

The electronic version of this file/report should have the file name:

Type of document Site Number . Year-Month . File Year-Year or Report name . pdf

_____. File_____.pdf

example: letter Year-Month File Year-Year . pdf

Report Hul-915014 1986 -01-01. Phase-1-Investigation pdf

example: report . Site Number . Year-Month . Report Name . pdf

Project Site numbers will be proceeded by the following:

Municipal Brownfields - B Superfund - HW Spills - SP ERP - E VCP - V BCP - C

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES

PHASE I INVESTIGATION

Chemical Leaman

ۍ ک

Site No. 915014

City of Tonawanda

Erie County

Date: January 1986

Prepared for: New York State Department of Environmental Conservation

50 Wolf Road, Albany, New York 12233 Henry G. Williams, Commissioner

Division of Solid and Hazardous Waste Norman H. Nosenchuck, P.E., Director

> By: ENGINEERING-SCIENCE In Association With DAMES & MOORE

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK PHASE I INVESTIGATIONS

CHEMICAL LEAMAN TANK LINES NYS SITE NUMBER 915014 CITY OF TONAWANDA ERIE COUNTY NEW YORK STATE

Prepared For

DIVISION OF SOLID AND HAZARDOUS WASTE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, NEW YORK 12233-0001

Prepared By

. .

ENGINEERING-SCIENCE 290 ELWOOD DAVIS ROAD LIVERPOOL, NEW YORK 13088

In Association With

DAMES & MOORE 2996 BELGIUM ROAD BALDWINSVILLE, NEW YORK 13027

DATE OF SUBMITTAL: JANUARY, 1986

CHEMICAL LEAMAN TANK LINES

TABLE OF CONTENTS

			Page
SECTION	I	EXECUTIVE SUMMARY	I-1
		Site Location Map Site Plan	I-5 I-6
SECTION	II	PURPOSE	ĪI-1
SECTION	III	SCOPE OF WORK	III-1
SECTION	IV .	SITE ASSESSMENT	IV-1
		Site History	IV-1
		Site Topography	IV-3
		Site Hydrology	IV-4
		Site Contamination	IV-6
	-	Sampling Locations	IV-10
SECTION	V	PRELIMINARY APPLICATION OF HAZARD RANKING SYSTEM	V-1
			•
		Narrative Summary	
		Site Location Map	
		HRS Worksheets	
		HRS Documentation Records and References	
		Potential Hazardous Waste Site -	
		Preliminary Assessment	
		Potential Hazardous Waste Site - Site Inspection Report	
SECTION	VI	ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS	VI-1
		Assessment of Data Adequacy	VI-1
		Phase II Work Plan	VI-1
		Phase II Cost Estimate	VI-2
APPENDI	(A	REFERENCES	
		Sources Contacted Documentation	
APPENDIX	КВ	PROPOSED UPDATED NYS REGISTRY	

1

L

• •

Ċ

Ś ÷.

١

.

SECTION I

EXECUTIVE SUMMARY CHEMICAL LEAMAN TANK LINES

This report, prepared for the New York State Department of Environmental Conservation (NYSDEC), presents the results of the Phase I investigation for the Chemical Leaman Tank Lines Site (NYS Site Number 915014, EPA Site Number D048380205) located in the City of Tonawanda, Erie County, New York (see Figure I-1).

SITE BACKGROUND

The Chemical Leaman Tank Lines terminal facility in Tonawanda, New York was purchased in 1959 and began operations in 1963 (see Figure I-2). Railroad companies, real estate companies and private parties owned the site prior to Chemical Leaman. The Chemical Leaman site, approximately one-acre in size, includes three surface impoundments at the terminal facility.

The Chemical Leaman Company is engaged in the transport of chemicals from supplier to customer. The company also performs chemical waste disposal services on a limited basis. Following the transport of chemical products or waste materials, the Chemical Leaman tankers return to the terminal facility for cleaning. After draining the remaining chemical materials, the tankers are washed. Prior to 1978, wash and rinse waters containing trace quantities of priority pollutants from the washing operations were discharged to a series (three) of wastewater treatment (settling and natural aeration) surface impoundments (Chemical Leaman, 1985). The lagoon effluent flowed by gravity to the City of Tonawanda Wastewater Treatment Plant via the sanitary sewer system. In

I-1

1978, due to the detection of trace quantities of priority pollutants in the lagoon effluent (RECRA Research, 1978), these waste disposal practices were discontinued and two underground storage tanks were installed to collect the contaminated wash and rinse waters. Also in 1978, the accumulated solids in the surface impoundments were excavated and transported off-site for disposal. These lagoon sludges were not analyzed prior to disposal. However, EP toxicity analysis of sludge samples collected from surface impoundment No. 1 after the impoundments were cleaned in 1978 did not detect contaminants in concentrations that would classify the solids as hazardous (Advanced Environmental Systems, 1981, and ARCO Corporation, 1982).

Groundwater samples were collected on four occasions from the monitoring wells upgradient and downgradient from the surface impoundments during the period 1981 to 1982, and analyzed for an expanded list of parameters. The concentration of phenols, iron, lead, and manganese were found to exceed water quality standards for Class GA waters in New York State. TOC concentrations were also detected at quantifiable levels (Chemical Leaman, 1981-1982). Also in 1981, the USGS detected phenols (38 ug/l) in groundwater samples collected from downgradient Well No. 3 (USGS, 1983).

ASSESSMENT

In an attempt to quantify the risk associated with this site, the Hazard Ranking Scoring system (HRS) was applied as currently being used by the NYSDEC to evaluate abandoned hazardous waste sites in New York State. This system takes into account the types of wastes at the site, receptors, and transport routes to apply a numerical ranking of the site. As stated in 40 CFR Subpart H Section 300.81, the HRS scoring system was developed to be used in evaluating the relative potential of uncontrolled hazardous substance facilities to cause health or safety problems or ecological or environmental damage. It is assumed by the EPA that a uniform application of the ranking system in each state will permit EPA to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment.

I-2

Under the HRS, three numerical scores are computed for each site, to express the relative risk or danger from the site, taking into account the population at risk, the potential for contamination of drinking water supplies, for direct human contact, and for destruction of sensitive ecological systems and other appropriate factors. The three scores are:

- o S_M reflects the potential for harm to humans or the environment from migration of a hazardous substance away from the facility by routes involving groundwater, surface water or air. It is a composite of separate scores for each of the three routes (S_{GW} = groundwater route score, S_{SW} = surface water route score, and S_h = air route score).
- S reflects the potential for harm from substances that can explode or cause fires.
- S reflects the potential for harm from direct contact with hazardous substances at the facility (i.e., no migration need be involved).

The preliminary HRS score was:

s _M	=	5.57	s _A	=	0
SGW	=	5.65	S _{FE}	=	0
S SW	=	7.80	s _{DC}	=	0

These scores reflect an observed release of contaminants in the groundwater, the potentially toxic nature of the wastes, and the low useage of groundwater and surface water in the area.

I-3

RECOMMENDATIONS

The following recommendations are made for the completion of Phase II:

- Groundwater monitoring system consisting of one new upgradient
 well and sampling of existing downgradient wells.
- o Surface water and sediment monitoring system consisting of one upgradient and two downgradient stations.
- o Sample analyses to include priority pollutants.
- o Air monitoring with an HNU meter.

The estimated man-hour requirements to complete Phase II are 516, while the estimated cost is \$37,624.

· .

.

e e l i a l si

\$

• •

SECTION II

PURPOSE

The purpose of the Phase I investigation at the Chemical Leaman Tank Lines site was to assess the hazard to the environment caused by the present condition of the site. This assessment is based on the Hazard Ranking System, which involves the compilation and rating of numerous geological, toxicological, environmental, chemical, and demographic factors and the calculation of an HRS score. Details of HRS implementation are included in Section V. During the initial portion of the investigation, available data and records, combined with information collected from a site inspection, were reviewed and evaluated. The investigation at this site focused on the groundwater contamination from the three unlined surface impoundments on-site. Based on this initial evaluation of the Chemical Leaman site, a Phase II Work Plan has been prepared for collecting any additional data needed to complete the HRS score. In addition, a cost estimate for the recommended Phase II work is provided.

II-1

SECTION III

2

`

. . .

SECTION III

SCOPE OF WORK

The scope of work for the New York State Inactive Site Investigation Program (Phase I) was to collect and review all available information necessary for the documentation and preparation of a Hazard Ranking System score and a Phase II work plan and cost estimate if required. The work activities performed included data collection and review, a site inspection, and interviews with knowledgeable individuals of past and present disposal activities at the site.

The sources contacted during this Phase I investigation included government agencies (federal, state and local), present site owners and operators, and any other individuals that may have knowledge of the site, as identified during the performance of the investigation. These sources are listed in Appendix A. The intent of the list is to identify all persons, departments, and/or agencies contacted during the third round of the Phase I investigations even though useful information may not have been collected from each source contacted.

SECTION IV

SECTION IV

SITE ASSESSMENT

SITE HISTORY

The Chemical Leaman Tank Lines terminal facility located in the City of Tonawanda, New York, was purchased in 1959 and operations began in about 1963. Prior to ownership by Chemical Leaman, the terminal site was undeveloped and previous owners included railroad companies, real estate companies and private parties. The Chemical Leaman site, approximately one-acre in size includes three surface impoundments at the terminal facility.

The Chemical Leaman Tank Lines Company is primarily engaged in the transport of chemicals from supplier to customer. The chemicals transported include hazardous materials and chemicals containing hazardous constituents. The company also performs chemical waste disposal services for off-specification chemical products which cannot be used or recycled. A list of the chemicals handled by the Chemical Leaman Tank Lines Company is provided in the Appendix.

The Chemical Leaman terminal facility is not a designated disposal site for hazardous wastes. However, following the delivery of chemical products, the tanker trucks return to the terminal facility for cleaning. The standard practice (past and present) is to drain the remaining chemical products from the tank trucks to storage drums for off-site disposal. Depending on the product transported, a number of cleaning methods are used, including hot or cold water flushing, cleaning with caustic solution, solvent cleaning, high temperature steam and hot water rinse. The caustic cleaning solution is normally used for tankers that

IV-1

had contained non-hazardous materials. The caustic solution is recycled for multiple cleanings and the rinse waters from this cleaning operation are discharged to the on-site treatment facilities (i.e., three wastewater holding lagoons). Tankers used to transport hazardous chemicals are cleaned using a water flush process followed by steam cleaning. The wastewater from this operation is discharged to either the treatment lagoons or holding tanks depending on the contaminants contained within the wastewater. Wastewaters containing priority pollutants are drummed for off-site disposal at a permitted TSD facility. A concrete holding tank located on-line to the surface impoundments is used for pH adjustment of corrosive wastewaters if needed. Treated effluent from the storage tanks are discharged directly to the city sewer system (Chemical Leaman, 1985).

From 1963 to 1978, three surface impoundments (lagoons) were operated on-site for the treatment (solids settling and natural aeration) of truck wash and rinse waters. Prior to 1978, wastewater containing trace quantities of priority pollutants were discharged to the impoundments. Following treatment, the wastewater was discharged to the City of Tonawanda Wastewater Treatment Plant via the sanitary sewer system. This disposal practice was discontinued in 1978 following negotiations between Chemical Leaman and the NYSDEC (ECDEP, 1979).

In 1978, two of the surface impoundments (Nos. 1 and 2) were drained ed and the settled solids (sludge) were excavated and removed off-site for disposal. Between 1977 and 1978, an estimated 3,200 tons of sludge and contaminated subsurface soil were removed and transported for offsite disposal at the CECOS landfill located in Niagara Falls, NY (Chemical Leaman, 1985). The lagoons were reexcavated into the natural soil underlying the site.

Following the excavation of the sludge from the surface impoundments in 1978, several waste management practices were changed at the terminal facility. Two underground storage tanks (1,000 gallons each) were installed to receive tanker washdown wastewaters containing any of the 65 priority pollutants which are prohibited from being discharged to the Wastewater Treatment Plant. The storage tanks receive wastewater containing heavy metals and organic wastes, respectively. The collected washwaters are transported to CECOS by Chemical Leaman for disposal. All drummed waste chemicals are contract hauled off-site for disposal at the Chem Met TSD facility located in Wyndotte, Michigan (Chemical Leaman, 1985).

Presently, the surface impoundments at the facility remain in use. However, Chemical Leaman proposes to close the facilities in the near future. The proposed closure plan requires the excavation of accumulated solids (sludge) and approximately one foot of the subsurface soil beneath the lagoons. The lagoons would be backfilled with clean fill and the excavated materials would be contract hauled off-site for disposal.

SITE TOPOGRAPHY

The Chemical Leaman site is located in the City of Tonawanda, Erie County, New York State. The site is a rectangular area bordered on the south by Ellicott Creek. The original ground surface sloped to the south toward the creek, but recent filling has created a relatively level surface across the northern two-thirds of the site. There is no surface water on the site except for three man-made settling lagoons. In addition, a linear depression trending north-south exists approximately in the center of the site. Prior to use by Chemical Leaman, an old trolley train line ran north-south through the site along an elevat-Most of the embankment has been removed except for ed embankment. approximately 100 feet adjacent to the creek. The southwest corner of the site is low and marshy. Most of the southern border of the site is wooded with large willow trees.

The site is bordered to the west by Route 425 (a large divided highway), to the north by Fillmore Street across which is located a small stainless steel fabricating facility, to the east by Wales Avenue across which occurs a drafting facility and a warehouse, and to the northeast by RECRA Research facility. This area of Tonawanda is called the Tonawanda Industrial Park.

IV-3

Local Sensitive Environments

The nearest wetland to this site is 0.27 miles away. There are no critical habitats for endangered species near the site.

SITE HYDROLOGY

This summary of site hydrology is based on information from USGS Topographic Maps, NYS Museum and Science Service Bedrock Geology and Quaternary Geology Map, LaSala (1968), and USGS drilling information from Anderson Drilling Company (1981).

Regional Geology and Hydrology

The site is located in the Erie-Ontario lowlands physiographic province. The bedrock of this region is predominantly limestone, dolostone, and shale. Most of the rocks are deep aquifers with regional flow to the south.

· · · · ·

In the recent past, most of New York State, including the site, has been repeatedly covered by a series of continental ice sheets. The activity of the glacier widened pre-existing valleys, and deposited widespread accumulations of till. The melting of ice, ending approximately 12,000 years ago, produced large volumes of meltwater; this water subsequently shaped channels and deposited thick accumulations of stratified, granular sediments.

As glacial ice retreated from the region, meltwater formed lakes in front of the ice margin. This region is covered by both lake sediments and morainal materials. Sediments associated with Lake Tonawanda are especially widespread in this region. Lake Tonawanda was a shallow elongate lake which occupied an east-west valley and drained north into Lake Iroquois. The sediments consist of beach ridges and lacustrine silts and clays (indicating quiet or deeper water deposition). Granular deposits in this region frequently act as shallow aquifers, whereas lacustrine clays, as well as tills, often inhibit groundwater movement. However, fine-grained, water-lain sediments, such as silts and clays, frequently contain horizontal laminations and sand seams. These internal features facilitate lateral groundwater movement through otherwise low permeability materials.

Site Hydrogeology

Bedrock beneath the site is expected to be the Camillus Shale (Salina Group); top of rock may occur at approximately 35 feet. Industrial wells in this bedrock unit (approx. 100' depth) yield 200,000 to 1,000,000 gallons per day when they were in operation. The groundwater was high in H_2S (LaSala, 1968); other chemicals include:

Parameter	Concentration (ppm)
Sulfate	1,680
Chloride	2,340
(Ca,Mg) CO ₃	2,780
Specific Conductance	9,010 umhos
pH	7.5

Soil stratigraphy on the site reflects the proximity of the site to the edge of former Lake Tonawanda. A generalized soil column based on USGS (1982) boring logs would be:

Soil Type	Depth (ft)
Mixed fill, topsoil	0 - 7
Layered fine sand, silts, and clay	7 - 20
Red Clay	20 - 34
Fine sand	34 - 35
Top of Bedrock	35

The upper surface of the bedrock is likely to be highly weathered and fractured. Above the bedrock there is a thin layer of fine sand, deposited as Lake Tonawanda began to flood the area. This sand may grade vertically upward into the thick red clay unit. This Lake

IV-5

Tonwanda sediment is soft and grades upward into a layered grey fine sand, silt, and clay. In the southwest corner of the site, this lacustrine material is predominantly silt.

After the draining of Lake Tonawanda, a topsoil layer developed on the ground surface (evidenced by roots and organic matter) but recent filling in the north part of the site has buried this topsoil layer to a depth of approximately 7 feet.

Three settling ponds are located near the center of the site. They were originally excavated to a depth greater than 10 feet and more recently were re-excavated and bottom sediment/sludges removed. The pond bottom depths indicate that natural silty fine sand forms the floor of the ponds.

A shallow water table appears to exist on top of the moist red clay (which occurs at approximately 8 to 12 ft. depth) on the site (USGS, 1985). This water table appears to slope to the south, towards Ellicott Creek and varies from 2 feet depth in the north (north of the ponds, within the fill) to 17 feet depth in the south. This aquifer may be hydraulically connected with Ellicott Creek. The permeability of the sandy soil within this zone is estimated to be approximately 10^{-3} cm/ sec. Because of its layered nature, its horizontal permeability is likely to be greater than its vertical permeability.

The ponds may be recharging the perched zone. Overall flow (including off-site flow) within this zone will follow the slope (downslope direction) of the underlying red clay. This slope, however, cannot be calculated from the available boring information.

SITE CONTAMINATION

The Chemical Leaman terminal facility has three wastewater surface impoundments used to collect and treat (solids settling and natural aeration) wash and rinse waters from chemical tanker cleanout operations. Prior to 1978, wastewater containing trace quantities of priority pollutants were discharged to the impoundments and in turn were conveyed to the Tonawanda Wastewater Treatement Plant via the sanitary sewer system. In 1978, these waste management practices were discontinued. Provided below is a summary of the sampling and analysis efforts conducted to date at the Chemical Leaman facility.

In 1978, the effluent wastewater discharged to the municipal sewer system from the Chemical Leaman surface impoundments were analyzed by a contractor retained by Chemical Leaman as required by the NYSDEC. The parameters detected in high concentrations included total organic carbon (825 mg/l) and total halogenated organics (150 ug/l) (RECRA Research, 1978). Following negotiations with the NYSDEC, Chemical Leaman excavated accumulated solids in the impoundments, installed chemical storage tanks and modified their waste management practices as was previously discussed. The analytical results for the sampling of the surface impoundment effluent in 1978 are provided in the appendix.

Between 1977 and 1978, an estimated 3,200 tons of accumulated settled solids (sludge) were removed from the surface impoundments (Nos. 1 and 2) between October, 1977 and May, 1978. The excavated sludge was not sampled and analyzed (EP Toxicity) prior to disposal in the CECOS landfill located in Niagara Falls, New York (Chemical Leaman, 1985).

The accumulated solids in the surface impoundment, No. 1, has been sampled and analyzed since the surface impoundments were cleaned (1977-78) and the waste management practice of discharging wastewater containing trace quantities of priority pollutants was discontinued. In November 1980 and July 1982, sludge samples were collected and analyzed for EP Toxicity parameters. No hazardous waste constituents were detected in concentrations that would classify the sludges as hazardous (Advanced Environmental Systems, 1981, and ARO Corporation, 1982). These results are provided in the appendix.

The USGS collected groundwater samples from the three monitoring wells located downgradient from the Chemical Leaman surface impoundments in July, 1981. The samples were analyzed for organic compounds includ

IV-7

ing priority and non-priority pollutants. The concentration of phenol (38 ug/l) detected exceeded the groundwater quality standards for Class GA waters in New York State. Several non-priority pollutants were also detected (USGS, 1983). These results are provided in the appendix.

Groundwater samples were collected from the surface impoundments upgradient and downgradient monitoring wells by Chemical Leaman beginning in 1981. On four occasions the samples were analyzed for an expanded list of parameters. With the exception of phenols, iron, lead and manganese, all of the chemical constituents analyzed were below the maximum allowable concentràtions for Class GA water in New York State (Chemical Leaman, 1981 to 1983). The concentration of TOC in the samples collected were also detected at quantifiable levels. It should also be noted that during several of the sampling efforts, the upgradient well (B-1) had higher levels of phenols, manganese and TOC than the downgradient well (B-4). These results indicate that the upgradient. well may be contaminated from the chemical tanker transfer operations that were previously conducted upgradient from well B-1. The analytical results for selected parameters from these analytical results are presented in Table IV-1. The results are presented in their entirety in the appendix.

Additional groundwater samples were collected from the monitoring wells during 1983 and 1984. These samples were analyzed for indicators of contamination including pH, specific conductance, TOC, and halogenated organics. The concentration of TOC detected were similar to the levels previously found. The results of this sampling effort are provided in the appendix.

IV-8

TABLE IV-1

.

