mg/L mg/L mg/L	<u>D</u>	09/30/24 13:14 Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium Copper Lead	Metals (ICP) Result ND 0.0046 ND	J	RL 0.0040 0.010 0.010	0.0024 0.0045 0.0039	mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fac
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium Copper Lead Nickel Zinc	Metals (ICP) Result ND 0.0046 ND 0.0041 ND	J	RL 0.0040 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034	mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium Copper Lead Nickel	Metals (ICP) Result ND 0.0046 ND 0.0041 ND	J	RL 0.0040 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068	mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fac
Method: EPA 200.7 Rev 4.4 - Method: EPA 200.7 Rev 4.4 - Method: EPA 200.7 Rev 4.4 - Method: EPA 245.1 - Mercury Analyte	Metals (ICP) Result ND 0.0046 ND 0.0041 ND	J	RL 0.0040 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068	mg/L mg/L mg/L mg/L mg/L		Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fa
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result	J	RL 0.0040 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068	mg/L mg/L mg/L mg/L mg/L		Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fa
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result	J J Qualifier	RL 0.00020 RL	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042	mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fac
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result	J J Qualifier	RL 0.0040 0.010 0.010 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59	Dil Fac
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result	J J Qualifier	RL 0.00020 RL	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042	mg/L mg/L mg/L mg/L mg/L Unit mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed O9/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed O9/30/24 13:59 Analyzed	Dil Fa
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND	J J Qualifier	RL 0.00020 RL 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042	mg/L mg/L mg/L mg/L mg/L Unit mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13	Dil Fac
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND 0.026	J Qualifier Qualifier *+ ^+ F1	RL 0.0040 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042 MDL 0.0035 0.0050	mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit mg/L mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13 10/04/24 17:03	Dil Fa
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 55210B)	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND 0.026 0.23 ND	J Qualifier Qualifier *+ ^+ F1	RL 0.00020 RL 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042 MDL 0.0035 0.0050 0.0050	mg/L mg/L mg/L mg/L Mg/L Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13 10/04/24 17:03	Dil Fa
Method: EPA 200.7 Rev 4.4 - Manalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G)	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND 0.026 0.23 ND	J Qualifier Qualifier *+ ^+ F1	RL 0.0010 RL 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042 MDL 0.0035 0.0050 0.0050 2.0 RL	mg/L mg/L mg/L mg/L Mg/L Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04 Prepared	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13 10/04/24 17:03 10/01/24 19:46 09/28/24 14:15	Dil Fac
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 5210B) Analyte	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND 0.026 0.23 ND Result Result	J Qualifier Qualifier + ^+ F1 *+ Qualifier	RL 0.00020 RL 0.00020 RL 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042 0.0035 0.0050 0.0050 2.0 RL 4.0	mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit mg/L Unit mg/L Unit Unit	_ <u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04 Prepared	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13 10/04/24 17:03 10/01/24 19:46 09/28/24 14:15 Analyzed	•

Eurofins Buffalo

Page 15 of 40

Job ID: 480-223804-1

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-223804-1	BCC BSA SUMP-INFLUENT	101	97	99	99
480-223804-2	TRIP BLANK	98	99	95	99
480-223804-3	BCC BSA SUMP-EFFLUENT	99	99	99	101
LCS 480-726617/6	Lab Control Sample	97	96	101	99
LCS 480-726771/6	Lab Control Sample	99	99	101	99
MB 480-726617/8	Method Blank	99	96	103	101
MB 480-726771/8	Method Blank	101	100	100	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Water**

_	Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	PHL	TPHd14	
Lab Sample ID	Client Sample ID	(52-151)	(44-120)	(17-120)	(15-314)	(8-424)	(22-125)	
480-223804-1	BCC BSA SUMP-INFLUENT	73	64	42	53	28	47	
480-223804-3	BCC BSA SUMP-EFFLUENT	52	66	47	59	33	59	
LCS 480-726825/2-A	Lab Control Sample	71	74	52	63	40	89	
LCSD 480-726825/3-A	Lab Control Sample Dup	71	75	55	64	43	82	
MB 480-726825/1-A	Method Blank	59	75	49	64	35	83	

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCBP1	TCX1					
Lab Sample ID	Client Sample ID	(10-120)	(10-126)					
480-223804-1	BCC BSA SUMP-INFLUENT	20	52					
480-223804-3	BCC BSA SUMP-EFFLUENT	36	66					
LCS 480-726627/2-A	Lab Control Sample	44	74					
LCSD 480-726627/3-A	Lab Control Sample Dup	42	73					
MB 480-726627/1-A	Method Blank	46	77					

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Eurofins Buffalo

Page 16 of 40

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-726617/8

Matrix: Water

Analysis Batch: 726617

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1,1,1-Trichloroethane ND 5.0 0.39 ug/L 09/30/24 13:55 1,1,2,2-Tetrachloroethane ND 5.0 0.26 ug/L 09/30/24 13:55 1,1,2-Trichloroethane ND 5.0 0.48 ug/L 09/30/24 13:55 1,1-Dichloroethane ND 5.0 0.59 ug/L 09/30/24 13:55 1,1-Dichloroethene ND 5.0 0.85 ug/L 09/30/24 13:55 ND 5.0 1,2-Dichlorobenzene 0.44 ug/L 09/30/24 13:55 ND 5.0 09/30/24 13:55 1.2-Dichloroethane 0.60 ug/L 1,2-Dichloroethene, Total ND 10 3.2 ug/L 09/30/24 13:55 1,2-Dichloropropane ND 5.0 0.61 ug/L 09/30/24 13:55 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 09/30/24 13:55 ND 1,4-Dichlorobenzene 5.0 0.51 ug/L 09/30/24 13:55 2-Chloroethyl vinyl ether ND 25 1.9 ug/L 09/30/24 13:55 ND 100 09/30/24 13:55 Acrolein 17 ug/L Acrylonitrile ND 100 1.9 ug/L 09/30/24 13:55 Benzene ND 5.0 0.60 ug/L 09/30/24 13:55 Bromodichloromethane ND 5.0 0.54 ug/L 09/30/24 13:55 **Bromoform** ND 5.0 0.47 ug/L 09/30/24 13:55 Bromomethane ND 09/30/24 13:55 5.0 1.2 ug/L Carbon tetrachloride ND 5.0 0.51 ug/L 09/30/24 13:55 Chlorobenzene ND 5.0 0.48 ug/L 09/30/24 13:55 Chloroethane 5.0 0.87 ug/L 09/30/24 13:55 ND Chloroform 5.0 ND 0.54 ug/L 09/30/24 13:55 Chloromethane ND 5.0 0.64 ug/L 09/30/24 13:55 cis-1,3-Dichloropropene ND 5.0 09/30/24 13:55 0.33 ug/L Dibromochloromethane ND 5.0 0.41 ug/L 09/30/24 13:55 Ethylbenzene ND 5.0 0.46 ug/L 09/30/24 13:55 Methylene Chloride ND 5.0 0.81 ug/L 09/30/24 13:55 Tetrachloroethene ND 5.0 0.34 ug/L 09/30/24 13:55 Toluene ND 5.0 0.45 ug/L 09/30/24 13:55 trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 09/30/24 13:55 ND 5.0 Trichloroethene 0.60 ug/L 09/30/24 13:55 Trichlorofluoromethane ND 5.0 0.45 ug/L 09/30/24 13:55

MB MB

ND

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	68 - 130		09/30/24 13:55	1
4-Bromofluorobenzene (Surr)	96	76 - 123	1	09/30/24 13:55	1
Dibromofluoromethane (Surr)	103	75 - 123	1	09/30/24 13:55	1
Toluene-d8 (Surr)	101	77 - 120		09/30/24 13:55	1

5.0

0.75 ug/L

Lab Sample ID: LCS 480-726617/6

Matrix: Water

Vinyl chloride

Analysis Batch: 726617

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	21.0		ug/L		105	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.5		ug/L		103	46 - 157	
1,1,2-Trichloroethane	20.0	19.9		ug/L		99	52 - 150	

Eurofins Buffalo

Prep Type: Total/NA

09/30/24 13:55

Client Sample ID: Lab Control Sample

Page 17 of 40

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-726617/6

Matrix: Water

Analysis Batch: 726617

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	20.7		ug/L		103	59 - 155	
1,1-Dichloroethene	20.0	21.3		ug/L		107	1 - 234	
1,2-Dichlorobenzene	20.0	20.1		ug/L		100	18 - 190	
1,2-Dichloroethane	20.0	19.6		ug/L		98	49 - 155	
1,2-Dichloropropane	20.0	19.8		ug/L		99	1 - 210	
1,3-Dichlorobenzene	20.0	20.2		ug/L		101	59 - 156	
1,4-Dichlorobenzene	20.0	20.3		ug/L		102	18 - 190	
2-Chloroethyl vinyl ether	20.0	18.9	J	ug/L		95	1 - 305	
Acrolein	100	96.6	J	ug/L		97	10 - 176	
Acrylonitrile	200	184		ug/L		92	54 - 147	
Benzene	20.0	20.2		ug/L		101	37 - 151	
Bromodichloromethane	20.0	20.0		ug/L		100	35 - 155	
Bromoform	20.0	20.8		ug/L		104	45 - 169	
Bromomethane	20.0	22.4		ug/L		112	1 - 242	
Carbon tetrachloride	20.0	19.5		ug/L		97	70 - 140	
Chlorobenzene	20.0	19.9		ug/L		100	37 - 160	
Chloroethane	20.0	22.1		ug/L		110	14 - 230	
Chloroform	20.0	19.9		ug/L		100	51 - 138	
Chloromethane	20.0	19.0		ug/L		95	1 - 273	
cis-1,3-Dichloropropene	20.0	19.9		ug/L		100	1 - 227	
Dibromochloromethane	20.0	20.2		ug/L		101	53 - 149	
Ethylbenzene	20.0	20.0		ug/L		100	37 - 162	
Methylene Chloride	20.0	20.8		ug/L		104	1 - 221	
Tetrachloroethene	20.0	20.4		ug/L		102	64 - 148	
Toluene	20.0	20.3		ug/L		101	47 - 150	
trans-1,3-Dichloropropene	20.0	20.2		ug/L		101	17 - 183	
Trichloroethene	20.0	20.1		ug/L		100	71 - 157	
Trichlorofluoromethane	20.0	23.5		ug/L		118	17 - 181	
Vinyl chloride	20.0	22.7		ug/L		113	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		68 - 130
4-Bromofluorobenzene (Surr)	96		76 - 123
Dibromofluoromethane (Surr)	101		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Lab Sample ID: MB 480-726771/8

Matrix: Water

Analysis Batch: 726771

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/01/24 19:50	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/01/24 19:50	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/01/24 19:50	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/01/24 19:50	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/01/24 19:50	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/01/24 19:50	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/01/24 19:50	1

Eurofins Buffalo

Page 18 of 40

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726771/8 **Matrix: Water**

Analysis Batch: 726771

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/01/24 19:50	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/01/24 19:50	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/01/24 19:50	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/01/24 19:50	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/01/24 19:50	1
Acrolein	ND		100	17	ug/L			10/01/24 19:50	1
Acrylonitrile	ND		50	1.9	ug/L			10/01/24 19:50	1
Benzene	ND		5.0	0.60	ug/L			10/01/24 19:50	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/01/24 19:50	1
Bromoform	ND		5.0	0.47	ug/L			10/01/24 19:50	1
Bromomethane	ND		5.0	1.2	ug/L			10/01/24 19:50	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/01/24 19:50	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/01/24 19:50	1
Chloroethane	ND		5.0	0.87	ug/L			10/01/24 19:50	1
Chloroform	ND		5.0	0.54	ug/L			10/01/24 19:50	1
Chloromethane	ND		5.0	0.64	ug/L			10/01/24 19:50	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/01/24 19:50	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/01/24 19:50	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/01/24 19:50	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/01/24 19:50	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/01/24 19:50	1
Toluene	ND		5.0	0.45	ug/L			10/01/24 19:50	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/01/24 19:50	1
Trichloroethene	ND		5.0	0.60	ug/L			10/01/24 19:50	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			10/01/24 19:50	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/01/24 19:50	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	68 - 130		10/01/24 19:50	1
4-Bromofluorobenzene (Surr)	100	76 - 123		10/01/24 19:50	1
Dibromofluoromethane (Surr)	100	75 - 123		10/01/24 19:50	1
Toluene-d8 (Surr)	100	77 - 120		10/01/24 19:50	1

Lab Sample ID: LCS 480-726771/6

Matrix: Water

Analysis Batch: 726771

Client Sample	ID: Lab	Contro	Sample
	Dron	Type	Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.8		ug/L		104	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.3		ug/L		101	46 - 157	
1,1,2-Trichloroethane	20.0	19.6		ug/L		98	52 - 150	
1,1-Dichloroethane	20.0	20.2		ug/L		101	59 - 155	
1,1-Dichloroethene	20.0	20.2		ug/L		101	1 - 234	
1,2-Dichlorobenzene	20.0	20.3		ug/L		102	18 - 190	
1,2-Dichloroethane	20.0	19.6		ug/L		98	49 - 155	
1,2-Dichloropropane	20.0	20.0		ug/L		100	1 - 210	
1,3-Dichlorobenzene	20.0	20.0		ug/L		100	59 - 156	
1,4-Dichlorobenzene	20.0	20.0		ug/L		100	18 - 190	

Page 19 of 40

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-726771/6

Matrix: Water

Analysis Batch: 726771

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Baton: 720771	Spike	LCS	LCS				%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
2-Chloroethyl vinyl ether	20.0	20.3	J	ug/L		102	1 - 305
Acrolein	100	112		ug/L		112	10 - 176
Acrylonitrile	200	199		ug/L		100	54 - 147
Benzene	20.0	20.1		ug/L		101	37 - 151
Bromodichloromethane	20.0	20.9		ug/L		104	35 - 155
Bromoform	20.0	23.5		ug/L		118	45 - 169
Bromomethane	20.0	20.5		ug/L		103	1 - 242
Carbon tetrachloride	20.0	21.3		ug/L		107	70 - 140
Chlorobenzene	20.0	20.0		ug/L		100	37 - 160
Chloroethane	20.0	21.0		ug/L		105	14 - 230
Chloroform	20.0	20.1		ug/L		100	51 - 138
Chloromethane	20.0	21.7		ug/L		108	1 - 273
cis-1,3-Dichloropropene	20.0	21.0		ug/L		105	1 - 227
Dibromochloromethane	20.0	21.9		ug/L		110	53 - 149
Ethylbenzene	20.0	20.1		ug/L		100	37 - 162
Methylene Chloride	20.0	20.1		ug/L		100	1 - 221
Tetrachloroethene	20.0	20.3		ug/L		102	64 - 148
Toluene	20.0	19.9		ug/L		100	47 - 150
trans-1,3-Dichloropropene	20.0	21.1		ug/L		106	17 - 183
Trichloroethene	20.0	20.1		ug/L		101	71 - 157
Trichlorofluoromethane	20.0	23.6		ug/L		118	17 - 181
Vinyl chloride	20.0	22.8		ug/L		114	1 - 251

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99	-	68 - 130
4-Bromofluorobenzene (Surr)	99		76 - 123
Dibromofluoromethane (Surr)	101		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-726825/1-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 726825

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		40	0.82	ug/L		10/02/24 09:12	10/03/24 16:05	1
1,2-Dichlorobenzene	ND		40	1.0	ug/L		10/02/24 09:12	10/03/24 16:05	1
1,2-Diphenylhydrazine	ND		40	0.78	ug/L		10/02/24 09:12	10/03/24 16:05	1
1,3-Dichlorobenzene	ND		40	0.69	ug/L		10/02/24 09:12	10/03/24 16:05	1
1,4-Dichlorobenzene	ND		40	0.82	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,2'-oxybis[1-chloropropane]	ND		20	0.84	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4,6-Trichlorophenol	ND		20	1.0	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4-Dichlorophenol	ND		20	0.77	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4-Dimethylphenol	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4-Dinitrophenol	ND		40	5.0	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4-Dinitrotoluene	ND		20	1.6	ug/L		10/02/24 09:12	10/03/24 16:05	1
2-Chloronaphthalene	ND		20	0.91	ug/L		10/02/24 09:12	10/03/24 16:05	1
2-Chlorophenol	ND		20	0.66	ug/L		10/02/24 09:12	10/03/24 16:05	1

Eurofins Buffalo

Page 20 of 40

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726825/1-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Method Blank

	Prep Type: Total/NA
	Prep Batch: 726825
!	

Analysis Batch: 726979	MD	МВ						Prep Batch: 7268		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
2-Nitrophenol	ND		20	0.70	ug/L		10/02/24 09:12	10/03/24 16:05	1	
3,3'-Dichlorobenzidine	ND		20	1.6	ug/L		10/02/24 09:12	10/03/24 16:05	1	
4,6-Dinitro-2-methylphenol	ND		40	1.8	ug/L		10/02/24 09:12	10/03/24 16:05	1	
4-Bromophenyl phenyl ether	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 16:05	1	
4-Chloro-3-methylphenol	ND		20	1.1	ug/L		10/02/24 09:12	10/03/24 16:05	1	
4-Chlorophenyl phenyl ether	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
4-Nitrophenol	ND		40		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Acenaphthene	ND		20	0.81	ug/L		10/02/24 09:12	10/03/24 16:05	1	
Acenaphthylene	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Aniline	ND		40		ug/L			10/03/24 16:05	1	
Anthracene	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Benzidine	ND		320		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Benzo[a]anthracene	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Benzo[a]pyrene	ND		20		ug/L			10/03/24 16:05	1	
Benzo[b]fluoranthene	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Benzo[g,h,i]perylene	ND		20		ug/L			10/03/24 16:05	1	
Benzo[k]fluoranthene	ND		20		ug/L			10/03/24 16:05	1	
Bis(2-chloroethoxy)methane	ND		20		ug/L			10/03/24 16:05	1	
Bis(2-chloroethyl)ether	ND		20		ug/L			10/03/24 16:05	1	
Bis(2-ethylhexyl) phthalate	ND		40		ug/L			10/03/24 16:05	1	
Butyl benzyl phthalate	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Chrysene	ND		20		ug/L			10/03/24 16:05	1	
Dibenz(a,h)anthracene	ND		20		ug/L			10/03/24 16:05		
Diethyl phthalate	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Dimethyl phthalate	ND		20		ug/L			10/03/24 16:05	1	
Di-n-butyl phthalate	ND		20		ug/L			10/03/24 16:05		
Di-n-octyl phthalate	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Fluoranthene	ND		20		ug/L			10/03/24 16:05	. 1	
Fluorene	ND		20		ug/L			10/03/24 16:05		
Hexachlorobenzene	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Hexachlorobutadiene	ND		20		ug/L			10/03/24 16:05	1	
Hexachlorocyclopentadiene	ND		20		ug/L			10/03/24 16:05	1	
Hexachloroethane	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Indeno[1,2,3-cd]pyrene	ND		20		ug/L			10/03/24 16:05	. 1	
Isophorone	ND		20	0.74	-			10/03/24 16:05	1	
Naphthalene	ND		20	0.86				10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Decane	ND		40		ug/L			10/03/24 16:05	1	
Nitrobenzene	ND		20		ug/L			10/03/24 16:05	1	
N-Nitrosodimethylamine	ND		40		ug/L			10/03/24 16:05		
N-Nitrosodi-n-propylamine	ND		20		ug/L			10/03/24 16:05	1	
N-Nitrosodi-n-propylamine	ND		20		ug/L			10/03/24 16:05	1	
n-Octadecane	ND		40					10/03/24 16:05		
Pentachlorophenol	ND ND		40		ug/L ug/L			10/03/24 16:05	1	
Phenanthrene	ND ND		20		-			10/03/24 16:05	1	
Phenol	ND				ug/L			10/03/24 16:05		
	ND ND		20 20		ug/L			10/03/24 16:05	1	
Pyrene	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 10:05	1	

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726825/1-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 726825

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
2,4,6-Tribromophenol	59		52 - 151	10/02/24 09:12 10/03/24 16:0	5 1
2-Fluorobiphenyl	75		44 - 120	10/02/24 09:12 10/03/24 16:0	5 1
2-Fluorophenol	49		17 - 120	10/02/24 09:12 10/03/24 16:0	5 1
Nitrobenzene-d5	64		15 - 314	10/02/24 09:12 10/03/24 16:0	5 1
Phenol-d5	35		8 - 424	10/02/24 09:12 10/03/24 16:0	5 1
p-Terphenyl-d14	83		22 - 125	10/02/24 09:12 10/03/24 16:0	5 1

Lab Sample ID: LCS 480-726825/2-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 726825

Spike	LCS I	LCS				%Rec
•			Unit	D	%Rec	Limits
					78	44 - 142
			-		70	32 - 129
32.0			ug/L		69	1 - 172
32.0	22.2	j	ug/L		69	20 - 124
32.0	18.1	J			56	36 - 166
32.0	25.2		ug/L		79	37 - 144
32.0	24.9		ug/L		78	39 - 135
32.0	23.5		ug/L		73	32 - 120
64.0	50.4		ug/L		79	1 - 191
32.0	29.8		ug/L		93	39 - 139
32.0	23.4		ug/L		73	60 - 120
32.0	21.1		ug/L		66	23 - 134
32.0	25.4		ug/L		79	29 - 182
32.0	28.8		ug/L		90	1 - 262
64.0	51.8		ug/L		81	1 - 181
32.0	27.5		ug/L		86	53 - 127
32.0	25.9		ug/L		81	22 - 147
32.0	27.2		ug/L		85	25 - 158
64.0	41.0		ug/L		64	1 - 132
32.0	23.9		ug/L		75	47 - 145
32.0	26.0		ug/L		81	33 - 145
32.0	15.7	J	ug/L		49	40 - 120
32.0	28.2		ug/L		88	27 - 133
32.0	32.2		ug/L		100	33 - 143
32.0	31.8		ug/L		99	17 - 163
32.0	31.6		ug/L		99	24 - 159
32.0	31.4		ug/L		98	1 - 219
32.0	34.2		ug/L		107	11 - 162
32.0	23.9		ug/L		75	33 - 184
32.0	23.4		ug/L		73	12 - 158
32.0	29.0	J	ug/L		91	8 - 158
32.0	29.8		ug/L		93	1 - 152
32.0	32.4		ug/L		101	17 - 168
32.0	32.1		ug/L		100	1 - 227
32.0	26.8		ug/L		84	1 - 120
32.0	27.8		ug/L		87	1 - 120
	32.0 32.0 32.0 32.0 32.0 64.0 32.0 32.0 32.0 32.0 32.0 32.0 64.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32	Added Result 32.0 25.0 32.0 22.3 32.0 22.1 32.0 22.2 32.0 24.9 32.0 24.9 32.0 23.5 64.0 50.4 32.0 29.8 32.0 23.4 32.0 25.4 32.0 25.4 32.0 25.9 32.0 27.5 32.0 27.2 64.0 41.0 32.0 23.9 32.0 26.0 32.0 28.2 32.0 32.2 32.0 31.8 32.0 31.8 32.0 31.4 32.0 34.2 32.0 23.9 32.0 23.9 32.0 23.9 32.0 34.2 32.0 32.4 32.0 29.8 32.0 32.4 32.0	Added Result Qualifier 32.0 25.0 J 32.0 22.3 J 32.0 22.1 J 32.0 22.2 J 32.0 24.9 J 32.0 24.9 J 32.0 23.5 J 64.0 50.4 J 32.0 23.4 J 32.0 23.4 J 32.0 25.4 J 32.0 25.4 J 32.0 25.9 J 32.0 27.5 J 32.0 27.5 J 32.0 25.9 J 32.0 27.2 J 64.0 41.0 J 32.0 28.2 J 32.0 32.9 J 32.0 32.2 J 32.0 31.6 J 32.0 31.4 J 32.0 34.2	Added Result Qualifier Unit 32.0 25.0 J ug/L 32.0 22.3 J ug/L 32.0 22.1 J ug/L 32.0 22.2 J ug/L 32.0 24.9 ug/L 32.0 24.9 ug/L 32.0 24.9 ug/L 32.0 23.5 ug/L 32.0 23.5 ug/L 32.0 23.4 ug/L 32.0 23.4 ug/L 32.0 25.4 ug/L 32.0 25.4 ug/L 32.0 25.4 ug/L 32.0 27.5 ug/L 32.0 27.5 ug/L 32.0 27.5 ug/L 32.0 27.2 ug/L 32.0 23.9 ug/L 32.0 32.0 ug/L 32.0 32.2 ug/L 32.0 31.8 ug/	Added Result Qualifier Unit D 32.0 25.0 J ug/L 32.0 22.1 J ug/L 32.0 22.2 J ug/L 32.0 25.2 ug/L 32.0 25.2 ug/L 32.0 24.9 ug/L 32.0 23.5 ug/L 32.0 29.8 ug/L 32.0 23.4 ug/L 32.0 23.4 ug/L 32.0 25.4 ug/L 32.0 25.4 ug/L 32.0 25.9 ug/L 32.0 27.5 ug/L 32.0 27.5 ug/L 32.0 27.2 ug/L 32.0 27.2 ug/L 32.0 23.9 ug/L 32.0 26.0 ug/L 32.0 32.2 ug/L 32.0 32.2 ug/L 32.0 31.8 ug/	Added Result Qualifier Unit D %Rec 32.0 25.0 J ug/L 78 32.0 22.3 J ug/L 69 32.0 22.1 J ug/L 69 32.0 22.2 J ug/L 69 32.0 22.2 J ug/L 56 32.0 25.2 ug/L 79 32.0 24.9 ug/L 78 32.0 24.9 ug/L 79 32.0 23.5 ug/L 79 32.0 23.4 ug/L 93 32.0 29.8 ug/L 93 32.0 25.4 ug/L 79 32.0 25.4 ug/L 90 64.0 51.8 ug/L 81 32.0 27.5 ug/L 86 32.0 27.2 ug/L 85 64.0 41.0 ug/L 65

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-726825/2-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 726825

7 many one Date m 1 Dec 1 C					op Datom . Zoo.		
	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Di-n-butyl phthalate	32.0	27.1		ug/L	85	1 - 120	
Di-n-octyl phthalate	32.0	29.1		ug/L	91	4 - 146	
Fluoranthene	32.0	31.4		ug/L	98	26 - 137	
Fluorene	32.0	26.0		ug/L	81	59 - 121	
Hexachlorobenzene	32.0	25.1		ug/L	79	1 - 152	
Hexachlorocyclopentadiene	32.0	14.3	J	ug/L	45	5 - 120	
Hexachloroethane	32.0	20.9		ug/L	65	40 - 120	
Indeno[1,2,3-cd]pyrene	32.0	31.6		ug/L	99	1 - 171	
Isophorone	32.0	24.2		ug/L	76	21 - 196	
Naphthalene	32.0	24.1		ug/L	75	21 - 133	
Nitrobenzene	32.0	23.2		ug/L	73	35 - 180	
N-Nitrosodi-n-propylamine	32.0	22.2		ug/L	69	1 - 230	
N-Nitrosodiphenylamine	32.0	26.1		ug/L	81	54 - 125	
Pentachlorophenol	64.0	45.8		ug/L	72	14 - 176	
Phenanthrene	32.0	28.1		ug/L	88	54 - 120	
Phenol	32.0	13.4	J	ug/L	42	5 - 120	
Pyrene	32.0	33.6		ug/L	105	52 - 120	
2,6-Dinitrotoluene	32.0	28.0		ug/L	88	50 - 158	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	71		52 - 151
2-Fluorobiphenyl	74		44 - 120
2-Fluorophenol	52		17 - 120
Nitrobenzene-d5	63		15 - 314
Phenol-d5	40		8 - 424
p-Terphenyl-d14	89		22 - 125

Lab Sample ID: LCSD 480-726825/3-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA
	Data Datala 700005

Prep Batch: 726825

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	32.0	25.6	J	ug/L		80	44 - 142	2	34
1,2-Dichlorobenzene	32.0	24.5	J	ug/L		76	32 - 129	9	38
1,3-Dichlorobenzene	32.0	24.3	J	ug/L		76	1 - 172	9	37
1,4-Dichlorobenzene	32.0	24.0	J	ug/L		75	20 - 124	8	40
2,2'-oxybis[1-chloropropane]	32.0	20.4		ug/L		64	36 - 166	12	36
2,4,6-Trichlorophenol	32.0	25.0		ug/L		78	37 - 144	1	20
2,4-Dichlorophenol	32.0	24.6		ug/L		77	39 - 135	1	23
2,4-Dimethylphenol	32.0	23.5		ug/L		73	32 - 120	0	18
2,4-Dinitrophenol	64.0	45.5		ug/L		71	1 - 191	10	29
2,4-Dinitrotoluene	32.0	28.0		ug/L		87	39 - 139	6	20
2-Chloronaphthalene	32.0	23.9		ug/L		75	60 - 120	2	30
2-Chlorophenol	32.0	23.1		ug/L		72	23 - 134	9	26
2-Nitrophenol	32.0	26.6		ug/L		83	29 - 182	5	28
3,3'-Dichlorobenzidine	32.0	26.6		ug/L		83	1 - 262	8	31
4,6-Dinitro-2-methylphenol	64.0	47.2		ug/L		74	1 - 181	9	30
4-Bromophenyl phenyl ether	32.0	28.2		ug/L		88	53 - 127	2	16

Eurofins Buffalo

Page 23 of 40

Client: Ontario Specialty Contracting, Inc.

Lab Sample ID: LCSD 480-726825/3-A

Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 726825

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Chloro-3-methylphenol	32.0	25.6		ug/L		80	22 - 147	1	16
4-Chlorophenyl phenyl ether	32.0	25.7		ug/L		80	25 - 158	6	15
4-Nitrophenol	64.0	36.9	J	ug/L		58	1 - 132	11	24
Acenaphthene	32.0	22.8		ug/L		71	47 - 145	4	25
Acenaphthylene	32.0	25.8		ug/L		81	33 - 145	1	22
Aniline	32.0	16.8	J	ug/L		52	40 - 120	7	30
Anthracene	32.0	28.3		ug/L		89	27 - 133	0	15
Benzo[a]anthracene	32.0	29.8		ug/L		93	33 - 143	7	15
Benzo[a]pyrene	32.0	28.3		ug/L		88	17 - 163	12	15
Benzo[b]fluoranthene	32.0	27.8		ug/L		87	24 - 159	13	17
Benzo[g,h,i]perylene	32.0	28.3		ug/L		88	1 - 219	10	19
Benzo[k]fluoranthene	32.0	30.0		ug/L		94	11 - 162	13	19
Bis(2-chloroethoxy)methane	32.0	24.5		ug/L		77	33 - 184	3	23
Bis(2-chloroethyl)ether	32.0	23.8		ug/L		74	12 - 158	2	33
Bis(2-ethylhexyl) phthalate	32.0	26.6	J	ug/L		83	8 - 158	9	15
Butyl benzyl phthalate	32.0	27.8		ug/L		87	1 - 152	7	15
Chrysene	32.0	29.5		ug/L		92	17 - 168	9	15
Dibenz(a,h)anthracene	32.0	27.7		ug/L		87	1 - 227	15	18
Diethyl phthalate	32.0	23.2		ug/L		72	1 - 120	14	15
Dimethyl phthalate	32.0	26.8		ug/L		84	1 - 120	4	15
Di-n-butyl phthalate	32.0	24.8		ug/L		77	1 - 120	9	15
Di-n-octyl phthalate	32.0	26.7		ug/L		83	4 - 146	8	15
Fluoranthene	32.0	29.7		ug/L		93	26 - 137	5	15
Fluorene	32.0	24.9		ug/L		78	59 - 121	5	18
Hexachlorobenzene	32.0	26.0		ug/L		81	1 - 152	3	15
Hexachlorocyclopentadiene	32.0	15.6	J	ug/L		49	5 - 120	9	50
Hexachloroethane	32.0	22.7		ug/L		71	40 - 120	9	43
Indeno[1,2,3-cd]pyrene	32.0	28.0		ug/L		88	1 - 171	12	17
Isophorone	32.0	24.5		ug/L		77	21 - 196	1	21
Naphthalene	32.0	25.3		ug/L		79	21 - 133	5	31
Nitrobenzene	32.0	23.0		ug/L		72	35 - 180	1	27
N-Nitrosodi-n-propylamine	32.0	22.9		ug/L		72	1 - 230	3	23
N-Nitrosodiphenylamine	32.0	26.9		ug/L		84	54 - 125	3	15
Pentachlorophenol	64.0	43.3		ug/L		68	14 - 176	6	21
Phenanthrene	32.0	27.4		ug/L		86	54 - 120	2	16
Phenol	32.0	14.3	J	ug/L		45	5 - 120	6	36
Pyrene	32.0	30.2		ug/L		94	52 - 120	11	15
2,6-Dinitrotoluene	32.0	27.9		ug/L		87	50 - 158	0	17

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	71		52 - 151
2-Fluorobiphenyl	75		44 - 120
2-Fluorophenol	55		17 - 120
Nitrobenzene-d5	64		15-314
Phenol-d5	43		8 - 424
p-Terphenyl-d14	82		22 - 125

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-726627/1-A

Matrix: Water

Analysis Batch: 726696

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 726627

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1221	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1232	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1242	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1248	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1254	ND		0.060	0.031	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1260	ND		0.060	0.031	ug/L		09/30/24 13:14	10/01/24 11:33	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier Li	imits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	46		0 - 120	09/30/24 13:14	10/01/24 11:33	1
Tetrachloro-m-xylene	77	10	0 - 126	09/30/24 13:14	10/01/24 11:33	1

Lab Sample ID: LCS 480-726627/2-A

Matrix: Water

Analysis Batch: 726696

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 726627

	Spike	LC2	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	1.00	0.944		ug/L		94	69 - 123	
PCB-1260	1.00	0.899		ug/L		90	69 - 120	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	44	10 - 120
Tetrachloro-m-xylene	74	10 - 126

Lab Sample ID: LCSD 480-726627/3-A

Matrix: Water

Analysis Batch: 726696

_	_				
Cliant	Sample	ID: I ah	Control	Sample Du	n
	Jailible	ID. Lan		Callible Du	

Prep Type: Total/NA

Prep Batch: 726627

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	1.00	0.953		ug/L		95	69 - 123	1	30
PCB-1260	1.00	0.871		ug/L		87	69 - 120	3	30
				3. –		•		_	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	42		10 - 120
Tetrachloro-m-xylene	73		10 - 126

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-726527/1-A

Matrix: Water

Analysis Batch: 726688

Prep Type: Total/NA

Prep Batch: 726527

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	ND		0.0040	0.0024	mg/L		09/30/24 08:02	09/30/24 18:25	1
Copper	ND		0.010	0.0045	mg/L		09/30/24 08:02	09/30/24 18:25	1
Lead	ND		0.010	0.0039	mg/L		09/30/24 08:02	09/30/24 18:25	1
Nickel	ND		0.010	0.0034	mg/L		09/30/24 08:02	09/30/24 18:25	1
Zinc	0.0151		0.010	0.0068	mg/L		09/30/24 08:02	09/30/24 18:25	1

Eurofins Buffalo

10/9/2024

Page 25 of 40

Project/Site: Quarterly BSA SUMP

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: LCS 480-726527/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 726688 Prep Batch: 726527**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	0.500	0.512		mg/L		102	85 - 115	
Copper	0.500	0.502		mg/L		100	85 - 115	
Lead	0.500	0.491		mg/L		98	85 - 115	
Nickel	0.500	0.521		mg/L		104	85 - 115	
Zinc	0.500	0.553		mg/L		111	85 - 115	

Lab Sample ID: 480-223804-3 MS Client Sample ID: BCC BSA SUMP-EFFLUENT

Matrix: Water

Analysis Batch: 726688

Prep Type: Total/NA **Prep Batch: 726527**

	Sample S	Sample	Spike	MS	MS				%Rec	
Analyte	Result C	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	ND		0.500	0.504		mg/L		101	70 - 130	
Copper	0.0046 J	J	0.500	0.535		mg/L		106	70 - 130	
Lead	ND		0.500	0.503		mg/L		101	70 - 130	
Nickel	0.0041 J	J	0.500	0.520		mg/L		103	70 - 130	
Zinc	ND		0.500	0.537		mg/L		107	70 - 130	

Lab Sample ID: 480-223804-3 MSD Client Sample ID: BCC BSA SUMP-EFFLUENT

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 726688 Prep Batch: 726527** Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit Limits RPD Limit D %Rec Chromium ND 0.500 0.507 mg/L 101 70 - 130 0 20 0.0046 J 0.538 Copper 0.500 mg/L 107 70 - 130 20 Lead ND 0.500 0.502 mg/L 100 70 - 130 0 20 Nickel 0.0041 J 0.500 0.532 mg/L 106 70 - 130 2 20

0.538

0.500

Method: 245.1 - Mercury (CVAA)

ND

Lab Sample ID: MB 480-726564/1-A

Matrix: Water

Zinc

Analysis Batch: 726644

Prep Type: Total/NA Prep Batch: 726564 MB MB

mg/L

108

70 - 130

Client Sample ID: Method Blank

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000042	mg/L			09/30/24 10:04	09/30/24 13:26	1

Lab Sample ID: LCS 480-726564/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 726644 Prep Batch: 726564

Alialysis Dalcii. 120044							Lieb D	atcii. 120304
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00669	0.00690		mg/L		103	85 - 115	

Lab Sample ID: LCSD 480-726564/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 726644 Prep Batch: 726564 Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit Limits RPD Limit **Analyte** %Rec Mercury 0.00669 0.00618 mg/L 92 85 - 115

Eurofins Buffalo

10/9/2024

Page 26 of 40

20

Project/Site: Quarterly BSA SUMP

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-727121/46

Matrix: Water

Analysis Batch: 727121

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared ND ^+ 0.010 10/04/24 10:12 Phenolics, Total Recoverable 0.0035 mg/L

Lab Sample ID: LCS 480-727121/47

Matrix: Water

Analysis Batch: 727121

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 0.100 0.113 *+ ^+ 90 - 110 Phenolics, Total Recoverable mg/L 113

Lab Sample ID: 480-223804-3 MS

Matrix: Water

Analysis Batch: 727121

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Phenolics, Total Recoverable ND *+ ^+ F1 0.100 0.138 F1 ^+ 138 90 - 110 mg/L

Lab Sample ID: MB 480-727147/8

Matrix: Water

Analysis Batch: 727147

MB MB

Analyte Result Qualifier

RL MDL Unit Prepared Analyzed Dil Fac Phenolics. Total Recoverable 0.010 0.0035 mg/L 10/04/24 13:35 ND

Lab Sample ID: LCS 480-727147/9

Matrix: Water

Analysis Batch: 727147

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Phenolics, Total Recoverable 0.100 0.0977 98 mg/L 90 - 110

Lab Sample ID: 480-223804-1 DU

Matrix: Water

Analysis Batch: 727147

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier **RPD** Limit Analyte Unit D 0.021 0.0205 Phenolics, Total Recoverable mg/L 20

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-726588/1

Matrix: Water

Analysis Batch: 726588

MR MR

Result Qualifier RL **RL** Unit Prepared Analyzed Dil Fac Total Suspended Solids 1.0 1.0 mg/L 09/30/24 09:43 ND

Eurofins Buffalo

10/9/2024

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: BCC BSA SUMP-EFFLUENT

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: BCC BSA SUMP-INFLUENT

Client Sample ID: Method Blank

Project/Site: Quarterly BSA SUMP

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCS 480-726588/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Total Suspended Solids

Analysis Batch: 726588 Spike LCS LCS %Rec Result Qualifier Added Limits Analyte Unit %Rec

252

Client Sample ID: BCC BSA SUMP-EFFLUENT Lab Sample ID: 480-223804-3 DU Prep Type: Total/NA

246.8

mg/L

98

88 - 110

Matrix: Water

Analysis Batch: 726588

RPD Sample Sample DU DU Result Qualifier Limit Result Qualifier Unit D RPD Analyte ND **Total Suspended Solids** ND mg/L NC 10

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 480-726543/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 726543

LCS LCS %Rec Spike Added Result Qualifier Limits **Analyte** Unit D %Rec рН 7.00 7.0 SU 100 99 - 101

Method: SM 4500 P E - Phosphorus

Lab Sample ID: MB 480-726788/3 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 726788

MB MB Analyte Result Qualifier RI **MDL** Unit Dil Fac Prepared Analyzed 0.010 10/01/24 19:46 Phosphorus ND 0.0050 mg/L as P

Lab Sample ID: LCS 480-726788/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 726788

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Phosphorus 0.200 0.182 mg/L as P 91 90 - 110

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-726525/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 726525

USB USB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Biochemical Oxygen Demand $\overline{\mathsf{ND}}$ 2.0 2.0 mg/L 09/28/24 14:15

Lab Sample ID: LCS 480-726525/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 726525

%Rec LCS LCS Spike Added Result Qualifier Unit %Rec Limits **Biochemical Oxygen Demand** 200 246.7 mg/L 124 85 - 115

Eurofins Buffalo

10/9/2024

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Prep Type: Total/NA

Method: SM 5210B - BOD, 5-Day (Continued)

Lab Sample ID: 480-223804-3 DU

Matrix: Water Analysis Batch: 726525

DU DU Sample Sample Result Qualifier

Result Qualifier Unit ND *+

mg/L

Prepared

D

Client Sample ID: BCC BSA SUMP-EFFLUENT

NC **Client Sample ID: Method Blank** Prep Type: Total/NA

Analyzed

10/03/24 13:15

Prep Type: Total/NA

RPD

RPD

Limit

Dil Fac

Lab Sample ID: USB 480-727052/1 **Matrix: Water**

Biochemical Oxygen Demand

Analyte

Analysis Batch: 727052

Biochemical Oxygen Demand

Lab Sample ID: LCS 480-727052/2

Matrix: Water Analysis Batch: 727052

Analyte

Biochemical Oxygen Demand

USB USB Result Qualifier ND

ND *+

RL 2.0

Spike

Added

198

LCS LCS Result Qualifier 186.6

MDL Unit

2.0 mg/L

Unit mg/L

%Rec

Limits 85 - 115

%Rec

Client Sample ID: Lab Control Sample

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

GC/MS VOA

Analysis Batch: 726617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-2	TRIP BLANK	Total/NA	Water	624.1	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	624.1	
MB 480-726617/8	Method Blank	Total/NA	Water	624.1	
LCS 480-726617/6	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 726771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	624.1	
MB 480-726771/8	Method Blank	Total/NA	Water	624.1	
LCS 480-726771/6	Lab Control Sample	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 726825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	625	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	625	
MB 480-726825/1-A	Method Blank	Total/NA	Water	625	
LCS 480-726825/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 480-726825/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 726979

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method 625.1	Prep Batch 726825
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	625.1	726825
MB 480-726825/1-A	Method Blank	Total/NA	Water	625.1	726825
LCS 480-726825/2-A	Lab Control Sample	Total/NA	Water	625.1	726825
LCSD 480-726825/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	726825

GC Semi VOA

Prep Batch: 726627

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	3510C	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	3510C	
MB 480-726627/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-726627/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-726627/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 726696

Lab Sample ID 480-223804-1 480-223804-3	Client Sample ID BCC BSA SUMP-INFLUENT BCC BSA SUMP-EFFLUENT	Prep Type Total/NA Total/NA	Water Water	Method 608.3 608.3	Prep Batch 726627 726627
MB 480-726627/1-A	Method Blank	Total/NA	Water	608.3	726627
LCS 480-726627/2-A LCSD 480-726627/3-A	Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA	Water Water	608.3 608.3	726627 726627

Metals

Prep Batch: 726527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	200.7	

Eurofins Buffalo

Page 30 of 40

2

3

4

6

7

9

10

12

. .

15

46

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Metals (Continued)

Prep Batch: 726527 (Continued)

Lab Sample ID 480-223804-3	Client Sample ID BCC BSA SUMP-EFFLUENT	Prep Type Total/NA	Matrix Water	Method 200.7	Prep Batch
MB 480-726527/1-A	Method Blank	Total/NA	Water	200.7	
LCS 480-726527/2-A	Lab Control Sample	Total/NA	Water	200.7	
480-223804-3 MS	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7	
480-223804-3 MSD	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7	

Prep Batch: 726564

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method 245.1	Prep Batch
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	245.1	
MB 480-726564/1-A	Method Blank	Total/NA	Water	245.1	
LCS 480-726564/2-A	Lab Control Sample	Total/NA	Water	245.1	
LCSD 480-726564/3-A	Lab Control Sample Dup	Total/NA	Water	245.1	

Analysis Batch: 726644

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method 245.1	Prep Batch 726564
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	245.1	726564
MB 480-726564/1-A	Method Blank	Total/NA	Water	245.1	726564
LCS 480-726564/2-A	Lab Control Sample	Total/NA	Water	245.1	726564
LCSD 480-726564/3-A	Lab Control Sample Dup	Total/NA	Water	245.1	726564

Analysis Batch: 726688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	200.7 Rev 4.4	726527
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7 Rev 4.4	726527
MB 480-726527/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	726527
LCS 480-726527/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	726527
480-223804-3 MS	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7 Rev 4.4	726527
480-223804-3 MSD	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7 Rev 4.4	726527

General Chemistry

Analysis Batch: 726525

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	SM 5210B	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 5210B	
USB 480-726525/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-726525/2	Lab Control Sample	Total/NA	Water	SM 5210B	
480-223804-3 DU	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 5210B	

Analysis Batch: 726543

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method SM 4500 H+ B	Prep Batch
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 4500 H+ B	
LCS 480-726543/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 726588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	SM 2540D	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 2540D	

Eurofins Buffalo

Page 31 of 40

2

3

6

8

J

11

13

14

1

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

General Chemistry (Continued)

Analysis Batch: 726588 (Continued)

Lab Sample ID MB 480-726588/1	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Water	Method SM 2540D	Prep Batch
LCS 480-726588/2	Lab Control Sample	Total/NA	Water	SM 2540D	
480-223804-3 DU	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 2540D	

Analysis Batch: 726788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	SM 4500 P E	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 4500 P E	
MB 480-726788/3	Method Blank	Total/NA	Water	SM 4500 P E	
LCS 480-726788/4	Lab Control Sample	Total/NA	Water	SM 4500 P E	

Analysis Batch: 727052

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method SM 5210B	Prep Batch
USB 480-727052/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-727052/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 727121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	420.4	
MB 480-727121/46	Method Blank	Total/NA	Water	420.4	
LCS 480-727121/47	Lab Control Sample	Total/NA	Water	420.4	
480-223804-3 MS	BCC BSA SUMP-EFFLUENT	Total/NA	Water	420.4	

Analysis Batch: 727147

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	420.4	
MB 480-727147/8	Method Blank	Total/NA	Water	420.4	
LCS 480-727147/9	Lab Control Sample	Total/NA	Water	420.4	
480-223804-1 DU	BCC BSA SUMP-INFLUENT	Total/NA	Water	420.4	

Analysis Batch: 727250

Lab Camula ID	Olient Commis ID	Due a Trus	Madula	Madhad	Duan Datah
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 4500 CN G	

Analysis Batch: 727251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	SM 4500 CN G	

Job ID: 480-223804-1

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-INFLUENT

Date Collected: 09/27/24 12:05 Date Received: 09/28/24 16:46 Lab Sample ID: 480-223804-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		40	726771	AXK	EET BUF	10/01/24 20:14
Total/NA	Prep	625			726825	JMP	EET BUF	10/02/24 09:12
Total/NA	Analysis	625.1		5	726979	AF	EET BUF	10/03/24 17:28
Total/NA	Prep	3510C			726627	LSC	EET BUF	09/30/24 13:14
Total/NA	Analysis	608.3		1	726696	DSC	EET BUF	10/01/24 12:46
Total/NA	Prep	200.7			726527	ET	EET BUF	09/30/24 08:02
Total/NA	Analysis	200.7 Rev 4.4		1	726688	BMB	EET BUF	09/30/24 18:29
Total/NA	Prep	245.1			726564	ESB	EET BUF	09/30/24 10:04
Total/NA	Analysis	245.1		1	726644	ESB	EET BUF	09/30/24 13:58
Total/NA	Analysis	420.4		1	727147	CLT	EET BUF	10/04/24 13:50
Total/NA	Analysis	SM 2540D		1	726588	AB	EET BUF	09/30/24 09:43
Total/NA	Analysis	SM 4500 CN G		1	727251	DLG	EET BUF	10/05/24 17:30
Total/NA	Analysis	SM 4500 H+ B		1	726543	KB	EET BUF	09/29/24 14:20
Total/NA	Analysis	SM 4500 P E		1	726788	GW	EET BUF	10/01/24 19:46
Total/NA	Analysis	SM 5210B		1	726525	CG	EET BUF	09/28/24 14:15
Total/NA	Analysis	SM 5210B		1	727052	KO	EET BUF	10/03/24 13:15

Client Sample ID: TRIP BLANK

Date Collected: 09/27/24 00:00

Date Received: 09/28/24 16:46

Lab Sample ID: 480-223804-2

Lab Sample ID: 480-223804-3

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624 1			726617	AXK	FET BUE	09/30/24 15:09

Client Sample ID: BCC BSA SUMP-EFFLUENT

Date Collected: 09/27/24 12:00

Date Received: 09/28/24 16:46

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	726617	AXK	EET BUF	09/30/24 15:33
Total/NA	Prep	625			726825	JMP	EET BUF	10/02/24 09:12
Total/NA	Analysis	625.1		1	726979	AF	EET BUF	10/03/24 17:55
Total/NA	Prep	3510C			726627	LSC	EET BUF	09/30/24 13:14
Total/NA	Analysis	608.3		1	726696	DSC	EET BUF	10/01/24 13:04
Total/NA	Prep	200.7			726527	ET	EET BUF	09/30/24 08:02
Total/NA	Analysis	200.7 Rev 4.4		1	726688	BMB	EET BUF	09/30/24 18:30
Total/NA	Prep	245.1			726564	ESB	EET BUF	09/30/24 10:04
Total/NA	Analysis	245.1		1	726644	ESB	EET BUF	09/30/24 13:59
Total/NA	Analysis	420.4		1	727121	CLT	EET BUF	10/04/24 11:13
Total/NA	Analysis	SM 2540D		1	726588	AB	EET BUF	09/30/24 09:43
Total/NA	Analysis	SM 4500 CN G		1	727250	DLG	EET BUF	10/04/24 17:03
Total/NA	Analysis	SM 4500 H+ B		1	726543	KB	EET BUF	09/29/24 14:22
Total/NA	Analysis	SM 4500 P E		1	726788	GW	EET BUF	10/01/24 19:46

Eurofins Buffalo

Page 33 of 40

10/9/2024

Lab Chronicle

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-223804-3

Matrix: Water

Job ID: 480-223804-1

Client Sample ID: BCC BSA SUMP-EFFLUENT Date Collected: 09/27/24 12:00

Date Received: 09/28/24 16:46

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	SM 5210B		1	726525	CG	EET BUF	09/28/24 14:15

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date	
New York	NELAP	10026	03-31-25	

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte	
245.1	245.1	Water	Mercury	
624.1		Water	1,2-Dichloroethene, Total	
625.1	625	Water	1,2-Dichlorobenzene	
625.1	625	Water	1,3-Dichlorobenzene	
625.1	625	Water	1,4-Dichlorobenzene	
SM 4500 CN G		Water	Cyanide, Amenable	
SM 4500 H+ B		Water	рН	
SM 4500 H+ B		Water	Temperature	

Method Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET BUF
625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET BUF
608.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET BUF
200.7 Rev 4.4	Metals (ICP)	EPA	EET BUF
245.1	Mercury (CVAA)	EPA	EET BUF
420.4	Phenolics, Total Recoverable	EPA	EET BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	EET BUF
SM 4500 CN G	Cyanide, Amenable	SM	EET BUF
SM 4500 H+ B	pH	SM	EET BUF
SM 4500 P E	Phosphorus	SM	EET BUF
SM 5210B	BOD, 5-Day	SM	EET BUF
200.7	Preparation, Total Metals	EPA	EET BUF
245.1	Preparation, Mercury	EPA	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
625	Liquid-Liquid Extraction	EPA	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Job ID: 480-223804-1

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-223804-1	BCC BSA SUMP-INFLUENT	Water	09/27/24 12:05	09/28/24 16:46
480-223804-2	TRIP BLANK	Water	09/27/24 00:00	09/28/24 16:46
480-223804-3	BCC BSA SUMP-EFFLUENT	Water	09/27/24 12:00	09/28/24 16:46

Quantitation Limit Exceptions Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
625.1	2,4-Dinitrotoluene	Water	Total/NA	ug/L	5.0	10
625.1	4-Nitrophenol	Water	Total/NA	ug/L	10	15
625.1	Hexachlorocyclopentadiene	Water	Total/NA	ug/L	5.0	10

Δ

5

7

8

4.6

11

13

14

🔅 eurofins

Chain of Custody Record

EUrotins Buttalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

(C.# C) Special Instructions/Note: 480-5∑3804 Chain of Custody (---100) Preservation Codes: S - H2SO4 D - HNO3 N - None B - NaOH COC No: 480-198758-6057.1 9/27/23 (6.4 Page: Page 1 of 1 Sample Disposal (A fee may be assessed if samples are retained to Archive F N Total Number of containers Date/Time Date/Time Date/Time Method of Shipmen Carrier Tracking No(s) Disposal By Lab Hd - +H 009#WS State of Origin **Analysis Requested** SM4500CN_G_Calc - Cyanide, Amenable Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: 625 - Priority Pollutant List - SVOA - 6 John. Schove@et.eurofinsus.com 24 - AOV - 1si Jinstullog Vilorid - Imd_bS Phenolics, Total Recoverable Received by: Received by Received by 1.845,7.002 Lab PM: Schove, John R E-Mail: 500_P_E - Phosphorus (ON SO SO) (USWISH MINOTIES Time Field Filtered Sample (Yes or No) Later Preservation Code: Water Matrix Water Company ompany Company Radiological (C=comp, G=grab) Sample 681 Type S J PERE ZAFFRAM TAT Requested (days): Phone (6-55-3-51 Sample 265 Doc Time Date Unknown ENS Due Date Requested: Compliance Project: TOLK WALTERPINIENTUMENS.COM 4/21/24 Sample Date Project #:
OSC- Former Buffalo Color Sites/ Event Desc: Buffalo Color - Qu48003159
Site: Date/Time PO #: 66986 Poison B INPENIM BSA SUMP- EFFLUENT Skin Irritant TOOK WAYGEOF Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. BCC BSA SUMP - TAFFUEM Ontario Specialty Contracting, Inc. Possible Hazard Identification Empty Kit Relinquished by Custody Seals Intact: △ Yes △ No kcolligan@oscinc.com Client Information Sample Identification Client Contact: Kirsten Colligan Non-Hazard elinquished by State, Zip: NY, 14210 140 Lee St. Trip Blank New York city: Buffalo Phone:

Login Sample Receipt Checklist

Client: Ontario Specialty Contracting, Inc.

Job Number: 480-223804-1

Login Number: 223804 List Source: Eurofins Buffalo

List Number: 1

Creator: Wallace, Cameron

Creator. Wallace, Cameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

3

4

6

ŏ

12

14

16

ATTACHMENT E - DISCHARGE MONITORING REPORTS

SAFTEY. EXPERIENCE. EXCELLENCE

January 31, 2024

Michael Szilagyi Industrial Waste Administrator Buffalo Sewer Authority 90 West Ferry Street Buffalo, New York, 14213

Subject: South Buffalo Development Corporation, LLC

Former Buffalo Color Corporation Site

Permit #20-06-BU109 OSC Project ID: 16011

Dear Mr. Szilagyi:

On behalf of South Buffalo Development Corporation, LLC (SBD), Ontario Specialty Contracting, Inc. (OSC) is submitting the Discharge Monitoring Report for the Buffalo Color Remediation Site covering the period of October 1 through December 31, 2023. This Discharge Monitoring Report has been completed in accordance with the requirements of Permit #20-06-BU109.

Included with the report are:

Operation log sheets;

A copy of the current BSA discharge permit; Schematic showing the location for monitoring and sampling; Summary of the discharge flow by month; Comparison of analytical data to permit limits; and Analytical laboratory results.

Please review the attached information and feel free to contact me if you have any questions.

Sincerely,

Kirsten Colligan

Kith Col

Project Manager - Ontario Specialty Contracting, Inc.

cc: Eugene Melnyk NYSDEC Region 9 Megan Kuczka NYSDEC Region 9

John Yensan South Buffalo Development, LLC

Todd Waldrop Inventum Engineering

Industrial Waste Section Buffalo Sewer Authority Treatment Plant 90 West Ferry Street Buffalo, New York, 14213

B.P.D.E.S. Permit No. #20-06-BU109
Former Buffalo Color Corporation Site
South Buffalo Development Corporation LLC (SBD)

Reporting Period: October 1, 2023 through December 31, 2023

The following is the discharge data associated with the operations of the former Buffalo Color Corporation Area A and D Groundwater Extraction System throughout the reporting period. A schematic representing the current locations for discharge sampling is provided as an attachment. The monthly flow data presented is based upon flow data from the EW-1, EW-2, EW-4, and EW-5 flow totalizers, plus any flow from the Area D well pumping. All samples gathered were grab samples and analysis was provided by Eurofins Laboratory located in Amherst, NY. The sample event analytical results are attached.

EX-3 remains down during the reporting period and will likely be replaced when the new system is installed.

Total Flow Data by Month:

 October 2023
 363,636 gallons

 November 2023
 320,889 gallons

 December 2023
 343,835 gallons

Total Quarterly Discharge 1,028,360 gallons

Estimated Area D contribution this period:

2,138 gallons

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including possibility of fine and imprisonment for knowing violations.

Kirsten Colligan Project Manager

Kito Coy

Ontario Specialty Contracting, Inc.

Attachments: BSA Permit Analytical Summary Table, BSA Discharge Permit, Monitoring and Sampling Schematic, Laboratory Analytical Results, and Field Data Collection Sheets

Compliance Confirmation Discharge Monitoring Report

BSA Permit No. Sample Date: 20-06-BU109 11/21/2023 Effective June 1, 2020 Sample Location: Onsite Pump Station to BSA

Year: 2023 Month: DEC Event Group: SUMP Lab Job ID: J215099-1

BSA Permit Parameter		Input Analytical Results		Converted Analytical Results						Analytical Results		Analytical Results						BSA Daily Max Discharge Limit						Permit Compliance		Quantity	Permit Compliance
Chemical	CAS No. / Method ID	Quantity	Reporting Limit	Unit	Quantity	Unit	Quantity	Unit		mg/L	mg/L																
pH	PH	8.1	0.100	SU	8.10	SU	5.0 - 12.0	SU	Yes																		
BOD5	BOD	ND	2.0	mg/L	ND	mg/L	250	mg/L	Yes																		
Total Phenol	TOTPHEN	0.034	0.010	mg/L	0.003	lbs/day	1.67	lbs/day	Yes	20	0.034	Yes															
Total Chromium	7440-47-3	0.0043	0.0040	mg/L	0.0004	lbs/day	0.83	lbs/day	Yes	40	0.00	Yes															
Total Copper	7440-50-8	ND	0.010	mg/L	ND	lbs/day	0.67	lbs/day	Yes	16	ND	Yes															
Lead	7439-92-1	0.11	0.0050	mg/L	0.0104	lbs/day	0.541	lbs/day	Yes	65	0.1100	Yes															
Total Mercury	7439-97-6	ND	0.00020	mg/L	ND	lbs/day	0.00033	lbs/day	Yes	0.0008	ND	Yes															
Total Nickel	7440-02-0	0.0013	0.010	mg/L	0.0001	lbs/day	1.17	lbs/day	Yes	14	0.0013	Yes															
Zinc	7440-66-6	0.0035	0.010	mg/L	0.000	lbs/day	2.046	lbs/day	Yes	25	0.004	Yes															
Amendable Cyanide	CAN	0.067	0.010	mg/L	0.006	lbs/day	2.59	lbs/day	Yes	6.2	0.067	Yes															
Total PCB	Sum Method_E608	ND	0.060	ug/L	ND	lbs/day	0.0001	lbs/day	Yes	0.002	ND	Yes															
Aniline or Aniline Derivative*	62-53-3	13	40	ug/L	1.229	lbs/day	50	lbs/day	Yes	0.01	0.0130	Yes															
Benzene	71-43-2	ND	5	ug/L	ND	lbs/day	0.059	lbs/day	Yes	0.142	ND	Yes															
Chlorobenzene	108-90-7	2	5	ug/L	0.0002	lbs/day	0.129	lbs/day	Yes	0.31	0.00	Yes															
1,2-Dichlorobenzene	95-50-1	ND	5	ug/L	ND	lbs/day	0.197	lbs/day	Yes	0.472	ND	Yes															
Fluoranthene	206-44-0	ND	20	ug/L	ND	lbs/day	0.0417	lbs/day	Yes	0.1	ND	Yes															
Acenaphthylene	208-96-8	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes															
Naphthalene	91-20-3	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes															
Anthracene	120-12-7	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes															
Fluorene	86-73-7	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes															
Phenanthrene	85-01-8	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes															
Max Individual Purgeables*	Max Method_E624	40	25	ug/L	0.040	mg/L	*	mg/L	Yes																		
Total Suspended Solids	TSS	95.6	4.0	mg/L	95.6	mg/L	250	mg/L	Yes																		
Total Phosphate**	7723-14-0	0.45	0.010	mg/L	0.450	mg/L	15.35	mg/L	Yes																		
Total Flow (average)	N/A	7.863995726	-	gpm	11,324	gpd	50,000	gpd	Yes																		

^{*}Permit requires reporting of Aniline or Aniline Derivative and Max Individual Purgeables concentrations in excess of 0.01 mg/L.

