The electronic version of this file/report should have the file name:

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

letter.______.<u>File spillfile</u>.pdf

report. hw.915014 . 2004 - 09 . SUPPLEMENTAL . pdf

REMEDIAL INVESTIGATION

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b Superfund - hw Spills - sp

ERP - e

VCP - v

BCP - c

non-releasable - put .nf.pdf

Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

SUPPLEMENTAL REMEDIAL INVESTIGATION PHASE IV - EASTERN AREA

CHEMICAL LEAMAN TANK LINES, INC.
TONAWANDA, NEW YORK FACILITY

PREPARED FOR:

QUALITY DISTRIBUTION, INC. 150 EAST PENNSYLVANIA AVENUE, SUITE 125 DOWNINGTON, PA 19335

PREPARED BY:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

RECEIVED

SEP 8 9 7004

NYSDEC REG 8
FOIL
REL_UNREL

SEPTEMBER 2004

TABLE OF CONTENTS

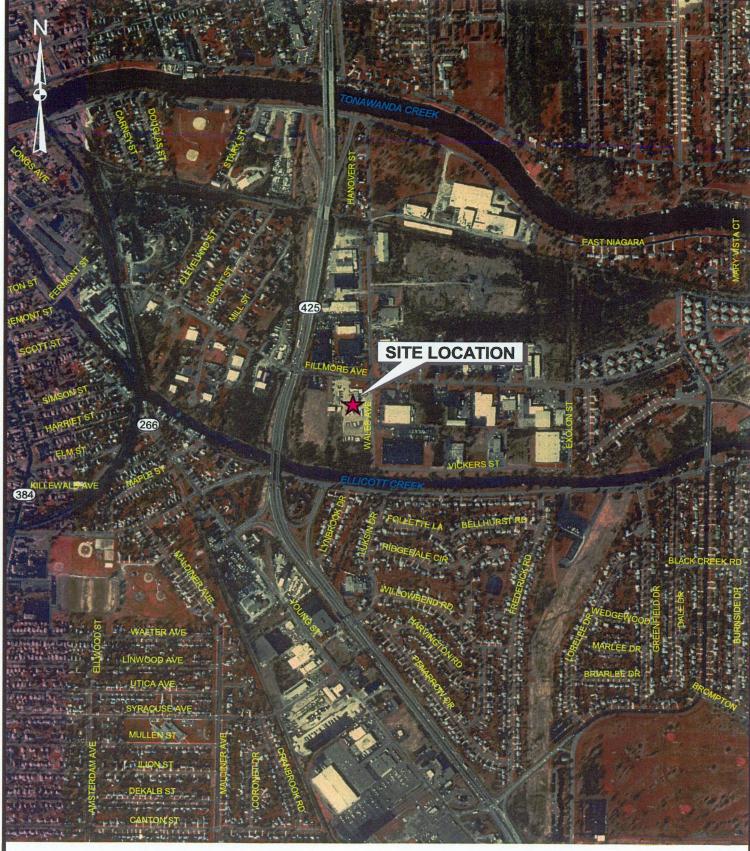
				<u>P</u>	age No.
1.0	INTR	ODUCI	TION	***************************************	1-1
	1.1	Purpos	se of Repo	rt	1-1
2.0	SUPP	LEMEN	NTAL INV	/ESTIGATION	2-1
	2.1	Scope	of Work		2-1
	2.2	Summ	ary of Inve	estigations	2-2
		2.2.1	Monitori	ing Well Installation	2-2
		2.2.2	Tempora	ary Well Point Installation	2-3
		2.2.3	Water L	evel Readings	2-4
		2.2.4	Monitori	ing Wells and Storm Sewer Sampling	2-4
			2.2.4.1	Monitoring Wells	2-4
			2.2.4.2	Storm Sewers	2-5
3.0	RESU	LTS O	F INVEST	TIGATIONS	3-1
	3.1	Groun	dwater Flo	ow Conditions	3-1
	3.2	Nature	and Exter	nt of Contamination	3-2
		3.2.1	Soils		3-2
		3.2.2	Groundy	vater	3-3
			3.2.2.1	Upgradient and Sidegradient Areas (Wells B-07 and B-	06): 3-3
			3.2.2.2	Area North of Former Wastewater Treatment Plant:	3-4
			3.2.2.3	Area South of Former Lagoons	3-5
			3.2.2.4	East Area (Wells B-05R and B-11 to B-15)	3-6
			3.2.2.5	Storm Sewer Along Wales Avenue and Outfall to Ellico	
		_		Creek	-
	3.3	Summ	ary and Co	onclusions:	3-9
				•	
				TABLES	
<u>Table</u>					llowing age No.
2-1	Groun	dwater I	Elevation F	Readings	2-4
3-1	Summ	ary of A	nalytical F	Results – Volatile Organic Compounds	3-3

FIGURES

Figure		Following Page No.
1-1	Site Location Map	. 1-1
1-2	Site Plan	. 1-1
1-3	Groundwater Elevation Contour Map (April 29, 2001)	. 1-1
2-1	Site Investigation Location Plan.	. 2-3
2-2	Groundwater Elevation Contour Map (June 17, 2003)	. 2-4
2-3	Groundwater Elevation Contour Map (June 23, 2003)	. 2-4
2-4	Groundwater Elevation Contour Map (July 15, 2003)	. 2-4
2-5	Groundwater Elevation Contour Map (August 12, 2003)	. 2-4
2-6	Groundwater Elevation Contour Map (August 19, 2003)	. 2-4
2-7	Groundwater Elevation Contour Map (September 11, 2003)	. 2-4
2-8	Groundwater Elevation Contour Map (October 3, 2003)	. 2-4
2-9	Groundwater Elevation Contour Map (January 13, 2004)	. 2-4
2-10	Groundwater Elevation Contour Map (February 11, 2004)	. 2-4
2-11	Groundwater Elevation Contour Map (March 22, 2004)	. 2-4
2-12	Groundwater Elevation Contour Map (April 2, 2004)	. 2-4
2-13	Groundwater Elevation Contour Map (April 21, 2004)	. 2-4
2-14	Groundwater Elevation Contour Map (May 3, 2004)	. 2-4
2-15	Groundwater Elevation Contour Map (June 3, 2004)	. 2-4
2-16	Groundwater Elevation Contour Map (July 22, 2004)	. 2-4
3-1	Groundwater Analytical Results (June 2004)	. 3-3
3-2	Organic Compound Exceedances in Soil and Groundwater Samples	. 3-3

APPENDICES

Appendix A	Boring Logs
Appendix B	Monitoring Well Construction Details
Appendix C	Well Development and Purging Logs
Appendix D	Data Usability Summary Report