GROUNDWATER MONITORING DATA FOR SELECTED PARAMETERS

AT THE CHEMICAL LEAMAN SITE

Chemical Constituent	Class GA Water Std in NYS	• Well B-1 (Upgradient)	Well B-2	Well B-3	Well B-4
September 1982					
Phenols	0.001	0.020	0.032	0.025	0.019
TOC		28	72	[°] 80	41
Iron	0.3	5.1	5.9	73	50
Lead	0.025	< 0.005	< 0.005	0.005	0.007
Manganese	0.3	1.3	0.10	0.91	0.91
May 1982					·
Phenols	0.001	0.027	0.039	0.025	0.020
TOC		32	79	72	19
Iron	0.3	5.6	10.0	9.5	300
Lead	0.025	0.06	0.13	< 0.03	0.05
Manganese	0.3	1.2	0.22	0.65	1.5
March 1982					•
Phenols	0.001	0.018	0.014	0.044	0.012
TOC		40	46	54	16
Iron	0.3	2.5	5.6	9.9	48
Lead	0.025	< 0.03	< 0.03	0.03	0.04
Manganese	0.3	2.0	0.09	0.63	13
December 1981					
Phenols	0.001	0.016	0.020	0.050	< 0.01
TOC		73	74	51	14
Iron	0.3	42	28	- 34	9.4
Lead	0.025	< 0.03	< 0.03	< 0.03	< 0.03
Manganese	0.3	1.0	0.99	0.87	0.49

The GA Class Standards and all analytical results are expressed in mg/l unless otherwise indicated.

SOURCE: Chemical Leaman Tank Lines, 1985

,

.

·

·

1

.

.

. •

•

NARRATIVE

. .

• . /

.

,

.

. . -.

PRELIMINARY APPLICATION OF HAZARD RANKING SYSTEM

NARRATIVE SUMMARY

The Chemical Leaman Tank Lines site, consisting of three wastewater treatment lagoons, is located in the City of Tonawanda, Erie County, New York. The site is approximately one-acre is size.

The Chemical Leaman facility began operations in 1963. Chemical Leaman is engaged in the transport of chemicals and performs waste disposal services on a limited basis. Following transport, the Chemical Leaman tankers are emptied of remaining chemicals and washed out. The wash and rinse waters discharge to the three on-site surface impoundments for settling and natural aeration. Prior to 1978, wastewater containing trace quantities of priority pollutants were conveyed to the impoundments which discharge to the City of Tonawanda Wastewater Treatment Plant. These waste management practices were discontinued in 1978 and accumulated solids in lagoons Nos. 1 and 2 were excavated and removed off-site for disposal to the CECOS Landfill located in Niagara Falls, NY.

The accumulated solids in surface impoundment have been analyzed (EP Toxicity) since the remedial work was conducted in 1978. No hazardous constituents were detected in concentrations that would classify the solids as hazardous (Advanced Environmental Systems, 1981, and ARCO Corporation, 1982).

Groundwater samples have been collected from the on-site groundwater monitoring wells. In 1981, the USGS detected concentrations of phenol (38 ug/l) in groundwater samples collected from downgradient Well No. 3 (USGS, 1983). Samples collected in 1981-1982 detected concentrations of phenols, iron, lead, and manganese in excess of water quality standards for Class GA waters in New York State. TOC concentrations were also detected at quantifiable levels (Chemical Leaman, 1981 to 1982). No environmental or enforcement actions have been taken with respect to previous waste management practices at the site. . .

.

.

1

)

. . ٠

 \mathbf{N} , \mathbf{r}

ţ

ı .

•

•

١

ì

HRS COVER SHEET

Facility Name: Chemical Leaman Tank Lines

Location: 470 Filmore Avenue, Tonawanda, Erie County, New York

EPA Region: II

Person(s) in charge of the facility: <u>Bruce Hartman - Manager Engineer</u>ing & Env. Services; James Rakitsky - Chemical Engineer, James Wegrzyn

Name of Reviewer: S. Robert Steele, II Date: 5/8/85

General Description of the facility:

Three surface impoundments have been operated on-site since 1963. In 1978, the sludge in impoundments Nos. 1 and 2 were excavated and removed off-site for disposal. Subsequent EP Toxicity analysis of solids (Lagoon No. 1 only) did not detect hazardous constituents in high concentrations. Analysis of groundwater samples from the on-site monitoring wells detected phenols and metals (iron, lead, and manganese) in concentrations exceeding groundwater quality standards for Class GA water in New York State. The impoundments are scheduled to be removed from service in the near future.

Scores: $S_{M} = 5.57$ ($S_{qw} = 5.65$ $S_{sw} = 7.80$ $S_{a} = 0$)

$$S_{FE} = 0$$

 $S_{DC} = 0$

Facility Name: Chemica	l Leaman	Date:_	5/2	3/85	······································		
Ground Water Route Work Sheet							
Rating Factor	Assigned Valu (Circle One)	ue Multi- plier	Score	Max. Score	Ref. (Section)		
1 Observed Release	0 (45)	1	.45	45	3.1		
If observed release is If observed release is	given a score given a score	of 45, proce of 0, procee	ed to li d to lin	ne 4. e 2.			
2 Route Characteristics Depth to Aquifer of Concern	0 1 2 (3)	2	6	. 6	3.2		
Net Precipitation Permeability of the	0 1 (2) 3 0 1 (2) 3	1 1	2	3 3			
Unsaturated Zone Physical State	0 1 2 (3)	1	3	3			
Total Route	Characteristic	s Score	13	_ 15			
3 Containment	0 1 2 (3)	1	3	3	3.3		
4 Waste Characteristics Toxicity/Persistence Hazardous Waste Quantity	036912 012345	15 (18) 1 6 7 8 1	18	18 8	3.4		
Total Waste	Characteristics	Score	24	26			
5 _{Targets} Ground Water Use Distance to Nearest Well/Population Served	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 10 1 40	3	9 40	3.5		
Total T	argets Score		3	49			
6 If line 1 is 45, mu If line 1 is 0, mul	ltiply 1 × 4 tiply 2 × 3	x 5 x 4 x 5	3,240	57,330			
7 Divide line 6 by 57	,330 and multip	оју Бу 100	s = gw	5,65			

GROUND WATER ROUTE WORK SHEET

	Surfac	e Water R	oute Work S	heet		
Rating Factor	Assigne (Circl	d Value e One)	Multi- plier	Score	Max. Score	Ref. (Section
1 Observed Release	0	45	1	Ð	45	4.1
If observed release is If observed release is	s given a s given a	value of value of	45, procee 0, proceec	ed to lin d to line	e 4. 2.	
2 Route Characteristics						4.2
Facility Slope and	0 1	23	1	D	3	
1-yr. 24-hr. Rainfal Distance to Nearest	1 0 1	2 3 2 3	1	2 6	36	
Surface Water Physical State	0 1	2 3	1	. 3	3	
Total Route	Character	istics Sc	ore		15	
3 Containment	0 1	2 (3)	1	3	3	4.3
4 Waste Characteristics						4.4
Toxicity/Persistence	036	5 9 12 15	18 1	18	18	
Hazerdous Waste Quantity	0 (1) 2	23456	781	. /	8	. `
Total Waste	Characte	ristics Sc	ore	19	26]
5 _{Targets}				·		4.5
Surface Water Use	0 1	(2) 3	`3 2	6	9 6	l
Environment Population Served/	0 4	6 8 10	-	0	40	
Distance to Water Intake Downstream	12 16 24 30	18 20 32 35 40)	~		
Total	Targets	Score		8	55]
6 If line 1 is 45, mu If line 1 is 0, mul	ltiply [tiply 2	1 × 4 :] × 3 ×	< 5 4 × 5	5,06	64,350	
7 Divide line 6 by 6 ¹	,350 and	multiply	by 100	S =	7.80	

SURFACE WATER ROUTE WORK SHEET
.

Facility Name: Chom	ical leamas	Date:	5/23/85	
	Air Route W	ork Sheet		
Rating Factor	Assigned Value (Circle One)	Multi- plier	Score Max. Score	Ref. (Section)
1 Observed Release	@ 45	1	0 45	5.1
Date and Location:	7/30/85			
Sampling Protocol:	HNo meter	, 		
If line 11 is 0, the If line 11 is 45, the	S _a = O. Enter on 1 a proceed to line	ine 55. 2.		
2 Waste Characteristics				5.2
Reactivity and	0 1 2 3	1	3	
Toxicity Hazardous Waste	0 1 2 3 0 1 2 3 4 5 6	78 1	· 9 8	
Total Wast	e Characteristics	Score	20	
3 Targets		· ·		5.3
Population Within	0 9 12 15	18 1	30	
Distance to Sensitive	0 1 2 3	· 2 ·	6	
Land Use	0 1 2 3	· 1	3	
Total Tar	gets Score	<u></u>	39	7
4 Multiply 1 × 2 × [3	······	35,10	00
5 Divide line 4 by 35,	100 and multiply b	by 100	s_ = (j)	

AIR ROUTE WORK SHEET

A.57

2

Facility Name: Chemical Legman Date: 5/23/85 Worksheet for Computing S_M

	S	s ²
Groundwater Route Score (S _{gw})	5.65	31.92
Surface Water Route Score (S _{sw})	7.80	60.84
Air Route Score (S _a)	0.00	0,60
$s_{gw}^2 + s_{sw}^2 + s_a^2$		92.76
$s_{gw}^2 + s_{sw}^2 + s_a^2$		9.63
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$		5.57

WORK SHEET FOR COMPUTING SM

1

Facility Name: Chemical Leaman Date: 5/23/85

Fire and Explosion Work Sheet												
Rating Factor	Assigned Value (Circle One)						lulti- olier	Score	Max. Score	Ref. (Section)		
1 Containment	1			3			1	0	3	7.1		
2 Waste Characteristics										7.2		
Direct Evidence Ignitability Reactivity Incompatibility Hazardous Waste Quantity	0 0 0 0	1 1 1 2	2 2 2 3	3 3 3 3 4 5	6	78	1 1 1 1 1	· .	3 3 3 8			
·Total Was	te Ch	ara	cte	ris	tic	s So	core		· 20			
3 Targets										7.3		
Distance to Nearest	0	1	2	3	4	5	1		5			
Population Distance to Nearest	0	1	2	3			1 .		3			
Distance to Sensitive	0	1	2	3			1		3			
Environment Land Use Population Within	0 0	1 1	2. 2	3 3	4	5	1 1		3 5			
2-Mile Radius Buildings Within 2-Mile Radius	0	1	2	3	4	5	1		5			
Total	arget	:s S	Scor	e					24			
4 Multiply $1 \times 2 \times 3$ 1,440												
5 Divide line 4 by 1,4	5 Divide line 4 by 1,440 and multiply by 100 $S_{FE} = 0$											

FIRE AND EXPLOSION WORK SHEET

Facili

tv	Name:	Chem	Ical	Leaman
- /	•			

Date: 5/23/85

Direct Contact Work Sheet													
Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)								
1 Observed Incident	0 45	. 1	0	45	8.1								
If line 1 is 45, pro If line 1 is 0, proc	ceed to line 4												
2 Accessibility	0 1 (2) 3	.1	2	3	8.2								
3 Containment	0 15	1	0		8.3								
4 Waste Characteristics Toxicity	0 1 2 3	5	0	15	8.4								
5 Targets	· · ·	·			8.5								
Population Within	0 1 2 3 4 (5 4	20	20	•								
1-Mile Radius Distance to a Critical Habitat	0 1 2 3	4	D	12									
Total Ta	argets Score		20	32									
6 If line 1 is 45, mult If line 1 is 0, mult	ltiply 1 × 4 × tiply 2 × 3 × (5 4 × 5	0	21,600									
7 Divide line 6 by 21	,600 and multiply b	y 100	S _{DC} =	0									

DIRECT CONTACT WORK SHEET

۲ 1

> . ł

Т

٠,

; ŧ

HRS. DOCUMENTATION RECORDS

....

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

FACILITY NAME: Chemical Leaman Tank Lines

LOCATION: 470 Filmore Avenue, City of Tonawanda, Erie County, New York

GROUNDWATER ROUTE

1. OBSERVED RELEASE

Contaminants detected (5 maximum):

- 1. Phenol
- 2. 3,4-Dichlorobenzoic Acid
- 3. 4-(1,1-Dimethylethyl) phenol
- 4. Lead
- 5. 2-Methyl-2-propanol

Rationale for attributing the contaminants to the facility:

Groundwater samples collected and analyzed by USGS, 1982 (USGS, 1983 and Chemical Leaman, 1981-82). The concentration of phenol and lead exceeded GA class groundwater standards in New York State. Downgradient concentrations for phenol and lead exceed upgradient concentrations on several sampling events.

* * *

2. ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifer(s) in concern:

Shallow aquifer above clay unit within sand (depth of sand 7 to 19 feet) (USGS, 1982) - may be hydrualically connected to Ellicott Creek.

Depth(s) from the ground surface to the highest seasonal level of the saturated zone [water table(s)] of the aquifer of concern:

0.5 feet (USGS, 1982).

Depth from the ground surface to the lowest point of waste disposal/ storage:

Fill to 7 feet, lagoon bottoms greater than 10 feet (Anderson Driling Co., Inc., Boring Logs, Hole B-1, 8/14/81).

Net Precipitation

(U.S. Dept. of Commerce, National Climatic Center, Climatic Atlas of the United States, 1979).

Mean annual or seasonal precipitation (list months for seasonal):

Mean annual precipitation is 36".

Mean annual lake or seasonal evaporation (list months for seasonal):

Mean annual lake evaporation is 27".

Net precipitation (subtract the above figures):

9"(36" - 27" = 9").

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

Fill of cinders and sand atop sand or interfingered units of silt, clay and sand (Anderson Driling Company, Drilling Logs, 8/81).

Permeability associated with soil type

1. 10^{-1} to 10^{-5} cm/sec for silty sand 2. 10^{-5} to 10^{-12} cm/sec for silts and clays (Freeze, R.A., and J.A. Cherry, Ground Water, 1979).

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

Liquid (NYSDEC Registry Sheet, 12/83).

3. CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

A series of three unlined treatment lagoons (ES and D&M Site Inspection, 1985; Chemical Leaman, 1985).

Method with highest score:

Unlined treatment lagoons.

4. WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Phenol (USGS, 1983; Chemical Leaman Data, 1981-1982). Lead (Chemical Leaman Data, 1981-1982).

Compound with highest score:

Lead (toxicity = 3, persistence = 3) - 18.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

3 lagoons with 160,000 gallon capacity, which were half full - 160,000 gallons x 3 lagoons x 1/2 full = 240,000 gallons - 50 gal/drum = 4,800 drums (Chemical Leaman Tank Lines, Site Ownership History, May, 1985).

Basis of estimating and/or computing waste quantity:

Between 1977 and 1978, an estimated 3,200 tons of sludge and contaminated soil were excavated and removed off-site for disposal. Since 1978, wastewaters containing priority pollutants have not been discharged to the surface impoundments (Chemical Leaman, 1985). The extent of contamination underlying the site from prior disposal operations is unknown. For purposes of rating the site, the once flow through volume of the three settling lagoons which were half full from 1963-1978 should be used. 5. TARGETS

Ground Water Use

Uses(s) of aquifer(s) of concern within a 3-mile radius of the facility:

Groundwater not used, but usable (NYS Atlas of Community Water System Sources, 1982).

Distance to Nearest Well

Location of nearest well drawing from <u>aquifer of concern</u> or occupied building not served by a public water supply:

None in aquifer of concern (NYS Atlas of Community Water System Sources, 1982).

Distance to above well or building:

Not applicable.

Population Served by Ground Water Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from <u>aquifer(s)</u> of concern within a 3-mile radius and populations served by each:

Not applicable, no water supply wells within a 3 mile radius (NYS Atlas of Community Water System Sources, 1982).

Computation of land area irrigated by supply well(s) drawing from aquifer(s) of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

Zero.

Total population served by ground water within a 3-mile radius:

None (NYS Atlas of Community Water System Sources, 1982).

SURFACE WATER ROUTE

1. OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

No surface water samples analyzed for contamination (NYSDEC Registry Sheet, 12/83).

Rationale for attributing the contaminants to the facility:

Not applicable.

2. ROUTE CHARACTERISTICS

(USGS Topographic Maps: Tonawanda West, NY; Tonawanda East, NY; Buffalo NE, NY; Buffalo NW, NY-ONT Quadrangles).

Facility Slope and Intervening Terrain

Average slope of facility in percent:

0.3%.

Name/description of nearest downslope surface water:

Ellicott Creek.

Average slope of terrain between facility and above-cited surface water body in percent:

Approximately 1%.

Is the facility located either totally or partially in surface water?

No.

Is the facility completely surrounded by areas of higher elevation? No.

1-Year 24-Hour Rainfall in Inches

2.1" (U.S. Department of Commerce Technical Paper No. 40).

Distance to Nearest Downslope Surface Water

Adjacent to site.

Physical State of Waste

Liquid (NYSDEC Registry Sheet, 12/83).

3. CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Series of three unlined settling ponds (ES and D&M Site Inspection, 1985; Chemical Leaman, 1985).

Method with highest score:

Unlined treatment lagoons.

4. WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

Phenols, heavy metals (iron, lead, and manganese). No observed release of phenols in the surface water has occurred at the site. Sludge residues containing heavy metals from previous waste disposal practices (prior to 1977-78) are suspected at the site (USGS, 1983; Chemical Leaman, 1981-1982).

Compound with highest score:

Lead (toxicity = 3, persistence = 3) - 18.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

Unknown (NYSDEC Registry Sheet, 12/83).

Basis of estimating and/or computing waste quantity:

Wastewaters containing priority pollutants were discharged to the on-site surface impoundments prior to 1978. Contaminated soil and sludge were excavated from lagoons No. 1 and 2 in 1978. The extent of contamination with the potential to contaminant the surface water pathway is unknown. For purposes of rating the site, 1 to 10 cubic yards of hazardous waste are assumed to be on-site due to the detection of on-site contamination.

* * *

5. TARGETS

(USGS Topographic Map: Tonawanda West, NY)

Surface Water Use

Use(s) of surface water within 3 miles downstream of the hazardous substance:

1. Recreational greenspace (park on Fillmore St., 500' west of site).

2. Recreational boating and commercial shipping (Erie Canal).

Is there tidal influence?

No.

Distance to a Sensitive Environment

(USGS Topographic Maps: Tonawanda West, NY; Tonawanda East, NY; Buffalo NE, NY; Buffalo NW, NY-ONT Quadrangles)

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

None within 2 miles (western NYS not a coastal area).

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

0.27 mile (NYS Wetlands Maps).

Distance to critical habitat of an endangered species or national wildlife refuge, if 1 mile or less:

None within 1 mile (NYSDEC Region 9, Division of Fish & Wildlife Files).

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

None within specified distances (NYS Atlas of Community Water System Sources, 1982).

Computation of land area by above-cited intake(s) and conversion to population (1.5 people per acre):

Not applicable, none within 3 miles.

Total population served:

Not applicable, none within 3 miles.

Name/description of nearest of above water bodies:

Not applicable, none within 3 miles.

Distance to above-cited intakes, measured in stream miles:

Not applicable, none within 3 miles.

AIR ROUTE

1. OBSERVED RELEASE

Contaminants detected:

No volatile organics detected.

Date and location of detection of contaminants:

Site inspection conducted by ES/D&M, 7/30/85.

Methods used to detect the contaminants:

HNU meter readings were taken and all readings were less than 1.5 ppm, indicating no air release.

Rationale for attributing the contaminants to the site:

Not applicable.

* * *

2. WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

Not applicable, no reactive compounds are known to exist on-site.

Most incompatible pair of compounds:

Not applicable, no incompatible compounds are known to exist on-site.

Toxicity

Most toxic compound:

No toxic compounds with the potential to impact the air pathway are known to exist on-site.

Hazardous Waste Quantity

Total quantity of hazardous waste:

The quantity of hazardous waste with the potential to impact the air pathway is unknown.

Basis of estimating and/or computing waste quantity:

Not applicable (see above comment).

3. TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined:

(0 to 4 mi) 0 to 1 mi 0 to 1/2 mi 0 to 1/4 mi

133,403 people (Complied from 1980 US Bureau of the Census Data).

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

None within 2 miles (western NYS not a coastal area).

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

0.27 mile (NYS Wetlands Maps).

Distance to critical habitat of an endangered species, if 1 mile or less:

None within 1 mile (NYSDEC Region 9, Division of Fish & Wildlife Files).

Land Use

(USGS Topographic Maps)

Distance to commerical/industrial area, if 1 mile or less:

0.0 mile, site is located in an industrial park (ES/D&M Site Visit, 4/18/85).

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

More than 2 miles.

Distance to residential area, if 2 miles or less:

0.2 miles.

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Not applicable, more than 1 mile.

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Not applicable, more than 2 miles.

Is a historic or landmark site (National Register of Historic Places and National Natural Landmarks) within view of the site?

\$

No.

FIRE AND EXPLOSION

1. CONTAINMENT

Hazardous substances present:

No information was discovered during the Phase I study which indicates that a fire and explosion situation existed or presently exists at the site.

Type of containment, if applicable:

Not applicable, see above comment.

2. WASTE CHARACTERISTICS

Direct Evidence

Type of instrument and measurements:

No measurements to determine the fire and explosion potential were taken on-site.