**Analyzed by total phosphorus method SM 4500-P E

MAID - Maximum Allowable Instantaneous Discharge

Flow Calculations		
Combined Effluent No. 1 and	d No. 2 Flow Totals (gallons	s)
Initial Reading	66,700,881	10/1/2023
Final Reading	67,731,379	12/31/2023
Total Days in Period	91	
Total Flow for Period	1,030,498	gallons
Average Flow for Period	7.86	gpm

ADMINISTRATIVE OFFICES

1038 City Hall 65 Niagara Square Buffalo, NY 14202-3378 Phone: (716) 851-4664 Fax: (716) 856-5810

WASTEWATER TREATMENT PLANT

FOOT OF WEST FERRY 90 WEST FERRY STREET BUFFALO, NY 14213-1799 PHONE: (716) 851-4664 FAX: (716) 883-3789

April 30, 2020

RECEIVED MAY (1 4 2020

Ms. Kirsten Colligan Project Manager 333 Ganson Street Buffalo, New York 14203

RE: B.P.D.E.S. Permit #20-06-BU109

Dear Mr. Gabner:

Enclosed is your new BPDES Permit #20-06-BU109. This permit is issued by The Buffalo Sewer Authority.

This original permit must be maintained at your South Park Avenue remediation facility and must be available for inspection at all times. It is your responsibility to assure continual compliance with the terms and conditions of this permit. Finally, you must apply for renewal at least 6 months before this permit expires.

If you have any further questions, please call Mike Szilagyi at 716-851-4664, ext. 5253 or myself at 716-851-4664, ext. 5250.

Very truly yours, BUFFALO SEWER AUTHORITY

Leslie Sedita

Industrial Waste Administrator

cc:

D. Rossney

M. Szilagyi

AUTHORIZATION TO DISCHARGE UNDER THE BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT NO. 20-06-BU109 EPA 40CFR 403

In accordance with the provisions of the Federal Water Pollution Control Act, as amended, and the Sewer Regulations of the Buffalo Sewer Authority, authorization is hereby granted to:

South Buffalo Development, LLC.

to discharge remediated wastewater from the site located at:

Areas A and D of the former Buffalo Color Corporation Site 1037 South Park Avenue, Buffalo, New York 14210

to the Buffalo Municipal Sewer System.

Issuance of this permit is based upon a permit application filed on **February 15, 2020** and analytical data. This permit is granted in accordance with discharge limitations, monitoring requirements and other conditions set forth in Parts I and II hereof.

Effective this June 1, 2020 To Expire May 31, 2023

General Manager

PART I: SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfalls (see attached maps) shall be limited and monitored **Quarterly** by the permittee as specified below:

Sample		Discharge L	imitations	Sampling Requirement	nts
Point	Parameter	Daily Max	MAID* (mg/L)	Type	Frequency
001	pH ⁽¹⁾	5.0 - 12.0 SU	(8)	Probe Flow	Quarterly
	Total Flow BOD₅	50,000 gals 250 mg/L ⁽³⁾		Meter ⁽²⁾ Composite (4)	Continuous Quarterly
	Total Suspended Solids	250 mg/L $^{(3)}$		Composite	Quarterly
	Total Phosphate	15.35 mg/L ⁽³⁾		Composite	Quarterly
	Total Phenol ⁽⁵⁾	1.67 lbs	20.0	Composite	Quarterly
	Amenable Cyanide	2.59 lbs	6.2	Grab (7)	Quarterly
	Total Mercury	0.00033 lbs	0.0008	Composite	Quarterly
	Total Nickel	1.17 lbs	14.0	Composite	Quarterly
	Total Copper	0.67 lbs	16.0	Composite	Quarterly
	Total Chromium	0.83 lbs	40.0	Composite	Quarterly
	Lead	0.541 lbs	65.0	Composite	Quarterly
	Zinc	2.046 lbs	25.0	Composite	Quarterly
	Purgeables-EPA Test	(6)		Grab ⁽⁷⁾	Quarterly
	Methods 624 Base/Neutrals & Acid Extractable-EPA	(8)			Quarterly
	Tests Method 625			Grab	Quarterly
	EPA Test Method 608	(9)		Grab	Quarterly
	Aniline	50.0 lbs	0.00	Grab	Quarterly
	Benzene	0.059 lbs	0.142 mg/L	Grab	Quarterly
	Chlorobenzene	0.129 lbs	0.310 mg/L	Grab	Quarterly
	1, 2-Dichlorbenzene	0.197 lbs.	0.472 mg/L	Grab	Quarterly
	Fluoranthene	0.0417 lbs.	0.100 mg/L	Grab	Quarterly
	Acenaphtylene	0.131 lbs.	0.314 mg/L	Grab	Quarterly
	Naphthalene	0.131 lbs.	0.314 mg/L	Grab	Quarterly
	Anthracene	0.131 lbs.	0.314 mg/L	Grab	Quarterly

Permit No. 20-06-BU109 Part I Page 3 of 7

Sample	Parameter	Discharge	Limitations	Sampling Requirements		
Point		Daily Max	Maid*	Type	Frequency	
	Fluorene	0.131 lbs.	0.314 mg/L	Grab	Quarterly	
	Phenanthrene	0.131 lbs.	0.314 mg/L	Grab	Quarterly	

^{*}M.A.I.D. – Maximum Allowable Instantaneous Discharge – Slug Limit. SEE PAGE FOUR (4) FOR EXPLANATION OF SPECIFIC REQUIREMENTS.

PART I: SPECIFIC CONDITIONS

B. DISCHARGE MONITORING REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported quarterly by the permittee on the days specified below:

Sample Point	Parameter	Reporting	Requirements
001	All Analytes	Initial Report*	Subsequent Reports*
	1	July 31, 2020	October 31, 2020
			January 31, 2021
			April 30, 2021
			July 31, 2021
			October 31, 2021
			January 31, 2022
			April 30, 2022
			July 31, 2022
			October 31, 2022 **
			January 31, 2023
			April 30, 2023

^{*} Each reporting dated is for samples collected during the previous quarter.

^{**} The Industrial Discharge Permit Application to renew discharge permit is due six (6) months prior to the expiration of this permit.

PART I: SPECIFIC CONDITIONS

C. SPECIAL REQUIREMENTS

- (1) The pH meter must be calibrated and maintained in accordance with the manufacturer's specifications. The calibrations and the person(s) responsible for it must be recorded in a bound logbook. This logbook must be available for BSA inspection at all times.
- All flow meters must be calibrated and certified by a certified manufacturer's representative at least once per year. This report must be submitted with the annual report. All flow meters must be serviced and maintained in accordance with the manufacturer's specifications. The BSA must be notified of any malfunctions which last for more that 24 hours within three (3) days of the malfunction. If a flow meter, especially at SP001, remains out of service for more than five (5) consecutive days, the permittee must install a temporary meter until such time as the defective meter is repaired or replaced. The BSA at its option, may require a written report on any malfunctions.
- (3) Surchargeable limit only.
- (4) Composite samples may be flow proportioned.
- (5) EPA Test Method 604.
- (6) The permittee must report any compound whose concentration is greater than 0.01 mg/L. The permittee is not authorized to discharge any of the parameters evaluated by these test procedures which may cause or contribute to a violation of water quality standards, worker health or safety limits or harm the sewerage system. Any parameter detected may at the discretion of the Buffalo Sewer Authority, be specifically limited and incorporated into this permit.
- (7) Four grab samples must be properly taken and preserved over an equally spaced time period during a normal discharge day. The four grab samples must be flow proportionally composited at a New York State Department of Health certified lab.
- (8) All samples collected for the base neutral and acid extractable EPA analytical test procedures must go through a special cleanup to prevent aniline and aniline derivative interference of the analytical method. The permittee must report any aniline and aniline derivative whose concentration is greater that 0.01 mg/L.

Permit No. 20-06-BU109 Part I Page 6 of 7

(9) The permittee must report any compound whose concentration is greater than 0.30 ug/L. The permittee is not authorized to discharge any of the parameters evaluated by these test procedures which may cause or contribute to a violation of water quality standards, worker health or safety limits or harm the sewerage system. Any parameter detected may at the discretion of the Buffalo Sewer Authority, be specifically limited and incorporated into this permit.

BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT PART II: GENERAL CONDITIONS

A. MONITORING AND REPORTING

1. Local Limits

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes for the Clean Water Act.

2. Definitions

Definitions of terms contained in this permit are as defined in the Buffalo Sewer Authority Sewer Use Regulations.

3. Discharge Sampling Analysis

All Wastewater discharge samples and analyses and flow measurements shall be representative of the volume and character of the monitored discharge. Methods employed for flow measurements and sample collections and analyses shall conform to the Buffalo Sewer Authority "Sampling Measurement and Analytical Guidelines Sheet".

4. Recording of Results

For each measurement or sample taken pursuant to the requirements of the permit, the permittee shall record the information as required in the "Sampling Measurement and Analytical Guidelines Sheet".

5. Additional Monitoring by Permittee

If the permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified in 40 CFR Part 136 the results of such monitoring shall be included in the calculation and reporting of values required under Part I, B. Such increased frequency shall also be indicated.

6. Reporting

All reports prepared in accordance with this Permit shall be submitted to:

Industrial Waste Section Buffalo Sewer Authority Treatment Plant 90 West Ferry Street Buffalo, New York 14213

All self-monitoring reports shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines Sheet". These reporting requirements shall not relieve the permittee of any other reports, which may be required by the N.Y.S.D.E.C. or the U.S.E.P.A.

7. Certification Statement

All self-monitoring reports shall include the following certification statement, signed by the preparer of the report:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the systems, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations".

B. PERMITTEE REQUIREMENTS

1. Change in Discharge

All discharges authorized herein shall be consistent with the terms and conditions of this permit and with the information contained in the BPDES permit application on which basis this permit is granted. In the event of any facility expansions, production increases, process modifications or the installation, modification or repair of any pretreatment equipment which may result in new, different or increased discharges of pollutants, a new BPDES Permit application must be submitted prior to any change. Following receipt of an amended application, the BSA may modify this permit to specify and limit any pollutants not previously limited. In the event that the proposed change will be covered under an applicable Categorical Standard, a Baseline Monitoring Report must be submitted at least ninety (90) days prior to any discharge.

2. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained at this facility for a minimum of three (3) years, or longer if requested by the General Manager.

3. Slug Control Plan

Upon written notification by the BSA that a slug control plan is necessary for the permittee, the plan shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines" sheet. Within 90 days of the BSA notification, the permittee must implement the slug control plan

4. Notification of Slug, Accidental Discharge or Spill

In the event that a slug, accidental discharge or any spill occurs at the facility for which this permit is issued, it is the responsibility of the permittee to immediately notify the B.S.A. Treatment Plant of the quantity and character of such discharge. During normal business hours, Monday – Friday, 7:30 AM - 3:00 PM call 716-851-4664, ext. 5374. After normal business hours call 716-851-4664, ext. 600. For all slug discharges, and when requested by the BSA following an accidental discharge or spill, within five (5) days following all such discharges, the permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

5. Noncompliance Notification

If, for any reason, the permittee does not comply with or will be unable to comply with any discharge limitation specified in this permit, the permittee or their assigns must verbally notify the Industrial Waste Section at 716-851-4664 ext. 5374 within twenty-four (24) hours of becoming aware of the violation. The permittee shall provide the Industrial Waste Section with the following information, in writing, within five (5) days of becoming aware of such condition:

- a. a description of the discharge and cause of noncompliance and;
- b. The period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

Additionally, the permittee shall repeat the sampling and analysis and submit these results of the report analysis to the Industrial Waste Section within 30 days after becoming aware of the violation.

6. Adverse Impact

The permittee shall take all reasonable steps to minimize any adverse impact to the Buffalo Sewerage System resulting from noncompliance with any discharge limitations specified in this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

7. Waste Residuals

Solids, sludges, filter backwash or other pollutants removed in the course of treatment or control of wastewaters and/or the treatment of intake waters, shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the Buffalo Sewer System.

8. Power Failures

In order to maintain compliance with the discharge limitations and prohibitions of this permit, the permittee shall provide an alternative power source sufficient to operate the wastewater control facilities; or, if such alternative power source is not provided the permittee shall halt, reduce or otherwise control production and/or controlled discharges upon the loss of power to the wastewater control facilities.

9. Treatment Upsets

- a. Any industrial user which experiences an upset in operations that places it in a temporary state of noncompliance, which is not the result of operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation, shall inform the Industrial Waste Section immediately upon becoming aware of the upset. Where such information is given verbally, a written report shall be filed by the user within five (5) days. The report shall contain:
 - (i) A description of the upset, its cause(s) and impact on the discharger's compliance status;
 - (ii) The duration of noncompliance, including exact dates and times of noncompliance, and if the non-compliance is continuing, the time by which compliance is reasonably expected to be restored;
 - (iii) All steps taken or planned to reduce, eliminate, and prevent recurrence of such an upset.
- b. An industrial user which complies with the notification provisions of this Section in a timely manner shall have an affirmative defense to any enforcement action brought by the Industrial Waste Section for any

noncompliance of the limits in this permit, which arises out of violations attributable to and alleged to have occurred during the period of the documented and verified upset.

10. Treatment Bypasses

- a. A bypass of the treatment system is prohibited unless the following conditions are met:
 - (i) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; or
 - (ii) There was no feasible alternative to the bypass, including the use of auxiliary treatment or retention of the wastewater; and
 - (iii) The industrial user properly notified the Industrial Waste Section as described in paragraph b. below.
- b. Industrial users must provide immediate notice to the Industrial Waste Section upon discovery of an unanticipated bypass. If necessary, the Industrial Waste Section may require the industrial user to submit a written report explaining the cause(s), nature, and duration of the bypass, and the steps being taken to prevent its recurrence.
- c. An industrial user may allow a bypass to occur which does not cause pretreatment standards or requirements to be violated, but only if it is for essential maintenance to ensure efficient operation of the treatment system. Industrial users anticipating a bypass must submit notice to the Industrial Waste Section at least ten (10) days in advance. The Industrial Waste Section may only approve the anticipated bypass if the circumstances satisfy those set forth in paragraph a above.

C. PERMITTEE RESPONSIBILITIES

1. Permit Availability

The originally signed permit must be available upon request at all times for review at the address stated on the first page of this permit.

2. Inspections

The permittee shall allow the General Manager of the Buffalo Sewer Authority and/or his authorized representatives, upon the presentation of credentials and during normal working hours or at any other reasonable times, to have access to and copy any records required in this permit; and to sample any discharge of pollutants.

3. Transfer of Ownership or Control

In the event of any change in control or ownership of facilities for which this permit has been issued the permit shall become null and void. The succeeding owner shall submit a completed Buffalo Sewer Authority permit application prior to discharge to the sewer system.

D. PERMITTEE LIABILITIES

1. Permit Modification

After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to the following:

- a. Violation of any terms or conditions of this permit,
- b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts,
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

2. Imminent Danger

In the event there exists an imminent danger to health or property, the permitter reserves the right to take immediate action to halt the permitted discharge to the sewerage works.

3. Civil and Criminal Liability

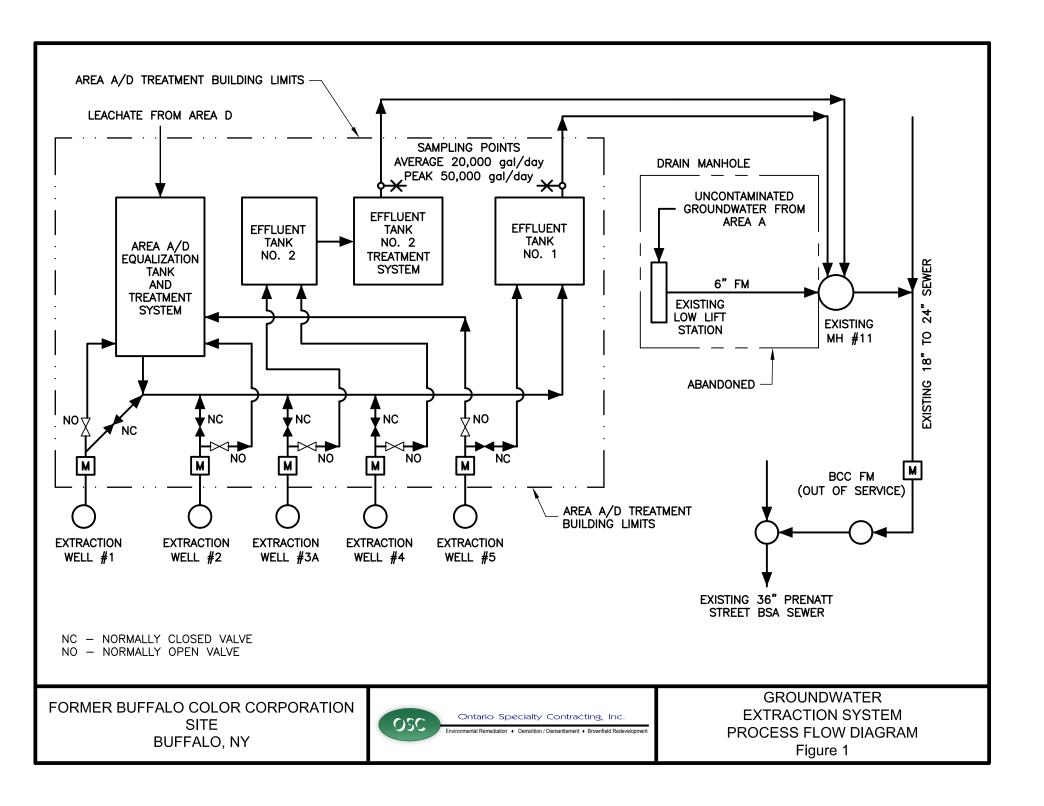
Nothing in this permit shall relieve the permittee from any requirements, liabilities, or penalties under provisions of the "Sewer Regulations of the Buffalo Sewer Authority" or any Federal, State and/or local laws or regulations.

E. NATIONAL PRETREATMENT STANDARDS

If a pretreatment standard or prohibition (including any Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 307 (b) of the Act for a pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.

F. PLANT CLOSURE

In the event of plant closure, the permittee is required to notify the Industrial Waste Section in writing as soon as an anticipated closure date is determined, but in no case later than five days of the actual closure.


G. CONFIDENTIALITY

Except for data determined to be confidential under Section 308 of the Act, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Buffalo Sewer Authority. As required by the Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Act.

H. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

ANALYTICAL REPORT

PREPARED FOR

Attn: Kirsten Colligan Ontario Specialty Contracting, Inc. 140 Lee St. Buffalo, New York 14210

JOB DESCRIPTION

Generated 12/1/2023 12:21:21 PM

OSC- Former Buffalo Color Sites - 37745
Buffalo Color - Quarterly Sump
Mining Surface Water (Monthly)

JOB NUMBER

480-215099-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 12/1/2023 12:21:21 PM

Authorized for release by
Rebecca Jones, Project Management Assistant I
Rebecca.Jones@et.eurofinsus.com
Designee for
John Schove, Project Manager II
John.Schove@et.eurofinsus.com
(716)504-9838

10

. .

13

15

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	23
Lab Chronicle	25
Certification Summary	26
Method Summary	27
Sample Summary	28
Detection Limit Exceptions Summary	29
Chain of Custody	30
Receipt Checklists	31

-6

4

6

8

10

11

13

15

4.6

Definitions/Glossary

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Qualifiers

GC/MS VOA

Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier Qualifier Description

*1 LCS/LCSD RPD exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

*- LCS and/or LCSD is outside acceptance limits, low biased.

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.					
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery					
CFL	Contains Free Liquid					
CFU	Colony Forming Unit					
CNF	Contains No Free Liquid					
DER	Duplicate Error Ratio (normalized absolute difference)					
Dil Fac	Dilution Factor					
D.	D + (* 11.71/D D/DOF)					

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 31 12/1/2023

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-215099-1

Receipt

The samples were received on 11/21/2023 3:20 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

Method 624.1: The following Volatile sample was composited by the laboratory on 11/22/2023 as requested by the client: BCC BSA SUMP (480-215099-1).

Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

Method 624.1: The continuing calibration verification (CCV) associated with batch 480-693121 recovered above the upper control limit for 1,1,1-Trichloroethane, Carbon tetrachloride and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: BCC BSA SUMP (480-215099-1) and TRIP BLANK (480-215099-2).

Method 624.1: The method blank for 693121 contained Methylene Chloride above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 625.1: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 480-693322 and analytical batch 480-693404 recovered outside control limits for multiple analytes.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Methods 245.1, 7470A: Due to interference with the sample matrix, the standard mercury preparation procedure was inadequate for the following samples(s): BCC BSA SUMP (480-215099-1). This was demonstrated when the potassium permanganate reagent was added and the characteristic purple color faded rapidly. This loss of color indicates oxidizing conditions were not maintained. The sample(s) was prepared and analyzed at a 1/2 dilution, which maintained the purple color during digestion.

Method 245.1: Due to interference with the sample matrix, the standard mercury preparation procedure was inadequate for the following samples(s): BCC BSA SUMP (480-215099-1). This was demonstrated when the potassium permanganate reagent was added and the characteristic purple color faded rapidly. This loss of color indicates oxidizing conditions were not maintained. The sample(s) was prepared and analyzed at a 1/3 dilution, which maintained the purple color during digestion.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method SM 5210B: The glucose-glutamic acid standard (LCS) recovered outside the recovery limits specified in the method in batch 480-693180. The method holding time had expired, therefore the analysis was not repeated. The data was qualified and reported.

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: BCC BSA SUMP (480-215099-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

Job ID: 480-215099-1

4

6

1

9

10

12

4 4

15

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Job ID: 480-215099-1 (Continued)

Laboratory: Eurofins Buffalo (Continued)

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-693260.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9

4

5

6

8

9

11

12

1/

15

Detection Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Client Sample ID: BCC BSA SUMP

Lab Sample ID: 480-215099-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chlorobenzene	2.0	J	5.0	0.48	ug/L		624.1	Total/NA
Aniline	13	J	42	1.6	ug/L	1	625.1	Total/NA
Di-n-butyl phthalate	25	*1	21	1.7	ug/L	1	625.1	Total/NA
Chromium	0.0043		0.0040	0.0010	mg/L	1	200.7 Rev 4.4	Total/NA
Lead	0.11		0.010	0.0030	mg/L	1	200.7 Rev 4.4	Total/NA
Nickel	0.0013	J	0.010	0.0013	mg/L	1	200.7 Rev 4.4	Total/NA
Zinc	0.0035	J	0.010	0.0015	mg/L	1	200.7 Rev 4.4	Total/NA
Phenolics, Total Recoverable	0.034		0.010	0.0035	mg/L	1	420.4	Total/NA
Total Suspended Solids	95.6		4.0	4.0	mg/L	1	SM 2540D	Total/NA
Cyanide, Amenable	0.067		0.010	0.0050	mg/L	1	SM 4500 CN G	Total/NA
pH	8.1	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.0	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Phosphorus	0.45		0.020	0.010	mg/L as P	2	SM 4500 P E	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-215099-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method		
Chlorobenzene	0.48	J	5.0	0.48	ug/L	1	624.1	Total/NA	

This Detection Summary does not include radiochemical test results.

Λ

5

7

9

10

12

13

15

Client Sample Results

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Client Sample ID: BCC BSA SUMP

Date Received: 11/21/23 15:20

Date Collected: 11/21/23 10:00

Lab Sample ID: 480-215099-1

Matrix: Water

Job ID: 480-215099-1

Method: EPA 624.1 - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 5.0 0.39 ug/L 11/22/23 15:54 1,1,2,2-Tetrachloroethane ND 5.0 0.26 ug/L 11/22/23 15:54 1,1,2-Trichloroethane ND 5.0 0.48 ug/L 11/22/23 15:54 1,1-Dichloroethane ND 5.0 0.59 ug/L 11/22/23 15:54 11/22/23 15:54 1,1-Dichloroethene ND 5.0 0.85 ug/L 1,2-Dichlorobenzene ND 11/22/23 15:54 5.0 0.44 ug/L ND 1,2-Dichloroethane 5.0 0.60 ug/L 11/22/23 15:54 ND 10 11/22/23 15:54 1.2-Dichloroethene. Total 3.2 ug/L 1,2-Dichloropropane ND 5.0 0.61 ug/L 11/22/23 15:54 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 11/22/23 15:54 1,4-Dichlorobenzene ND 5.0 0.51 ug/L 11/22/23 15:54 ND 25 2-Chloroethyl vinyl ether 1.9 ug/L 11/22/23 15:54 Acrolein ND 100 17 ug/L 11/22/23 15:54 ND 50 Acrylonitrile 1.9 ug/L 11/22/23 15:54 Benzene ND 5.0 0.60 ug/L 11/22/23 15:54 Bromodichloromethane ND 5.0 0.54 ug/L 11/22/23 15:54 ND Bromoform 5.0 0.47 ug/L 11/22/23 15:54 ND 5.0 11/22/23 15:54 Bromomethane 1.2 ug/L Carbon tetrachloride ND 5.0 0.51 ug/L 11/22/23 15:54 Chlorobenzene 2.0 5.0 0.48 ug/L 11/22/23 15:54 Chloroethane ND 5.0 0.87 ug/L 11/22/23 15:54 Chloroform ND 5.0 0.54 11/22/23 15:54 ug/L Chloromethane ND 5.0 0.64 ug/L 11/22/23 15:54 cis-1,3-Dichloropropene ND 5.0 0.33 ug/L 11/22/23 15:54 Dibromochloromethane ND 5.0 0.41 ug/L 11/22/23 15:54 Ethylbenzene ND 5.0 0.46 ug/L 11/22/23 15:54 Methylene Chloride ND 5.0 0.81 ug/L 11/22/23 15:54 Tetrachloroethene ND 5.0 0.34 ug/L 11/22/23 15:54 Toluene ND 5.0 0.45 ug/L 11/22/23 15:54 trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 11/22/23 15:54 Trichloroethene ND 5.0 0.60 ug/L 11/22/23 15:54 ND Trichlorofluoromethane 5.0 0.45 ug/L 11/22/23 15:54 Vinyl chloride ND 5.0 11/22/23 15:54 0.75 ug/L

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130		11/22/23 15:54	1
4-Bromofluorobenzene (Surr)	101		76 - 123		11/22/23 15:54	1
Dibromofluoromethane (Surr)	105		75 - 123		11/22/23 15:54	1
Toluene-d8 (Surr)	104		77 - 120		11/22/23 15:54	1

Method: EPA 625.1 - Semivolatile	Organic Compounds (GC/MS)
----------------------------------	---------------------------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND -	42	0.85	ug/L		11/27/23 14:08	11/28/23 16:13	1
1,2-Dichlorobenzene	ND	42	1.1	ug/L		11/27/23 14:08	11/28/23 16:13	1
1,2-Diphenylhydrazine	ND	42	0.81	ug/L		11/27/23 14:08	11/28/23 16:13	1
1,3-Dichlorobenzene	ND	42	0.72	ug/L		11/27/23 14:08	11/28/23 16:13	1
1,4-Dichlorobenzene	ND	42	0.85	ug/L		11/27/23 14:08	11/28/23 16:13	1
2,2'-oxybis[1-chloropropane]	ND	21	0.88	ug/L		11/27/23 14:08	11/28/23 16:13	1
2,4,6-Trichlorophenol	ND *1	21	1.0	ug/L		11/27/23 14:08	11/28/23 16:13	1
2,4-Dichlorophenol	ND	21	0.80	ug/L		11/27/23 14:08	11/28/23 16:13	1

Eurofins Buffalo

12/1/2023

Page 8 of 31

Client Sample Results

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Client Sample ID: BCC BSA SUMP

Lab Sample ID: 480-215099-1 Date Collected: 11/21/23 10:00 Matrix: Water

Date Received: 11/21/23 15:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dimethylphenol	ND	*1	21	1.5	ug/L		11/27/23 14:08	11/28/23 16:13	
2,4-Dinitrophenol	ND		42	5.2	ug/L		11/27/23 14:08	11/28/23 16:13	
2,4-Dinitrotoluene	ND		21	1.7	ug/L		11/27/23 14:08	11/28/23 16:13	
2-Chloronaphthalene	ND		21	0.95	ug/L		11/27/23 14:08	11/28/23 16:13	
2-Chlorophenol	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
2-Nitrophenol	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
3,3'-Dichlorobenzidine	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
4,6-Dinitro-2-methylphenol	ND		42	1.9	ug/L		11/27/23 14:08	11/28/23 16:13	
4-Bromophenyl phenyl ether	ND	*1	21		ug/L		11/27/23 14:08	11/28/23 16:13	
4-Chloro-3-methylphenol	ND	*1	21	1.1	-		11/27/23 14:08	11/28/23 16:13	
4-Chlorophenyl phenyl ether	ND	*1	21				11/27/23 14:08	11/28/23 16:13	
4-Nitrophenol	ND	•	42	2.0	ug/L		11/27/23 14:08	11/28/23 16:13	
Acenaphthene	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
Acenaphthylene	ND		21	0.91			11/27/23 14:08	11/28/23 16:13	
Aniline	13	1	42		ug/L ug/L		11/27/23 14:08	11/28/23 16:13	
Anthracene	ND.		21		ug/L		11/27/23 14:08	11/28/23 16:13	
Benzidine	ND		330		ug/L ug/L		11/27/23 14:08	11/28/23 16:13	
	ND	*1	21		ug/L ug/L		11/27/23 14:08	11/28/23 16:13	
Benzo[a]anthracene					-				
Benzo[a]pyrene	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
Benzo[b]fluoranthene	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
Benzo[g,h,i]perylene	ND		21		•		11/27/23 14:08	11/28/23 16:13	
Benzo[k]fluoranthene	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
Bis(2-chloroethoxy)methane	ND		21	0.78	ug/L		11/27/23 14:08	11/28/23 16:13	
Bis(2-chloroethyl)ether	ND		21	0.97	ug/L		11/27/23 14:08	11/28/23 16:13	
Bis(2-ethylhexyl) phthalate	ND		42	1.3	ug/L		11/27/23 14:08	11/28/23 16:13	
Butyl benzyl phthalate	ND		21	1.1	ug/L		11/27/23 14:08	11/28/23 16:13	
Chrysene	ND	*1	21	1.0	ug/L		11/27/23 14:08	11/28/23 16:13	
Dibenz(a,h)anthracene	ND		21	1.6	ug/L		11/27/23 14:08	11/28/23 16:13	
Diethyl phthalate	ND		21	1.0	ug/L		11/27/23 14:08	11/28/23 16:13	
Dimethyl phthalate	ND		21	0.95	ug/L		11/27/23 14:08	11/28/23 16:13	
Di-n-butyl phthalate	25	*1	21	1.7	ug/L		11/27/23 14:08	11/28/23 16:13	
Di-n-octyl phthalate	ND	*1	21	1.3	ug/L		11/27/23 14:08	11/28/23 16:13	
Fluoranthene	ND	*1	21	1.7	ug/L		11/27/23 14:08	11/28/23 16:13	
Fluorene	ND		21	1.0	ug/L		11/27/23 14:08	11/28/23 16:13	
Hexachlorobenzene	ND	*1	21	1.0	ug/L		11/27/23 14:08	11/28/23 16:13	
Hexachlorobutadiene	ND		21	1.0	ug/L		11/27/23 14:08	11/28/23 16:13	
Hexachlorocyclopentadiene	ND		21	2.2	ug/L		11/27/23 14:08	11/28/23 16:13	
Hexachloroethane	ND		21	0.63	ug/L		11/27/23 14:08	11/28/23 16:13	
ndeno[1,2,3-cd]pyrene	ND		21	1.6	ug/L		11/27/23 14:08	11/28/23 16:13	
sophorone	ND		21	0.77	ug/L		11/27/23 14:08	11/28/23 16:13	
Naphthalene	ND		21	0.90	ug/L		11/27/23 14:08	11/28/23 16:13	
Decane	ND		42	1.7	ug/L		11/27/23 14:08	11/28/23 16:13	
Nitrobenzene	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
N-Nitrosodimethylamine	ND		42		ug/L		11/27/23 14:08	11/28/23 16:13	
N-Nitrosodi-n-propylamine	ND		21		ug/L		11/27/23 14:08	11/28/23 16:13	
N-Nitrosodiphenylamine	ND	*1	21		ug/L		11/27/23 14:08	11/28/23 16:13	
n-Octadecane	ND		42		ug/L		11/27/23 14:08	11/28/23 16:13	
Pentachlorophenol	ND		42		ug/L		11/27/23 14:08	11/28/23 16:13	
Phenanthrene	ND ND	*4	21		ug/L ug/L		11/27/23 14:08	11/28/23 16:13	

Eurofins Buffalo

Job ID: 480-215099-1

Page 9 of 31 12/1/2023

Client Sample Results

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Client Sample ID: BCC BSA SUMP

Lab Sample ID: 480-215099-1 Date Collected: 11/21/23 10:00

Matrix: Water

Job ID: 480-215099-1

Date Received: 11/21/23 15:20

2540D)

pH (SM 4500 H+ B)

Temperature (SM 4500 H+ B)

Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Phenol	ND		21	0.36	ug/L		11/27/23 14:08	11/28/23 16:13	
Pyrene	ND	*1	21	1.5	ug/L		11/27/23 14:08	11/28/23 16:13	
2,6-Dinitrotoluene	ND		21	1.0	ug/L		11/27/23 14:08	11/28/23 16:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	87		52 - 151				11/27/23 14:08	11/28/23 16:13	
?-Fluorobiphenyl	84		44 - 120				11/27/23 14:08	11/28/23 16:13	
2-Fluorophenol	58		17 - 120				11/27/23 14:08	11/28/23 16:13	
litrobenzene-d5	76		15 - 314				11/27/23 14:08	11/28/23 16:13	
Phenol-d5	46		8 - 424				11/27/23 14:08	11/28/23 16:13	
p-Terphenyl-d14	81		22 - 125				11/27/23 14:08	11/28/23 16:13	
Method: EPA 608.3 - Polychlorina	ted Biphenyls	(PCBs) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
PCB-1016	ND		0.057	0.036	ug/L		11/27/23 09:20	11/29/23 04:07	
PCB-1221	ND		0.057	0.036	ug/L		11/27/23 09:20	11/29/23 04:07	
PCB-1232	ND		0.057	0.036	ug/L		11/27/23 09:20	11/29/23 04:07	
PCB-1242	ND		0.057	0.036	ug/L		11/27/23 09:20	11/29/23 04:07	
PCB-1248	ND		0.057	0.036	ug/L		11/27/23 09:20	11/29/23 04:07	
PCB-1254	ND		0.057	0.030	ug/L		11/27/23 09:20	11/29/23 04:07	
PCB-1260	ND		0.057	0.030	ug/L		11/27/23 09:20	11/29/23 04:07	
Currogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
OCB Decachlorobiphenyl	38		36 - 121				11/27/23 09:20	11/29/23 04:07	
Tetrachloro-m-xylene	78		42 - 135				11/27/23 09:20	11/29/23 04:07	
Method: EPA 200.7 Rev 4.4 - Meta	Is (ICP)								
Analyte	Result	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil F
Chromium	0.0043		0.0040	0.0010	mg/L		11/27/23 08:46	11/29/23 21:01	
Copper	ND		0.010	0.0016	mg/L		11/27/23 08:46	11/29/23 21:01	
_ead	0.11		0.010	0.0030	mg/L		11/27/23 08:46	11/29/23 21:01	
Nickel	0.0013	J	0.010	0.0013	mg/L		11/27/23 08:46	11/29/23 21:01	
Zinc	0.0035	J	0.010	0.0015	mg/L		11/27/23 08:46	11/29/23 21:01	
Method: EPA 245.1 - Mercury (CVA	•								
Analyte		Qualifier	RL -		Unit	_ <u>D</u>	Prepared	Analyzed	Dil F
Mercury	ND		0.00060	0.00013	mg/L		11/29/23 11:32	11/29/23 15:05	
						_	Prepared	Analyzed	Dil F
	Dear-l4	Ouglifier	DI.	MD:			Prepared		DII F
Analyte		Qualifier	RL	MDL 0.0035		_ D			
Analyte Phenolics, Total Recoverable (EPA	Result 0.034	Qualifier		MDL 0.0035				11/28/23 19:59	
Analyte Phenolics, Total Recoverable (EPA 120.4) Cyanide, Amenable (SM 4500 CN		Qualifier			mg/L	_ =			
chanalyte Phenolics, Total Recoverable (EPA 20.4) Cyanide, Amenable (SM 4500 CN 6)	0.034	Qualifier	0.010	0.0035 0.0050	mg/L			11/28/23 19:59	
Phenolics, Total Recoverable (EPA 20.4) Cyanide, Amenable (SM 4500 CN 6) Phosphorus (SM 4500 P E)	0.034 0.067 0.45		0.010 0.010 0.020	0.0035 0.0050 0.010	mg/L mg/L mg/L as P			11/28/23 19:59 11/28/23 21:44 11/26/23 11:54	
Phenolics, Total Recoverable (EPA 20.4) Cyanide, Amenable (SM 4500 CN 6) Phosphorus (SM 4500 P E) Siochemical Oxygen Demand (SM	0.034		0.010	0.0035 0.0050 0.010	mg/L			11/28/23 19:59	_
General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 5210B) Analyte	0.034 0.067 0.45 ND		0.010 0.010 0.020	0.0035 0.0050 0.010 2.0	mg/L mg/L mg/L as P	_ <u>D</u>	Prepared	11/28/23 19:59 11/28/23 21:44 11/26/23 11:54	Dil F

Eurofins Buffalo

11/22/23 17:24

11/22/23 17:24

Page 10 of 31

0.1

0.001

8.1 HF

19.0 HF

0.1 SU

0.001 Degrees C

Client Sample Results

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Client Sample ID: TRIP BLANK

Date Collected: 11/21/23 10:00 Date Received: 11/21/23 15:20

Toluene-d8 (Surr)

Lab Sample ID: 480-215099-2

Matrix: Water

Job ID: 480-215099-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			11/22/23 16:18	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			11/22/23 16:18	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			11/22/23 16:18	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			11/22/23 16:18	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			11/22/23 16:18	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			11/22/23 16:18	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			11/22/23 16:18	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			11/22/23 16:18	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			11/22/23 16:18	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			11/22/23 16:18	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			11/22/23 16:18	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			11/22/23 16:18	1
Acrolein	ND		100	17	ug/L			11/22/23 16:18	1
Acrylonitrile	ND		100	1.9	ug/L			11/22/23 16:18	1
Benzene	ND		5.0	0.60	ug/L			11/22/23 16:18	1
Bromodichloromethane	ND		5.0	0.54	ug/L			11/22/23 16:18	1
Bromoform	ND		5.0	0.47	ug/L			11/22/23 16:18	1
Bromomethane	ND		5.0	1.2	ug/L			11/22/23 16:18	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			11/22/23 16:18	1
Chlorobenzene	0.48	J	5.0	0.48	ug/L			11/22/23 16:18	1
Chloroethane	ND		5.0	0.87	ug/L			11/22/23 16:18	1
Chloroform	ND		5.0	0.54	ug/L			11/22/23 16:18	1
Chloromethane	ND		5.0	0.64	ug/L			11/22/23 16:18	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			11/22/23 16:18	1
Dibromochloromethane	ND		5.0	0.41	ug/L			11/22/23 16:18	1
Ethylbenzene	ND		5.0	0.46	ug/L			11/22/23 16:18	1
Methylene Chloride	ND		5.0	0.81	ug/L			11/22/23 16:18	1
Tetrachloroethene	ND		5.0	0.34	ug/L			11/22/23 16:18	1
Toluene	ND		5.0	0.45	ug/L			11/22/23 16:18	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			11/22/23 16:18	1
Trichloroethene	ND		5.0	0.60	ug/L			11/22/23 16:18	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			11/22/23 16:18	1
Vinyl chloride	ND		5.0	0.75	ug/L			11/22/23 16:18	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		68 - 130			-		11/22/23 16:18	1
4-Bromofluorobenzene (Surr)	101		76 - 123					11/22/23 16:18	1
Dibromofluoromethane (Surr)	107		75 - 123					11/22/23 16:18	1

11/22/23 16:18

77 - 120

Surrogate Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCA	BFB	DBFM	TOL			
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)			
480-215099-1	BCC BSA SUMP	104	101	105	104			
480-215099-2	TRIP BLANK	106	101	107	106			
LCS 480-693121/6	Lab Control Sample	107	105	103	105			
MB 480-693121/8	Method Blank	106	102	104	105			
Currente Legend								

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_			Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	PHL	TPHd14			
Lab Sample ID	Client Sample ID	(52-151)	(44-120)	(17-120)	(15-314)	(8-424)	(22-125)			
480-215099-1	BCC BSA SUMP	87	84	58	76	46	81			
CS 480-693322/2-A	Lab Control Sample	98	88	65	86	52	102			
LCSD 480-693322/3-A	Lab Control Sample Dup	82	73	51	70	44	89			
MB 480-693322/1-A	Method Blank	72	98	73	90	55	104			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		DCBP2	TCX2						
Lab Sample ID	Client Sample ID	(36-121)	(42-135)						
480-215099-1	BCC BSA SUMP	38	78						
LCS 480-693260/2-A	Lab Control Sample	60	87						
LCSD 480-693260/3-A	Lab Control Sample Dup	59	92						
MB 480-693260/1-A	Method Blank	54	81						

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Eurofins Buffalo

Page 12 of 31

6

Job ID: 480-215099-1

3

0

1

9

11

12

14

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-693121/8

Matrix: Water

Analysis Batch: 693121

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			11/22/23 15:18	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			11/22/23 15:18	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			11/22/23 15:18	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			11/22/23 15:18	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			11/22/23 15:18	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			11/22/23 15:18	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			11/22/23 15:18	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			11/22/23 15:18	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			11/22/23 15:18	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			11/22/23 15:18	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			11/22/23 15:18	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			11/22/23 15:18	1
Acrolein	ND		100	17	ug/L			11/22/23 15:18	1
Acrylonitrile	ND		50	1.9	ug/L			11/22/23 15:18	1
Benzene	ND		5.0	0.60	ug/L			11/22/23 15:18	1
Bromodichloromethane	ND		5.0	0.54	ug/L			11/22/23 15:18	1
Bromoform	ND		5.0	0.47	ug/L			11/22/23 15:18	1
Bromomethane	ND		5.0	1.2	ug/L			11/22/23 15:18	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			11/22/23 15:18	1
Chlorobenzene	ND		5.0	0.48	ug/L			11/22/23 15:18	1
Chloroethane	ND		5.0	0.87	ug/L			11/22/23 15:18	1
Chloroform	ND		5.0	0.54	ug/L			11/22/23 15:18	1
Chloromethane	ND		5.0	0.64	ug/L			11/22/23 15:18	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			11/22/23 15:18	1
Dibromochloromethane	ND		5.0	0.41	ug/L			11/22/23 15:18	1
Ethylbenzene	ND		5.0	0.46	ug/L			11/22/23 15:18	1
Methylene Chloride	1.06	J	5.0	0.81	ug/L			11/22/23 15:18	1
Tetrachloroethene	ND		5.0	0.34	ug/L			11/22/23 15:18	1
Toluene	ND		5.0	0.45	ug/L			11/22/23 15:18	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			11/22/23 15:18	1
Trichloroethene	ND		5.0	0.60	ug/L			11/22/23 15:18	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			11/22/23 15:18	1
Vinyl chloride	ND		5.0	0.75	ug/L			11/22/23 15:18	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		68 - 130		11/22/23 15:18	1
4-Bromofluorobenzene (Surr)	102		76 - 123		11/22/23 15:18	1
Dibromofluoromethane (Surr)	104		75 - 123		11/22/23 15:18	1
Toluene-d8 (Surr)	105		77 - 120		11/22/23 15:18	1

Lab Sample ID: LCS 480-693121/6

Matrix: Water

Analysis Batch: 693121

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	24.9		ug/L		124	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.4		ug/L		102	46 - 157	
1,1,2-Trichloroethane	20.0	20.8		ug/L		104	52 - 150	

Page 13 of 31

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-693121/6

Matrix: Water

Analysis Batch: 693121

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	20.9		ug/L		105	59 _ 155	
1,1-Dichloroethene	20.0	21.6		ug/L		108	1 - 234	
1,2-Dichlorobenzene	20.0	20.6		ug/L		103	18 - 190	
1,2-Dichloroethane	20.0	21.5		ug/L		107	49 - 155	
1,2-Dichloropropane	20.0	21.3		ug/L		107	1 - 210	
1,3-Dichlorobenzene	20.0	20.8		ug/L		104	59 - 156	
1,4-Dichlorobenzene	20.0	20.8		ug/L		104	18 - 190	
2-Chloroethyl vinyl ether	20.0	21.4	J	ug/L		107	1 _ 305	
Acrolein	100	123		ug/L		123	10 _ 176	
Acrylonitrile	200	205		ug/L		103	54 - 147	
Benzene	20.0	21.2		ug/L		106	37 - 151	
Bromodichloromethane	20.0	22.0		ug/L		110	35 - 155	
Bromoform	20.0	22.5		ug/L		112	45 - 169	
Bromomethane	20.0	20.2		ug/L		101	1 - 242	
Carbon tetrachloride	20.0	24.2		ug/L		121	70 - 140	
Chlorobenzene	20.0	21.1		ug/L		106	37 - 160	
Chloroethane	20.0	20.2		ug/L		101	14 - 230	
Chloroform	20.0	21.3		ug/L		106	51 - 138	
Chloromethane	20.0	20.1		ug/L		101	1 - 273	
cis-1,3-Dichloropropene	20.0	22.0		ug/L		110	1 - 227	
Dibromochloromethane	20.0	21.9		ug/L		110	53 - 149	
Ethylbenzene	20.0	21.4		ug/L		107	37 - 162	
Methylene Chloride	20.0	20.6		ug/L		103	1 - 221	
Tetrachloroethene	20.0	22.1		ug/L		110	64 - 148	
Toluene	20.0	21.5		ug/L		107	47 - 150	
trans-1,3-Dichloropropene	20.0	21.9		ug/L		110	17 - 183	
Trichloroethene	20.0	21.7		ug/L		109	71 - 157	
Trichlorofluoromethane	20.0	32.0		ug/L		160	17 - 181	
Vinyl chloride	20.0	25.2		ug/L		126	1 _ 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107	-	68 - 130
4-Bromofluorobenzene (Surr)	105		76 - 123
Dibromofluoromethane (Surr)	103		75 - 123
Toluene-d8 (Surr)	105		77 - 120

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-693322/1-A

Matrix: Water

Analysis Batch: 693404

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Prep Batch: 693322

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		40	0.82	ug/L		11/27/23 14:08	11/28/23 14:50	1
1,2-Dichlorobenzene	ND		40	1.0	ug/L		11/27/23 14:08	11/28/23 14:50	1
1,2-Diphenylhydrazine	ND		40	0.78	ug/L		11/27/23 14:08	11/28/23 14:50	1
1,3-Dichlorobenzene	ND		40	0.69	ug/L		11/27/23 14:08	11/28/23 14:50	1
1,4-Dichlorobenzene	ND		40	0.82	ug/L		11/27/23 14:08	11/28/23 14:50	1
2,2'-oxybis[1-chloropropane]	ND		20	0.84	ug/L		11/27/23 14:08	11/28/23 14:50	1

Eurofins Buffalo

Page 14 of 31

QC Sample Results

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-693322/1-A

Matrix: Water

Analysis Batch: 693404

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 693322

Analyte	MB Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,6-Trichlorophenol	ND		20	1.0	ug/L	<u>-</u>	11/27/23 14:08	11/28/23 14:50	
2,4-Dichlorophenol	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
2,4-Dimethylphenol	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
2,4-Dinitrophenol	ND		40		ug/L		11/27/23 14:08	11/28/23 14:50	,
2,4-Dinitrotoluene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
2-Chloronaphthalene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
2-Chlorophenol	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
2-Nitrophenol	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
3,3'-Dichlorobenzidine	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
4,6-Dinitro-2-methylphenol	ND		40		ug/L		11/27/23 14:08	11/28/23 14:50	
4-Bromophenyl phenyl ether	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	,
4-Chloro-3-methylphenol	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	,
4-Chlorophenyl phenyl ether	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
4-Nitrophenol	ND		40	1.9	ug/L		11/27/23 14:08	11/28/23 14:50	,
Acenaphthene	ND		20	0.81	•		11/27/23 14:08	11/28/23 14:50	,
Acenaphthylene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	,
Aniline	ND		40		ug/L		11/27/23 14:08	11/28/23 14:50	
Anthracene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	,
Benzidine	ND		320		ug/L		11/27/23 14:08	11/28/23 14:50	,
Benzo[a]anthracene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
	ND		20		_		11/27/23 14:08	11/28/23 14:50	
Benzo[a]pyrene					ug/L				
Benzo[b]fluoranthene	ND ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	,
Benzo[g,h,i]perylene	ND ND		20 20		ug/L		11/27/23 14:08	11/28/23 14:50	,
Benzo[k]fluoranthene					ug/L		11/27/23 14:08	11/28/23 14:50	
Bis(2-chloroethoxy)methane	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	,
Bis(2-chloroethyl)ether	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	,
Bis(2-ethylhexyl) phthalate	ND		40		ug/L		11/27/23 14:08	11/28/23 14:50	
Butyl benzyl phthalate	ND		20	1.1	ug/L		11/27/23 14:08	11/28/23 14:50	
Chrysene	ND		20	1.0	ug/L		11/27/23 14:08	11/28/23 14:50	
Dibenz(a,h)anthracene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
Diethyl phthalate	ND		20	1.0	ug/L		11/27/23 14:08	11/28/23 14:50	
Dimethyl phthalate	ND		20	0.91	•		11/27/23 14:08	11/28/23 14:50	
Di-n-butyl phthalate	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
Di-n-octyl phthalate	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	•
Fluoranthene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	,
Fluorene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
Hexachlorobenzene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	•
Hexachlorobutadiene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	•
Hexachlorocyclopentadiene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	
Hexachloroethane	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	•
Indeno[1,2,3-cd]pyrene	ND		20	1.5	ug/L		11/27/23 14:08	11/28/23 14:50	•
Isophorone	ND		20	0.74	ug/L		11/27/23 14:08	11/28/23 14:50	
Naphthalene	ND		20		ug/L		11/27/23 14:08	11/28/23 14:50	•
Decane	ND		40		ug/L		11/27/23 14:08	11/28/23 14:50	,
Nitrobenzene	ND		20	0.81	ug/L		11/27/23 14:08	11/28/23 14:50	
N-Nitrosodimethylamine	ND		40	0.57	ug/L		11/27/23 14:08	11/28/23 14:50	•
N-Nitrosodi-n-propylamine	ND		20	0.89	ug/L		11/27/23 14:08	11/28/23 14:50	,
N-Nitrosodiphenylamine	ND		20	0.82	ug/L		11/27/23 14:08	11/28/23 14:50	
n-Octadecane	ND		40	1.2	ug/L		11/27/23 14:08	11/28/23 14:50	

Eurofins Buffalo

Page 15 of 31

QC Sample Results

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-693322/1-A

Matrix: Water

Analysis Batch: 693404

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-215099-1

Prep Batch: 693322

	IIID	1110							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		40	3.2	ug/L		11/27/23 14:08	11/28/23 14:50	1
Phenanthrene	ND		20	1.2	ug/L		11/27/23 14:08	11/28/23 14:50	1
Phenol	ND		20	0.35	ug/L		11/27/23 14:08	11/28/23 14:50	1
Pyrene	ND		20	1.4	ug/L		11/27/23 14:08	11/28/23 14:50	1
2,6-Dinitrotoluene	ND		20	1.0	ug/L		11/27/23 14:08	11/28/23 14:50	1

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	72		52 - 151	11/27/23 14:08	11/28/23 14:50	1
2-Fluorobiphenyl	98		44 - 120	11/27/23 14:08	11/28/23 14:50	1
2-Fluorophenol	73		17 - 120	11/27/23 14:08	11/28/23 14:50	1
Nitrobenzene-d5	90		15 - 314	11/27/23 14:08	11/28/23 14:50	1
Phenol-d5	55		8 - 424	11/27/23 14:08	11/28/23 14:50	1
p-Terphenyl-d14	104		22 - 125	11/27/23 14:08	11/28/23 14:50	1

Lab Sample ID: LCS 480-693322/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Duny Towns Total/NA
Prep Type: Total/NA

Analysis Batch: 693404							Prep Batch: 69332
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	32.0	23.5	J	ug/L		73	44 - 142
1,2-Dichlorobenzene	32.0	23.4	J	ug/L		73	32 - 129
1,3-Dichlorobenzene	32.0	23.2	J	ug/L		73	1 - 172
1,4-Dichlorobenzene	32.0	23.8	J	ug/L		74	20 - 124
2,2'-oxybis[1-chloropropane]	32.0	24.4		ug/L		76	36 - 166
2,4,6-Trichlorophenol	32.0	29.4		ug/L		92	37 - 144
2,4-Dichlorophenol	32.0	28.5		ug/L		89	39 - 135
2,4-Dimethylphenol	32.0	23.5		ug/L		73	32 - 120
2,4-Dinitrophenol	64.0	53.0		ug/L		83	1 _ 191
2,4-Dinitrotoluene	32.0	33.1		ug/L		103	39 - 139
2-Chloronaphthalene	32.0	26.5		ug/L		83	60 - 120
2-Chlorophenol	32.0	26.1		ug/L		82	23 - 134
2-Nitrophenol	32.0	27.4		ug/L		86	29 - 182
3,3'-Dichlorobenzidine	64.0	53.5		ug/L		84	1 _ 262
4,6-Dinitro-2-methylphenol	64.0	63.4		ug/L		99	1 - 181
4-Bromophenyl phenyl ether	32.0	31.4		ug/L		98	53 - 127
4-Chloro-3-methylphenol	32.0	29.3		ug/L		92	22 - 147
4-Chlorophenyl phenyl ether	32.0	30.3		ug/L		95	25 - 158
4-Nitrophenol	64.0	58.7		ug/L		92	1 - 132
Acenaphthene	32.0	28.7		ug/L		90	47 - 145
Acenaphthylene	32.0	27.6		ug/L		86	33 - 145
Aniline	32.0	15.6	J	ug/L		49	40 - 120
Anthracene	32.0	31.0		ug/L		97	27 - 133
Benzo[a]anthracene	32.0	32.5		ug/L		102	33 - 143
Benzo[a]pyrene	32.0	33.9		ug/L		106	17 - 163
Benzo[b]fluoranthene	32.0	32.0		ug/L		100	24 - 159
Benzo[g,h,i]perylene	32.0	32.4		ug/L		101	1 _ 219
Benzo[k]fluoranthene	32.0	32.9		ug/L		103	11 - 162
Bis(2-chloroethoxy)methane	32.0	27.1		ug/L		85	33 - 184

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-693322/2-A

Matrix: Water

Analysis Batch: 693404

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 693322

Analysis Buton. 600404						20011. 0000	
	Spike	LCS I	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Bis(2-chloroethyl)ether	32.0	26.5		ug/L	83	12 - 158	
Bis(2-ethylhexyl) phthalate	32.0	32.4	J	ug/L	101	8 - 158	
Butyl benzyl phthalate	32.0	33.5		ug/L	105	1 - 152	
Chrysene	32.0	32.4		ug/L	101	17 - 168	
Dibenz(a,h)anthracene	32.0	32.9		ug/L	103	1 - 227	
Diethyl phthalate	32.0	33.9		ug/L	106	1 - 120	
Dimethyl phthalate	32.0	32.2		ug/L	101	1 - 120	
Di-n-butyl phthalate	32.0	34.4		ug/L	107	1 - 120	
Di-n-octyl phthalate	32.0	31.4		ug/L	98	4 - 146	
Fluoranthene	32.0	32.9		ug/L	103	26 - 137	
Fluorene	32.0	30.4		ug/L	95	59 - 121	
Hexachlorobenzene	32.0	33.6		ug/L	105	1 - 152	
Hexachlorocyclopentadiene	32.0	13.5	J	ug/L	42	5 - 120	
Hexachloroethane	32.0	22.1		ug/L	69	40 - 120	
Indeno[1,2,3-cd]pyrene	32.0	36.2		ug/L	113	1 - 171	
Isophorone	32.0	27.4		ug/L	86	21 - 196	
Naphthalene	32.0	25.5		ug/L	80	21 - 133	
Nitrobenzene	32.0	27.1		ug/L	85	35 - 180	
N-Nitrosodi-n-propylamine	32.0	28.5		ug/L	89	1 _ 230	
N-Nitrosodiphenylamine	32.0	31.2		ug/L	97	54 - 125	
Pentachlorophenol	64.0	37.5	J	ug/L	59	14 - 176	
Phenanthrene	32.0	33.1		ug/L	103	54 - 120	
Phenol	32.0	17.6	J	ug/L	55	5 - 120	
Pyrene	32.0	33.0		ug/L	103	52 - 120	
2,6-Dinitrotoluene	32.0	32.4		ug/L	101	50 - 158	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	98		52 - 151
2-Fluorobiphenyl	88		44 - 120
2-Fluorophenol	65		17 - 120
Nitrobenzene-d5	86		15 - 314
Phenol-d5	52		8 - 424
p-Terphenyl-d14	102		22 - 125

Lab Sample ID: LCSD 480-693322/3-A

Matrix: Water

Analysis Batch: 693404

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 693322

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	32.0	19.7	J	ug/L		62	44 - 142	18	34
1,2-Dichlorobenzene	32.0	19.1	J	ug/L		60	32 - 129	20	38
1,3-Dichlorobenzene	32.0	18.6	J	ug/L		58	1 - 172	22	37
1,4-Dichlorobenzene	32.0	18.7	J	ug/L		59	20 - 124	24	40
2,2'-oxybis[1-chloropropane]	32.0	19.6	J	ug/L		61	36 - 166	22	36
2,4,6-Trichlorophenol	32.0	23.8	*1	ug/L		74	37 - 144	21	20
2,4-Dichlorophenol	32.0	23.0		ug/L		72	39 - 135	22	23
2,4-Dimethylphenol	32.0	18.7	J *1	ug/L		59	32 - 120	22	18
2,4-Dinitrophenol	64.0	45.9		ug/L		72	1 - 191	14	29