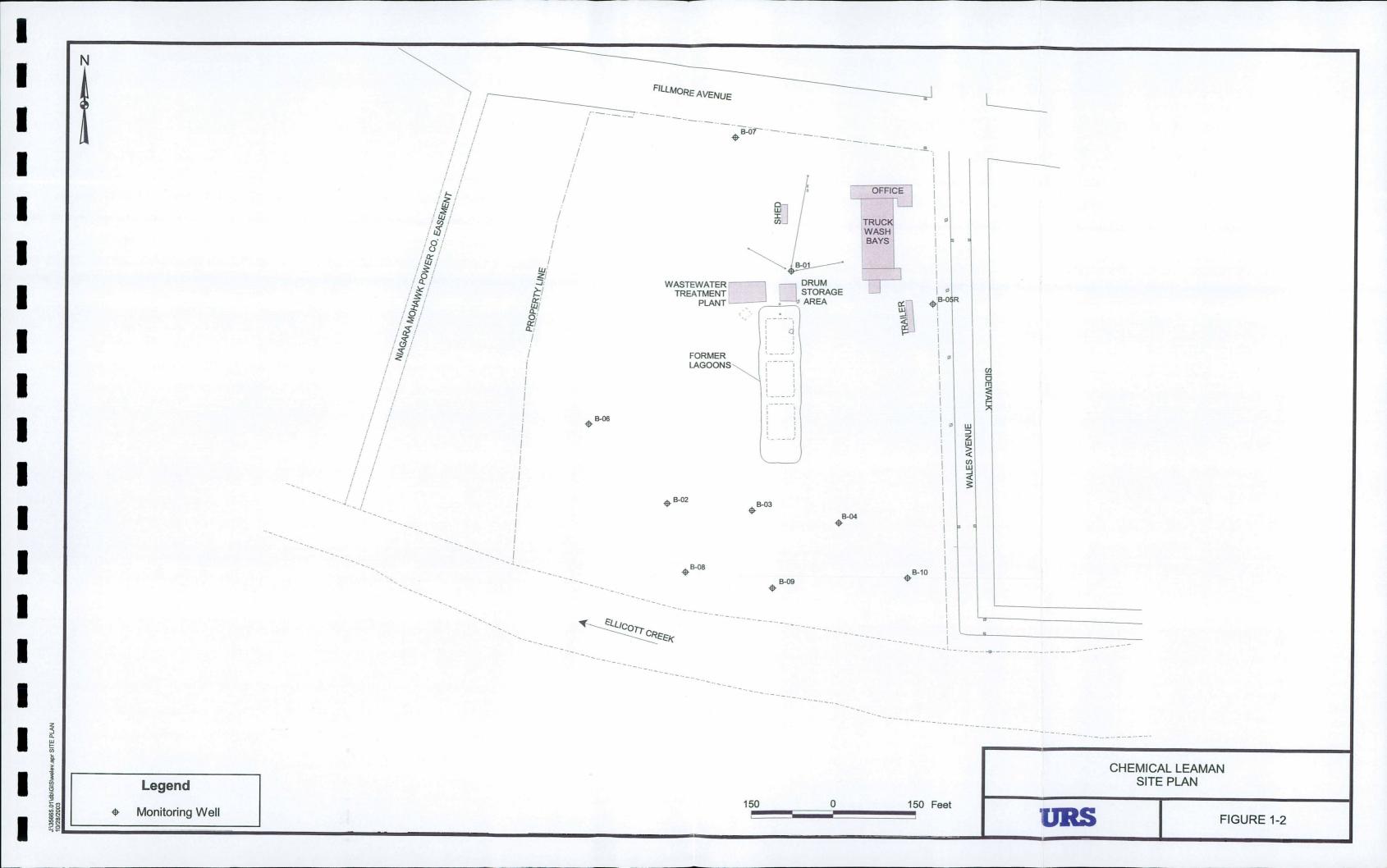

1.0 INTRODUCTION

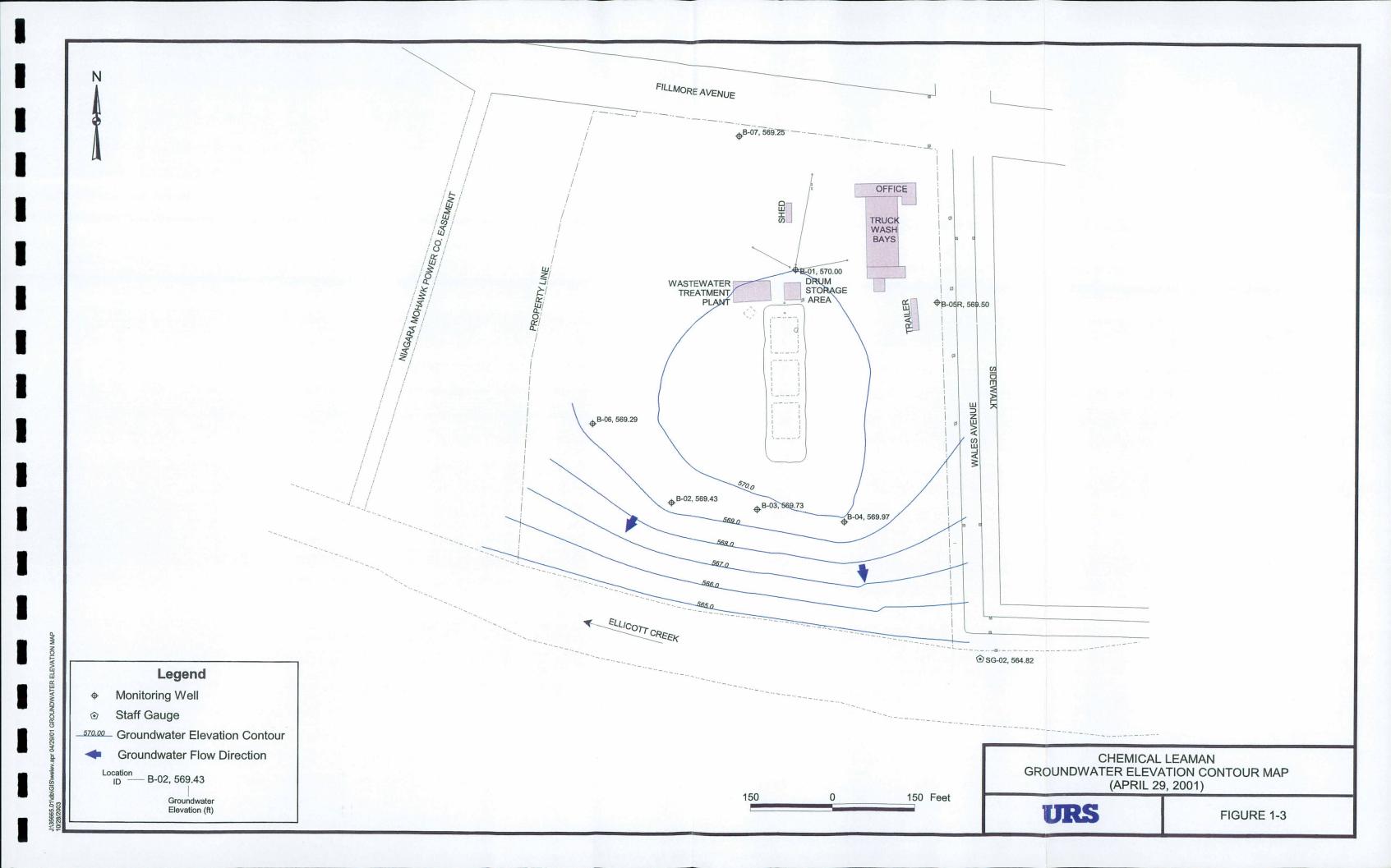
1.1 Purpose of Report

Quality Distribution, Inc. (QDI), as the parent company of Chemical Leaman Tank Lines, Inc. (CLTL), is responsible for the management of the former CLTL site in the City of Tonawanda, New York (Figure 1-1). The site is currently classified by the New York State Department of Environmental Conservation (NYSDEC) as a Class 2 inactive hazardous waste disposal site. Pursuant to an Order on Consent with the NYSDEC, QDI conducted Remedial Investigations (RI) at the site in three phases from approximately August 2000 to April 2002 to investigate whether contamination remains onsite at actionable levels. The results of the RI are presented in the, "Remedial Investigation Report – Chemical Leaman Tank Lines, Inc. Tonawanda, New York Facility" prepared by URS, dated August 2002.

The results of the RI indicated that the highest levels of groundwater contamination at the site have historically occurred on the east side of the property, as measured in well B-05R (Figure 1-2). It was concluded that the groundwater contamination in this east area appeared to be related to soil contamination by volatile organic compounds (VOCs) occurring within an essentially linear, well-defined and generally shallow pattern along the east property line.

Groundwater data collected during the RI indicated that the groundwater flow direction is predominantly to the south toward Ellicott Creek, with a gradient steepening across the site in a southward direction. Superimposed on this general groundwater flow pattern was a pronounced mounding effect, resulting in outward radial flow, that appeared to coincide with spring-like conditions when the water table is relatively high (Figure 1-3). The location of the mound varied somewhat, but was generally in the central portion of the site in the vicinity of the former lagoons. It has been speculated that the flow to the east, away from the former lagoon area, toward Wales Avenue might be explained by the presence of a storm sewer beneath the road that acts as a local hydraulic sink. It was further speculated that the Wales Avenue sewer might intercept groundwater during mounding conditions and discharge it to Ellicott Creek.