Ignitability

Compound used:

No ignitable compounds are known to exist on-site.

Reactivity

Most reactive compound:

No reactive compounds are known to exist on-site.

Incompatibility

Most incompatible pair of compounds:

No incompatible compounds are known to exist on-site.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility:

No hazardous waste are known to be disposed on-site that create a potential fire and explosion situation.

Basis of estimating and/or computing waste quantity:

No applicable, see above comment

* * *

3. TARGETS

Distance to Nearest Population

0.0 mile, site is located in an industrial park (ES and D&M Site Visit, 4/18/85).

Distance to Nearest Building

Less than 200 feet (ES and D&M Site visit, 4/18/85).

Distance to Sensitive Environment

Distance to wetlands:

0.27 mile (NYS Wetlands Maps).

Distance to critical habitat:

None within 1 mile (NYSDEC, Region 9, Department of Fish and Wildlife, 1985).

Land Use

Distance to commercial/industrial area, if 1 mile or less:

0.0 mile, site is located in an industrial park (ES and D&M Site Inspection, 4/18/85).

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

More than 2 miles (USGS Topographic Maps: Tonawanda West, NY; Tonawanda East, NY; Buffalo NE, NY; Buffalo NW, NY-ONT Quadrangles).

Distance to residential area, if 2 miles or less:

0.2 mile (USGS Topographic Maps: Tonawanda West, NY; Tonawanda East, NY; Buffalo NE, NY; Buffalo NW, NY-ONT Quadrangles).

Distance to agricultural and in production within past 5 years, if 1 mile or less:

More than 1 mile (USGS Topographic Maps: Tonawanda West, NY; Tonawanda East, NY; Buffalo NE, NY; Buffalo NW, NY-ONT Quadrangles).

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

More than 2 miles (USGS Topographic Maps: Tonawanda West, NY; Tonawanda East, NY; Buffalo NE, NY; Buffalo NW, NY-ONT Quadrangles).

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

No.

Population with 2-Mile Radius

36,224 people (US Census Data, 1980).

Buildings Within 2-Mile Radius

Unknown.

DIRECT CONTACT

1. OBSERVED INCIDENT

Date, location, and pertinent details of incident:

There is no confirmed instance in which contact with hazardous substances at this site has caused injury, illness or death to humans or domestic or wild animals.

* * *

2. ACCESSIBILITY

Describe type of barrier(s):

Site is enclosed by a fence; however, there is no separate means to control entry.

* * :

3. CONTAINMENT

Type of containment, if applicable:

An estimated 3,200 tons of contaminated sludge were excavated from the on-site lagoons and disposed of off-site. Since this excavation work was completed in 1978, wastewater containing hazardous constituents have reportedly not been discharged to the lagoons. Therefore, the potential for direct contact with hazardous waste is unknown because the extent of on-site contamination has not been evaluated. For purposes of rating the site, a score of zero is assigned since hazardous substances have not been determined to be on-site which pose a direct contact concern.

* * *

4. WASTE CHARACTERISTICS

Toxicity

Compounds evaluated:

None. Because contaminated sludge has been excavated from the site, it is not known what hazardous substances may exist on-site.

Compound with highest score:

Not applicable, see above comment.

5. TARGETS

Population within one-mile radius

10,394 people (US Census Data, 1980).

Distance to critical habitat (of endangered species)

None within 1 mile (NYSDEC Region 9, Division of Fish and Wildlife, 1985).

HRS REFERENCES

.

1.	Anderson Drilling Company, Boring Logs, August 14, 1981.
2.	ES and D&M Site Inspection, 1985.
3.	Freeze, R. A., and Cherry, J. A., Groundwater, 1985.
4.	LaSala, Groundwater Resources of the Erie-Niagara Basin, New York, 1968.
5.	NYS Atlas of Community Water System Sources, NYS Department of Health, 1982.
6.	NYS Museum and Science Service Bedrock Geology Map, Map and Chart Series, No. 15 (compiled by Rickard, L. V., and Fisher, D. W.).
7.	NYS Wetlands Maps.
8.	NYSDEC Registry Sheet, 12/83.
9.	NYSDEC, Region 9, Division of Fish and Wildlife Files.
10.	US Census Data, 1980.
11.	US Department of Commerce. "Climatic Atlas of the United States". 1979.
12.	US Department of Commerce Technical Paper No. 40. "Rainfall Frequency Atlas of the United States". 1963.
13.	USGS Topographic Maps: Tonawanda West, NY; Tonawanda East, NY; Buffalo NE, NY; Buffalo NW, NY-ONT; Quadrangles.

14. USGS, Draft/Final Reports of Preliminary Evaluation of Chemical Migration to Groundwater and the Niagara River from Selected Waste Disposal Sites, 1983-1985.

PROJ	ECT_	С	hemi	cal	Lem	an Tar	nk Lines DATE STARTED 8/14/81	HOLE NO B-2
LOCA	TION	T	onaw	and	a, N	ew Yor	DATE FINISHED 8/14/81 *k METHOD OF INVESTIGATION	_ SURFELEV ASTM D-1586, Using Drilled-In Casing.
11-11-1	SAMPLE	0	810 5A/ 6 12	MPLER	6 N	BLOW ON CASING C	DESCRIPTION OF RECOVERED SAMPLES	REMARKS & WATER READING
, 1	1	1	2	1			Moist brown medium soft CLAY &	
-	2	2	3		4	<u> </u>	Silt, trace fine-coarse sand (Fill)	
-	-	4	7	+	8			
	3	2	2				Contains some fine-coarse Sand	
4		3	4		5			
-	4	4	0 7	+ -	10		Contains brick fragments	1. Layer of wet black
	5	3	3	1				residue at 7.0 feet.
0-		4	3		7		Wet gray loose Clayey SILT and	
-	b	4	3		8	÷		
1		-						
4		•	ļ					
5	1	1	<u>p</u>	μ_	2		Wet gray soft layered Clay and	
4	-				1			
-		ว	<u>.</u>	2			Moist red soft CLAY	
	<u> </u>	2	<u> </u>	<u> </u>				
			• .				Boring Complete at 20.5 feet.	2. Installed 2" dia.
-			[·	 				PVC well at 19.0 feet.
-			 		· ·			l'riser
								protective casing
4							3	3. Free standing water
4					<u> </u>		ā	it 5.5 feet.
				•				
							ت _ي	۰ -
-						{		•
Ţ								
								· _
-								
-						·		
-								

ł

PROJ		.Ch To	iemi (nawa	ca I. anda	Lema	in Tan w Yor	k Lines Date Started 8/14/8 Date Finished 8/14/8 k Method of investigation	HOLE NO. B-3 SURF. ELEV. ASTM D-1586, Using		
DI P1H-F1	SAMPLE NO.	0	BLOV SAN	APLER	N	RIOW ON CASING C	DESCRIPTION OF RECOVERED SAMPLES	Drilled-In Casing.		
	1	2 3 3 4	3 3 3 4		6		4" <u>TOPSOIL</u> Moist brown loose Clayey SILT, little fine Sand, few roots - organic			
5	3	3 4 4 5	3 4 5 7		7		Moist gray medium Silty CLAY, little-trace fine sand, organic			
+0 -	5 6	3 4 4 5	4 4 5 4		8		Moist gray loose fine SAND, little Silt			
15-	7	4	2	5	7					
- - 20 - -	8	2	5	5	10		Wet gray loose fine SAND			
-	9.	2	• <i>.</i> 2	4	6		Moist red medium Silty CLAY	•		
		· · · ·					Boring Complete at 23.5 feet.	<pre>1. Installed 2" di PVC well at 22.6 f 10' screen 15' riser 1 protective casir</pre>		
				·				2. Free standing water at 7.5 feet completion.		

.

•

• • •

REF-2

ES AND D&M SITE INSPECTION

Observations made during the ES and D&M Site Inspections are provided on US EPA Forms 2070-12 and 2070-13. Field notes were used to complete these EPA Forms, and are not included herein.

R. Allan Freeze

Department of Geological Sciences University of British Columbia Vancouver, British Columbia

REF-3

John A. Cherry

Department of Earth Sciences University of Waterloo Waterloo, Ontario

GROUNDWATER

THE REPORT OF A PARTY OF A PARTY

Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632

Physical Properties and Principles / Ch. 2

Table 2.2 Range of Values of Hydraulic Conductivity and Permeability

Table 2.3 Conversion Factors for Permeability and Hydraulic Conductivity Units

		Permeability, k*		Hydraulic conductivity, K				
	cm²	ft²	darcy	m/s	ft/s	gal/day/ft ²		
cm ²	1	1.08 × 10 ⁻³	1.01 × 10 ⁸	9.80 × 10 ²	3.22 × 10 ³	1.85 × 109		
ft²	9.29×10^{2}	1	9.42 × 1010	9.11 × 10 ⁵	2.99 × 10 ⁶	1.71×10^{12}		
darcy	9.87 × 10-9	1.06×10^{-11}	1	9.66 × 10 ⁻⁶	3.17 × 10 ⁻⁵	1.82×10^{1}		
m/s	1.02×10^{-3}	1.10 × 10 ⁻⁶	1.04×10^{5}	1	3.28	2.12 × 10 ⁶		
ft/s	3.11 × 10 ⁻⁴	3.35 × 10-7	3.15×10^{4}	3.05 × 10 ⁻¹	1	5.74 × 105		
gal/day/ft ²	5.42×10^{-10}	5.83 × 10 ⁻¹³	5.49×10^{-2}	4.72 × 10 ⁻⁷	1.74 × 10 ⁻⁶	1		

*To obtain k in ft², multiply k in cm² by 1.08×10^{-3} .

29

ice

m d

> io ic

xi-

ic .q.

is cr, al ece is d ry

le-

s. he ty n

at .il.

to

GROUND-WATER RESOURCES OF THE V ERIE-NIAGARA BASIN, NEW YORK REF-4

Prepared for the Erie-Niagara Basin Regional Water Resources Planning Board

by

A. M. La Sala, Jr.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

in cooperation with

THE NEW YORK STATE CONSERVATION DEPARTMENT DIVISION OF WATER RESOURCES

STATE OF NEW YORK CONSERVATION DEPARTMENT WATER RESOURCES COMMISSION

Basin Planning Report ENB-3 1968

i M

GEOLOGIC MAP OF NEW YORK

1970

Niagara Sheet.

-			Scale 1	250,000			
5	0		5	10		15	Statute Miles 20
5	0	5	10	15	20	25 Ki	lometers 30

CONTOUR INTERVAL 100 FEET

Todographic Base from AMS Quadrangles 1:250,000 scale. NEW YORK STATE MUSEUM AND SCIENCE SERVICE MAP AND CHART SERIES NO. 15 COMPILED AND EDITED BY

Lawrence V. Rickard Donald W. Fisher

March, 1970

	ц Ш				ć	ХР́	LANA		•		1		
the second se	S'T'O'C'	HOLOCENE		Has Altuvial sond and silt Medium to coarse sand with subordinate intercalated silt and gravel; loosely packed and permeable; generally axidized and non- colcareous; mellow, but commonly with high water table. Floodplain deposits of streams in mature reaches. Overbank deposition by streams flowing on low gradients and in open valleys.	Alluvial gravel Pebble to cobble grav medium to coarse so and permeable; gene noncotcorevous; tocall Alluvial fan and char streams flowing an s repidly aggrading rec	Hag rel with subordinate na: loasely packed rally availated and y bouldery. neel deposits of reep gradients or aw volteys into aches.	His Beach sand and gravel Coarse sand with subortinate medium sand and gravel lenses; cross-baddad, highly permeable generativy will sorted, without significant silt or clay. Strand and nearshare deposits of large lakes in basins possessing closure independ ent of the former receding glocier margin, hence persisting after deglociallon. Notable are shore deposits of Lakes Erle and Ontario and former Lake Tanawanda.	Hic Lake silt, sand and clay Silt, fine to medium sand and clay; thin- bedded to massive; in part very regularly bedded with cyclic alternation of clay and silt haminac; madarately permeable alang along bedding surfaces. Offshore deposite of lakes in basis which did not require an imponding ice margin for closure, hance persisted after deglaciation Notable among filled basins is that of former Lake Tonowanda.	Wind deposited sand fine to medium sand; and noncolcareous; a permebble. Closely a and nearthere deposited lakes. Wind-reworked littor inisially deposited in basins.	Hus Tell sortad; osidized riosr-baddel; highly risociated with strand lis of postylácial and beach sond postglacial lake	Pest, mari and muck Bog deposits, dominantly paid and muck with subardinate gyttja; mari is a major component except in the southern tier of component scopt in the southern tier of conties. Still and clay are intercalated at base of arganic section. Deposition during late stages of in-tilling of pond and lake basins, including numer- cus hetles and other shallow depressions on glacial drift; also parts of former Lake Tonewands such as the Oak Orchard on Barran Swemas.	living carbo 5570 ing R afford organ	A small fraction of matter is made up n) which disintegra ±130 years. In foss adiocarbon atoms to Is a basis for esti- ism died.
	PNCEEE 1.3	7	dian				Wis Beach sand and gravel of ice-dammed lates Coarse sand with subordinate medulin sand and gravel laness; crass-bedded; veli-sarted and without significant sith or clay; highly permeable. Strand and nearshare deposits in proglacial Lates Whittesy and Warrse in the Erle Besin and Late Iroquisis in the Ontario Bash. Includes suitable material for generality smalt scale sand and gravel production.	Wic Lake sill, sand and clay Sill, fire to medium sand and clay; thin- beddat to masive; regularty bedded, in part with cyclic diternation of clay and sill laminas; moderate bedding piane permea- bility. Offshore deposits in besins which regulard tea marginal impondment for closure; includ es primitive lotes in northward-draining trough as well as ancettrai Lakes whille- sey and Worren in the Eris Bosin and Lake troquots in the Ontario Bosin.		~		SITE 1	NAME, TOWN Otto, Otto
	TI OF CT ET	S C O N S I N A P	Woodfor	wem End maraine Includes both ablation and tadgment tills till stony with limited admisture of poorly sis carbonate and crystatiline clasts generally thickness and permeability variable but than in associated ground maraine. Deposited by mailing of Ice at sage of Ic end of an advance or during stillstand at position. See ligure 2 for names of principal morr representation of chronology of glocid ad	Il generally rather orted gravel; exceed 20%; generally graater e sheet either at i a stable ice-barder since and schematic vance and retreat.	Ground moraine Dominanty lodgmer to maderably stom ally exceed 20%; Variably comminut beneath actively flu	Wgm It till, silty clay till and sandy till, sparsety y; carbanats and crystatline clasts gener- compact and generally very impermeable. ad rack material, transported by and ladged awing ice of the continental ice sheet.	Wkg Ice-contact stratified drift Coarse gravel and sand; sorting, poor an from sand to boulder gravel; in some area lenses of unsorted flow till; artitude of b erately to highly permeable; carbonate a comparise more than 20 % and commany fraction; locally indurated by secondary or Deposition as obtation moraine, muditare a streams.distributing drift on stagnant ico inalty as the burled ice melled. Steep at mark former ice-contact surfaces.	nd variable; ranges as with subordinate was variable; mod- nd crystalline clasts daminate corres stolum carbonate. and by soltwater s to be deposited opes commonly	Outwash, terrace a Pablic and coblic stremely pormabli sceed 30 % of th secondary colclum Deposition by strong ics sheets. Coarse nor the ics sheet, freely from the gloc lerroces or terrace coarse torrent (big	wog and delta gravet gravel with subordinate sand; well sorted; a; carbandte end crystalline claste generally e coarse fraction; locally camented by carbonate, ty-aggrading streams flowing fram former altwium deposited in coalescent aprons or as valley trains where streams drained ler margin. Cammonity persist as stream sumants. Includes minor lenses of very yg) deposits.	2	Clear Creek, Collins
		I M	Altonian	End moraine Includes both abialion and ladgment illi sandy till, moderately to abundanity story poorty sorted gravel; sandstone and silter ally comprise mare than 80% of comparing and thickness variable but generally great ated graund moraine. Deposited by melling af ice at edge of ice of an advance or during stillstand at a sto position.	silly clay till to with admisture of one channers gener- fraction; permeability er than for associ- sheet either at end ble ice-border	Ground moraine Dominally ladgment washed ablation dr moderately to abun ners comprise mora asidized and essen mpermeable. Variably comminute beneath actively flo	Agm till but locally with a veneer of variably ift; clay till, silty clay till and sandy till; dantly stony; siltstone and sandstone chan- than 80 % of caarse fraction, despty tially noncalcareous; compact and generally d roch material, transported by and lodged wing ice of the continental ice sheet.	Comprises a major gravel source, but re crushing far many purposes.	quires washing and ind variable; ranges as with subordinate beds variable; mod- t conditione generally erally uncemented. and by meltwater to be deposited slopes commonly quires washing and	Comprises a major gravel. Outwash, terrace a Pebble and cobble astremely permabbl less than 30 % of Deposition by stron ice sheets. Coarse near the ice sheet frestly from the glo terraces or terrace Comprises a major gravel.	source of relatively clean and uniform Ang hd delto gravet gravel with subardinate sand; well sorted; ; carbonate and crystalline clasts generally the coarse fraction; generally uncemented. gly aggrading streams flowing fram former alluvium deposited in coalecent oprons , or as valley trains where streams drained clear margin. Commonty persist as stream remnants. source of relatively clean and uniform	3	Corry Bog, Corry Nichols Bk., Sardinia
	i s i a ai.	ILLINOIAN		End marains End marains Includes both ablation and ladgment till; erately to abundantly stony with admixtu gravel; sandstone and siltstone channers fraction; permeability and thickness varia • greater than for associated ground mara Deposited by malling of ice at edge of i the end of an advance or during stillstam border position.	silly clay till; mod- re al poorly sorted dominate coarse ble bul generally ine. cs sheat either al d at a stable ice-	Graund maraine Daminantly ladgme washed ablation dr to abundantly ston ate caarse fraction careaus; compact Variably comminut beneath actively fl	Igm An till but with local venser of variably ift; clay till to silly clay till; moderately y; sillstone and sandstane channers domin- ; deeply asidized and essentially noncat- and generally impermeable. de rock moterial, transported by and lodged lowing ice of the continental ice sheet.	Lee- contact stratified drift Coarse gravel with subordinate pabbly so laterally variable, ronging from sand to subordinate lenses of unsorted flow ill; iable; moderately to highly permeable; s daminate coarse fraction; oxidized and e eous; uncemanted. Deposition as ablation marains, mudflow streams distributing drift on stagmant (or finally as the buried ice method. Steep of	nd, well stratified but coarse gravel and altitude of beds var- iitstone and sandstone sssentially noncalcar- and by meltwater to be deposited laces commoniv mark	Outwash and terra Pebble and cobble entremety permeab eralty tess than 34 cemented; contains materiats; caldized Osposition by stran sheets. Coarse all served as limited region.	log ca gravel gravel with subordinate sand; well-sorted; la; carbonate and crystalline clasts gan- % of the accarse traction; generally un- lower proportion of shale than in associ- and noncalcoreous in general. aly aggrading streams flowing from ice wium deposited as valley trains and pre- terrace remnants beyond the glaciated		

2

. .

-

NYS WETLANDS MAPS

NYS Wetlands Maps were reviewed during the Phase I investigation. Individual maps for each site were not obtained and are, therefore, not included in the Phase I reports. Site specific information collected concerning the location of a wetland within 1 mile of a given site is recorded in the documentation section of each report.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID AND HAZARDOUS WASTE INACTIVE HAZARDOUS WASTE DISPOSAL SITE REPORT

 CLASSIFICATION CODE: 2a
 REGION: 9
 SITE CODE: 915014

 NAME OF SITE : Chemical Leaman Tank Lines
 STREET ADDRESS: 470 Filmore Avenue

 TOWN/CITY:
 COUNTY:
 ZIP:

 Tonawanda
 Erie

 SITE TYPE: Open Dump Structure Lagoon

 SITE TYPE: Open Dump Structure Lagoon Landfill

 Treatment Pond-X

 ESTIMATED SIZE: -1
 Acres

SITE OWNER/OPERATOR INFORMATION:

CURRENT OWNER NAME....: Chemical Leaman Tank Lines, Inc. CURRENT OWNER ADDRESS.: 470 Filmore Avenue., Tonawanda, NY OWNER(S) DURING USE...: OPERATOR DURING USE...: Chemical Leaman OPERATOR ADDRESS.....: 470 Filmore Avenue, Tonawanda, NY PERIOD ASSOCIATED WITH HAZARDOUS WASTE: From Unknown7 To Present

SITE DESCRIPTION:

Garage, storage yard, and settling ponds for tank trailers and tractors. "Heels" from nondedicated tankers which have been used for incompatible products are drummed and removed off-site to an approved TSD facility. Tank washings, after draining, pass through the three ponds, where floating material is skimmed off. Solids settling in the ponds are periodically removed to an approved off-site TDS facility. Discharge from ponds to Tonawanda sewer system.