Eurofins Buffalo

Page 17 of 31

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-693322/3-A

Matrix: Water

Surrogate

2,4,6-Tribromophenol

Analysis Batch: 693404

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 693322

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene	32.0	28.2		ug/L		88	39 - 139	16	20
2-Chloronaphthalene	32.0	22.1		ug/L		69	60 - 120	18	30
2-Chlorophenol	32.0	21.1		ug/L		66	23 - 134	21	26
2-Nitrophenol	32.0	22.2		ug/L		69	29 - 182	21	28
3,3'-Dichlorobenzidine	64.0	47.1		ug/L		74	1 - 262	13	31
4,6-Dinitro-2-methylphenol	64.0	51.6		ug/L		81	1 - 181	21	30
4-Bromophenyl phenyl ether	32.0	25.9	*1	ug/L		81	53 - 127	19	16
4-Chloro-3-methylphenol	32.0	24.6		ug/L		77	22 - 147	18	16
4-Chlorophenyl phenyl ether	32.0	25.6		ug/L		80	25 - 158	17	15
4-Nitrophenol	64.0	50.2		ug/L		78	1 - 132	16	24
Acenaphthene	32.0	24.5		ug/L		77	47 - 145	16	25
Acenaphthylene	32.0	22.9		ug/L		72	33 - 145	18	22
Aniline	32.0	15.0	J	ug/L		47	40 - 120	4	30
Anthracene	32.0	25.6		ug/L		80	27 - 133	19	15
Benzo[a]anthracene	32.0	27.3		ug/L		85	33 - 143	17	15
Benzo[a]pyrene	32.0	29.0		ug/L		91	17 - 163	16	15
Benzo[b]fluoranthene	32.0	27.4		ug/L		86	24 - 159	15	17
Benzo[g,h,i]perylene	32.0	27.7		ug/L		86	1 - 219	16	19
Benzo[k]fluoranthene	32.0	28.4		ug/L		89	11 - 162	15	19
Bis(2-chloroethoxy)methane	32.0	22.6		ug/L		71	33 - 184	18	23
Bis(2-chloroethyl)ether	32.0	20.5		ug/L		64	12 - 158	25	33
Bis(2-ethylhexyl) phthalate	32.0	26.8	J *1	ug/L		84	8 - 158	19	15
Butyl benzyl phthalate	32.0			ug/L		86	1 - 152	20	15
Chrysene	32.0	27.2		ug/L		85	17 - 168	17	15
Dibenz(a,h)anthracene	32.0	28.1		ug/L		88	1 _ 227	16	18
Diethyl phthalate	32.0	29.2		ug/L		91	1 - 120	15	15
Dimethyl phthalate	32.0	27.9		ug/L		87	1 - 120	14	15
Di-n-butyl phthalate	32.0	28.5	*1	ug/L		89	1 _ 120	19	15
Di-n-octyl phthalate	32.0	26.7		ug/L		83	4 - 146	16	15
Fluoranthene	32.0	27.2		ug/L		85	26 - 137	19	15
Fluorene	32.0	25.5		ug/L		80	59 - 121	18	18
Hexachlorobenzene	32.0	27.4	*1	ug/L		86	1 - 152	20	15
Hexachlorocyclopentadiene	32.0	11.8		ug/L		37	5 - 120	13	50
Hexachloroethane	32.0	18.3		ug/L		57	40 - 120	19	43
Indeno[1,2,3-cd]pyrene	32.0	30.4	-	ug/L		95	1 - 171	17	17
Isophorone	32.0	22.4		ug/L		70	21 - 196	20	21
Naphthalene	32.0	20.9		ug/L		65	21 - 133	20	31
Nitrobenzene	32.0	22.5		ug/L		70	35 - 180	18	27
N-Nitrosodi-n-propylamine	32.0	23.0		ug/L		72	1 - 230	21	23
N-Nitrosodiphenylamine	32.0	26.3	*1	ug/L		82	54 - 125	17	15
Pentachlorophenol	64.0	32.4		ug/L		51	14 - 176	15	21
Phenanthrene	32.0	26.9		ug/L		84	54 - 120	20	16
Phenol	32.0	14.3		ug/L		45	5 - 120	20	36
Pyrene	32.0	26.8		ug/L		84	52 - 120	21	15
	UU	_0.0	-	g. -		٠.			.0

Eurofins Buffalo

Limits

52 - 151

%Recovery Qualifier

82

2

5

5

6

8

10

12

14

le

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-693322/3-A

Matrix: Water

Analysis Batch: 693404

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 693322

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	73		44 - 120
2-Fluorophenol	51		17 - 120
Nitrobenzene-d5	70		15 - 314
Phenol-d5	44		8 - 424
p-Terphenyl-d14	89		22 - 125

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-693260/1-A

Matrix: Water

Analysis Batch: 693606

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 693260

	MB N	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND		0.060	0.038	ug/L		11/27/23 09:20	11/29/23 02:22	1
PCB-1221	ND		0.060	0.038	ug/L		11/27/23 09:20	11/29/23 02:22	1
PCB-1232	ND		0.060	0.038	ug/L		11/27/23 09:20	11/29/23 02:22	1
PCB-1242	ND		0.060	0.038	ug/L		11/27/23 09:20	11/29/23 02:22	1
PCB-1248	ND		0.060	0.038	ug/L		11/27/23 09:20	11/29/23 02:22	1
PCB-1254	ND		0.060	0.031	ug/L		11/27/23 09:20	11/29/23 02:22	1
PCB-1260	ND		0.060	0.031	ug/L		11/27/23 09:20	11/29/23 02:22	1
1									

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	54	36 - 121	11/27/23 09:20	11/29/23 02:22	1
Tetrachloro-m-xylene	81	42 - 135	11/27/23 09:20	11/29/23 02:22	1

Lab Sample ID: LCS 480-693260/2-A

Matrix: Water

Analysis Batch: 693606

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 693260

	Бріке	LUS	LUS			%Rec	
Analyte	Added	Result	Qualifier Un	it D	%Rec	Limits	
PCB-1016	1.00	1.09	ug/	L	109	69 - 123	
PCB-1260	1.00	1.01	ug/	L	101	69 - 120	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	60	36 - 121
Tetrachloro-m-xylene	87	42 - 135

Lab Sample ID: LCSD 480-693260/3-A

Matrix: Water

Analysis Batch: 693606

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 693260

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	1.00	1.05		ug/L		105	69 - 123	3	30
PCB-1260	1.00	1.01		ug/L		101	69 - 120	1	30

LCSD	LCSD

Surrogate	%Recovery Qualified	r Limits
DCB Decachlorobiphenyl	59	36 - 121
Tetrachloro-m-xylene	92	42 _ 135

Eurofins Buffalo

12/1/2023

Page 19 of 31

Project/Site: OSC- Former Buffalo Color Sites - 37745

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-693134/1-A

Matrix: Water

Analysis Batch: 693801

3801								Prep Batch:	693134
	MB	MB							
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	ND		0.0040	0.0010	mg/L		11/27/23 08:46	11/29/23 20:21	1
	ND		0.010	0.0016	mg/L		11/27/23 08:46	11/29/23 20:21	1
	ND		0.010	0.0030	mg/L		11/27/23 08:46	11/29/23 20:21	1
	ND		0.010	0.0013	mg/L		11/27/23 08:46	11/29/23 20:21	1

0.0015 mg/L

Lab Sample ID: LCS 480-693134/2-A

Matrix: Water

Analyte Chromium Copper Lead Nickel

Zinc

Analysis Batch: 693801

7							•
	Spike	LCS LCS				%Rec	
Analyte	Added R	esult Qualifier	r Unit	D	%Rec	Limits	
Chromium	0.200	0.199	mg/L	_	100	85 - 115	
Copper	0.200	0.209	mg/L		104	85 - 115	
Lead	0.200	0.227	mg/L		113	85 - 115	
Nickel	0.200	0.203	mg/L		102	85 - 115	
Zinc:	0.200	198	ma/l		99	85 ₋ 115	

0.010

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 480-693607/1-A

Matrix: Water

Analysis Batch: 693677

MB MB

nalyte	Resu

A	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared
M	Mercury	ND		0.00020	0.000043	mg/L		11/29/23 11:32

NΠ

Lab Sample ID: LCS 480-693607/2-A

Matrix: Water

Mercury

Analysis Batch: 693677

_		
Analyte		

Method:	420.4 -	Phenolics,	Total	Recoverable

Lab Sample ID: MB 480-693651/17

Matrix: Water

Analysis Batch: 693651

MB MB

Analyte Result Qualifier Phenolics, Total Recoverable ND

Lab Sample ID: LCS 480	-693651/18

Matrix: Water

Analysis Batch: 693651

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenolics, Total Recoverable	0.100	0.100		mg/L		100	90 - 110	

Spike

Added

0.00669

LCS LCS

0.00706

RL

0.010

Result Qualifier

MDL Unit

0.0035 mg/L

Unit

mg/L

D

Prepared

Job ID: 480-215099-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

11/29/23 20:21

11/27/23 08:46

Prep Type: Total/NA

Prep Batch: 693134

Client Sample ID: Method Blank

Analyzed

11/29/23 14:57

Prep Type: Total/NA

Prep Batch: 693607

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 693607

%Rec

%Rec Limits 106 85 - 115

Client Sample ID: Method Blank

Analyzed

11/28/23 19:02

Prep Type: Total/NA

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Eurofins Buffalo

Page 20 of 31

12/1/2023

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Prep Type: Total/NA

Method: 420.4 - Phenolics, Total Recoverable (Continued)

Lab Sample ID: 480-215099-1 MS Client Sample ID: BCC BSA SUMP

Matrix: Water

Analysis Batch: 693651

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Phenolics, Total Recoverable 0.034 0.100 0.138 mg/L 105 90 - 110

Lab Sample ID: 480-215099-1 DU **Client Sample ID: BCC BSA SUMP** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 693651

	Sample	Sample	DI) [OU				RPD
Analyte	Result	Qualifier	Resul	t C	Qualifier	Unit	D	RPD	Limit
Phenolics, Total Recoverable	0.034		0.034)		mg/L		 1	20

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-693454/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 693454

MB MB

	Analyte	Result Qualifier	RL	RL I	Unit	D	Prepared	Analyzed	Dil Fac
l	Total Suspended Solids	ND	1.0	1.0	mg/L			11/28/23 10:47	1

Lab Sample ID: LCS 480-693454/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 693454

7 maryoro Datom CCC 10 1								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	244	235.2		mg/L		97	88 - 110	

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 480-693345/1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 693345

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
pH	7.00	7.0		SU	_	100	99 - 101	

Method: SM 4500 P E - Phosphorus

Lab Sample ID: MB 480-693222/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 693222

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phosphorus	ND		0.010	0.0050	mg/L as P			11/26/23 11:54	1

Lab Sample ID: LCS 480-693222/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 693222

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Phosphorus	 0.200	0.194		mg/L as P	_	97	90 - 110

Eurofins Buffalo

QC Sample Results

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: 480-18722-B-3 MB

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 693180

MB MB

RL MDL Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed Biochemical Oxygen Demand ND 2.0 2.0 mg/L 11/22/23 12:20

Client Sample ID: Method Blank

Lab Sample ID: USB 480-693180/1 **Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 693180

USB USB

Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac Biochemical Oxygen Demand ND 2.0 2.0 mg/L 11/22/23 12:20

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-693180/2 **Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 693180

LCS LCS %Rec Spike Added Result Qualifier Unit Limits

Biochemical Oxygen Demand 198 157.6 85 - 115 mg/L

QC Association Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

GC/MS VOA

Analysis Batch: 693121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	624.1	
480-215099-2	TRIP BLANK	Total/NA	Water	624.1	
MB 480-693121/8	Method Blank	Total/NA	Water	624.1	
LCS 480-693121/6	Lab Control Sample	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 693322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	625	
MB 480-693322/1-A	Method Blank	Total/NA	Water	625	
LCS 480-693322/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 480-693322/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 693404

Lab Sample ID 480-215099-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Water	Method 625.1	Prep Batch 693322
MB 480-693322/1-A	Method Blank	Total/NA	Water	625.1	693322
LCS 480-693322/2-A	Lab Control Sample	Total/NA	Water	625.1	693322
LCSD 480-693322/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	693322

GC Semi VOA

Prep Batch: 693260

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	3510C	<u> </u>
MB 480-693260/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-693260/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-693260/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 693606

Lab Sample ID 480-215099-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 608.3	Prep Batch 693260
MB 480-693260/1-A	Method Blank	Total/NA	Water	608.3	693260
LCS 480-693260/2-A	Lab Control Sample	Total/NA	Water	608.3	693260
LCSD 480-693260/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	693260

Metals

Prep Batch: 693134

Lab Sample ID 480-215099-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 200.7	Prep Batch
MB 480-693134/1-A	Method Blank	Total/NA	Water	200.7	
LCS 480-693134/2-A	Lab Control Sample	Total/NA	Water	200.7	

Prep Batch: 693607

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	245.1	
MB 480-693607/1-A	Method Blank	Total/NA	Water	245.1	
LCS 480-693607/2-A	Lab Control Sample	Total/NA	Water	245.1	

Eurofins Buffalo

12/1/2023

Page 23 of 31

2

Job ID: 480-215099-1

3

4

6

7

9

10

12

13

14

QC Association Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Metals

Analy	/sis	Batch:	693677
-------	------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	245.1	693607
MB 480-693607/1-A	Method Blank	Total/NA	Water	245.1	693607
LCS 480-693607/2-A	Lab Control Sample	Total/NA	Water	245.1	693607

Analysis Batch: 693801

Lab S	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-2	15099-1	BCC BSA SUMP	Total/NA	Water	200.7 Rev 4.4	693134
MB 4	80-693134/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	693134
LCS 4	480-693134/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	693134

General Chemistry

Analysis Batch: 693180

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	SM 5210B	
480-18722-B-3 MB	Method Blank	Total/NA	Water	SM 5210B	
USB 480-693180/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-693180/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 693222

Lab Sample ID 480-215099-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method SM 4500 P E	Prep Batch
MB 480-693222/3	Method Blank	Total/NA	Water	SM 4500 P E	
LCS 480-693222/4	Lab Control Sample	Total/NA	Water	SM 4500 P E	

Analysis Batch: 693345

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	SM 4500 H+ B	
LCS 480-693345/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 693454

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	SM 2540D	
MB 480-693454/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-693454/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 693651

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-215099-1	BCC BSA SUMP	Total/NA	Water	420.4	
MB 480-693651/17	Method Blank	Total/NA	Water	420.4	
LCS 480-693651/18	Lab Control Sample	Total/NA	Water	420.4	
480-215099-1 MS	BCC BSA SUMP	Total/NA	Water	420.4	
480-215099-1 DU	BCC BSA SUMP	Total/NA	Water	420.4	

Analysis Batch: 693699

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215099-1	BCC BSA SUMP	Total/NA	Water	SM 4500 CN G	

Eurofins Buffalo

12/1/2023

2

Job ID: 480-215099-1

3

4

6

7

3

11

12

13

. .

13

Lab Chronicle

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Client Sample ID: BCC BSA SUMP

Date Collected: 11/21/23 10:00 Date Received: 11/21/23 15:20 Lab Sample ID: 480-215099-1

Matrix: Water

Job ID: 480-215099-1

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst or Analyzed Lab 11/22/23 15:54 Total/NA 624.1 693121 AXK EET BUF Analysis Total/NA Prep 625 693322 LSC **EET BUF** 11/27/23 14:08 Total/NA 625.1 693404 JMM EET BUF 11/28/23 16:13 Analysis 1 3510C Total/NA Prep 693260 JMP **EET BUF** 11/27/23 09:20 Total/NA Analysis 608.3 1 693606 DSC **EET BUF** 11/29/23 04:07 Total/NA Prep 200.7 693134 ESB **EET BUF** 11/27/23 08:46 Total/NA Analysis 200.7 Rev 4.4 693801 LMH **EET BUF** 11/29/23 21:01 1 Total/NA Prep 245.1 693607 NVK EET BUF 11/29/23 11:32 Total/NA 245.1 693677 NVK **EET BUF** 11/29/23 15:05 Analysis 1 Total/NA Analysis 420.4 693651 GW EET BUF 11/28/23 19:59 Total/NA Analysis SM 2540D 1 693454 KO **EET BUF** 11/28/23 10:47

1

1

2

1

693699

693222

693345 KB

693180 CG

JJP

GW

Client Sample ID: TRIP BLANK

Analysis

Analysis

Analysis

Analysis

Date Collected: 11/21/23 10:00

Date Received: 11/21/23 15:20

Lab Sample ID: 480-215099-2

11/28/23 21:44

11/22/23 17:24

11/26/23 11:54

11/22/23 12:20

EET BUF

EET BUF

EET BUF

EET BUF

Matrix: Water

Batch Dilution Batch Batch Prepared Prep Type Туре Method Factor Number Analyst Lab or Analyzed Run Total/NA Analysis 624.1 693121 AXK EET BUF 11/22/23 16:18

Laboratory References:

Total/NA

Total/NA

Total/NA

Total/NA

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

SM 4500 CN G

SM 4500 H+ B

SM 4500 P E

SM 5210B

Eurofins Buffalo

3

_

7

9

11

13

15

Accreditation/Certification Summary

Temperature

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

Laboratory: Eurofins Buffalo

SM 4500 H+ B

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Prog	ıram	Identification Number	Expiration Date
New York	NEL	AP	10026	03-31-24
• •	are included in this report, to	out the laboratory is not certif	ried by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
624.1		Water	1,2-Dichloroethene, Total	
625.1	625	Water	1,2-Dichlorobenzene	
625.1	625	Water	1,3-Dichlorobenzene	
625.1	625	Water	1,4-Dichlorobenzene	
SM 4500 CN G		Water	Cyanide, Amenable	
SM 4500 H+ B		Water	pН	

Water

Method Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Method **Method Description** Protocol Laboratory 624.1 Volatile Organic Compounds (GC/MS) EPA EET BUF Semivolatile Organic Compounds (GC/MS) 625.1 **EPA EET BUF** 608.3 Polychlorinated Biphenyls (PCBs) (GC) **EPA EET BUF** 200.7 Rev 4.4 Metals (ICP) **EPA EET BUF** 245.1 Mercury (CVAA) **EPA EET BUF** Phenolics, Total Recoverable 420.4 **EPA EET BUF** SM 2540D Solids, Total Suspended (TSS) EET BUF SM SM 4500 CN G Cyanide, Amenable SM **EET BUF** SM 4500 H+ B SM **EET BUF** SM 4500 P E Phosphorus SM **EET BUF** SM 5210B BOD, 5-Day SM **EET BUF** 200.7 Preparation, Total Metals **EPA EET BUF** 245.1 Preparation, Mercury EPA EET BUF 3510C Liquid-Liquid Extraction (Separatory Funnel) SW846 **EET BUF** 625 **EET BUF** Liquid-Liquid Extraction **EPA**

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-215099-1

Sample Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 480-215099-1
 BCC BSA SUMP
 Water
 11/21/23 10:00
 11/21/23 15:20

 480-215099-2
 TRIP BLANK
 Water
 11/21/23 10:00
 11/21/23 15:20

Job ID: 480-215099-1

3

4

E

6

8

9

44

12

4 4

15

Quantitation Limit Exceptions Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: OSC- Former Buffalo Color Sites - 37745

Job ID: 480-215099-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
625.1	2,4-Dinitrotoluene	Water	Total/NA	ug/L	5.0	10
625.1	4-Nitrophenol	Water	Total/NA	ug/L	10	15
625.1	Hexachlorocyclopentadiene	Water	Total/NA	ug/L	5.0	10

4

5

6

0

9

11

40

14

Part Contraction Part		l	-	Lab PM						Ö	arrier Tra	cking Mo(e)		COC No.	
100 100	Client Information	_	KUNZE INDE	Schove	John,	2				-		150		480-189552-60	57.1
Contracting inc Due Due Research Analysis Requested Analysis Analys	Client Contact: Kirsten Colligan	1	F84	E-Mail John S	chove	Øet eu	rofinsu	Scom		SS	ate of 0	1/2/		Page:	
Name	Company Ontario Specialty Contracting, Inc.		PWSID					Analy		eg .	estec				110
The Research Control of the Contro	Address. 140 Lee St.	Due Date Requested:	2KS					-		\vdash	-			Preservation Co	des:
Constitute Con	City Buffalo	TAT Requested (days):	-							_				A - HCL B - NaOH C - Zo Acetate	N - None O - AsNaO2
Sample Sample Matrix Sample Sample Matrix Sample Sa	State, Zp. NY, 14210	92	W WO	T				-		_				D - Nitric Acid E - NaHSO4	P - Na2048 Q - Na2SO3 R - Na2SO3
Sample (Yea or No) Water (Youngland) Sample Disposal (A fee may be assessed if samples or mentalized Organisms of Company) Sample Disposal (A fee may be assessed if samples are retained longer than of Customs) Semple Disposal (A fee may be assessed if samples are retained longer than of Customs) Semple Disposal (A fee may be assessed if samples are retained longer than of Customs) Semple Disposal (A fee may be assessed if samples are retained longer than of Customs) Semple Disposal (A fee may be assessed if samples are retained longer than of Customs) Semple Disposal (A fee may be assessed if samples are retained longer than of Customs) Semple Disposal (A fee may be assessed if samples are retained longer than of Customs) Secondary Received by Company Received by Date (Time) Company Received by Date (Time) D	Phone: 716 -856-333	75		(c				29 - AC	9	pu	eldsr			G - Amehior H - Assorbie Acid	S - H2SO4 T - TSP Dodecahyd
Sample Matrix Sample (Vecong) Sample Matrix Sample (Vecong) Sample (Vecong) Sample Matrix Sample (Vecong) Sample (Vecong)	Email kcolligan@oscinc.com			N 10					- AOV						U - Acetone V - MCAA
Sample (Grecomp Code) Sample (Grecomp Code) Nater Time (Grecomp Code) Nater Company (Grecomp Code) Nater Code) Nater Code (Grecomp Code) Nater Company (Grecomp Code) Nater Code (Grecomp Code) Nater C	Project Name: OSC- Former Buffalo Color Sites/ Event Desc: Buffalo Colo	Project # olor - Qu 48003159		Α)	10 00				- 1siJ					X -1	Y - Trizma Z - other (specify)
Sample Date Time Cargab) Discussion Sample Cargab) Discussion Sample Cargab) Discussion	Site: New York	SSOW#		lamst	N) de	nJouds			Intant						
## Presentation Code 1	Sample Identification		Sample Type (C=comp,		MISM miche				25 - Priority Pol			Hq - +H_002#M		<u> </u>	
#fon mmable			Preserva		X			1-			, "	s z			IIsti uctions/note.
#from mmable Skin firstent Poison B Unknown Radiological Special Instructions/Oc Requirements: Interest Poison B Unknown Radiological Special Instructions/OC Requirements:	BCC BSA SUMP	-	-	Vater				100	1			-			
adon minable Sun initiant Poison B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 in the Citent Poison B Unknown Radiological Special instructions/GC Requirements Init IV. Other (specify) Date D	Trin Blook	╀	,	100		+	ľ	+		+	-		F		
Ago. 215099 Chain of Custod and Company Time Date: T	Tip Danin	->		vare		+		, -		+++					
### Skin Irritant						+		+		+	+				
ation meable Skin tritiant Poison B Unknown Radiological Spanple Disposal (A fee may be assessed if samples are retained forger than 1 in P. Other (specify) Date: Time: Shin tritiant Desermine: Company Received by Desermine: Company Received by Desermine: Company Received by Coder Temperature(s) "C and Other Temperature(s) "C and Othe						+		-		+	-		+		
### Sample Disposal (A fee may be assessed if samples are retained forger than 1 mmable Skin Irritant Date: Itil. IV. Other (specify) Date: Time: Tim						\vdash									
ation mable Skin Intrant Poison B Unknown Radiological Special Instructions/OC Requirements Date: Time: Method of Shipment Date: Time: Method of Shipment Date: Time: Date: Date: Time: Date:															
### Sample Disposal (A fee may be assessed if samples are retained longer than 1 in mable		>				\dashv		-		_	_		80-2150		ody
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mmable Skin Irritant Disposal By Lab Archive For						_	1	_		+	+	1			
mmable Skin Irritant Poison B Unknown Radiological Special Instructions/QC Requirements: Ill, IV, Other (specify) Special Instructions/QC Requirements: Method of Shipment			-		Sam	Je Dis	posal	A fee	may b	e ass	essed	if sample:	s are reta	ined longer than	1 month)
DaterTime: DaterTime: Company Received by Cooler Temperature(s) °C and Other Reneates.	ant] [Radiological) Soc	Retur	n To C	lient IOC B		Disj	posal	3y Lab]	rchive For	Months
Date/Time Date	The Control of the Co	4									. Г				
Date/Time Company Received by Date/Time Date/Time Company Received by Date/Time Date/T	Empty wit Reinduished by. Reinquished by.		and C	П		pomode					Wet	od of Shipme	7		
Date/Time: Company Received by: Date/Time: A No A No A No Date/Time:		7	300	550	٤	7	5					Care	1-23		
Date/Time: Company Received by: Date/Time: Company Received by: Date/Time: D	Relinquished by:	Date/Time:	Com	any	œ	eceived	, O					Date/T	ime		
Custody Seal No.	Relinquished by:	Date/Time	Com	any	œ	sceived	by:					Date/T	ime		Company
					ō	ooler Tei	mperatur	e(s) °C a	nd Other	Rema	Jes L				
					1				7		1				Ver: 06/08/2021

4th ata 23
Seurofins BSA 25/MP.

Chain of Custody Record

Eurofins Buffalo 10 Hazelwood Drive

Login Sample Receipt Checklist

Client: Ontario Specialty Contracting, Inc.

Job Number: 480-215099-1

Login Number: 215099 List Source: Eurofins Buffalo

List Number: 1

Creator: Yeager, Brian A

Creator. Teager, Briair A		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OSC
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins Buffalo Page 31 of 31 12/1/2023

2

A

4

6

0

13

							Buffalo Color GWTF W										kly F	roce	ss Assessm	ent						
		Bag Fi 1A,		Bag Fi			-Media r F-30		LG	AC CA-40	and CA-	41			Efflue	ent Tank No. 1 T-28		Ef	fluent Tank No. 2 T-	27	D	ischarge	Lines To	BSA Sur	тр	
Date	Associate	Influent Pressure PI-1A	Effluent Pressure PI-1B	Influent Pressure PI-107A	Effluent Pressure PI-107B	Influent Pressure PI-30A	Effluent Pressure PI-30B	Flow Rate FE-60	Lead Influent Pressure PI-40A	Lead Effluent Pressure PI-40B	Lag Influent Pressure PI-41A	Lag Effluent Pressure PI-41B	PH Meter	Pressure PI-106A/B	Flow Rate FE-106	Totalizer FE-106	Pressure PI-106C	Flow Rate FE-107	Totalizer FE-107	Pressure PI-107C	Leak Detection Vault No. 1 Pressure PI-106D	Leak Detection Vault No. 1 Pressure PI-107D	Leak Detection Vault No. 3 Pressure PI-106E	Leak Detection Vault No. 3 Pressure PI-107E	Containment Line Pressure Gauge Checks	Column1
10/6/2023	TK	45	45	35	28	40	30	12.0	38	34	35	35	8.23	22	12	41,334,356	26	21.6	1,301,400	27						
10/13/2023	TK	45	45	34	24	40	30	12.0	40	35	35	35	8.27	22	11.9	41,397,876	26	19.9	1,305,007	27						
10/20/2023	TK	45	45	34	24	40	32	11.9	38	36	35	35	8.32	22	11.8	41,462,464	26	19.6	1,308,334	27						
10/27/2023	TK	45	45	34	25	40	30	11.7	38	34	35	35	8.35	22	11.7	41,527,053	26	20.4	1,311,949	27						
11/3/2023	TK	45	45	34	22	40	28	11.4	38	32	35	35	8.30	22	11.3	41,592,312	26	19.8	1,315,259	27						
11/10/2023	TK	45	45	34	20	40	30	11.8	40	34	35	35	8.23	22	11.5	41,662,764	26	19.2	1,319,109	27						
11/17/2023	TK	45	45	34	28	40	30	11.5	38	34	35	35	8.34	22	11.5	41,723,984	26	24.1	1,322,360	27						
11/24/2023	TK	45	45	34	26	40	28	11.4	38	34	35	35	8.25	22	11.3	41,785,448	26	24.4	1,325,580	27						
12/1/2023	TK	45	45	34	27	40	30	11.3	38	34	35	35	8.18	22	11.2	41,845,608	26	23.2	1,328,643	27						
12/8/2023	TK	45	45	34	26	42	30	11.2	38	32	35	35	8.3	22	11.2	41,906,744	26	22.8	1,331,978	27						
12/15/2023	TK	45	45	33	26	40	28	11.1	38	32	35	35	8.25	22	11.1	41,966,004	26	22.7	1,335,122	27						
12/22/2023	TK	45	45	34	26	40	28	10.9	38	32	35	35	8.29	22	10.9	42,026,004	26	22.2	1,338,431	27						
12/29/2023	TK	45	45	34	26	40	29	11.2	38	32	35	35	8.34	22	10.9	42,088,592	26	21.8	1,341,753	27						

DATE	D1A GAC SERVICE	D1B GAC SERVICE	D2 GAC SERVICE	MMF SERVICE	D1A GAC FLUSH	D1B GAC FLUSH	D2 GAC FLUSH	MMF FLUSH	BF 1A CHANGE	BF 1B CHANGE	BF 2A CHANGE	BF 2B CHANGE	ADDITIONAL NOTES / NON ROUTINE REPAIR & MAINTENANCE
10/1/2023					1	1		1	1	1			System down 17:55 9/30-back-up 5:55 10/1
10/2/2023					1	1		1	2	2			
10/3/2023								1	2	2			
10/4/2023													
10/5/2023					4	1		1	2	2			
10/6/2023					1	1							
10/8/2023													
10/9/2023								1	2	2			
10/10/2023								1	2	2			
10/11/2023													
10/12/2023					1			1	2	2			
10/13/2023								1	2	2			
10/14/2023													
10/15/2023													
10/16/2023								1	2	2			
10/17/2023								1	2	2			
10/18/2023								1	2	2			
10/19/2023					1			1	2	2			
10/21/2023					-			_	-				
10/22/2023													
10/23/2023								1	2	2			
10/24/2023								1	2	2			
10/25/2023													
10/26/2023								1	4	4			cleaned tank 10-Napal res /smell noticed
10/27/2023								1	2	2			
10/28/2023													
10/29/2023							1	4	2	2			
10/30/2023							1	1	2	2			
11/1/2023													
11/2/2023								1	2	2			
11/3/2023								1	2	2			
11/4/2023													
11/5/2023								1	1	1			system down 0353 back-up 0600
11/6/2023					1	1		1	2	2			
11/7/2023								1	2	2			
11/8/2023													
11/9/2023								1	2	2			
11/10/2023 11/11/2023								2	2	2			
11/11/2023													
11/13/2023							1	1	2	2	1	1	
11/14/2023							_	1	2	2			
11/15/2023													
11/16/2023						_		2	2	2			
11/17/2023								1	2	2			
11/18/2023													
11/19/2023													
11/20/2023								2	2	2			
11/21/2023								1	2	2			
11/22/2023 11/23/2023								1	1	1			
11/23/2023								2	2	2			
11/24/2023									_				
11/26/2023													
11/27/2023								2	2	2			
11/28/2023								2	2	2			
11/29/2023													
11/30/2023								2	2	2			
12/1/2023								2	2	2			

DATE	D1A GAC SERVICE	D1B GAC SERVICE	D2 GAC SERVICE	MMF SERVICE	D1A GAC FLUSH	D1B GAC FLUSH	D2 GAC FLUSH	MMF FLUSH	BF 1A CHANGE	BF 1B CHANGE	BF 2A CHANGE	BF 2B CHANGE	ADDITIONAL NOTES / NON ROUTINE REPAIR & MAINTENANCE
12/2/2023													
12/3/2023													
12/4/2023					1	1		2	2	2			cleaned tank 10
12/5/2023								2	2	3			
12/6/2023													
12/7/2023								2	2	3			
12/8/2023								2	2	2			
12/9/2023													
12/10/2023													
12/11/2023						1		2	2	2			
12/12/2023								2	1	1			
12/13/2023													
12/14/2023					1	1		2	2	2			
12/15/2023								2	2	2			
12/16/2023													
12/17/2023													
12/18/2023								1	2	2			
12/19/2023								1	2	2			
12/20/2023													
12/21/2023					1	1		2	2	2			
12/22/2023								2	2	2			
12/23/2023													
12/24/2023								1	1	1		s	ystem down 21:56 12/23/23 back up 07:00 12/24/2
12/25/2023													
12/26/2023								2	2	2			
12/27/2023								2	2	2			
12/28/2023								1	1	1			
12/29/2023								2	2	2			
12/30/2023		-											
12/31/2023								2	1	1		s	ystem down 00:30 12/31/23 back up 11:00 12/31/2

SAFTEY. EXPERIENCE. EXCELLENCE

May 1, 2024

Michael Szilagyi Industrial Waste Administrator Buffalo Sewer Authority 90 West Ferry Street Buffalo, New York, 14213

Subject: South Buffalo Development Corporation, LLC

Former Buffalo Color Corporation Site

Permit #20-06-BU109 OSC Project ID: 16011

Dear Mr. Szilagyi:

On behalf of South Buffalo Development Corporation, LLC (SBD), Ontario Specialty Contracting, Inc. (OSC) is submitting the Discharge Monitoring Report for the Buffalo Color Remediation Site covering the period of January 1 through March 31, 2024. This Discharge Monitoring Report has been completed in accordance with the requirements of Permit #20-06-BU109.

Included with the report are:

Operation log sheets;

A copy of the current BSA discharge permit; Schematic showing the location for monitoring and sampling; Summary of the discharge flow by month; Comparison of analytical data to permit limits; and

Analytical laboratory results.

Please review the attached information and feel free to contact me if you have any questions.

Sincerely,

Kirsten Colligan

Project Manager - Ontario Specialty Contracting, Inc.

cc: Eugene Melnyk NYSDEC Region 9
Megan Kuczka NYSDEC Region 9

John Yensan South Buffalo Development, LLC

Todd Waldrop Inventum Engineering

Industrial Waste Section Buffalo Sewer Authority Treatment Plant 90 West Ferry Street Buffalo, New York, 14213

B.P.D.E.S. Permit No. #20-06-BU109
Former Buffalo Color Corporation Site
South Buffalo Development Corporation LLC (SBD)
Reporting Period: January 1, 2024 through March 31, 2024

The following is the discharge data associated with the operations of the former Buffalo Color Corporation Area A and D Groundwater Extraction System throughout the reporting period. A schematic representing the current locations for discharge sampling is provided as an attachment. The monthly flow data presented is based upon flow data from the EW-1, EW-2, EW-4, and EW-5 flow totalizers, plus any flow from the Area D well pumping. All samples gathered were grab samples and analysis was provided by Eurofins Laboratory located in Amherst, NY. The sample event analytical results are attached.

EX-3 remains down during the reporting period and will likely be replaced when the new system is installed.

Total Flow Data by Month:

 January 2024
 332,541 gallons

 February 2024
 318,082 gallons

 March 2024
 315,673 gallons

Total Quarterly Discharge 966,296 gallons

Estimated Area D contribution this period:

4,334 gallons

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including possibility of fine and imprisonment for knowing violations.

Kirsten Colligan Project Manager

Kito Coy

Ontario Specialty Contracting, Inc.

Attachments: BSA Permit Analytical Summary Table, BSA Discharge Permit, Monitoring and Sampling Schematic, Laboratory Analytical Results, and Field Data Collection Sheets

Compliance Confirmation Discharge Monitoring Report

BSA Permit No. Sample Date: 20-06-BU109 2/13/2024 Effective June 1, 2020 Sample Location: Onsite Pump Station to BSA

Year: 2024 Month: MAR Event Group: SUMP Lab Job ID: J204688-1

	BSA Permit Parameter		Input alytical Result		Conver Analytical I	Results	BSA Daily Max Limi	t	Permit Compliance	MAID	Quantity	Permit Compliance
Chemical	CAS No. / Method ID	Quantity	Reporting Limit	Unit	Quantity	Unit	Quantity	Unit		mg/L	mg/L	
рН	PH	8.0	0.100	SU	8.00	SU	5.0 - 12.0	SU	Yes			
BOD5	BOD	ND	2.0	mg/L	ND	mg/L	250	mg/L	Yes			
Total Phenol	TOTPHEN	0.0083	0.010	mg/L	0.001	lbs/day	1.67	lbs/day	Yes	20	0.008	Yes
Total Chromium	7440-47-3	0.0044	0.0040	mg/L	0.0004	lbs/day	0.83	lbs/day	Yes	40	0.00	Yes
Total Copper	7440-50-8	0.0061	0.010	mg/L	0.001	lbs/day	0.67	lbs/day	Yes	16	0.0061	Yes
Lead	7439-92-1	0.03	0.0050	mg/L	0.0027	lbs/day	0.541	lbs/day	Yes	65	0.0300	Yes
Total Mercury	7439-97-6	ND	0.00020	mg/L	ND	lbs/day	0.00033	lbs/day	Yes	0.0008	ND	Yes
Total Nickel	7440-02-0	ND	0.010	mg/L	ND	lbs/day	1.17	lbs/day	Yes	14	ND	Yes
Zinc	7440-66-6	0.0026	0.010	mg/L	0.000	lbs/day	2.046	lbs/day	Yes	25	0.003	Yes
Amendable Cyanide	CAN	0.053	0.010	mg/L	0.005	lbs/day	2.59	lbs/day	Yes	6.2	0.053	Yes
Total PCB	Sum Method_E608	ND	0.060	ug/L	ND	lbs/day	0.0001	lbs/day	Yes	0.002	ND	Yes
Aniline or Aniline Derivative*	62-53-3	8.8	40	ug/L	0.792	lbs/day	50	lbs/day	Yes	0.01	0.0088	Yes
Benzene	71-43-2	1.2	5	ug/L	0.0001	lbs/day	0.059	lbs/day	Yes	0.142	0.001	Yes
Chlorobenzene	108-90-7	2.3	5	ug/L	0.0002	lbs/day	0.129	lbs/day	Yes	0.31	0.00	Yes
1,2-Dichlorobenzene	95-50-1	ND	5	ug/L	ND	lbs/day	0.197	lbs/day	Yes	0.472	ND	Yes
Fluoranthene	206-44-0	ND	20	ug/L	ND	lbs/day	0.0417	lbs/day	Yes	0.1	ND	Yes
Acenaphthylene	208-96-8	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Naphthalene	91-20-3	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Anthracene	120-12-7	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Fluorene	86-73-7	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Phenanthrene	85-01-8	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Max Individual Purgeables*	Max Method_E624	30.3	25	ug/L	0.030	mg/L	*	mg/L	Yes			
Total Suspended Solids	TSS	72.8	4.0	mg/L	72.8	mg/L	250	mg/L	Yes			
Total Phosphate**	7723-14-0	0.28	0.010	mg/L	0.280	mg/L	15.35	mg/L	Yes			
Total Flow (average)	N/A	7.489429012	-	gpm	10,785	gpd	50,000	gpd	Yes			

^{*}Permit requires reporting of Aniline or Aniline Derivative and Max Individual Purgeables concentrations in excess of 0.01 mg/L.

**Analyzed by total phosphorus method SM 4500-P E
MAID - Maximum Allowable Instantaneous Discharge

Flow Calculations		
Combined Effluent No. 1 and	d No. 2 Flow Totals (ga	llons)
Initial Reading	77,439,363	1/1/2024
Final Reading	78,409,993	3/31/2024
Total Days in Period	90	
Total Flow for Period	970,630	gallons
Average Flow for Period	7.49	gpm

ADMINISTRATIVE OFFICES

1038 City Hall 65 Niagara Square Buffalo, NY 14202-3378 Phone: (716) 851-4664 Fax: (716) 856-5810

WASTEWATER TREATMENT PLANT

FOOT OF WEST FERRY 90 WEST FERRY STREET BUFFALO, NY 14213-1799 PHONE: (716) 851-4664 FAX: (716) 883-3789

April 30, 2020

RECEIVED MAY (1 4 2020

Ms. Kirsten Colligan Project Manager 333 Ganson Street Buffalo, New York 14203

RE: **B.P.D.E.S. Permit #20-06-BU109**

Dear Mr. Gabner:

Enclosed is your new BPDES Permit #20-06-BU109. This permit is issued by The Buffalo Sewer Authority.

This original permit must be maintained at your South Park Avenue remediation facility and must be available for inspection at all times. It is your responsibility to assure continual compliance with the terms and conditions of this permit. Finally, you must apply for renewal at least 6 months before this permit expires.

If you have any further questions, please call Mike Szilagyi at 716-851-4664, ext. 5253 or myself at 716-851-4664, ext. 5250.

Very truly yours, BUFFALO SEWER AUTHORITY

Leslie Sedita

Industrial Waste Administrator

cc:

D. Rossney

M. Szilagyi

AUTHORIZATION TO DISCHARGE UNDER THE BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT NO. 20-06-BU109 EPA 40CFR 403

In accordance with the provisions of the Federal Water Pollution Control Act, as amended, and the Sewer Regulations of the Buffalo Sewer Authority, authorization is hereby granted to:

South Buffalo Development, LLC.

to discharge remediated wastewater from the site located at:

Areas A and D of the former Buffalo Color Corporation Site 1037 South Park Avenue, Buffalo, New York 14210

to the Buffalo Municipal Sewer System.

Issuance of this permit is based upon a permit application filed on **February 15, 2020** and analytical data. This permit is granted in accordance with discharge limitations, monitoring requirements and other conditions set forth in Parts I and II hereof.

Effective this June 1, 2020 To Expire May 31, 2023

General Manager

PART I: SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfalls (see attached maps) shall be limited and monitored **Quarterly** by the permittee as specified below:

Sample		Discharge L	Limitations	Sampling Requirements	
Point	Parameter	Daily Max	MAID* (mg/L)	Type	Frequency
001	pH ⁽¹⁾	5.0 - 12.0 SU	, ,	Probe Flow	Quarterly
	Total Flow BOD₅	50,000 gals 250 mg/L ⁽³⁾		Meter ⁽²⁾ Composite (4)	Continuous Quarterly
	Total Suspended Solids	250 mg/L $^{(3)}$		Composite	Quarterly
	Total Phosphate	15.35 mg/L ⁽³⁾		Composite	Quarterly
	Total Phenol ⁽⁵⁾	1.67 lbs	20.0	Composite	Quarterly
	Amenable Cyanide	2.59 lbs	6.2	Grab (7)	Quarterly
	Total Mercury	0.00033 lbs	0.0008	Composite	Quarterly
	Total Nickel	1.17 lbs	14.0	Composite	Quarterly
	Total Copper	0.67 lbs	16.0	Composite	Quarterly
	Total Chromium	0.83 lbs	40.0	Composite	Quarterly
	Lead	0.541 lbs	65.0	Composite	Quarterly
	Zinc	2.046 lbs	25.0	Composite	Quarterly
	Purgeables-EPA Test	(6)		Grab ⁽⁷⁾	Quarterly
	Methods 624 Base/Neutrals & Acid Extractable-EPA	(8)			Quarterly
	Tests Method 625			Grab	Quarterly
	EPA Test Method 608	(9)		Grab	Quarterly
	Aniline	50.0 lbs	0.00	Grab	Quarterly
	Benzene	0.059 lbs	0.142 mg/L	Grab	Quarterly
	Chlorobenzene	0.129 lbs	0.310 mg/L	Grab	Quarterly
	1, 2-Dichlorbenzene	0.197 lbs.	0.472 mg/L	Grab	Quarterly
	Fluoranthene	0.0417 lbs.	0.100 mg/L	Grab	Quarterly
	Acenaphtylene	0.131 lbs.	0.314 mg/L	Grab	Quarterly
	Naphthalene	0.131 lbs.	0.314 mg/L	Grab	Quarterly
	Anthracene	0.131 lbs.	0.314 mg/L	Grab	Quarterly

Permit No. 20-06-BU109 Part I Page 3 of 7

Sample	Parameter	Discharge Limitations		Sampling Requirements	
Point		Daily Max	Maid*	Type	Frequency
	Fluorene	0.131 lbs.	0.314 mg/L	Grab	Quarterly
	Phenanthrene	0.131 lbs.	0.314 mg/L	Grab	Quarterly

^{*}M.A.I.D. – Maximum Allowable Instantaneous Discharge – Slug Limit. SEE PAGE FOUR (4) FOR EXPLANATION OF SPECIFIC REQUIREMENTS.

PART I: SPECIFIC CONDITIONS

B. DISCHARGE MONITORING REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported quarterly by the permittee on the days specified below:

Sample Point	Parameter	Reporting	Requirements
001	All Analytes	Initial Report*	Subsequent Reports*
	1	July 31, 2020	October 31, 2020
			January 31, 2021
			April 30, 2021
			July 31, 2021
			October 31, 2021
			January 31, 2022
			April 30, 2022
			July 31, 2022
			October 31, 2022 **
			January 31, 2023
			April 30, 2023

^{*} Each reporting dated is for samples collected during the previous quarter.

^{**} The Industrial Discharge Permit Application to renew discharge permit is due six (6) months prior to the expiration of this permit.

PART I: SPECIFIC CONDITIONS

C. SPECIAL REQUIREMENTS

- (1) The pH meter must be calibrated and maintained in accordance with the manufacturer's specifications. The calibrations and the person(s) responsible for it must be recorded in a bound logbook. This logbook must be available for BSA inspection at all times.
- All flow meters must be calibrated and certified by a certified manufacturer's representative at least once per year. This report must be submitted with the annual report. All flow meters must be serviced and maintained in accordance with the manufacturer's specifications. The BSA must be notified of any malfunctions which last for more that 24 hours within three (3) days of the malfunction. If a flow meter, especially at SP001, remains out of service for more than five (5) consecutive days, the permittee must install a temporary meter until such time as the defective meter is repaired or replaced. The BSA at its option, may require a written report on any malfunctions.
- (3) Surchargeable limit only.
- (4) Composite samples may be flow proportioned.
- (5) EPA Test Method 604.
- (6) The permittee must report any compound whose concentration is greater than 0.01 mg/L. The permittee is not authorized to discharge any of the parameters evaluated by these test procedures which may cause or contribute to a violation of water quality standards, worker health or safety limits or harm the sewerage system. Any parameter detected may at the discretion of the Buffalo Sewer Authority, be specifically limited and incorporated into this permit.
- (7) Four grab samples must be properly taken and preserved over an equally spaced time period during a normal discharge day. The four grab samples must be flow proportionally composited at a New York State Department of Health certified lab.
- (8) All samples collected for the base neutral and acid extractable EPA analytical test procedures must go through a special cleanup to prevent aniline and aniline derivative interference of the analytical method. The permittee must report any aniline and aniline derivative whose concentration is greater that 0.01 mg/L.

Permit No. 20-06-BU109 Part I Page 6 of 7

(9) The permittee must report any compound whose concentration is greater than 0.30 ug/L. The permittee is not authorized to discharge any of the parameters evaluated by these test procedures which may cause or contribute to a violation of water quality standards, worker health or safety limits or harm the sewerage system. Any parameter detected may at the discretion of the Buffalo Sewer Authority, be specifically limited and incorporated into this permit.

BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT PART II: GENERAL CONDITIONS

A. MONITORING AND REPORTING

1. Local Limits

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes for the Clean Water Act.

2. Definitions

Definitions of terms contained in this permit are as defined in the Buffalo Sewer Authority Sewer Use Regulations.

3. Discharge Sampling Analysis

All Wastewater discharge samples and analyses and flow measurements shall be representative of the volume and character of the monitored discharge. Methods employed for flow measurements and sample collections and analyses shall conform to the Buffalo Sewer Authority "Sampling Measurement and Analytical Guidelines Sheet".

4. Recording of Results

For each measurement or sample taken pursuant to the requirements of the permit, the permittee shall record the information as required in the "Sampling Measurement and Analytical Guidelines Sheet".

5. Additional Monitoring by Permittee

If the permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified in 40 CFR Part 136 the results of such monitoring shall be included in the calculation and reporting of values required under Part I, B. Such increased frequency shall also be indicated.

6. Reporting

All reports prepared in accordance with this Permit shall be submitted to:

Industrial Waste Section Buffalo Sewer Authority Treatment Plant 90 West Ferry Street Buffalo, New York 14213

All self-monitoring reports shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines Sheet". These reporting requirements shall not relieve the permittee of any other reports, which may be required by the N.Y.S.D.E.C. or the U.S.E.P.A.

7. Certification Statement

All self-monitoring reports shall include the following certification statement, signed by the preparer of the report:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the systems, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations".

B. PERMITTEE REQUIREMENTS

1. Change in Discharge

All discharges authorized herein shall be consistent with the terms and conditions of this permit and with the information contained in the BPDES permit application on which basis this permit is granted. In the event of any facility expansions, production increases, process modifications or the installation, modification or repair of any pretreatment equipment which may result in new, different or increased discharges of pollutants, a new BPDES Permit application must be submitted prior to any change. Following receipt of an amended application, the BSA may modify this permit to specify and limit any pollutants not previously limited. In the event that the proposed change will be covered under an applicable Categorical Standard, a Baseline Monitoring Report must be submitted at least ninety (90) days prior to any discharge.

2. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained at this facility for a minimum of three (3) years, or longer if requested by the General Manager.

3. Slug Control Plan

Upon written notification by the BSA that a slug control plan is necessary for the permittee, the plan shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines" sheet. Within 90 days of the BSA notification, the permittee must implement the slug control plan

4. Notification of Slug, Accidental Discharge or Spill

In the event that a slug, accidental discharge or any spill occurs at the facility for which this permit is issued, it is the responsibility of the permittee to immediately notify the B.S.A. Treatment Plant of the quantity and character of such discharge. During normal business hours, Monday – Friday, 7:30 AM - 3:00 PM call 716-851-4664, ext. 5374. After normal business hours call 716-851-4664, ext. 600. For all slug discharges, and when requested by the BSA following an accidental discharge or spill, within five (5) days following all such discharges, the permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

5. Noncompliance Notification

If, for any reason, the permittee does not comply with or will be unable to comply with any discharge limitation specified in this permit, the permittee or their assigns must verbally notify the Industrial Waste Section at 716-851-4664 ext. 5374 within twenty-four (24) hours of becoming aware of the violation. The permittee shall provide the Industrial Waste Section with the following information, in writing, within five (5) days of becoming aware of such condition:

- a. a description of the discharge and cause of noncompliance and;
- b. The period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

Additionally, the permittee shall repeat the sampling and analysis and submit these results of the report analysis to the Industrial Waste Section within 30 days after becoming aware of the violation.

6. Adverse Impact

The permittee shall take all reasonable steps to minimize any adverse impact to the Buffalo Sewerage System resulting from noncompliance with any discharge limitations specified in this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

7. Waste Residuals

Solids, sludges, filter backwash or other pollutants removed in the course of treatment or control of wastewaters and/or the treatment of intake waters, shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the Buffalo Sewer System.

8. Power Failures

In order to maintain compliance with the discharge limitations and prohibitions of this permit, the permittee shall provide an alternative power source sufficient to operate the wastewater control facilities; or, if such alternative power source is not provided the permittee shall halt, reduce or otherwise control production and/or controlled discharges upon the loss of power to the wastewater control facilities.

9. Treatment Upsets

- a. Any industrial user which experiences an upset in operations that places it in a temporary state of noncompliance, which is not the result of operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation, shall inform the Industrial Waste Section immediately upon becoming aware of the upset. Where such information is given verbally, a written report shall be filed by the user within five (5) days. The report shall contain:
 - (i) A description of the upset, its cause(s) and impact on the discharger's compliance status;
 - (ii) The duration of noncompliance, including exact dates and times of noncompliance, and if the non-compliance is continuing, the time by which compliance is reasonably expected to be restored;
 - (iii) All steps taken or planned to reduce, eliminate, and prevent recurrence of such an upset.
- b. An industrial user which complies with the notification provisions of this Section in a timely manner shall have an affirmative defense to any enforcement action brought by the Industrial Waste Section for any

noncompliance of the limits in this permit, which arises out of violations attributable to and alleged to have occurred during the period of the documented and verified upset.

10. Treatment Bypasses

- a. A bypass of the treatment system is prohibited unless the following conditions are met:
 - (i) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; or
 - (ii) There was no feasible alternative to the bypass, including the use of auxiliary treatment or retention of the wastewater; and
 - (iii) The industrial user properly notified the Industrial Waste Section as described in paragraph b. below.
- b. Industrial users must provide immediate notice to the Industrial Waste Section upon discovery of an unanticipated bypass. If necessary, the Industrial Waste Section may require the industrial user to submit a written report explaining the cause(s), nature, and duration of the bypass, and the steps being taken to prevent its recurrence.
- c. An industrial user may allow a bypass to occur which does not cause pretreatment standards or requirements to be violated, but only if it is for essential maintenance to ensure efficient operation of the treatment system. Industrial users anticipating a bypass must submit notice to the Industrial Waste Section at least ten (10) days in advance. The Industrial Waste Section may only approve the anticipated bypass if the circumstances satisfy those set forth in paragraph a above.

C. PERMITTEE RESPONSIBILITIES

1. Permit Availability

The originally signed permit must be available upon request at all times for review at the address stated on the first page of this permit.

2. Inspections

The permittee shall allow the General Manager of the Buffalo Sewer Authority and/or his authorized representatives, upon the presentation of credentials and during normal working hours or at any other reasonable times, to have access to and copy any records required in this permit; and to sample any discharge of pollutants.

3. Transfer of Ownership or Control

In the event of any change in control or ownership of facilities for which this permit has been issued the permit shall become null and void. The succeeding owner shall submit a completed Buffalo Sewer Authority permit application prior to discharge to the sewer system.

D. PERMITTEE LIABILITIES

1. Permit Modification

After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to the following:

- a. Violation of any terms or conditions of this permit,
- b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts,
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

2. Imminent Danger

In the event there exists an imminent danger to health or property, the permitter reserves the right to take immediate action to halt the permitted discharge to the sewerage works.

3. Civil and Criminal Liability

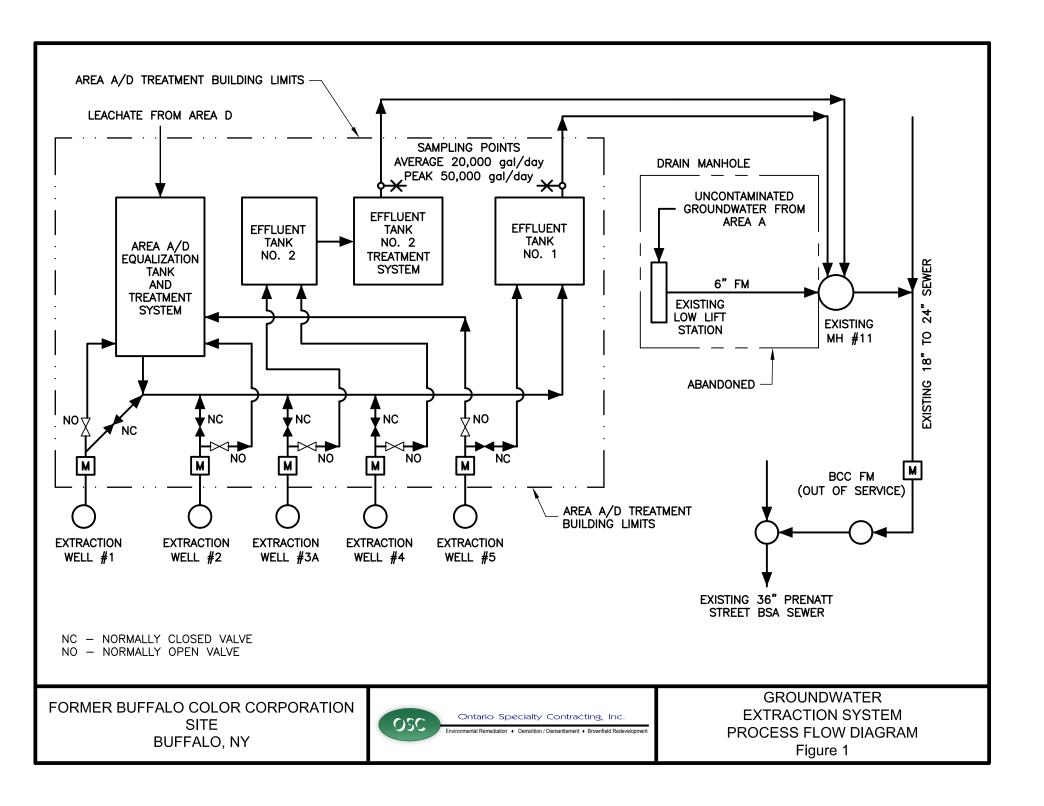
Nothing in this permit shall relieve the permittee from any requirements, liabilities, or penalties under provisions of the "Sewer Regulations of the Buffalo Sewer Authority" or any Federal, State and/or local laws or regulations.

E. NATIONAL PRETREATMENT STANDARDS

If a pretreatment standard or prohibition (including any Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 307 (b) of the Act for a pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.

F. PLANT CLOSURE

In the event of plant closure, the permittee is required to notify the Industrial Waste Section in writing as soon as an anticipated closure date is determined, but in no case later than five days of the actual closure.


G. CONFIDENTIALITY

Except for data determined to be confidential under Section 308 of the Act, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Buffalo Sewer Authority. As required by the Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Act.

H. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10

12

14

1 0

PREPARED FOR

Attn: Kirsten Colligan
Ontario Specialty Contracting, Inc.
140 Lee St.
Buffalo, New York 14210
Generated 2/26/2024 4:15:12 PM

ANALYTICAL REPORT

JOB DESCRIPTION

Quarterly BSA SUMP Buffalo Color - Quarterly Sump

JOB NUMBER

480-217057-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 2/26/2024 4:15:12 PM

Authorized for release by Anton Gruning, Project Management Assistant I

Anton.Gruning@et.eurofinsus.com

Designee for

John Schove, Project Manager II John.Schove@et.eurofinsus.com

(716)504-9838

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	21
Lab Chronicle	23
Certification Summary	24
Method Summary	25
Sample Summary	26
Detection Limit Exceptions Summary	27
Chain of Custody	28
Receipt Checklists	29

-5

4

6

8

9

11

12

14

15

Definitions/Glossary

Client: Ontario Specialty Contracting, Inc.
Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

*1 LCS/LCSD RPD exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 29 2/26/2024

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project: Quarterly BSA SUMP

Job ID: 480-217057-1 Eurofins Buffalo

Job Narrative 480-217057-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/13/2024 2:50 PM. Unless otherwise noted below, the samples arrived in good condition. The temperature of the cooler at receipt time was 14.2°C.

GC/MS VOA

Method 624.1_PREC: The following Volatile sample was composited by the laboratory on 02/13/2024 as requested by the client: BCC BSA SUMP (480-217057-1). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1_PREC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-700783.