SOURCE: New York GIS Clearinghouse, Statewide Digital Orthoimagery Repository, 1995.


1000 0 1000 Feet

URS

CHEMICAL LEAMAN SITE LOCATION

FIGURE 1-1

In order to determine whether contamination might be migrating offsite to the east into the storm sewer under mounding conditions, a Supplemental Investigation (SI) program was developed to collect additional groundwater and analytical data from the eastern portion of the CLTL site. The Supplemental Investigation program was initiated in June 2003 and was essentially completed in July 2004. The purpose of this Supplemental Investigation report is to present a summary of the work performed and the results of the investigations.

2.0 SUPPLEMENTAL INVESTIGATION

2.1 Scope of Work

The scope of work for the SI was developed in response to NYSDEC comments dated February 7 and April 21, 2003 on the RI report. The proposed investigation activities are outlined in URS correspondence dated March 17 and May 8, 2003, and summarized below.

In order to investigate the hydraulic relationship and potential contaminant migration between the groundwater mounding (central portion of site) and the storm sewer along Wales Avenue, the following investigative activities were to be completed:

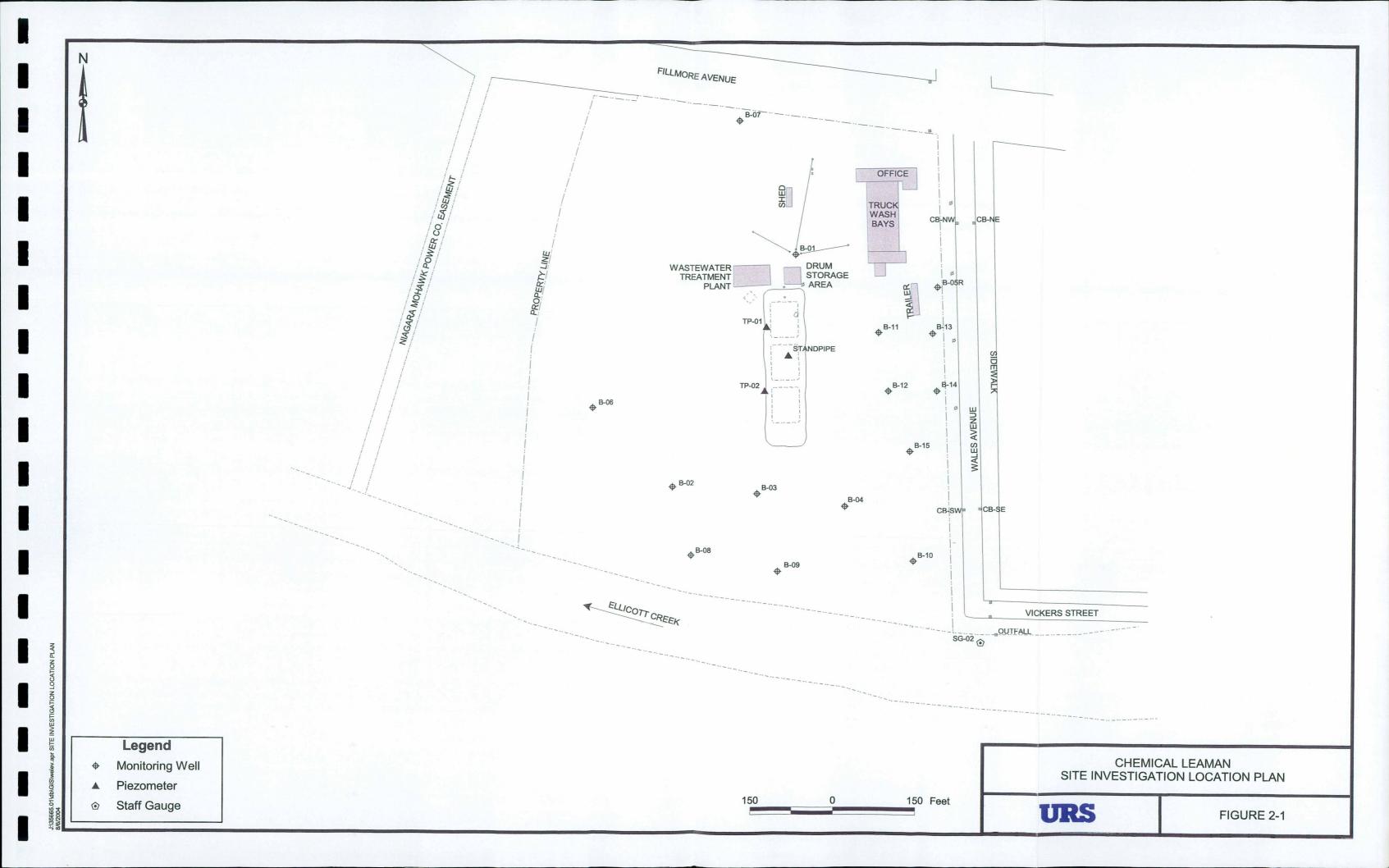
- Five geoprobe borings (B-11 through B-15) were to be installed in the eastern portion of the site to the top of the clay-confining unit (approximately 21 to 25 feet depth).
- Soil samples were to be collected continuously in each boring with a macrocore sampler, screened for VOCs with a PID and logged by a geologist.
- Following completion of each boring, a one-inch diameter, PVC, flush-mount, "mini-well" was to be installed to allow monitoring of groundwater levels and/or sampling. The screened interval of the proposed mini-wells was to be consistent with the screened interval of the existing monitoring wells and was to be positioned in the same hydrogeologic units/depths as the existing monitoring wells. The wells were to be developed and allowed to stabilize.
- The top of riser and ground surface elevations were to be surveyed for the new "miniwells".
- Groundwater level readings were to be obtained in the five new "mini-wells" and the 10 existing on-site wells at two-week intervals for the first three months following installation. Readings were to be obtained monthly thereafter. The groundwater levels were to be utilized to produce groundwater contour maps.

- If the groundwater data indicated that mounding was occurring in the central portion
 of the site, with radial flow towards Wales Avenue, groundwater samples were to be
 collected from all of the existing wells plus the new "mini-wells" and submitted for
 analysis of VOCs only.
- Concurrently with the well sampling, water samples were to be collected from the storm sewer catch basins along Wales Avenue. At least one sample was to be collected from a catch basin located upgradient from the site to determine background water quality. Additionally, the sewer outfall at Ellicott Creek was to be inspected to determine if there is water discharging from the pipe and /or the bedding around the pipe. Water samples were to be collected from both discharges, as applicable. The storm sewer samples were to be analyzed for VOCs.
- This data was to be utilized to further delineate the hydrogeologic flow regime in the
 eastern portion of the site and to assess the potential off-site migration of
 contaminants to the Wales Avenue storm sewer.

2.2 Summary of Investigations

2.2.1 Monitoring Well Installation

The drilling and monitoring well installation portions of the NYSDEC-approved field investigation activities commenced on June 16, 2003 and were completed on June 23, 2003. These activities included the following:


The installation of five geoprobe borings (B-11 through B-15) into the upper portion of the clay confining unit (20.0 to 23.0 feet). Soil samples were collected continuously in each boring using a 2-inch diameter by four foot long macrocore sampler equipped with a clear acetate liner. The soil cores were screened for volatile organic compounds (VOCs) with a photo-ionization detector (PID) and logged by a geologist. Copies of the boring logs are contained in Appendix A. The locations are shown on Figure 2-1.

- Following completion of each boring a one-inch diameter, polyvinyl chloride (PVC) "mini-well" was installed at each location. The depth of the screened interval in each new well was selected to match those in the existing on-site monitoring wells as close as practicable. All new wells are flush-mount except for B-15, which was finished with a stick-up protective casing due to its location in tall grass. The monitoring well construction details are presented in Appendix B.
- One round of water levels was taken following the completion of all five new wells.
- A week later the newly installed monitoring wells were developed using a peristaltic pump until parameters (i.e. pH, temperature and conductivity) stabilized and turbidity reduced to less than 50 NTU. Copies of the well development logs are contained in Appendix C. Another round of water level readings was taken, and all new wells were surveyed for vertical and horizontal location. To ensure consistency and accuracy, all the existing wells also were re-surveyed.
- The existing staff gauge (SG-02) in Ellicott Creek at the end of Wales Avenue, was modified and re-surveyed for elevation to ensure accuracy of water elevations.