Hazardous (MASTE DIS	POSED:	Cor	X-bearing	Suspected	- QUANIITY_	(units)
Cleanout 1	ora bulk	liquid	tank	trailers	U	Ink nown	

REF - 8

SITE CODE: 915014

ANALYTICAL DATA AVAILABLE:

Air- Surface Water- Groundwater- Soil- Sediment- None-X

CONTRAVENTION OF STANDARDS:

Groundwater- Drinking Water- Surface Water- Air-

LEGAL ACTION:

TYPE..: None State- Federal-STATUS: In Progress- Completed-

REMEDIAL ACTION:

Proposed- Under Design- In Progress- Completed-NATURE OF ACTION: None

GEDTECHNICAL INFORMATION: SOIL TYPE: Clayey GROUNDWATER DEPTH: >10'

ASSESSMENT OF ENVIRONMENTAL PROBLEMS:

No apparent environmental problems associated with this site.

ASSESSMENT OF HEALTH PROBLEMS:

Insufficient information.

PERSON(S) COMPLETING THIS FORM:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NAME.: John S. Tygert, P.E. TITLE: Senior Sanitary Engr.

NAME.: Roberto A. Olazagasti TITLE: Solid Waste Management Spec.

DATE .: 01/24/85

NEW YORK STATE DEPARTMENT OF HEALTH

NAME.: R. Tramontano TITLE: Bureau Tox. Subst. Assess.

NAME .: E. D. Gilligan TITLE: Geologist 5/23/85 DATE .: 01/24/85

Page 9 - 114

•

- ES ENGINEERING-SCIENCE -

REF- 9.

INTERVIEW FORM

INTERVIEWEE/CODE Jun Sneder Mike Wilkenson 1 TITLE - POSITION <u>NV.5 DEC</u> Div Wildlix ADDRESS De la wane Ane CITY AULA STATE ZIP PHONE RESIDENCE PERIOD TO LOCATION IN DEC office INTERVIEWER Eleo lipan DATE/TIME 1/10/857 851 SUBJECT: te indat ma REMARKS: The above-hamed interirences (DADII, de the Allowing Infor with 111 100 iaeana & NAN SITER nnina area V UII Pana Aller V anox enveronmente & proposed He 0 bara, area Chemical Leamon - There is no critical habitat of an endancered species withen one parte of the R1 to I AGREE WITH THE ABOVE SUMMARY OF THE INTERVIEW: SIGNATURE: Michael Conservation B. Blagist lang Cha Bulic COMMENTS: 91.owell mina

ć...

÷.

REF-10

US CENSUS DATA, 1980

US Census Data used in the HRS scoring was obtained from various County Planning Offices. This data was not obtained from a report. The raw census data combined with County Planning Maps was used to estimate the population within 1, 2, 3, and 4 miles of the Phase I site being investigated. Because of the voluminous amount of data used, the data is not provided in this Appendix.

Climatic /

ALLE

the Uni 1979

Imircal

Department of Co

U.S.

Figure 5 Normal Annual Total Precipitation (inches)

States.

erce, Hotional Climotic Conter,

Source: Raisfell Prequency Atlas of the United States, Technical Paper Mo. 40, U.S. Department of Commerce, U.S. Covernment Printing Office, Washington, D.C., 1963.

Figure 8

I D D

1-Year 24-Hour Rainfall (Inches)

167. CHEMICAL LEAMAN TANK LINES (USGS reconnaissance)

NYSDEC 915014

REF-14

General information and chemical-migration potential.--The Chemical Leaman Tank Lines site, in the city of Tonawanda, consists of three unlined settling ponds that are used to hold drained tanker residue for offsite disposal to the Tonawanda sewer system.

Geologic and chemical data indicate a possibility for contaminant migration, but the potential is indeterminable. Ground-water samples contained several organic compounds that could be associated with past disposal operations.

<u>Geologic information</u>.--The Anderson Drilling Company drilled four test borings in 1981. The drilling logs indicate that the site consists of fill overlying a fine silty sand approximately 15 ft thick and underlain by a soft red clay. The borings did not reach bedrock, which is probably Camillus Shale.

Table B-31.--Analyses of ground-water samples from Chemical Leaman Tank Lines, site 167, Tonawanda, N.Y., July 19, 1982.

[Concentrations are in μ g/kg; dashes indicate that compound was not found, LT indicates it was found but below the quantifiable detection limit.]

· · · _ · _ · _ · _ · _ · _ ·	Sample number a	nd depth below 1	and surface (ft)
-	1	2	3
	(8.1)	(8.7)	(11.6)
DH	6.9	7.0	7.4
Specific conductance (umbo/cm)	1,496	2,400	1,400
Temperature (°C)	11.0	11.0	11.0
Organic compounds Priority pollutant Phenol		LT	, 38†
Nonpriority pollutants			
3,4-Dichlorobenzoic acid ¹	780		
4-(1,1-Dimethylethyl)pheno	1 ¹		62
$1-(2-Butoxyethoxy)ethanol^1$	690		
Compounds potentially of natu	ral origin		
1-uevanol ¹			60
2-Methyl-2-propanol ¹	13	~~	

- ¹ Tentative identification based on comparison with the National Bureau of Standards (NBS) library. No external standard was available. Concentration reported is semiquantitative and is based only on an internal standard. GC/MS spectra were examined and interpreted by GC/MS analysts.
- † Exceeds USEPA criterion for maximum permissible concentration in drinking water or New York State standard for maximum concentration in ground water.

1.

Hydrologic information.--Ground water was encountered at depths of 8 to 12 ft below land surface. The direction of ground-water flow is southward toward Filicott Creek.

Chemical information.--The U.S. Geological Survey collected water samples from three monitoring wells downgradient from the settling ponds along the southern boundary of the property. Each sample was analyzed for organic compounds; results are given in table B-31. Phenol concentrations in samples from well 3 exceed the USEPA criterion for drinking water and the NYS ground-water standard. No other priority pollutants were found.

,

. .

. . . .

POTENTIAL H PRELIMI PART 1 - SITE INFO	HAZARDOUS WASTE SITE INARY ASSESSMENT ORMATION AND ASSESSMENT
II. SITE NAME AND LOCATION	
The name (Logal control of control of and the state	470 EI Aug
OSCITY	04 STATE 05 ZIP CODE 06 COUNTY 07 COUNTY 08 CONG
Tonawanda	NY 14150 ERIE 029 36
OP COORDINATES LATITUDE LONGITUDE	
10 DIRECTIONS TO SITE (Starting from nearest public road)	
	· · · · · · · · · · · · · · · · · · ·
111. REPONDIBLE FAR HED 01 OWNER (# known)	02 STREET (Business, maling, residential)
Chemical Leamon Tank Line	es 470 Filmore Are
OS CITY	04 STATE 05 ZIP CODE 06 TELEPHONE NUMBER
07 OPERATOR (If known and different from owner)	OB STREET (Business, meding, residential)
Chemical Learnans TANKe Line	es Po Box 200
in wille	14 19353 12151 363-4233
F. OTHER:	ONTROLLED WASTE SITE (CERCLA 103 C) DATE RECEIVED:
IV. CHARACTERIZATION OF POTENTIAL HAZARD	איז
01 ON SITE INSPECTION BY (Check all (het aboly) TYES DATE // DAY YEAR DAY EAR DOCAL HEAL NO	() D. EPA CONTRACTOR C. STATE D. OTHER CONTRACTOR ALTH OFFICIAL F. OTHER: (Specify)
O2 SITE STATUS (Check one) O3 YEARS	AME(5):
	BEGINNING YEAR ENDING YEAR
04 DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT, KNOWN, OR ALLEGED phonol and heavy metal: (10- apprendimental: 6010	(manganese, 100, lead, were detect
DS DESCRIPTION OF POTENTIAL HAZARD TO ENVIRONMENT AND/OR POPULAT	ATION
interom	
V. PRIORITY ASSESSMENT	
01 PRIORITY FOR INSPECTION (Check one, if high ar medium is checked, complete Part 2 A. HIGH (Inspection required promptly) (Inspection required) (Inspection required) (Inspection required)	2 · Waste Information and Part 3 · Description of Hazardous Conditions and Incidents) OW D. NONE D. NONE https://oww.complete.com
VI. INFORMATION AVAILABLE FROM	
OI CONTACT 02 OF IAG	gency: Organization) 03 TELEPHONE NUMBER
04 PERSON RESPONSIBLE FOR ASSESSMENT 05 AGENC	NCY OB ORGANIZATION O7 TELEPHONE NUMBER OB DATE
S Dobert STERIG IT	ES SALAR MONTH DAY YEAR

EPA FORM	2070-	12(7-81)

\$€F	A	PO	TENTIAL HAZAF SITE INSPEC PART 2 - WASTI	RDOUS WASTE TION REPORT E INFORMATION	SITE	I. IDENTIFICATION	ON UMBER 8380205
. WASTE ST	ATES, QUANTITIES, AN	D CHARACTER	ISTICS				·
DI PHYSICAL ST	ATES (Check all their apphy)	O2 WASTE QUANT (Measure i must be FONS CUBIC YARDS NO. OF DRUMS	TTY AT SITE of waste quantities independent) 150,000 cm	O3 WASTE CHARACTE	RISTICS (Check all that apply E. SOLUBLE SIVE F. INFECTIO CTIVE G. FLAMMA 'ENT H. KGNITABL	US I. HIGHLY V US J. EXPLOS BLE K. REACTIV E L. INCOMP	VOLATILE IVE ATIBLE PLICABLE
III. WASTE T	(PE						
CATEGORY	SUBSTANCE N		01 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS		
(SLU)	SLUDGE		Unknown		- alum vite	Solids in	1980000
OLW	OILY WASTE				3 Laurons -	407100 17	dorn liq
SÓL	SOLVENTS				-	40 ×40 ×3	' derp lig
PSD	PESTICIDES					40,40,3	Jerp 1.4
000	OTHER ORGANIC C	HEMICALS			Lagonns h	ad oily loy,	<u>`````````````````````````````````````</u>
IOC	INORGANIC CHEMIC	CALS				1 1	
ACD	ACIDS			-	15-20 dium.	s on Stora	e Pad
BAS	BASES						
MES	HEAVY METALS			-	2 helow arou	and starage	manholes
V. HAZARDO	OUS SUBSTANCES (S	uppendix for most freque	ntly cited CAS Numbers)		- /		
1 CATEGORY	02 SUBSTANCE	NAME	03 CAS NUMBER	04 STORAGE/DISF	POSAL METHOD	05 CONCENTRATION	06 MEASURE O
	phanols		108-95-2	Inw do	ta	.0105	mall
	mancanese		7439-96-5	Inw do	ter	.09- 13	myll
	1/01	· .	15438-34-0	Inu de	ita .	2,5-300	ms Il.
	700			Inu de	ita 1	4-79	inall
	Joet oil	•		1/100 000			<i></i>
	TIMOLO DI	-					
		······				· · · · · · · · · · · · · · · · · · ·	
							1
							1
							<u> </u>
				<u> </u>			<u>+</u>
				+			+
				<u> </u>			
					<u> </u>		
V. FEEDSTC	CKS (See Appendix for CAS Nur	ibers)					
CATEGORY	01 FEEDSTO	CK NAME	02 CAS NUMBER	CATEGORY	01 FEEDSTOC		02 CAS NUMBE
FDS				FDS			
FDS				FDS			
FDS			1	FDS			
FDS				FDS			
VI SOURCE		10 000000		reportai			
Sife .	soprection 5	y Es	and DE	m, 4/18/	25		<u> </u>
USG S	and the	mean co	0	inay tisk	ance, 1	101-0-	

.**..**

.

. .

· I. IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE 01 STATE 02 SITE NUMBER SITE INSPECTION REPORT -----048380205 PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS II. HAZARDOUS CONDITIONS AND INCIDENTS 02 OBSERVED (DATE: _____ 983_) 01 X A. GROUNDWATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: D POTENTIAL T ALLEGED 04 NARRATIVE DESCRIPTION menants detected in Organic Cri W2 115 on ROTENTIAL D ALLEGED 01 8 B. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: 02 DOBSERVED (DATE: 04 NARRATIVE DESCRIPTION possible Creek 40 due seep 5 C ALLEGED 02 D OBSERVED (DATE: . **D** POTENTIAL) 01 C. CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION 2Nr C ALLEGED D POTENTIAL 01 D. FIRE/EXPLOSIVE CONDITIONS 02 C OBSERVED (DATE: **04 NARRATIVE DESCRIPTION** 03 POPULATION POTENTIALLY AFFECTED: ND O ALLEGED D POTENTIAL 01 C E. DIRECT CONTACT 02 OBSERVED (DATE: 03 POPULATION POTENTIALLY AFFECTED: _ 04 NARRATIVE DESCRIPTION Inhuown -POTENTIAL C ALLEGED 02 C) OBSERVED (DATE: 01 C.F. CONTAMINATION OF SOIL 03 AREA POTENTIALLY AFFECTED: **04 NARRATIVE DESCRIPTION** (Acres) n Ja Ō r a D \cap Du D POTENTIAL 02 OBSERVED (DATE: .) 01 C G. DRINKING WATER CONTAMINATION **04 NARRATIVE DESCRIPTION** 03 POPULATION POTENTIALLY AFFECTED: ND D POTENTIAL D ALLEGED 02 OBSERVED (DATE: 01 D H. WORKER EXPOSURE/INJURY • 03 WORKERS POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION un kno un O POTENTIAL C ALLEGED 02 O OBSERVED (DATE: 01 I. POPULATION EXPOSURE/INJURY **04 NARRATIVE DESCRIPTION** 03 POPULATION POTENTIALLY AFFECTED: inknow

EPA FORM 2070-13 (7-81)

- 23

- - - -

81) .

	· · · · · · · · · · · · · · · · · · ·		
- POTENTIA	L'HAZARDOUS WASTE SITE	 	IDENTIFICATION
SEPA	INSPECTION REPORT F HAZARDOUS CONDITIONS A		STATE 02 SITE NUMBER NY 0048380205
II. HAZARDOUS CONDITIONS AND INCIDENTS (Continued))		
01 0 J. DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION			ENTIAL DALLEGED
due to contassu	nan myra	ta	
01 X K. DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION (Include name(s) of species)) کُەبەت مەربىكە	ENTIAL D ALLEGED
01 12 L. CONTAMINATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	02 D OBSERVED (DATE:) ¢POT	
01 01 UNSTABLE CONTAINMENT OF WASTES (Spitts/Rungil/Slanding liquids, Leaking drums) 03 POPULATION POTENTIALLY AFFECTED:	02 DOBSERVED (DATE:	<u>975)</u> DPOT	ENTIAL D ALLEGED
unlined 5.077 h	ap poinds		
01 IN. DAMAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION	02 🗆 OBSERVED (DATE:)	ENTIAL D ALLEGED
NO	· · · · · · · · · · · · · · · · · · ·		
01 O. CONTAMINATION OF SEWERS, STORM DRAINS, W 04 NARRATIVE DESCRIPTION	WTPs 02 COBSERVED (DATE:) 🗆 POT	ENTIAL O ALLEGED
No			
01 D P. ILLEGAL/UNAUTHORIZED DUMPING 04 NARRATIVE DESCRIPTION	02 🗆 OBSERVED (DATE:) 🗆 POT	ENTIAL D ALLEGED
No			
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR	ALLEGED HAZARDS		· · · · · · · · · · · · · · · · · · ·
None	-		
III. TOTAL POPULATION POTENTIALLY AFFECTED:	ð	-	
IV. COMMENTS	•• 	<u></u>	
		·	
V. SOURCES OF INFORMATION (Cite specific references a n sta	ite Ides, sample enalysis, reports)		·
Site visit 1585			
i			
EPA FORM 2070-13 (7-81)		•	

Υ

. . .

	NTIAL HAZARD SITE INSPECTI	OUS WASTE SITE ON REPORT		I. IDENTIFICATION O1 STATE O2 SITE NUMBER NY 0048380205
PART 1 - SITE	LOCATION AND	INSPECTION INFORM		
		A CTREET DOUTE NO. OR CO	-	
Chemical Leaman Tank	e Lines	470 Film	nore A	VC
os criv	C	A STATE OS ZIP CODE	08 COUNTY	07COUNTY 08 CONG CODE DIST
09 COORDINATES	O TYPE OF OWNERSHIP	(Check one)		D. COUNTY C E. MUNICIPAL
<u>YZ 00 92 78 57 33</u>	F. OTHER			G. UNKNOWN
01 DATE OF INSPECTION 02 SITE STATUS <u>4</u> ,18,85 <u>10</u> INACTIVE <u>10</u> INACTIVE	03 YEARS OF OPERATIO	NING YEAR ENDING YEAR	<u>+ ×</u>	UNKNOWN
04 AGENCY PERFORMING INSPECTION (Check all that apply)	nc Science		UNICIPAL CONTR	RACTOR
	me of lim)		(Specify)	
S. Robert STERLE, I	Envinonmen	tol. Scientist	07 ORGANIZA	(703)591-7575
OBOTHERINSPECTORS John P. McAuliffe	10 TITLE Environ me	ntal Engineer	11 ORGANIZA ES	TION 12 TELEPHONE NO. (3/5) 451-470 つ
Dr. Eileen Gilligan	Geologis	t	D+M	(315)638-2572
				()
				()
				()
Bruce J. Hartmann	Manager, th Service	V, Chemical La S Lionville	PA 193	6 Lines 18 TELEPHONE NO 153 (215) 363 - 4233
James A. Rakitsky	Chemical Engin	err Il	11	(/() // //
James Wegrzyn	Terminal Monayer	470 F;IIn Tonawanda	NY 1	4150 ()
•				()
			• 	()
				()
17 ACCESS GAINED BY 18 TIME OF INSPECTION (Check one) 18 TIME OF INSPECTION (Check one) 230 A M WARRANT 230 A M	19 WEATHER CONDIT	Windy, 60	° /=	
IV. INFORMATION AVAILABLE FROM				
S. COSENT STEELE, I	02 OF (Agency/Organizat	enning - Suc	nce	03 TELEPHONE NO. (703) 571-7575
04 PERSON RESPONSIBLE FOR SITE INSPECTION FORM S. ROSENT STEELE I	05 AGENCY	08 ORGANIZATION	07 TELEPHONE	NO. 08 DATE

•

.

•

.

EPA FORM 2070-13 (7-81)

\$ EP	A	POT	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 2 - WASTE INFORMATION				
I. WASTE ST	ATES, QUANTITIES, AN	D CHARACTER	ISTICS				
01 PHYSICAL ST/ A. SOLID B. POWDER, C. SLUDGE D. OTHER	ATES (Check all that apply)	02 WASTE QUANTI (Measures o must be TONS / CUBIC YARDS -	ITY AT SITE (veste quantities independent) (50,000 gal	O3 WASTE CHARACTE	ERISTICS (Check of that app E. SOLUBI SIVE F. INFECTI CTIVE G. FLAMM FENT H. IGNITAB	AY) LE □ I. HIGHLY I OUS □ J. EXPLOS ABLE □ K. REACTI ILE □ L. INCOMP M. NOT AP	VOLATILE IVE VE PATIBLE PLICABLE
III. WASTE TY	'PE				<u> </u>	·····	÷
CATEGORY	SUBSTANCE	AME	01 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS	······································	
(SLU)	SLUDGE		UNKnown		- accumulate	J Solids in	199000
OLW	OILY WASTE				3 Langary -	- 40%100 17'	deen lin
SÓL /	SOLVENTS	······································		····		- 40 ×40 ×3	'deral.
PSD	PESTICIDES				-	- 40×40 ×3	JerA 1
000	OTHER ORGANIC CI	HEMICALS		· · · · · · · · · · · · · · · · · · ·	Lagonns 1	ad oily lay,	۰ <u>۲</u>
100	INORGANIC CHEMIC	ALS				······································	-
ACD	ACIDS			-	15-20 dium	s on Stora	ye Pad
BAS	BASES						
MES	HEAVY METALS				2 below aro	und storage	manho
IV. HAZARDO	US SUBSTANCES (See A	opendix for most frequent	tly cited CAS Numbers)		,		
D1 CATEGORY	02 SUBSTANCE N	AME	03 CAS NUMBER	04 STORAGE/DISI	POSAL METHOD	05 CONCENTRATION	06 MEASUR
	phenols		108-95-2	Inw da	ta	.0105	mg/
	manganese		7439-96-5	Gru do	ta	.09- 13	m5/-
	Iron		15438-31-0	Inu de	ata	2,5-300	mal
	Toc			Inw de	ata i	14-79	ingla
	LASTE oil	•					
	- 						ļ
							ļ
							ļ
			1				ļ
	<u> </u>						
						<u> </u>	
							
	······						<u> </u>
	*****************			· · ·		<u></u>	<u> </u>
		-					
V. FEEDSTO	CKS (See Appendix for CAS Num	iers)					
CATEGORY	01 FEEDSTOO		02 CAS NUMBER	CATEGORY	01 FEEDSTO	CKNAME	02 CAS NUM
FDS				FDS			
FDS				FDS			
FDS				FDS			
FDS				FDS			
VI. SOURCES		specific references, e.g.	., state files, sample analysis,	reports)			
CATEGORY FDS FDS FDS VI. SOURCES SIFE 1	01 FEEDSTOC	specific references, e.g	02 CAS NUMBER	CATEGORY FDS FDS FDS FDS reports 7 4/18/	01 FEEDSTO		02 C/

....