Method 625.1_PREC: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 480-700783 and analytical batch 480-700849 recovered outside control limits for the following analytes: Benzidine.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCB₅

Method 608.3_PCB_PREC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-701055.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 245.1: Due to interference with the sample matrix, the standard mercury preparation procedure was inadequate for the following samples(s): BCC BSA SUMP (480-217057-1). This was demonstrated when the potassium permanganate reagent was added and the characteristic purple color faded rapidly. This loss of color indicates oxidizing conditions were not maintained. The sample(s) was prepared and analyzed at a 1/2 dilution, which maintained the purple color during digestion.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method SM4500_H+: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: BCC BSA SUMP (480-217057-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 5 of 29 2/26/2024

Job ID: 480-217057-1

6

0

1 N

10

13

14

Detection Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Lab Sample ID: 480-217057-1

Client Sample ID: BCC BSA SUMP

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzene	1.2	J	5.0	0.60	ug/L		624.1	Total/NA
Chlorobenzene	2.3	J	5.0	0.48	ug/L	1	624.1	Total/NA
Aniline	8.8	J	40	1.5	ug/L	1	625.1	Total/NA
Di-n-butyl phthalate	18	J	20	1.6	ug/L	1	625.1	Total/NA
Chromium	0.0044		0.0040	0.0010	mg/L	1	200.7 Rev 4.4	Total/NA
Copper	0.0061	JB	0.010	0.0016	mg/L	1	200.7 Rev 4.4	Total/NA
Lead	0.030		0.010	0.0030	mg/L	1	200.7 Rev 4.4	Total/NA
Zinc	0.0026	JB	0.010	0.0015	mg/L	1	200.7 Rev 4.4	Total/NA
Phenolics, Total Recoverable	0.0083	J	0.010	0.0035	mg/L	1	420.4	Total/NA
Total Suspended Solids	72.8		4.0	4.0	mg/L	1	SM 2540D	Total/NA
Cyanide, Amenable	0.053		0.010	0.0050	mg/L	1	SM 4500 CN G	Total/NA
pH	8.0	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.8	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Phosphorus	0.28		0.010	0.0050	mg/L as P	1	SM 4500 P E	Total/NA

Client Sample ID: TRIP BLANK

No Detections.

Lab Sample ID: 480-217057-2

12

13

15

46

Client: Ontario Specialty Contracting, Inc. Job ID: 480-217057-1 Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP

Lab Sample ID: 480-217057-1 Date Collected: 02/13/24 11:30 **Matrix: Water**

Date Received: 02/13/24 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			02/13/24 18:36	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			02/13/24 18:36	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			02/13/24 18:36	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			02/13/24 18:36	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			02/13/24 18:36	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			02/13/24 18:36	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			02/13/24 18:36	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			02/13/24 18:36	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			02/13/24 18:36	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			02/13/24 18:36	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			02/13/24 18:36	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			02/13/24 18:36	1
Acrolein	ND		100	17	ug/L			02/13/24 18:36	1
Acrylonitrile	ND		50	1.9	ug/L			02/13/24 18:36	1
Benzene	1.2	J	5.0	0.60	ug/L			02/13/24 18:36	1
Bromodichloromethane	ND		5.0	0.54	ug/L			02/13/24 18:36	1
Bromoform	ND		5.0	0.47	ug/L			02/13/24 18:36	1
Bromomethane	ND		5.0	1.2	ug/L			02/13/24 18:36	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			02/13/24 18:36	1
Chlorobenzene	2.3	J	5.0	0.48	ug/L			02/13/24 18:36	1
Chloroethane	ND		5.0	0.87	ug/L			02/13/24 18:36	1
Chloroform	ND		5.0	0.54	ug/L			02/13/24 18:36	1
Chloromethane	ND		5.0	0.64	ug/L			02/13/24 18:36	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			02/13/24 18:36	1
Dibromochloromethane	ND		5.0	0.41	ug/L			02/13/24 18:36	1
Ethylbenzene	ND		5.0	0.46	ug/L			02/13/24 18:36	1
Methylene Chloride	ND		5.0	0.81	ug/L			02/13/24 18:36	1
Tetrachloroethene	ND		5.0	0.34	ug/L			02/13/24 18:36	1
Toluene	ND		5.0	0.45	ug/L			02/13/24 18:36	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			02/13/24 18:36	1
Trichloroethene	ND		5.0	0.60	ug/L			02/13/24 18:36	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			02/13/24 18:36	1
Vinyl chloride	ND		5.0	0.75	ug/L			02/13/24 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		68 - 130			-		02/13/24 18:36	1
4-Bromofluorobenzene (Surr)	103		76 - 123					02/13/24 18:36	1
Dibromofluoromethane (Surr)	103		75 - 123					02/13/24 18:36	1
Toluene-d8 (Surr)	102		77 - 120					02/13/24 18:36	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	40	0.82	ug/L		02/14/24 13:50	02/15/24 15:52	1
1,2-Dichlorobenzene	ND	40	1.0	ug/L		02/14/24 13:50	02/15/24 15:52	1
1,2-Diphenylhydrazine	ND	40	0.78	ug/L		02/14/24 13:50	02/15/24 15:52	1
1,3-Dichlorobenzene	ND	40	0.69	ug/L		02/14/24 13:50	02/15/24 15:52	1
1,4-Dichlorobenzene	ND	40	0.82	ug/L		02/14/24 13:50	02/15/24 15:52	1
2,2'-oxybis[1-chloropropane]	ND	20	0.84	ug/L		02/14/24 13:50	02/15/24 15:52	1
2,4,6-Trichlorophenol	ND	20	1.0	ug/L		02/14/24 13:50	02/15/24 15:52	1
2,4-Dichlorophenol	ND	20	0.77	ug/L		02/14/24 13:50	02/15/24 15:52	1

Eurofins Buffalo

Page 7 of 29 2/26/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP Lab Sample ID: 480-217057-1

Date Collected: 02/13/24 11:30 Matrix: Water Date Received: 02/13/24 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dimethylphenol	ND		20	1.4	ug/L		02/14/24 13:50	02/15/24 15:52	
2,4-Dinitrophenol	ND		40	5.0	ug/L		02/14/24 13:50	02/15/24 15:52	
2,4-Dinitrotoluene	ND		20	1.6	ug/L		02/14/24 13:50	02/15/24 15:52	
2-Chloronaphthalene	ND		20		ug/L		02/14/24 13:50	02/15/24 15:52	
2-Chlorophenol	ND		20		ug/L		02/14/24 13:50	02/15/24 15:52	,
2-Nitrophenol	ND		20		ug/L		02/14/24 13:50	02/15/24 15:52	
3,3'-Dichlorobenzidine	ND		20		ug/L			02/15/24 15:52	
4,6-Dinitro-2-methylphenol	ND		40		ug/L			02/15/24 15:52	,
4-Bromophenyl phenyl ether	ND		20		ug/L			02/15/24 15:52	
4-Chloro-3-methylphenol	ND		20		ug/L			02/15/24 15:52	
4-Chlorophenyl phenyl ether	ND		20		ug/L			02/15/24 15:52	,
4-Nitrophenol	ND		40	1.9	ug/L			02/15/24 15:52	,
Acenaphthene	ND		20		ug/L			02/15/24 15:52	,
Acenaphthylene	ND		20		ug/L			02/15/24 15:52	,
Aniline	8.8	1	40		ug/L ug/L			02/15/24 15:52	,
Anthracene	ND	•	20		ug/L ug/L			02/15/24 15:52	,
Benzidine	ND	*1	320		ug/L			02/15/24 15:52	,
	ND ND	1	20					02/15/24 15:52	,
Benzo[a]anthracene					ug/L				
Benzo[a]pyrene	ND		20		ug/L			02/15/24 15:52	
Benzo[b]fluoranthene	ND		20		ug/L			02/15/24 15:52	
Benzo[g,h,i]perylene	ND		20		ug/L			02/15/24 15:52	
Benzo[k]fluoranthene	ND		20		ug/L			02/15/24 15:52	
Bis(2-chloroethoxy)methane	ND		20		ug/L			02/15/24 15:52	ŕ
Bis(2-chloroethyl)ether	ND		20		ug/L			02/15/24 15:52	ŕ
Bis(2-ethylhexyl) phthalate	ND		40		ug/L			02/15/24 15:52	
Butyl benzyl phthalate	ND		20	1.1	ug/L			02/15/24 15:52	,
Chrysene	ND		20		ug/L			02/15/24 15:52	•
Dibenz(a,h)anthracene	ND		20		ug/L		02/14/24 13:50	02/15/24 15:52	
Diethyl phthalate	ND		20		ug/L			02/15/24 15:52	•
Dimethyl phthalate	ND		20	0.91	ug/L		02/14/24 13:50	02/15/24 15:52	•
Di-n-butyl phthalate	18	J	20		ug/L		02/14/24 13:50	02/15/24 15:52	
Di-n-octyl phthalate	ND		20	1.2	ug/L		02/14/24 13:50	02/15/24 15:52	•
Fluoranthene	ND		20	1.6	ug/L		02/14/24 13:50	02/15/24 15:52	•
Fluorene	ND		20	1.0	ug/L		02/14/24 13:50	02/15/24 15:52	•
Hexachlorobenzene	ND		20	1.0	ug/L		02/14/24 13:50	02/15/24 15:52	
Hexachlorobutadiene	ND		20	1.0	ug/L		02/14/24 13:50	02/15/24 15:52	•
Hexachlorocyclopentadiene	ND		20	2.1	ug/L		02/14/24 13:50	02/15/24 15:52	•
Hexachloroethane	ND		20	0.60	ug/L		02/14/24 13:50	02/15/24 15:52	
Indeno[1,2,3-cd]pyrene	ND		20		ug/L		02/14/24 13:50	02/15/24 15:52	,
Isophorone	ND		20	0.74	ug/L		02/14/24 13:50	02/15/24 15:52	
Naphthalene	ND		20	0.86	ug/L		02/14/24 13:50	02/15/24 15:52	
Decane	ND		40		ug/L		02/14/24 13:50	02/15/24 15:52	
Nitrobenzene	ND		20		ug/L		02/14/24 13:50	02/15/24 15:52	
N-Nitrosodimethylamine	ND		40		ug/L			02/15/24 15:52	,
N-Nitrosodi-n-propylamine	ND		20		ug/L			02/15/24 15:52	
N-Nitrosodiphenylamine	ND		20		ug/L			02/15/24 15:52	,
n-Octadecane	ND		40		ug/L			02/15/24 15:52	,
Pentachlorophenol	ND		40		ug/L			02/15/24 15:52	,
Phenanthrene	ND ND		20		ug/L ug/L			02/15/24 15:52	,

Eurofins Buffalo

Job ID: 480-217057-1

Page 8 of 29 2/26/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-217057-1

Matrix: Water

Job ID: 480-217057-1

Client Sample ID: BCC BSA SUMP

Date Collected: 02/13/24 11:30 Date Received: 02/13/24 14:50

Method: EPA 625.1 - Semivola Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Phenol	ND		20	0.35	ug/L		02/14/24 13:50	02/15/24 15:52	
Pyrene	ND		20	1.4	ug/L		02/14/24 13:50	02/15/24 15:52	
2,6-Dinitrotoluene	ND		20		ug/L		02/14/24 13:50	02/15/24 15:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	100		52 - 151				02/14/24 13:50	02/15/24 15:52	
2-Fluorobiphenyl	94		44 - 120				02/14/24 13:50	02/15/24 15:52	
?-Fluorophenol	81		17 - 120				02/14/24 13:50	02/15/24 15:52	
Nitrobenzene-d5	95		15 - 314				02/14/24 13:50	02/15/24 15:52	
Phenol-d5	56		8 - 424				02/14/24 13:50	02/15/24 15:52	
p-Terphenyl-d14	81		22 - 125				02/14/24 13:50	02/15/24 15:52	
Method: EPA 608.3 - Polychlor									
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.057	0.036	ŭ		02/16/24 13:46	02/19/24 17:23	
PCB-1221	ND		0.057	0.036	· ·			02/19/24 17:23	
PCB-1232	ND		0.057	0.036			02/16/24 13:46	02/19/24 17:23	
PCB-1242	ND		0.057	0.036	-			02/19/24 17:23	
PCB-1248	ND		0.057	0.036	-		02/16/24 13:46	02/19/24 17:23	
PCB-1254	ND		0.057	0.030			02/16/24 13:46	02/19/24 17:23	
PCB-1260	ND		0.057	0.030	ug/L		02/16/24 13:46	02/19/24 17:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
OCB Decachlorobiphenyl Tetrachloro-m-xylene	38 61		36 - 121 42 - 135					02/19/24 17:23 02/19/24 17:23	
Method: EPA 200.7 Rev 4.4 - M Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Chromium	0.0044		0.0040	0.0010	mg/L		02/14/24 08:50	02/14/24 22:23	
Copper	0.0061	JB	0.010	0.0016	mg/L		02/14/24 08:50	02/14/24 22:23	
_ead	0.030		0.010	0.0030			02/14/24 08:50	02/14/24 22:23	
Nickel	ND		0.010	0.0013	mg/L		02/14/24 08:50	02/14/24 22:23	
Zinc	0.0026	JB	0.010	0.0015	mg/L		02/14/24 08:50	02/14/24 22:23	
Method: EPA 245.1 - Mercury (•	0	ъ.	MDI	11	_	D	Anabasad	D'' E
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil F
Mercury	ND		0.00040	0.000086	mg/L		02/10/24 11.30	02/16/24 16:12	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Phenolics, Total Recoverable (EPA	0.0083		0.010	0.0035		_ =		02/16/24 19:16	
120.4)									
Cyanide, Amenable (SM 4500 CN G)	0.053		0.010	0.0050	mg/L			02/17/24 15:51	
Phosphorus (SM 4500 P E)	0.28		0.010	0.0050	mg/L as P			02/14/24 12:50	
Biochemical Oxygen Demand (SM 5210B)	ND		2.0	2.0	mg/L			02/14/24 16:36	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil F
Total Suspended Solids (SM	72.8		4.0		mg/L			02/14/24 10:55	
2540D)					-				
					011				
pH (SM 4500 H+ B)	8.0	HF	0.1	0.1	SU			02/15/24 21:39	

Eurofins Buffalo

Page 9 of 29 2/26/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: TRIP BLANK Lab Sample ID: 480-217057-2

Matrix: Water

Job ID: 480-217057-1

Date Collected: 02/13/24 11:30 Date Received: 02/13/24 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	MD		5.0	0.39	ug/L			02/13/24 19:00	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			02/13/24 19:00	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			02/13/24 19:00	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			02/13/24 19:00	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			02/13/24 19:00	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			02/13/24 19:00	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			02/13/24 19:00	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			02/13/24 19:00	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			02/13/24 19:00	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			02/13/24 19:00	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			02/13/24 19:00	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			02/13/24 19:00	1
Acrolein	ND		100	17	ug/L			02/13/24 19:00	1
Acrylonitrile	ND		100	1.9	ug/L			02/13/24 19:00	1
Benzene	ND		5.0	0.60	ug/L			02/13/24 19:00	1
Bromodichloromethane	ND		5.0	0.54	ug/L			02/13/24 19:00	1
Bromoform	ND		5.0	0.47	ug/L			02/13/24 19:00	1
Bromomethane	ND		5.0	1.2	ug/L			02/13/24 19:00	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			02/13/24 19:00	1
Chlorobenzene	ND		5.0	0.48	ug/L			02/13/24 19:00	1
Chloroethane	ND		5.0	0.87	ug/L			02/13/24 19:00	1
Chloroform	ND		5.0	0.54	ug/L			02/13/24 19:00	1
Chloromethane	ND		5.0	0.64	ug/L			02/13/24 19:00	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			02/13/24 19:00	1
Dibromochloromethane	ND		5.0	0.41	ug/L			02/13/24 19:00	1
Ethylbenzene	ND		5.0	0.46	ug/L			02/13/24 19:00	1
Methylene Chloride	ND		5.0	0.81	ug/L			02/13/24 19:00	1
Tetrachloroethene	ND		5.0	0.34	ug/L			02/13/24 19:00	1
Toluene	ND		5.0	0.45	ug/L			02/13/24 19:00	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			02/13/24 19:00	1
Trichloroethene	ND		5.0	0.60	ug/L			02/13/24 19:00	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			02/13/24 19:00	1
Vinyl chloride	ND		5.0	0.75	ug/L			02/13/24 19:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		68 - 130			-		02/13/24 19:00	1
4-Bromofluorobenzene (Surr)	103		76 - 123					02/13/24 19:00	1
Dibromofluoromethane (Surr)	104		75 - 123					02/13/24 19:00	1
Toluene-d8 (Surr)	102		77 - 120					02/13/24 19:00	1

Surrogate Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-217057-1	BCC BSA SUMP	107	103	103	102
480-217057-2	TRIP BLANK	106	103	104	102
LCS 480-700646/6	Lab Control Sample	107	105	106	106
MB 480-700646/8	Method Blank	105	105	103	103
Oamata I.amama					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_		Percent Surrogate Recovery (Acceptance Limits)								
		TBP	FBP	2FP	NBZ	PHL	TPHd14			
Lab Sample ID	Client Sample ID	(52-151)	(44-120)	(17-120)	(15-314)	(8-424)	(22-125)			
480-217057-1	BCC BSA SUMP	100	94	81	95	56	81			
LCS 480-700783/2-A	Lab Control Sample	95	101	75	92	52	99			
LCSD 480-700783/3-A	Lab Control Sample Dup	88	96	75	93	57	98			
MB 480-700783/1-A	Method Blank	63	88	65	90	48	90			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)							
		DCBP2	TCX2							
Lab Sample ID	Client Sample ID	(36-121)	(42-135)							
480-217057-1	BCC BSA SUMP	38	61							
LCS 480-701055/2-A	Lab Control Sample	53	52							
LCSD 480-701055/3-A	Lab Control Sample Dup	54	55							
MB 480-701055/1-A	Method Blank	52	66							
Surrogate Legend										

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc. Job ID: 480-217057-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-700646/8

Matrix: Water

Analysis Batch: 700646

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Buton: 100040	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L		-	02/13/24 15:02	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			02/13/24 15:02	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			02/13/24 15:02	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			02/13/24 15:02	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			02/13/24 15:02	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			02/13/24 15:02	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			02/13/24 15:02	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			02/13/24 15:02	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			02/13/24 15:02	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			02/13/24 15:02	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			02/13/24 15:02	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			02/13/24 15:02	1
Acrolein	ND		100	17	ug/L			02/13/24 15:02	1
Acrylonitrile	ND		50	1.9	ug/L			02/13/24 15:02	1
Benzene	ND		5.0	0.60	ug/L			02/13/24 15:02	1
Bromodichloromethane	ND		5.0	0.54	ug/L			02/13/24 15:02	1
Bromoform	ND		5.0	0.47	ug/L			02/13/24 15:02	1
Bromomethane	ND		5.0	1.2	ug/L			02/13/24 15:02	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			02/13/24 15:02	1
Chlorobenzene	ND		5.0	0.48	ug/L			02/13/24 15:02	1
Chloroethane	ND		5.0	0.87	ug/L			02/13/24 15:02	1
Chloroform	ND		5.0	0.54	ug/L			02/13/24 15:02	1
Chloromethane	ND		5.0	0.64	ug/L			02/13/24 15:02	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			02/13/24 15:02	1
Dibromochloromethane	ND		5.0	0.41	ug/L			02/13/24 15:02	1
Ethylbenzene	ND		5.0	0.46	ug/L			02/13/24 15:02	1
Methylene Chloride	ND		5.0	0.81	ug/L			02/13/24 15:02	1
Tetrachloroethene	ND		5.0	0.34	ug/L			02/13/24 15:02	1
Toluene	ND		5.0	0.45	ug/L			02/13/24 15:02	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			02/13/24 15:02	1
Trichloroethene	ND		5.0	0.60	ug/L			02/13/24 15:02	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			02/13/24 15:02	1
Vinyl chloride	ND		5.0	0.75	ug/L			02/13/24 15:02	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		68 - 130		02/13/24 15:02	1
4-Bromofluorobenzene (Surr)	105		76 - 123		02/13/24 15:02	1
Dibromofluoromethane (Surr)	103		75 - 123		02/13/24 15:02	1
Toluene-d8 (Surr)	103		77 - 120		02/13/24 15:02	1

Lab Sample ID: LCS 480-700646/6

Matrix: Water

Analysis Batch: 700646

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	23.1		ug/L		115	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	19.7		ug/L		98	46 - 157	
1,1,2-Trichloroethane	20.0	20.2		ug/L		101	52 - 150	

Eurofins Buffalo

Page 12 of 29

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-700646/6

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 700646 LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits 20.0 20.6 103 59 - 155 ug/L

1,1-Dichloroethane ug/L 1,1-Dichloroethene 20.0 20.5 103 1 - 234 1,2-Dichlorobenzene 20.0 20.3 ug/L 102 18 - 190 1,2-Dichloroethane 20.0 20.7 ug/L 103 49 - 155 20.0 20.3 102 1,2-Dichloropropane ug/L 1 - 210 1,3-Dichlorobenzene 20.0 20.4 ug/L 102 59 - 156 1,4-Dichlorobenzene 20.0 20.4 ug/L 102 18 - 190 2-Chloroethyl vinyl ether 20.0 19.6 J ug/L 98 1 - 305 Acrolein 10 - 176 100 96.5 J ug/L 97 200 94 54 - 147 Acrylonitrile 189 ug/L 20.0 104 Benzene 20.8 ug/L 37 - 151 Bromodichloromethane 20.0 20.9 ug/L 104 35 - 155 Bromoform 20.0 104 45 - 169 20.8 ug/L 20.0 Bromomethane 22.4 ug/L 112 1 - 242 Carbon tetrachloride 20.0 24.1 ug/L 121 70 - 140 20.0 Chlorobenzene 20.6 ug/L 103 37 - 160Chloroethane 20.0 20.2 101 14 - 230 ug/L Chloroform 20.0 20.3 102 51 - 138 ug/L Chloromethane 20.0 19.6 ug/L 98 1 - 273 ug/L cis-1,3-Dichloropropene 20.0 20.6 103 1 - 227 Dibromochloromethane 20.0 20.4 ug/L 102 53 - 149 Ethylbenzene 20.0 20.9 ug/L 105 37 - 162 Methylene Chloride 20.0 21.0 ug/L 105 1 - 221 Tetrachloroethene 20.0 21.3 106 ug/L 64 - 148 20.0 20.6 103 Toluene ug/L 47 - 150 20.0 20.0 100 17 - 183 trans-1,3-Dichloropropene ug/L 71 - 157 Trichloroethene 20.0 21.0 105 ug/L Trichlorofluoromethane 20.0 28.8 ug/L 144 17 - 181 Vinyl chloride 20.0

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107	-	68 - 130
4-Bromofluorobenzene (Surr)	105		76 - 123
Dibromofluoromethane (Surr)	106		75 - 123
Toluene-d8 (Surr)	106		77 - 120

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-700783/1-A

Matrix: Water

Analysis Batch: 700849

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 700783

1 - 251

116

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		40	0.82	ug/L		02/14/24 13:50	02/15/24 12:06	1
1,2-Dichlorobenzene	ND		40	1.0	ug/L		02/14/24 13:50	02/15/24 12:06	1
1,2-Diphenylhydrazine	ND		40	0.78	ug/L		02/14/24 13:50	02/15/24 12:06	1
1,3-Dichlorobenzene	ND		40	0.69	ug/L		02/14/24 13:50	02/15/24 12:06	1
1,4-Dichlorobenzene	ND		40	0.82	ug/L		02/14/24 13:50	02/15/24 12:06	1
2,2'-oxybis[1-chloropropane]	ND		20	0.84	ug/L		02/14/24 13:50	02/15/24 12:06	1

23.2

ug/L

Eurofins Buffalo

Page 13 of 29

2/26/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-700783/1-A Matrix: Water

N-Nitrosodiphenylamine

n-Octadecane

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 480-217057-1

1	
1	
4	

Matrix: Water Analysis Batch: 700849	МВ	МВ						Prep Type: To Prep Batch:	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,6-Trichlorophenol	ND		20	1.0	ug/L		02/14/24 13:50	02/15/24 12:06	1
2,4-Dichlorophenol	ND		20	0.77	ug/L		02/14/24 13:50	02/15/24 12:06	1
2,4-Dimethylphenol	ND		20	1.4	ug/L		02/14/24 13:50	02/15/24 12:06	1
2,4-Dinitrophenol	ND		40	5.0	ug/L		02/14/24 13:50	02/15/24 12:06	1
2,4-Dinitrotoluene	ND		20	1.6	ug/L		02/14/24 13:50	02/15/24 12:06	1
2-Chloronaphthalene	ND		20	0.91	ug/L		02/14/24 13:50	02/15/24 12:06	1
2-Chlorophenol	ND		20	0.66	ug/L		02/14/24 13:50	02/15/24 12:06	1
2-Nitrophenol	ND		20	0.70	ug/L		02/14/24 13:50	02/15/24 12:06	1
3,3'-Dichlorobenzidine	ND		20	1.6	ug/L		02/14/24 13:50	02/15/24 12:06	1
4,6-Dinitro-2-methylphenol	ND		40	1.8	ug/L		02/14/24 13:50	02/15/24 12:06	1
4-Bromophenyl phenyl ether	ND		20		ug/L		02/14/24 13:50	02/15/24 12:06	1
4-Chloro-3-methylphenol	ND		20		ug/L		02/14/24 13:50	02/15/24 12:06	1
4-Chlorophenyl phenyl ether	ND		20		ug/L			02/15/24 12:06	1
4-Nitrophenol	ND		40		ug/L			02/15/24 12:06	1
Acenaphthene	ND		20		ug/L		02/14/24 13:50	02/15/24 12:06	1
Acenaphthylene	ND		20		ug/L		02/14/24 13:50	02/15/24 12:06	1
Aniline	ND		40		ug/L			02/15/24 12:06	1
Anthracene	ND		20		ug/L			02/15/24 12:06	1
Benzidine	ND		320		ug/L			02/15/24 12:06	· · · · · · · · · · · · · · · · · · ·
Benzo[a]anthracene	ND		20		ug/L			02/15/24 12:06	1
Benzo[a]pyrene	ND		20		ug/L			02/15/24 12:06	1
Benzo[b]fluoranthene	ND		20		ug/L			02/15/24 12:06	 1
Benzo[g,h,i]perylene	ND		20		ug/L			02/15/24 12:06	1
Benzo[k]fluoranthene	ND		20		ug/L			02/15/24 12:06	1
Bis(2-chloroethoxy)methane	ND		20		ug/L			02/15/24 12:06	 1
Bis(2-chloroethyl)ether	ND		20		ug/L			02/15/24 12:06	1
Bis(2-ethylhexyl) phthalate	ND		40		ug/L			02/15/24 12:06	1
Butyl benzyl phthalate	ND		20		ug/L			02/15/24 12:06	· · · · · · · · · · · · · · · · · · ·
Chrysene	ND		20		ug/L			02/15/24 12:06	1
Dibenz(a,h)anthracene	ND		20		ug/L			02/15/24 12:06	1
Diethyl phthalate	ND		20		ug/L			02/15/24 12:06	
Dimethyl phthalate	ND		20		ug/L			02/15/24 12:06	
Di-n-butyl phthalate	ND		20		ug/L			02/15/24 12:06	1
Di-n-octyl phthalate	ND		20		ug/L			02/15/24 12:06	·
Fluoranthene	ND		20		ug/L			02/15/24 12:06	1
Fluorene	ND		20		ug/L			02/15/24 12:06	1
Hexachlorobenzene	ND		20		ug/L			02/15/24 12:06	· · · · · · · · · · · · · · · · · · ·
Hexachlorobutadiene	ND		20		ug/L			02/15/24 12:06	1
Hexachlorocyclopentadiene	ND.		20		ug/L			02/15/24 12:06	1
Hexachloroethane	ND		20		ug/L			02/15/24 12:06	
Indeno[1,2,3-cd]pyrene	ND		20		ug/L			02/15/24 12:06	1
Isophorone	ND ND		20		ug/L ug/L			02/15/24 12:06	1
Naphthalene	ND		20		ug/L ug/L			02/15/24 12:06	
•	ND ND		40		-			02/15/24 12:06	
Decane Nitrobenzene					ug/L				1
	ND.		20		ug/L			02/15/24 12:06	1
N-Nitrosodimethylamine	ND ND		40		ug/L			02/15/24 12:06	1
N-Nitrosodi-n-propylamine	ND		20	0.89	ug/L		02/14/24 13:50	02/15/24 12:06	1

Eurofins Buffalo

02/14/24 13:50 02/15/24 12:06

02/14/24 13:50 02/15/24 12:06

20

40

0.82 ug/L

1.2 ug/L

ND

ND

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-700783/1-A

Matrix: Water

Analysis Batch: 700849

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 700783

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		40	3.2	ug/L		02/14/24 13:50	02/15/24 12:06	1
Phenanthrene	ND		20	1.2	ug/L		02/14/24 13:50	02/15/24 12:06	1
Phenol	ND		20	0.35	ug/L		02/14/24 13:50	02/15/24 12:06	1
Pyrene	ND		20	1.4	ug/L		02/14/24 13:50	02/15/24 12:06	1
2,6-Dinitrotoluene	ND		20	1.0	ug/L		02/14/24 13:50	02/15/24 12:06	1

MB MB

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	63		52 - 151	02/14/24 13:50	02/15/24 12:06	1
2-Fluorobiphenyl	88		44 - 120	02/14/24 13:50	02/15/24 12:06	1
2-Fluorophenol	65		17 - 120	02/14/24 13:50	02/15/24 12:06	1
Nitrobenzene-d5	90		15 - 314	02/14/24 13:50	02/15/24 12:06	1
Phenol-d5	48		8 - 424	02/14/24 13:50	02/15/24 12:06	1
p-Terphenyl-d14	90		22 - 125	02/14/24 13:50	02/15/24 12:06	1

LCS LCS

31.4

69.7

34.3

30.4

30.2

ug/L

Lab Sample ID: LCS 480-700783/2-A

Matrix: Water

2,4-Dimethylphenol

2,4-Dinitrophenol

2,4-Dinitrotoluene

2-Chlorophenol

2-Nitrophenol

2-Chloronaphthalene

Bis(2-chloroethoxy)methane

Analysis Batch: 700849

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 700783 %Rec

Analyte Added Result Qualifier Unit %Rec Limits 44 - 142 1,2,4-Trichlorobenzene 32.0 27.2 J 85 ug/L 26.2 J 1,2-Dichlorobenzene 32.0 ug/L 82 32 - 129 ug/L 1,3-Dichlorobenzene 32.0 26.1 J 82 1 - 172 1,4-Dichlorobenzene 32.0 26.8 J ug/L 84 20 - 124 32.0 29.8 93 36 - 166 2,2'-oxybis[1-chloropropane] ug/L 32.0 2,4,6-Trichlorophenol 35.7 ug/L 112 37 - 1442,4-Dichlorophenol 32.0 32.3 ug/L 101 39 - 135

32.0

64.0

32.0

32.0

Spike

ug/L ug/L 109 1 - 191 ug/L 107 39 - 139 ug/L 95 60 - 120 ug/L 89 23 - 134

94

33 - 184

98

32 - 120

32.0 28.6 32.0 29.2 ug/L 91 29 - 182 64.0 3,3'-Dichlorobenzidine 62.7 ug/L 98 1 - 262 4,6-Dinitro-2-methylphenol 64.0 64.2 ug/L 100 1 - 181 ug/L 32.0 31.6 99 53 - 127 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 32.0 32.5 ug/L 102 22 - 147

4-Chlorophenyl phenyl ether 32.0 32.8 ug/L 103 25 - 158 64.0 53.2 83 1 - 132 4-Nitrophenol ug/L Acenaphthene 32.0 32.7 ug/L 102 47 - 145 Acenaphthylene 32.0 32.4 ug/L 101 33 - 145 Aniline 32.0 23.6 J ug/L 74 40 - 120 32.0 105 Anthracene 33.6 ug/L 27 - 133

Benzo[a]anthracene 32.0 32.2 ug/L 101 33 - 143 Benzo[a]pyrene 32.0 33.1 ug/L 103 17 - 163Benzo[b]fluoranthene 32.0 32.8 ug/L 102 24 - 159 32.0 32.5 ug/L 102 Benzo[g,h,i]perylene 1 - 219 Benzo[k]fluoranthene 32.0 32.8 ug/L 102 11 - 162

32.0

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-700783/2-A

Matrix: Water

Analysis Batch: 700849

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 700783

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bis(2-chloroethyl)ether	32.0	26.0		ug/L		81	12 - 158	
Bis(2-ethylhexyl) phthalate	32.0	31.8	J	ug/L		99	8 - 158	
Butyl benzyl phthalate	32.0	31.2		ug/L		98	1 - 152	
Chrysene	32.0	31.9		ug/L		100	17 - 168	
Dibenz(a,h)anthracene	32.0	33.6		ug/L		105	1 - 227	
Diethyl phthalate	32.0	34.9		ug/L		109	1 - 120	
Dimethyl phthalate	32.0	34.2		ug/L		107	1 - 120	
Di-n-butyl phthalate	32.0	33.1		ug/L		103	1 - 120	
Di-n-octyl phthalate	32.0	32.6		ug/L		102	4 - 146	
Fluoranthene	32.0	33.2		ug/L		104	26 - 137	
Fluorene	32.0	33.4		ug/L		104	59 - 121	
Hexachlorobenzene	32.0	32.8		ug/L		102	1 - 152	
Hexachlorocyclopentadiene	32.0	20.5		ug/L		64	5 - 120	
Hexachloroethane	32.0	23.3		ug/L		73	40 - 120	
Indeno[1,2,3-cd]pyrene	32.0	33.5		ug/L		105	1 - 171	
Isophorone	32.0	30.3		ug/L		95	21 - 196	
Naphthalene	32.0	29.7		ug/L		93	21 - 133	
Nitrobenzene	32.0	28.6		ug/L		89	35 - 180	
N-Nitrosodi-n-propylamine	32.0	29.2		ug/L		91	1 - 230	
N-Nitrosodiphenylamine	32.0	31.1		ug/L		97	54 - 125	
Pentachlorophenol	64.0	54.1		ug/L		85	14 - 176	
Phenanthrene	32.0	31.9		ug/L		100	54 - 120	
Phenol	32.0	18.2	J	ug/L		57	5 - 120	
Pyrene	32.0	32.4		ug/L		101	52 - 120	
2,6-Dinitrotoluene	32.0	33.9		ug/L		106	50 - 158	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	95		52 - 151
2-Fluorobiphenyl	101		44 - 120
2-Fluorophenol	75		17 - 120
Nitrobenzene-d5	92		15 - 314
Phenol-d5	52		8 - 424
p-Terphenyl-d14	99		22 - 125

Lab Sample ID: LCSD 480-700783/3-A

Matrix: Water

Analysis Batch: 700849

Cilent Sample	ID: Lab Contr	oi Sampie Dup
	Prep	Type: Total/NA

Prep Batch: 700783

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	32.0	25.7	J	ug/L		80	44 - 142	6	34
1,2-Dichlorobenzene	32.0	27.2	J	ug/L		85	32 - 129	4	38
1,3-Dichlorobenzene	32.0	26.1	J	ug/L		82	1 - 172	0	37
1,4-Dichlorobenzene	32.0	26.5	J	ug/L		83	20 - 124	1	40
2,2'-oxybis[1-chloropropane]	32.0	30.3		ug/L		95	36 - 166	2	36
2,4,6-Trichlorophenol	32.0	32.7		ug/L		102	37 - 144	9	20
2,4-Dichlorophenol	32.0	30.8		ug/L		96	39 - 135	5	23
2,4-Dimethylphenol	32.0	30.5		ug/L		95	32 - 120	3	18
2,4-Dinitrophenol	64.0	67.3		ug/L		105	1 - 191	4	29

Page 16 of 29

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-217057-1 Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-700783/3-A

Matrix: Water

Surrogate

2,4,6-Tribromophenol

Analysis Ratch: 700849

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 700849	Spike	LCSD	LCSD				Prep Batch: 7007 %Rec		
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	RPI Limi
2,4-Dinitrotoluene	32.0	33.2		ug/L		104	39 - 139	3	20
2-Chloronaphthalene	32.0	26.9		ug/L		84	60 - 120	12	30
2-Chlorophenol	32.0	29.4		ug/L		92	23 - 134	3	26
2-Nitrophenol	32.0	30.1		ug/L		94	29 - 182	3	28
3,3'-Dichlorobenzidine	64.0	61.8		ug/L		97	1 - 262	2	3
l,6-Dinitro-2-methylphenol	64.0	63.8		ug/L		100	1 - 181	1	30
I-Bromophenyl phenyl ether	32.0	29.9		ug/L		93	53 - 127	6	16
l-Chloro-3-methylphenol	32.0	30.9		ug/L		97	22 - 147	5	16
l-Chlorophenyl phenyl ether	32.0	29.9		ug/L		94	25 - 158	9	1
l-Nitrophenol	64.0	53.1		ug/L		83	1 - 132	0	24
Acenaphthene	32.0	29.3		ug/L		92	47 - 145	11	2
Acenaphthylene	32.0	30.7		ug/L		96	33 - 145	5	22
Aniline	32.0	25.7	J	ug/L		80	40 - 120	8	30
Anthracene	32.0	31.0		ug/L		97	27 - 133	8	1:
Benzo[a]anthracene	32.0	32.1		ug/L		100	33 - 143	1	1:
Benzo[a]pyrene	32.0	32.2		ug/L		101	17 - 163	3	1:
Benzo[b]fluoranthene	32.0	32.4		ug/L		101	24 - 159	1	17
Benzo[g,h,i]perylene	32.0	32.3		ug/L		101	1 - 219	0	19
Benzo[k]fluoranthene	32.0	31.2		ug/L		98	11 - 162	5	19
Bis(2-chloroethoxy)methane	32.0	30.9		ug/L		97	33 - 184	2	23
Bis(2-chloroethyl)ether	32.0	28.1		ug/L		88	12 - 158	8	33
Bis(2-ethylhexyl) phthalate	32.0	31.3	J	ug/L		98	8 - 158	2	1:
Butyl benzyl phthalate	32.0	30.7	-	ug/L		96	1 - 152	2	1:
Chrysene	32.0	31.7		ug/L		99	17 - 168	1	1:
Dibenz(a,h)anthracene	32.0	33.4		ug/L		104	1 - 227	1	18
Diethyl phthalate	32.0	34.1		ug/L		107	1 - 120	2	1:
Dimethyl phthalate	32.0	32.3		ug/L		101	1 - 120	6	1:
Di-n-butyl phthalate	32.0	31.0		ug/L		97	1 - 120	6	1:
Di-n-octyl phthalate	32.0	32.1		ug/L		100	4 - 146	2	1:
Fluoranthene	32.0	31.8		ug/L		99	26 - 137	4	1:
Fluorene	32.0	31.6		ug/L		99	59 - 121	5	18
Hexachlorobenzene	32.0	31.0		ug/L		97	1 - 152	6	1:
Hexachlorocyclopentadiene	32.0	17.4	J	ug/L		54	5 - 120	16	50
Hexachloroethane	32.0	22.3		ug/L		70	40 - 120	5	43
ndeno[1,2,3-cd]pyrene	32.0	33.2		ug/L		104	1 - 171	1	17
sophorone	32.0	30.3		ug/L		95	21 - 196	0	2
Naphthalene	32.0	28.1		ug/L		88	21 - 133	6	3
Vitrobenzene	32.0	29.3		ug/L		92	35 - 180	3	2
N-Nitrosodi-n-propylamine	32.0	30.0		ug/L		94	1 - 230	3	23
N-Nitrosodiphenylamine	32.0	30.8		ug/L		96	54 - 125	ŭ. 1	1:
Pentachlorophenol	64.0	51.8		ug/L		81	14 - 176	4	2
Phenanthrene	32.0	30.0		ug/L		94	54 - 120	6	16
Phenol	32.0	19.0	J	ug/L		59	5 - 120	5	36
Pyrene	32.0	31.3	5	ug/L ug/L		98	52 - 120	3	1:
	32.0	51.5		ug/L		90	JZ - 1ZU	5	15

Page 17 of 29

Limits

52 - 151

%Recovery Qualifier

88

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-217057-1

Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-700783/3-A

Matrix: Water

Analysis Batch: 700849

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 700783

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	96		44 - 120
2-Fluorophenol	75		17 - 120
Nitrobenzene-d5	93		15 - 314
Phenol-d5	57		8 - 424
p-Terphenyl-d14	98		22 - 125

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-701055/1-A

Matrix: Water

Analysis Batch: 701190

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 701055

MB MB **MDL** Unit Analyte Result Qualifier RL **Prepared** Analyzed Dil Fac PCB-1016 ND 0.060 0.038 ug/L 02/16/24 13:46 02/19/24 16:30 PCB-1221 ND 0.060 0.038 ug/L 02/16/24 13:46 02/19/24 16:30 PCB-1232 ND 0.060 0.038 ug/L 02/16/24 13:46 02/19/24 16:30 PCB-1242 ND 0.060 0.038 ug/L 02/16/24 13:46 02/19/24 16:30 PCB-1248 ND 0.060 0.038 ug/L 02/16/24 13:46 02/19/24 16:30 PCB-1254 ND 0.060 0.031 ug/L 02/16/24 13:46 02/19/24 16:30 PCB-1260 ND 0.060 0.031 ug/L 02/16/24 13:46 02/19/24 16:30

MB MB

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	52	36 - 121	02/16/24 13:46	02/19/24 16:30	1
Tetrachloro-m-xylene	66	42 - 135	02/16/24 13:46	02/19/24 16:30	1

Lab Sample ID: LCS 480-701055/2-A

Matrix: Water

Analysis Batch: 701190

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 701055

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 	1.00	0.740		ug/L		74	69 - 123	
PCB-1260		1.00	0.836		ug/L		84	69 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	53		36 - 121
Tetrachloro-m-xylene	52		42 - 135

Lab Sample ID: LCSD 480-701055/3-A

Matrix: Water

Analysis Batch: 701190

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 701055

LCSD LCSD %Rec **RPD** Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit PCB-1016 1.00 0.790 ug/L 79 69 - 123 30 PCB-1260 1.00 0.875 ug/L 88 69 - 120 30

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	54	36 - 121
Tetrachloro-m-xylene	55	42 - 135

Eurofins Buffalo

Page 18 of 29

G

3

4

6

8

10

12

1 /

15

10

2/26/2024

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-700671/1-A

Analysis Batch: 700879

Matrix: Water

MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Chromium ND 0.0040 0.0010 mg/L 02/14/24 08:50 02/14/24 22:05 Copper 0.00361 J 0.010 0.0016 mg/L 02/14/24 08:50 02/14/24 22:05 ND Lead 0.010 0.0030 mg/L 02/14/24 08:50 02/14/24 22:05 Nickel ND 0.010 0.0013 mg/L 02/14/24 08:50 02/14/24 22:05 0.010 0.0015 mg/L Zinc 0.00213 J 02/14/24 08:50 02/14/24 22:05

Lab Sample ID: LCS 480-700671/2-A

Matrix: Water

Analysis Batch: 700879	Spike	LCS	LCS				Prep Batch: 700671 %Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chromium	0.500	0.516		mg/L		103	85 - 115
Copper	0.500	0.498		mg/L		100	85 - 115
Lead	0.500	0.499		mg/L		100	85 - 115
Nickel	0.500	0.501		mg/L		100	85 - 115
Zinc	0.500	0.531		mg/L		106	85 - 115

RL

RI

0.010

0.00020

Spike

Added

0.00669

MDL Unit

0.000043 mg/L

LCS LCS

0.00659

Result Qualifier

MDL Unit

0.0035 mg/L

Unit

mg/L

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 480-701006/1-A

Matrix: Water

Analysis Batch: 701092

MB MB

Analyte	Result	Qualifier
Mercury	ND	

Lab Sample ID: LCS 480-701006/2-A

Matrix: Water

Mercury

Analysis Batch: 701092

Analyte

Method: 420.4 -	Phenolics.	Total	Recoverable

Lab Sample ID: MB 480-701207/17

Matrix: Water

Analysis Batch: 701207

MB MB

Analyte Result Qualifier

Phenolics, Total Recoverable

Lab Sample ID: LCS 480-701207/18

Matrix: Water

Analysis Batch: 701207

Spike LCS LCS Added Result Qualifier Unit D %Rec Analyte 0.100 Phenolics, Total Recoverable 0.0982 98 90 - 110 mg/L

ND

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-217057-1

Prep Type: Total/NA

Prep Batch: 700671

Client Sample ID: Method Blank

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 701006

Client Sample ID: Lab Control Sample

02/16/24 11:38 02/16/24 15:57

Prepared

Prepared

Prep Type: Total/NA

Analyzed

Prep Batch: 701006

%Rec Limits D %Rec 85 - 115

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec Limits

Analyzed

02/16/24 18:06

Eurofins Buffalo

Dil Fac

Dil Fac

Client: Ontario Specialty Contracting, Inc. Job ID: 480-217057-1 Project/Site: Quarterly BSA SUMP

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-700765/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 700765

MB MB Analyzed Result Qualifier RL **RL** Unit Dil Fac Analyte Prepared 02/14/24 10:55 **Total Suspended Solids** ND 1.0 1.0 mg/L

Lab Sample ID: LCS 480-700765/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 700765

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	250	239.6		mg/L		96	88 - 110	

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 480-700976/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 700976

7								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
рН	7.00	7.0		SU	_	100	99 - 101	

Method: SM 4500 P E - Phosphorus

Lab Sample ID: MB 480-700789/27 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 700789

MB MB Analyte Result Qualifier RI **MDL** Unit Dil Fac Prepared Analyzed 0.010 0.0050 mg/L as P Phosphorus 02/14/24 12:50 ND

Lab Sample ID: LCS 480-700789/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 700789

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phosphorus	0.200	0.208		mg/L as P	_	104	90 - 110	

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-700804/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 700804

USB USB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Biochemical Oxygen Demand ND 2.0 2.0 mg/L 02/14/24 16:36

Lab Sample ID: LCS 480-700804/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 700804

7 maryolo Batom 1 0000 1	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Biochemical Oxygen Demand	198	178.5		mg/L		90	85 - 115	

Eurofins Buffalo

2/26/2024

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

GC/MS VOA

Analysis Batch: 700646

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-217057-1	BCC BSA SUMP	Total/NA	Water	624.1	
480-217057-2	TRIP BLANK	Total/NA	Water	624.1	
MB 480-700646/8	Method Blank	Total/NA	Water	624.1	
LCS 480-700646/6	Lab Control Sample	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 700783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-217057-1	BCC BSA SUMP	Total/NA	Water	625	
MB 480-700783/1-A	Method Blank	Total/NA	Water	625	
LCS 480-700783/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 480-700783/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 700849

Lab Sample ID 480-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 625.1	Prep Batch 700783
MB 480-700783/1-A	Method Blank	Total/NA	Water	625.1	700783
LCS 480-700783/2-A	Lab Control Sample	Total/NA	Water	625.1	700783
LCSD 480-700783/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	700783

GC Semi VOA

Prep Batch: 701055

Lab Sample ID 480-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 480-701055/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-701055/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-701055/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 701190

Lab Sample ID 480-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 608.3	Prep Batch 701055
MB 480-701055/1-A	Method Blank	Total/NA	Water	608.3	701055
LCS 480-701055/2-A	Lab Control Sample	Total/NA	Water	608.3	701055
LCSD 480-701055/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	701055

Metals

Prep Batch: 700671

_	ab Sample ID 80-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 200.7	Prep Batch
N	/IВ 480-700671/1-A	Method Blank	Total/NA	Water	200.7	
L	.CS 480-700671/2-A	Lab Control Sample	Total/NA	Water	200.7	

Analysis Batch: 700879

Lab Sample ID 480-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Watrix Water	Method 200.7 Rev 4.4	Prep Batch 700671
MB 480-700671/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	700671
LCS 480-700671/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	700671

Eurofins Buffalo

Page 21 of 29 2/26/2024

А

5

6

8

9

11

12

14

15

16

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Metals

Pren	Batch:	701006
	Datoiii	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-217057-1	BCC BSA SUMP	Total/NA	Water	245.1	
MB 480-701006/1-A	Method Blank	Total/NA	Water	245.1	
LCS 480-701006/2-A	Lab Control Sample	Total/NA	Water	245.1	

Analysis Batch: 701092

Lab Sample ID 480-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 245.1	Prep Batch 701006
MB 480-701006/1-A	Method Blank	Total/NA	Water	245.1	701006
LCS 480-701006/2-A	Lab Control Sample	Total/NA	Water	245.1	701006

General Chemistry

Analysis Batch: 700765

Lab Sample ID 480-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method SM 2540D	Prep Batch
MB 480-700765/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-700765/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 700789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-217057-1	BCC BSA SUMP	Total/NA	Water	SM 4500 P E	
MB 480-700789/27	Method Blank	Total/NA	Water	SM 4500 P E	
LCS 480-700789/28	Lab Control Sample	Total/NA	Water	SM 4500 P E	

Analysis Batch: 700804

Lab Sample ID 480-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method SM 5210B	Prep Batch
USB 480-700804/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-700804/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 700976

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-217057-1	BCC BSA SUMP	Total/NA	Water	SM 4500 H+ B	
LCS 480-700976/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 701163

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-217057-1	BCC BSA SUMP	Total/NA	Water	SM 4500 CN G	

Analysis Batch: 701207

Lab Sample ID 480-217057-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 420.4	Prep Batch
MB 480-701207/17	Method Blank	Total/NA	Water	420.4	
LCS 480-701207/18	Lab Control Sample	Total/NA	Water	420.4	

Eurofins Buffalo

Lab Chronicle

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP

Lab Sample ID: 480-217057-1

Matrix: Water

Job ID: 480-217057-1

Date Collected: 02/13/24 11:30

Date Received: 02/13/24 14:50

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	700646	AXK	EET BUF	02/13/24 18:36
Total/NA	Prep	625			700783	LSC	EET BUF	02/14/24 13:50
Total/NA	Analysis	625.1		1	700849	JMM	EET BUF	02/15/24 15:52
Total/NA	Prep	3510C			701055	LSC	EET BUF	02/16/24 13:46
Total/NA	Analysis	608.3		1	701190	H9RU	EET BUF	02/19/24 17:23
Total/NA	Prep	200.7			700671	ESB	EET BUF	02/14/24 08:50
Total/NA	Analysis	200.7 Rev 4.4		1	700879	BMB	EET BUF	02/14/24 22:23
Total/NA	Prep	245.1			701006	NVK	EET BUF	02/16/24 11:38
Total/NA	Analysis	245.1		1	701092	NVK	EET BUF	02/16/24 16:12
Total/NA	Analysis	420.4		1	701207	GW	EET BUF	02/16/24 19:16
Total/NA	Analysis	SM 2540D		1	700765	KO	EET BUF	02/14/24 10:55
Total/NA	Analysis	SM 4500 CN G		1	701163	DLG	EET BUF	02/17/24 15:51
Total/NA	Analysis	SM 4500 H+ B		1	700976	KB	EET BUF	02/15/24 21:39
Total/NA	Analysis	SM 4500 P E		1	700789	RMJ	EET BUF	02/14/24 12:50
Total/NA	Analysis	SM 5210B		1	700804	GW	EET BUF	02/14/24 16:36

Client Sample ID: TRIP BLANK

Date Collected: 02/13/24 11:30

Date Received: 02/13/24 14:50

Lab Sample	ID: 480-217057-2
------------	------------------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	700646	AXK	EET BUF	02/13/24 19:00

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-217057-1 Project/Site: Quarterly BSA SUMP

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progr	am	Identification Number	Expiration Date
New York	NELA	Р	10026	03-31-24
,	s are included in this repo does not offer certification	,	not certified by the governing authori	ty. This list may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
624.1		Water	1,2-Dichloroethene, Total	
625.1	625	Water	1,2-Dichlorobenzene	

624.1		Water	1,2-Dichloroethene, Total
625.1	625	Water	1,2-Dichlorobenzene
625.1	625	Water	1,3-Dichlorobenzene
625.1	625	Water	1,4-Dichlorobenzene
SM 4500 CN G		Water	Cyanide, Amenable
SM 4500 H+ B		Water	pH
SM 4500 H+ B		Water	Temperature

Method Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET BUF
625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET BUF
608.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET BUF
200.7 Rev 4.4	Metals (ICP)	EPA	EET BUF
245.1	Mercury (CVAA)	EPA	EET BUF
420.4	Phenolics, Total Recoverable	EPA	EET BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	EET BUF
SM 4500 CN G	Cyanide, Amenable	SM	EET BUF
SM 4500 H+ B	pH	SM	EET BUF
SM 4500 P E	Phosphorus	SM	EET BUF
SM 5210B	BOD, 5-Day	SM	EET BUF
200.7	Preparation, Total Metals	EPA	EET BUF
245.1	Preparation, Mercury	EPA	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
625	Liquid-Liquid Extraction	EPA	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

_

9

11

12

4 /

15

Sample Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-217057-1	BCC BSA SUMP	Water	02/13/24 11:30	02/13/24 14:50
480-217057-2	TRIP BLANK	Water	02/13/24 11:30	02/13/24 14:50

Quantitation Limit Exceptions Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Job ID: 480-217057-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
625.1	2,4-Dinitrotoluene	Water	Total/NA	ug/L	5.0	10
625.1	4-Nitrophenol	Water	Total/NA	ug/L	10	15
625.1	Hexachlorocyclopentadiene	Water	Total/NA	ug/L	5.0	10

4

5

6

9

10

12

14

15

in the state of th		Lab PM	M.					Camier T	Carrier Tracking No(e)		ľ	- W	ı
		HUNZELINEN Sch	Schove, John R	~				O	JSC	ò		480-191564-6057.1	
Colligan	716-480-328}		E-Mail: John.Schove@et.eurofinsus.com	@et.eur	ofinsus.	L L		State of (State of Origin:			Page:	T
Specialty Contracting, Inc.	PWSID				`	Andrew October					1	Job #: / ())	
Address: 140 Lee St.	Due Date Requested:			F	\vdash		ם אפת		<u>.</u> -	F		Preservation Codes:	т
City: Buffalo	TAT Requested (days):	,									8	A - HCL M - Hexane	
State, Zip.	2 wear KS												_
NY, 14210 Phone:	Compliance Project: △ Yes △ No												
716-856-3333	PO#.		(əlqı				F - MeOH R - Na2S203 G - Amchlor S - H2S04	
Email: kcolligan@oscinc.com	#OM		- CANADA MARIN		_								
Project Name: OSC- Former Buffalo Color Sites/ Event Desc: Buffalo Color - Qu 48003159	Project #: 48003159		s or N									J - D) Water W - pH 4-5 K - EDTA Y - Trizma	
Site: New York	SSOW#:		PA) GS	buouna								Z - other (specify) Other:	
Some of the state	Sample	Sample Matrix Type (W=water, Secolid, C=Comp, O=wasteloid,	8 benežilij bi SMRM mroh	1.245.1	soiloned9 - Þ.	PCB - Priorit	- Priority Poll	SD - Total Sus SOOCN_G_Ca	Hq - +H_008		lo sedmuM fr		
	Sample Date Time G=	G=grab) BT=Tissue, A=Air	ed	200	074	000	070	467			toT	Special Instructions/Note:	
BCC BSA SUMP	3) QC/11 7 C-51-6	Water	s \	0 -	z O		z -	8 ·	z ·		X		
Trip Blank	71.50	-		•	0	ક	- 6	-	=				T
		A A A A A A A A A A A A A A A A A A A		4	+		-		_				
													_
							_	_					
	-							+	‡	+			T
								1					\top
					\vdash			_					T
								† . 	0/17-00	400-21 (US) Chain of Custody	of Cu	stody	
	1							+					
D 111 11 11 11 11 11 11 11 11 11 11 11													
Possible Hazard Identification Non-Hazard — Flammable Skin Irritant Poison B	Unknown	Radiological	Sami	ole Disp Return	le Disposal (A 1 Return To Client	fee ma	be a	ssesse	assessed if samp	oles are r	etaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal Rv Lah	
, III, IV, Other (specify)			Spec	ial Instru	Special Instructions/QC Requirements	C Req	niremer	ts:	CO LOGO		300	Wonths Months	
ed by:	Date:		Time:					Me	Method of Shipment:	oment.	ı	30	\top
Relinquished by Act Month	Date/Time:	Company	2	Referred by	N/X	(1	BC	Date/Time	7	To So Company	
Relinmished by:	Date/Time:	Company	ŭ.	Received by	×				۵	Date/Time:		Company	\neg
40	Date/Time:	Company	œ	Received by	 				ő	Date/Time:		Company	
Type A No A No A Yes ∆ No			O	ooler Ten	Cooler Temperature(s) °C and Other Remarks	°C and	Other Re	narks:		417	#	1 701	
							l				;		Helion

15+ QTR 2021 SSA SUMP Environment Testing

Chain of Custody Record

EULOTHIS BUTTAIO10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

Login Sample Receipt Checklist

Client: Ontario Specialty Contracting, Inc.