2.2.2 Temporary Well Point Installation

Following completion of the initial two months of groundwater level monitoring, it was determined that groundwater levels in the eastern portion of the site were very 'flat', and there were no monitoring wells installed in the immediate vicinity of the lagoons to provide data on groundwater elevations in the central portion of the site. Consequently it was proposed, and approved by the NYSDEC, to install two temporary driven well points in the central and southern portion of the lagoon area.

Subsequently, two temporary well points (TP-01 and TP-02) consisting of a two foot section of $1 - \frac{1}{4}$ inch Johnson wire-wound screen coupled to $1 - \frac{1}{4}$ inch steel riser pipe were installed in the lagoon area of the site (Figure 2-1) on August 12, 2003. Both temporary well points were installed to depths of about 9 feet bgs. Additionally, while the well points were being installed, an existing standpipe was discovered in the center lagoon area. This standpipe consisted

of 4-inch diameter steel pipe extending to a depth of about 8-9 feet bgs. The elevations and horizontal locations of the two well points and the standpipe were determined and plotted on the base maps. These well points/standpipes were intended solely for the collection of groundwater elevation data. No environmental sampling was performed at these locations. The groundwater data obtained from these points was used to supplement the data from the 15 monitoring wells and "fill-in" the area around the lagoons on the groundwater contour maps.

2.2.3 Water Level Readings

As required in the NYSDEC-approved Work Plan, water level readings were obtained at routine intervals in all 15 onsite wells and at the staff gauge in Ellicott Creek. These readings were used to calculate groundwater elevations at each location. A historical summary of the groundwater readings is contained in Table 2-1. The groundwater elevations subsequently were plotted and contoured to produce groundwater contour maps of the site for each monitoring event. These maps are presented on Figures 2-2 to 2-16 respectively. The maps were evaluated to determine if mounding was in fact occurring, so that sampling of the monitoring wells, catch basins and storm sewer outfall could be performed.

A total of 15 rounds of water levels were collected and evaluated as part of this supplemental investigation.

2.2.4 Monitoring Wells and Storm Sewer Sampling

2.2.4.1 Monitoring Wells

Once the water level readings confirmed that mounding was in fact occurring on the site, the groundwater sampling program was conducted (June 4-7, 2004). Initially, all 15 onsite monitoring wells were purged utilizing low-flow methods to minimize the impact on flow conditions and turbidity in the well. This consisted of lowering low-density polyethylene (LDPE) tubing down to the mid-point of the saturated screen length. The tubing was then connected to a Geopump 2^{60} purging device that was set to purge between 0.2 liters to 0.7 liters per minute to

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol: Zone	Specific Gravity	⇒ Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
B-01	1098309.179	1074132.709	574.54	576.46	576.28	Α	0						
MNW								8/8/2000 0000	7.25	569.03	0.00	569.03	
MNW			·					9/29/2000 0000	7.50	568.78	0.00	568.78	
MNW								4/19/2001 0000	5.94	570.34	0.00	570.34	
MNW								4/24/2001 0000	6.10	570.18	0.00	570.18	
MNW						<u> </u>		4/29/2001 0000	6.28	570.00	0.00	570	
MNW								4/4/2002 0000	4.64	571.64	0.00	571.64	
MNW								4/17/2002 0000	4.55	571.73	0.00	571.73	
MNW								6/13/2002 0000	6.37	569.91	0.00	569.91	
MNW								5/24/2003 0000	4.33	571.95	0.00	571.95	
MNW								6/17/2003 0000	5.63	570.65	0.00	570.65	
MNW								6/23/2003 0000	6.24	570.04	0.00	570.04	
MNW								7/15/2003 0000	7.36	568.92	0.00	568.92	
MNW								8/12/2003 0000	6.86	569.42	0.00	569.42	
MNW								8/19/2003 0000	7.38	568.90	0.00	568.9	
MNW								9/11/2003 0000	8.98	567.30	0.00	567.3	
MNW								10/3/2003 0000	7.78	568.50	0.00	568.5	
MNW								1/13/2004 0000	6.22	570.06	0.00	570.06	
MNW						<u></u>		2/11/2004 0000	6.41	569.87	0.00	569.87	
MNW								3/22/2004 0000	2.21	574.07	0.00	574.07	
MNW								4/2/2004 0000	4.21	572.07	0.00	572.07	
MNW								4/21/2004 0000	4.42	571.86	0.00	571.86	
MNW								5/3/2004 0000	5.03	571.25	0.00	571.25	
MNW								6/3/2004 0000	5.36	570.92	0.00	570.92	
MNW	<u> </u>	L						7/22/2004 0840	6.05	570.23	0.00	570.23	
B-02	1097861.891	1073906.582	573.47	576.55	575.88	Α	0		1				
MNW							<u> </u>	8/8/2000 0000	8.50	567.38	0.00	567.38	

NM - No Measurement

Geologic Zone: A Aquifer Type:

MNW PZ Monitoring Well Piezometer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Location ID 7, Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW								9/29/2000 0000	8.60	567.28	0.00	567.28	
MNW								4/19/2001 0000	6.27	569.61	0.00	569.61	
MNW								4/24/2001 0000	6.35	569.53	0.00	569.53	
MNW								4/29/2001 0000	6.45	569.43	0.00	569.43	
MNW								4/4/2002 0000	5.63	570.25	0.00	570.25	
MNW								4/17/2002 0000	5.73	570.15	0.00	570.15	
MNW								6/13/2002 0000	6.93	568.95	0.00	568.95	
MNW								5/24/2003 0000	6.16	569.72	0.00	569.72	
MNW								6/17/2003 0000	6.51	569.37	0.00	569.37	
MNW								6/23/2003 0000	6.78	569.10	0.00	569.1	
MNW								7/15/2003 0000	8.19	567.69	0.00	567.69	
MNW								8/12/2003 0000	9.09	566.79	0.00	566.79	
MNW								8/19/2003 0000	9.38	566.50	0.00	566.5	
MNW								9/11/2003 0000	11.26	564.62	0.00	564.62	
MNW								10/3/2003 0000	11.37	564.51	0.00	564.51	
MNW								1/13/2004 0000	11.01	564.87	0.00	564.87	
MNW								2/11/2004 0000	6.54	569.34	0.00	569.34	
MNW								3/22/2004 0000	5.41	570.47	0.00	570.47	
MNW								4/2/2004 0000	5.54	570.34	0.00	570.34	
MNW								4/21/2004 0000	5.61	570.27	0.00	570.27	
MNW								5/3/2004 0000	5.85	570.03	0.00	570.03	
MNW								6/3/2004 0000	6.83	569.05	0.00	569.05	
MNW								7/22/2004 0955	8.32	567.56	0.00	567.56	
B-03	1097849.433	1074063.551	574.75	576.99	576.79	Α	0						
MNW								8/8/2000 0000	9.45	567.34	0.00	567.34	
MNW								9/29/2000 0000	9.00	567.79	0.00	567.79	
MNW								4/19/2001 0000	6.58	570.21	0.00	570.21	

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Geologic Zone:

Aquiter

Type:

MNW PZ Monitoring Well Piezometer

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW								4/24/2001 0000	6.82	569.97	0.00	569.97	
MNW								4/29/2001 0000	7.06	569.73	0.00	569.73	
MNW								4/4/2002 0000	5.39	571.40	0.00	571.4	
MNW								4/17/2002 0000	5.47	571.32	0.00	571.32	
MNW								6/13/2002 0000	7.79	569.00	0.00	569	
MNW								5/24/2003 0000	8.93	567.86	0.00	567.86	
MNW								6/17/2003 0000	7.22	569.57	0.00	569.57	
MNW								6/23/2003 0000	7.80	568.99	0.00	568.99	
MNW								7/15/2003 0000	9.67	567.12	0.00	567.12	
MNW								8/12/2003 0000	9.95	566.84	0.00	566.84	
MNW								8/19/2003 0000	10.61	566.18	0.00	566.18	·
MNW								9/11/2003 0000	12.25	564.54	0.00	564.54	
MNW								10/3/2003 0000	12.10	564.69	0.00	564.69	
MNW								1/13/2004 0000	12.11	564.68	0.00	564.68	
MNW								2/11/2004 0000	7.11	569.68	0.00	569.68	W
MNW								3/22/2004 0000	5.55	571.24	0.00	571.24	
MNW								4/2/2004 0000	5.14	571.65	0.00	571.65	
MNW								4/21/2004 0000	5.33	571.46	0.00	571.46	
MNW								5/3/2004 0000	5.70	571.09	0.00	571.09	
MNW								6/3/2004 0000	6.80	569.99	0.00	569.99	
MNW								7/22/2004 0948	9.17	567.62	0.00	567.62	
B-04	1097825.654	1074222.932	573.42	576.04	575.80	Α	0						
MNW						:		8/8/2000 0000	9.40	566.40	0.00	566.4	
MNW								9/29/2000 0000	9.05	566.75	0.00	566.75	
MNW								4/19/2001 0000	4.96	570.84	0.00	570.84	
MNW								4/24/2001 0000	5.41	570.39	0.00	570.39	· · · · · · · · · · · · · · · · · · ·
MNW								4/29/2001 0000	5.83	569.97	0.00	569.97	

NM - No Measurement

Geologic Zone: A Aquifer Type: MNW

Monitoring Well

PΖ

Piezometer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW								4/4/2002 0000	3.64	572.16	0.00	572.16	
MNW								4/17/2002 0000	3.65	572.15	0.00	572.15	
MNW								6/13/2002 0000	7.12	568.68	0.00	568.68	
MNW								5/24/2003 0000	4.28	571.52	0.00	571.52	
MNW								6/17/2003 0000	6.23	569.57	0.00	569.57	
MNW								6/23/2003 0000	7.22	568.58	0.00	568.58	
MNW								7/15/2003 0000	9.58	566.22	0.00	566.22	
MNW								8/12/2003 0000	9.58	566.22	0.00	566.22	
MNW								8/19/2003 0000	10.25	565.55	0.00	565.55	
MNW								9/11/2003 0000	11.91	563.89	0.00	563.89	
MNW								10/3/2003 0000	11.56	564.24	0.00	564.24	
MNW								1/13/2004 0000	11.32	564.48	0.00	564.48	
MNW								2/11/2004 0000	5.61	570.19	0.00	570.19	
MNW								3/22/2004 0000	3.74	572.06	0.00	572.06	
MNW								4/2/2004 0000	3.18	572.62	0.00	572.62	
MNW								4/21/2004 0000	3.36	572.44	0.00	572.44	
MNW								5/3/2004 0000	3.73	572.07	0.00	572.07	
MNW								6/3/2004 0000	5.63	570.17	0.00	570.17	
MNW								7/22/2004 0940	8.55	567.25	0.00	567.25	
B-05R		1074390.938	574.04	573.98	573.71	А	0						***
MNW	 							8/8/2000 0000	5.00	568.71	0.00	568.71	
MNW		<u>.</u>						9/29/2000 0000	4.85	568.86	0.00	568.86	
MNW								4/19/2001 0000	4.28	569.43	0.00	569.43	
MNW	<u></u>							4/24/2001 0000	4.24	569.47	0.00	569.47	
MNW	<u> </u>							4/29/2001 0000	4.21	569.50	0.00	569.5	
MNW								4/4/2002 0000	2.91	570.80	0.00	570.8	
MNW	I		<u> </u>			L		4/17/2002 0000	3.58	570.13	0.00	570.13	

NM - No Measurement

Geologic Zone: Aquifer Type:

MNW

Monitoring Well

The value noted in the column tabeled Specific Gravity is an assumed value for free product, if found.

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	. ".	Remark
MNW						<u> </u>		6/13/2002 0000	4.14	569.57	0.00	569.57		······································
MNW								5/24/2003 0000	1.11	572.60	0.00	572.6		
MNW								6/17/2003 0000	3.68	570.03	0.00	570.03		
MNW								6/23/2003 0000	4.16	569.55	0.00	569.55		
MNW								7/15/2003 0000	5.23	568.48	0.00	568.48		
MNW								8/12/2003 0000	4.18	569.53	0.00	569.53		
MNW					-			8/19/2003 0000	5.25	568.46	0.00	568.46		
MNW								9/11/2003 0000	6.66	567.05	0.00	567.05		
MNW								10/3/2003 0000	5.17	568.54	0.00	568.54		
MNW								1/13/2004 0000	4.86	568.85	0.00	568.85		
MNW								3/22/2004 0000	2.87	570.84	0.00	570.84		
MNW								4/2/2004 0000	2.18	571.53	0.00	571.53		
MNW	<u> </u>							4/21/2004 0000	2.89	570.82	0.00	570.82		
MNW	 							5/3/2004 0000	3.24	570.47	0.00	570.47		
MNW								6/3/2004 0000	3.37	570.34	0.00	570.34		,
MNW								7/22/2004 0920	3.97	569.74	0.00	569.74		
B-06	1098013.116	1073758.847	576.44	579.04	579.09	А	0							
MNW								8/8/2000 0000	11.60	567.49	0.00	567.49		
MNW								9/29/2000 0000	11.60	567.49	0.00	567.49		,,,-,,
MNW								4/19/2001 0000	9.43	569.66	0.00	569.66		
MNW								4/24/2001 0000	9.57	569.52	0.00	569.52		
MNW								4/29/2001 0000	9.80	569.29	0.00	569.29		
MNW								4/4/2002 0000	7.56	571.53	0.00	571.53		
MNW								4/17/2002 0000	7.70	571.39	0.00	571.39		-
MNW								6/13/2002 0000	10.41	568.68	0.00	568.68		
MNW								5/24/2003 0000	6.13	572.96	0.00	572.96		
MNW								6/17/2003 0000	9.73	569.36	0.00	569.36		

NM - No Measurement

Geologic Zone: Aquiter

Type: MNW

PΖ

Monitoring Well

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to : Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW	<u> </u>							6/23/2003 0000	10.31	568.78	0.00	568.78	
MNW								7/15/2003 0000	12.33	566.76	0.00	566.76	
MNW	 							8/12/2003 0000	12.04	567.05	0.00	567.05	
MNW	<u> </u>							8/19/2003 0000	12.80	566.29	0.00	566.29	
MNW								9/11/2003 0000	14.02	565.07	0.00	565.07	
MNW								10/3/2003 0000	13.72	565.37	0.00	565.37	
MNW	ļ							1/13/2004 0000	12.93	566.16	0.00	566.16	
MNW	<u> </u>							2/11/2004 0000	9.72	569.37	0.00	569.37	
MNW	ļ <u>.</u>				-			3/22/2004 0000	5.23	573.86	0.00	573.86	
MNW								4/2/2004 0000	7.41	571.68	0.00	571.68	
MNW		,						4/21/2004 0000	7.59	571.50	0.00	571.5	
MNW								5/3/2004 0000	8.58	570.51	0.00	570.51	
MNW		,						6/3/2004 0000	9.50	569.59	0.00	569.59	
MNW								7/22/2004 000	11.52	567.57	0.00	567.57	
B-07	1098561.657	1074028.727	574.28	574.81	574.00	A	0						
MNW								8/8/2000 0000	5.45	568.55	0.00	568.55	
MNW								9/29/2000 0000	5.10	568.90	0.00	568.9	
MNW								4/19/2001 0000	4.39	569.61	0.00	569.61	
MNW	<u> </u>							4/24/2001 0000	4.62	569.38	0.00	569.38	, , , , , , , , , , , , , , , , , , , ,
MNW	<u> </u>							4/29/2001 0000	4.75	569.25	0.00	569.25	
MNW								4/4/2002 0000	2.49	571.51	0.00	571.51	
MNW								4/17/2002 0000	2.89	571.11	0.00	571.11	
MNW	<u> </u>							6/13/2002 0000	4.73	569.27	0.00	569.27	
MNW								5/24/2003 0000	2.88	571.12	0.00	571.12	
MNW								6/17/2003 0000	3.78	570.22	0.00	570.22	
MNW								6/23/2003 0000	4.49	569.51	0.00	569.51	
MNW			<u> </u>					7/15/2003 0000	5.74	568.26	0.00	568.26	