. . .

- -

• •

•

I. IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE 01 STATE 02 SITE NUMBER €FPA SITE INSPECTION REPORT NY 10048380205 PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS. II. HAZARDOUS CONDITIONS AND INCIDENTS 01 XI A. GROUNDWATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: 02 OBSERVED (DATE: ____ 1983) 04 NARRATIVE DESCRIPTION detected Organce contamenants w or -01 X B. SURFACE WATER CONTAMINATION 03 PORULATION POTENTIALLY AFFECTED: 02 C OBSERVED (DATE: ROTENTIAL D ALLEGED 04 NARRATIVE DESCRIPTION ¥0 Doss where due. st 405 01 C. CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED: 02 OBSERVED (DATE: D POTENTIAL D ALLEGED **04 NARRATIVE DESCRIPTION** know 01 D. FIRE/EXPLOSIVE CONDITIONS 02 C OBSERVED (DATE: D POTENTIAL C. ALLEGED 1 03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION ND 01 D E. DIRECT CONTACT 02 C OBSERVED (DATE: D POTENTIAL ALLEGED 03 POPULATION POTENTIALLY AFFECTED: **04 NARRATIVE DESCRIPTION** known 01 CF. CONTAMINATION OF SOIL 02 C OBSERVED (DATE: POTENTIAL ALLEGED 03 AREA POTENTIALLY AFFECTED: **04 NARRATIVE DESCRIPTION** (Acres) 10 11 n 10 7) Tou n 1)a ، م 01 G. DRINKING WATER CONTAMINATION 02 DOBSERVED (DATE: D POTENTIAL D ALLEGED **03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION** ND 01 D H. WORKER EXPOSURE/INJURY 02 DOBSERVED (DATE: . D POTENTIAL ALLEGED . 03 WORKERS POTENTIALLY AFFECTED: **04 NARRATIVE DESCRIPTION** hn know. 02 OBSERVED (DATE: 01 I. POPULATION EXPOSURE/INJURY D POTENTIAL. C ALLEGED 03 POPULATION POTENTIALLY AFFECTED: **04 NARRATIVE DESCRIPTION** known EPA FORM 2070-13 (7-81)

SEPA PART 3 - DE	POTENTIAL I SITE IN SCRIPTION OF H	HAZARDOUS WASTE SITE ISPECTION REPORT IAZARDOUS CONDITIONS AND INC	DENTS	I. IDENTIFIC 01 STATE 02 NY C	CATION SITE NUMBER 048380
II. HAZARDOUS CONDITIONS AND INC	IDENTS (Continued)				
deve to Can	Janua	al myrata	_	FOTENTIAL	LJ ALLEGED
01 D K. DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION (Include name(a) (d species)	02 🗆 OBSERVED (DATE:	_, _	POTENTIAL	
DAVEL. CONTAMINATION OF FOOD CHAIN DA NARRATIVE DESCRIPTION	/	02 🗆 OBSERVED (DATE:	_, ¤	POTENTIAL	
01 M. UNSTABLE CONTAINMENT OF WA (Spills/Rumoil/Standing Bquids, Leaking drums) 03 POPULATION POTENTIALLY AFFECTED:		02 OBSERVED (DATE: 7 65		POTENTIAL	C ALLEGED
unlined 2	e Hung	pondo		<u></u>	
01 IN. DAMAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION		02 🗋 OBȘERVED (DATE:) □	POTENTIAL	
· · · · · · · · · · · · · · · · · · ·	NO	·	<u> </u>		
01 □ O. CONTAMINATION OF SEWERS, ST 04 NARRATIVE DESCRIPTION	ORM DRAINS, WWTP $\mathcal{M}_{\mathcal{D}}$	3 02 🗍 OBSERVED (DATE:	_) □1	POTENTIAL	
01 D P. ILLEGAL/UNAUTHORIZED DUMPIN 04 NARRATIVE DESCRIPTION	G	02 OBSERVED (DATE:	_) DF	POTENTIAL	
	No				
5 DESCRIPTION OF ANY OTHER KNOWN,	POTENTIAL, OR ALL	EGED HAZARDS			
\mathcal{N}	one				
II. TOTAL POPULATION POTENTIALLY V. COMMENTS	AFFECTED:				·····
SOURCES OF INFORMATION (Cite species	ic references, e. g., štate lües	, Sample analysis, reports;			
Sid Visit 1) <u>(</u>)				

•

SEPA	POTENTIA S PART 4 - PERMIT	ION	1. IDENTIFICATION OI STATE 02 SITE NUMBER NT DOY838022			
II. PERMIT INFORMATION						
01 TYPE OF PERMIT ISSUED (Check all that apply)	02 PERMIT NUMBER 03 DATE ISSUED 04 EXPIRATION DATE 05 COMMEN			05 COMMENTS		
B. UIC						
D. RCRA		- 				
E. RCRA INTERIM STATUS		· .				
		+				
		+			<u> </u>	
		+				
III. SITE DESCRIPTION	I					
01 STORAGE/DISPOSAL (Check all that apply)	02 AMOUNT 03 UNIT OF	FMEASURE	04 TR	EATMENT (Check all that as	opły)	05 OTHER
 X A. SURFACE IMPOUNDMENT □ B. PILES X C. DRUMS, ABOVE GROUND 	<u>150,000 - ga</u> <u>15-20 - div</u>	<u>Ilbas</u> ms	□ A. □ 9. □ C.	NCENERATION JNDERGROUND INJE CHEMICAL/PHYSICA	ECTION L	A. BUILDINGS ON SITE
X E. TANK, BELOW GROUND	<2.000 Gall	n		D. BIOLOGICAL E. WASTE OIL PROCESSING F. SOLVENT RECOVERY		06 AREA OF SITE
			0 F. 5			
			🗆 G.	OTHER RECYCLING/	RECOVERY	(Acres
						Drumstorage + lagoon
tanke- untsh O from transces price amounts or price IV. CONTAINMENT OI CONTAINMENT OF WASTES (Check one)	t operations reation to chash on ty pollegant	· He	220. 2145 - CO	-dors un h unte-s llected (un	Aster a Contra dongrand	e emptied ing trace tanked for disposed
	B. MODEHATE	· L C. IA			U D. INSECU	RE, UNSOUND, DANGEROUS
02 DESCRIPTION OF DRUMS, DIKING, LINER The lagionons uncle-lue the s Samples collecte	do not have to, contamin of from the c	- line ants on-sil	ins , have	4 owever, been de	notion tector . weils.	h clay deposits in growlanter
V. ACCESSIBILITY						
01 WASTE EASILY ACCESSIBLE: D 02 COMMENTS 4' Chain	res ¤no link fence d	around	d ,	lagoon + c	drum sta	nog e
VI. SOURCES OF INFORMATION (CH	e specific references, e.g. state files, samp	le enelysis, repo	orta)	· · · · · · · · · · · · · · · · · · ·		
Site inspection	Conducted 5	7 ES	•	nd OEX	n 4/1	8/85.
	<i>د</i> ر مر ر ،	su H	. 11	51-5 (190)	1) and	- Chemina

JEFA	·	POTEr S PART 5 - WATER, I	NTIAL HAZARI SITE INSPECT DEMOGRAPHIC	DOUS WASTE ION REPORT ;, AND ENVIRO	SITE	OI STATE OZ SITE NUME
II. DRINKING WATER	SUPPLY					
01 TYPE OF DRINKING SUF	PPLY		02 STATUS			03 DISTANCE TO SITU
(Слеся аз аррисале)	SURFACE	WELL	ENDANGERED	AFFECTED	MONITORED	
	A_754. C.□	B. () D. ()	A. L. D. C.	8. LJ E. D	F. C	B
III. GROUNDWATER						<u> </u>
01 GROUNDWATER USE IN	N VICINITY (Check on	•}				
A. ONLY SOURCE F	FOR DRINKING	B. DRINKING (Other sources evaluable COMMERCIAL, IND (No other water sources)	e) IUSTRIAL, IRRIGATION 8 available)	C. COMMER (Limited othe	CIAL, INDUSTRIAL, IRRIG/ v sources evelable)	ATION XO. NOT USED, U
02 POPULATION SERVED	BY GROUND WATE	RO		03 DISTANCE TO NE	AREST DRINKING WATER	
04 DEPTH TO GROUNDWA	ATER	05 DIRECTION OF GROU	JNDWATER FLOW	06 DEPTH TO AQUIF	ER 07 POTENTIAL YIL	ELD 08 SOLE SOURC
0.5-2.	<u>O (ft)</u>	S		8-12	_(ft)	(gpd).
10 RECHARGE AREA	rs /				A MENTS	
	Lundo				>	
IV. SURFACE WATER	R					
01 SURFACE WATER USE	(Check one)	<u> </u>	N		· · · · · · · · · · · · · · · · · · ·	
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME:	(Check one) RECREATION TER SOURCE	B. IRRIGATION IMPORTAN DIES OF WATER	I, ECONOMICALLY TRESOURCES		ERCIAL, INDUSTRIAL	D. NOT CURREN
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME:	(Check one) RECREATION TER SOURCE	DIES OF WATER	I. ECONOMICALLY TRESOURCES	С. СОММЕ		D. NOT CURREN D DISTANCE TO $ac^{(} c c c c c)$
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME:	(Check one) RECREATION TER SOURCE ILLY AFFECTED BOI EILL C N I a G	DIES OF WATER	I, ECONOMICALLY TRESOURCES		ERCIAL, INDUSTRIAL AFFECTE	D DISTANCE TO $ac^{(} c c c c c)$
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME:	(Check one) RECREATION TER SOURCE	$\Box B. IRRIGATIONIMPORTANTDIES OF WATERO + CreO C - Riv$	I. ECONOMICALLY TRESOURCES		ERCIAL, INDUSTRIAL	D DISTANCE TO $ac^{l}(a ccn)$ $ac^{l}(b ccn)$ ac^{l}
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME: V. DEMOGRAPHIC A	(Check one) RECREATION TER SOURCE LLY AFFECTED BOI EIIIC NIAGO ND PROPERTY	DIES OF WATER 0 + C Y C 0	I, ECONOMICALLY TRESOURCES		ERCIAL, INDUSTRIAL	D DISTANCE TO
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME: V. DEMOGRAPHIC A 01 TOTAL POPULATION W	(Check one) RECREATION TER SOURCE LLY AFFECTED BOI EIIIC NI AG ND PROPERTY VITHIN	B. IRRIGATION	I, ECONOMICALLY TRESOURCES		ERCIAL, INDUSTRIAL	D DISTANCE TO
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME: V. DEMOGRAPHIC A 01 TOTAL POPULATION W ONE (1) MILE OF SIT A.	(Check one) AECREATION TER SOURCE ILLY AFFECTED BOI EILL C N I AG ND PROPERTY WITHIN TE TWO B.	DIES OF WATER 0 + + Crep 0 + + Crep	I, ECONOMICALLY TRESOURCES		ERCIAL, INDUSTRIAL	D DISTANCE TO act (a con 1.5 REST POPULATION (mi)
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME: V. DEMOGRAPHIC A 01 TOTAL POPULATION W ONE (1) MILE OF SIT A	(Check one) RECREATION TER SOURCE LLY AFFECTED BOI NI AGE NI AGE	B. IRRIGATION IMPORTANT DIES OF WATER O + + Crei O + Crei O C + Crei O (2) MILES OF SITE	I, ECONOMICALLY TRESOURCES	I) MILES OF SITE		
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME: V. DEMOGRAPHIC A 01 TOTAL POPULATION W ONE (1) MILE OF SIT A	(Check one) RECREATION TER SOURCE ELLY AFFECTED BOI ELLY AFFECTED BOI NID PROPERTY VITHIN TE TWO SS WITHIN TWO (2)	DIES OF WATER DIES OF WATER O + + Crei O Crei O (2) MILES OF SITE MILES OF SITE	I, ECONOMICALLY TRESOURCES	D MILES OF SITE	EAREST OFF-SITE BUILDI	D DISTANCE TO act (a cent
01 SURFACE WATER USE RESERVOIR, R DRINKING WAT 02 AFFECTED/POTENTIAL NAME: V. DEMOGRAPHIC A 01 TÓTAL POPULATION W ONE (1) MILE OF SIT A	(Check one) RECREATION TER SOURCE LLY AFFECTED BOI NILY AFFECTED BOI NILY AFFECTED BOI NILY AFFECTED BOI NIL AGO NIL A	DIES OF WATER DIES OF WATER DIES OF WATER DIES OF WATER O + Crei Cr		D C. COMME		D DISTANCE TO act a control REST POPULATION D DISTANCE TO act a control act
O1 SURFACE WATER USE RESERVOIR, R DRINKING WAT O2 AFFECTED/POTENTIAL NAME: V. DEMOGRAPHIC A O1 TOTAL POPULATION W ONE (1) MILE OF SIT A NO. OF PERSONS O3 NUMBER OF BUILDING O5 POPULATION WITHIN V Soace	Check one) AECREATION TER SOURCE LLY AFFECTED BOI EILIC NI AG NI AG ND PROPERTY VITHIN TE TWO B SS WITHIN TWO (2) VICINITY OF SITE (P A M	DIES OF WATER DIES OF WATER O + + Crev Creve River INFORMATION O (2) MILES OF SITE NO. OF PERSONS MILES OF SITE Travide neurative description of B urb un	I, ECONOMICALLY TRESOURCES	C. COMME	ERCIAL, INDUSTRIAL AFFECTE O O O O O O O O O O O O O O O O O O	D DISTANCE TO $ac_{(a} c_{(a)}$ $ac_{(a)} c_{(a)}$ REST POPULATION $ac_{(mi)}$ NG (mi) $ac_{(mi)}$ $ac_{(mi)}$

I. IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE O1 STATE 02 SITE NUMBER SEPA SITE INSPECTION REPORT 0048380205 NУ PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA VI. ENVIRONMENTAL INFORMATION 01 PERMEABILITY OF UNSATURATED ZONE (Check one) B. 10-4 - 10-6 cm/sec C. 10-4 - 10-3 cm/sec D.D. GREATER THAN 10-3 cm/sec □ A. 10⁻⁶ - 10⁻⁸ cm/sec 02 PERMEABILITY OF BEDROCK (Check one) □ B. RELATIVELY IMPERMEABLE □ C. RELATIVELY PERMEABLE □ D. VERY PERMEABLE (10⁻⁴ - 10⁻⁶ cmvsec) (10⁻² - 10⁻⁴ cmvsec) (Greater than 10⁻² cmvsec) A. IMPERMEABLE (Less than 10-6 cm/sec) 03 DEPTH TO BEDROCK 04 DEPTH OF CONTAMINATED SOIL ZONE 05 SOIL pH known へふく (ff) (ft) 07 ONE YEAR 24 HOUR RAINFALL 08 SLOPE OB NET PRECIPITATION SITE SLOPE DIRECTION OF SITE SLOPE TERRAIN AVERAGE SLOPE Ω 0.3 0,3 5 % (in) (in) % 09 FLOOD POTENTIAL 10 SITE IS ON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOODWAY '00 YEAR FLOODPLAIN SITE IS'IN 12 DISTANCE TO CRITICAL HABITAT (of endangered species) MIGRATORY 71 11 DISTANCE TO WETLANDS (5 acre minimum) 7 ESTUARINE OTHER AQUILA CHRYSAETOS BIRDS 2 ENDANGERED SPECIES: HALLAEETUS 0.2 LEUCOCEPH (mi) (mi) В. 13 LAND USE IN VICINIT FALCO PEREGRENES DISTANCE TO: RESIDENTIAL AREAS; NATIONAL/STATE PARKS, FORESTS; OR WILDLIFE RESERVES AGRICULTURAL LANDS COMMERCIAL/INDUSTRIAL PRIME AG LAND AG LAND B. 0.06 (mi) 72 ____(mi) D. _ 7 A. O. (mi) (mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Seterare now level, gently sloping the south towards Ellicott Creek VII. SOURCES OF INFORMATION (Cite specific references, e.g., state files, semple analysis, reports) NS.G.S. Topographic Mays NYSDEC Region 9 Dept. of Fisht NYS Wettands Maps USGS 1983 Draft Report USDOC Technical Report No. 40 NYS Atlas of Community Water System Sources, 1980. Fisht wildlife files. S.Le VISLE 1585 USDOC Climatic Atlas of the United States. Map: "Depth to Bedrock," URS Engineers 1/80 EPA FORM 2070-13 (7-81)

₽EPA	P	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT ART 6 - SAMPLE AND FIELD INFORMATION	1. IDENTIFICATION 01 STATE 02 SITE NUMBER MY 0048 38020
IL SAMPLES TAKEN			
SAMPLE TYPE	01 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO	03 ESTIMATED DAT RESULTS AVAILA
GROUNDWATER			······································
SURFACE WATER			
WASTE			<u></u>
AIR			
RUNOFF		· · · · · · · · · · · · · · · · · · ·	
SPILL.		· · · · · · · · · · · · · · · · · · ·	······
SOIL			······
VEGETATION		· · · · · · · · · · · · · · · · · · ·	· · · ·
OTHER	···		
		L	<u> </u>
III. FIELD MEASUREMENT	S TAKEN		· ·
ILak.	that is in	to react and	not calle tot
TANG		and reacting area	NOT COMELLO
· · · · · · · · · · · · · · · · · ·	during	the ES and DEM	Site inspection
- <u></u>	die to	equipment Mathaction	
<i>**</i> *			
IV. PHOTOGRAPHS AND N	APS	······································	<u> </u>
	RIAL	02 IN CUSTODY OF Engineen - 5	Lench-
DI MAPS 04 LOC.	Site may	~ updated during passe	ction
V. OTHER FIELD DATA CO		scription)	
NONE			
VI. SOURCES OF INFORM	ATION (Cite specific references, e.	.g., state files. semple analysis. reports)	
VI. SOURCES OF INFORM	ATION (Cito specific references. e.	s. state files. sample anerysis. reports) S and D.S.M., 4/1.8/45_	

•

	- -		· · · · · · · · · · · · · · · · · · ·		1 IDENTIF		
SEPA		POT	ENTIAL HAZ SITE INSPE PART 7 - OW	ARDOUS WASTE SITE ECTION REPORT NER INFORMATION	01 STATE 0		e number 4838020
II. CURRENT OWNER(S)				PARENT COMPANY (If applicable)			
OI NAME	<u> </u>	02 0	+B NUMBER	OB NAME		09 0	+8 NUMBER
Chemical Leamons	TAMIC Line	5		Chemine Leamon	J TANK Line		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)			04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, e	tc.)		11 SIC CODE
470 Fill more	Ave		l	130× 200			2.0005
05 CITY	06 STAT	E 07 Z				142	
TonAuAnda	147		14150	Lionville	Pern		17333
01 NAME		02 0	+8 NUMBER	08 NAME		Dar	+ 5 NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	,		04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, .	lc.j	L	11 SIC CODE
05 CITY	06 STAT	E 07	ZIP CODE	12 CITY	13 STATE	142	
01 NAME		02	D+B NUMBER	08 NAME		09 ()+BNUMBER
03 STREET ADDRESS (P.O. Box, RFD #, etc.,)	1	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, .	(C.)		1 1 SIC CODE
05 СПУ	OB STAT	E 07	ZIP CODE	12 CITY	13 STATE	142	
01 NAME		02	D+B NUMBER	08 NAME		090	+8 NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, etc	.)	_	04 SIC CODE	10 STREET ADDRESS (P.O. Box. RFD . e	(C.)	<u>I</u>	1 1 SIC CODE
05 CITY	O6 STA	TE 07	1 ZIP CODE	12 CITY	13 STATE	14	ZIP ČODE
		1	· · · · · · · · · · · · · · · · · · ·	IV REALTY OWNER(S) (I souther	le: list most recent (iriti)	1	
01 NAME	rocon insi)	02	D+8 NUMBER	01 NAME		02	D+B NUMBER
PAILROad				1AKrown			
03 STREET ADDRESS (P.O. Box, RFD #, etc	.)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD	etc.)		04 SIC CODE
05 CITY	OBSTAT	TE 07	ZIP CODE	OS CITY	OB STATE	07	ZIP CODE
01 NAME		021	D+B NUMBER	01 NAME		02	D+8 NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, etc)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD	etc.)	<u>ل</u>	04 SIC CODE
05 CITY	OB STA	TE 07	ZIP CODE	05 CITY	OB STATE	07	ZIP CODE
01 NAME	L	02	D+B NUMBER	01 NAME	<u> </u>	02	D+8 NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, etc	.)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, #	NC.)	_	04 SIC CODE
05CITY	OBSTAT		7 ZIP CODE	05 CITY	OB STATE	07	ZIP CODE
V. SOURCES OF INFORMATION	Cite specific referenc	es, e.g.,	state files, sample analy:	sis, reports)	_	ـــــــــــــــــــــــــــــــــــــ	
Interview of	- Chem	e.cn	C. Lean	non comployees	ching the	55	and

.

.