Job Number: 480-217057-1

Login Number: 217057 List Source: Eurofins Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator: Kolb, Chris M	A	2
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection; chilling process has begun
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	osc
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

3

4

6

8

10

12

13

15

													But	ffalo	Colo	r GWTF Wee	kly F	roce	ss Assessm	ent						
		Bag Fi 1A,		Bag F 2A	ilter F- /2B	Multi- Filter	-Media r F-30		LG	AC CA-40	and CA-	-41			Efflue	ent Tank No. 1 T-28		Eff	fluent Tank No. 2 T-	27	D	ischarge	Lines To	BSA Sur	mp	
Date	Associate	Influent Pressure PI-1A	Effluent Pressure PI-1B	Influent Pressure PI-107A	Effluent Pressure PI-107B	Influent Pressure PI-30A	Effluent Pressure PI-30B	Flow Rate FE-60	Lead Influent Pressure PI-40A	Lead Effluent Pressure PI-40B	Lag Influent Pressure PI-41A	Lag Effluent Pressure PI-41B	PH Meter	Pressure PI-106A/B	Flow Rate FE-106	Totalizer FE-106	Pressure PI-106C	Flow Rate FE-107	Totalizer FE-107	Pressure PI-107C	Leak Detection Vault No. 1 Pressure PI-106D	Leak Detection Vault No. 1 Pressure PI-107D	Leak Detection Vault No. 3 Pressure PI-106E	Leak Detection Vault No. 3 Pressure PI-107E	Containment Line Pressure Gauge Checks	Column1
1/5/2024	тк	45	45	34	24	42	30	10.8	38	32	35	35	8.34	20	10.8	42,147,982	27	21.6	1,345,086	27						
1/12/2024	TK	45	45	33	21	40	30	11.2	38	34	35	35	8.23	20	10.8	42,206,040	27	21.2	1,348,336	27						
1/19/2024	ТК	45	45	33	22	40	28	10.9	38	34	35	35	8.48	20	10.9	42,262,936	27	20.8	1,351,426	27						
1/26/2024	TK	45	45	33	20	40	30	11.0	40	34	35	35	8.43	20	10.8	42,320,316	27	18.8	1,354,945	27						
2/2/2024	ТК	45	45	34	22	40	36	11.0	40	36	35	35	8.18	20	10.9	42,379,904	27	20.2	1,358,521	27						
2/9/2024	TK	45	45	34	22	42	30	10.7	38	34	35	35	8.24	20	10.7	42,438,948	27	21.7	1,361,888	27						
2/16/2024	TK	45	45	33	21	42	30	10.9	40	36	35	35	8.26	20	10.9	42,504,376	27	21.2	1,365,685	27						
2/23/2024	TK	45	45	34	23	40	30	10.8	38	34	35	35	8.14	20	10.7	42,562,716	27	20.3	1,369,048	27						
3/1/2024	TK	45	45	34	20	42	30	10.8	38	34	35	35	8.09	20	10.8	42,627,376	27	19.1	1,372,706	27						
3/8/2024	TK	45	45	34	20	42	32	11.1	40	36	35	35	8.05	20	11	42,663,904	27	16.8	1,374,678	27						
3/15/2024	TK	45	45	34	18	42	30	10.4	38	36	35	35	8.19	20	10.4	42,728,856	27	16.4	1,378,274	27						
3/22/2024	JL	45	45	34	18	42	30	10.6	38	36	35	35	8.33	20	10.5	42,796,408	27	15.9	1,382,015	27						
3/29/2024	TK	45	45	34	23	42	30	11	38	34	35	35	8.05	20	10.9	42,852,940	27	22.4	1,385,202	27						

DATE	D1A GAC SERVICE	D1B GAC SERVICE	D2 GAC SERVICE	MMF SERVICE	D1A GAC FLUSH	D1B GAC FLUSH	D2 GAC FLUSH	MMF FLUSH	BF 1A CHANGE	BF 1B CHANGE	BF 2A CHANGE	BF 2B CHANGE	ADDITIONAL NOTES / NON ROUTINE REPAIR & MAINTENANCE
4/1/2022					1	1		1	1	1			
1/1/2024													
1/2/2024					1			2	2	2			
1/3/2024													
1/4/2024					1	1		2	2	2			
1/5/2024								2	2	2			
1/6/2024													
1/8/2024								2	2	2			
1/9/2024					1	1		2	2	2			
1/10/2024						_			_	_			
1/11/2024								2	2	2			
1/12/2024								2	2	2			
1/13/2024													
1/14/2024													
1/15/2024					1	1	1	2	2	2			
1/16/2024								2	2	2			
1/17/2024					_			_	_	_			
1/18/2024					1	1		2	2	2			
1/19/2024								2	2	2			
1/21/2024													
1/22/2024					1			2	2	2			
1/23/2024					-			1	2	2			
1/24/2024								_	_	_			
1/25/2024					1	1		1	1	1			
1/26/2024								1	2	2			
1/27/2024													
1/28/2024													
1/29/2024								1	2	2			
1/30/2024					1			1	2	2			
1/31/2024									2	-			
2/1/2024 2/2/2024					1			1	2	2			
2/3/2024								-					
2/4/2024													
2/5/2024					1	1	1	2	2	2	1	1	
2/6/2024								1	2	2			
2/7/2024													
2/8/2024								1	2	2			
2/9/2024								1	2	2			
2/10/2024													
2/11/2024								1	1	1		sy	stem down 2.10.24 @22:09 back -up 2.11.24 @09:0
2/12/2024					1			2	2	2			
2/13/2024								2	2	2			
2/14/2024 2/15/2024								2	2	2		-	ystem down 2.14.24 @21:36 back-up 2.15.24 @06:0
2/15/2024								2	2	2		3	33000 2000 2117127 @21.30 pack-up 2.13.24 @00.0
2/17/2024								-	_	_			
2/18/2024													
2/19/2024								2	2	2			
2/20/2024					1			2	2	2			
2/21/2024													
2/22/2024								2	2	2			
2/23/2024								2	2	2			
2/24/2024													
2/25/2024					4		_	1	1	1		sy	stem down 2.24.24 @ 22:48 back-up 2.25.24 @05:3
2/26/2024					1		1	2	2	2			
2/27/2024 2/28/2024								2	2	2			
2/28/2024								2	2	2		CV	stem down 2.28.24 @ 19:19 back-up 2.29.24 @ 0:7:
3/1/2024								2	2	2		Jy:	2.23.24 @ U.7.
3/1/2024		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	

DATE	D1A GAC SERVICE	D1B GAC SERVICE	D2 GAC SERVICE	MMF SERVICE	D1A GAC FLUSH	D1B GAC FLUSH	D2 GAC FLUSH	MMF FLUSH	BF 1A CHANGE	BF 1B CHANGE	BF 2A CHANGE	BF 2B CHANGE	ADDITIONAL NOTES / NON ROUTINE REPAIR & MAINTENANCE
3/2/2024													
3/3/2024													
3/4/2024								2	2	2		S	System down 3. 3 .24 @00:34 back-up 3.4.24 @09:00
3/5/2024								1	1	1			
3/6/2024								1	1	1			
3/7/2024								2	2	2			
3/8/2024								2	2	2			
3/9/2024													
3/10/2024								1	1	1		!	System down 3.10.24 @00:15 back -up 09:30 3.10.24
3/11/2024					1	1		2	2	2			
3/12/2024								2	2	2			
3/13/2024													
3/14/2024								2	2	2			
3/15/2024								2	2	2			
3/16/2024								1	1	1		:	System down 3.16.24 @20:40 back-up 10:45 3.17.24
3/17/2024													
3/18/2024								2	2	2			
3/19/2024									1	1			
3/20/2024								2	1	1			
3/21/2024								2	1	1			
3/22/2024								2	2	2			
3/23/2024													
3/24/2024													
3/25/2024					1	1	1	2	2	2	1	1	
3/26/2024								2	2	2			
3/27/2024								1	1	1			
3/28/2024								2	2	2			
3/29/2024								2	2	2			
3/30/2024													
3/31/2024								1	1	1		Sy	ystem down 3.31.24 @ 00:34 back-up 3.31.24 @16:3

SAFTEY. EXPERIENCE. EXCELLENCE

July 31, 2024

Michael Szilagyi Industrial Waste Administrator Buffalo Sewer Authority 90 West Ferry Street Buffalo, New York, 14213

Subject: South Buffalo Development Corporation, LLC

Former Buffalo Color Corporation Site

Permit #20-06-BU109 OSC Project ID: 16011

Dear Mr. Szilagyi:

On behalf of South Buffalo Development Corporation, LLC (SBD), Ontario Specialty Contracting, Inc. (OSC) is submitting the Discharge Monitoring Report for the Buffalo Color Remediation Site covering the period of April 1 through June 30, 2024. This Discharge Monitoring Report has been completed in accordance with the requirements of Permit #20-06-BU109.

Included with the report are:

Operation log sheets;

A copy of the current BSA discharge permit; Schematic showing the location for monitoring and sampling; Summary of the discharge flow by month; Comparison of analytical data to permit limits; and

Analytical laboratory results.

Please review the attached information and feel free to contact me if you have any questions.

Sincerely,

Kirsten Colligan

Kith Col

Project Manager - Ontario Specialty Contracting, Inc.

cc: Eugene Melnyk NYSDEC Region 9
Megan Kuczka NYSDEC Region 9

John Yensan South Buffalo Development, LLC

Todd Waldrop Inventum Engineering

Industrial Waste Section Buffalo Sewer Authority Treatment Plant 90 West Ferry Street Buffalo, New York, 14213

B.P.D.E.S. Permit No. #20-06-BU109
Former Buffalo Color Corporation Site
South Buffalo Development Corporation LLC (SBD)
Reporting Period: April 1, 2024 through June 30, 2024

The following is the discharge data associated with the operations of the former Buffalo Color Corporation Area A and D Groundwater Extraction System throughout the reporting period. A schematic representing the current locations for discharge sampling is provided as an attachment. The monthly flow data presented is based upon flow data from the EW-1, EW-2, EW-4, and EW-5 flow totalizers, plus any flow from the Area D well pumping. All samples gathered were grab samples and analysis was provided by Eurofins Laboratory located in Amherst, NY. The sample event analytical results are attached.

EX-3 remains down during the reporting period, but additional wells have been added for the new system. The existing system was shut down for final plumbing/electrical work as well as connecting to the new system on July 16, 2024. The new system is estimated to be running in mid August.

Total Flow Data by Month:

 April 2024
 360,326 gallons

 May 2024
 364,165 gallons

 June 2024
 292,990 gallons

Total Quarterly Discharge 1,017,481 gallons

Estimated Area D contribution this period: 2,656 gallons

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including possibility of fine and imprisonment for knowing violations.

Kirsten Colligan Project Manager

Kito Coy

Ontario Specialty Contracting, Inc.

Attachments: BSA Permit Analytical Summary Table, BSA Discharge Permit, Monitoring and Sampling Schematic, Laboratory Analytical Results, and Field Data Collection Sheets

Compliance Confirmation Discharge Monitoring Report

BSA Permit No. Sample Date: 20-06-BU109 5/14/2024 Effective June 1, 2020 Sample Location: Onsite Pump Station to BSA

Year: 2024 Month: MAY

Event Group: SUMP Lab Job ID: J219875-1

BSA Permit Parameter		Input Analytical Results			Converted Analytical Results		BSA Daily Max Discharge Limit		Permit Compliance	MAID	Quantity	Permit Compliance
Chemical	CAS No. / Method ID	Quantity	Reporting Limit	Unit	Quantity	Unit	Quantity	Unit		mg/L	mg/L	
pH	PH	8.0	0.100	SU	8.00	SU	5.0 - 12.0	SU	Yes			
BOD5	BOD	2.2	2.0	mg/L	2.2	mg/L	250	mg/L	Yes			
Total Phenol	TOTPHEN	0.066	0.010	mg/L	0.006	lbs/day	1.67	lbs/day	Yes	20	0.066	Yes
Total Chromium	7440-47-3	0.5	0.0040	mg/L	0.0473	lbs/day	0.83	lbs/day	Yes	40	0.50	Yes
Total Copper	7440-50-8	0.0018	0.010	mg/L	0.000	lbs/day	0.67	lbs/day	Yes	16	0.0018	Yes
Lead	7439-92-1	0.0036	0.0050	mg/L	0.0003	lbs/day	0.541	lbs/day	Yes	65	0.0036	Yes
Total Mercury	7439-97-6	ND	0.00020	mg/L	ND	lbs/day	0.00033	lbs/day	Yes	0.0008	ND	Yes
Total Nickel	7440-02-0	0.0037	0.010	mg/L	0.0003	lbs/day	1.17	lbs/day	Yes	14	0.0037	Yes
Zinc	7440-66-6	0.0045	0.010	mg/L	0.000	lbs/day	2.046	lbs/day	Yes	25	0.005	Yes
Amendable Cyanide	CAN	0.075	0.010	mg/L	0.007	lbs/day	2.59	lbs/day	Yes	6.2	0.075	Yes
Total PCB	Sum Method_E608	ND	0.060	ug/L	ND	lbs/day	0.0001	lbs/day	Yes	0.002	ND	Yes
Aniline or Aniline Derivative*	62-53-3	7.9	40	ug/L	0.0007	lbs/day	50	lbs/day	Yes	0.01	0.0079	Yes
Benzene	71-43-2	1.9	5	ug/L	0.0002	lbs/day	0.059	lbs/day	Yes	0.142	0.002	Yes
Chlorobenzene	108-90-7	5.8	5	ug/L	0.0005	lbs/day	0.129	lbs/day	Yes	0.31	0.01	Yes
1,2-Dichlorobenzene	95-50-1	ND	5	ug/L	ND	lbs/day	0.197	lbs/day	Yes	0.472	ND	Yes
Fluoranthene	206-44-0	ND	20	ug/L	ND	lbs/day	0.0417	lbs/day	Yes	0.1	ND	Yes
Acenaphthylene	208-96-8	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Naphthalene	91-20-3	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Anthracene	120-12-7	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Fluorene	86-73-7	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Phenanthrene	85-01-8	ND	20	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Max Individual Purgeables*	Max Method_E624	28.52	25	ug/L	0.029	mg/L	*	mg/L	Yes			
Total Suspended Solids	TSS	90	4.0	mg/L	90.0	mg/L	250	mg/L	Yes			
Total Phosphate**	7723-14-0	0.41	0.010	mg/L	0.410	mg/L	15.35	mg/L	Yes			
Total Flow (average)	N/A	7.871427469	-	gpm	11,335	gpd	50,000	gpd	Yes			

^{*}Permit requires reporting of Aniline or Aniline Derivative and Max Individual Purgeables concentrations in excess of 0.01 mg/L.

**Analyzed by total phosphorus method SM 4500-P E
MAID - Maximum Allowable Instantaneous Discharge

Flow Calculations		
Combined Effluent No. 1 and	No. 2 Flow Totals (gallo	ons)
Initial Reading	68,695,537	4/1/2024
Final Reading	69,715,674	6/30/2024
Total Days in Period	90	
Total Flow for Period	1,020,137	gallons
Average Flow for Period	7.87	gpm

ADMINISTRATIVE OFFICES

1038 City Hall 65 Niagara Square Buffalo, NY 14202-3378 Phone: (716) 851-4664 Fax: (716) 856-5810

WASTEWATER TREATMENT PLANT

FOOT OF WEST FERRY 90 WEST FERRY STREET BUFFALO, NY 14213-1799 PHONE: (716) 851-4664 FAX: (716) 883-3789

April 30, 2020

RECEIVED MAY (1 4 2020

Ms. Kirsten Colligan Project Manager 333 Ganson Street Buffalo, New York 14203

RE: B.P.D.E.S. Permit #20-06-BU109

Dear Mr. Gabner:

Enclosed is your new BPDES Permit #20-06-BU109. This permit is issued by The Buffalo Sewer Authority.

This original permit must be maintained at your South Park Avenue remediation facility and must be available for inspection at all times. It is your responsibility to assure continual compliance with the terms and conditions of this permit. Finally, you must apply for renewal at least 6 months before this permit expires.

If you have any further questions, please call Mike Szilagyi at 716-851-4664, ext. 5253 or myself at 716-851-4664, ext. 5250.

Very truly yours, BUFFALO SEWER AUTHORITY

Leslie Sedita

Industrial Waste Administrator

cc:

D. Rossney

M. Szilagyi

AUTHORIZATION TO DISCHARGE UNDER THE BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT NO. 20-06-BU109 EPA 40CFR 403

In accordance with the provisions of the Federal Water Pollution Control Act, as amended, and the Sewer Regulations of the Buffalo Sewer Authority, authorization is hereby granted to:

South Buffalo Development, LLC.

to discharge remediated wastewater from the site located at:

Areas A and D of the former Buffalo Color Corporation Site 1037 South Park Avenue, Buffalo, New York 14210

to the Buffalo Municipal Sewer System.

Issuance of this permit is based upon a permit application filed on **February 15, 2020** and analytical data. This permit is granted in accordance with discharge limitations, monitoring requirements and other conditions set forth in Parts I and II hereof.

Effective this June 1, 2020 To Expire May 31, 2023

General Manager

PART I: SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfalls (see attached maps) shall be limited and monitored **Quarterly** by the permittee as specified below:

Sample		Discharge L	imitations	Sampling Requirement	nts
Point	Parameter	Daily Max	MAID* (mg/L)	Type	Frequency
001	pH ⁽¹⁾	5.0 - 12.0 SU	(5)	Probe Flow	Quarterly
	Total Flow BOD ₅	50,000 gals 250 mg/L ⁽³⁾		Meter ⁽²⁾ Composite (4)	Continuous Quarterly
	Total Suspended Solids	250 mg/L $^{(3)}$		Composite	Quarterly
	Total Phosphate	15.35 mg/L ⁽³⁾		Composite	Quarterly
	Total Phenol ⁽⁵⁾	1.67 lbs	20.0	Composite	Quarterly
	Amenable Cyanide	2.59 lbs	6.2	Grab (7)	Quarterly
	Total Mercury	0.00033 lbs	0.0008	Composite	Quarterly
	Total Nickel	1.17 lbs	14.0	Composite	Quarterly
	Total Copper	0.67 lbs	16.0	Composite	Quarterly
	Total Chromium	0.83 lbs	40.0	Composite	Quarterly
	Lead	0.541 lbs	65.0	Composite	Quarterly
	Zinc	2.046 lbs	25.0	Composite	Quarterly
	Purgeables-EPA Test	(6)		Grab ⁽⁷⁾	Quarterly
	Methods 624 Base/Neutrals & Acid Extractable-EPA	(8)			Quarterly
	Tests Method 625			Grab	Quarterly
	EPA Test Method 608	(9)		Grab	Quarterly
	Aniline	50.0 lbs	0.00	Grab	Quarterly
	Benzene	0.059 lbs	0.142 mg/L	Grab	Quarterly
	Chlorobenzene	0.129 lbs	0.310 mg/L	Grab	Quarterly
	1, 2-Dichlorbenzene	0.197 lbs.	0.472 mg/L	Grab	Quarterly
	Fluoranthene	0.0417 lbs.	0.100 mg/L	Grab	Quarterly
	Acenaphtylene	0.131 lbs.	0.314 mg/L	Grab	Quarterly
	Naphthalene	0.131 lbs.	0.314 mg/L	Grab	Quarterly
	Anthracene	0.131 lbs.	0.314 mg/L	Grab	Quarterly

Permit No. 20-06-BU109 Part I Page 3 of 7

Sample	Parameter	Discharge	Limitations	Sampling Requireme		
Point		Daily Max	Maid*	Type	Frequency	
	Fluorene	0.131 lbs.	0.314 mg/L	Grab	Quarterly	
	Phenanthrene	0.131 lbs.	0.314 mg/L	Grab	Quarterly	

^{*}M.A.I.D. – Maximum Allowable Instantaneous Discharge – Slug Limit. SEE PAGE FOUR (4) FOR EXPLANATION OF SPECIFIC REQUIREMENTS.

PART I: SPECIFIC CONDITIONS

B. DISCHARGE MONITORING REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported quarterly by the permittee on the days specified below:

Sample Point	Parameter	Reporting	Requirements	
001	All Analytes	Initial Report*	Subsequent Reports*	
	1	July 31, 2020	October 31, 2020	
			January 31, 2021	
			April 30, 2021	
			July 31, 2021	
			October 31, 2021	
			January 31, 2022	
			April 30, 2022	
			July 31, 2022	
			October 31, 2022 **	
	J		January 31, 2023	
			April 30, 2023	

^{*} Each reporting dated is for samples collected during the previous quarter.

^{**} The Industrial Discharge Permit Application to renew discharge permit is due six (6) months prior to the expiration of this permit.

PART I: SPECIFIC CONDITIONS

C. SPECIAL REQUIREMENTS

- (1) The pH meter must be calibrated and maintained in accordance with the manufacturer's specifications. The calibrations and the person(s) responsible for it must be recorded in a bound logbook. This logbook must be available for BSA inspection at all times.
- All flow meters must be calibrated and certified by a certified manufacturer's representative at least once per year. This report must be submitted with the annual report. All flow meters must be serviced and maintained in accordance with the manufacturer's specifications. The BSA must be notified of any malfunctions which last for more that 24 hours within three (3) days of the malfunction. If a flow meter, especially at SP001, remains out of service for more than five (5) consecutive days, the permittee must install a temporary meter until such time as the defective meter is repaired or replaced. The BSA at its option, may require a written report on any malfunctions.
- (3) Surchargeable limit only.
- (4) Composite samples may be flow proportioned.
- (5) EPA Test Method 604.
- (6) The permittee must report any compound whose concentration is greater than 0.01 mg/L. The permittee is not authorized to discharge any of the parameters evaluated by these test procedures which may cause or contribute to a violation of water quality standards, worker health or safety limits or harm the sewerage system. Any parameter detected may at the discretion of the Buffalo Sewer Authority, be specifically limited and incorporated into this permit.
- (7) Four grab samples must be properly taken and preserved over an equally spaced time period during a normal discharge day. The four grab samples must be flow proportionally composited at a New York State Department of Health certified lab.
- (8) All samples collected for the base neutral and acid extractable EPA analytical test procedures must go through a special cleanup to prevent aniline and aniline derivative interference of the analytical method. The permittee must report any aniline and aniline derivative whose concentration is greater that 0.01 mg/L.

Permit No. 20-06-BU109 Part I Page 6 of 7

(9) The permittee must report any compound whose concentration is greater than 0.30 ug/L. The permittee is not authorized to discharge any of the parameters evaluated by these test procedures which may cause or contribute to a violation of water quality standards, worker health or safety limits or harm the sewerage system. Any parameter detected may at the discretion of the Buffalo Sewer Authority, be specifically limited and incorporated into this permit.

BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT PART II: GENERAL CONDITIONS

A. MONITORING AND REPORTING

1. Local Limits

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes for the Clean Water Act.

2. Definitions

Definitions of terms contained in this permit are as defined in the Buffalo Sewer Authority Sewer Use Regulations.

3. Discharge Sampling Analysis

All Wastewater discharge samples and analyses and flow measurements shall be representative of the volume and character of the monitored discharge. Methods employed for flow measurements and sample collections and analyses shall conform to the Buffalo Sewer Authority "Sampling Measurement and Analytical Guidelines Sheet".

4. Recording of Results

For each measurement or sample taken pursuant to the requirements of the permit, the permittee shall record the information as required in the "Sampling Measurement and Analytical Guidelines Sheet".

5. Additional Monitoring by Permittee

If the permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified in 40 CFR Part 136 the results of such monitoring shall be included in the calculation and reporting of values required under Part I, B. Such increased frequency shall also be indicated.

6. Reporting

All reports prepared in accordance with this Permit shall be submitted to:

Industrial Waste Section Buffalo Sewer Authority Treatment Plant 90 West Ferry Street Buffalo, New York 14213

All self-monitoring reports shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines Sheet". These reporting requirements shall not relieve the permittee of any other reports, which may be required by the N.Y.S.D.E.C. or the U.S.E.P.A.

7. Certification Statement

All self-monitoring reports shall include the following certification statement, signed by the preparer of the report:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the systems, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations".

B. PERMITTEE REQUIREMENTS

1. Change in Discharge

All discharges authorized herein shall be consistent with the terms and conditions of this permit and with the information contained in the BPDES permit application on which basis this permit is granted. In the event of any facility expansions, production increases, process modifications or the installation, modification or repair of any pretreatment equipment which may result in new, different or increased discharges of pollutants, a new BPDES Permit application must be submitted prior to any change. Following receipt of an amended application, the BSA may modify this permit to specify and limit any pollutants not previously limited. In the event that the proposed change will be covered under an applicable Categorical Standard, a Baseline Monitoring Report must be submitted at least ninety (90) days prior to any discharge.

2. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained at this facility for a minimum of three (3) years, or longer if requested by the General Manager.

3. Slug Control Plan

Upon written notification by the BSA that a slug control plan is necessary for the permittee, the plan shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines" sheet. Within 90 days of the BSA notification, the permittee must implement the slug control plan

4. Notification of Slug, Accidental Discharge or Spill

In the event that a slug, accidental discharge or any spill occurs at the facility for which this permit is issued, it is the responsibility of the permittee to immediately notify the B.S.A. Treatment Plant of the quantity and character of such discharge. During normal business hours, Monday – Friday, 7:30 AM - 3:00 PM call 716-851-4664, ext. 5374. After normal business hours call 716-851-4664, ext. 600. For all slug discharges, and when requested by the BSA following an accidental discharge or spill, within five (5) days following all such discharges, the permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

5. Noncompliance Notification

If, for any reason, the permittee does not comply with or will be unable to comply with any discharge limitation specified in this permit, the permittee or their assigns must verbally notify the Industrial Waste Section at 716-851-4664 ext. 5374 within twenty-four (24) hours of becoming aware of the violation. The permittee shall provide the Industrial Waste Section with the following information, in writing, within five (5) days of becoming aware of such condition:

- a. a description of the discharge and cause of noncompliance and;
- b. The period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

Additionally, the permittee shall repeat the sampling and analysis and submit these results of the report analysis to the Industrial Waste Section within 30 days after becoming aware of the violation.

6. Adverse Impact

The permittee shall take all reasonable steps to minimize any adverse impact to the Buffalo Sewerage System resulting from noncompliance with any discharge limitations specified in this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

7. Waste Residuals

Solids, sludges, filter backwash or other pollutants removed in the course of treatment or control of wastewaters and/or the treatment of intake waters, shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the Buffalo Sewer System.

8. Power Failures

In order to maintain compliance with the discharge limitations and prohibitions of this permit, the permittee shall provide an alternative power source sufficient to operate the wastewater control facilities; or, if such alternative power source is not provided the permittee shall halt, reduce or otherwise control production and/or controlled discharges upon the loss of power to the wastewater control facilities.

9. Treatment Upsets

- a. Any industrial user which experiences an upset in operations that places it in a temporary state of noncompliance, which is not the result of operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation, shall inform the Industrial Waste Section immediately upon becoming aware of the upset. Where such information is given verbally, a written report shall be filed by the user within five (5) days. The report shall contain:
 - (i) A description of the upset, its cause(s) and impact on the discharger's compliance status;
 - (ii) The duration of noncompliance, including exact dates and times of noncompliance, and if the non-compliance is continuing, the time by which compliance is reasonably expected to be restored;
 - (iii) All steps taken or planned to reduce, eliminate, and prevent recurrence of such an upset.
- b. An industrial user which complies with the notification provisions of this Section in a timely manner shall have an affirmative defense to any enforcement action brought by the Industrial Waste Section for any

noncompliance of the limits in this permit, which arises out of violations attributable to and alleged to have occurred during the period of the documented and verified upset.

10. Treatment Bypasses

- a. A bypass of the treatment system is prohibited unless the following conditions are met:
 - (i) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; or
 - (ii) There was no feasible alternative to the bypass, including the use of auxiliary treatment or retention of the wastewater; and
 - (iii) The industrial user properly notified the Industrial Waste Section as described in paragraph b. below.
- b. Industrial users must provide immediate notice to the Industrial Waste Section upon discovery of an unanticipated bypass. If necessary, the Industrial Waste Section may require the industrial user to submit a written report explaining the cause(s), nature, and duration of the bypass, and the steps being taken to prevent its recurrence.
- c. An industrial user may allow a bypass to occur which does not cause pretreatment standards or requirements to be violated, but only if it is for essential maintenance to ensure efficient operation of the treatment system. Industrial users anticipating a bypass must submit notice to the Industrial Waste Section at least ten (10) days in advance. The Industrial Waste Section may only approve the anticipated bypass if the circumstances satisfy those set forth in paragraph a above.

C. PERMITTEE RESPONSIBILITIES

1. Permit Availability

The originally signed permit must be available upon request at all times for review at the address stated on the first page of this permit.

2. Inspections

The permittee shall allow the General Manager of the Buffalo Sewer Authority and/or his authorized representatives, upon the presentation of credentials and during normal working hours or at any other reasonable times, to have access to and copy any records required in this permit; and to sample any discharge of pollutants.

3. Transfer of Ownership or Control

In the event of any change in control or ownership of facilities for which this permit has been issued the permit shall become null and void. The succeeding owner shall submit a completed Buffalo Sewer Authority permit application prior to discharge to the sewer system.

D. PERMITTEE LIABILITIES

1. Permit Modification

After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to the following:

- a. Violation of any terms or conditions of this permit,
- b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts,
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

2. Imminent Danger

In the event there exists an imminent danger to health or property, the permitter reserves the right to take immediate action to halt the permitted discharge to the sewerage works.

3. Civil and Criminal Liability

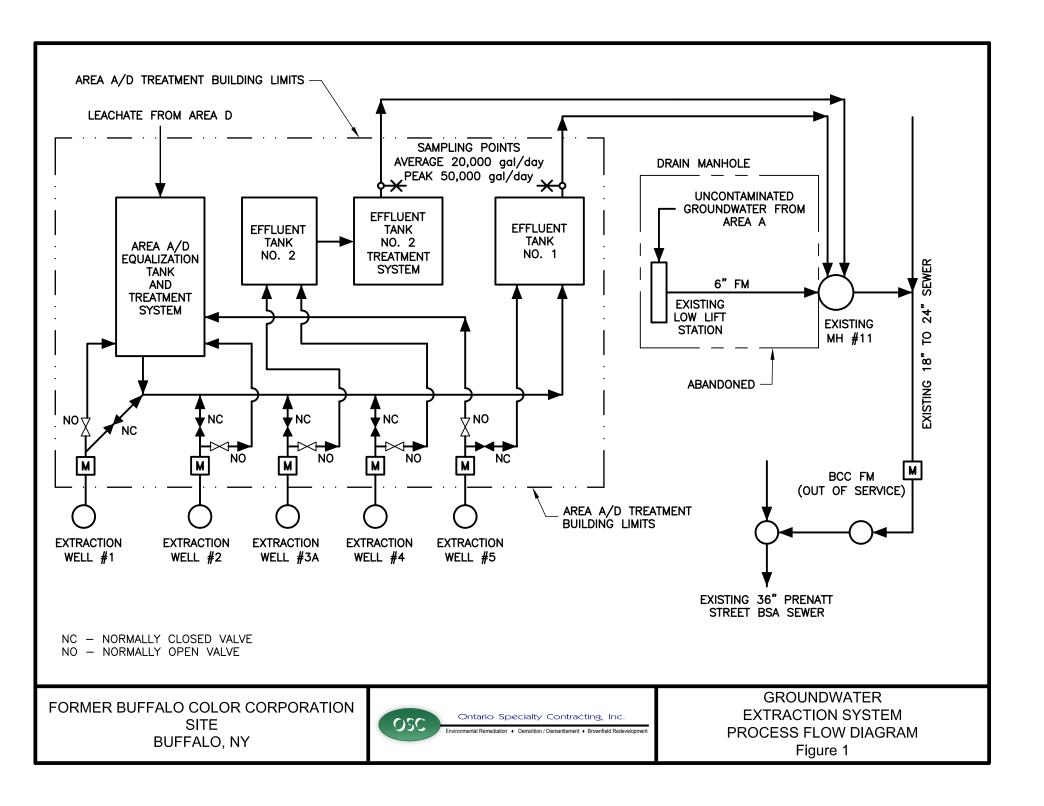
Nothing in this permit shall relieve the permittee from any requirements, liabilities, or penalties under provisions of the "Sewer Regulations of the Buffalo Sewer Authority" or any Federal, State and/or local laws or regulations.

E. NATIONAL PRETREATMENT STANDARDS

If a pretreatment standard or prohibition (including any Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 307 (b) of the Act for a pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.

F. PLANT CLOSURE

In the event of plant closure, the permittee is required to notify the Industrial Waste Section in writing as soon as an anticipated closure date is determined, but in no case later than five days of the actual closure.


G. CONFIDENTIALITY

Except for data determined to be confidential under Section 308 of the Act, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Buffalo Sewer Authority. As required by the Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Act.

H. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

ANALYTICAL REPORT

PREPARED FOR

Generated 6/3/2024 3:35:28 PM

Attn: Kirsten Colligan Ontario Specialty Contracting, Inc. 140 Lee St. Buffalo, New York 14210

JOB DESCRIPTION

Quarterly BSA SUMP Buffalo Color - Quarterly Sump

JOB NUMBER

480-219875-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 6/3/2024 3:35:28 PM

Authorized for release by
Anton Gruning, Project Management Assistant I
Anton.Gruning@et.eurofinsus.com
Designee for
John Schove, Project Manager II
John.Schove@et.eurofinsus.com

(716)504-9838

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	24
Lab Chronicle	27
Certification Summary	28
Method Summary	29
Sample Summary	30
Detection Limit Exceptions Summary	31
Chain of Custody	32
Receipt Checklists	33

2

4

9

11

12

14

Definitions/Glossary

Client: Ontario Specialty Contracting, Inc.
Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

B Compound was found in the blank and sample.

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

J

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit
PRES Presumptive

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 33 6/3/2024

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project: Quarterly BSA SUMP

Job ID: 480-219875-1 Eurofins Buffalo

Job Narrative 480-219875-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/14/2024 3:26 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.9°C.

GC/MS VOA

Method 624.1_PREC: The continuing calibration verification (CCV) associated with batch 480-712096 recovered above the upper control limit for Acrolein, Toluene, Tetrachloroethene and Bromoform. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: BCC BSA SUMP (480-219875-1) and TRIP BLANK (480-219875-2).

Method 624.1_PREC: The following Volatile sample was composited by the laboratory on 05/15/2024 as requested by the client: BCC BSA SUMP (480-219875-1). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

Method 624.1_PREC: Surrogate recovery for the following sample was outside the upper control limit: TRIP BLANK (480-219875-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method 624.1_PREC: Surrogate recovery in the continuing calibration verification (CCV) was outside the 20%D recovery but within house limits. The following samples are impacted: BCC BSA SUMP (480-219875-1) and TRIP BLANK (480-219875-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1_PREC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-712874.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCBs

Method 608.3_PCB_PREC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-712482.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 200.7: The reference method requires samples to be preserved to a pH of <2. The following sample(s) was received with insufficient preservation at a pH of >2. The sample(s) was preserved to the appropriate pH in the laboratory. Preserved 5/16/24 at 10:31, second pH check 5/17/24 at 16:00.

Method 245.1: Due to interference with the sample matrix, the standard mercury preparation procedure was inadequate for the following samples(s): 480-219875-1. This was demonstrated when the potassium permanganate reagent was added and the characteristic purple color faded rapidly. This loss of color indicates oxidizing conditions were not maintained. The sample(s) was prepared and analyzed at a 10 mL dilution, which maintained the purple color during digestion.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 5 of 33 6/3/2024

3

Job ID: 480-219875-1

4

9

10

12

. .

15

16

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project: Quarterly BSA SUMP

Job ID: 480-219875-1 (Continued)

Eurofins Buffalo

Job ID: 480-219875-1

General Chemistry

Method SM4500_H+: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: BCC BSA SUMP (480-219875-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 6 of 33 6/3/2024

Detection Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

.

Client Sample ID: BCC BSA SUMP

Lab Sam	ple II	D: 48	30-21	9875-1
----------------	--------	-------	-------	--------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	1.9	J	5.0	0.60	ug/L	1	_	624.1	Total/NA
Chlorobenzene	5.8		5.0	0.48	ug/L	1		624.1	Total/NA
2-Chlorophenol	0.72	J	20	0.66	ug/L	1		625.1	Total/NA
Aniline	7.9	J	40	1.5	ug/L	1		625.1	Total/NA
Di-n-butyl phthalate	11	J	20	1.6	ug/L	1		625.1	Total/NA
Phenol	1.2	J	20	0.35	ug/L	1		625.1	Total/NA
Chromium	0.50		0.0040	0.0010	mg/L	1		200.7 Rev 4.4	Total/NA
Copper	0.0018	J	0.010	0.0016	mg/L	1		200.7 Rev 4.4	Total/NA
Lead	0.0036	J	0.010	0.0030	mg/L	1		200.7 Rev 4.4	Total/NA
Nickel	0.0037	J	0.010	0.0013	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.0045	JB	0.010	0.0015	mg/L	1		200.7 Rev 4.4	Total/NA
Phenolics, Total Recoverable	0.066		0.010	0.0035	mg/L	1		420.4	Total/NA
Total Suspended Solids	90.0		4.0	4.0	mg/L	1		SM 2540D	Total/NA
Cyanide, Amenable	0.075		0.010	0.0050	mg/L	1		SM 4500 CN G	Total/NA
pH	8.0	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Temperature	20.8	HF	0.001	0.001	Degrees C	1		SM 4500 H+ B	Total/NA
Phosphorus	0.41	В	0.010	0.0050	mg/L as P	1		SM 4500 P E	Total/NA
Biochemical Oxygen Demand	2.2		2.0	2.0	mg/L	1		SM 5210B	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-219875-2

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP

Date Collected: 05/14/24 13:00

Lab Sample ID: 480-219875-1

Matrix: Water

Date Received: 05/14/24 15:26

Method: EPA 624.1 - Volati Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			05/15/24 19:10	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			05/15/24 19:10	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			05/15/24 19:10	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			05/15/24 19:10	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			05/15/24 19:10	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			05/15/24 19:10	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			05/15/24 19:10	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			05/15/24 19:10	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			05/15/24 19:10	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			05/15/24 19:10	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			05/15/24 19:10	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			05/15/24 19:10	1
Acrolein	ND		100	17	ug/L			05/15/24 19:10	1
Acrylonitrile	ND		50	1.9	ug/L			05/15/24 19:10	1
Benzene	1.9	J	5.0	0.60	ug/L			05/15/24 19:10	1
Bromodichloromethane	ND		5.0	0.54	ug/L			05/15/24 19:10	1
Bromoform	ND		5.0	0.47	ug/L			05/15/24 19:10	1
Bromomethane	ND		5.0	1.2	ug/L			05/15/24 19:10	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			05/15/24 19:10	1
Chlorobenzene	5.8		5.0	0.48	ug/L			05/15/24 19:10	1
Chloroethane	ND		5.0	0.87	ug/L			05/15/24 19:10	1
Chloroform	ND		5.0	0.54	ug/L			05/15/24 19:10	1
Chloromethane	ND		5.0	0.64	ug/L			05/15/24 19:10	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			05/15/24 19:10	1
Dibromochloromethane	ND		5.0	0.41	ug/L			05/15/24 19:10	1
Ethylbenzene	ND		5.0	0.46	ug/L			05/15/24 19:10	1
Methylene Chloride	ND		5.0	0.81	ug/L			05/15/24 19:10	1
Tetrachloroethene	ND		5.0	0.34	ug/L			05/15/24 19:10	1
Toluene	ND		5.0	0.45	ug/L			05/15/24 19:10	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			05/15/24 19:10	1
Trichloroethene	ND		5.0	0.60	ug/L			05/15/24 19:10	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			05/15/24 19:10	1
Vinyl chloride	ND		5.0	0.75	ug/L			05/15/24 19:10	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 130					05/15/24 19:10	1
4-Bromofluorobenzene (Surr)	94		76 - 123					05/15/24 19:10	1
Dibromofluoromethane (Surr)	101		75 - 123					05/15/24 19:10	1
Toluene-d8 (Surr)	99		77 - 120					05/15/24 19:10	1

Method: EPA	1 625.1 - Semiv	olatile Organic (Compounds (GC/MS)

Method: El A 020:1 - Ochilvo	iatile Organie Compound							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND ND	40	0.82	ug/L		05/21/24 13:54	05/22/24 15:12	1
1,2-Dichlorobenzene	ND	40	1.0	ug/L		05/21/24 13:54	05/22/24 15:12	1
1,2-Diphenylhydrazine	ND	40	0.78	ug/L		05/21/24 13:54	05/22/24 15:12	1
1,3-Dichlorobenzene	ND	40	0.69	ug/L		05/21/24 13:54	05/22/24 15:12	1
1,4-Dichlorobenzene	ND	40	0.82	ug/L		05/21/24 13:54	05/22/24 15:12	1
2,2'-oxybis[1-chloropropane]	ND	20	0.84	ug/L		05/21/24 13:54	05/22/24 15:12	1
2,4,6-Trichlorophenol	ND	20	1.0	ug/L		05/21/24 13:54	05/22/24 15:12	1
2,4-Dichlorophenol	ND	20	0.77	ug/L		05/21/24 13:54	05/22/24 15:12	1

Eurofins Buffalo

Job ID: 480-219875-1

Page 8 of 33 6/3/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-219875-1

Matrice Matrice

Matrix: Water

Job ID: 480-219875-1

Client Sample ID: BCC BSA SUMP

Date Collected: 05/14/24 13:00 Date Received: 05/14/24 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dimethylphenol	ND		20	1.4	ug/L		05/21/24 13:54	05/22/24 15:12	
2,4-Dinitrophenol	ND		40	5.0			05/21/24 13:54	05/22/24 15:12	
2,4-Dinitrotoluene	ND		20		ug/L		05/21/24 13:54	05/22/24 15:12	
2-Chloronaphthalene	ND		20		ug/L			05/22/24 15:12	
2-Chlorophenol	0.72	J	20		ug/L			05/22/24 15:12	
2-Nitrophenol	ND		20		ug/L			05/22/24 15:12	
3,3'-Dichlorobenzidine	ND		20		ug/L			05/22/24 15:12	
4,6-Dinitro-2-methylphenol	ND		40		ug/L			05/22/24 15:12	
4-Bromophenyl phenyl ether	ND		20		ug/L			05/22/24 15:12	
4-Chloro-3-methylphenol	ND		20	1.1	ug/L			05/22/24 15:12	
4-Chlorophenyl phenyl ether	ND		20		ug/L			05/22/24 15:12	
4-Nitrophenol	ND		40	1.9	ug/L			05/22/24 15:12	
Acenaphthene	ND		20	0.81	-			05/22/24 15:12	
	ND		20		ug/L			05/22/24 15:12	
Acenaphthylene			40		-			05/22/24 15:12	
Aniline Anthracene	7.9 ND	J	20		ug/L			05/22/24 15:12	
					ug/L			05/22/24 15:12	
Benzidine	ND		320		ug/L				
Benzo[a]anthracene	ND		20		ug/L			05/22/24 15:12	
Benzo[a]pyrene	ND		20		ug/L			05/22/24 15:12	
Benzo[b]fluoranthene	ND		20		ug/L			05/22/24 15:12	
Benzo[g,h,i]perylene	ND		20		ug/L			05/22/24 15:12	
Benzo[k]fluoranthene	ND		20		ug/L			05/22/24 15:12	
Bis(2-chloroethoxy)methane	ND		20		ug/L			05/22/24 15:12	
Bis(2-chloroethyl)ether	ND		20		Ü			05/22/24 15:12	
Bis(2-ethylhexyl) phthalate	ND		40		ug/L			05/22/24 15:12	
Butyl benzyl phthalate	ND		20	1.1	ug/L			05/22/24 15:12	
Chrysene	ND		20	1.0	ug/L			05/22/24 15:12	
Dibenz(a,h)anthracene	ND		20	1.5	ug/L		05/21/24 13:54	05/22/24 15:12	
Diethyl phthalate	ND		20	1.0	ug/L		05/21/24 13:54	05/22/24 15:12	
Dimethyl phthalate	ND		20	0.91	ug/L		05/21/24 13:54	05/22/24 15:12	
Di-n-butyl phthalate	11	J	20	1.6	ug/L		05/21/24 13:54	05/22/24 15:12	
Di-n-octyl phthalate	ND		20	1.2	ug/L		05/21/24 13:54	05/22/24 15:12	
Fluoranthene	ND		20	1.6	ug/L		05/21/24 13:54	05/22/24 15:12	
Fluorene	ND		20	1.0	ug/L		05/21/24 13:54	05/22/24 15:12	
Hexachlorobenzene	ND		20	1.0	ug/L		05/21/24 13:54	05/22/24 15:12	
Hexachlorobutadiene	ND		20	1.0	ug/L		05/21/24 13:54	05/22/24 15:12	
Hexachlorocyclopentadiene	ND		20	2.1	ug/L		05/21/24 13:54	05/22/24 15:12	
Hexachloroethane	ND		20	0.60	ug/L		05/21/24 13:54	05/22/24 15:12	
Indeno[1,2,3-cd]pyrene	ND		20		ug/L		05/21/24 13:54	05/22/24 15:12	
Isophorone	ND		20		ug/L			05/22/24 15:12	
Naphthalene	ND		20		ug/L			05/22/24 15:12	
Decane	ND		40		ug/L			05/22/24 15:12	
Nitrobenzene	ND		20		ug/L			05/22/24 15:12	
N-Nitrosodimethylamine	ND		40		ug/L			05/22/24 15:12	
N-Nitrosodi-n-propylamine	ND		20		ug/L			05/22/24 15:12	
N-Nitrosodiphenylamine	ND		20		ug/L			05/22/24 15:12	
n-Octadecane	ND		40		ug/L ug/L			05/22/24 15:12	
Pentachlorophenol	ND ND		40					05/22/24 15:12	
Pentachiorophenoi Phenanthrene	ND ND		40 20		ug/L ug/L			05/22/24 15:12 05/22/24 15:12	

Eurofins Buffalo

Page 9 of 33 6/3/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Client Sample ID: BCC BSA SUMP Lab Sample ID: 480-219875-1

Date Collected: 05/14/24 13:00 **Matrix: Water** Date Received: 05/14/24 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Phenol	1.2	J	20	0.35	ug/L		05/21/24 13:54	05/22/24 15:12	
Pyrene	ND		20	1.4	ug/L		05/21/24 13:54	05/22/24 15:12	
2,6-Dinitrotoluene	ND		20		ug/L		05/21/24 13:54	05/22/24 15:12	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	105		52 - 151				05/21/24 13:54	05/22/24 15:12	
2-Fluorobiphenyl	95		44 - 120				05/21/24 13:54	05/22/24 15:12	
2-Fluorophenol	66		17 - 120				05/21/24 13:54	05/22/24 15:12	
Nitrobenzene-d5	82		15 - 314				05/21/24 13:54	05/22/24 15:12	
Phenol-d5	49		8 - 424				05/21/24 13:54	05/22/24 15:12	
o-Terphenyl-d14	77		22 - 125				05/21/24 13:54	05/22/24 15:12	
Method: EPA 608.3 - Polychlor	rinated Bipl	henyls (PC	Bs) (GC)						
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.057	0.036	ug/L		05/17/24 13:38	05/19/24 22:45	
PCB-1221	ND		0.057	0.036	ug/L		05/17/24 13:38	05/19/24 22:45	
PCB-1232	ND		0.057	0.036	ug/L		05/17/24 13:38	05/19/24 22:45	
PCB-1242	ND		0.057	0.036	ug/L		05/17/24 13:38	05/19/24 22:45	
PCB-1248	ND		0.057	0.036	ug/L		05/17/24 13:38	05/19/24 22:45	
PCB-1254	ND		0.057	0.030	ug/L		05/17/24 13:38	05/19/24 22:45	
PCB-1260	ND		0.057	0.030	ug/L		05/17/24 13:38	05/19/24 22:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
DCB Decachlorobiphenyl	38		36 - 121				05/17/24 13:38	05/19/24 22:45	
Method: EPA 200.7 Rev 4.4 - M	lotale (ICP)								
VICTION. LEA 200./ NEV 4.4 - IV	ietais (ici)								
	Result	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Analyte	Result 0.50		0.0040	0.0010	mg/L	_ <u>D</u>	Prepared 05/23/24 10:56	Analyzed 05/23/24 19:38	Dil Fa
Analyte Chromium	Result			0.0010 0.0016	mg/L mg/L	_ <u>D</u>			Dil F
Analyte Chromium Copper	Result 0.50	J	0.0040	0.0010 0.0016 0.0030	mg/L mg/L mg/L	_ <u>D</u>	05/23/24 10:56	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58	Dil Fa
Analyte Chromium Copper Lead	0.50 0.0018	J J	0.0040	0.0010 0.0016	mg/L mg/L mg/L	_ <u>D</u>	05/23/24 10:56 05/20/24 09:29	05/23/24 19:38 05/21/24 14:58	Dil Fa
Analyte Chromium Copper Lead Nickel	0.50 0.0018 0.0036	J J	0.0040 0.010 0.010	0.0010 0.0016 0.0030	mg/L mg/L mg/L mg/L	<u>D</u>	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Result 0.50 0.0018 0.0036 0.0037 0.0045	J J	0.0040 0.010 0.010 0.010 0.010	0.0010 0.0016 0.0030 0.0013 0.0015	mg/L mg/L mg/L mg/L mg/L		05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58	
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte	Result 0.50 0.0018 0.0036 0.0037 0.0045 (CVAA) Result	J J	0.0040 0.010 0.010 0.010 0.010	0.0010 0.0016 0.0030 0.0013 0.0015	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58	Dil Fa
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury	Result 0.50 0.0018 0.0036 0.0037 0.0045	J J	0.0040 0.010 0.010 0.010 0.010	0.0010 0.0016 0.0030 0.0013 0.0015	mg/L mg/L mg/L mg/L mg/L		05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58	
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury General Chemistry	Result 0.50 0.0018 0.0036 0.0037 0.0045 (CVAA) Result ND	J J	0.0040 0.010 0.010 0.010 0.010	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.00013	mg/L mg/L mg/L mg/L mg/L		05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 Analyzed 05/18/24 16:08	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA	Result 0.50 0.0018 0.0036 0.0037 0.0045 (CVAA) Result ND	J J J B	0.0040 0.010 0.010 0.010 0.010 	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.00013	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared 05/17/24 13:22	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 120.4) Cyanide, Amenable (SM 4500 CN	Result 0.50 0.0018 0.0036 0.0037 0.0045 (CVAA) Result ND	J J J B Qualifier	0.0040 0.010 0.010 0.010 0.010 RL 0.00060	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.00013	mg/L mg/L mg/L mg/L mg/L Unit mg/L	<u>D</u>	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared 05/17/24 13:22	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 Analyzed	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 120.4) Cyanide, Amenable (SM 4500 CN G)	Result 0.50 0.0018 0.0036 0.0037 0.0045 (CVAA) Result ND Result 0.066 0.075	J J J B Qualifier	0.0040 0.010 0.010 0.010 0.010 RL 0.00060 RL 0.010	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.0035 0.0050	mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit mg/L mg/L	<u>D</u>	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared 05/17/24 13:22	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 Analyzed 05/18/24 16:08 Analyzed 05/23/24 02:19	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM	Result 0.50 0.0018 0.0036 0.0037 0.0045 (CVAA) Result ND Result 0.066	J J J B Qualifier	0.0040 0.010 0.010 0.010 0.010 RL 0.00060	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.0035 0.0050	mg/L mg/L mg/L mg/L mg/L Unit mg/L	<u>D</u>	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared 05/17/24 13:22	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 Analyzed 05/18/24 16:08 Analyzed 05/23/24 02:19	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 120.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 6210B)	Result	J J J Gualifier Qualifier	0.0040 0.010 0.010 0.010 0.010 RL 0.00060 RL 0.010 0.010 0.010 2.0	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.00013 0.0050 0.0050 2.0	mg/L mg/L mg/L mg/L Mg/L Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D_	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared 05/17/24 13:22 Prepared	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 Analyzed 05/18/24 16:08 Analyzed 05/23/24 02:19 05/23/24 22:21 05/15/24 21:11 05/16/24 09:32	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 120.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 5210B) Analyte	Result 0.50 0.0018 0.0036 0.0037 0.0045 (CVAA) Result 0.066 0.075 0.41 2.2 Result	J J J B Qualifier	0.0040 0.010 0.010 0.010 0.010 RL 0.00060 RL 0.010 0.010 0.010 0.010 RL	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.00013 0.0050 0.0050 2.0	mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit mg/L Mg/L Unit Mg/L Mg/L	<u>D</u>	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared 05/17/24 13:22	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 Analyzed 05/18/24 16:08 Analyzed 05/23/24 02:19 05/23/24 22:21 05/15/24 21:11 05/16/24 09:32 Analyzed	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury Canalyte Phenolics, Total Recoverable (EPA 120.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 5210B) Analyte Total Suspended Solids (SM	Result	J J J Gualifier Qualifier	0.0040 0.010 0.010 0.010 0.010 RL 0.00060 RL 0.010 0.010 0.010 2.0	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.00013 0.0050 0.0050 2.0	mg/L mg/L mg/L mg/L Mg/L Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D_	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared 05/17/24 13:22 Prepared	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 Analyzed 05/18/24 16:08 Analyzed 05/23/24 02:19 05/23/24 22:21 05/15/24 21:11 05/16/24 09:32	Dil F
Analyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury (Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 5210B) Analyte Total Suspended Solids (SM 2540D) pH (SM 4500 H+ B)	Result 0.50 0.0018 0.0036 0.0037 0.0045 (CVAA) Result 0.066 0.075 0.41 2.2 Result 90.0	J J J Gualifier Qualifier	0.0040 0.010 0.010 0.010 0.010 RL 0.00060 RL 0.010 0.010 0.010 0.010 RL	0.0010 0.0016 0.0030 0.0013 0.0015 MDL 0.00013 0.0050 0.0050 2.0 RL 4.0	mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit mg/L Mg/L Unit Mg/L Mg/L	_ D_	05/23/24 10:56 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 05/20/24 09:29 Prepared 05/17/24 13:22 Prepared	05/23/24 19:38 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 05/21/24 14:58 Analyzed 05/18/24 16:08 Analyzed 05/23/24 02:19 05/23/24 22:21 05/15/24 21:11 05/16/24 09:32 Analyzed	

Eurofins Buffalo

Page 10 of 33

6/3/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-219875-2

Matrix: Water

Job ID: 480-219875-1

Client Sample ID: TRIP BLANK Date Collected: 05/14/24 00:00

Date Received: 05/14/24 15:26

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Method: EPA 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	MD		5.0	0.39	ug/L			05/15/24 19:34	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			05/15/24 19:34	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			05/15/24 19:34	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			05/15/24 19:34	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			05/15/24 19:34	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			05/15/24 19:34	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			05/15/24 19:34	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			05/15/24 19:34	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			05/15/24 19:34	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			05/15/24 19:34	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			05/15/24 19:34	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			05/15/24 19:34	1
Acrolein	ND		100	17	ug/L			05/15/24 19:34	1
Acrylonitrile	ND		100	1.9	ug/L			05/15/24 19:34	1
Benzene	ND		5.0	0.60	ug/L			05/15/24 19:34	1
Bromodichloromethane	ND		5.0	0.54	ug/L			05/15/24 19:34	1
Bromoform	ND		5.0	0.47	ug/L			05/15/24 19:34	1
Bromomethane	ND		5.0	1.2	ug/L			05/15/24 19:34	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			05/15/24 19:34	1
Chlorobenzene	ND		5.0	0.48	ug/L			05/15/24 19:34	1
Chloroethane	ND		5.0	0.87	ug/L			05/15/24 19:34	1
Chloroform	ND		5.0	0.54	ug/L			05/15/24 19:34	1
Chloromethane	ND		5.0	0.64	ug/L			05/15/24 19:34	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			05/15/24 19:34	1
Dibromochloromethane	ND		5.0	0.41	ug/L			05/15/24 19:34	1
Ethylbenzene	ND		5.0	0.46	ug/L			05/15/24 19:34	1
Methylene Chloride	ND		5.0	0.81	ug/L			05/15/24 19:34	1
Tetrachloroethene	ND		5.0	0.34	ug/L			05/15/24 19:34	1
Toluene	ND		5.0	0.45	ug/L			05/15/24 19:34	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			05/15/24 19:34	1
Trichloroethene	ND		5.0	0.60	ug/L			05/15/24 19:34	1
Trichlorofluoromethane	ND		5.0	0.45				05/15/24 19:34	1
Vinyl chloride	ND		5.0	0.75	ug/L			05/15/24 19:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130			-		05/15/24 19:34	1
4-Bromofluorobenzene (Surr)	124	S1+	76 - 123					05/15/24 19:34	1

Fı	irofine	Ru	ffal.	_

05/15/24 19:34

05/15/24 19:34

75 - 123

77 - 120

112

143 S1+

Surrogate Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery				
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)	
480-219875-1	BCC BSA SUMP	95	94	101	99	
480-219875-2	TRIP BLANK	104	124 S1+	112	143 S1+	
LCS 480-712096/6	Lab Control Sample	92	96	97	99	
MB 480-712096/8	Method Blank	94	94	101	99	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surre	ogate Recov	ery (Acce	ptance Lim
		TBP	FBP	2FP	NBZ	PHL	TPHd14
Lab Sample ID	Client Sample ID	(52-151)	(44-120)	(17-120)	(15-314)	(8-424)	(22-125)
480-219875-1	BCC BSA SUMP	105	95	66	82	49	77
LCS 480-712874/2-A	Lab Control Sample	104	95	71	86	57	98
LCSD 480-712874/3-A	Lab Control Sample Dup	108	94	69	87	56	102
MB 480-712874/1-A	Method Blank	91	94	66	79	50	95

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCBP1	TCX1					
Lab Sample ID	Client Sample ID	(36-121)	(42-135)					
180-219875-1	BCC BSA SUMP	38	53					
_CS 480-712482/2-A	Lab Control Sample	51	57					
_CSD 480-712482/3-A	Lab Control Sample Dup	57	54					
MB 480-712482/1-A	Method Blank	55	63					

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Eurofins Buffalo

Page 12 of 33

Client: Ontario Specialty Contracting, Inc. Job ID: 480-219875-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-712096/8

Matrix: Water

Analysis Batch: 712096

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	Qualifier	5.0		ug/L		riepaieu	05/15/24 16:30	Dii Fac
1,1,2,2-Tetrachloroethane	ND ND		5.0		ug/L ug/L			05/15/24 16:30	1
1,1,2-Trichloroethane	ND ND		5.0		ug/L			05/15/24 16:30	1
1,1-Dichloroethane	ND		5.0		ug/L			05/15/24 16:30	
1,1-Dichloroethene	ND ND		5.0		ug/L ug/L			05/15/24 16:30	1
1,2-Dichlorobenzene	ND ND		5.0		ug/L ug/L			05/15/24 16:30	1
1,2-Dichloroethane	ND		5.0		ug/L ug/L			05/15/24 16:30	
1,2-Dichloroethene, Total	ND ND		10		ug/L ug/L			05/15/24 16:30	1
1,2-Dichloropropane	ND ND		5.0		ug/L ug/L			05/15/24 16:30	1
1,3-Dichlorobenzene	ND		5.0		ug/L ug/L			05/15/24 16:30	<mark>'</mark> 1
1,4-Dichlorobenzene	ND ND		5.0		ug/L ug/L			05/15/24 16:30	1
2-Chloroethyl vinyl ether	ND ND		25		ug/L ug/L			05/15/24 16:30	1
Acrolein	ND		100					05/15/24 16:30	
	ND ND		50		ug/L			05/15/24 16:30	1
Acrylonitrile Benzene	ND ND		5.0		ug/L ug/L			05/15/24 16:30	1
Bromodichloromethane	ND		5.0						
Bromodicnioromethane	ND ND				ug/L			05/15/24 16:30	1
	ND ND		5.0 5.0		ug/L			05/15/24 16:30 05/15/24 16:30	1
Bromomethane					ug/L				
Carbon tetrachloride	ND		5.0		ug/L			05/15/24 16:30	1
Chlorobenzene	ND		5.0		ug/L			05/15/24 16:30	1
Chloroethane	ND		5.0		ug/L			05/15/24 16:30	
Chloroform	ND		5.0		ug/L			05/15/24 16:30	1
Chloromethane	ND		5.0		ug/L			05/15/24 16:30	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			05/15/24 16:30	
Dibromochloromethane	ND		5.0		ug/L			05/15/24 16:30	1
Ethylbenzene	ND		5.0		ug/L			05/15/24 16:30	1
Methylene Chloride	ND		5.0		ug/L			05/15/24 16:30	1
Tetrachloroethene	ND		5.0		ug/L			05/15/24 16:30	1
Toluene	ND		5.0		ug/L			05/15/24 16:30	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			05/15/24 16:30	1
Trichloroethene	ND		5.0		ug/L			05/15/24 16:30	1
Trichlorofluoromethane	ND		5.0		ug/L			05/15/24 16:30	1
Vinyl chloride	ND		5.0	0.75	ug/L			05/15/24 16:30	1

	MB	MB
		_

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94	68 - 130		05/15/24 16:30	1
4-Bromofluorobenzene (Surr)	94	76 - 123		05/15/24 16:30	1
Dibromofluoromethane (Surr)	101	75 - 123		05/15/24 16:30	1
Toluene-d8 (Surr)	99	77 - 120		05/15/24 16:30	1

Lab Sample ID: LCS 480-712096/6

Matrix: Water

Analysis Batch: 712096

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.5		ug/L		92	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.6		ug/L		103	46 - 157	
1,1,2-Trichloroethane	20.0	20.7		ug/L		103	52 - 150	

Page 13 of 33

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-219875-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-712096/6

Matrix: Water

Analysis Batch: 712096

Client Sample ID: Lab Control Sample

Prep Type: Total/NA %Rec

	Spike	LCS					%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	20.0	20.4		ug/L		102	59 - 155
1,1-Dichloroethene	20.0	13.2		ug/L		66	1 - 234
1,2-Dichlorobenzene	20.0	19.8		ug/L		99	18 - 190
1,2-Dichloroethane	20.0	19.0		ug/L		95	49 - 155
1,2-Dichloropropane	20.0	20.7		ug/L		103	1 - 210
1,3-Dichlorobenzene	20.0	20.7		ug/L		103	59 - 156
1,4-Dichlorobenzene	20.0	20.7		ug/L		104	18 - 190
2-Chloroethyl vinyl ether	20.0	22.1	J	ug/L		110	1 - 305
Acrolein	100	142		ug/L		142	10 - 176
Acrylonitrile	200	221		ug/L		111	54 - 147
Benzene	20.0	21.2		ug/L		106	37 - 151
Bromodichloromethane	20.0	20.2		ug/L		101	35 - 155
Bromoform	20.0	22.9		ug/L		115	45 - 169
Bromomethane	20.0	13.5		ug/L		67	1 - 242
Carbon tetrachloride	20.0	18.0		ug/L		90	70 - 140
Chlorobenzene	20.0	20.4		ug/L		102	37 - 160
Chloroethane	20.0	16.1		ug/L		81	14 - 230
Chloroform	20.0	19.8		ug/L		99	51 - 138
Chloromethane	20.0	25.3		ug/L		127	1 - 273
cis-1,3-Dichloropropene	20.0	20.6		ug/L		103	1 - 227
Dibromochloromethane	20.0	20.8		ug/L		104	53 - 149
Ethylbenzene	20.0	20.3		ug/L		101	37 - 162
Methylene Chloride	20.0	22.1		ug/L		110	1 - 221
Tetrachloroethene	20.0	21.5		ug/L		107	64 - 148
Toluene	20.0	20.3		ug/L		102	47 - 150
trans-1,3-Dichloropropene	20.0	19.8		ug/L		99	17 - 183
Trichloroethene	20.0	20.8		ug/L		104	71 - 157
Trichlorofluoromethane	20.0	14.4		ug/L		72	17 - 181
Vinyl chloride	20.0	20.1		ug/L		101	1 - 251