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Geologic Zone:

A ... Aquifer

Type:

MNW PZ

W Monitoring Well

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW								8/12/2003 0000	3.84	570.16	0.00	570.16	
MNW								8/19/2003 0000	5.49	568.51	0.00	568.51	
MNW								9/11/2003 0000	6.97	567.03	0.00	567.03	
MNW								10/3/2003 0000	5.54	568.46	0.00	568.46	
MNW								1/13/2004 0000	5.06	568.94	0.00	568.94	
MNW						<u> </u>		2/11/2004 0000	4.06	569.94	0.00	569.94	
MNW								3/22/2004 0000	2.95	571.05	0.00	571.05	
MNW								4/2/2004 0000	1.56	572.44	0.00	572.44	
MNW	<u></u>							4/21/2004 0000	2.48	571.52	0.00	571.52	
MNW								5/3/2004 0000	2.91	571.09	0.00	571.09	
MNW								6/3/2004 0000	3.29	570.71	0.00	570.71	
MNW								7/22/2004 0835	3.73	570.27	0.00	570.27	
B-08	1097730.257	1073940.94	572.26	574.26	574.12	A	0		1				
MNW								4/4/2002 0000	4.28	569.84	0.00	569.84	
MNW								4/17/2002 0000	4.31	569.81	0.00	569.81	
MNW								6/13/2002 0000	5.39	568.73	0.00	568.73	
MNW								5/24/2003 0000	4.60	569.52	0.00	569.52	
MNW								6/17/2003 0000	4.90	569.22	0.00	569.22	
MNW								6/23/2003 0000	5.14	568.98	0.00	568.98	
MNW								7/15/2003 0000	6.48	567.64	0.00	567.64	
MNW								8/12/2003 0000	7.68	566.44	0.00	566.44	
MNW								8/19/2003 0000	8.07	566.05	0.00	566.05	
MNW								9/11/2003 0000	11.11	563.01	0.00	563.01	,
MNW								10/3/2003 0000	11.80	562.32	0.00	562.32	
MNW								1/13/2004 0000	11.29	562.83	0.00	562.83	
MNW								2/11/2004 0000	4.91	569.21	0.00	569.21	
MNW								3/22/2004 0000	3.24	570.88	0.00	570.88	

NM - No Measurement

Geologic Zone:
A Aquifer

Type:

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

MNW

Monitoring Well Piezometer

Location ID /	Northing	Easting	Ground (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW								4/2/2004 0000	4.04	570.08	0.00	570.08	
MNW								4/21/2004 0000	4.18	569.94	0.00	569.94	
MNW								5/3/2004 0000	4.32	569.80	0.00	569.8	
MNW								6/3/2004 0000	4.56	569.56	0.00	569.56	
MNW								7/22/2004 0952	6.70	567.42	0.00	567.42	
B-09	1097700.44	1074101.86	571.99	574.28	574.00	A	0						
MNW								4/4/2002 0000	4.32	569.68	0.00	569.68	
MNW								4/17/2002 0000	4.62	569.38	0.00	569.38	
MNW								6/13/2002 0000	7.75	566.25	0.00	566.25	
MNW								5/24/2003 0000	6.65	567.35	0.00	567.35	
MNW		· · · · · · · · · · · · · · · · · · ·						6/17/2003 0000	7.65	566.35	0.00	566.35	
MNW								6/23/2003 0000	8.00	566.00	0.00	566	- ·
MNW								7/15/2003 0000	9.38	564.62	0.00	564.62	
MNW								8/12/2003 0000	10.05	563.95	0.00	563.95	
MNW								8/19/2003 0000	10.68	563.32	0.00	563.32	
MNW								9/11/2003 0000	13.05	560.95	0.00	560.95	
MNW								10/3/2003 0000	13.21	560.79	0.00	560.79	
MNW								1/13/2004 0000	13.03	560.97	0.00	560.97	
MNW								2/11/2004 0000	7.54	566.46	0.00	566.46	
MNW								3/22/2004 0000	6.09	567.91	0.00	567.91	
MNW								4/2/2004 0000	5.61	568.39	0.00	568.39	
MNW								4/21/2004 0000	5.96	568.04	0.00	568.04	
MNW								5/3/2004 0000	6.57	567.43	0.00	567.43	
MNW								6/3/2004 0000	7.18	566.82	0.00	566.82	
MNW								7/22/2004 0944	9.02	564.98	0.00	564.98	
B-10	1097721.39	1074348.21	571.97	574.03	573.63	Α	0		1				
MNW								4/4/2002 0000	2.48	571.15	0.00	571.15	

NM - No Measurement

Geologic Zone:

Type:

A Aquifer

MNW

Monitoring Well

PŻ

Piezometer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing · · · Elevation (ft)	# Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	.,	Remark	
MNW								4/17/2002 0000	2.75	570.88	0.00	570.88			
MNW								6/13/2002 0000	5.94	567.69	0.00	567.69			
MNW								5/24/2003 0000	4.22	569.41	0.00	569.41	Ì		
MNW								6/17/2003 0000	5.71	567.92	0.00	567.92			
MNW								6/23/2003 0000	6.30	567.33	0.00	567.33			
MNW								7/15/2003 0000	8.35	565.28	0.00	565.28			
MNW								8/12/2003 0000	7.81	565.82	0.00	565.82			
MNW								8/19/2003 0000	8.60	565.03	0.00	565.03			
MNW								9/11/2003 0000	10.26	563.37	0.00	563.37			
MNW								10/3/2003 0000	9.54	564.09	0.00	564.09			
MNW								1/13/2004 0000	9.33	564.30	0.00	564.3			
MNW								2/11/2004 0000	5.13	568.50	0.00	568.5			
MNW								3/22/2004 0000	3.60	570.03	0.00	570.03			
MNW		•						4/2/2004 0000	2.91	570.72	0.00	570.72			
MNW								4/21/2004 0000	3.57	570.06	0.00	570.06			
MNW								5/3/2004 0000	4.14	569.49	0.00	569.49			
MNW								6/3/2004 0000	5.24	568.39	0.00	568.39			
MNW								7/22/2004 0935	7.05	566.58	0.00	566.58			
B-11	1098160.58	1074283.33	575.40	575.40	575.26	А	0						1		
MNW								6/17/2003 0000	5.32	569.94	0.00	569.94			
MNW								6/23/2003 0000	5.78	569.48	0.00	569.48	· · ·		
MNW								7/15/2003 0000	6.93	568.33	0.00	568.33			
MNW								8/12/2003 0000	6.34	568.92	0.00	568.92			
MNW								8/19/2003 0000	7.08	568.18	0.00	568.18			
MNW								9/11/2003 0000	8.37	566.89	0.00	566.89	1		
MNW								10/3/2003 0000	7.38	567.88	0.00	567.88			
MNW								1/13/2004 0000	7.64	567.62	0.00	567.62			

NM - No Measurement

Geologic Zone: A Aquifer Type:

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

MNW Monitoring Well
PZ Piezometer

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW								3/22/2004 0000	NM		NM	-	Unable to Locate
MNW	<u> </u>							4/2/2004 0000	3.80	571.46	0.00	571.46	
MNW								4/21/2004 0000	4.28	570.98	0.00	570.98	
MNW								5/3/2004 0000	4.65	570.61	0.00	570.61	··· · · · · · · · · · · · · · · · · ·
MNW								6/3/2004 0000	5.07	570.19	0.00	570.19	
MNW								7/22/2004 0925	5.89	569.37	0.00	569.37	
B-12	1098047.73	1074301.41	574.31	574.31	574.18	Α	0						
MNW								6/17/2003 0000	4.09	570.09	0.00	570.09	
MNW								6/23/2003 0000	4.61	569.57	0.00	569.57	
MNW								7/15/2003 0000	5.84	568.34	0.00	568.34	
MNW								8/12/2003 0000	5.50	568.68	0.00	568.68	
MNW								8/19/2003 0000	6.09	568.09	0.00	568.09	
MNW								9/11/2003 0000	7.41	566.77	0.00	566.77	
MNW								10/3/2003 0000	6.66	567.52	0.00	567.52	
MNW								1/13/2004 0000	6.27	567.91	0.00	567.91	
MNW								3/22/2004 0000	NM	-	NM	-	Unable to Locate
MNW								4/2/2004 0000	2.67	571.51	0.00	571.51	
MNW								4/21/2004 0000	2.92	571.26	0.00	571.26	
MNW								5/3/2004 0000	3.37	570.81	0.00	570.81	
MNW	···							6/3/2004 0000	3.95	570.23	0.00	570.23	
MNW								7/22/2004 0909	4.99	569.19	0.00	569.19	
B-13	1098158.65	1074382.45	574.33	574.33	574.15	Α	0						
MNW				ŀ	ļ			6/17/2003 0000	3.84	570.31	0.00	570.31	
MNW								6/23/2003 0000	4.62	569.53	0.00	569.53	
MNW								7/15/2003 0000	5.85	568.30	0.00	568.3	
MNW								8/12/2003 0000	4.71	569.44	0.00	569.44	
MNW								8/19/2003 0000	5.92	568.23	0.00	568.23	

NM - No Measurement

Geologic Zone: A Aquifer Type:

MNW

Monitoring Well

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

ΡŻ

Location ID / Type	Northing -	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW								9/11/2003 0000	7.21	566.94	0.00	566.94	
MNW								10/3/2003 0000	6.04	568.11	0.00	568.11	
MNW								1/13/2004 0000	5.81	568.34	0.00	568.34	
MNW								3/22/2004 0000	3.37	570.78	0.00	570.78	
MNW								4/2/2004 0000	2.59	571.56	0.00	571.56	
MNW								4/21/2004 0000	2.98	571.17	0.00	571.17	
MNW								5/3/2004 0000	3.36	570.79	0.00	570.79	
MNW								6/3/2004 0000	3.89	570.26	0.00	570.26	
MNW								7/22/2004 0917	5.01	569.14	0.00	569.14	
B-14	1098048.56	1074390.54	573.64	573.64	573.50	A	0	,					
MNW			<u> </u>					6/17/2003 0000	3.56	569.94	0.00	569.94	
MNW								6/23/2003 0000	4.03	569.47	0.00	569.47	
MNW								7/15/2003 0000	5.23	568.27	0.00	568.27	
MNW								8/12/2003 0000	4.65	568.85	0.00	568.85	
MNW								8/19/2003 0000	5.40	568.10	0.00	568.1	
MNW								9/11/2003 0000	6.73	566.77	0.00	566.77	
MNW								10/3/2003 0000	5.84	567.66	0.00	567.66	
MNW								1/13/2004 0000	5.29	568.21	0.00	568.21	
MNW								3/22/2004 0000	2.21	571.29	0.00	571.29	Well Area Flooded
MNW								4/2/2004 0000	2.20	571.30	0.00	571.3	
MNW								4/21/2004 0000	2.49	571.01	0.00	571.01	
MNW								5/3/2004 0000	2.88	570.62	0.00	570.62	
MNW								6/3/2004 0000	3.37	570.13	0.00	570.13	
MNW				_				7/22/2004 0915	4.22	569.28	0.00	569.28	
B-15	1097931.74	1074341.17	572.90	576.29	576.10	A	0						
MNW								6/17/2003 0000	6.13	569.97	0.00	569.97	
MNW								6/23/2003 0000	6.77	569.33	0.00	569.33	

NM - No Measurement

Geologic Zone:

Type:

Aquifer

MNW

ΡZ

Monitoring Well

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MNW								7/15/2003 0000	8.32	567.78	0.00	567.78	
MNW								8/12/2003 0000	7.58	568.52	0.00	568.52	
MNW								8/19/2003 0000	8.55	567.55	0.00	567.55	
MNW								9/11/2003 0000	9.98	566.12	0.00	566.12	
MNW								10/3/2003 0000	9.04	567.06	0.00	567.06	
MNW								1/13/2004 0000	8.97	567.13	0.00	567.13	
MNW								2/11/2004 0000	6.10	570.00	0.00	570	
MNW	<u> </u>							3/22/2004 0000	NM	-	NM		No Access
MNW								4/2/2004 0000	4.37	571.73	0.00	571.73	
MNW	l							4/21/2004 0000	4.70	571.40	0.00	571.4	
MNW	4							5/3/2004 0000	5.04	571.06	0.00	571.06	
MNW								6/3/2004 0000	5.77	570.33	0.00	570.33	
MNW								7/22/2004 0913	7.07	569.03	0.00	569.03	
SG-01	1097681.761	1073462.153	NA	NA	564.94	Α	0						
SG						ļ		8/8/2000 0000	0.00	564.94	0.00	564.94	
SG								9/29/2000 0000	0.04	564.90	0.00	564.9	
SG-02	1097566.611	1074471.014	NA	NA	566.88	A	0						
SG								6/17/2003 0000	2.16	564.72	0.00	564.72	
SG								6/23/2003 0000	1.64	565.24	0.00	565.24	
SG								7/15/2003 0000	2.21	564.67	0.00	564.67	
SG								8/12/2003 0000	2.15	564.73	0.00	564.73	
SG								8/19/2003 0000	1.83	565.05	0.00	565.05	
SG								9/11/2003 0000	2.25	564.63	0.00	564.63	
SG								10/3/2003 0000	2.5	564.38	0.00	564.38	Approx. Static Depth
SG								1/13/2004 0000	NM	•	NM	-	No Access Due To Snow
SG								3/22/2004 0000	2.23	564.65	0.00	564.65	26.75 Inches
SG								4/2/2004 0000	2.09	564.79	0.00	564.79	

NM - No Measurement

Geologic Zone: A Aquifer Type:

MNW

Monitoring Well Piezometer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

PΖ

Z

Location ID /- Type	Northing ‡	Easting	Ground & Elevation (ft)	Casing . Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	: Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
SG								4/21/2004 0000	2.08	564.80	0.00	564.8	
SG								5/3/2004 0000	2.00	564.88	0.00	564.88	
SG								7/22/2004 0930	1.34	565.54	0.00	565.54	
SG-02A	1097566.611	1074471.014	NA	NA	564.84	Α	0						
SG								8/8/2000 0000	-0.10	564.94	0.00	564.94	
SG								9/29/2000 0000	-0.04	564.88	0.00	564.88	
SG								4/19/2001 0000	0.12	564.72	0.00	564.72	
SG								4/24/2001 0000	-0.73	565.57	0.00	565.57	
SG								4/29/2001 0000	0.02	564.82	0.00	564.82	
SG								4/4/2002 0000	-0.31	565.15	0.00	565.15	
SG								4/17/2002 0000	0.02	564.82	0.00	564.82	
SG								6/13/2002 0000	0.02	564.82	0.00	564.82	
STANDPIPE	1098115.379	1074119.507	575.51	NA	579.60	Α	0					1	
PZ								8/12/2003 0000	11.38	568.22	0.00	568.22	
PZ								8/19/2003 0000	11.34	568.26	0.00	568.26	
PZ								9/11/2003 0000	12.45	567.15	0.00	567.15	
PZ								10/3/2003 0000	12.69	566.91	0.00	566.91	
PZ								1/13/2004 0000	11.28	568.32	0.00	568.32	
PZ								2/11/2004 0000	9.51	570.09	0.00	570.09	
PZ								3/22/2004 0000	6.72	572.88	0.00	572.88	
PZ								4/2/2004 0000	6.44	573.16	0.00	573.16	
PZ								4/21/2004 0000	6.97	572.63	0.00	572.63	
PZ								5/3/2004 0000	7.62	571.98	0.00	571.98	
PZ								6/3/2004 0000	8.23	571.37	0.00	571.37	
PZ								7/22/2004 0905	10.48	569.12	0.00	569.12	-