	P	OTENTIAL HAZA	ARDOUS WASTE SITE	I. IDENTI	FICATION 2 SITE NUMBER
		PART 8 - OPERA	TOR INFORMATION	NY	0048380205
			OPERATOR'S PARENT COMPANY		
01 NAME	m owner)	02 D+8 NUMBER	10 NAME	epplicable)	
Chemical Leamons TANK	e cries		Cheminel Leamons TAN	h lines	I O TO NOMBER
03 STREET ADDRESS (P.O. Bax, AFD 0, ora.) 47.0 Filmore Au	e	04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, etc.) BOX 200		1 3 SIC CODE
Tonquarda	NY NY	07 ZIP CODE	Lionville	15 STATE	16 ZIP CODE 1935-3
08 YEARS OF OPERATION 09 NAME OF OWNER 1963 - Diesent SAM	E				
IIL PREVIOUS OPERATOR(S) (List most recent f	ly il different from owner)	PREVIOUS OPERATORS' PARENT CO		(applicable)	
OI NAME		02 D+B NUMBER	10 NAME		11 D+B NUMBER
Not applicable			Not applicable	2.	
03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	12 STREET ADDRESS (P. O. Box, RFD #, etc.)		13 SIC CODE
05 CITY	08 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
08 YEARS OF OPERATION 09 NAME OF OWNER	L DURING THI	S PERIOD		I	· · · · · · · · · · · · · · · · · · ·
	•	UZ D+B NOMBER	TUNAME		11 D+B NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, etc.)		13 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
08 YEARS OF OPERATION 09 NAME OF OWNER	DURING TH	IS PERIOD		I	<u>.</u>
O1 NAME		02 D+B NUMBER	10 NAME		11 D+B NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, etc.)		13 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
08 YEARS OF OPERATION 09 NAME OF OWNER	DURING TH	S PERIOD			
l					
IV. SOURCES OF INFORMATION (Cite specific	o references, e	ng., state files, sample enalysis	i, reports)		
Interview of Ch	umi	cal Lean	memployees de	rung F	the
Es and DEM	510	to Inspe	ction, 4/18/85		

:

:

.

EPA FORM 2070-13 (7-81)

€PA	PC PART 9 -	TENTIAL HAZ SITE INSPE GENERATOR/T	ARDOUS WASTE SITE ECTION REPORT RANSPORTER INFORMATION	1. IDENTIFIC	CATION SITE NUMBER 04838020
II. ON-SITE GENERATOR	<u></u>				
DINAME	a la luis	2 D+B NUMBER	The on-site sunt	have I mp	oundmont
A STREET ADDRESS (P.O. BOX, RED. A.M.)	spine enrep	04 SIC CODE	- are used to tre	at was	cheuster
470 Filmore A	ve		- conversited during	tanka.	- uastin
TONAMANDA	OB STATE O	7 ZIP CODE 14150	Operations only,	,	
III. OFF-SITE GENERATOR(S)					
OI NAME NONE	0	2 D+6 NUMBER	01 NAME		02 D+8 NUMBER
3 STREET ADDRESS (P.O. Box, RFD #. etc.)	· · · · · · · · · · · · · · · · · · ·	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE
JS CITY	OB STATE O	7 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
DI NAME	0	2 D+8 NUMBER	01 NAME	L	02 D+8 NUMBER
)3 STREET ADDRESS (P.O. Box, RFD #, etc.)	i	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	l	04 SIC CODE
05 CITY	OB STATE O	7 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
IV TRANSPORTER(S)				l	
MONE	0	2 D+B NUMBER	01 NAME		02 D+B NUMBER
D3 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE
05 CITY	06 STATE 0	7 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
D1 NAME	0	2 D+B NUMBER	01 NAME		02 D+8 NUMBER
D3 STREET ADDRESS (P.O. Box, RFD #, etc.)	i	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	1	04 SIC CODE
35 CITY	08 STATE 0	7 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
V. SOURCES OF INFORMATION (CHO ES and D&	especific references, e.g	i., state likes, sample energy: InSpect	s. reports) тот, 4/18/85	_	
· · ·					

EPA FORM 2070-13 (7-81)

SEPA	POTE	ENTIAL HAZARDOUS WASTE SITE INSPECTION REPORT AT 10 - PAST RESPONSE ACTIVIT	SITE	I. IDENTIFICATION
II. PAST RESPONSE ACTIVITIES				
01 A. WATER SUPPLY CLOSED 04 DESCRIPTION	No	02 DATE	03 AGENCY _	- <u>,</u>
01 D B. TEMPORARY WATER SUP 04 DESCRIPTION		02 DATE	03 AGENCY	
	NO	00 DATE	03 AGENCY	
01 C. PERMANENT WATER SUP 04 DESCRIPTION		02 DATE		
01 D. SPILLED MATERIAL REMO	OVED	02 DATE	.03 AGENCY	
04 DESCRIPTION	NO			
01 DE. CONTAMINATED SOIL RE	MOVED	02 DATE977	O3 AGENCY	
An estimated .	300 - 500	Fous OR Sudge un	s remard for	om legoons
		02 DATE	03 AGENCY	
U4 DEGUNIF HUM	NO			
01 CG. WASTE DISPOSED ELSEV	VHERE	02 DATE	03 AGENCY	
64 DESCRIPTION EXCANATED SIND	'se from t	the 14900 was disc	osed in the	Cecos lan Niggen i
		02 DATE	03 AGENCY	
	NO.			
01 D I. IN SITU CHEMICAL TREAT 04 DESCRIPTION	MENT NO	02 DATE	03 AGENCY	
01 I J. IN SITU BIOLOGICAL TRE 04 DESCRIPTION		02 DATE	03 AGENCY	
01 D K. IN SITU PHYSICAL TREAT 04 DESCRIPTION	NENT NO	02 DATE	US AGENCT	
01 L ENCAPSULATION 04 DESCRIPTION	10	02 DATE	03 AGENCY	
01 C M. EMERGENCY WASTE TR	EATMENT	02 DATE	03 AGENCY	
	10			
01 IN. CUTOFF WALLS 04 DESCRIPTION		02 DATE	03 AGENCY	
	RFACE WATER DIV	ERSION 02 DATE	03 AGENCY	
	V0			
01 D P. CUTOFF TRENCHES/SUN 04 DESCRIPTION	MP	02 DATE	03 AGENCY	
	$\mathcal{O}^{\mathcal{O}}$			

SEPA	POTEN SI PART 1	FIAL HAZARDOUS WAS TE INSPECTION REPOI 0 - PAST RESPONSE ACT	TE SITE I. IDE RT IVITIES	TE 02 SITE NUME
II PAST RESPONSE ACTIVITIES	Continued)	· · · · · · · · · · · · · · · · · · ·		
01 C R. BARRIER WALLS CON 04 DESCRIPTION		02 DATE	03 AGENCY	
01 S. CAPPING/COVERING 04 DESCRIPTION	~	02 DATE	03 AGENCY	
01 I T. BULK TANKAGE REPA 04 DESCRIPTION	IRED NO	02 DATE	03 AGENCY	,
01 U. GROUT CURTAIN CON 04 DESCRIPTION		02 DATE	03 AGENCY	
01 D V. BOTTOM SEALED 04 DESCRIPTION	NO	02 DATE	03 AGENCY	
01	NO	02 DATE	03 AGENCY	
01 C X. FIRE CONTROL 04 DESCRIPTION	٥ <i>ي</i> م	02 DATE	03 AGENCY	
01 D Y. LEACHATE TREATMEN 04 DESCRIPTION	NT. NO	02 DATE	03 AGENCY	
01 🗆 Z. AREA EVACUATED 04 DESCRIPTION	NO	02 DATE	03 ÁGENCY	
01 1 ACCESS TO SITE REST 04 DESCRIPTION 4 Cha	rricted	02 DATE	03 AGENCY	
01 2. POPULATION RELOCA 04 DESCRIPTION	TED NO	02 DATE	03 AGENCY	
01 [] 3. OTHER REMEDIAL AC 04 DESCRIPTION	TIVITIES	02 DATE	03 AGENCY	
Settling 1	Donde	may be	<i>ilmoved</i>	in
the near	Jaria.	-		
III. SOURCES OF INFORMATION	Cite specific references, e.g., sizia) (iles, sample enalysis, reports)		
Site visit	- 1585	······		
PA FORM 2070-13 (7-81)		, <u> </u>		
			د	

-

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT **PART 11 - ENFORCEMENT INFORMATION**

I. IDENTIFICATION

NY 0048380205

II. ENFORCEMENT INFORMATION

01 PAST REGULATORY/ENFORCEMENT ACTION I YES

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

NONE

III. SOURCES OF INFORMATION (Cite specific references, s.g., state files, sample analysis, reports)

Environmental Enforcement Division

NYS

NYSDEC

Attorney General's OFFICE EPA FORM 2070-13 (7-81)

10

#
SECTION VI

ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS

ASSESSMENT OF DATA ADEQUACY

A summary assessment of the adequacy of existing data for completion of the HRS score is presented in Table VI-1. Based on this assessment, the following Phase II work plan and cost estimate has been prepared.

PHASE II WORK PLAN

Objectives

The objectives of the Phase II activities are:

- o To collect additional field data necessary to identify the occurrence and extent of contamination and to determine if any imminent health hazard exists.
- o To perform a conceptual evaluation of remedial alternatives and estimate budgetary costs for the most likely alternative.
- To prepare a site investigation report including final HRS score.

The additional field data required to complete this investigation are described as follows:

- Groundwater A groundwater monitoring system consisting of one new upgradient well and sampling of existing downgradient wells. The new well will be drilled to a maximum depth of 25 feet; soil samples will be taken every 5 feet or more frequently if a change in soil lithology is encountered. The wells will be placed in the aquifer of concern and constructed of 2" PVC pipe. The groundwater samples will be analyzed for priority pollutants.
- Surface Water and Sediment A surface water and sediment monitoring system consisting of 3 monitoring stations is recommended. One station (S-1) will be upgradient of the site in Ellicott Creek, and two stations (S-2, S-3) will be downgradient in the same creek. The surface water and sediment samples will be analyzed for priority pollutants.
- Air An air monitoring survey with an HNU meter is recommended to test the air quality above the site.

TASK DESCRIPTION

The proposed Phase II tasks are described in Table VI-2 as required under the site specific health and safety plan and quality assurance plan which must be submitted prior to initiation of field activities. The proposed monitoring well and sampling location are presented in Figure VI-1.

COST ESTIMATE

The estimated man-hours required for the Phase II project are presented in Table VI-3 and the estimated project costs by tasks are presented in Table VI-4. The estimated total cost for this project is \$37,624.

VI-2.

TABLE VI-1

ASSESSMENT OF DATA ADEQUACY

HRS Data Requirement Comments on Data Observed Release Adequate to score an observed release Groundwater Surface Water Inadequate to score an observed release Air Inadequate to score an observed release Route Characteristics Adequate for HRS score Groundwater Surface Water Adequate for HRS score Air Adequate for HRS score Containment Adequate for HRS score Waste Characteristics Adequate for HRS score Adequate for HRS score Targets Observed Incident Adequate for HRS score

Accessibility

Adequate for HRS score

TABLE VI-2

PHASE II WORK PLAN - TASK DESCRIPTION

	Tasks	Description of Task
II-A	Update Work Plan	Review the information in the Phase I report, conduct a site visit, and revise the Phase II work plan.
II-B	Conduct Geophysical Studies	No further studies necessary.
11-C	Conduct Boring/Install Monitoring Wells	No further studies necessary.
II-D	Construct Test Pits/Auger Holes	No further construction of test pits/auger holes necessary.
II-E	Perform Sampling & Analysis	
	Soil samples from borings	No further studies necessary.
	Soil samples from surface soils	No further studies necessary.
	Soil samples from auger holes/test pits	No further studies necessary.
	Sediment samples from surface water	3 sediment samples are to be collected and analyzed for priority pollutants.
	Groundwater samples	4 groundwater samples are to be collected and analyzed for priority pollutants.
	Surface water samples	3 surface water samples are to be collected and analyzed for prior- ity pollutants.

TABLE VI-2 (Continued)

PHASE II WORK PLAN - TASK DESCRIPTION

	Tasks	Description of Task
	Air samples	Using the HNu determine the presence of organics.
	Waste samples	No further sampling necessary.
II-F	Calculate Final HRS	Based on the field data collected in Tasks II-B - II-E, complete the HRS form.
II-G	Conduct Site Assessment	Prepare final report containing significant Phase I information, additional field data, final HRS and HRS documentation records, and site assessments. The site assessment will consist of a conceptual evalua- tion of alternatives and a prelimi- nary cost estimate of the most probable alternative.
II-H	Project Management	Project coordination, administration and reporting.

-

VI-5

TABLE VI-3 PERSONNEL RESOURCES BY TASK

PHASE II HRS SITE INVESTIGATION (SITE: CHEMICAL LEAMAN)

TASK DESCRIPTION							TEA	AN MEMBER	RS, MANHDU	RS				
	PIC	TRB	. PH	DPN	PCN [.]	QAN	HSN	FTL	FT	RAAL	RAAT	55	TOTAL Hours	TOTAL \$
11-A UPDATE WORK FLAN	1	1	8	4		4	4	16		. 8		28	74	1144.1
II-B CONDUCT GEOPHYSICAL STUDIES													0	0
II-C CONDUCT BORING/INSTALL Monitoring Wells			8	16		4	4	16	40			8	96	1522.68
II-D CONSTRUCT TEST PITS/AUGER Holes												•••	0	0
II-E PERFORM SAMPLING AND ANALYSIS						·								
SOIL SAMPLES FROM BORINGS													0	0
SOIL SAMPLES FROM SURFACE Soils		•											0	0
SOIL SAMPLES FROM TEST PITS And Auger Holes													0	0
SEDIMENT SAMPLES FROM SURFACE Water			4	4		1	1	4	16			8.	38	529.19
GROUND-HATER SAMPLES	-		4	2		1	t	4	16		•	8	36	470.49
SURFACE WATER SAMPLES			4	2		1	t	4	16			4	32	440.81
AIR SAMPLES			2	2			1	.2	4			2	13	214.61
WASTE SAMPLES													0	0
II-F CALCULATE FINAL HRS			4	4				4	4	2.		4	22	394.56
11-6 CONDUCT SITE ASSESSMENT	2	2	8	2				24	32	12	40	50	172	2217.02
II-H PROJECT MANAGEMENT	2		6	2	2	4	4					12	33	529.88
TOTALS .	5	2	48	38	3	15	16	74	- 128	22	40	124	516	7463.34

VI-6

TABLE VI-4 Cost Estimate Breakdown by Task Phase II hrs site investigation (site: Chemical Leaman)

TASK DESCRIPTION					OTHER DIREC	T COSTS (ODC	0, \$			
۰.	DIRE Hours	CT LABOR Cost	LAB ANALYSIS	TRAVEL AND SUBSISTANCE) SUPPLIES	EQUIP. CHARGES	SUBCON- Tractors	MISC.	SUBTOTAL ODC	TOTAL (\$)
11-A UPDATE WORK PLAN	74	\$1,144.10		\$200.00	\$50.00	\$50.00		\$50.00	\$350.00	\$1,494.10
II-B CONDUCT GEOPHYSICAL STUDIES	0	\$0.00		•		•			\$0.00	\$0.00
II-C CONDUCT BORING/INSTALL Monitoring Wells	96	\$1,522.68							\$0.00	\$1,522.68
11-D CONSTRUCT TEST PITS/AUGER Holes	0.	\$0.00							\$0.00	\$0.00
II-E PERFORM SAMPLING AND Analysis										
SOIL SAMPLES FROM BORINGS	0	\$0.00							\$0.00	\$0.00
SOIL SAMPLES FROM SURFACE SDILS	. 0	\$0.00							\$0.00	\$0.00
SOIL SAMPLES FROM TEST PITS And Auger Holes	0	\$0.00							\$0.00	\$0.00
SEDIMENT SAMPLES FROM Surface Water	38	\$529.19	\$4,800.00	\$85.00	\$20.00	\$75.00		\$50.00	\$5,030.00	\$5,559.19
GROUND-WATER SAMPLES	36	\$470.49	\$4,800.00	\$200.00	\$200.00	\$100.00			\$5,300.00	\$5,770.49
SURFACE WATER SAMPLES	32	\$440.81	\$3,600.00	\$85.00	\$20.00	\$75.00		\$50.00	\$3,B30.00	\$4,270.81
AIR SAMPLES	13	\$214.61				\$60.00			\$60.00	\$274.61
WASTE SAMPLES	0	\$0.00							\$0.00	\$0.00
11-F CALCULATE FINAL HRS	22	\$394.56			\$150.00	\$150.00		\$20.00	\$320.00	\$714.56
11-6 CONDUCT SITE ASSESSMENT	172	\$2,217.02			\$750.00	\$300.00		\$75.00	\$1,125.00	\$3,342.02
II-H PROJECT MANAGEMENT	22	\$527.88	\$700.00	\$300.00	\$150.00	\$50.00		\$50.00	\$1,250.00	\$1,779.88
TOTALS	516	\$7,463.34	\$13,900.00	\$870.00	\$1,340.00	\$850.00	\$0.00	\$295.00	\$17,265.00	\$24,728.34

	OVERHEAD=	\$10,657.65
	SUBTOTAL=	\$35, 385.99
	FEE=	\$2,238.38
•	TOTAL PROJECT COST=	\$37,624.37

VI-

APPENDIX A REFERENCES

Sources Contacted Documentation

CONTACT	DATE CONTACTED	PERSON CONTACTED	TELEPHONE NUMBER	LOCATION	INFORMATION COLLECTED
USEPA Headquarters, Superfund Office	4/2/85	Hamid Saebfed	(202) 382-4839	401 M Street, NW Washington, D.C. 20460	Reviewed list of sites to determine if additional information was available.
USEPA - Region II, OERR	3/22/85	Mel H <i>a</i> uptman	(212) 264-7681	Room 402 26 Federal Plaza NY, NY 10278	General information from site files.
NYSDEC - Division of Solid and Hazardous	12/19/84	Marsden Chen	(518) 457-0639	50 Wolf Road Albany, NY 12233	General information from site files.
NYSDEC - Division of Water	12/19/84	Sal Pagano	(518) 457-6675	50 Wolf Road Albany, NY 12233	Mr. Pagano set up meet- ings with three bureaus within Division of Water.
NYSDEC - Division of Water SPDES Files	12/20/84	Bob Hannaford	(518) 457-6716	50 Wolf Road Albany, NY 12233	Reviewed SPDES Files for permit numbers and conditions.
NYSDEC - Division of Water DMR Files	12/21/84	George Hansen	(518) 457-2010	50 Wolf Road Albany, NY 12233	Reviewed DMR files for discharge violations.
NYSDEC - Division of Air Toxics	12/21/84	Art Fossa	(518) 457-7454	50 Wolf Road Albany, NY 12233	Reviewed site list to identify sites with potential air emissions.
NYSDEC - Division of Monitoring and Assessment	12/21/84	Bill Berner Frank Estabrooks Fred Van Alstyne	(518) 457-7363 (518) 457-7363 (518) 457-7363	50 Wolf Road Albany, NY 12233	Reviewed geology and monitoring information for specific sites.

SOURCES CONTACTED FOR CHEMICAL LEAMAN INVESTIGATION

SOURCES CONTACTED FOR CHEMICAL LEAMAN INVESTIGATION

CONTACT	DATE CONTACTED	PERSON CONTACTED	TELEPHONE NUMBER	LOCATION	INFORMATION COLLECTED
NYSDEC - Division of Environmental Enforcement	12/20/84	Kevin Walter	(518) 457-4346	50 Wolf Road Albany, NY 12233	Reviewed list of sites to determine if legal action has occurred in the past, is in progress, and/or is scheduled in the near future.
NYS - Attorney General's Office, Dept. of Law	1/7/85	Val Washington	(518) 473-3105	Empire State Plaza Justice Building Albany, NY 12233	Reviewed list of sites to determine if legal action has occurred in the past, is in progress, and/or is scheduled in the near future.
NYS - Attorney's Office	1/3/85	Albert Bronson	(716) 847-7196	Buffalo State Office Bldg. Buffalo, NY 14202	Reviewed list of sites to determine if legal action has occurred in the past, is in progress, and/or is scheduled in the near future.
NYSDEC - Division of Solid and Hazardous Waste	1/7/85	Ahmad Tayyebi Larry Clare Peter Buechi Jack Tygert	(716) 847-4615 (716) 847-4615 (716) 847-4590 (716) 847-4585	600 Delaware Ave. Buffalo, NY 14202	Collected information from site files.
NYSDEC - Region 9 Division of Air	1/8/85	Henry Sandonato Robert Armbrust	(716) 847-4565	600 Delaware Ave. Buffalo, NY 14202	Collected information concerning previous air emissions from inactive disposal sites.