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92	-	68 - 130
4-Bromofluorobenzene (Surr)	96		76 - 123
Dibromofluoromethane (Surr)	97		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-712874/1-A

Matrix: Water

Analysis Batch: 712988

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 712874

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,2,4-Trichlorobenzene	ND		40	0.82	ug/L		05/21/24 13:54	05/22/24 13:47	1	
1,2-Dichlorobenzene	ND		40	1.0	ug/L		05/21/24 13:54	05/22/24 13:47	1	
1,2-Diphenylhydrazine	ND		40	0.78	ug/L		05/21/24 13:54	05/22/24 13:47	1	
1,3-Dichlorobenzene	ND		40	0.69	ug/L		05/21/24 13:54	05/22/24 13:47	1	
1,4-Dichlorobenzene	ND		40	0.82	ug/L		05/21/24 13:54	05/22/24 13:47	1	
2,2'-oxybis[1-chloropropane]	ND		20	0.84	ug/L		05/21/24 13:54	05/22/24 13:47	1	

Eurofins Buffalo

Page 14 of 33

6/3/2024

QC Sample Results

Client: Ontario Specialty Contracting, Inc. Job ID: 480-219875-1 Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-712874/1-A

Matrix: Water

Analysis Batch: 712988

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 712874

2/24 13:47 1	
2/24 13:47 1	
2/24 13:47 1	

Analysis Batch: 712988	МВ	МВ						Prep Batch:	112014
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,6-Trichlorophenol	ND		20	1.0	ug/L		05/21/24 13:54	05/22/24 13:47	1
2,4-Dichlorophenol	ND		20	0.77	ug/L		05/21/24 13:54	05/22/24 13:47	1
2,4-Dimethylphenol	ND		20	1.4	ug/L		05/21/24 13:54	05/22/24 13:47	1
2,4-Dinitrophenol	ND		40	5.0	ug/L		05/21/24 13:54	05/22/24 13:47	1
2,4-Dinitrotoluene	ND		20	1.6	ug/L		05/21/24 13:54	05/22/24 13:47	1
2-Chloronaphthalene	ND		20	0.91	ug/L		05/21/24 13:54	05/22/24 13:47	1
2-Chlorophenol	ND		20	0.66	ug/L		05/21/24 13:54	05/22/24 13:47	1
2-Nitrophenol	ND		20		ug/L		05/21/24 13:54	05/22/24 13:47	1
3,3'-Dichlorobenzidine	ND		20	1.6	ug/L		05/21/24 13:54	05/22/24 13:47	1
4,6-Dinitro-2-methylphenol	ND		40		ug/L		05/21/24 13:54	05/22/24 13:47	1
4-Bromophenyl phenyl ether	ND		20		ug/L			05/22/24 13:47	1
4-Chloro-3-methylphenol	ND		20		ug/L			05/22/24 13:47	1
4-Chlorophenyl phenyl ether	ND		20		ug/L			05/22/24 13:47	1
4-Nitrophenol	ND		40		ug/L			05/22/24 13:47	1
Acenaphthene	ND		20		ug/L			05/22/24 13:47	1
Acenaphthylene	ND		20		ug/L			05/22/24 13:47	· · · · · · · · · · · · · · · · · · ·
Aniline	ND		40		ug/L			05/22/24 13:47	1
Anthracene	ND		20		ug/L			05/22/24 13:47	1
Benzidine	ND		320		ug/L ug/L			05/22/24 13:47	
	ND		20		•			05/22/24 13:47	
Benzo[a]anthracene	ND ND		20		ug/L			05/22/24 13:47	1
Benzo[a]pyrene					ug/L				
Benzo[b]fluoranthene	ND		20		ug/L			05/22/24 13:47	1
Benzo[g,h,i]perylene	ND		20		ug/L			05/22/24 13:47	1
Benzo[k]fluoranthene	ND		20		ug/L			05/22/24 13:47	1
Bis(2-chloroethoxy)methane	ND		20		ug/L			05/22/24 13:47	1
Bis(2-chloroethyl)ether	ND		20		ug/L			05/22/24 13:47	1
Bis(2-ethylhexyl) phthalate	ND		40		ug/L			05/22/24 13:47	
Butyl benzyl phthalate	ND		20		ug/L			05/22/24 13:47	1
Chrysene	ND		20		ug/L			05/22/24 13:47	1
Dibenz(a,h)anthracene	ND		20		ug/L			05/22/24 13:47	1
Diethyl phthalate	ND		20		ug/L			05/22/24 13:47	1
Dimethyl phthalate	ND		20		ug/L			05/22/24 13:47	1
Di-n-butyl phthalate	ND		20		ug/L			05/22/24 13:47	1
Di-n-octyl phthalate	ND		20		ug/L			05/22/24 13:47	1
Fluoranthene	ND		20		ug/L			05/22/24 13:47	1
Fluorene	ND		20		ug/L			05/22/24 13:47	1
Hexachlorobenzene	ND		20		ug/L			05/22/24 13:47	1
Hexachlorobutadiene	ND		20		ug/L			05/22/24 13:47	1
Hexachlorocyclopentadiene	ND		20	2.1	ug/L		05/21/24 13:54	05/22/24 13:47	1
Hexachloroethane	ND		20	0.60	ug/L		05/21/24 13:54	05/22/24 13:47	1
Indeno[1,2,3-cd]pyrene	ND		20	1.5	ug/L		05/21/24 13:54	05/22/24 13:47	1
Isophorone	ND		20		ug/L		05/21/24 13:54	05/22/24 13:47	1
Naphthalene	ND		20	0.86	ug/L		05/21/24 13:54	05/22/24 13:47	1
Decane	ND		40	1.6	ug/L		05/21/24 13:54	05/22/24 13:47	1
Nitrobenzene	ND		20	0.81	ug/L		05/21/24 13:54	05/22/24 13:47	1
N-Nitrosodimethylamine	ND		40	0.57	ug/L		05/21/24 13:54	05/22/24 13:47	1
N-Nitrosodi-n-propylamine	ND		20	0.89	ug/L		05/21/24 13:54	05/22/24 13:47	1
N-Nitrosodiphenylamine	ND		20	0.82	ug/L		05/21/24 13:54	05/22/24 13:47	1
n-Octadecane	ND		40	12	ug/L		05/21/24 13:54	05/22/24 13:47	1

Eurofins Buffalo

QC Sample Results

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-712874/1-A

Matrix: Water

Analysis Batch: 712988

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 712874

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND ND	40	3.2	ug/L		05/21/24 13:54	05/22/24 13:47	1
Phenanthrene	ND	20	1.2	ug/L		05/21/24 13:54	05/22/24 13:47	1
Phenol	ND	20	0.35	ug/L		05/21/24 13:54	05/22/24 13:47	1
Pyrene	ND	20	1.4	ug/L		05/21/24 13:54	05/22/24 13:47	1
2,6-Dinitrotoluene	ND	20	1.0	ug/L		05/21/24 13:54	05/22/24 13:47	1

MB MB

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	91		52 - 151	05/21/24 13:54	05/22/24 13:47	1
2-Fluorobiphenyl	94		44 - 120	05/21/24 13:54	05/22/24 13:47	1
2-Fluorophenol	66		17 - 120	05/21/24 13:54	05/22/24 13:47	1
Nitrobenzene-d5	79		15 - 314	05/21/24 13:54	05/22/24 13:47	1
Phenol-d5	50		8 - 424	05/21/24 13:54	05/22/24 13:47	1
p-Terphenyl-d14	95		22 - 125	05/21/24 13:54	05/22/24 13:47	1

LCS LCS

Lab Sample ID: LCS 480-712874/2-A

Matrix: Water

Benzo[g,h,i]perylene

Analysis Batch: 712988

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 712874 %Rec

Analyte Added Result Qualifier Unit %Rec Limits 44 - 142 1,2,4-Trichlorobenzene 32.0 26.6 J 83 ug/L 32.0 1,2-Dichlorobenzene 26.5 J ug/L 83 32 - 129 ug/L 32.0 30.4 J 95 47 - 146 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 32.0 25.7 J ug/L 80 1 - 172 1,4-Dichlorobenzene 32.0 25.6 J 80 20 - 124 ug/L

Spike

32.0 85 2,2'-oxybis[1-chloropropane] 27.3 ug/L 36 - 166 2,4,6-Trichlorophenol 32.0 31.4 ug/L 98 37 - 1442,4-Dichlorophenol 32.0 103 33.0 ug/L 39 - 135 2,4-Dimethylphenol 32.0 ug/L 99 31.8 32 - 120 ug/L 97 2,4-Dinitrophenol 64.0 61.9 1 - 191 2,4-Dinitrotoluene 32.0 33.0 ug/L 103 39 - 139 2-Chloronaphthalene 32.0 28.5 ug/L 89 60 - 120 2-Chlorophenol 32.0 30.1 ug/L 94 23 - 134 32.0 30.0 2-Nitrophenol ug/L 94 29 - 182 3,3'-Dichlorobenzidine 64.0 50.8 ug/L 79 1 - 262 ug/L 4,6-Dinitro-2-methylphenol 64.0 67.3 105 1_181 4-Bromophenyl phenyl ether 32.0 33.7 ug/L 105 53 - 127 4-Chloro-3-methylphenol 32.0 32.2 ug/L 101 22 - 147 4-Chlorophenyl phenyl ether 32.0 25 - 158 31.6 ug/L 99 4-Nitrophenol 64.0 54.3 ug/L 85 1 - 132 Acenaphthene 32.0 29.4 ug/L 92 47 - 145 Acenaphthylene 32.0 31.0 ug/L 97 33 - 145 32.0 68 Aniline 21.6 J ug/L 40 - 120 Anthracene 32.0 32.8 103 27 - 133 ug/L Benzidine 64.0 ND ug/L 32 1 - 120 Benzo[a]anthracene 32.0 32.3 ug/L 101 33 - 143 32.0 33.4 ug/L 104 17 - 163 Benzo[a]pyrene Benzo[b]fluoranthene 32.0 35.1 ug/L 110 24 - 159

Eurofins Buffalo

35.3

ug/L

110

1 - 219

32.0

Job ID: 480-219875-1

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-712874/2-A

Matrix: Water

Analysis Batch: 712988

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 712874

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[k]fluoranthene	32.0	33.6		ug/L		105	11 - 162	
Bis(2-chloroethoxy)methane	32.0	29.7		ug/L		93	33 - 184	
Bis(2-chloroethyl)ether	32.0	33.5		ug/L		105	12 - 158	
Bis(2-ethylhexyl) phthalate	32.0	30.5	J	ug/L		95	8 - 158	
Butyl benzyl phthalate	32.0	32.1		ug/L		100	1 - 152	
Chrysene	32.0	31.6		ug/L		99	17 - 168	
Dibenz(a,h)anthracene	32.0	34.8		ug/L		109	1 - 227	
Diethyl phthalate	32.0	33.6		ug/L		105	1 - 120	
Dimethyl phthalate	32.0	33.4		ug/L		104	1 - 120	
Di-n-butyl phthalate	32.0	32.6		ug/L		102	1 - 120	
Di-n-octyl phthalate	32.0	30.7		ug/L		96	4 - 146	
Fluoranthene	32.0	33.1		ug/L		104	26 - 137	
Fluorene	32.0	31.7		ug/L		99	59 - 121	
Hexachlorobenzene	32.0	34.3		ug/L		107	1 - 152	
Hexachlorobutadiene	32.0	23.4		ug/L		73	24 - 120	
Hexachlorocyclopentadiene	32.0	17.5	J	ug/L		55	5 - 120	
Hexachloroethane	32.0	22.5		ug/L		70	40 - 120	
Indeno[1,2,3-cd]pyrene	32.0	34.8		ug/L		109	1 - 171	
Isophorone	32.0	31.1		ug/L		97	21 - 196	
Naphthalene	32.0	28.4		ug/L		89	21 - 133	
Nitrobenzene	32.0	29.3		ug/L		91	35 - 180	
N-Nitrosodimethylamine	32.0	21.3	J	ug/L		67	19 - 120	
N-Nitrosodi-n-propylamine	32.0	29.8		ug/L		93	1 - 230	
N-Nitrosodiphenylamine	32.0	33.4		ug/L		104	54 - 125	
Pentachlorophenol	64.0	68.0		ug/L		106	14 - 176	
Phenanthrene	32.0	31.7		ug/L		99	54 - 120	
Phenol	32.0	19.3	J	ug/L		60	5 - 120	
Pyrene	32.0	32.3		ug/L		101	52 - 120	
2,6-Dinitrotoluene	32.0	31.3		ug/L		98	50 - 158	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	104		52 - 151
2-Fluorobiphenyl	95		44 - 120
2-Fluorophenol	71		17 - 120
Nitrobenzene-d5	86		15 - 314
Phenol-d5	57		8 - 424
p-Terphenyl-d14	98		22 - 125

Lab Sample ID: LCSD 480-712874/3-A

Matrix: Water

Analysis Batch: 712988

Client Sample	ID: Lab	Control	Sample Dup

Prep Type: Total/NA Prep Batch: 712874

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	32.0	26.5	J	ug/L		83	44 - 142	0	34
1,2-Dichlorobenzene	32.0	26.8	J	ug/L		84	32 - 129	1	38
1,2-Diphenylhydrazine	32.0	30.6	J	ug/L		96	47 - 146	1	20
1,3-Dichlorobenzene	32.0	25.4	J	ug/L		79	1 - 172	1	37
1,4-Dichlorobenzene	32.0	26.0	J	ug/L		81	20 - 124	2	40

Eurofins Buffalo

Page 17 of 33

2

-

6

8

10

12

13

15

10

QC Sample Results

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-219875-1 Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-712874/3-A

Matrix: Water

Analysis Batch: 712988

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 712874

Analysis Batch: 712988	.	LCSD LCSD	1.000			Prep Batch: 71287			
Analysis	Spike Added			l lmi4	_	0/ Dag	%Rec Limits	BDD	RPI
Analyte		26.7	Qualifier	Unit ug/L	D	%Rec 84	36 ₋ 166	RPD 2	Limi
2,2'-oxybis[1-chloropropane] 2,4,6-Trichlorophenol	32.0	32.0		ug/L ug/L		100	37 - 144	2	2
2,4-Dichlorophenol	32.0	32.5		ug/L ug/L		102	39 - 135	1	2:
2,4-Dichlorophenol	32.0	31.9		ug/L ug/L		102	32 - 120	0	1
2,4-Dinitrophenol	64.0	64.0				100	1 - 191	3	2
2,4-Dinitroprienoi	32.0	32.1		ug/L ug/L		100	39 - 139	3	2
2-Chloronaphthalene	32.0	28.8		ug/L		90	60 - 120	1	30
2-Chlorophenol	32.0	29.1		ug/L ug/L		91	23 - 134		20
2-Nitrophenol	32.0	30.2		ug/L		94	29 - 182	1	2
3,3'-Dichlorobenzidine	64.0	51.9		ug/L		81	1 - 262	2	3
4,6-Dinitro-2-methylphenol	64.0	66.2		ug/L ug/L		103	1 - 181	2	3
4-Bromophenyl phenyl ether	32.0	33.7		ug/L		105	53 - 127	0	1
4-Chloro-3-methylphenol	32.0	32.1		ug/L ug/L		100	22 - 147	0	1
4-Chlorophenyl phenyl ether	32.0	31.3		ug/L		98	25 - 158	1	': 1:
4-Nitrophenol	64.0	55.7		ug/L ug/L		87	1 - 132	3	2
Acenaphthene	32.0	29.6		ug/L ug/L		93	47 ₋ 145	3 1	2
Acenaphthylene	32.0	31.1		ug/L		97	33 - 145	0	2
Aniline	32.0	21.2	1	ug/L ug/L		66	40 - 120	2	3
Anthracene	32.0	32.3	J	ug/L ug/L		101	27 - 133	2	1:
Benzidine	64.0	ND		ug/L		40	1 - 120	24	!` 5(
Benzo[a]anthracene	32.0	32.0		ug/L ug/L		100	33 - 143	1	1:
Benzo[a]pyrene	32.0	32.5		ug/L		102	17 - 163	3	1:
Benzo[b]fluoranthene	32.0	32.1		ug/L		100	24 - 159	9	'\ 1
Benzo[g,h,i]perylene	32.0	34.0		ug/L ug/L		106	1 - 219	4	19
Benzo[k]fluoranthene	32.0	30.9		ug/L ug/L		97	11 - 162	8	19
Bis(2-chloroethoxy)methane	32.0	29.6		ug/L		93	33 - 184	0	2
Bis(2-chloroethyl)ether	32.0	33.0		ug/L		103	12 - 158	1	3
Bis(2-ethylhexyl) phthalate	32.0	31.8	.1	ug/L ug/L		99	8 - 158	4	1:
Butyl benzyl phthalate	32.0	31.5		ug/L		99	1 - 152	2	1:
Chrysene	32.0	32.3		ug/L		101	17 - 168	2	1:
Dibenz(a,h)anthracene	32.0	34.2		ug/L ug/L		107	1 - 227	2	18
Diethyl phthalate	32.0	33.7		ug/L		105	1 - 120	0	1:
Dimethyl phthalate	32.0	33.8		ug/L		106	1 - 120	1	1:
Di-n-butyl phthalate	32.0	32.9		ug/L		103	1 - 120	1	1:
Di-n-octyl phthalate	32.0	32.3		ug/L		101	4 - 146	 5	1:
Fluoranthene	32.0	33.0		ug/L		103	26 - 137	0	1
Fluorene	32.0	31.8		ug/L		100	59 - 121	0	18
Hexachlorobenzene	32.0	33.9		ug/L		106	1 - 152		1:
Hexachlorobutadiene	32.0	24.0		ug/L		75	24 - 120	3	50
Hexachlorocyclopentadiene	32.0	18.5	J	ug/L		58	5 - 120	6	50
Hexachloroethane	32.0	22.9		ug/L		72	40 - 120	2	4;
Indeno[1,2,3-cd]pyrene	32.0	34.1		ug/L		107	1 - 171	2	1
Isophorone	32.0	30.7		ug/L		96	21 - 196	2	2
Naphthalene	32.0	28.6		ug/L		89	21 - 133	. . 1	3
Nitrobenzene	32.0	29.2		ug/L		91	35 - 180	0	2
N-Nitrosodimethylamine	32.0	21.3	J	ug/L		67	19 - 120	0	2
N-Nitrosodi-n-propylamine	32.0	29.8		ug/L		93	1 - 230		2
N-Nitrosodiphenylamine	32.0	32.7		ug/L		102	54 - 125	2	1:
Pentachlorophenol	64.0	68.2		ug/L		106	14 - 176	0	2

Eurofins Buffalo

Page 18 of 33

6/3/2024

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-219875-1

Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-712874/3-A

Matrix: Water

Analysis Batch: 712988

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 712874

		Spike	LCSD	LCSD				%Rec		RPD
Ana	yte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phei	nanthrene	32.0	31.2		ug/L		97	54 - 120	2	16
Phei	nol	32.0	19.1	J	ug/L		60	5 - 120	1	36
Pyre	ne	32.0	32.9		ug/L		103	52 - 120	2	15
2,6-1	Dinitrotoluene	32.0	32.5		ug/L		102	50 - 158	4	17

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	108		52 - 151
2-Fluorobiphenyl	94		44 - 120
2-Fluorophenol	69		17 - 120
Nitrobenzene-d5	87		15 - 314
Phenol-d5	56		8 - 424
p-Terphenyl-d14	102		22 - 125

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-712482/1-A

Matrix: Water

Analyte

PCB-1016

PCB-1221

PCB-1232

PCB-1242

PCB-1248

PCB-1254

PCB-1260

Analysis Batch: 712586

Client Sample ID: Method Blank Prep Type: Total/NA

Prepared

Prep Batch: 712482

Dil Fac

05/17/24 13:38 05/19/24 21:38 05/17/24 13:38 05/19/24 21:38 05/17/24 13:38 05/19/24 21:38 05/17/24 13:38 05/19/24 21:38

Analyzed

MB MB

MB MB Result Qualifier

ND

ND

ND

ND

ND

ND

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
DCB Decachlorobiphenyl	55		36 - 121	05/17/24 13:38 05/19/24 21:38	1
Tetrachloro-m-xylene	63		42 - 135	05/17/24 13:38 05/19/24 21:38	1

RL

0.060

0.060

0.060

0.060

0.060

0.060

0.060

MDL Unit

0.038 ug/L

0.038 ug/L

0.038 ug/L

0.038 ug/L

0.038 ug/L

0.031 ug/L

0.031 ug/L

Lab Sample ID: LCS 480-712482/2-A

Matrix: Water

Analysis Batch: 712586

Client Sample ID: Lab Control Sample

05/17/24 13:38 05/19/24 21:38

05/17/24 13:38 05/19/24 21:38

05/17/24 13:38 05/19/24 21:38

Prep Type: Total/NA **Prep Batch: 712482**

%Rec

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	1.00	0.820		ug/L		82	69 - 123
PCB-1260	1.00	0.962		ug/L		96	69 - 120

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	51	36 - 121
Tetrachloro-m-xylene	57	42 - 135

Eurofins Buffalo

Spike

Added

1.00

1.00

LCSD LCSD

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: LCSD 480-712482/3-A

Matrix: Water

Analysis Batch: 712586

Client Sample ID: L	_ab	Contro	ol Sa	amp	le D	up
		Prep 1	Гурс	e: To	otal/l	A

Prep Batch: 712482 %Rec **RPD**

Result Qualifier D %Rec Limits RPD Limit Unit 69 - 123 0.793 ug/L 79 3 30 1.01 ug/L 101 69 - 120 5 30

LCSD LCSD

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl 57 36 - 121 Tetrachloro-m-xylene 54 42 - 135

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-712520/1-A

Matrix: Water

Analyte

PCB-1016

PCB-1260

Analysis Batch: 712950

Client Sample ID: Method Blank

Client Sample ID: Method Blank

05/20/24 09:29 05/22/24 13:56

Prep Type: Total/NA

Prep Batch: 712520

Prep Type: Total/NA

Prep Batch: 712520

Analyzed

Dil Fac

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	ND		0.010	0.0016	mg/L		05/20/24 09:29	05/21/24 14:54	1
Lead	ND		0.010	0.0030	mg/L		05/20/24 09:29	05/21/24 14:54	1
Nickel	ND		0.010	0.0013	mg/L		05/20/24 09:29	05/21/24 14:54	1
Zinc	0.00262	J	0.010	0.0015	mg/L		05/20/24 09:29	05/21/24 14:54	1

RL

0.0040

Lab Sample ID: MB 480-712520/1-A

Matrix: Water

Analysis Batch: 713098

MB MB

MD MD

Analyte Result Qualifier

Chromium 0.00472

Lab Sample ID: LCS 480-712520/2-A

Analysis Batch: 712950

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 712520** %Rec Snika ICS ICS

	Spike	LUS	LUS				/orec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	 0.500	0.526		mg/L		105	85 - 115	
Copper	0.500	0.499		mg/L		100	85 - 115	
Lead	0.500	0.516		mg/L		103	85 - 115	
Nickel	0.500	0.524		mg/L		105	85 - 115	
Zinc	0.500	0.531		mg/L		106	85 - 115	

Lab Sample ID: MB 480-713185/1-A

Matrix: Water

Chromium

Analysis Batch: 713292

ND

Analyte

MB MB

Result Qualifier RL 0.0040

MDL Unit 0.0010 mg/L

MDL Unit

0.0010 mg/L

Prepared

Prepared

Client Sample ID: Method Blank

Analyzed 05/23/24 10:56 05/23/24 19:22

Prep Type: Total/NA Prep Batch: 713185

Eurofins Buffalo

Dil Fac

Client: Ontario Specialty Contracting, Inc. Job ID: 480-219875-1 Project/Site: Quarterly BSA SUMP

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-713185/2-A				Clie	nt Saı	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 713292							Prep Batch: 713185
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

0.506

mg/L

101

85 - 115

0.500

Lab Sample ID: LCSD 480-713185/3-A Matrix: Water Analysis Batch: 713292			(Client Sa	ample	ID: Lab	Control Prep Ty Prep Ba	pe: Tot	al/NA
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium	0.500	0.495		mg/L		99	85 - 115	2	20

Method: 245.1 - Mercury (CVAA)

Chromium

Lab Sample ID: MB 480-712437 Matrix: Water Analysis Batch: 712561	7/1-A						·	le ID: Method Prep Type: To Prep Batch: T	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000042	mg/L		05/17/24 13:22	05/18/24 15:12	1

			Clie	nt Sai	mple ID	: Lab Control Samp	ple
						Prep Type: Total/	NA
						Prep Batch: 7124	137
Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.00669	0.00601		mg/L		90	85 - 115	
	Added	Added Result	Added Result Qualifier	Spike LCS LCS Added Result Qualifier Unit	Spike LCS LCS Added Result Qualifier Unit D	Spike LCS LCS Added Result Qualifier Unit D %Rec	Added Result Qualifier Unit D %Rec Limits

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-713118/17 Matrix: Water							Client Sam	ple ID: Method Prep Type: To	
Analysis Batch: 713118								Trep Type: It)tai/it/
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolics, Total Recoverable	ND		0.010	0.0035	mg/L			05/22/24 23:19	1
Matrix: Water							Client Sam	ple ID: Method Prep Type: To	
Lab Sample ID: MB 480-713118/46 Matrix: Water Analysis Batch: 713118	мв	мв					Client Sam	•	
Matrix: Water		MB Qualifier	RL	MDL	Unit	D	Client Sam	•	

Matrix: water				Prep Type: Total/NA
Analysis Batch: 713118				
-	Spike	LCS LCS		%Rec
Amalusta	A alala al	Popult Qualifier Unit	D 0/ Dag	Limite

Added Result Qualifier 90 - 110 Phenolics, Total Recoverable 0.100 0.0952 mg/L 95

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Method: 420.4 - Phenolics, Total Recoverable (Continued)

Lab Sample ID: LCS 480-713118/47 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 713118

Spike LCS LCS %Rec Result Qualifier Added %Rec Limits Analyte Unit D Phenolics, Total Recoverable 0.100 0.0950 mg/L 95 90 - 110

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-712306/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 712306

MB MB

Result Qualifier RL **RL Unit** Dil Fac Prepared Analyzed 1.0 $\overline{\mathsf{ND}}$ 1.0 mg/L 05/16/24 14:17 Total Suspended Solids

Lab Sample ID: LCS 480-712306/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 712306

LCS LCS Spike %Rec Added Result Qualifier Limits Analyte Unit D %Rec **Total Suspended Solids** 260 258.0 mg/L 99 88 - 110

Method: SM 4500 H+ B - pH

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-712162/1 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 712162

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits **Analyte** 7.00 SU 7.1 рΗ 101 99 - 101

Method: SM 4500 P E - Phosphorus

Lab Sample ID: MB 480-712176/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 712176

MB MB

Result Qualifier RI **MDL** Unit Analyte Analyzed Dil Fac Prepared 0.010 Phosphorus 0.00713 J 0.0050 mg/L as P 05/15/24 21:11

Lab Sample ID: LCS 480-712176/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 712176

LCS LCS Spike %Rec Added Result Qualifier Limits **Analyte** Unit %Rec Phosphorus 0.200 0.214 mg/L as P 107 90 - 110

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-712330/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 712330

USB USB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Biochemical Oxygen Demand $\overline{\mathsf{ND}}$ 2.0 05/16/24 09:32 2.0 mg/L

Eurofins Buffalo

Page 22 of 33 6/3/2024

QC Sample Results

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-219875-1

Project/Site: Quarterly BSA SUMP

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: LCS 480-712330/2

Matrix: Water

Analysis Batch: 712330

		Spike	LCS	LCS				%Rec
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
Biochemical Oxygen Demand		198	198.5		mg/L		100	85 - 115

•

3

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

4

6

8

9

11

13

14

16

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

GC/MS VOA

Analysis Batch: 712096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	624.1	
480-219875-2	TRIP BLANK	Total/NA	Water	624.1	
MB 480-712096/8	Method Blank	Total/NA	Water	624.1	
LCS 480-712096/6	Lab Control Sample	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 712874

1	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-219875-1	BCC BSA SUMP	Total/NA	Water	625	
	MB 480-712874/1-A	Method Blank	Total/NA	Water	625	
	LCS 480-712874/2-A	Lab Control Sample	Total/NA	Water	625	
	LCSD 480-712874/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 712988

Lab Sample ID 480-219875-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 625.1	Prep Batch 712874
MB 480-712874/1-A	Method Blank	Total/NA	Water	625.1	712874
LCS 480-712874/2-A	Lab Control Sample	Total/NA	Water	625.1	712874
LCSD 480-712874/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	712874

GC Semi VOA

Prep Batch: 712482

Lab Sample ID 480-219875-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 480-712482/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-712482/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-712482/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 712586

Lab Sample ID 480-219875-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 608.3	Prep Batch 712482
MB 480-712482/1-A	Method Blank	Total/NA	Water	608.3	712482
LCS 480-712482/2-A	Lab Control Sample	Total/NA	Water	608.3	712482
LCSD 480-712482/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	712482

Metals

Prep Batch: 712437

Lab Sample ID 480-219875-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 245.1	Prep Batch
MB 480-712437/1-A	Method Blank	Total/NA	Water	245.1	
LCS 480-712437/2-A	Lab Control Sample	Total/NA	Water	245.1	

Prep Batch: 712520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	200.7	
MB 480-712520/1-A	Method Blank	Total/NA	Water	200.7	
LCS 480-712520/2-A	Lab Control Sample	Total/NA	Water	200.7	

Eurofins Buffalo

Page 24 of 33 6/3/2024

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Metals

Anal	vsis	Batch:	712561
	,,		

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	245.1	712437
MB 480-712437/1-A	Method Blank	Total/NA	Water	245.1	712437
LCS 480-712437/2-A	Lab Control Sample	Total/NA	Water	245.1	712437

Analysis Batch: 712950

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	200.7 Rev 4.4	712520
MB 480-712520/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	712520
LCS 480-712520/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	712520

Analysis Batch: 713098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-712520/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	712520

Prep Batch: 713185

 Lab Sample ID 480-219875-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 200.7	Prep Batch
MB 480-713185/1-A	Method Blank	Total/NA	Water	200.7	
LCS 480-713185/2-A	Lab Control Sample	Total/NA	Water	200.7	
LCSD 480-713185/3-A	Lab Control Sample Dup	Total/NA	Water	200.7	

Analysis Batch: 713292

Lab Sample ID 480-219875-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method 200.7 Rev 4.4	Prep Batch 713185
MB 480-713185/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	713185
LCS 480-713185/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	713185
LCSD 480-713185/3-	A Lab Control Sample Dup	Total/NA	Water	200.7 Rev 4.4	713185

General Chemistry

Analysis Batch: 712162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	SM 4500 H+ B	
LCS 480-712162/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 712176

Lab Sample ID 480-219875-1	Client Sample ID BCC BSA SUMP	Prep Type Total/NA	Matrix Water	Method SM 4500 P E	Prep Batch
MB 480-712176/3	Method Blank	Total/NA	Water	SM 4500 P E	
LCS 480-712176/4	Lab Control Sample	Total/NA	Water	SM 4500 P E	

Analysis Batch: 712306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	SM 2540D	
MB 480-712306/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-712306/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 712330

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	SM 5210B	
USB 480-712330/1	Method Blank	Total/NA	Water	SM 5210B	

Eurofins Buffalo

Page 25 of 33

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

General Chemistry (Continued)

Analysis Batch: 712330 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-712330/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 713118

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	420.4	
MB 480-713118/17	Method Blank	Total/NA	Water	420.4	
MB 480-713118/46	Method Blank	Total/NA	Water	420.4	
LCS 480-713118/18	Lab Control Sample	Total/NA	Water	420.4	
LCS 480-713118/47	Lab Control Sample	Total/NA	Water	420.4	

Analysis Batch: 713577

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-219875-1	BCC BSA SUMP	Total/NA	Water	SM 4500 CN G	

Lab Chronicle

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Lab Sample ID: 480-219875-1

Matrix: Water

Client Sample ID: BCC BSA SUMP

Date Collected: 05/14/24 13:00 Date Received: 05/14/24 15:26

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	712096	AXK	EET BUF	05/15/24 19:10
Total/NA	Prep	625			712874	LSC	EET BUF	05/21/24 13:54
Total/NA	Analysis	625.1		1	712988	JMM	EET BUF	05/22/24 15:12
Total/NA	Prep	3510C			712482	LSC	EET BUF	05/17/24 13:38
Total/NA	Analysis	608.3		1	712586	H9RU	EET BUF	05/19/24 22:45
Total/NA	Prep	200.7			712520	ET	EET BUF	05/20/24 09:29
Total/NA	Analysis	200.7 Rev 4.4		1	712950	NZG	EET BUF	05/21/24 14:58
Total/NA	Prep	200.7			713185	EMO	EET BUF	05/23/24 10:56
Total/NA	Analysis	200.7 Rev 4.4		1	713292	NZG	EET BUF	05/23/24 19:38
Total/NA	Prep	245.1			712437	ESB	EET BUF	05/17/24 13:22
Total/NA	Analysis	245.1		1	712561	ESB	EET BUF	05/18/24 16:08
Total/NA	Analysis	420.4		1	713118	CLT	EET BUF	05/23/24 02:19
Total/NA	Analysis	SM 2540D		1	712306	ко	EET BUF	05/16/24 14:17
Total/NA	Analysis	SM 4500 CN G		1	713577	DLG	EET BUF	05/23/24 22:21
Total/NA	Analysis	SM 4500 H+ B		1	712162	KB	EET BUF	05/15/24 16:42
Total/NA	Analysis	SM 4500 P E		1	712176	GW	EET BUF	05/15/24 21:11
Total/NA	Analysis	SM 5210B		1	712330	CG	EET BUF	05/16/24 09:32

Client Sample ID: TRIP BLANK

Date Collected: 05/14/24 00:00

Date Received: 05/14/24 15:26

Lab Sample ID:	480-219875-2
	Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	712096	AXK	EET BUF	05/15/24 19:34

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins Buffalo

Page 27 of 33

Accreditation/Certification Summary

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-219875-1 Project/Site: Quarterly BSA SUMP

Laboratory: Eurofins Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-0686	07-06-24
Connecticut	State	PH-0807	03-31-25
Florida	NELAP	E87672	06-30-23 *
Georgia	State	10026 (NY)	03-31-25
Georgia	State Program	N/A	03-31-09 *
Illinois	NELAP	200003	09-30-24
lowa	State	374	03-01-25
lowa	State Program	374	03-01-09 *
Kansas	NELAP	E-10187	02-01-25
Kentucky (UST)	State	108092	04-01-24 *
Kentucky (WW)	State	KY90029	12-31-24
Louisiana	NELAP	02031	06-30-23 *
Louisiana (All)	NELAP	02031	06-30-23 *
Maine	State	NY00044	12-04-24
Maryland	State	294	06-30-24
Massachusetts	State	M-NY044	07-01-24
Michigan	State	9937	03-31-25
Michigan	State Program	9937	04-01-09 *
New Hampshire	NELAP	2973	09-11-19 *
New Hampshire	NELAP	2337	11-17-24
New Jersey	NELAP	NY455	06-30-24
New York	NELAP	10026	05-27-24
Pennsylvania	NELAP	68-00281	08-31-24
Rhode Island	State	LAO00378	12-30-24
Texas	NELAP	T104704412-18-10	07-31-23 *
Virginia	NELAP	460185	09-14-24
Washington	State	C784	02-10-25
Wisconsin	State	998310390	08-31-24

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET BUF
625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET BUF
608.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET BUF
200.7 Rev 4.4	Metals (ICP)	EPA	EET BUF
245.1	Mercury (CVAA)	EPA	EET BUF
420.4	Phenolics, Total Recoverable	EPA	EET BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	EET BUF
SM 4500 CN G	Cyanide, Amenable	SM	EET BUF
SM 4500 H+ B	pH	SM	EET BUF
SM 4500 P E	Phosphorus	SM	EET BUF
SM 5210B	BOD, 5-Day	SM	EET BUF
200.7	Preparation, Total Metals	EPA	EET BUF
245.1	Preparation, Mercury	EPA	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
625	Liquid-Liquid Extraction	EPA	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins Buffalo

Sample Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-219875-1	BCC BSA SUMP	Water	05/14/24 13:00	05/14/24 15:26
480-219875-2	TRIP BLANK	Water	05/14/24 00:00	05/14/24 15:26

3

4

5

8

4.6

11

13

14

10

Quantitation Limit Exceptions Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Job ID: 480-219875-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
625.1	2,4-Dinitrotoluene	Water	Total/NA	ug/L	5.0	10
625.1	4-Nitrophenol	Water	Total/NA	ug/L	10	15
625.1	Hexachlorocyclopentadiene	Water	Total/NA	ug/L	5.0	10

on the contraction of the contra	Sampler:		Lab PM:					Car	ier Trac	king No(s)		2	- N	
Client Contact		MUNDER MINN	Schove, John R	n R					Ö	250		3 4	480-196178-6057.1	
Kirsten Colligan	-16-480-3282	<u>ы</u> ~	E-Mail: John Schove@et eurofinsus com	@et e	Irofine	800		Staf	State of Origin:	Jug.		g (Page:	
Company:		PWSID:	_	2	001	1000		\dashv		1		<u>a -</u>	Page 1 of 1	
Origino Specially Confracting, Inc. Address.						Analysis		Requested	sted			<u> </u>	11031	
140 Lee St.	Due Date Requested:					H		\vdash		_		<u>a</u> (eservation Codes:	
City: Buffalo	TAT Requested (days):											л <u>о</u> :	S - H2SO4 D - HNO3	
State, Zip:	Sternament											2 00	- None - NaOH	
NY, 14210	ce Project: 🏄 Yes	Δ No				-								
16-956-333	PO #:]			Z9 - V			əlqı			44		
Email: kcolligan@oscinc.com	WO #:								mens					
Project Name: OSC- Former Buffalo Color Sites, Event Desc: Buffalo Color, O. Aggrovan	Project #:								A ,abir			SJƏL		
Site:	SSOW#:			surc					Cyar					
New York				oyds		_			- ole			100	Other:	
Sample Identification	Sample Date Time	Sample Matrix Type (wevator, Sesolid, Oceomp,	Field Filtered 5	4500_P_E - Phos 200.7, 245.1	nədq - q N_ 4.02¢	524_5ml - Priorit	S25 - Priority Pol	210B - Biochem	:W4200CN G C	Hq - +H_002+Mi		o tal Number o	=	
	X	m	X	+-	-	-	-		100	S 2	1000 March	1	Special Instructions/Note:	ote:
BCC BSA SUMP	JUSI 12-71-5	(4 Water				2				-				
Trip Blank		roteM	-	+		+	5	-						
		Water				i e						N.		
				-		-		-		+				
				+	į	+	\perp	+		+				
				\dashv		\dashv		-						
								-			\pm			
								+		_				_
				+	+	+		-		1				
				+		+		-						
														_
December 11 - 11 - 11 - 11	0									' 	317-001	2000	460-2196/3 Chain of Custody	
Non-Hazard Flammable Skin Irriant Poison B		, , , , , , , ,	San	iple Dis	posal (A fee	may be	asse	ssedi	sample	s are re	etained	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	
sted: I, II, III, IV, Other (specify)	CHRIGWII	Kadiological		Retur	Return To Client	ient		Disp	Disposal By	, Lab]	Archive For	For Months	
Fmoto Kit Belineuished hu			edo.	ciai inst	Special instructions/QC Requirements:	2 2 2 2 3 4 4 7	guiren	ents:						
اخ	Date:		Time:					┝	Metho	Method of Shipment	ent:			
Just - Kenzelvoren	Date/Time:	SQ Company		Received by	by:	5	Min	1	Chall		Date/Time:	1101	2 V I Company	<
veniquisied by:	Date/Time:	Company		Received by	py:		-	7			Date/Time:		Company	5
	Date/Time:	Company		Received by	by:					Date/Time	Time:		Сотрапу	
Custody Seals Intact: Custody Seal No.: 257921			Ĭ	Cooler Te	Cooler Temperature(s) °C and Other Remarks:	e(s) °C ar	d Other	Remark	·s	+		c	H	-
0 10			5,		÷							7	コトーオー)

Chain of Custody Record

Eurotins Buffalo10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

Login Sample Receipt Checklist

Client: Ontario Specialty Contracting, Inc.

Job Number: 480-219875-1

Login Number: 219875 List Source: Eurofins Buffalo

List Number: 1

Creator: Yeager, Brian A

Creator: Yeager, Brian A		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OSC
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

3

6

8

10

13

16

													Buf	falo	Colo	GWTF Wee	kly	Proce	ss Assessn	nent						
		Bag Fi 1A		Bag Fi 2A,			-Media r F-30		LG	AC CA-40	and CA-	-41			Efflue	nt Tank No. 1 T-28		Eff	fluent Tank No. 2 T-	27	D	ischarge	Lines To	BSA Sun	np	
Date	Associate	Influent Pressure PI-1A	Effluent Pressure PI-1B	Influent Pressure PI-107A	Effluent Pressure PI-107B	Influent Pressure PI-30A	Effluent Pressure PI-30B	Flow Rate FE-60	Lead Influent Pressure PI-40A	Lead Effluent Pressure PI-40B	Lag Influent Pressure PI-41A	Lag Effluent Pressure PI-41B	PH Meter	Pressure PI-106A/B	Flow Rate FE-106	Totalizer FE-106	Pressure PI-106C	Flow Rate FE-107	Totalizer FE-107	Pressure PI-107C	Leak Detection Vault No. 1 Pressure PI-106D	Leak Detection Vault No. 1 Pressure PI-107D	Leak Detection Vault No. 3 Pressure PI-106E	Leak Detection Vault No. 3 Pressure PI-107E	Containment Line Pressure Gauge Checks	Column1
4/5/2024	тк	45	45	34	24	40	30	10.9	38	32	35	35	8.05	20	10.8	42,917,792	27	21.2	1,388,722	27						
4/12/2024	TK	45	45	34	24	42	30	10.6	36	30	35	35	8.03	20	10.6	42,978,480	27	20.8	1,392,251	27						
4/19/2024	TK	45	45	34	24	40	33	11.3	40	34	35	35	7.96	20	11.2	43,041,472	27	19.9	1,395,916	27						
4/26/2024	TK	45	45	34	22	41	31	11	38	34	35	35	7.94	20	11	43,106,824	27	18.9	1,399,849	27						
5/3/2024	TK	45	45	34	18	40	30	11.1	36	30	35	35	7.96	20	11	43,168,512	27	17.4	1,403,219	27						
5/10/2024	TK	45	45	34	18	41	30	11.1	38	32	35	35	7.92	20	11	43,236,396	27	17.4	1,406,885	27						
5/17/2024	TK	45	45	34	18	40	28	11	38	32	35	35	7.77	20	10.8	43,296,652	27	16.7	1,410,383	27						
5/24/2024	TK	45	45	34	16	40	30	11	38	32	35	35	7.82	20	10.9	43,364,824	27	16.5	1,414,127	27						
5/31/2024	TK	45	45	34	28	40	28	10.7	36	32	35	35	7.89	20	10.7	43,427,992	27	22	1,417,482	27						
6/7/2024	TK	45	45	34	26	40	28	10.8	34	28	32	32	7.84	20	10.8	43,486,400	27	21.6	1,420,828	27						
6/14/2024	TK	45	45	34	26	40	28	10.7	34	30	32	32	7.76	20	10.7	43,553,600	27	21.2	1,424,706	27						
6/21/2024	TK	45	45	34	26	40	28	11.1	38	32	35	35	7.67	20	11	43,621,164	27	20.8	1,428,346	27						
6/28/2024	TK	45	45	34	24	38	28	11.2	38	32	35	325	7.56	20	11.3	43,692,036	27	19.6	1,431,679	27						

DATE	D1A GAC SERVICE	D1B GAC SERVICE	D2 GAC SERVICE	MMF SERVICE	D1A GAC FLUSH	D1B GAC FLUSH	D2 GAC FLUSH	MMF FLUSH	BF 1A CHANGE	BF 1B CHANGE	BF 2A CHANGE	BF 2B CHANGE	ADDITIONAL NOTES / NON ROUTINE REPAIR & MAINTENANCE
4/1/2022	SERVICE	JERVICE	JERVICE	JERVICE	1	1	FLUSH	1	1	1	CHANGE	CHANGE	WAINTENANCE
4/2/2022													
4/3/2022													
10/1/2022													
10/2/2022													
4/1/2024					1	1		2	2	2			
4/2/2024								2	2	2			
4/3/2024								2	2	2			
4/4/2024 4/5/2024								2	2	2			
4/6/2024													
4/7/2024								1	1	1			system down 4/7/24@01:27 Back-up 4/7/24@09:00
4/8/2024													
4/9/2024								2	2	2			
4/10/2024								2	2	2			
4/11/2024								2	2	2			
4/12/2024					1	1		2	2	2			
4/13/2024								1	1	1			
4/14/2024								_	•	_			
4/15/2024								2	2	2			system down 4/14/24@17:38 Back-up 4/15/24@06:00
4/16/2024 4/17/2024								2	2	2			system down 4/17/24@23:14 Back-up 4/18/24@06:15
4/18/2024								2	2	2			393tem down 4/17/24@23.14 back-up 4/16/24@00.13
4/19/2024				1				2	2	2			MMF Media Change
4/20/2024				_				_	_	_			
4/21/2024													system down 4/21/24@14:13 Back-up 4/22/24 06:00
4/22/2024								1	1	1			
4/23/2024					1	1		1	1	1			
4/24/2024													
4/25/2024								1	1	1			
4/26/2024								1	1	1			
4/27/2024													
4/28/2024													
4/29/2024 4/30/2024								2	2	2			
5/1/2024													
5/2/2024								1	1	1			
5/3/2024								2	2	2			
5/4/2024													
5/5/2024								1	1	1			system down 5/4/24 @23:54 Back-up 5/5/24 @11:55
5/6/2024								1	1	1			
5/7/2024						1		2	2	2			
5/8/2024													
5/9/2024								1	1	1			
5/10/2024					1			1	2	2			
5/11/2024													
5/12/2024							1	2	2	2	1	1	custom down E/12/24 G2:03 by the F/12/25 T T
5/13/2024 5/14/2024							1	2	2	2	1	1	sysytem down 5/12/24 @3:02 back-up 5/13/24 5:30
5/15/2024									-				
5/16/2024								1	1	1			
5/17/2024					1			1	2	2			
5/18/2024													
5/19/2024								1	1	1			system down 5/19/24 @ 1:21 back-up 5/19/24 @12:00
5/20/2024								1	1	1			
5/21/2024								1	2	2			
5/22/2024													
5/23/2024								1	1	1			
5/24/2024								2	2	2			
5/25/2024								_		_			
5/26/2024								1	1	1			system down 5/26/24 @1:59 back-up 5/26/24 @7:30
	i							2	2	2			
5/27/2024 5/28/2024					1								system down 5/27/24 @15:03 back-up 5/28/24 5:30

DATE		D1B GAC		MMF	D1A GAC	D1B GAC	D2 GAC	MMF	BF 1A	BF 1B	BF 2A	BF 2B	ADDITIONAL NOTES / NON ROUTINE REPAIR &
E (0.0 (0.00 t	SERVICE	SERVICE	SERVICE	SERVICE	FLUSH	FLUSH	FLUSH	FLUSH	CHANGE	CHANGE	CHANGE	CHANGE	MAINTENANCE
5/30/2024					_			1	1	1			
5/31/2024					1			2	2	2			
6/1/2024													
6/2/2024													
6/3/2024								2	2	2			
6/4/2024								1	1	1			
6/5/2024													
6/6/2024					1			1	1	1			
6/7/2024								2	2	2			
6/8/2024													
6/9/2024								1	1	1			system down 6/8/24@19:33 back-up 6/9/24 07:30
6/10/2024					1			1	1	1			
6/11/2024								1	1	1			
6/12/2024													
6/13/2024								2	2	2			
6/14/2024								2	2	2			
6/15/2024													
6/16/2024								1	1	1			system down 6/15/24 @23:35 back-up 6/16/24 @ 09:3:
6/17/2024					1	1		2	2	2			
6/18/2024								2	2	2			
6/19/2024													
6/20/2024								2	2	2			
6/21/2024								2	2	2			
6/22/2024													
6/23/2024								1	1	1			I system down 6/23/24 @04:20 back-up 6/23/24 @11:00
6/24/2024								2	2	2			started trenching Area A for new system
6/25/2024								2	2	2			3,000
6/26/2024								2	2	2			
6/27/2024								2	2	2			Turn off Ew-04 & Ew-05 due to trenching in Area A
6/28/2024								2	2	2			The second secon
6/29/2024													
6/30/2024													

Table 5 System Startup BSA Discharge Parameters - September 27, 2024 Existing BSA Permit(20-06-BU109) Discharge Parameters

BSA Permit Paramete	er (Note 1)	GWTF Sy	stem Startup S (9/27/2024) CC BSA SUMP-									
	,		20240927		Conver	ted	BSA Daily Max	Discharge	Permit			Permit
			(See Note 1)		Analytical I		Limit (Existin	_	Compliance	MAID	Quantity	Compliance
Chemical	CAS No.	Quantity	Reporting	Unit	Quantity	Unit	Quantity	Unit	Compilation	mg/L	mg/L	Compilation
0.101.1104.1	/ Method ID		Limit			J		J		9/ =	9.=	
рН	PH	8.2	N/A	SU	8.20	SU	5.0 - 12.0	SU	Yes			
BOD5	BOD	ND	2.0	mg/L	ND	mg/L	250	mg/L	Yes			
Total Phenol	TOTPHEN	ND	0.004	mg/L	ND	lbs/day	1.67	lbs/day	Yes	20	ND	Yes
Total Chromium	7440-47-3	ND	0.0024	mg/L	ND	lbs/day	0.83	lbs/day	Yes	40	ND	Yes
Total Copper	7440-50-8	0.0046	0.0045	mg/L	0.001	lbs/day	0.67	lbs/day	Yes	16	0.0046	Yes
Lead	7439-92-1	ND	0.0039	mg/L	ND	lbs/day	0.541	lbs/day	Yes	65	ND	Yes
Total Mercury	7439-97-6	ND	0.000042	mg/L	ND	lbs/day	0.00033	lbs/day	Yes	0.0008	ND	Yes
Total Nickel	7440-02-0	0.0041	0.003	mg/L	0.0008	lbs/day	1.17	lbs/day	Yes	14	0.0041	Yes
Zinc	7440-66-6	ND	0.0068	mg/L	ND	lbs/day	2.046	lbs/day	Yes	25	ND	Yes
Amendable Cyanide	CAN	0.026	0.005	mg/L	0.005	lbs/day	2.59	lbs/day	Yes	6.2	0.026	Yes
Total PCB	Sum Method_E608	ND	0.037	ug/L	ND	lbs/day	0.0001	lbs/day	Yes	0.002	ND	Yes
Aniline or Aniline Derivative*	62-53-3	ND	1.5	ug/L	ND	lbs/day	50	lbs/day	Yes	0.01	ND	Yes
Benzene	71-43-2	ND	0.6	ug/L	ND	lbs/day	0.059	lbs/day	Yes	0.142	ND	Yes
Chlorobenzene	108-90-7	4.2	0.48	ug/L	0.0008	lbs/day	0.129	lbs/day	Yes	0.31	0.0042	Yes
1,2-Dichlorobenzene	95-50-1	ND	0.44	ug/L	ND	lbs/day	0.197	lbs/day	Yes	0.472	ND	Yes
Fluoranthene	206-44-0	ND	1.6	ug/L	ND	lbs/day	0.0417	lbs/day	Yes	0.1	ND	Yes
Acenaphthylene	208-96-8	ND	0.87	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Naphthalene	91-20-3	ND	0.86	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Anthracene	120-12-7	ND	1.4	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Fluorene	86-73-7	ND	1	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Phenanthrene	85-01-8	ND	1.2	ug/L	ND	lbs/day	0.131	lbs/day	Yes	0.314	ND	Yes
Max Individual Purgeables*	Max Method_E624	4.2	NA	ug/L	0.004	mg/L	*	mg/L	Yes			
Total Suspended Solids	TSS	ND	4.0	mg/L	ND	mg/L	250	mg/L	Yes			
Total Phosphate**	7723-14-0	0.23	0.005	mg/L	0.230	mg/L	15.35	mg/L	Yes			
Total Flow	N/A	16	-	gpm	23,040	gpd	50,000	gpd	Yes			

^{*}Permit requires reporting of Aniline or Aniline Derivative and Max Individual Purgeables concentrations in excess of 0.01 mg/L.

**Analyzed by total phosphorus method SM 4500-P E
MAID - Maximum Allowable Instantaneous Discharge

Flow Calculations		
Total Flow for Period (See Note 2) Average Flow for Period (See Note 2)	10,000 16	gallons gpm

Note 1: Table format and discharge limitation calculations follow existing BSA Permit No. 20-06-BU109. "-" = Not analyzed in treatability test; "N/A" - not applicable to this example SMR.

Note 2: Total and Average flow during during system startup/commissioning between 9/27/2024 and 10/4/24

12

14

16

ANALYTICAL REPORT

PREPARED FOR

Attn: Kirsten Colligan
Ontario Specialty Contracting, Inc.
140 Lee St.
Buffalo, New York 14210
Generated 10/9/2024 12:11:01 PM

JOB DESCRIPTION

Quarterly BSA SUMP Buffalo Color - Quarterly Sump

JOB NUMBER

480-223804-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 10/9/2024 12:11:01 PM

Authorized for release by Anton Gruning, Project Management Assistant I Anton.Gruning@et.eurofinsus.com

Designee for

John Schove, Project Manager II <u>John.Schove@et.eurofinsus.com</u> (716)504-9838

16

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	16
QC Sample Results	17
QC Association Summary	30
Lab Chronicle	33
Certification Summary	35
Method Summary	36
Sample Summary	37
Detection Limit Exceptions Summary	38
Chain of Custody	39
Receipt Checklists	40

3

4

6

R

46

11

13

15

16

Definitions/Glossary

Client: Ontario Specialty Contracting, Inc.
Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier

Qualifier Qualifier Description

Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
^+	Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
F1	MS and/or MSD recovery exceeds control limits.
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

EDL

LOD

Abbreviation	These commonly used abbreviations may or may not be present in this report.							
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis							
%R	Percent Recovery							
CFL	Contains Free Liquid							
CFU	Colony Forming Unit							
CNF	Contains No Free Liquid							
DER	Duplicate Error Ratio (normalized absolute difference)							
Dil Fac	Dilution Factor							
DL	Detection Limit (DoD/DOE)							
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample							
DLC	Decision Level Concentration (Radiochemistry)							

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 40 10/9/2024

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project: Quarterly BSA SUMP

Job ID: 480-223804-1 Eurofins Buffalo

Job Narrative 480-223804-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/28/2024 4:46 PM. Unless otherwise noted below, the samples arrived in good condition. The temperature of the cooler at receipt time was 15.4°C.

GC/MS VOA

Method 624.1_PREC: The following Volatile sample was composited by the laboratory on 09/30/2024 as requested by the client: BCC BSA SUMP-EFFLUENT (480-223804-3). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

Method 624.1_PREC: The continuing calibration verification (CCV) associated with batch 480-726617 recovered above the upper control limit for Acrolein. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: TRIP BLANK (480-223804-2) and BCC BSA SUMP-EFFLUENT (480-223804-3).

Method 624.1_PREC: The following Volatile sample was composited by the laboratory on 10/01/2024 as requested by the client: BCC BSA SUMP-INFLUENT (480-223804-1). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

Method 624.1_PREC: The following sample was diluted to bring the concentration of target analytes within the calibration range: BCC BSA SUMP-INFLUENT (480-223804-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1_PREC: The following sample was diluted due to color, appearance, viscosity, etc.: BCC BSA SUMP-INFLUENT (480-223804-1). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCB

Method 608.3_PCB_PREC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-726627.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 420.4_NP: The laboratory control sample (LCS) and continuous control verification (CCV) for analytical batch 480-727121 recovered outside control limits for the following analytes Total Recoverable Phenolics. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.BCC BSA SUMP-EFFLUENT (480-223804-3)

Eurofins Buffalo

Page 5 of 40 10/9/2024

Job ID: 480-223804-1

4

5

7

8

9

11

13

14

1 %

Case Narrative

Client: Ontario Specialty Contracting, Inc.

Project: Quarterly BSA SUMP

Job ID: 480-223804-1 (Continued)

Eurofins Buffalo

Job ID: 480-223804-1

Method 420.4_NP: The method requirement for no headspace was not met. The following samples were analyzed with headspace in the sample container(s): BCC BSA SUMP-INFLUENT (480-223804-1) and BCC BSA SUMP-EFFLUENT (480-223804-3).

Method 5210B: The glucose-glutamic acid standard (LCS) recovered outside the recovery limits specified in the method in batch 480-726525. The method holding time had expired, therefore the analysis was not repeated. The data was qualified and reported.

Method 5210B: The correction factor for the Seeded Control Blank (SCB) for batch 480-726525 was outside the method range of 0.6 to 1.0 mg/L. Thus, there is added uncertainty for the associated sample results.

Method 5210B: Reanalysis of the following sample was performed outside of the analytical holding time due to under or over depletion: BCC BSA SUMP-INFLUENT (480-223804-1).

Method 5210B: The glucose-glutamic acid standard (LCS) recovered outside the recovery limits specified in the method in batch 480-726525. The method holding time had expired, therefore the analysis was not repeated. The data was gualified and reported.