SOURCES CONTACTED FOR CHEMICAL LEAMAN INVESTIGATION

CONTACT	DATE CONTACTED	PERSON CONTACTED	TELEPHONE NUMBER	LOCATION	INFORMATION COLLECTED
NYSDEC - Regional Attorney	1/10/85	Peter J. Burke	847-4551	600 Delaware Ave. Buffalo, NY 14202	Reviewed list of sites to determine if legal action has occurred in the past, is in progress, and/or is scheduled in the near future.
NYS Dept. of Health, Buffalo Region, Public Health Engineering	1/8/85	Lou Violanti	(716) 847-4500	584 Delaware Ave. Buffalo, NY 14202	Collected information from site files.
NYSDEC - Region 9 Division of Fish and Wildlife	1/10/85 & 1/11/85	Mike Wilkinson Jim Sneider	(716) 847-4600	600 Delaware Ave. Buffalo, NY 14202	Collected information from site files
Erie County, Division of Environmental Control, Dept. of Environment & Planning	1/10/85	Don Campbell Ron Koczaja	(716) 846-6271 (716) 846-6370	95 Franklin Street Buffalo, NY 14202	Collected information from Erie County site files. Obtained additional infor- mation through interview.
Erie County, Division of Economic Development and Planning	4/2/85	Mike Alspaugh	(716) 846-6013	95 Franklin Street Buffalo, NY 14202	Obtained 1980 U.S. Census Data.
Chemical Leaman Tank Lines, Inc. (Terminal Facility	4/18/85	Bruce Hartman James Rakitsky James Wegrzyn	(215) 363-4232 (716) 695-1440	470 Filmore Ave. Tonawanda, NY ⁻ 14150	Conducted site inspection.
Chemical Leaman Tank Lines, Inc. (Corporate Headquarters)	4/30/85	James Rakitsky	(215) 363-4232	Box 200 Lionville, PA 19353	Reviewed site ownership and past waste management practices.

.

REFERENCES

- 15. ARO Corporation, EP Toxicity Data for Chemical Leaman Surface Impoundment Sludges, July 27, 1982.
- 16. Advanced Environmental Systems, Inc., EP Toxicity Data for Chemical Leaman Surface Impoundment Sludges, November 21, 1980.
- 17. Chemical Leaman Tank Lines, Operation Description, May, 1985.
- 18. Chemical Leaman Tank Lines, Site Ownership History, May, 1985.
- 19. Chemical Leaman Tank Lines, Groundwater Monitoring Data, 1981-82.
- 20. Chemical Leaman Tank Lines, J. Wegrzyn, Personal Communication, March 4, 1985.
- 21. Chemical Leaman Tank Lines, List of Products Typically Cleaned Out at Tonwawanda Facility, May, 1982.
- 22. ECDEP, Memo to File from D. Koczaja, March 9, 1979.
- 23. RECRA Research, Inc., Analytical Data, March 23, 1983, September 28, 1983, May 29, 1984, and September 25, 1984.

THE ARO C 3695 BR	O IXI- O LAMA ECO BUFFALO DIVISIO ADWAY, BUFFALO, NY 142	14 2 4 5 (A) 2 N 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TELEPHENE TI REF -	-15
	ENVIRONMENTA ANALYTICA	L LABORATORY AL RESULTS	ζ.	
stomer Chemica	l Leaman Tank Lines	s, Inc.		
ARO Laboratory Number	20, 512W-5292	Custome	r P.O. #	042-4963
te: Collected 7/1	2/82 Receive	ed 7/12/82	Reported_	7/27/82
Sampling Point/Description	n Dewatered Slu	dge - Lagoon #1		
The above referenced mate	erial has been classif	lied as		
x N	on-hazardous	H	lazardous	
as a result of testing for the rotocols in 40CFR261.	ne following characte	ristics according	g to the proced	ures and
IgnitaLility:	ignitable	non-ignitable	<u>x</u> not tes	ted
Corrosivity:	corrosive	non-corrosive	<u>x</u> not test	eđ
Reactivity:	reactive	non-reactive	<u> </u>	ted
EP Toxicity:	toxic <u>x</u>	non-toxic	not tes	ted
Hazardous Constituents	(per 40CFR 261; Ap	pendix VII)		· •
1.	2	•	<u> </u>	
3.	RESILTS OF EP 1	•		
Gontaminant Allowed(mg	(L) Found (mg/L)	Contaminant	Allowed (mg/L	,) Found (mg /
rsenic 5.0 ⁷	< 0.001	Silver	5.0 /	< 0.001
Barium 100.0	0.390	Endrin	0.02^{7}	< 0.00002
chromium 5.0	0.038	Methoxychlor	10.0	< <u>0.00002</u>
Lead 5.0'	0.063	Toxaphene	0.5	< _0.0005
Selenium 1.0 4	$\frac{< 0.0002}{< 0.001}$	2,4-D 2,4,5-TP	1.0	< _0.0001
The above characterist and the EPA manual \underline{Te} Revision A; August 8,	ics have been determ est Methods for the E 1980.	nined in accordan valuation of Soli	nce with 40CFR d Waste; SW-84	261 46,
Initial pH (5% slurry)	= 8.95	RuniAl	Que -	· .
	B	ernard J. Gruez Environmental L	a, Director aboratofy	
$R_{0,cm} = N_0 - G_{-03}/81$			v V	

form No. G-03/81

.

۶

ANALYSIS FOR

EP TOXICITY METALS

CHEMICAL LEAMAN TANK LINES

Ъу

ADVANCED ENVIRONMENTAL SYSTEMS, INC.

November 21, 1980

Prepared by

Robert C. Hojcik Operations Manager

•

. .

Advanced Enormalian at ego case, the

Monitoring and Support Laboratory

LABORATORY REPORT

SCOPE OF WORK

Analysis of one lagoon bottom sludge sample for the eight EP metals.

METHODOLOGY

Extraction of the sample will be performed in accordance with Federal Register, Vol. 45, No. 98, May 19, 1980; Section 261.30, Appendix II.

Analysis of extract for arsenic, barium, cadmium, chromium, lead, mercury, silver and selenium will be performed in accordance with "Methods for the Analysis of Water and Wastes," Environmental Monitoring and Support Laboratory, Office of Research and Development U.S. EPA, Cincinnati, Ohio; EPA 600/4-79-020, March 1979. Livence d Diversitered by terns, me.

Monitoring and Support Laboratory

LABORATORY REPORT

RESULTS

Table 1

Results of EP Toxicity Test for Metals . (Expressed in micrograms per liter or ppb)

Meta)	Concentration	Maximum Allowable
Arsenic	31.	5,000.
Barium .	<500.	100,000.
Cadmium	<50.	1,000. '
Chromium	250.	5,000.
Lead	<360.	5,000.
Mercury	<0.5	200.
Selenium	13.	1,000.
Silver	<50.	5,000.
•	· ·	

Advanced there commences agains, inc.

· Hunitoring and Support Laboratory

LABORATORY REPORT

QUALITY ASSURANCE

Precision

All metals were assayed in triplicate. Agreement for all were within the 95% confidence limits of $\pm 5\%$ recommended by EPA.

Accuracy

Table 2

Analysis (of EPA Test samples or	
Spiked Samples	for Measurement of Accuracy	_

Туре	Original	Added	Expected	Reported	Acceptable Range for 95% Confidence Limit
TDA			61.	61.	46 81.
EFA Saika	< 500	2500.	2500-3000	2850.	1875 4000.
Spike			32.	27.	24 43.
ErA	<u> </u>	2500	2750.	2770.	2062 3667.
Spike	250.	2500.	2500-2860	2600	1875 3810.
spike	~30U.	2300.	L	<u> </u>	2.0 - 7.0
EPA	•		27 5	43.5	28 50.
EPA Spike	- <500.	100.	100-600.	100.	75 800.
	Type EPA Spike EPA Spike EPA EPA Spike	Type Original EPA - Spike <500. EPA - Spike 250. Spike <360. EPA - EPA - EPA - Spike <500.	Type Original Added EPA - - Spike <500.	TypeOriginalAddedExpectedEPA61.Spike<500.	TypeOriginalAddedExpectedReportedEPA61.61.Spike<500.

DISCUSSION

All concentrations are well below maximum allowable concentration of contaminants for characteristics of EP Toxicity.

Analysis of quality control data demonstrates that precision and accuracy falls within the 95% confidence limits recommended by the U.S. EPA, Environmental Monitoring and Support Laboratory.

ATTACHMENT "A"

CHEMICAL LEAMAN TANK LINES, INC. Tonawanda, New York Facility

OPERATING DESCRIPTION

Chemical Leaman Tank Lines, Inc. is a common carrier transporting bulk chemical commodities by tank truck. At this terminal, Chemical Leaman operates both a tractor/trailer maintenance shop and an internal/external cleaning facility for the washing of tank trailers. The intent of our company's service is to safely and efficiently deliver all of the productload transported and to manage all waste generated in an environmentally-safe manner.

In order to perform our "common carrier" services according to present regulations, we may transport both dry and liquid chemical commodities and chemical wastes. Some of these materials may be classified as hazardous or have constituents which may be classified as hazardous.

After delivery of the product, tank trailers return to the terminal facility to be cleaned and inspected. A specific form is prepared for each trailer to be cleaned indicating the chemical commodity transported and any special handling instructions. Cleaning personnel follow written Company procedures for cleaning of each chemical product.

Any material remaining in the trailer is removed by draining the product into 55 gallon drums. These drums are categorized according to chemical waste groups for compatibility and disposed off-site at permitted facilities in accordance with governmental

REF-17

regulatory authorities. After draining of all possible product is accomplished, the trailer is cleaned using one or more of the following processes, depending upon the product transported:

- Hot water flushing

- Cold water flushing
- Caustic cleaning solution
- Solvent cleaning compound -
- High temperature steam
- Hot water rinse

Tank trailers which have contained non-hazardous materials are normally cleaned using a caustic solution followed by a hot water rinse. The caustic cleaning solution is applied to the tank interior by means of a recirculatory system. After multiple recycling of the caustic solution, this material is expended and disposed off-site at permitted facilities. The rinsewaters following the caustic wash are discharged to the wastewater treatment facility.

Most hazardous chemical products are cleaned by a water flush followed by steam. The flush water and expended steam condensate and any chemical residue remaining in the tank is discharged to the wastewater treatment facility or to a 55 gallon drum for offsite disposal at a permitted facility.

The wastewater treatment facility consists of three ponds and a concrete holding tank in series. The ponds provide settling and natural aeration. The concrete holding tank is where pH adjustment, if needed, occurs. The effluent from the tank is pumped to a concrete manhole which eventually drains by gravity to city sewer system. In addition, two concrete holding tanks contain rinsewaters from odorous products.

ATTACHMENT "B"

SITE OWNERSHIP HISTORY

- 1. Chemical Leaman Tank Lines, Inc. (CLTL) has owned site since 1959.
- 2. Site was basically undeveloped land prior to CLTL ownership. Previous owners have included railroad companies, real estate companies and private parties.
- 3. Corporate address for Tonawanda facility:

Chemical Leaman Tank Lines, Inc. 102 Pickering Way P. O. Box 200 Lionville, PA 19353

4. Principal contact for corporation:

Richard C. Littlepage Vice President, Operational Services 518

REF- 18

WASTE MANAGEMENT ACTIVITIES

I. History of Waste Management

- A. Rinsewaters (99% water plus trace contaminants) from the cleaning process are discharged to the lagoon system. Operation of the system began in 1963. The lagoon system consists of three lagoons in series plus a concrete hold-ing tank located after the last pond. Effluent is pumped from the holding tank at ± 25 GPM to a concrete manhole outside the shop bays of the terminal building. Effluent then drains by gravity to the City Sewer System. Lagoons provide settling and natural aeration and the concrete holding tank is where pH adjustment, if needed, and sampling take place.
- B. In 1978, two concrete holding tanks were installed. Rinsewaters from the cleaning of priority pollutant products were sent to the holding tank; (one for organics; one for metals). Tanks were installed at the request of the City of Tonawanda to isolate any trace amounts of priority pollutants. Rinsewaters from the cleaning process (except priority pollutant rinses) were discharged to the lagoon system.
- C. Currently, concrete holding tanks are used to contain rinsewaters from the cleaning of odorous products only. The remaining rinsewaters are discharged to the lagoon system or drums for off-site disposal depending on the product cleaned.
- D. All pure product remaining in tank trailers after delivery is drained into drums and stored on the drum pad for eventual off-site disposal at a licensed TSD facility.

Physical Characteristics of Waste Disposal Facilities

Wastewater Holding Lagoons (3)

II.

Α.

- 1. Storage capacity of each lagoon approximately 160,000 gallons.
- 2. The three lagoons were cleaned out (dewatered and solids removed) once since they were installed between October 1977 and May 1978.
- 3. The lagoons were constructed in a natural clay layer. Clay layer in the area extends at least 25 feet below grade according to drilling logs. No synthetic liner material was used. Lagoons were constructed by excavating down into the ground approximately 10 feet from surface grade.

- 4. Wastewater in the lagoons is kept at a level of about 5 feet.
- 5. Wastes discharged to the lagoon system consist only of tank truck washings from the operations of the cleaning facility located at the site. No pure product is discharged to the lagoons.
- 6. Volume of Sludge Removed
 - a. Between October 1977 to December 1977,
 1,102.51 tons of waste sediment and soil were removed from surface impoundments.
 - b. Between January 1978 to July 1978, 2,101.54 tons of waste sediment and soil were removed from surface impoundments.
- Waste sediment and soil were taken to Newco -Chemical Waste Systems, Niagara Falls, NY (now called CECOS).

B. Chemical Storage Tanks

- 1. No chemical storage tanks for pure product waste at this site.
- 2. Two concrete holding tanks, 1,000 gallon capacity each, were intended to contain rinsewaters from the cleaning of priority pollutant products only. One tank held rinsewaters from trailers containing organic priority pollutants; the other tank held rinsewaters from trailers containing heavy metals. Currently, tanks are used to contain rinsewaters from the cleaning of odorous products only.
- 3. Volume in concrete holding tanks is kept at about 500 gallons or below.
- 4. Frequency of waste removed depends on operations; i.e., amount of trailers cleaned that previously carried priority pollutant products.
- 5. Waste is hauled off-site by CLTL.
- 6. Waste is disposed at a licensed TSD facility such as CECOS, Buffalo.
- C. Drum Storage
 - 1. Maximum amount stored on pad is 100 drums. Typically, between 10 - 60 drums are stored at one time.

- 2. Type of chemicals typically stored include fatty acids, fatty alcohols, resins, liquid plastics, latexes, petroleum oils, paints, glycols and caustic sludge.
- 3. Drum types are DOT specification.
- 4. Drums hauled off-site by CLTL.
- 5. Drums disposed at licensed TSD facilities such as CECOS, Niagara Falls, NY and Chem-Met, Wyandotte, MI.
- III. Future Waste Management Plans
 - A. Lagoons to be Closed
 - 1. Lagoons are to be dewatered.
 - 2. Lagoon sludge to be solidified and removed.
 - Lagoon wastewater and sludge to be disposed at a licensed TSD facility.
 - B. Pretreatment system to be installed with final effluent to be discharged to the City Sewer System.

Complete Call Company and American and American

-----SAAFLING PATE SEPT 1982

REF_ 19

	SAAFLING PATE SEPT 1983 REF- 19				REF_ 19
PARAAETER	UP SRADIERT		DOVE CIADICAT	BOVE GRAD	
		••••	" ^{***}		efweez?
INDICATORS OF CONTARINATION	7.4	7 34	7 64	7.29	
6. pr	7.11	<u> </u>	<u>/</u>	1	
Stacky Unot	7.13				
	7.11			·	
	7.10		<u> </u>		
	7.11	24.0.		11.10	
B. Spectrie conductance	0815	29.90			
her und/Can	2180			i	
	2140		<u> </u>	<u> </u>	
	<u></u>				
	2175		<u> </u>		
		79		44.1	
c. Total Organie Carson	78	16			
				<u></u>	" <u></u>
			İ	†	
	30		1	1	
avg.	20.50		<u> </u>	1	
A Poort Annals Materia	1	·	<pre></pre>	215	
. Total urganic Halogen	=0.5	-0.5	+		
m/I or Childene, Lune	<0.5			· · · · · ·	
Strucked	<0.5				
	< 0.5	· · · · · · · · · · · · · · · · · · ·		1	
479.	<0.5		1	i	
					~ ~
. INDICATORS OF QUALITY		370	310	77	
a. Chloride Acli	350	520	73	50	
b. Iron ng/1	3.1	0.032	0.025	0.019	
c. Phenois Mill	700	1,000	1503	730	
	220	94	88	277	
		0.10	2.91	991	
		•			
			·]		
3. SUITABILITY FOR DRINKING				1	
	<0 mm	50.204	ra 324	10,004	
(1) Arsence F3/-		1.8	/2	1,4	
	50 009	<0.004	<>> ;; =	L0,004	
(a) Chronium and	40.004	0.016	2 75 5	. 0.004	
	<u> </u>	<0.305		0.007	
(6) Baccury mill	Sama E	<0.005		10,0005	
	50.005	50.005	1	20.005	-
	<0.02	<0.02	· · · · ·	0.02	·
b. Posticides/Harbicides	1				[
(1) Endela mall	<0.01	10.0>	Kas1 /	20.01	ļ
(2) Lindana m/l	<201	<0.01	<2.21	1 20.01	
(3) Bothozychloriall	<0.05	<0.05	520-	1 10.05	
(4) Toxanhana mali	<0.1	<0.1	< 0.1	1 49,1	<u> </u>
(5) 2.4-8	<7	<4		4	
(6) 2.4.5-TP Silver	<1	<2	<1	+ <0.5	
				- <u> </u>	
e. Other]			- 21	
(1) Flooride myll	0.30	0.45	· 98	0.3/	
(2) Altrais agull	0.07	<0.05	<u> </u>	0.00	1
(3) furbidity LIN.	83	52	45	570	<u> </u>
(2) Collform interior	<1	<1			· · · · · · · · · · · · · · · · · · ·
	1				
d. "Radiation					1
		1 / 7	I ∢ 7.	1 41.	
(1) Rodlum	22				T

SUCCINE BUT MOY 1987

•

.

PANASETER	VELL I	DOWN CAUDIENT	DC.T CLASIENT	BOND SPADIENT	AEMARES
INDICATORS OF CONTAMINATION	<u>+</u>		-		i t
0. 14	7.28	7.38	7 28	7.34	1
	7.27				
	7.26				
	7.08				
- 009.	7.27			<u>i</u>	
h tracific Conductores					
	2.10	2.420	1 610		
	7.150	+			1
	7.110			• •	·
brett.	P 105				
	<u> </u>			T	
C. Total Organic Carton	32	79	77	19	
mg/s	29				1
	. 26				1
	29	·		:	1
avg.	2			•	1 1
	· ·	•		1 .	
d. Total Organic Halogan	<0.5	<0.5	<0.5	4.5	1
<u>v9/1</u>	<05			r .	
	0.57				
				·	
	<u> </u>			· · · · · · · · · · · · · · · · · · ·	
INGLEATONS OF BUILTY					
a Chlorida mali				1	· · · · · · · · · · · · · · · · · · ·
b. tron mall	360		140	4/	+
c. Phenois ma/r	5.027		0.025	1. <u>300</u>	
d. Seeline -//	210	500	430	· 792	
e. Salfate ma/l	730	110	78	200	1
E Manicanese mall	Stating States	0.22	0.65	15	
SUITABILITY FEA DAINKING	, e t ransver te offenset				
e, fetals	the state of the s			•	<u> </u>
(1) Arimie mall	<0.005	<0.005	<3.30-	40.005	
(2) Earlos ~1	0.1	0.1	0.]	0.6	· · · · ·
(3) Containe my//	<u><0,01</u>	< 0.01	<0.01	40.01	
(4) Chrosius m/l	<0.01	0.030	50.01	0.106	
(5) Lood ag/1	0.06	E.0	< 0.5 2	0.05	
(6) Asrcary ag//	<0.0005	<0.0005	<u>0 >005</u>	- 20.0005	*
	<0495	<0.005	< 2.00 5	20.005	· ·
	<u></u>	50.0	<u> </u>	20,03	·
5. Posticicus/turbicies			······································		. <u>.</u>
(1) Endria part	<0.01	<0.02		10.02	1
(3) Lindone 19/1	53.01	<0.01	 	10.01	· · · · · · · · · · · · · · · · · · ·
(3) Estherychier Mg/1	405	<2.05	<0.05	20.05	<u>.</u>
(6) Tenegone 19/1	<u> <51</u>	<0.1	<21	a:0.1	1
() 2,6-0 Jun /1	2	<10	<:	~3	1
(6) 2,4,5-TP SITURE 19/1	<1	<5	< 3	</td <td> </td>	
				l	
6. Other					I 1
(1) Floorice m/1	0.29	0.55	0.79	0.27	1
(2) Hitrate my W/I	59.05	<u> </u>	50.05	20,05	1
(3) TURBICITY UTU	610	850	/20	1,500	1
LAY GATTERA DECLEMINATION			< 1		· · · · · · · · · · · · · · · · · · ·
d. Audiation					
(1) Radium/1	<7	17	< 7	12_	·
(2) Gross Lipha pei/1	50:17 •	43:36 #	< 2	57-17+	* 4 5767.1978. 9 3.13
· · · · · · · · ·		· · · · · ·			···· • • • •

· ·		<u> 1. chi bina</u>	TEROTAL		<u>کر</u> ب
		\$4.71,1 05			
			march		
MANNETER	P CANILIT	ECA CHANGE			· · · · ·
	ALIT 1	WLL 2	VELL 3	DOWN SAAGIENT	NEMLES
HEFICATORS OF CONTAMINATION					
0. pm	7.33	7.24			
	738		/		
	7.32				
	7.29				
avg.	733				
b. Specific Conductance		2 140			
montes/co	1060		1730	1090	·
	1.470				
	1.500				f
eve.	1.000				
	1,960				
C. Total Ergonic Carbon					
	40	46	5+	16	
·····		-	1 ·	•	
A A V A	40	+		!	
	37.5			1	
de Total Errapic Balance		· · · · · · · · · · · · · · · · · · ·			
	+0.5	-0.5	40.5	10.5	
				1	
	40.5			1	
	40.5		1		
	40.5		e ferrar		·
MIEJICATOS OF QULITY				· · · · · · · · · · · · · · · · · · ·	
. chieries mg/L	380	160			· · · · · · · · · · · · · · · · · · ·
	2.5	5.6		36	
c. Phonels	0.010	0.014	0.044	44	······
d. Sodium	190	320		0.012	
E. Sulfate	240	210 Martin	140	140	
Marstand	2.0	1	1	220	
CONTABILITY FOR CALERINE	A Part of the States of	the there is the second	0.03	13	······································
e. Racale in me/L		an sainte an thair a tha			
(1) Arsenie	40.005	+2.005			
(2) Barlum Salar	0.25		40.005	0.014	
(3) Cadalum	4.0.01	8.00	0.17	0.33	
(4) Chrestee		40,01	4001	10.01	
(5) Leod	-0.01	-0 01	-0.01	0.019	-
(6) Farcury	-0.03	40.03	0.03	0.04	
(7) Selenium	40.0008	40.0008	40.0008	10.0008	
(3) SIlver		40.005	-0.005	40.005	
		0,013	40.005	40.005	
b. Pasticiess/Carbicides					
(1) Endela mala	+0 01		{		
(2) Linden		-0.01	+0.01	40.01	· · · · · · · · · · · · · · · · · · ·
(3) Kathaurahler	-001	49.01	40.01	40.01	
	~7.05	49.05	40.1	60.6.5	
(5) 2.4-0	40,1	40,1	40.2	103	
(5) 2. A Carp ett.	<u> </u>	2	<u> </u>	L	
	42.5	1	-05	40.5	
Gibar			T		
	· · · · ·			·	
(2) Hitrara		239	0.50	0.7.2	and the second secon
III (3) Turchlettan		n.17	0.75	0.57	
(A) COLLEGE TH	60	37	50 .	-560	
-100al		-3	43	7	
d. Cadlaster					
(1) Lading					
	. 2	4 2	42	/7	
the tes units Atphe	42 1		· · · · · · · · · · · · · · · · · · ·		
•			-		•

Lease in the second SAMPLIES BATE DELLAR IT SI

.