Method SM4500_H+: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: BCC BSA SUMP-INFLUENT (480-223804-1) and BCC BSA SUMP-EFFLUENT (480-223804-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 6 of 40 10/9/2024

Detection Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Lab Sample ID: 480-223804-1

Lab Sample ID: 480-223804-2

Lab Sample ID: 480-223804-3

Client Sample ID: BCC BSA SUMP-INFLU	JENT
--------------------------------------	------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,4-Dichlorobenzene	180	J	200	20	ug/L	40	624.1	Total/NA
Chlorobenzene	1900		200	19	ug/L	40	624.1	Total/NA
1,3-Dichlorobenzene	13	J	200	3.5	ug/L	5	625.1	Total/NA
1,4-Dichlorobenzene	160	J	200	4.1	ug/L	5	625.1	Total/NA
2-Chlorophenol	20	J	100	3.3	ug/L	5	625.1	Total/NA
Acenaphthene	68	J	100	4.1	ug/L	5	625.1	Total/NA
Fluorene	24	J	100	5.0	ug/L	5	625.1	Total/NA
N-Nitrosodiphenylamine	17	J	100	4.1	ug/L	5	625.1	Total/NA
Phenolics, Total Recoverable	0.021		0.010	0.0035	mg/L	1	420.4	Total/NA
Total Suspended Solids	8.4		4.0	4.0	mg/L	1	SM 2540D	Total/NA
Cyanide, Amenable	0.043		0.010	0.0050	mg/L	1	SM 4500 CN G	Total/NA
pH	8.3	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.1	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Phosphorus	0.16		0.010	0.0050	mg/L as P	1	SM 4500 P E	Total/NA
Biochemical Oxygen Demand	13.0	*+	6.0	6.0	mg/L	1	SM 5210B	Total/NA

Client Sample ID: TRIP BLANK

<u> </u>									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	0.81	J	5.0	0.48	ug/L	1	_	624.1	Total/NA

Client Sample ID: BCC BSA SUMP-EFFLUENT

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I) Method	Prep Type
Chlorobenzene	4.2	J	5.0	0.48	ug/L	1	624.1	Total/NA
Copper	0.0046	J	0.010	0.0045	mg/L	1	200.7 Rev 4.4	Total/NA
Nickel	0.0041	J	0.010	0.0034	mg/L	1	200.7 Rev 4.4	Total/NA
Cyanide, Amenable	0.026		0.010	0.0050	mg/L	1	SM 4500 CN G	Total/NA
рН	8.2	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.3	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Phosphorus	0.23		0.010	0.0050	mg/L as P	1	SM 4500 P E	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-223804-1

Matrix: Water

Job ID: 480-223804-1

Client Sample ID: BCC BSA SUMP-INFLUENT

Date Collected: 09/27/24 12:05 Date Received: 09/28/24 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		200	15	ug/L			10/01/24 20:14	40
1,1,2,2-Tetrachloroethane	ND		200	10	ug/L			10/01/24 20:14	40
1,1,2-Trichloroethane	ND		200	19	ug/L			10/01/24 20:14	40
1,1-Dichloroethane	ND		200	24	ug/L			10/01/24 20:14	40
1,1-Dichloroethene	ND		200	34	ug/L			10/01/24 20:14	40
1,2-Dichlorobenzene	ND		200	18	ug/L			10/01/24 20:14	40
1,2-Dichloroethane	ND		200	24	ug/L			10/01/24 20:14	40
1,2-Dichloroethene, Total	ND		400	130	ug/L			10/01/24 20:14	40
1,2-Dichloropropane	ND		200	24	ug/L			10/01/24 20:14	40
1,3-Dichlorobenzene	ND		200	22	ug/L			10/01/24 20:14	40
1,4-Dichlorobenzene	180	J	200		ug/L			10/01/24 20:14	40
2-Chloroethyl vinyl ether	ND		1000	74	ug/L			10/01/24 20:14	40
Acrolein	ND		4000	700	ug/L			10/01/24 20:14	40
Acrylonitrile	ND		2000	76	ug/L			10/01/24 20:14	40
Benzene	ND		200		ug/L			10/01/24 20:14	40
Bromodichloromethane	ND		200	21	ug/L			10/01/24 20:14	40
Bromoform	ND		200		ug/L			10/01/24 20:14	40
Bromomethane	ND		200		ug/L			10/01/24 20:14	40
Carbon tetrachloride	ND		200		ug/L			10/01/24 20:14	40
Chlorobenzene	1900		200		ug/L			10/01/24 20:14	40
Chloroethane	ND		200	35	ug/L			10/01/24 20:14	40
Chloroform	ND		200	22	ug/L			10/01/24 20:14	40
Chloromethane	ND		200	25	ug/L			10/01/24 20:14	40
cis-1,3-Dichloropropene	ND		200	13	ug/L			10/01/24 20:14	40
Dibromochloromethane	ND		200	17	ug/L			10/01/24 20:14	40
Ethylbenzene	ND		200	19	ug/L			10/01/24 20:14	40
Methylene Chloride	ND		200	33	ug/L			10/01/24 20:14	40
Tetrachloroethene	ND		200	14	ug/L			10/01/24 20:14	40
Toluene	ND		200		ug/L			10/01/24 20:14	40
trans-1,3-Dichloropropene	ND		200	18	ug/L			10/01/24 20:14	40
Trichloroethene	ND		200	24	ug/L			10/01/24 20:14	40
Trichlorofluoromethane	ND		200		ug/L			10/01/24 20:14	40
Vinyl chloride	ND		200		ug/L			10/01/24 20:14	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		68 - 130			-		10/01/24 20:14	40
4-Bromofluorobenzene (Surr)	97		76 - 123					10/01/24 20:14	40
Dibromofluoromethane (Surr)	99		75 - 123					10/01/24 20:14	40
Toluene-d8 (Surr)	99		77 - 120					10/01/24 20:14	40

Method: FPA	. 625 1 - Semivola	tile Organic (Compounds (GC/MS)	

Michiga. El A CEC. 1 - Comito	idine Organie Compo	unus (Conno)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND ND	200	4.1	ug/L		10/02/24 09:12	10/03/24 17:28	5
1,2-Dichlorobenzene	ND	200	5.2	ug/L		10/02/24 09:12	10/03/24 17:28	5
1,2-Diphenylhydrazine	ND	200	3.9	ug/L		10/02/24 09:12	10/03/24 17:28	5
1,3-Dichlorobenzene	13 J	200	3.5	ug/L		10/02/24 09:12	10/03/24 17:28	5
1,4-Dichlorobenzene	160 J	200	4.1	ug/L		10/02/24 09:12	10/03/24 17:28	5
2,2'-oxybis[1-chloropropane]	ND	100	4.2	ug/L		10/02/24 09:12	10/03/24 17:28	5
2,4,6-Trichlorophenol	ND	100	5.0	ug/L		10/02/24 09:12	10/03/24 17:28	5
2,4-Dichlorophenol	ND	100	3.9	ug/L		10/02/24 09:12	10/03/24 17:28	5

Eurofins Buffalo

10/9/2024

Page 8 of 40

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-INFLUENT

Lab Sample ID: 480-223804-1 Date Collected: 09/27/24 12:05 **Matrix: Water**

Date Received: 09/28/24 16:46

Method: EPA 625.1 - Semivo Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dimethylphenol	ND		100	7.0		=		10/03/24 17:28	Diria
2,4-Dinitrophenol	ND		200	25				10/03/24 17:28	
2,4-Dinitrotoluene	ND		100	8.1	ug/L			10/03/24 17:28	
2-Chloronaphthalene	ND		100		-			10/03/24 17:28	
			100	3.3				10/03/24 17:28	
2-Chlorophenol	20 ND	J	100		Ū				
2-Nitrophenol				3.5	ug/L			10/03/24 17:28	
3,3'-Dichlorobenzidine	ND		100	8.0				10/03/24 17:28	
4,6-Dinitro-2-methylphenol	ND		200	9.0	·			10/03/24 17:28	
4-Bromophenyl phenyl ether	ND		100	7.0	ug/L			10/03/24 17:28	
4-Chloro-3-methylphenol	ND		100		ug/L			10/03/24 17:28	
4-Chlorophenyl phenyl ether	ND		100		ug/L			10/03/24 17:28	
4-Nitrophenol	ND		200	9.7	•			10/03/24 17:28	
Acenaphthene	68	J	100	4.1				10/03/24 17:28	
Acenaphthylene	ND		100	4.4	ug/L		10/02/24 09:12	10/03/24 17:28	
Aniline	ND		200	7.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Anthracene	ND		100	7.0	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzidine	ND		1600	270	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[a]anthracene	ND		100	5.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[a]pyrene	ND		100	6.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[b]fluoranthene	ND		100	6.0	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[g,h,i]perylene	ND		100	7.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Benzo[k]fluoranthene	ND		100	6.5	ug/L		10/02/24 09:12	10/03/24 17:28	
Bis(2-chloroethoxy)methane	ND		100	3.8	ug/L		10/02/24 09:12	10/03/24 17:28	
Bis(2-chloroethyl)ether	ND		100	4.7	ug/L		10/02/24 09:12	10/03/24 17:28	
Bis(2-ethylhexyl) phthalate	ND		200		ug/L		10/02/24 09:12	10/03/24 17:28	
Butyl benzyl phthalate	ND		100		ug/L		10/02/24 09:12	10/03/24 17:28	
Chrysene	ND		100	5.0	-			10/03/24 17:28	
Dibenz(a,h)anthracene	ND		100		ug/L			10/03/24 17:28	
Diethyl phthalate	ND		100					10/03/24 17:28	
Dimethyl phthalate	ND		100					10/03/24 17:28	
Di-n-butyl phthalate	ND		100	8.0				10/03/24 17:28	
Di-n-octyl phthalate	ND		100	6.0				10/03/24 17:28	
Fluoranthene	ND		100	8.0	ug/L			10/03/24 17:28	
Fluorene	24		100	5.0				10/03/24 17:28	
Hexachlorobenzene	ND	.	100		ug/L			10/03/24 17:28	
			100		•				
Hexachlorobutadiene	ND ND		100		ug/L			10/03/24 17:28	
Hexachlorocyclopentadiene Hexachloroethane					ug/L			10/03/24 17:28	
	ND		100		ug/L			10/03/24 17:28	
Indeno[1,2,3-cd]pyrene	ND		100		ug/L			10/03/24 17:28	
Isophorone	ND		100		ug/L			10/03/24 17:28	
Naphthalene -	ND		100		ug/L			10/03/24 17:28	
Decane	ND		200	8.0	·			10/03/24 17:28	
Nitrobenzene	ND		100	4.1				10/03/24 17:28	
N-Nitrosodimethylamine	ND		200		Ü			10/03/24 17:28	
N-Nitrosodi-n-propylamine	ND		100		•			10/03/24 17:28	
N-Nitrosodiphenylamine	17	J	100		ug/L			10/03/24 17:28	
n-Octadecane	ND		200	6.0	ug/L		10/02/24 09:12	10/03/24 17:28	
Pentachlorophenol	ND		200	16	ug/L		10/02/24 09:12	10/03/24 17:28	
Phenanthrene	ND		100	6.0	ug/L		10/02/24 09:12	10/03/24 17:28	

Eurofins Buffalo

Job ID: 480-223804-1

Page 9 of 40 10/9/2024

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-223804-1

Client Sample ID: BCC BSA SUMP-INFLUENT Date Collected: 09/27/24 12:05

Matrix: Water

Job ID: 480-223804-1

Date Received: 09/28/24 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		100	1.8	ug/L		10/02/24 09:12	10/03/24 17:28	
Pyrene	ND		100	7.0	ug/L		10/02/24 09:12	10/03/24 17:28	
2,6-Dinitrotoluene	ND		100	5.0	ug/L		10/02/24 09:12	10/03/24 17:28	Ę
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	73		52 - 151				10/02/24 09:12	10/03/24 17:28	
2-Fluorobiphenyl	64		44 - 120				10/02/24 09:12	10/03/24 17:28	
2-Fluorophenol	42		17 - 120				10/02/24 09:12	10/03/24 17:28	
Nitrobenzene-d5	53		15 - 314				10/02/24 09:12	10/03/24 17:28	
Phenol-d5	28		8 - 424				10/02/24 09:12	10/03/24 17:28	
o-Terphenyl-d14	47		22 - 125				10/02/24 09:12	10/03/24 17:28	
Method: EPA 608.3 - Polychlor	inated Bipl	nenyls (PC	Bs) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1221	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1232	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1242	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1248	ND		0.057	0.036	ug/L		09/30/24 13:14	10/01/24 12:46	
PCB-1254	ND		0.057	0.030	•		09/30/24 13:14	10/01/24 12:46	
PCB-1260	ND		0.057	0.030			09/30/24 13:14	10/01/24 12:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	20		10 - 120					10/01/24 12:46	
Tetrachloro-m-xylene	52		10 - 126					10/01/24 12:46	•
Method: EPA 200.7 Rev 4.4 - M	letals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	ND		0.0040	0.0024	mg/L		09/30/24 08:02	09/30/24 18:29	
Copper	ND		0.010	0.0045	-		09/30/24 08:02	09/30/24 18:29	
Lead	ND		0.010	0.0039	mg/L		09/30/24 08:02	09/30/24 18:29	
Nickel	ND		0.010	0.0034			09/30/24 08:02	09/30/24 18:29	
Zinc	ND		0.010	0.0068	-		09/30/24 08:02	09/30/24 18:29	
Method: EPA 245.1 - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000042	mg/L		09/30/24 10:04	09/30/24 13:58	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolics, Total Recoverable (EPA 420.4)	0.021		0.010	0.0035	mg/L			10/04/24 13:50	
Cyanide, Amenable (SM 4500 CN G)	0.043		0.010	0.0050	mg/L			10/05/24 17:30	,
Phosphorus (SM 4500 P E)	0.16		0.010	0.0050	mg/L as P			10/01/24 19:46	,
Biochemical Oxygen Demand (SM	13.0	*+	6.0		mg/L as i			09/28/24 14:15	,
5210B)									
Biochemical Oxygen Demand (SM 5210B)	ND	Н	6.0	6.0	mg/L			10/03/24 13:15	•
						_			D11 F -
Analyte	Result	Qualifier	RL	KL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Buffalo

10/9/2024

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-INFLUENT Lab Sample ID: 480-223804-1

Date Collected: 09/27/24 12:05

Matrix: Water

Date Received: 09/28/24 16:46

General Chemistry (Continued) Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	8.3	HF	0.1	0.1	SU			09/29/24 14:20	1
Temperature (SM 4500 H+ B)	19.1	HF	0.001	0.001	Degrees C			09/29/24 14:20	1

4

5

6

10

40

13

15

16

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Client Sample ID: TRIP BLANK

Date Received: 09/28/24 16:46

Lab Sample ID: 480-223804-2 Date Collected: 09/27/24 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	MD		5.0	0.39	ug/L			09/30/24 15:09	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/30/24 15:09	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/30/24 15:09	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/30/24 15:09	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/30/24 15:09	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/30/24 15:09	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/30/24 15:09	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/30/24 15:09	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/30/24 15:09	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/30/24 15:09	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/30/24 15:09	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/30/24 15:09	1
Acrolein	ND		100	17	ug/L			09/30/24 15:09	1
Acrylonitrile	ND		100	1.9	ug/L			09/30/24 15:09	1
Benzene	ND		5.0	0.60	ug/L			09/30/24 15:09	1
Bromodichloromethane	ND		5.0	0.54	ug/L			09/30/24 15:09	1
Bromoform	ND		5.0	0.47	ug/L			09/30/24 15:09	1
Bromomethane	ND		5.0	1.2	ug/L			09/30/24 15:09	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/30/24 15:09	1
Chlorobenzene	0.81	J	5.0	0.48	ug/L			09/30/24 15:09	1
Chloroethane	ND		5.0	0.87	ug/L			09/30/24 15:09	1
Chloroform	ND		5.0	0.54	ug/L			09/30/24 15:09	1
Chloromethane	ND		5.0	0.64	ug/L			09/30/24 15:09	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/30/24 15:09	1
Dibromochloromethane	ND		5.0	0.41	ug/L			09/30/24 15:09	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/30/24 15:09	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/30/24 15:09	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/30/24 15:09	1
Toluene	ND		5.0	0.45	ug/L			09/30/24 15:09	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/30/24 15:09	1
Trichloroethene	ND		5.0	0.60	ug/L			09/30/24 15:09	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			09/30/24 15:09	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/30/24 15:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		68 - 130			-		09/30/24 15:09	1
4-Bromofluorobenzene (Surr)	99		76 - 123					09/30/24 15:09	1
Dibromofluoromethane (Surr)	95		75 - 123					09/30/24 15:09	1
Toluene-d8 (Surr)	99		77 - 120					09/30/24 15:09	1

Client: Ontario Specialty Contracting, Inc.
Project/Site: Quarterly BSA SUMP

ND

ND

ND

4.2 J

Client Sample ID: BCC BSA SUMP-EFFLUENT

Date Collected: 09/27/24 12:00 Date Received: 09/28/24 16:46

Bromomethane

Carbon tetrachloride

Chlorobenzene

Vinyl chloride

Lab Sample ID: 480-223804-3

Matrix: Water

Job ID: 480-223804-1

09/30/24 15:33

09/30/24 15:33

09/30/24 15:33

09/30/24 15:33

Method: EPA 624.1 - Volatil	le Organic Compounds (GC	C/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			09/30/24 15:33	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			09/30/24 15:33	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			09/30/24 15:33	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			09/30/24 15:33	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			09/30/24 15:33	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			09/30/24 15:33	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			09/30/24 15:33	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			09/30/24 15:33	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			09/30/24 15:33	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			09/30/24 15:33	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			09/30/24 15:33	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			09/30/24 15:33	1
Acrolein	ND	100	17	ug/L			09/30/24 15:33	1
Acrylonitrile	ND	50	1.9	ug/L			09/30/24 15:33	1
Benzene	ND	5.0	0.60	ug/L			09/30/24 15:33	1
Bromodichloromethane	ND	5.0	0.54	ug/L			09/30/24 15:33	1
Bromoform	ND	5.0	0.47	ug/L			09/30/24 15:33	1

5.0

5.0

5.0

1.2 ug/L

0.51 ug/L

0.48 ug/L

0.75 ug/L

Chloroethane	ND	5.0	0.87 ug/L	09/30/24 15:33
Chloroform	ND	5.0	0.54 ug/L	09/30/24 15:33
Chloromethane	ND	5.0	0.64 ug/L	09/30/24 15:33
cis-1,3-Dichloropropene	ND	5.0	0.33 ug/L	09/30/24 15:33
Dibromochloromethane	ND	5.0	0.41 ug/L	09/30/24 15:33
Ethylbenzene	ND	5.0	0.46 ug/L	09/30/24 15:33
Methylene Chloride	ND	5.0	0.81 ug/L	09/30/24 15:33
Tetrachloroethene	ND	5.0	0.34 ug/L	09/30/24 15:33
Toluene	ND	5.0	0.45 ug/L	09/30/24 15:33
trans-1,3-Dichloropropene	ND	5.0	0.44 ug/L	09/30/24 15:33
Trichloroethene	ND	5.0	0.60 ug/L	09/30/24 15:33
Trichlorofluoromethane	ND	5.0	0.45 ug/L	09/30/24 15:33

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		68 - 130		09/30/24 15:33	1
4-Bromofluorobenzene (Surr)	99		76 - 123		09/30/24 15:33	1
Dibromofluoromethane (Surr)	99		75 - 123		09/30/24 15:33	1
Toluene-d8 (Surr)	101		77 - 120		09/30/24 15:33	1

5.0

	idino organio componio	(, , , , , , , , , , , , , , , , , , ,						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND ND	40	0.82	ug/L		10/02/24 09:12	10/03/24 17:55	1
1,2-Dichlorobenzene	ND	40	1.0	ug/L		10/02/24 09:12	10/03/24 17:55	1
1,2-Diphenylhydrazine	ND	40	0.78	ug/L		10/02/24 09:12	10/03/24 17:55	1
1,3-Dichlorobenzene	ND	40	0.69	ug/L		10/02/24 09:12	10/03/24 17:55	1
1,4-Dichlorobenzene	ND	40	0.82	ug/L		10/02/24 09:12	10/03/24 17:55	1
2,2'-oxybis[1-chloropropane]	ND	20	0.84	ug/L		10/02/24 09:12	10/03/24 17:55	1
2,4,6-Trichlorophenol	ND	20	1.0	ug/L		10/02/24 09:12	10/03/24 17:55	1
2,4-Dichlorophenol	ND	20	0.77	ug/L		10/02/24 09:12	10/03/24 17:55	1

Eurofins Buffalo

Page 13 of 40

2

3

6

8

10

12

14

110

16

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-EFFLUENT Lab Sample ID: 480-223804-3 **Matrix: Water**

Date Collected: 09/27/24 12:00 Date Received: 09/28/24 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dimethylphenol	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 17:55	
2,4-Dinitrophenol	ND		40	5.0	ug/L		10/02/24 09:12	10/03/24 17:55	
2,4-Dinitrotoluene	ND		20	1.6	ug/L		10/02/24 09:12	10/03/24 17:55	•
2-Chloronaphthalene	ND		20	0.91	ug/L		10/02/24 09:12	10/03/24 17:55	
2-Chlorophenol	ND		20	0.66	ug/L		10/02/24 09:12	10/03/24 17:55	
2-Nitrophenol	ND		20	0.70	ug/L		10/02/24 09:12	10/03/24 17:55	
3,3'-Dichlorobenzidine	ND		20	1.6	ug/L		10/02/24 09:12	10/03/24 17:55	
4,6-Dinitro-2-methylphenol	ND		40	1.8	ug/L		10/02/24 09:12	10/03/24 17:55	
4-Bromophenyl phenyl ether	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 17:55	
4-Chloro-3-methylphenol	ND		20	1.1	ug/L		10/02/24 09:12	10/03/24 17:55	
4-Chlorophenyl phenyl ether	ND		20	1.3	ug/L		10/02/24 09:12	10/03/24 17:55	
4-Nitrophenol	ND		40		-		10/02/24 09:12	10/03/24 17:55	
Acenaphthene	ND		20	0.81	ug/L		10/02/24 09:12	10/03/24 17:55	
Acenaphthylene	ND		20	0.87	ug/L		10/02/24 09:12	10/03/24 17:55	
Aniline	ND		40		ug/L		10/02/24 09:12	10/03/24 17:55	
Anthracene	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 17:55	
Benzidine	ND		320		ug/L		10/02/24 09:12	10/03/24 17:55	,
Benzo[a]anthracene	ND		20		ug/L		10/02/24 09:12	10/03/24 17:55	
Benzo[a]pyrene	ND		20		ug/L		10/02/24 09:12	10/03/24 17:55	
Benzo[b]fluoranthene	ND		20		ug/L			10/03/24 17:55	
Benzo[g,h,i]perylene	ND		20		ug/L		10/02/24 09:12	10/03/24 17:55	
Benzo[k]fluoranthene	ND		20		ug/L			10/03/24 17:55	
Bis(2-chloroethoxy)methane	ND		20		ug/L			10/03/24 17:55	
Bis(2-chloroethyl)ether	ND		20		ug/L			10/03/24 17:55	
Bis(2-ethylhexyl) phthalate	ND		40		ug/L			10/03/24 17:55	
Butyl benzyl phthalate	ND		20		ug/L			10/03/24 17:55	
Chrysene	ND		20		ug/L			10/03/24 17:55	
Dibenz(a,h)anthracene	ND		20		ug/L			10/03/24 17:55	
Diethyl phthalate	ND		20		ug/L			10/03/24 17:55	
Dimethyl phthalate	ND		20		ug/L			10/03/24 17:55	
Di-n-butyl phthalate	ND		20		ug/L			10/03/24 17:55	
Di-n-octyl phthalate	ND		20		ug/L			10/03/24 17:55	
Fluoranthene	ND		20		ug/L			10/03/24 17:55	
Fluorene	ND		20		ug/L			10/03/24 17:55	
Hexachlorobenzene	ND		20		ug/L			10/03/24 17:55	
Hexachlorobutadiene	ND		20		ug/L			10/03/24 17:55	
Hexachlorocyclopentadiene	ND		20		ug/L			10/03/24 17:55	
Hexachloroethane	ND		20		ug/L			10/03/24 17:55	
Indeno[1,2,3-cd]pyrene	ND		20		ug/L			10/03/24 17:55	
Isophorone	ND		20		ug/L			10/03/24 17:55	
Naphthalene	ND		20		ug/L			10/03/24 17:55	
Decane	ND		40		ug/L			10/03/24 17:55	,
Nitrobenzene	ND		20		ug/L			10/03/24 17:55	,
N-Nitrosodimethylamine	ND		40		ug/L			10/03/24 17:55	,
N-Nitrosodi-n-propylamine	ND ND		20		ug/L			10/03/24 17:55	
N-Nitrosodi-n-propylamine	ND		20		ug/L			10/03/24 17:55	
n-Octadecane	ND		40		ug/L ug/L			10/03/24 17:55	· · · · · · .
	IND		40		-				
Pentachlorophenol	ND		40	2 7	ug/L		10/02/24 00:12	10/03/24 17:55	•

Eurofins Buffalo

Job ID: 480-223804-1

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-EFFLUENT Lab Sample ID: 480-223804-3

Date Collected: 09/27/24 12:00 **Matrix: Water** Date Received: 09/28/24 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		20	0.35	ug/L		10/02/24 09:12	10/03/24 17:55	1
Pyrene	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 17:55	1
2,6-Dinitrotoluene	ND		20	1.0	ug/L		10/02/24 09:12	10/03/24 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	52		52 - 151				10/02/24 09:12	10/03/24 17:55	
2-Fluorobiphenyl	66		44 - 120				10/02/24 09:12	10/03/24 17:55	1
2-Fluorophenol	47		17 - 120				10/02/24 09:12	10/03/24 17:55	1
Nitrobenzene-d5	59		15 - 314				10/02/24 09:12	10/03/24 17:55	
Phenol-d5	33		8 - 424				10/02/24 09:12	10/03/24 17:55	
p-Terphenyl-d14	59		22 - 125				10/02/24 09:12	10/03/24 17:55	
Method: EPA 608.3 - Polychlo	rinated Rink	nenvis (PC	Bs) (GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.058	0.037	ug/L		09/30/24 13:14	10/01/24 13:04	1
PCB-1221	ND		0.058	0.037	-		09/30/24 13:14	10/01/24 13:04	
PCB-1232	ND		0.058	0.037	J		09/30/24 13:14	10/01/24 13:04	
PCB-1242	ND		0.058	0.037	ug/L		09/30/24 13:14	10/01/24 13:04	
PCB-1248	ND		0.058	0.037	ug/L		09/30/24 13:14	10/01/24 13:04	
PCB-1254	ND		0.058	0.030	ug/L		09/30/24 13:14	10/01/24 13:04	
PCB-1260	ND		0.058	0.030			09/30/24 13:14	10/01/24 13:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenvl	36		10 - 120				09/30/24 13:14	10/01/24 13:04	
DCB Decachlorobiphenyl Tetrachloro-m-xylene	36 66		10 - 120 10 - 126					10/01/24 13:04	1 1
, ,	66 Metals (ICP)		10 - 126						1
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte	Metals (ICP) Result	Qualifier	10 - 126		Unit	_ <u>D</u>	09/30/24 13:14 Prepared	10/01/24 13:04 Analyzed	Dil Fac
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N	66 Metals (ICP)	Qualifier	10 - 126 RL 0.0040	0.0024	mg/L	_ <u>D</u>	09/30/24 13:14 Prepared 09/30/24 08:02	10/01/24 13:04 Analyzed 09/30/24 18:30	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte	Metals (ICP) Result ND 0.0046		10 - 126	0.0024 0.0045	mg/L mg/L	_ <u>D</u>	09/30/24 13:14 Prepared 09/30/24 08:02	10/01/24 13:04 Analyzed	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium	Metals (ICP) Result ND		10 - 126 RL 0.0040	0.0024	mg/L mg/L	_ <u>D</u>	09/30/24 13:14 Prepared 09/30/24 08:02 09/30/24 08:02	10/01/24 13:04 Analyzed 09/30/24 18:30	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium Copper	Metals (ICP) Result ND 0.0046	J	10 - 126 RL 0.0040 0.010	0.0024 0.0045	mg/L mg/L mg/L	<u>D</u>	09/30/24 13:14 Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium Copper Lead	Metals (ICP) Result ND 0.0046 ND	J	RL 0.0040 0.010 0.010	0.0024 0.0045 0.0039	mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fac
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium Copper Lead Nickel Zinc	Metals (ICP) Result ND 0.0046 ND 0.0041 ND	J	RL 0.0040 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034	mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fa
Tetrachloro-m-xylene Method: EPA 200.7 Rev 4.4 - N Analyte Chromium Copper Lead Nickel	Metals (ICP) Result ND 0.0046 ND 0.0041 ND	J	RL 0.0040 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068	mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fac
Method: EPA 200.7 Rev 4.4 - Method: EPA 200.7 Rev 4.4 - Method: EPA 200.7 Rev 4.4 - Method: EPA 245.1 - Mercury Analyte	Metals (ICP) Result ND 0.0046 ND 0.0041 ND	J	RL 0.0040 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068	mg/L mg/L mg/L mg/L mg/L		Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fa
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result	J	RL 0.0040 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068	mg/L mg/L mg/L mg/L mg/L		Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fa
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result	J J Qualifier	RL 0.00020 RL	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042	mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30	Dil Fac
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result	J J Qualifier	RL 0.0040 0.010 0.010 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59	Dil Fac
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result	J J Qualifier	RL 0.00020 RL	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042	mg/L mg/L mg/L mg/L mg/L Unit mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed O9/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed O9/30/24 13:59 Analyzed	Dil Fa
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND	J J Qualifier	RL 0.00020 RL 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042	mg/L mg/L mg/L mg/L mg/L Unit mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13	Dil Fac
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND 0.026	J Qualifier Qualifier *+ ^+ F1	RL 0.0040 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042 MDL 0.0035 0.0050	mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit mg/L mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13 10/04/24 17:03	Dil Fa
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 55210B)	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND 0.026 0.23 ND	J Qualifier Qualifier *+ ^+ F1	RL 0.00020 RL 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042 MDL 0.0035 0.0050 0.0050	mg/L mg/L mg/L mg/L Mg/L Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13 10/04/24 17:03	Dil Fa
Method: EPA 200.7 Rev 4.4 - Manalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G)	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND 0.026 0.23 ND	J Qualifier Qualifier *+ ^+ F1	RL 0.0010 RL 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042 MDL 0.0035 0.0050 0.0050 2.0 RL	mg/L mg/L mg/L mg/L Mg/L Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04 Prepared	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13 10/04/24 17:03 10/01/24 19:46 09/28/24 14:15	Dil Fac
Method: EPA 200.7 Rev 4.4 - NAnalyte Chromium Copper Lead Nickel Zinc Method: EPA 245.1 - Mercury Analyte Mercury General Chemistry Analyte Phenolics, Total Recoverable (EPA 420.4) Cyanide, Amenable (SM 4500 CN G) Phosphorus (SM 4500 P E) Biochemical Oxygen Demand (SM 5210B) Analyte	Metals (ICP) Result ND 0.0046 ND 0.0041 ND (CVAA) Result ND Result ND 0.026 0.23 ND Result Result	J Qualifier Qualifier + ^+ F1 *+ Qualifier	RL 0.00020 RL 0.00020 RL 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.0024 0.0045 0.0039 0.0034 0.0068 MDL 0.000042 0.0035 0.0050 0.0050 2.0 RL 4.0	mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit mg/L Unit mg/L Unit Unit	_ <u>D</u>	Prepared 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 09/30/24 08:02 Prepared 09/30/24 10:04 Prepared	Analyzed 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 09/30/24 18:30 Analyzed 09/30/24 13:59 Analyzed 10/04/24 11:13 10/04/24 17:03 10/01/24 19:46 09/28/24 14:15 Analyzed	•

Eurofins Buffalo

Page 15 of 40

Job ID: 480-223804-1

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-223804-1	BCC BSA SUMP-INFLUENT	101	97	99	99
480-223804-2	TRIP BLANK	98	99	95	99
480-223804-3	BCC BSA SUMP-EFFLUENT	99	99	99	101
LCS 480-726617/6	Lab Control Sample	97	96	101	99
LCS 480-726771/6	Lab Control Sample	99	99	101	99
MB 480-726617/8	Method Blank	99	96	103	101
MB 480-726771/8	Method Blank	101	100	100	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Water**

_	Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	PHL	TPHd14	
Lab Sample ID	Client Sample ID	(52-151)	(44-120)	(17-120)	(15-314)	(8-424)	(22-125)	
480-223804-1	BCC BSA SUMP-INFLUENT	73	64	42	53	28	47	
480-223804-3	BCC BSA SUMP-EFFLUENT	52	66	47	59	33	59	
LCS 480-726825/2-A	Lab Control Sample	71	74	52	63	40	89	
LCSD 480-726825/3-A	Lab Control Sample Dup	71	75	55	64	43	82	
MB 480-726825/1-A	Method Blank	59	75	49	64	35	83	

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCBP1	TCX1					
Lab Sample ID	Client Sample ID	(10-120)	(10-126)					
480-223804-1	BCC BSA SUMP-INFLUENT	20	52					
480-223804-3	BCC BSA SUMP-EFFLUENT	36	66					
LCS 480-726627/2-A	Lab Control Sample	44	74					
LCSD 480-726627/3-A	Lab Control Sample Dup	42	73					
MB 480-726627/1-A	Method Blank	46	77					

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Eurofins Buffalo

Page 16 of 40

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-726617/8

Matrix: Water

Analysis Batch: 726617

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1,1,1-Trichloroethane ND 5.0 0.39 ug/L 09/30/24 13:55 1,1,2,2-Tetrachloroethane ND 5.0 0.26 ug/L 09/30/24 13:55 1,1,2-Trichloroethane ND 5.0 0.48 ug/L 09/30/24 13:55 1,1-Dichloroethane ND 5.0 0.59 ug/L 09/30/24 13:55 1,1-Dichloroethene ND 5.0 0.85 ug/L 09/30/24 13:55 ND 5.0 1,2-Dichlorobenzene 0.44 ug/L 09/30/24 13:55 ND 5.0 09/30/24 13:55 1.2-Dichloroethane 0.60 ug/L 1,2-Dichloroethene, Total ND 10 3.2 ug/L 09/30/24 13:55 1,2-Dichloropropane ND 5.0 0.61 ug/L 09/30/24 13:55 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 09/30/24 13:55 ND 1,4-Dichlorobenzene 5.0 0.51 ug/L 09/30/24 13:55 2-Chloroethyl vinyl ether ND 25 1.9 ug/L 09/30/24 13:55 ND 100 09/30/24 13:55 Acrolein 17 ug/L Acrylonitrile ND 100 1.9 ug/L 09/30/24 13:55 Benzene ND 5.0 0.60 ug/L 09/30/24 13:55 Bromodichloromethane ND 5.0 0.54 ug/L 09/30/24 13:55 **Bromoform** ND 5.0 0.47 ug/L 09/30/24 13:55 Bromomethane ND 09/30/24 13:55 5.0 1.2 ug/L Carbon tetrachloride ND 5.0 0.51 ug/L 09/30/24 13:55 Chlorobenzene ND 5.0 0.48 ug/L 09/30/24 13:55 Chloroethane 5.0 0.87 ug/L 09/30/24 13:55 ND Chloroform 5.0 ND 0.54 ug/L 09/30/24 13:55 Chloromethane ND 5.0 0.64 ug/L 09/30/24 13:55 cis-1,3-Dichloropropene ND 5.0 09/30/24 13:55 0.33 ug/L Dibromochloromethane ND 5.0 0.41 ug/L 09/30/24 13:55 Ethylbenzene ND 5.0 0.46 ug/L 09/30/24 13:55 Methylene Chloride ND 5.0 0.81 ug/L 09/30/24 13:55 Tetrachloroethene ND 5.0 0.34 ug/L 09/30/24 13:55 Toluene ND 5.0 0.45 ug/L 09/30/24 13:55 trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 09/30/24 13:55 ND 5.0 Trichloroethene 0.60 ug/L 09/30/24 13:55 Trichlorofluoromethane ND 5.0 0.45 ug/L 09/30/24 13:55

MB MB

ND

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	68 - 130		09/30/24 13:55	1
4-Bromofluorobenzene (Surr)	96	76 - 123	1	09/30/24 13:55	1
Dibromofluoromethane (Surr)	103	75 - 123	1	09/30/24 13:55	1
Toluene-d8 (Surr)	101	77 - 120		09/30/24 13:55	1

5.0

0.75 ug/L

Lab Sample ID: LCS 480-726617/6

Matrix: Water

Vinyl chloride

Analysis Batch: 726617

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	21.0		ug/L		105	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.5		ug/L		103	46 - 157	
1,1,2-Trichloroethane	20.0	19.9		ug/L		99	52 - 150	

Eurofins Buffalo

Prep Type: Total/NA

09/30/24 13:55

Client Sample ID: Lab Control Sample

Page 17 of 40

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-726617/6

Matrix: Water

Analysis Batch: 726617

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	20.7		ug/L		103	59 - 155	
1,1-Dichloroethene	20.0	21.3		ug/L		107	1 - 234	
1,2-Dichlorobenzene	20.0	20.1		ug/L		100	18 - 190	
1,2-Dichloroethane	20.0	19.6		ug/L		98	49 - 155	
1,2-Dichloropropane	20.0	19.8		ug/L		99	1 - 210	
1,3-Dichlorobenzene	20.0	20.2		ug/L		101	59 - 156	
1,4-Dichlorobenzene	20.0	20.3		ug/L		102	18 - 190	
2-Chloroethyl vinyl ether	20.0	18.9	J	ug/L		95	1 - 305	
Acrolein	100	96.6	J	ug/L		97	10 - 176	
Acrylonitrile	200	184		ug/L		92	54 - 147	
Benzene	20.0	20.2		ug/L		101	37 - 151	
Bromodichloromethane	20.0	20.0		ug/L		100	35 - 155	
Bromoform	20.0	20.8		ug/L		104	45 - 169	
Bromomethane	20.0	22.4		ug/L		112	1 - 242	
Carbon tetrachloride	20.0	19.5		ug/L		97	70 - 140	
Chlorobenzene	20.0	19.9		ug/L		100	37 - 160	
Chloroethane	20.0	22.1		ug/L		110	14 - 230	
Chloroform	20.0	19.9		ug/L		100	51 - 138	
Chloromethane	20.0	19.0		ug/L		95	1 - 273	
cis-1,3-Dichloropropene	20.0	19.9		ug/L		100	1 - 227	
Dibromochloromethane	20.0	20.2		ug/L		101	53 - 149	
Ethylbenzene	20.0	20.0		ug/L		100	37 - 162	
Methylene Chloride	20.0	20.8		ug/L		104	1 - 221	
Tetrachloroethene	20.0	20.4		ug/L		102	64 - 148	
Toluene	20.0	20.3		ug/L		101	47 - 150	
trans-1,3-Dichloropropene	20.0	20.2		ug/L		101	17 - 183	
Trichloroethene	20.0	20.1		ug/L		100	71 - 157	
Trichlorofluoromethane	20.0	23.5		ug/L		118	17 - 181	
Vinyl chloride	20.0	22.7		ug/L		113	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		68 - 130
4-Bromofluorobenzene (Surr)	96		76 - 123
Dibromofluoromethane (Surr)	101		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Lab Sample ID: MB 480-726771/8

Matrix: Water

Analysis Batch: 726771

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/01/24 19:50	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/01/24 19:50	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/01/24 19:50	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/01/24 19:50	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/01/24 19:50	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/01/24 19:50	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/01/24 19:50	1

Eurofins Buffalo

Page 18 of 40

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726771/8 **Matrix: Water**

Analysis Batch: 726771

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/01/24 19:50	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/01/24 19:50	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/01/24 19:50	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/01/24 19:50	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/01/24 19:50	1
Acrolein	ND		100	17	ug/L			10/01/24 19:50	1
Acrylonitrile	ND		50	1.9	ug/L			10/01/24 19:50	1
Benzene	ND		5.0	0.60	ug/L			10/01/24 19:50	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/01/24 19:50	1
Bromoform	ND		5.0	0.47	ug/L			10/01/24 19:50	1
Bromomethane	ND		5.0	1.2	ug/L			10/01/24 19:50	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/01/24 19:50	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/01/24 19:50	1
Chloroethane	ND		5.0	0.87	ug/L			10/01/24 19:50	1
Chloroform	ND		5.0	0.54	ug/L			10/01/24 19:50	1
Chloromethane	ND		5.0	0.64	ug/L			10/01/24 19:50	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/01/24 19:50	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/01/24 19:50	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/01/24 19:50	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/01/24 19:50	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/01/24 19:50	1
Toluene	ND		5.0	0.45	ug/L			10/01/24 19:50	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/01/24 19:50	1
Trichloroethene	ND		5.0	0.60	ug/L			10/01/24 19:50	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			10/01/24 19:50	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/01/24 19:50	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	68 - 130		10/01/24 19:50	1
4-Bromofluorobenzene (Surr)	100	76 - 123		10/01/24 19:50	1
Dibromofluoromethane (Surr)	100	75 - 123		10/01/24 19:50	1
Toluene-d8 (Surr)	100	77 - 120		10/01/24 19:50	1

Lab Sample ID: LCS 480-726771/6

Matrix: Water

Analysis Batch: 726771

Client Sample	ID: Lab	Contro	Sample
	Dron	Type	Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.8		ug/L		104	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.3		ug/L		101	46 - 157	
1,1,2-Trichloroethane	20.0	19.6		ug/L		98	52 - 150	
1,1-Dichloroethane	20.0	20.2		ug/L		101	59 - 155	
1,1-Dichloroethene	20.0	20.2		ug/L		101	1 - 234	
1,2-Dichlorobenzene	20.0	20.3		ug/L		102	18 - 190	
1,2-Dichloroethane	20.0	19.6		ug/L		98	49 - 155	
1,2-Dichloropropane	20.0	20.0		ug/L		100	1 - 210	
1,3-Dichlorobenzene	20.0	20.0		ug/L		100	59 - 156	
1,4-Dichlorobenzene	20.0	20.0		ug/L		100	18 - 190	

Page 19 of 40

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-726771/6

Matrix: Water

Analysis Batch: 726771

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Baton: 720771	Spike	LCS	LCS				%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
2-Chloroethyl vinyl ether	20.0	20.3	J	ug/L		102	1 - 305
Acrolein	100	112		ug/L		112	10 - 176
Acrylonitrile	200	199		ug/L		100	54 - 147
Benzene	20.0	20.1		ug/L		101	37 - 151
Bromodichloromethane	20.0	20.9		ug/L		104	35 - 155
Bromoform	20.0	23.5		ug/L		118	45 - 169
Bromomethane	20.0	20.5		ug/L		103	1 - 242
Carbon tetrachloride	20.0	21.3		ug/L		107	70 - 140
Chlorobenzene	20.0	20.0		ug/L		100	37 - 160
Chloroethane	20.0	21.0		ug/L		105	14 - 230
Chloroform	20.0	20.1		ug/L		100	51 - 138
Chloromethane	20.0	21.7		ug/L		108	1 - 273
cis-1,3-Dichloropropene	20.0	21.0		ug/L		105	1 - 227
Dibromochloromethane	20.0	21.9		ug/L		110	53 - 149
Ethylbenzene	20.0	20.1		ug/L		100	37 - 162
Methylene Chloride	20.0	20.1		ug/L		100	1 - 221
Tetrachloroethene	20.0	20.3		ug/L		102	64 - 148
Toluene	20.0	19.9		ug/L		100	47 - 150
trans-1,3-Dichloropropene	20.0	21.1		ug/L		106	17 - 183
Trichloroethene	20.0	20.1		ug/L		101	71 - 157
Trichlorofluoromethane	20.0	23.6		ug/L		118	17 - 181
Vinyl chloride	20.0	22.8		ug/L		114	1 - 251

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99	-	68 - 130
4-Bromofluorobenzene (Surr)	99		76 - 123
Dibromofluoromethane (Surr)	101		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-726825/1-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 726825

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		40	0.82	ug/L		10/02/24 09:12	10/03/24 16:05	1
1,2-Dichlorobenzene	ND		40	1.0	ug/L		10/02/24 09:12	10/03/24 16:05	1
1,2-Diphenylhydrazine	ND		40	0.78	ug/L		10/02/24 09:12	10/03/24 16:05	1
1,3-Dichlorobenzene	ND		40	0.69	ug/L		10/02/24 09:12	10/03/24 16:05	1
1,4-Dichlorobenzene	ND		40	0.82	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,2'-oxybis[1-chloropropane]	ND		20	0.84	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4,6-Trichlorophenol	ND		20	1.0	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4-Dichlorophenol	ND		20	0.77	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4-Dimethylphenol	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4-Dinitrophenol	ND		40	5.0	ug/L		10/02/24 09:12	10/03/24 16:05	1
2,4-Dinitrotoluene	ND		20	1.6	ug/L		10/02/24 09:12	10/03/24 16:05	1
2-Chloronaphthalene	ND		20	0.91	ug/L		10/02/24 09:12	10/03/24 16:05	1
2-Chlorophenol	ND		20	0.66	ug/L		10/02/24 09:12	10/03/24 16:05	1

Eurofins Buffalo

Page 20 of 40

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1

Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726825/1-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Method Blank

	Prep Type: Total/NA
	Prep Batch: 726825
!	

Analysis Batch: 726979	MD	МВ						Prep Batch: 7268		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
2-Nitrophenol	ND		20	0.70	ug/L		10/02/24 09:12	10/03/24 16:05	1	
3,3'-Dichlorobenzidine	ND		20	1.6	ug/L		10/02/24 09:12	10/03/24 16:05	1	
4,6-Dinitro-2-methylphenol	ND		40	1.8	ug/L		10/02/24 09:12	10/03/24 16:05	1	
4-Bromophenyl phenyl ether	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 16:05	1	
4-Chloro-3-methylphenol	ND		20	1.1	ug/L		10/02/24 09:12	10/03/24 16:05	1	
4-Chlorophenyl phenyl ether	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
4-Nitrophenol	ND		40		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Acenaphthene	ND		20	0.81	ug/L		10/02/24 09:12	10/03/24 16:05	1	
Acenaphthylene	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Aniline	ND		40		ug/L			10/03/24 16:05	1	
Anthracene	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Benzidine	ND		320		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Benzo[a]anthracene	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Benzo[a]pyrene	ND		20		ug/L			10/03/24 16:05	1	
Benzo[b]fluoranthene	ND		20		ug/L		10/02/24 09:12	10/03/24 16:05	1	
Benzo[g,h,i]perylene	ND		20		ug/L			10/03/24 16:05	1	
Benzo[k]fluoranthene	ND		20		ug/L			10/03/24 16:05	1	
Bis(2-chloroethoxy)methane	ND		20		ug/L			10/03/24 16:05	1	
Bis(2-chloroethyl)ether	ND		20		ug/L			10/03/24 16:05	1	
Bis(2-ethylhexyl) phthalate	ND		40		ug/L			10/03/24 16:05	1	
Butyl benzyl phthalate	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Chrysene	ND		20		ug/L			10/03/24 16:05	1	
Dibenz(a,h)anthracene	ND		20		ug/L			10/03/24 16:05		
Diethyl phthalate	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Dimethyl phthalate	ND		20		ug/L			10/03/24 16:05	1	
Di-n-butyl phthalate	ND		20		ug/L			10/03/24 16:05		
Di-n-octyl phthalate	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Fluoranthene	ND		20		ug/L			10/03/24 16:05	. 1	
Fluorene	ND		20		ug/L			10/03/24 16:05		
Hexachlorobenzene	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Hexachlorobutadiene	ND		20		ug/L			10/03/24 16:05	1	
Hexachlorocyclopentadiene	ND		20		ug/L			10/03/24 16:05	1	
Hexachloroethane	ND		20		ug/L			10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Indeno[1,2,3-cd]pyrene	ND		20		ug/L			10/03/24 16:05	. 1	
Isophorone	ND		20	0.74	-			10/03/24 16:05	1	
Naphthalene	ND		20	0.86				10/03/24 16:05	· · · · · · · · · · · · · · · · · · ·	
Decane	ND		40		ug/L			10/03/24 16:05	1	
Nitrobenzene	ND		20		ug/L			10/03/24 16:05	1	
N-Nitrosodimethylamine	ND		40		ug/L			10/03/24 16:05		
N-Nitrosodi-n-propylamine	ND		20		ug/L			10/03/24 16:05	1	
N-Nitrosodi-n-propylamine	ND		20		ug/L			10/03/24 16:05	1	
n-Octadecane	ND		40					10/03/24 16:05		
Pentachlorophenol	ND ND		40		ug/L ug/L			10/03/24 16:05	1	
Phenanthrene	ND ND		20		-			10/03/24 16:05	1	
Phenol	ND				ug/L			10/03/24 16:05		
	ND ND		20 20		ug/L			10/03/24 16:05	1	
Pyrene	ND		20	1.4	ug/L		10/02/24 09:12	10/03/24 10:05	1	

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc.

Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726825/1-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 726825

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
2,4,6-Tribromophenol	59		52 - 151	10/02/24 09:12 10/03/24 16:0	5 1
2-Fluorobiphenyl	75		44 - 120	10/02/24 09:12 10/03/24 16:0	5 1
2-Fluorophenol	49		17 - 120	10/02/24 09:12 10/03/24 16:0	5 1
Nitrobenzene-d5	64		15 - 314	10/02/24 09:12 10/03/24 16:0	5 1
Phenol-d5	35		8 - 424	10/02/24 09:12 10/03/24 16:0	5 1
p-Terphenyl-d14	83		22 - 125	10/02/24 09:12 10/03/24 16:0	5 1

Lab Sample ID: LCS 480-726825/2-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 726825

Spike	LCS I	LCS				%Rec
•			Unit	D	%Rec	Limits
					78	44 - 142
			-		70	32 - 129
32.0			ug/L		69	1 - 172
32.0	22.2	j	ug/L		69	20 - 124
32.0	18.1	J			56	36 - 166
32.0	25.2		ug/L		79	37 - 144
32.0	24.9		ug/L		78	39 - 135
32.0	23.5		ug/L		73	32 - 120
64.0	50.4		ug/L		79	1 - 191
32.0	29.8		ug/L		93	39 - 139
32.0	23.4		ug/L		73	60 - 120
32.0	21.1		ug/L		66	23 - 134
32.0	25.4		ug/L		79	29 - 182
32.0	28.8		ug/L		90	1 - 262
64.0	51.8		ug/L		81	1 - 181
32.0	27.5		ug/L		86	53 - 127
32.0	25.9		ug/L		81	22 - 147
32.0	27.2		ug/L		85	25 - 158
64.0	41.0		ug/L		64	1 - 132
32.0	23.9		ug/L		75	47 - 145
32.0	26.0		ug/L		81	33 - 145
32.0	15.7	J	ug/L		49	40 - 120
32.0	28.2		ug/L		88	27 - 133
32.0	32.2		ug/L		100	33 - 143
32.0	31.8		ug/L		99	17 - 163
32.0	31.6		ug/L		99	24 - 159
32.0	31.4		ug/L		98	1 - 219
32.0	34.2		ug/L		107	11 - 162
32.0	23.9		ug/L		75	33 - 184
32.0	23.4		ug/L		73	12 - 158
32.0	29.0	J	ug/L		91	8 - 158
32.0	29.8		ug/L		93	1 - 152
32.0	32.4		ug/L		101	17 - 168
32.0	32.1		ug/L		100	1 - 227
32.0	26.8		ug/L		84	1 - 120
32.0	27.8		ug/L		87	1 - 120
	32.0 32.0 32.0 32.0 32.0 64.0 32.0 32.0 32.0 32.0 32.0 32.0 64.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32	Added Result 32.0 25.0 32.0 22.3 32.0 22.1 32.0 22.2 32.0 24.9 32.0 24.9 32.0 23.5 64.0 50.4 32.0 29.8 32.0 23.4 32.0 25.4 32.0 25.4 32.0 25.9 32.0 27.5 32.0 27.2 64.0 41.0 32.0 23.9 32.0 26.0 32.0 28.2 32.0 32.2 32.0 31.8 32.0 31.8 32.0 31.4 32.0 34.2 32.0 23.9 32.0 23.9 32.0 23.9 32.0 34.2 32.0 32.4 32.0 29.8 32.0 32.4 32.0	Added Result Qualifier 32.0 25.0 J 32.0 22.3 J 32.0 22.1 J 32.0 22.2 J 32.0 24.9 J 32.0 24.9 J 32.0 23.5 J 64.0 50.4 J 32.0 23.4 J 32.0 23.4 J 32.0 25.4 J 32.0 25.4 J 32.0 25.9 J 32.0 27.5 J 32.0 27.5 J 32.0 25.9 J 32.0 27.2 J 64.0 41.0 J 32.0 28.2 J 32.0 32.9 J 32.0 32.2 J 32.0 31.6 J 32.0 31.4 J 32.0 34.2	Added Result Qualifier Unit 32.0 25.0 J ug/L 32.0 22.3 J ug/L 32.0 22.1 J ug/L 32.0 22.2 J ug/L 32.0 24.9 ug/L 32.0 24.9 ug/L 32.0 24.9 ug/L 32.0 23.5 ug/L 32.0 23.5 ug/L 32.0 23.4 ug/L 32.0 23.4 ug/L 32.0 25.4 ug/L 32.0 25.4 ug/L 32.0 25.4 ug/L 32.0 27.5 ug/L 32.0 27.5 ug/L 32.0 27.5 ug/L 32.0 27.2 ug/L 32.0 23.9 ug/L 32.0 32.0 ug/L 32.0 32.2 ug/L 32.0 31.8 ug/	Added Result Qualifier Unit D 32.0 25.0 J ug/L 32.0 22.1 J ug/L 32.0 22.2 J ug/L 32.0 25.2 ug/L 32.0 25.2 ug/L 32.0 24.9 ug/L 32.0 23.5 ug/L 32.0 29.8 ug/L 32.0 23.4 ug/L 32.0 23.4 ug/L 32.0 25.4 ug/L 32.0 25.4 ug/L 32.0 25.9 ug/L 32.0 27.5 ug/L 32.0 27.5 ug/L 32.0 27.2 ug/L 32.0 27.2 ug/L 32.0 23.9 ug/L 32.0 26.0 ug/L 32.0 32.2 ug/L 32.0 32.2 ug/L 32.0 31.8 ug/	Added Result Qualifier Unit D %Rec 32.0 25.0 J ug/L 78 32.0 22.3 J ug/L 69 32.0 22.1 J ug/L 69 32.0 22.2 J ug/L 69 32.0 22.2 J ug/L 56 32.0 25.2 ug/L 79 32.0 24.9 ug/L 78 32.0 24.9 ug/L 79 32.0 23.5 ug/L 79 32.0 23.4 ug/L 93 32.0 29.8 ug/L 93 32.0 25.4 ug/L 79 32.0 25.4 ug/L 90 64.0 51.8 ug/L 81 32.0 27.5 ug/L 86 32.0 27.2 ug/L 85 64.0 41.0 ug/L 65

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-726825/2-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 726825

7 many one Date m 1 Dec 1 C					op Datom . Zoo.		
	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Di-n-butyl phthalate	32.0	27.1		ug/L	85	1 - 120	
Di-n-octyl phthalate	32.0	29.1		ug/L	91	4 - 146	
Fluoranthene	32.0	31.4		ug/L	98	26 - 137	
Fluorene	32.0	26.0		ug/L	81	59 - 121	
Hexachlorobenzene	32.0	25.1		ug/L	79	1 - 152	
Hexachlorocyclopentadiene	32.0	14.3	J	ug/L	45	5 - 120	
Hexachloroethane	32.0	20.9		ug/L	65	40 - 120	
Indeno[1,2,3-cd]pyrene	32.0	31.6		ug/L	99	1 - 171	
Isophorone	32.0	24.2		ug/L	76	21 - 196	
Naphthalene	32.0	24.1		ug/L	75	21 - 133	
Nitrobenzene	32.0	23.2		ug/L	73	35 - 180	
N-Nitrosodi-n-propylamine	32.0	22.2		ug/L	69	1 - 230	
N-Nitrosodiphenylamine	32.0	26.1		ug/L	81	54 - 125	
Pentachlorophenol	64.0	45.8		ug/L	72	14 - 176	
Phenanthrene	32.0	28.1		ug/L	88	54 - 120	
Phenol	32.0	13.4	J	ug/L	42	5 - 120	
Pyrene	32.0	33.6		ug/L	105	52 - 120	
2,6-Dinitrotoluene	32.0	28.0		ug/L	88	50 - 158	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	71		52 - 151
2-Fluorobiphenyl	74		44 - 120
2-Fluorophenol	52		17 - 120
Nitrobenzene-d5	63		15 - 314
Phenol-d5	40		8 - 424
p-Terphenyl-d14	89		22 - 125

Lab Sample ID: LCSD 480-726825/3-A

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA
	Data Datala 700005

Prep Batch: 726825

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	32.0	25.6	J	ug/L		80	44 - 142	2	34
1,2-Dichlorobenzene	32.0	24.5	J	ug/L		76	32 - 129	9	38
1,3-Dichlorobenzene	32.0	24.3	J	ug/L		76	1 - 172	9	37
1,4-Dichlorobenzene	32.0	24.0	J	ug/L		75	20 - 124	8	40
2,2'-oxybis[1-chloropropane]	32.0	20.4		ug/L		64	36 - 166	12	36
2,4,6-Trichlorophenol	32.0	25.0		ug/L		78	37 - 144	1	20
2,4-Dichlorophenol	32.0	24.6		ug/L		77	39 - 135	1	23
2,4-Dimethylphenol	32.0	23.5		ug/L		73	32 - 120	0	18
2,4-Dinitrophenol	64.0	45.5		ug/L		71	1 - 191	10	29
2,4-Dinitrotoluene	32.0	28.0		ug/L		87	39 - 139	6	20
2-Chloronaphthalene	32.0	23.9		ug/L		75	60 - 120	2	30
2-Chlorophenol	32.0	23.1		ug/L		72	23 - 134	9	26
2-Nitrophenol	32.0	26.6		ug/L		83	29 - 182	5	28
3,3'-Dichlorobenzidine	32.0	26.6		ug/L		83	1 - 262	8	31
4,6-Dinitro-2-methylphenol	64.0	47.2		ug/L		74	1 - 181	9	30
4-Bromophenyl phenyl ether	32.0	28.2		ug/L		88	53 - 127	2	16

Eurofins Buffalo

Page 23 of 40

Client: Ontario Specialty Contracting, Inc.

Lab Sample ID: LCSD 480-726825/3-A

Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 726979

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 726825

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Chloro-3-methylphenol	32.0	25.6		ug/L		80	22 - 147	1	16
4-Chlorophenyl phenyl ether	32.0	25.7		ug/L		80	25 - 158	6	15
4-Nitrophenol	64.0	36.9	J	ug/L		58	1 - 132	11	24
Acenaphthene	32.0	22.8		ug/L		71	47 - 145	4	25
Acenaphthylene	32.0	25.8		ug/L		81	33 - 145	1	22
Aniline	32.0	16.8	J	ug/L		52	40 - 120	7	30
Anthracene	32.0	28.3		ug/L		89	27 - 133	0	15
Benzo[a]anthracene	32.0	29.8		ug/L		93	33 - 143	7	15
Benzo[a]pyrene	32.0	28.3		ug/L		88	17 - 163	12	15
Benzo[b]fluoranthene	32.0	27.8		ug/L		87	24 - 159	13	17
Benzo[g,h,i]perylene	32.0	28.3		ug/L		88	1 - 219	10	19
Benzo[k]fluoranthene	32.0	30.0		ug/L		94	11 - 162	13	19
Bis(2-chloroethoxy)methane	32.0	24.5		ug/L		77	33 - 184	3	23
Bis(2-chloroethyl)ether	32.0	23.8		ug/L		74	12 - 158	2	33
Bis(2-ethylhexyl) phthalate	32.0	26.6	J	ug/L		83	8 - 158	9	15
Butyl benzyl phthalate	32.0	27.8		ug/L		87	1 - 152	7	15
Chrysene	32.0	29.5		ug/L		92	17 - 168	9	15
Dibenz(a,h)anthracene	32.0	27.7		ug/L		87	1 - 227	15	18
Diethyl phthalate	32.0	23.2		ug/L		72	1 - 120	14	15
Dimethyl phthalate	32.0	26.8		ug/L		84	1 - 120	4	15
Di-n-butyl phthalate	32.0	24.8		ug/L		77	1 - 120	9	15
Di-n-octyl phthalate	32.0	26.7		ug/L		83	4 - 146	8	15
Fluoranthene	32.0	29.7		ug/L		93	26 - 137	5	15
Fluorene	32.0	24.9		ug/L		78	59 - 121	5	18
Hexachlorobenzene	32.0	26.0		ug/L		81	1 - 152	3	15
Hexachlorocyclopentadiene	32.0	15.6	J	ug/L		49	5 - 120	9	50
Hexachloroethane	32.0	22.7		ug/L		71	40 - 120	9	43
Indeno[1,2,3-cd]pyrene	32.0	28.0		ug/L		88	1 - 171	12	17
Isophorone	32.0	24.5		ug/L		77	21 - 196	1	21
Naphthalene	32.0	25.3		ug/L		79	21 - 133	5	31
Nitrobenzene	32.0	23.0		ug/L		72	35 - 180	1	27
N-Nitrosodi-n-propylamine	32.0	22.9		ug/L		72	1 - 230	3	23
N-Nitrosodiphenylamine	32.0	26.9		ug/L		84	54 - 125	3	15
Pentachlorophenol	64.0	43.3		ug/L		68	14 - 176	6	21
Phenanthrene	32.0	27.4		ug/L		86	54 - 120	2	16
Phenol	32.0	14.3	J	ug/L		45	5 - 120	6	36
Pyrene	32.0	30.2		ug/L		94	52 - 120	11	15
2,6-Dinitrotoluene	32.0	27.9		ug/L		87	50 - 158	0	17

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	71		52 - 151
2-Fluorobiphenyl	75		44 - 120
2-Fluorophenol	55		17 - 120
Nitrobenzene-d5	64		15-314
Phenol-d5	43		8 - 424
p-Terphenyl-d14	82		22 - 125

Eurofins Buffalo

Client: Ontario Specialty Contracting, Inc. Job ID: 480-223804-1 Project/Site: Quarterly BSA SUMP

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-726627/1-A

Matrix: Water

Analysis Batch: 726696

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 726627

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1221	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1232	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1242	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1248	ND		0.060	0.038	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1254	ND		0.060	0.031	ug/L		09/30/24 13:14	10/01/24 11:33	1
PCB-1260	ND		0.060	0.031	ug/L		09/30/24 13:14	10/01/24 11:33	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier Li	imits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	46		0 - 120	09/30/24 13:14	10/01/24 11:33	1
Tetrachloro-m-xylene	77	10	0 - 126	09/30/24 13:14	10/01/24 11:33	1

Lab Sample ID: LCS 480-726627/2-A

Matrix: Water

Analysis Batch: 726696

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 726627

	Spike	LC2	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	1.00	0.944		ug/L		94	69 - 123	
PCB-1260	1.00	0.899		ug/L		90	69 - 120	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	44	10 - 120
Tetrachloro-m-xylene	74	10 - 126

Lab Sample ID: LCSD 480-726627/3-A

Matrix: Water

Analysis Batch: 726696

_	_				
Cliant	Sample	ID: I ah	Control	Sample Du	n
	Jailible	ID. Lan		Callible Du	

Prep Type: Total/NA

Prep Batch: 726627

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	1.00	0.953		ug/L		95	69 - 123	1	30
PCB-1260	1.00	0.871		ug/L		87	69 - 120	3	30
				3. –		•		_	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	42		10 - 120
Tetrachloro-m-xylene	73		10 - 126

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-726527/1-A

Matrix: Water

Analysis Batch: 726688

Prep Type: Total/NA

Prep Batch: 726527

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	ND		0.0040	0.0024	mg/L		09/30/24 08:02	09/30/24 18:25	1
Copper	ND		0.010	0.0045	mg/L		09/30/24 08:02	09/30/24 18:25	1
Lead	ND		0.010	0.0039	mg/L		09/30/24 08:02	09/30/24 18:25	1
Nickel	ND		0.010	0.0034	mg/L		09/30/24 08:02	09/30/24 18:25	1
Zinc	0.0151		0.010	0.0068	mg/L		09/30/24 08:02	09/30/24 18:25	1

Eurofins Buffalo

10/9/2024

Page 25 of 40

Project/Site: Quarterly BSA SUMP

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: LCS 480-726527/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 726688 Prep Batch: 726527**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	0.500	0.512		mg/L		102	85 - 115	
Copper	0.500	0.502		mg/L		100	85 - 115	
Lead	0.500	0.491		mg/L		98	85 - 115	
Nickel	0.500	0.521		mg/L		104	85 - 115	
Zinc	0.500	0.553		mg/L		111	85 - 115	

Lab Sample ID: 480-223804-3 MS Client Sample ID: BCC BSA SUMP-EFFLUENT

Matrix: Water

Analysis Batch: 726688

Prep Type: Total/NA **Prep Batch: 726527**

	Sample S	Sample	Spike	MS	MS				%Rec	
Analyte	Result C	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	ND		0.500	0.504		mg/L		101	70 - 130	
Copper	0.0046 J	J	0.500	0.535		mg/L		106	70 - 130	
Lead	ND		0.500	0.503		mg/L		101	70 - 130	
Nickel	0.0041 J	J	0.500	0.520		mg/L		103	70 - 130	
Zinc	ND		0.500	0.537		mg/L		107	70 - 130	

Lab Sample ID: 480-223804-3 MSD Client Sample ID: BCC BSA SUMP-EFFLUENT

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 726688 Prep Batch: 726527** Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit Limits RPD Limit D %Rec Chromium ND 0.500 0.507 mg/L 101 70 - 130 0 20 0.0046 J 0.538 Copper 0.500 mg/L 107 70 - 130 20 Lead ND 0.500 0.502 mg/L 100 70 - 130 0 20 Nickel 0.0041 J 0.500 0.532 mg/L 106 70 - 130 2 20

0.538

0.500

Method: 245.1 - Mercury (CVAA)

ND

Lab Sample ID: MB 480-726564/1-A

Matrix: Water

Zinc

Analysis Batch: 726644

Prep Type: Total/NA Prep Batch: 726564 MB MB

mg/L

108

70 - 130

Client Sample ID: Method Blank

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000042	mg/L			09/30/24 10:04	09/30/24 13:26	1

Lab Sample ID: LCS 480-726564/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 726644 Prep Batch: 726564

Alialysis Dalcii. 120044							Lieb D	atcii. 120304
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00669	0.00690		mg/L		103	85 - 115	

Lab Sample ID: LCSD 480-726564/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 726644 Prep Batch: 726564 Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit Limits RPD Limit **Analyte** %Rec Mercury 0.00669 0.00618 mg/L 92 85 - 115

Eurofins Buffalo

10/9/2024

Page 26 of 40

20

Project/Site: Quarterly BSA SUMP

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-727121/46

Matrix: Water

Analysis Batch: 727121

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared ND ^+ 0.010 10/04/24 10:12 Phenolics, Total Recoverable 0.0035 mg/L

Lab Sample ID: LCS 480-727121/47

Matrix: Water

Analysis Batch: 727121

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 0.100 0.113 *+ ^+ 90 - 110 Phenolics, Total Recoverable mg/L 113

Lab Sample ID: 480-223804-3 MS

Matrix: Water

Analysis Batch: 727121

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Phenolics, Total Recoverable ND *+ ^+ F1 0.100 0.138 F1 ^+ 138 90 - 110 mg/L

Lab Sample ID: MB 480-727147/8

Matrix: Water

Analysis Batch: 727147

MB MB

Analyte Result Qualifier

RL MDL Unit Prepared Analyzed Dil Fac Phenolics. Total Recoverable 0.010 0.0035 mg/L 10/04/24 13:35 ND

Lab Sample ID: LCS 480-727147/9

Matrix: Water

Analysis Batch: 727147

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Phenolics, Total Recoverable 0.100 0.0977 98 mg/L 90 - 110

Lab Sample ID: 480-223804-1 DU

Matrix: Water

Analysis Batch: 727147

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier **RPD** Limit Analyte Unit D 0.021 0.0205 Phenolics, Total Recoverable mg/L 20

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-726588/1

Matrix: Water

Analysis Batch: 726588

MR MR

Result Qualifier RL **RL** Unit Prepared Analyzed Dil Fac Total Suspended Solids 1.0 1.0 mg/L 09/30/24 09:43 ND

Eurofins Buffalo

10/9/2024

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: BCC BSA SUMP-EFFLUENT

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: BCC BSA SUMP-INFLUENT

Client Sample ID: Method Blank

Project/Site: Quarterly BSA SUMP

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCS 480-726588/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Total Suspended Solids

Analysis Batch: 726588 Spike LCS LCS %Rec Result Qualifier Added Limits Analyte Unit %Rec

252

Client Sample ID: BCC BSA SUMP-EFFLUENT Lab Sample ID: 480-223804-3 DU Prep Type: Total/NA

246.8

mg/L

98

88 - 110

Matrix: Water

Analysis Batch: 726588

RPD Sample Sample DU DU Result Qualifier Limit Result Qualifier Unit D RPD Analyte ND **Total Suspended Solids** ND mg/L NC 10

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 480-726543/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 726543

LCS LCS %Rec Spike Added Result Qualifier Limits **Analyte** Unit D %Rec рН 7.00 7.0 SU 100 99 - 101

Method: SM 4500 P E - Phosphorus

Lab Sample ID: MB 480-726788/3 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 726788

MB MB Analyte Result Qualifier RI **MDL** Unit Dil Fac Prepared Analyzed 0.010 10/01/24 19:46 Phosphorus ND 0.0050 mg/L as P

Lab Sample ID: LCS 480-726788/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 726788

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Phosphorus 0.200 0.182 mg/L as P 91 90 - 110

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-726525/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 726525

USB USB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Biochemical Oxygen Demand $\overline{\mathsf{ND}}$ 2.0 2.0 mg/L 09/28/24 14:15

Lab Sample ID: LCS 480-726525/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 726525

%Rec LCS LCS Spike Added Result Qualifier Unit %Rec Limits **Biochemical Oxygen Demand** 200 246.7 mg/L 124 85 - 115

Eurofins Buffalo

10/9/2024

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Prep Type: Total/NA

Method: SM 5210B - BOD, 5-Day (Continued)

Lab Sample ID: 480-223804-3 DU

Matrix: Water Analysis Batch: 726525

DU DU Sample Sample Result Qualifier

Result Qualifier Unit ND *+

mg/L

Prepared

D

Client Sample ID: BCC BSA SUMP-EFFLUENT

NC **Client Sample ID: Method Blank** Prep Type: Total/NA

Analyzed

10/03/24 13:15

Prep Type: Total/NA

RPD

RPD

Limit

Dil Fac

Lab Sample ID: USB 480-727052/1 **Matrix: Water**

Biochemical Oxygen Demand

Analyte

Analysis Batch: 727052

Biochemical Oxygen Demand

Lab Sample ID: LCS 480-727052/2

Matrix: Water Analysis Batch: 727052

Analyte

Biochemical Oxygen Demand

USB USB Result Qualifier ND

ND *+

RL 2.0

Spike

Added

198

LCS LCS Result Qualifier 186.6

MDL Unit

2.0 mg/L

Unit mg/L

%Rec

Limits 85 - 115

%Rec

Client Sample ID: Lab Control Sample

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

GC/MS VOA

Analysis Batch: 726617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-2	TRIP BLANK	Total/NA	Water	624.1	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	624.1	
MB 480-726617/8	Method Blank	Total/NA	Water	624.1	
LCS 480-726617/6	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 726771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	624.1	
MB 480-726771/8	Method Blank	Total/NA	Water	624.1	
LCS 480-726771/6	Lab Control Sample	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 726825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	625	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	625	
MB 480-726825/1-A	Method Blank	Total/NA	Water	625	
LCS 480-726825/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 480-726825/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 726979

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method 625.1	Prep Batch 726825
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	625.1	726825
MB 480-726825/1-A	Method Blank	Total/NA	Water	625.1	726825
LCS 480-726825/2-A	Lab Control Sample	Total/NA	Water	625.1	726825
LCSD 480-726825/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	726825

GC Semi VOA

Prep Batch: 726627

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	3510C	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	3510C	
MB 480-726627/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-726627/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-726627/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 726696

Lab Sample ID 480-223804-1 480-223804-3	Client Sample ID BCC BSA SUMP-INFLUENT BCC BSA SUMP-EFFLUENT	Prep Type Total/NA Total/NA	Water Water	Method 608.3 608.3	Prep Batch 726627 726627
MB 480-726627/1-A	Method Blank	Total/NA	Water	608.3	726627
LCS 480-726627/2-A LCSD 480-726627/3-A	Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA	Water Water	608.3 608.3	726627 726627

Metals

Prep Batch: 726527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	200.7	

Eurofins Buffalo

Page 30 of 40

2

3

4

6

7

9

10

12

. .

15

46

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Metals (Continued)

Prep Batch: 726527 (Continued)

Lab Sample ID 480-223804-3	Client Sample ID BCC BSA SUMP-EFFLUENT	Prep Type Total/NA	Matrix Water	Method 200.7	Prep Batch
MB 480-726527/1-A	Method Blank	Total/NA	Water	200.7	
LCS 480-726527/2-A	Lab Control Sample	Total/NA	Water	200.7	
480-223804-3 MS	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7	
480-223804-3 MSD	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7	

Prep Batch: 726564

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method 245.1	Prep Batch
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	245.1	
MB 480-726564/1-A	Method Blank	Total/NA	Water	245.1	
LCS 480-726564/2-A	Lab Control Sample	Total/NA	Water	245.1	
LCSD 480-726564/3-A	Lab Control Sample Dup	Total/NA	Water	245.1	

Analysis Batch: 726644

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method 245.1	Prep Batch 726564
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	245.1	726564
MB 480-726564/1-A	Method Blank	Total/NA	Water	245.1	726564
LCS 480-726564/2-A	Lab Control Sample	Total/NA	Water	245.1	726564
LCSD 480-726564/3-A	Lab Control Sample Dup	Total/NA	Water	245.1	726564

Analysis Batch: 726688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	200.7 Rev 4.4	726527
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7 Rev 4.4	726527
MB 480-726527/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	726527
LCS 480-726527/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	726527
480-223804-3 MS	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7 Rev 4.4	726527
480-223804-3 MSD	BCC BSA SUMP-EFFLUENT	Total/NA	Water	200.7 Rev 4.4	726527

General Chemistry

Analysis Batch: 726525

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	SM 5210B	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 5210B	
USB 480-726525/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-726525/2	Lab Control Sample	Total/NA	Water	SM 5210B	
480-223804-3 DU	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 5210B	

Analysis Batch: 726543

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method SM 4500 H+ B	Prep Batch
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 4500 H+ B	
LCS 480-726543/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 726588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	SM 2540D	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 2540D	

Eurofins Buffalo

Page 31 of 40

2

3

6

8

J

11

13

14

1

QC Association Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

General Chemistry (Continued)

Analysis Batch: 726588 (Continued)

Lab Sample ID MB 480-726588/1	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Water	Method SM 2540D	Prep Batch
LCS 480-726588/2	Lab Control Sample	Total/NA	Water	SM 2540D	
480-223804-3 DU	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 2540D	

Analysis Batch: 726788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	SM 4500 P E	
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 4500 P E	
MB 480-726788/3	Method Blank	Total/NA	Water	SM 4500 P E	
LCS 480-726788/4	Lab Control Sample	Total/NA	Water	SM 4500 P E	

Analysis Batch: 727052

Lab Sample ID 480-223804-1	Client Sample ID BCC BSA SUMP-INFLUENT	Prep Type Total/NA	Matrix Water	Method SM 5210B	Prep Batch
USB 480-727052/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-727052/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 727121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	420.4	
MB 480-727121/46	Method Blank	Total/NA	Water	420.4	
LCS 480-727121/47	Lab Control Sample	Total/NA	Water	420.4	
480-223804-3 MS	BCC BSA SUMP-EFFLUENT	Total/NA	Water	420.4	

Analysis Batch: 727147

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	420.4	
MB 480-727147/8	Method Blank	Total/NA	Water	420.4	
LCS 480-727147/9	Lab Control Sample	Total/NA	Water	420.4	
480-223804-1 DU	BCC BSA SUMP-INFLUENT	Total/NA	Water	420.4	

Analysis Batch: 727250

Lab Camula ID	Olient Commis ID	Due a Trus	Madula	Madhad	Duan Datah
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-3	BCC BSA SUMP-EFFLUENT	Total/NA	Water	SM 4500 CN G	

Analysis Batch: 727251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223804-1	BCC BSA SUMP-INFLUENT	Total/NA	Water	SM 4500 CN G	

Job ID: 480-223804-1

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Client Sample ID: BCC BSA SUMP-INFLUENT

Date Collected: 09/27/24 12:05 Date Received: 09/28/24 16:46 Lab Sample ID: 480-223804-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		40	726771	AXK	EET BUF	10/01/24 20:14
Total/NA	Prep	625			726825	JMP	EET BUF	10/02/24 09:12
Total/NA	Analysis	625.1		5	726979	AF	EET BUF	10/03/24 17:28
Total/NA	Prep	3510C			726627	LSC	EET BUF	09/30/24 13:14
Total/NA	Analysis	608.3		1	726696	DSC	EET BUF	10/01/24 12:46
Total/NA	Prep	200.7			726527	ET	EET BUF	09/30/24 08:02
Total/NA	Analysis	200.7 Rev 4.4		1	726688	BMB	EET BUF	09/30/24 18:29
Total/NA	Prep	245.1			726564	ESB	EET BUF	09/30/24 10:04
Total/NA	Analysis	245.1		1	726644	ESB	EET BUF	09/30/24 13:58
Total/NA	Analysis	420.4		1	727147	CLT	EET BUF	10/04/24 13:50
Total/NA	Analysis	SM 2540D		1	726588	AB	EET BUF	09/30/24 09:43
Total/NA	Analysis	SM 4500 CN G		1	727251	DLG	EET BUF	10/05/24 17:30
Total/NA	Analysis	SM 4500 H+ B		1	726543	KB	EET BUF	09/29/24 14:20
Total/NA	Analysis	SM 4500 P E		1	726788	GW	EET BUF	10/01/24 19:46
Total/NA	Analysis	SM 5210B		1	726525	CG	EET BUF	09/28/24 14:15
Total/NA	Analysis	SM 5210B		1	727052	KO	EET BUF	10/03/24 13:15

Client Sample ID: TRIP BLANK

Date Collected: 09/27/24 00:00

Date Received: 09/28/24 16:46

Lab Sample ID: 480-223804-2

Lab Sample ID: 480-223804-3

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624 1			726617	AXK	FET BUE	09/30/24 15:09

Client Sample ID: BCC BSA SUMP-EFFLUENT

Date Collected: 09/27/24 12:00

Date Received: 09/28/24 16:46

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	726617	AXK	EET BUF	09/30/24 15:33
Total/NA	Prep	625			726825	JMP	EET BUF	10/02/24 09:12
Total/NA	Analysis	625.1		1	726979	AF	EET BUF	10/03/24 17:55
Total/NA	Prep	3510C			726627	LSC	EET BUF	09/30/24 13:14
Total/NA	Analysis	608.3		1	726696	DSC	EET BUF	10/01/24 13:04
Total/NA	Prep	200.7			726527	ET	EET BUF	09/30/24 08:02
Total/NA	Analysis	200.7 Rev 4.4		1	726688	BMB	EET BUF	09/30/24 18:30
Total/NA	Prep	245.1			726564	ESB	EET BUF	09/30/24 10:04
Total/NA	Analysis	245.1		1	726644	ESB	EET BUF	09/30/24 13:59
Total/NA	Analysis	420.4		1	727121	CLT	EET BUF	10/04/24 11:13
Total/NA	Analysis	SM 2540D		1	726588	AB	EET BUF	09/30/24 09:43
Total/NA	Analysis	SM 4500 CN G		1	727250	DLG	EET BUF	10/04/24 17:03
Total/NA	Analysis	SM 4500 H+ B		1	726543	KB	EET BUF	09/29/24 14:22
Total/NA	Analysis	SM 4500 P E		1	726788	GW	EET BUF	10/01/24 19:46

Eurofins Buffalo

Page 33 of 40

10/9/2024

Lab Chronicle

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Lab Sample ID: 480-223804-3

Matrix: Water

Job ID: 480-223804-1

Client Sample ID: BCC BSA SUMP-EFFLUENT Date Collected: 09/27/24 12:00

Date Received: 09/28/24 16:46

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	SM 5210B		1	726525	CG	EET BUF	09/28/24 14:15

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date	
New York	NELAP	10026	03-31-25	

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte	
245.1	245.1	Water	Mercury	
624.1		Water	1,2-Dichloroethene, Total	
625.1	625	Water	1,2-Dichlorobenzene	
625.1	625	Water	1,3-Dichlorobenzene	
625.1	625	Water	1,4-Dichlorobenzene	
SM 4500 CN G		Water	Cyanide, Amenable	
SM 4500 H+ B		Water	рН	
SM 4500 H+ B		Water	Temperature	

Method Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET BUF
625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET BUF
608.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET BUF
200.7 Rev 4.4	Metals (ICP)	EPA	EET BUF
245.1	Mercury (CVAA)	EPA	EET BUF
420.4	Phenolics, Total Recoverable	EPA	EET BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	EET BUF
SM 4500 CN G	Cyanide, Amenable	SM	EET BUF
SM 4500 H+ B	pH	SM	EET BUF
SM 4500 P E	Phosphorus	SM	EET BUF
SM 5210B	BOD, 5-Day	SM	EET BUF
200.7	Preparation, Total Metals	EPA	EET BUF
245.1	Preparation, Mercury	EPA	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
625	Liquid-Liquid Extraction	EPA	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-223804-1	BCC BSA SUMP-INFLUENT	Water	09/27/24 12:05	09/28/24 16:46
480-223804-2	TRIP BLANK	Water	09/27/24 00:00	09/28/24 16:46
480-223804-3	BCC BSA SUMP-EFFLUENT	Water	09/27/24 12:00	09/28/24 16:46

Quantitation Limit Exceptions Summary

Client: Ontario Specialty Contracting, Inc.

Project/Site: Quarterly BSA SUMP

Job ID: 480-223804-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
625.1	2,4-Dinitrotoluene	Water	Total/NA	ug/L	5.0	10
625.1	4-Nitrophenol	Water	Total/NA	ug/L	10	15
625.1	Hexachlorocyclopentadiene	Water	Total/NA	ug/L	5.0	10

3

4

7

0

10

12

4 4

15

16

🔅 eurofins

Chain of Custody Record

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

EUROTINS BUTTAIO

10 Hazelwood Drive

(C.# C) Special Instructions/Note: 480-5∑3804 Chain of Custody (---100) Preservation Codes: S - H2SO4 D - HNO3 N - None B - NaOH COC No: 480-198758-6057.1 9/27/23 (6.4 Page: Page 1 of 1 Sample Disposal (A fee may be assessed if samples are retained to Archive F N Total Number of containers Date/Time Date/Time Date/Time Method of Shipmen Carrier Tracking No(s) Disposal By Lab Hd - +H 009#WS State of Origin **Analysis Requested** SM4500CN_G_Calc - Cyanide, Amenable Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: 625 - Priority Pollutant List - SVOA - 6 John. Schove@et.eurofinsus.com 24 - AOV - 1si Jinstullog Vilorid - Imd_bS Phenolics, Total Recoverable Received by: Received by Received by 1.845,7.002 Lab PM: Schove, John R E-Mail: 500_P_E - Phosphorus (ON SO SO) (USWISH MINOTIES Time Field Filtered Sample (Yes or No) Later Preservation Code: Water Matrix Water Company ompany Company Radiological (C=comp, G=grab) Sample 681 Type S J PERE ZAFFRAM TAT Requested (days): Phone (6-55-3-51 Sample 200 Doc Time Date Unknown ENS Due Date Requested: Compliance Project: TOLK WALTERPINIENTUMENS.COM 4/21/24 Sample Date Project #:
OSC- Former Buffalo Color Sites/ Event Desc: Buffalo Color - Qu48003159
Site: Date/Time PO #: 66986 Poison B INPENIOR BSA SUMP- EFFLUENT Skin Irritant TOOK WAYGEOF Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. BCC BSA SUMP - TAFFUEM Ontario Specialty Contracting, Inc. Possible Hazard Identification Empty Kit Relinquished by Custody Seals Intact: △ Yes △ No kcolligan@oscinc.com Client Information Sample Identification Client Contact: Kirsten Colligan Non-Hazard elinquished by State, Zip: NY, 14210 140 Lee St. Trip Blank New York city: Buffalo Phone:

Page 39 of 40

10/9/2024

Login Sample Receipt Checklist

Client: Ontario Specialty Contracting, Inc.

Job Number: 480-223804-1

Login Number: 223804 List Source: Eurofins Buffalo

List Number: 1

Creator: Wallace, Cameron

Creator. Wallace, Cameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

4

6

1 1

12

14

II.

16

ATTACHMENT F – GAC REACTIVIATION BILL OF LADINGS

CARBON ACTIVATED CORPORATION

Invoice

CORPORATE OFFICE 2250 SOUTH CENTRAL AVENUE 3774 HOOVER ROAD COMPTON, CA 90220

TEL (310) 885-4555 FAX (310) 885-4558 E-mail: info@activatedcarbon.com EAST COAST BRANCH BLASDELL, NY 14219

TEL: (716) 677-6661 FAX: (716) 677-6663 E-mail:carbonactivated@earthlink.net CANADA DIVISION

E-mail: nyinfo@activatedcarbon.com

P.O. BOX 193 JARVIS STREET FORT ERIE, ONTARIO, L2A 5M9 CANADA TEL: (905) 993-2646 FAX: (905) 994-8341

DATE INVOICE # 4/23/2024 21161

BILL TO:

ONTARIO SPECIALITY CONTRACTING INC. 140 LEE STREET BUFFALO, NY 14210

SHIP TO:

FORMER BUFFALO COLOR SITE 1037 SOUTH PARK AVE **BUFFALO** NY

P.O. NUMBER	TERMS	REP	SHIP	VIA	F,O,B.	P	ROJECT
66869	Net 30	JOHN	4/22/2024	CAC	INC		
QUANTITY	ITEM CODE		DESCRIPTI	ON	PRIC	E EACH	AMOUNT
10	134-CF	NATURAL S	STONE 1/8 x	1/16 IN CU	J.FT. BAGS	22.25	222.50T
4	143	COURSE GA	ARNET FILT	ER MEDIA	1	45.00	180.00T
4	143	FINE GARN	ET FILTER	MEDIA		46.50	186.00T
7	137-CF	SAND 0.45M	IM -0.55MM	I IN CU.FT	BAGS	24.50	171.50T
7	139-CF	0.85MM -0.9	5MM ANTH	HRACITE		32.75	229.25T
1	321	REMOVAL A			OF MIXED	2,750.00	2,750.00
	Onality Endorsed Company		NS		Wa	ter ality	
		World's Fine	st Quality - R	leady to Shi	p NOW!		

ANY UNPAID BALANCE AFTER 30 DAYS WILL INCUR A SERVICE CHARGE 2% PER MONTH. ANY COLLECTION COSTS INCLUDING ATTORNEY'S FEES WILL BE ADDED TO INVOICE.

We Accept MASTERCARD . VISA . AMERICAN EXPRESS AND DISCOVER

TOTAL

\$3,739.25

FM 7.5.1-11, Rev. A July 327.18

Ontario Specialty Contracting, Inc. 140 Lee Street, Buffalo, New York 14210 (716) 856-3333 FAX (716) 842-1630

1/000 1/0011	Purchase Order N		C7.1	- W5112
	Purchase Order [مدي	
any:	huoted			
ess:				
Name: Ruffalia C	سعمالها			
To Location:				
	QUAN	TITY	UNIT	TOTAL PRICE
DESCRIPTION				
auto madia	Alder -			
charee out				
9				
		+		
		-+		
-				
				A
			TAX	
			TOTAL	
			TOTAL	
		-	Unit	Total Price
BLANKET P.O.? YES NO		Quantity	Price	11000
NOT TO EXCEED AMOUNT		-	-	
If this purchase includes labor an insurance certifica	ste le required.	Requested	by (C)	
MATERIAL SHOULD BE FURNISHED IN STRICT ACCORDI		Approved		
MATERIAL SHOULD BE FURNISHED IN 31 MORE CONTRACT SPECIFICATION NO. LATER THAN DAMAGES OF \$ ONLY WILL APPLY FOR ALL	LIQUIDATED LIATE DELIVERIES. YELLOW - ACCTS PAY			PINK · LEAVI
WHITE - VENDOR	AETTON MODIE	ude E		

Carbon Activated Corporation

Activated Carbon and Related Services

New York Office 3774 Hoover Road Blasdell, NY 14219 Tel: (716) 821 7830 Fax: (716) 821 0790

Email: nyinfo@activatedcarbon.com

C	uote# 023-071JA		
	Ship To Address	CUSTOMER	OSC INC
F	ormer Buffalo Color Site	Freight	Prepay/Add
1037 South Park Ave		Contact	Kirsten Colligan
Buffalo NY		Ship From	Buffalo NY
		Ship Via	CAC
Tel:	7165746936	Date	3/13/2024
Fax:		Valid For	90 Days
Email:	kcolligan@oscinc.com	Terms	Net 30 Days

Qty.(cu.ft)	Unit Price	Description	Line Item Total
10	\$22.25	1/8x1/16 Gravel	\$222.50
4	\$45.00	Course Garnet Filter Media	\$180.00
4	\$46.50	Fine Garnet Filter Media	\$186.00
7	\$24.50	.4555mm Filter Sand	\$171.50
7	\$32.75	.8595mm Anthracite	\$229.25
1	\$2,750.00	Removal and Replacement of Mixed Media from 1 Filter	\$2,750.00
		Spent Media to be left on site for disposal by others.	
		OSC to Provide of Forklift	
		Total Price	\$3,739

3774 Hoover Rd. Blasdell, NY 14219

Filter Exchange

37/4 HOOVER NO. 21	Filter Exchange	Miscellaneous			
	Carbon Repair	Miscellana			
Carbon Change	-	Date: 04/19/2024			
L Ordor #1	Start Date: 04/19/2024 End	pate. Uni			
ork Order #:		Site Contact:			
	Name of Plant and address:	Site Contact: Taylor Kunzelman 716-480-3282			
Plant & Vessel	Buffalo Color Water Treatment				
Information	1037 South Park Ave	Equipment:			
	Buffalo NY 14210				
	Location of Vessel:				
	Type of Existing Carbon:	temoval Method:			
	Filter Backwashed: Yes.	(Citio Co. Company)			
	Volume of Carbon Removed:				
Existing Conditions	Conditions of Bed:				
EVIZELIA 0.1	Level to top of Carbon before Remo	val:			
	Level After removal of GAC:				
	Condition of Filter:				
	Dimensions of Filter: Width:	Length:			
	Dimensions of Fitter	1			
	Type of Carbon used:				
	Lot Number:				
	Volume of Carbon:				
	Level Of Carbon after installation:	Placement Method:			
New Carbon Installed	Filter Backwashed: Yes: No:	Placement incom			
	Comments:				
	Commencs				
×					
		10 10 10 10 10 10 10 10 10 10 10 10 10 1			
	72005	1 12 22 22 22 22 22 22 22 22 22 22 22 22			
	5100	15/			
	Joages				
Repair Work:	5 pags				
	10 hags				
	(57)	Da			
		Signature			
	Print Name	Tuller Junger			
Plant Supervisor/Design		U U			
Contractor's Representa	tive 11 6 1101 and	6) ////			
Contractor's Representa	11 10 11 11 1111111				

BILL OF LADING

SHIPPER

Carbon Enterprises Incorporated 28205 Scippo Creek Road Circleville, OH, 43113, USA Erick Madison (800)344-5770 erick@ceifiltration.com

CONSIGNEE

Carbon Activated 3774 Hoover Road Buffalo, NY, 14219, USA John Allen (716)983-0576

Pickup date Carrier 03/27/2024 Saia LTL Freight Bill Of Lading# Carrier PRO#: 30398 F 770655306905

PO#

OSC - Buffalo Color

QUOTE #: 289583472

Freight Charge Terms

✓ Prepaid

Collect

Third Party

PICKUF	RE	MARK	3	00 E	V			-	Dim	ensi	ons	Stack- able
Ready fr Handling	om 2	Packa	ge	1 1	O-mandity Description	Weight*	Freight Class	NMFC#	L	w	Н	able
Туре	QT	Type	QT	HIVI		1,075	50	90160				
	\vdash	_	20	\vdash	20 (50lb) Bags 1/8 x 1/16 Gravel (10cuft)	550	50	90160				
	1 1		11		11 (50lb) Bags 8 x 12 Garnet (4cuft)	500	50	90220	48	48	48	1
_11_4	14		10		10 (50lb) Bags 30 x 40 Garnet (4cuft)	700	50	90220				1
allet	1.		14	1	14 (50lb) Bags 0.45 - 0.55mm Sand (7cuft)	350	50	49977			_	
		_	7		7cuft Bags .8595mm Anthracite Shipment Total Weight		Density	49.6 PCF	Cut	e 64	4	FT3
otal H/L	11	Total Pk	g 62		Do not multiply weight by number of handling	g units.						

^{*} Weights are total for number of handling units stated. Do not multiply weight by number of handling units.

THIS SHIPMENT HAS A PREASSIGNED PRO# and BARCODE DO NOT APPLY PRO STICKER

		= 1-1+Counted:	Carrier signature/date
1 - Numericate	Trailer Loaded:	Freight Counted:	I and address receipt of packages and required
Shipper signature/date §172.204 This is to certify that the above-named	By Shipper	By Shipper	placards / Carriers certifies entergone / or carrier has the
materials are properly classified, described packaged, marked and labeled, and are in proper packaged, marked and labeled, and are in proper packaged, marked and labeled, and are in proper packaged,	By Driver	By Driver / Pallets said to contain	DOT emergency response guidebook or equivalent documentation in the vechicle.
applicable regulations of the Department of Transportation. Signature Erick Madison	LUI L Countr	By Driver / Pieces	Signature
Signature 27 / 24	H/O Count		Date
Date JI LI I L		40 U.S.C. 14706	3(c)(1)(A) and (B)

NOTE: Liability Limitation for loss or damage in this shipment may be applicable. See 49 U.S.C. 14706(c)(1)(A) and (B)

ATTACHMENT G – PHOTOLOG

Client Name: PRR Reporting Period – 2023-2024 Project: Buffalo Color SBD Corporation Site Area D Photo No. 1 Direction Photo Taken: Looking northwest Description: Area D Cover System Client Name: PRR Reporting Period – 2023-2024 Project: Buffalo Color SBD Corporation Site Area D Photo No. 2 Direction Photo Taken: Looking south Description: Area D Cover System and river view.

		15
Client Name: SBD	PRR Reporting Period – 2023-2024	Project: Buffalo Color
300		Corporation Site
		Area D
Photo No. 3		
Direction Photo		
Taken:		HERHELLE
Looking northeast	100 PMT 100 P	
Description:		
Boson priori.		
Area D shoreline		
Client Name	DDD Departing Period 2022 2024	Drainat
Client Name:	PRR Reporting Period – 2023-2024	Project:
Client Name: SBD	PRR Reporting Period – 2023-2024	Buffalo Color
	PRR Reporting Period – 2023-2024	Project: Buffalo Color Corporation Site Area D
SBD Photo No. 4	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
SBD Photo No. 4	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken:	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken:	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken: Looking southwest	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken:	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken: Looking southwest	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken: Looking southwest Description:	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken: Looking southwest Description:	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken: Looking southwest Description:	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken: Looking southwest Description:	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site
Photo No. 4 Direction Photo Taken: Looking southwest Description:	PRR Reporting Period – 2023-2024	Buffalo Color Corporation Site

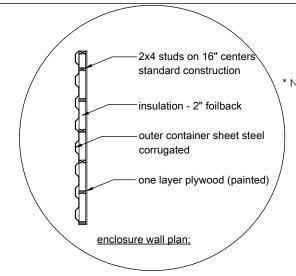
Client Name: SBD	PRR Reporting Period – 2023-2024	Project: Buffalo Color Corporation Site Area D
Photo No. 5 Direction Photo Taken: Looking south		
Description: Area D shoreline		
Client Name: SBD	PRR Reporting Period – 2023-2024	Project: Buffalo Color Corporation Site Area D
Photo No. 6 Direction Photo Taken:		
Description: A groundhog burrow that was filled with gravel.		

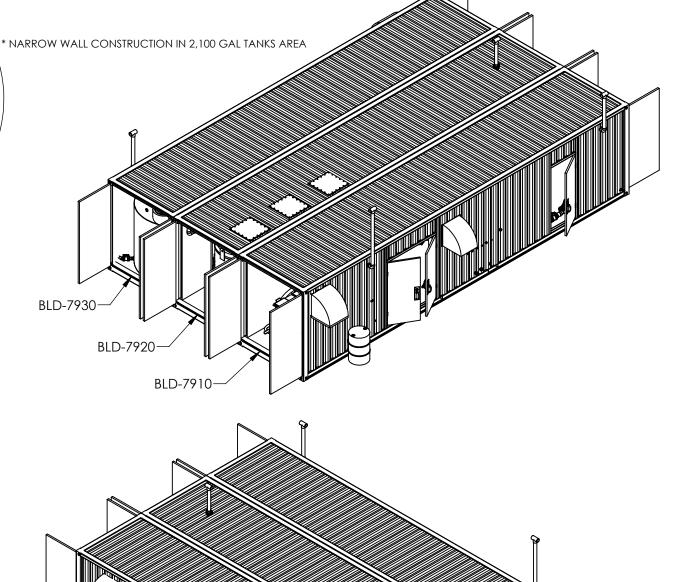
ATTACHMENT H – UPGRADED GWTF LAYOUT

Civil Construction Notes:

- Install grating between building fans and outside louvers.
- Foil back insulation on walls and ceiling.
- Door color to be: White
- Roof & Barn Doors to be painted: White
- Exterior Walls to be painted: White
- Interior Floor to be: Marine Grade Plywood
- Interior floor to be painted: Gator Guard Applied
- Exterior floor to be insulated with 3" of Spray Foam.

Mechanical Notes:

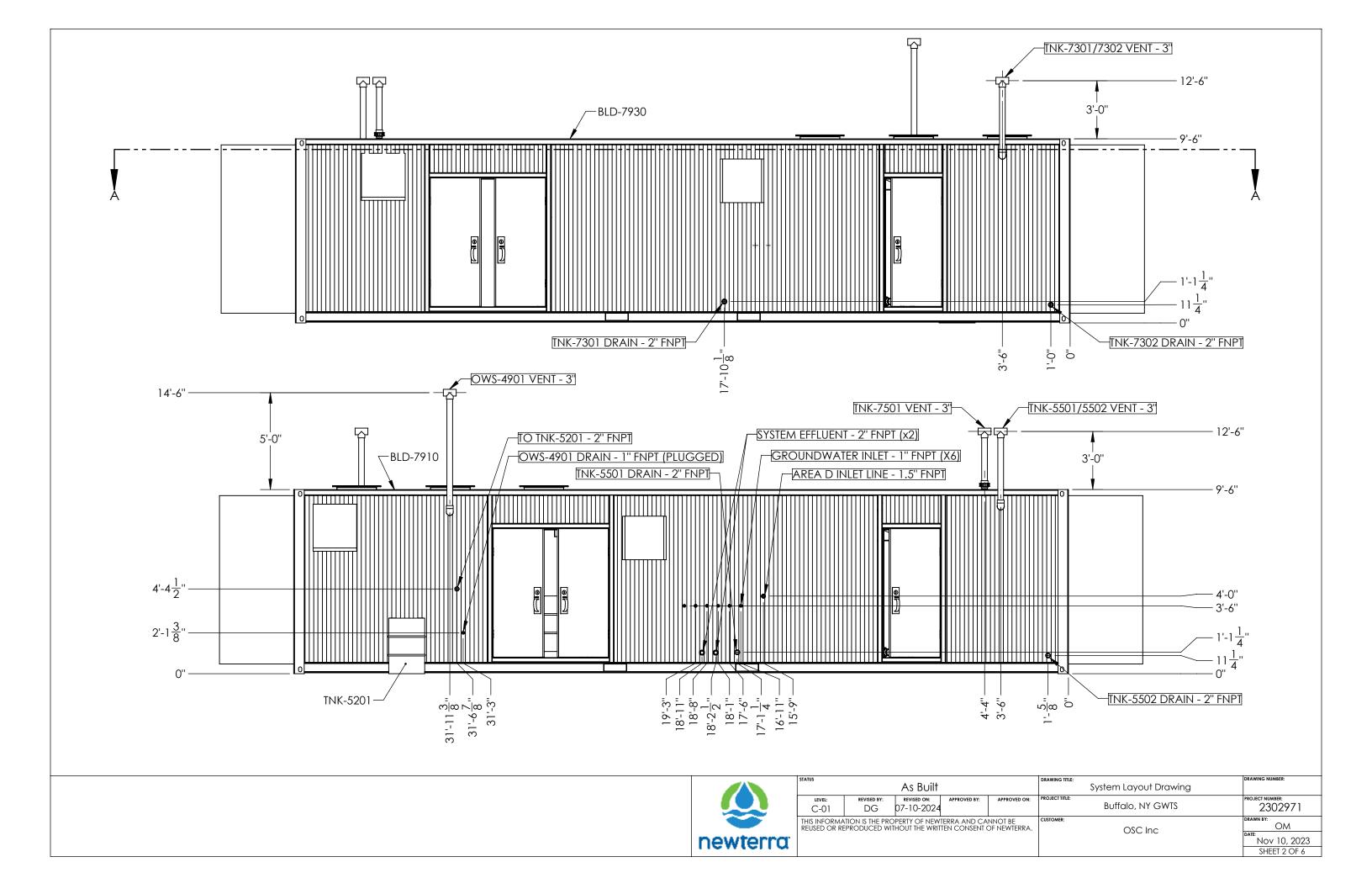

- Locate cooling thermostat in the warmest location at ceiling level.
- Plug and seal (with washers) any holes in the floor to contain water spills.
- Maximum width for shipping is 102". This includes all connections that protrude through the sides of the enclosure.

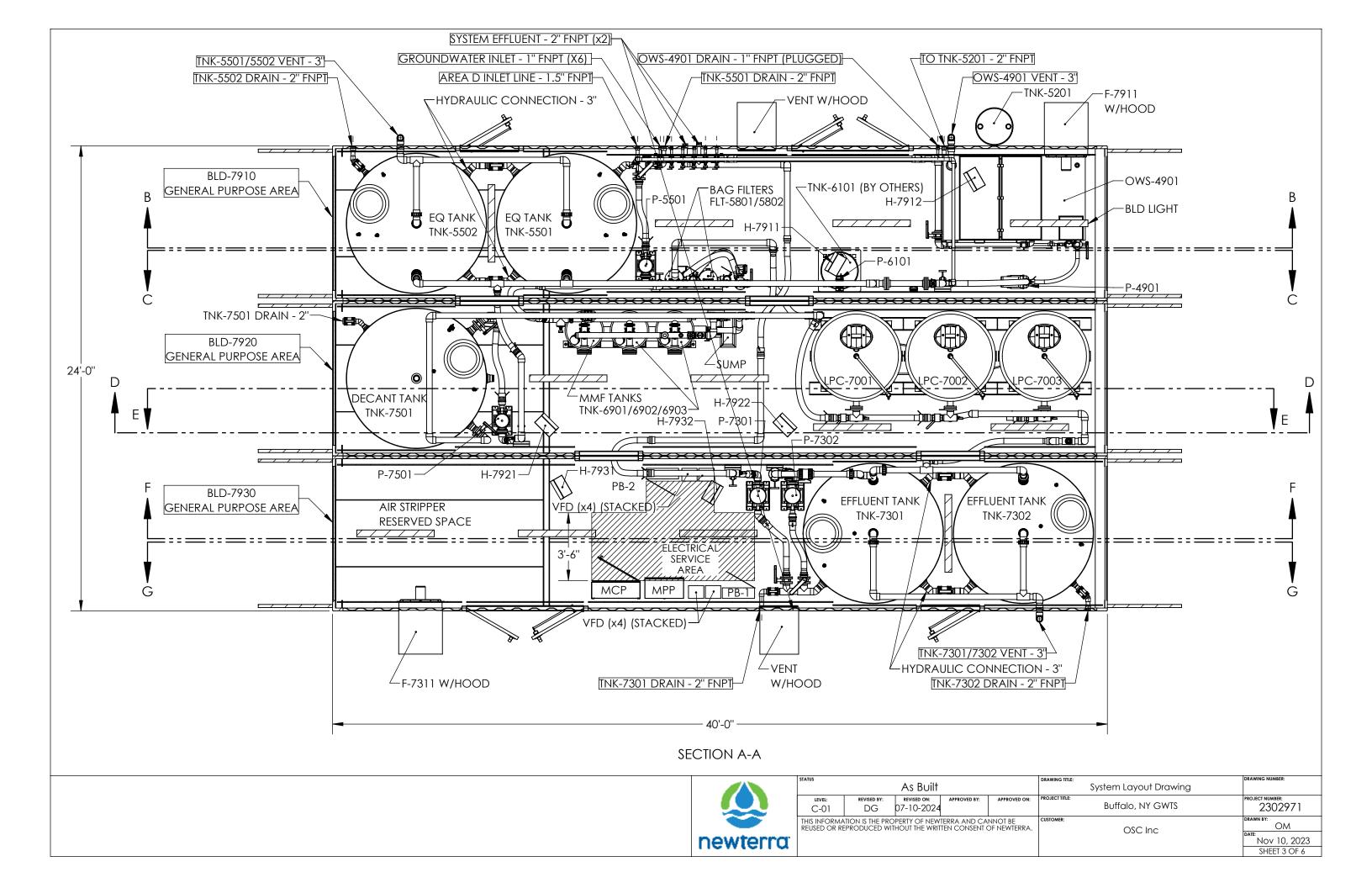

Commissioning Notes:

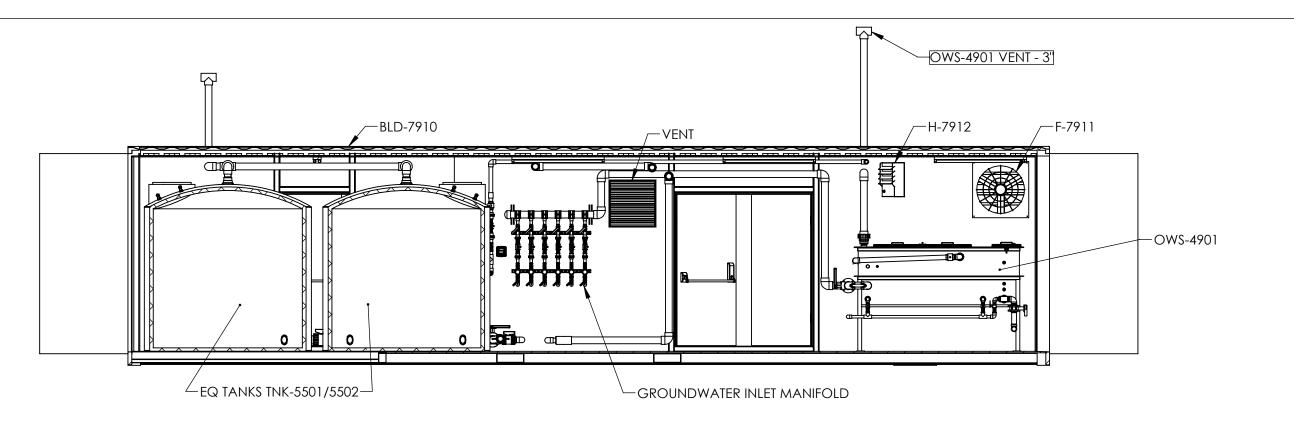
- Fan and louver hoods need to be installed on site. System cannot ship with hoods attached.
- Some flow meters meters will be shipped with the unions in the process piping loosened to ensure meters are not damaged during shipment.
- Buildings need to be shimmed on site with ½"t x 3"w steel flat bar to allow doors to open freely. Please have shimming material ready during building installation.
- newterra recommends pad be at least 12" larger than enclosure in all directions. Local codes may require alternate dimensions.

newterra Standard System Labels:

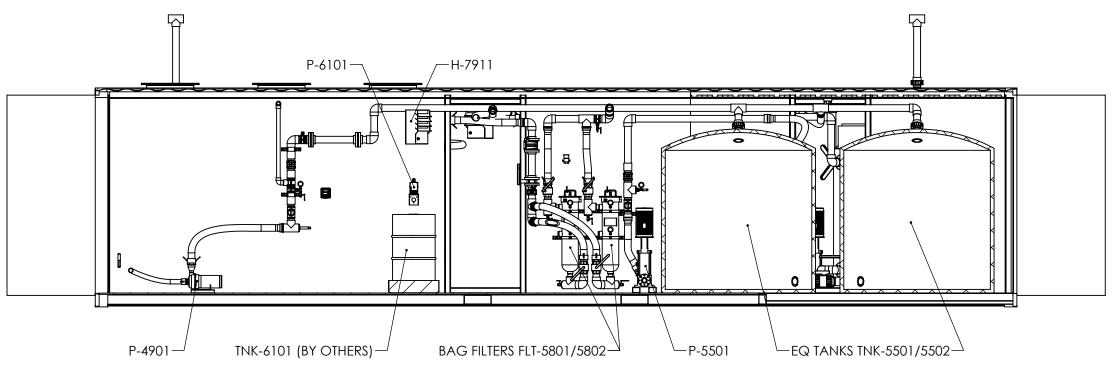
- Flow direction labels
- Air line labels
- Water line labels
- Air/water line labels
- Hot surface label (lines >= 140 degf)
- Hearing protection labels
- Warning label: This machine is automatically controlled
- Arc flash warning labe

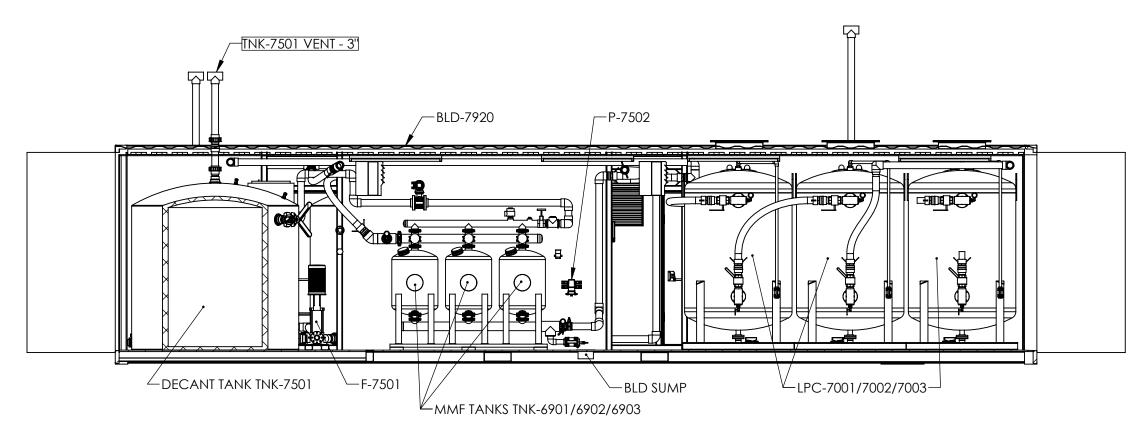


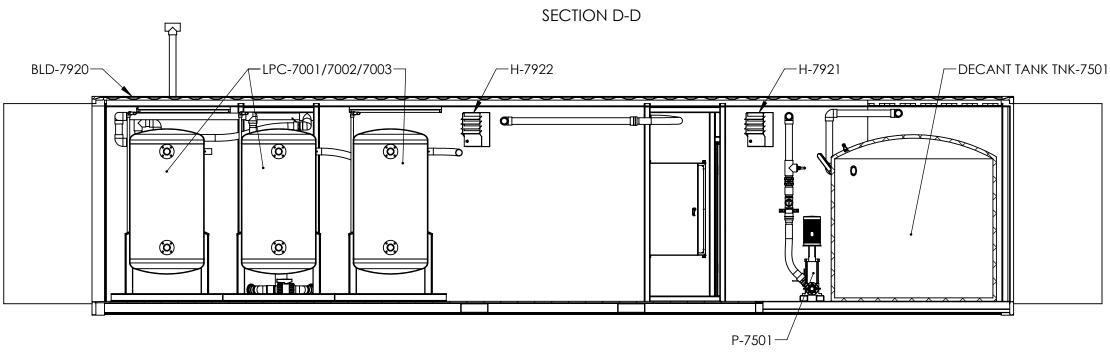

	,									
	STATUS					DRAWING TITLE:		DRAWING NUMBER:		
			As Built			System Layout Drawing				
	LEVEL:	REVISED BY:	REVISED ON:	APPROVED BY:	APPROVED ON:	PROJECT TITLE:		PROJECT NUMBER:		
	C-01	DG	07-10-2024				Buffalo, NY GWTS	2302971		
		TION IS THE PRO				CUSTOMER:	OSC Inc	DRAWN BY:		
,							OJC IIIC	Nov 10, 2023		
								SHEET 1 OF 6		


-BLD-7910

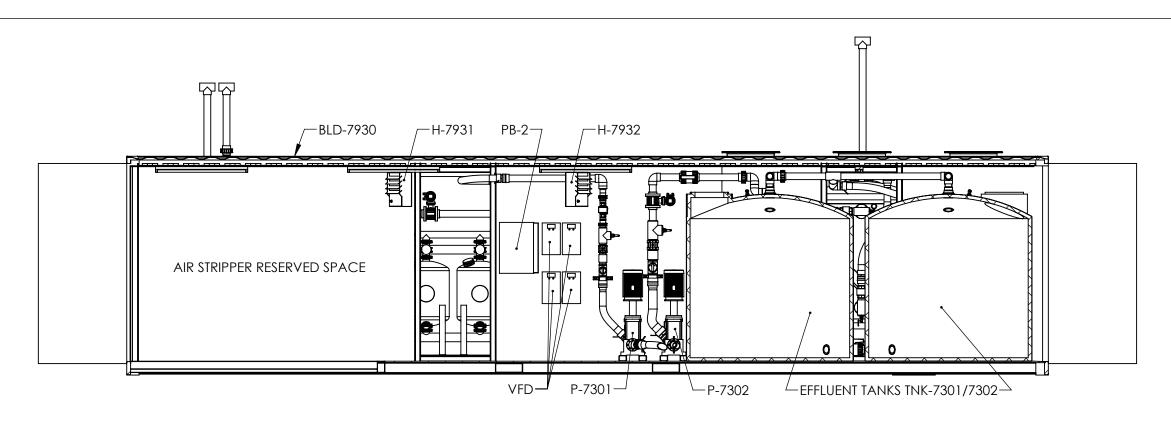
BLD-7920

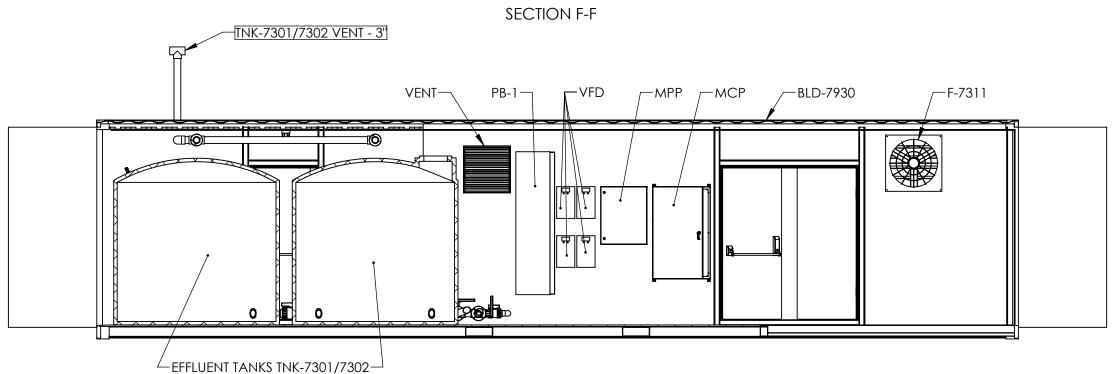

BLD-7930


SECTION B-B



STATUS					DRAWING TITLE:		DRAWIN	G NUMBER:
		As Built				System Layout Drawing		
LEVEL: C-01	REVISED BY:	revised on: 07-10-2024	APPROVED BY:	APPROVED ON:	PROJECT TITLE:	Buffalo, NY GWTS		t number: 2302971
	TION IS THE PRO				CUSTOMER: OSC Inc	DRAWN	by: OM	
							DATE:	lov 10, 2023
							9	SHEFT 4 OF 6





SECTION E-E (ROTATED 180°)

STATUS		As Built			DRAWING TITLE:	System Layout Drawing	DRAWING NUMBER:
C-01	REVISED BY:	revised on: 07-10-2024	APPROVED BY:	APPROVED ON:	PROJECT TITLE:	Buffalo, NY GWTS	PROJECT NUMBER: 2302971
THIS INFORMATION IS THE PROPERTY OF NEWTERRA AND CANNOT BE REUSED OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF NEWTERRA.						OSC Inc	DRAWN BY:
							Nov 10, 2023
							SHEET 5 OF 6

SECTION G-G (ROTATED 180°)

	STATUS					DRAWING TITLE:		1	DRAWING NUMBER:
	As Built						System Layout Drawing		
	LEVEL:	REVISED BY:	REVISED ON:	APPROVED BY:	APPROVED ON:	PROJECT TITLE:		1	PROJECT NUMBER:
	C-01	DG	07-10-2024				Buffalo, NY GWTS		2302971
		TION IS THE PRO				CUSTOMER:	OSC Inc	ı	ORAWN BY:
7							OJC IIIC	ī	Nov 10, 2023
•								Г	CLIEFT / OF /

ATTACHMENT I – IMPORT REQUESTS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e) and 6NYCRR Part 360.13. Use of this form is not a substitute for reading the applicable regulations and Technical Guidance document.

SECTION 1 – SITE BACKGROUND						
The allowable site use is: Commercial or Industrial Use						
Have Ecological Resources been identified? no						
Is this soil originating from the site? no						
How many cubic yards of soil will be imported/reused? 200-300						
If greater than 1000 cubic yards will be imported, enter volume to be imported:						
SECTION 2 – MATERIAL OTHER THAN SOIL						
Is the material to be imported gravel, rock or stone? yes						
Does it contain less than 10%, by weight, material that passes a size 100 sieve? yes						
Is this virgin material from a permitted mine or quarry? yes						
Is this material recycled concrete or brick from a DEC registered processing facility? no						
SECTION 3 - SAMPLING						
Provide a brief description of the number and type of samples collected in the space below:						
Coarse aggregate utilized as backfill for woodchug holes within cover system on Area D. Material originally imported and approved for use by NYSDEC as bedding stone for Area A GWTF upgrades.						
No sampling required.						
Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.						
If the material meets requirements of DER-10 section 5.4(e)5 (other material), no chemical testing needed.						

SECTION 3 CONT'D - SAMPLING						
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):						
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.						
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.						
SECTION 4 – SOURCE OF FILL						
Name of person providing fill and relationship to the source:						
OSC-Vendor						
Location where fill was obtained:						
HOLCIM						
Identification of any state or local approvals as a fill source:						
NYSDOT Section 703-02 Coarse Aggregate						
If no approvals are available, provide a brief history of the use of the property that is the fill source:						
Provide a list of supporting documentation included with this request:						
Gradation attached						

The information provided on this form is accurate and complete.

Todd Waldrop Digitally signed by Todd Waldrop DN: cn=Todd Waldrop, c=US, ou=Inventum Engineering, email=todd.waldrop @inventumeng.com Date: 2024.08.05 15:54:27 -0400'

08/05/2024

Date

Signature

Todd Waldrop

Print Name

Inventum Engineering, P.C.

Firm

David Youngblood 400 Hinman Rd. Lockport, NY 14094 571-752-1111 (cell) david.youngblood@holci

1/11/24

Att:

Re:

Email:

To whom it may concern:

This is to certify that the material being supplied to the above project conforms to the outlined NYSDOT requirements for Section 703-02 Coarse Aggregate, ASTM C136 and C117 Below is a gradation for NYSDOT 1A stone

Location: Lockport

Source No. 5-5R

Material Type: 1A Stone

Test No. 21AR087

Sieve Size	Weight	% Retained	% Passing	Specification
1/2"	0.0	0.0	100.0	100
3/8"	0.0	0.0	100.0	
1/4"	804.2	8.9	91.1	90-100
#4	3776.8	41.8	49.3	
1/8"	3316.0	36.7	12.6	0-15
#8	451.8	5.0	7.6	
#16	406.6	4.5	3.1	
pan	280.1	3.1		
Total	9035.4		- 14	

Sincerely,

David Youngblood

Quality Control Manager

Holcim Aggregates and Asphalt