December 1981					
PARCHETER	TICLES W	NY CANDIENT	NOW CAUSIENT	DOVE CALDIENT	ALMARS
IEDICATORS OF CONTAMINATION					
o. p#	754	7.99	7.17		
	7.51			<u> </u>	
	7.50	·	۱ ۲		
	7.59			1	
evg.	7.52	· · · · · · · · · · · · · · · · · · ·			
			(1	
b. Specific Conductance	1760	2230	/:50	110	
Janua Janu	1970		}		
	/970				
	/770				
ev9	1977.5				
			<u> </u>	19	
c. Total organic carvas my //	13				
				;	
	· · · · · ·	+	1	1 !	
	<u> </u>			T	
A Treal Americ Halman #9/1	<i>e.s</i>	65	<.5	: < < .	
an 10001 culture veroliere at	< 5		;; ;	1	
	<.5		• • • • • • • • • • • • • • • • • • • •	1	
	<i>c.s</i>		·	i	
Ave	<5				
INDICATERS OF CUALITY					
a Chloride mg/l	350.	260	120		
b. Iren my/l	92	28	34	24	•
e Phanala my/l	.016		1050	<	
di Sodium - Mg/l	270	370	230	4.5, 1	
le Sulfate mall	590	320	160	2:5 1.	
distant of mall	1.9	0.99	9.87		•
STATATALLINY FOR EXISTING					
e. Antels	• • • • •				
/ (1) Arcoale mg/l	, 019	037	.016	<.51	
(2) Barlus mg/l	• / 0	51.	-11	.12	
(3) Casalan mg/1	<.ol.	<.01	<.01	<.31 -	
1 (4) Carciales mg/1	.06	که.	<,01	<.51	
4 (5) Lood 199/1	< 03	<.03	<.03	< <u>- 2</u>	
J (G) Porcery pg/l	<	<. 004	<.009	<	
1 (7) solesies mg/1	6001	<006	<.006	< 321	
1(3) Silver 20g/1	Col	<.01	<.01	1 - < 31	
b. fenticidas/harbicidas					
1(1) Costin//	<.61	<.01	1 <.01	<u><.01</u>	
1 (2) Liedene 1/1	<u> </u>	<u></u>	1 <.01	<u> < 1</u>	
J (3) Fatherschler Jug/	50.2	<.02	<u> </u>	++	
(4) Teussione -3/1	<.1	<.1	<u> </u>	<, I	
1 (2) 2,4-0 _19/1	<.1				
1 (6) 2,4,5-72 \$11mx 19/1	<.05	<.05	<.05	<u> </u>	
to uthat			<u>ca</u>	.24	
J (1) Plucelde mg/1	,36		+	1 12	
1 (2) HILPOLO My 4/1			60		
13) Turbidity NTU	<u>MO</u>		1 23		
f (a) colifons used for	3.6				
de Padlation			<u> </u>		
	2 11 0.7	0.920.6	2.71 0.7	7,21,2,7	····
	C 11 - M. C	· · · · · · · · · · · · · · · · · · ·			

INTERVIEW FORM

PFF-20

INTERVIEWEE/CODE Mr Jim Wegrzyn TITLE - POSITION Manager, Terminal OPERATIONS ADDRESS. 470 Fillmore Ave CITY TONAWANDA / ERIE COUNTY STATE NY ZIP PHONE (7/6) 695-1440 . RESIDENCE PERIOD TO LOCATION Telephone Interview INTERVIEWER S. Robert STEELE DATE/TIME 4 MARCH 1985 1 2:15 PM SUBJECT: Chemical Leamon TANK Lines, WASTE lagoons REMARKS: Chemical Leamon has operated three (3) 19900NS used to contain rinse water from the washing of tanker trucks used to transport chemical's and maste chemical residues. These lagoons have been in operation at the above listed address from approximitily 1963 to the present. Following Settling, the unstruction from the third lagoon discharges to the City of Tonswange, wastenation treatment plant. In 1978, the city of TonAurance temporarily disallowed the discharge of unstructure from the chemine Leanon lagoon to the polici server system until the constituents in the unsunstin were identified. Chemical learnand is presently Confidency closing the 1990ons by the end of 1985. The Condition of the lugary liner is inkand and raine inspections are not conducted to determine the condition of the liner(s). I AGREE WITH THE ABOVE SUMMARY OF THE INTERVIEW: SIGNATURE: COMMENTS:

REF-21

LIST OF PRODUCTS TYPICALLY CLEANED AT TONAWANDA FACILITY

Acetic acid Acrylates Adhesives Alcohols Aluminum sulfate Ammonium nitrate Aniline oil

Benzene Butyl acetate Butyl acrylate Butyl amine Butyl phenol

Calcium chloride Caustic soda p-Chlorotoluene o-Chlorotoluene Chlorobenzotrifluoride Clay pellets Cresol

Detergents Dichlorotoluene Diisobutylene Dimethyl formamide

Epichlorohydrin Ethyl acrylate Ethyl hexyl chloroformate

Fatty acids Fluorosilic acid Formaldehyde Fuel oil

Glycol

Hydrochloric acid

Latex Lube oil

Methyl esters Methylene diphenyl diisocyanate Mineral spirits Monoglycerides Morpholine

Naphtha

Octyl phenol Oil additives

Paint Petroleum oil Petroleum tar Phenol Phosphoric acid Pine oil Plasticizers Plastics Polyethylene glycol Potassium silicate Pyridine

Resin Rosin

Silicate of soda Sodium chlorite Sodium hypochlorite Sulfuric acid

Tall oil Tar Toluene o-Toluidene

Varnish Vinyl acetate

Zinc ammonium chloride Zinc chloride COUNTY OF ERIE DEPARTMENT OF ENVIRONMENT & PLANNING DIVISION OF ENVIRONMENTAL CONTROL

REF- 22

MEMORANDUM

FROM _____Ronald D. Koczaja

FILE

_ _

DATE _____ March 9, 1979

LE VUL

то _____

SUBJECT Chemical Leamon Tank Lines, Incorporated

740 Fillmore Avenue Tonawanda, New York

The above referenced truck terminal facility was inspected by the writer on March 7, 1979. Mr. James Wegrzyn, Terminal Manager, was interviewed. The object of the inspection was to determine the method of contaminated waste washwater disposal. Mr. McMahon, DEC, requested this action following review of the company's Part 364, Haulers Permit. The terminal is not listed as an approved waste disposal site on the permit.

Chemical Leaman is primarily engaged in the transport of a pure product from supplier to customer. On occasion the firm will be contracted to carry a waste to a disposal or processing facility or it is necessary to dispose of a product which does not meet a customer's specifications and cannot be recycled. The truck terminal is not a disposal site for any wastes generated or carried by the firm and therefore does not require Part 360 registration or inclusion on the Part 364 permit. Mr. Wegrzyn also reported that the firm has been exempted by the DEC from displaying Part 364 registration numbers on the tankers. Wastes are disposed of either off-site or through the City of Tonawanda sewerage system.

During discussions with Mr. Wegrzyn, it was learned that during the summer and fall of 1978, the New York State DEC was an intimate party in negotiations to determine how and what wastes would be allowed into the sewerage system. As a result of these negotiations, Chemical Leamon received a permit to discharge into the sewerage system, was required to segregate certain wastes, and install a separate disposal system for toxic and hazardous wastes. A list of 65 toxic materials (Federal Register, Yolume 43, June 26, 1978 Appendix B) was used to determine which chemicals should be excluded from the discharge to the sewerage system.

A brief summary of the terminal operation is as follows: Tankers which have made a delivery and are received at the terminal may require cleaning. The content of the tanker is checked and the small amount of material that remains in the tanker is drained into 55 gallon drums which are cataloged by chemical. The tankers are then washed. Wash waters contaminated with a chemical contained on the list of 65 are directed to two holding tanks. One holding tank stores

- continued -

MEMORANDUM FILE Chemical Leaman Tank Lines, Inc. March 9, 1979 Page 2

heavy metals, the other holds the remaining chemicals on the list. The holding tanks are equipped with level sensors which will indicate when the tank is in need of pumping. The toxic chemical contaminated washwater is then carted to Newco by Chemical Leaman for disposal. One tanker has been specifically designated by the firm to carry its own waste. Washwater not contaminated by any of the 65 toxic chemicals is discharged to the sewerage system after passing through 3 settling ponds and receiving pH adjustment. Mr. Wegrzyn reported the ponds were originally lined with clay but from observation it appears that most of the clay had been removed during pond cleaning. The natural soil which remains appeared to be a loose sandy mixture. Oil is removed at the first pond and is vacuumed off approximately once a year. The chemicals which are drained into drums are carted away to Newco by an outside hauler when a suitable number, approximately 30, has been collected.

Due to company policy, the writer was unable to obtain copies of correspondence generated during the negotiations with the DEC. Mr. Speed has agreed to forward copies to this office. These documents will include a procedure sheet detailing the methods used at the terminal to adequately separate and dispose of the waste. The only suggestion the writer has to offer lowing the inspection of the facility and verbal description of the operation is that the connections to the pond and holding tank piping systems be labeled to preclude an inadvertent discharge through the wrong system. This recommendations will be forwarded to Mr. Wegrzyn.

RDR1/1

Mr. Campbell Mr. Voell Mr. McMahon, NYSDEC

CHEMICAL LEAMAN TANK LINES, INC.

Report Date: 3/23/83 Date Received: 3/1/83

· · ·		CAI	THE THENTIE	ICATION (DAT	E)
		¥-1	W-2	₩-3	W-4 (2/1/83)
	UNITS OF MEASURE	(3/1/83)	(3/1/83)	(3/1/83) 7.16	7.08
PARAMETER		7.14	7.08	7.17	7.10
		7.18	7.08	7.18	7.11
	Standard Units	7.19	7.09	7.19	990
рН		1,730	2,110	1,700	1,000
		1,750	2,130	1,710	1,000
Specific Conductance	umhos/cm	1,770	2,160	57	21
(25°C)		49	64	59	26
		66	86	79	32
Corbon	mg/l	88	96	<0.2	0.88
Total Organic Carbon	· · · · · · · · · · · · · · · · · · ·	0.41	<0.2	<0.2	1.1
	(h) (h) arison	0.88	0.24	0.28	$\frac{2.2}{3.1}$
Halogenated Organic	ug/l as uniorine,	1.3	0.32	0.98	
Scan (ECD)	Feet from top	7 25	8.29	9.42	5.17
The set I evel	of well casing	1 1.25			· · · ·

Samples were collected by RECRA personnel on March 1, 1983. Analyses were performed according to U.S. Environmental Protection Agency methodologies COMMENTS: 7

where applicable.

Halogenated organic scan (ECD) results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the response factor and chlorine content of Lindane but do not imply either the presence or absence c Lindane itself. Halogenated organic scan results do not include volatile organic constituents.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Heborah J. Macius</u> DATE <u>3/23/83</u>

RONMENTAL LABORATORIES

CHEMICAL LEAMAN TANK LINES, INC.

Report Date: 9/28/83 Date Received: 8/22/83

		S	AMPLE IDENTIF	ICATION (DATE	:)
	· · · •	W-1	W-2	W-3	W-4
DADAMETER	UNITS OF MEASURE	(8/22/83)	(8/22/83)	(8/22/83)	(8/22/83)
PARAMETER	0	7.10	7.20	7.52	7.16
		7.09	7.25	7.48	7.17
pH	Standard Units	7.14	7.21	7.49	7.21
		7.12	7.24	7.51	7.19
		1,700	2,400	2,230	1,520
Specific Conductance	umhos/cm	1,680	2,020	2,230	1,650
(25°C)		1,900	2,330	2,250	1,500
	·	1,710	2,090	2,230	1,210
	•	51	60	68	47
·	mg/l	. 75	60	68	58
Total Organic Carbon		78	74	68	46
		58	54	74	51.
	ug/l as Chlorine; Lindane Standard	0.18	0.12	0.11	0.08
Halogenated Organic		0.25	0.15	0.14	0.09
Scan (ECD)		0.31	0.16	0.14	0.14
5cuil (2027		0.31	0.26	0.19	0.15
Chloride	mg/l	303	300	200	55
Culfare	mg/l	250	90	140	290
Total Recoverable					
Phenolics	mg/1	0.016	0.042	0.074	0.011
Total Iron	mg/1	7.1	4.2	12	23
Toral Manganese	mg/l	9.0	0.03	0.27	0.61
Total Sodium	mg/1	490	640	710	490

COMMENTS: Samples were collected by Recra personnel on August 22, 1983. Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable.

> Halogenated Organic Scan (ECD) results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the response factor and chlorine content of Lindane but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results do not include volatile organic constituents.

Results of the analyses for specific organic compounds are based upon the matchin of retention times, between samples and standards, on a single gas chromatograph column.

Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter.

FOR RECRA ENVIRONMENTAL LABORATORIES <u>ileborah G. Maria</u>

CHEMICAL LEAMAN TANK LINES, INC.

Report Date: 5/29/84 Date Received: 3/20/84

		SAM	PLE IDENTIF	ICATION (DAT)	E)
DADAMETER	UNITS OF MEASURE	W-1 : (3/20/84)	W-2 (3/20/84)	W-3 (3/20/84)	W-4 (3/20/84)
Total Organic Carbon	mg/1	46/45 62/37	38	32	12
Halogenated Organic Scan (ECD)	ug/l as Chlorine; Lindane Standard	<0.2/<0.2 <0.2/<0.2	<0.2	<0.2	0.47

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable.

Halogenated Organic Scan (ECD) results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan results do not include volatile organic constituents.

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Laborah J. Aracus</u> DATE <u>5/29/8+</u>

CHEMICAL LEAMAN TANK LINES INC.

Report Date: 9/25/84 Date Received: 9/5/84

		SAMP	LE IDENTIF	ICATION (D	ATE)
		₩-1	W-2	W-3	W-4
PARAMETER	UNITS OF MEASURE	(9/5/84)	(9/5/84)	(9/5/84)	(9/5/84)
I AIGHD I DI		8.14			
	· · · ·	8.23			
		8.26			
ЪĦ	Standard Units	8.16	8.08	8.09	8.11
		1,670			
		1,630			
Specific Conductance		1,920			
(25°C)	mhos/cm	1,930	2,120	2,170	1,570
		36			
		33			
		32			
Total Organic Carbon	mg/1	28	69	91	26
		<0.5			
		<0.5			
Halogenated Organic	g/l as Chlorine;	<0.5		ł	
Scan (ECD)	Lindane Standard	<0.5	<0.5	<0.5	<0.5
Total Iron	mg/l	4.75	5.53	8.71	7.12
Total Manganese	mg/l	0.679	1.48	0.285	0.550
Total Sodium	mg/1	219	425	495	336
Chloride	mg/1	259	251	149	58
Sulfate	mg/1	170	205	151	285
Total Recoverable	· · · · · · · · · · · · · · · · · · ·				1
Phenolics	mg/1	0.033	0.024	0.038	0.010

COMMENTS: Samples were collected by Recra personnel on 9/15/84. Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable.

> Balogenated Organic Scan (ECD) results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the response factor and chlorine content of Lindane but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results do not include volatile organic constituents.

Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter.

FOR	RECRA ENVIRONMENTAL LABORATORIES	ileborah T. Maria
1 011		
	DATE	9/25 84
) pr	Ć	DI Z
		1. C. I may
APPENDIX B PROPOSED UPDATED NYS REGISTRY SHEET

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID AND HAZARDOUS WASTE INACTIVE HAZARDOUS WASTE DISPOSAL SITE REPORT

CLASSIFICATION CODE: 2	a REGION: 9	SITE CODE:	915014
NAME OF SITE : Chemica STREET ADDRESS: 470 Fi	l Leaman Tank Lines Imore Avenue		
TOWN/CITY: Tonawanda	COUNTY: Erie		ZIP:
SITE TYPE: Open Dump- ESTIMATED SIZE: -1	Structure- Lagoon- Acres	Landfill- Treat	ment Pond-X

SITE OWNER/OPERATOR INFORMATION:

CURRENT OWNER NAME....: Chemical Leaman Tank Lines, Inc. CURRENT OWNER ADDRESS.: 470 Filmore Avenue., Tonawanda, NY OWNER(S) DURING USE...: OPERATOR DURING USE...: Chemical Leaman OPERATOR ADDRESS.....: 470 Filmore Avenue, Tonawanda, NY PERIOD ASSOCIATED WITH HAZARDOUS WASTE: From Unknown7 To Present

SITE DESCRIPTION:

Garage, storage yard, and settling ponds for tank trailers and tractors. "Heels" from nondedicated tankers which have been used for incompatible products are drummed and removed off-site to an approved TSD facility. Tank washings, after draining, pass through the three ponds, where floating material is skimmed off. Solids settling in the ponds are periodically removed to an approved off-site TDS facility. Bischarge from ponds to Tonawanda sewer system.

HAZARDOUS	S WASTE D	ISPOSED:	Cot	nfirmed-X	Suspected	-
	IY	PE				<u>QUANTITY (upits)</u>
Cleanout	form bull	k liquid	tank	trailers	Uni	KNOWN

SITE CODE: 915014

ANALYTICAL DATA AVAILABLE:

Air- Surface Water- Groundwater- Soil- Sediment- None-X

CONTRAVENTION OF STANDARDS:

Groundwater- Drinking Water- Surface Water- Air-

· ----

LEGAL ACTION:

TYPE..: NoneState-Federal-STATUS:In Progress-Completed-

REMEDIAL ACTION:

Proposed- Under Design- In Progress- Completed-NATURE OF ACTION: None

GEOTECHNICAL INFORMATION: SOIL TYPE: Clayey GROUNDWATER DEPTH: >10'

ASSESSMENT OF ENVIRONMENTAL PROBLEMS:

No apparent environmental problems associated with this site.

ASSESSMENT OF HEALTH PROBLEMS:

Insufficient information.

PERSON(S) COMPLETING THIS FORM:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NAME.: John S. Tygert, P.E. TITLE: Senior Sanitary Engr.

NAME:: Roberto A. Olazagasti TITLE: Solid Waste Management Spec.

DATE .: 01/24/85

NEW YORK STATE JEPARTMENT OF HEALTH

NAME.: R. Tramontano TITLE: Bureau Tox. Subst. Assess.

NAME.: TITLE:

DATE.: 01/24/85