NM - No Measurement

Geologic Zone: A Aquiter Type:

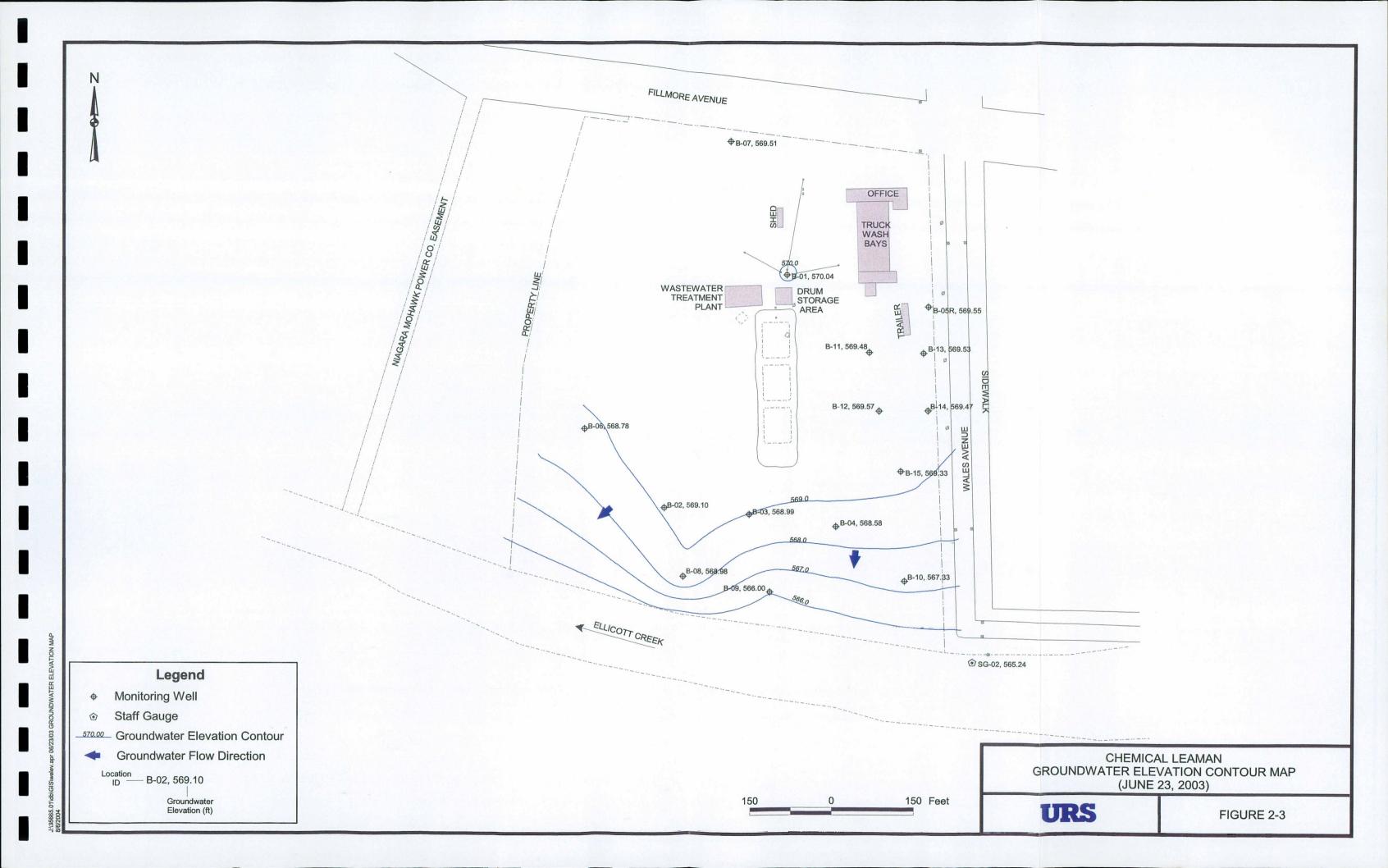
MNW PZ Monitoring Well Piezometer

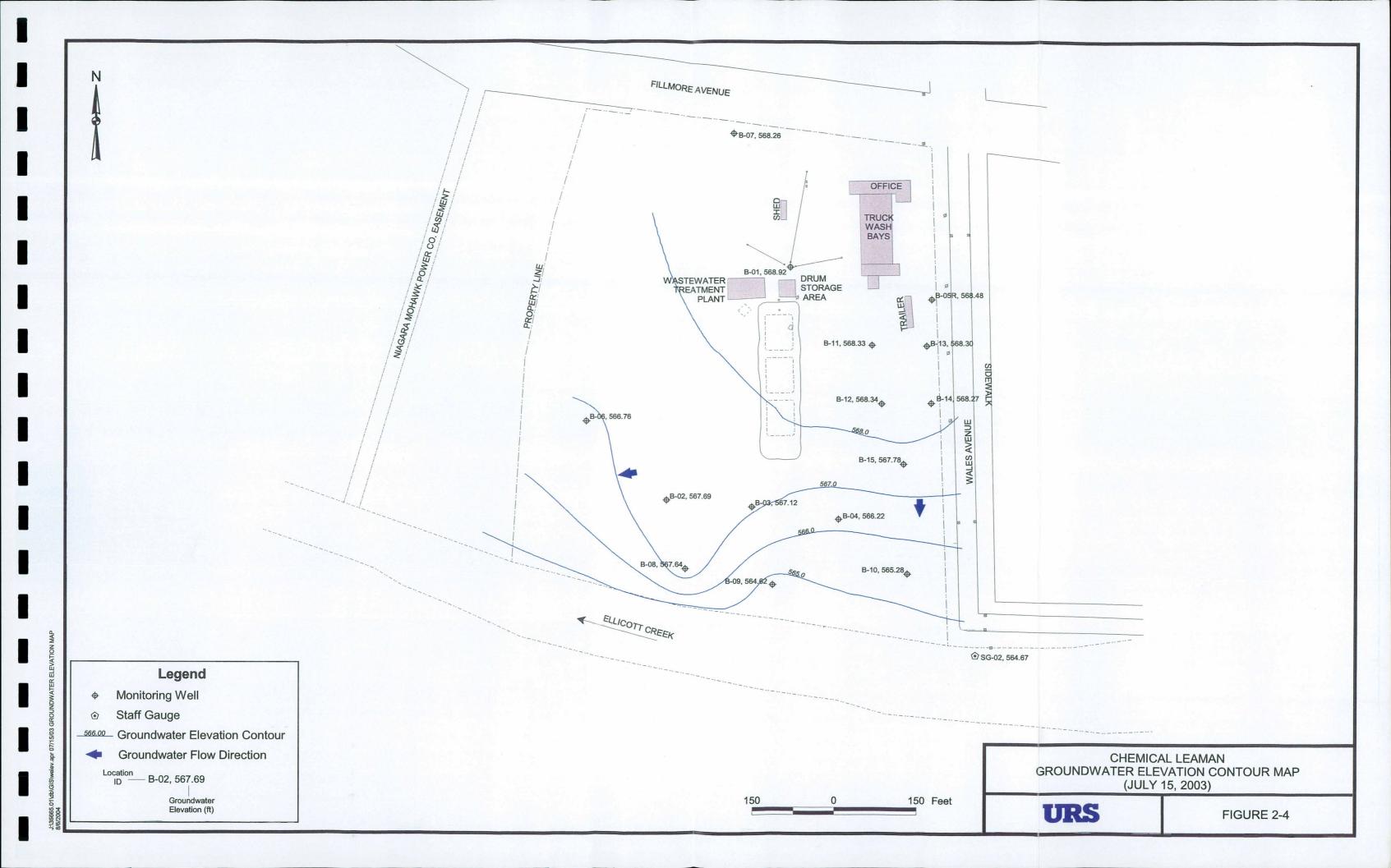
The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

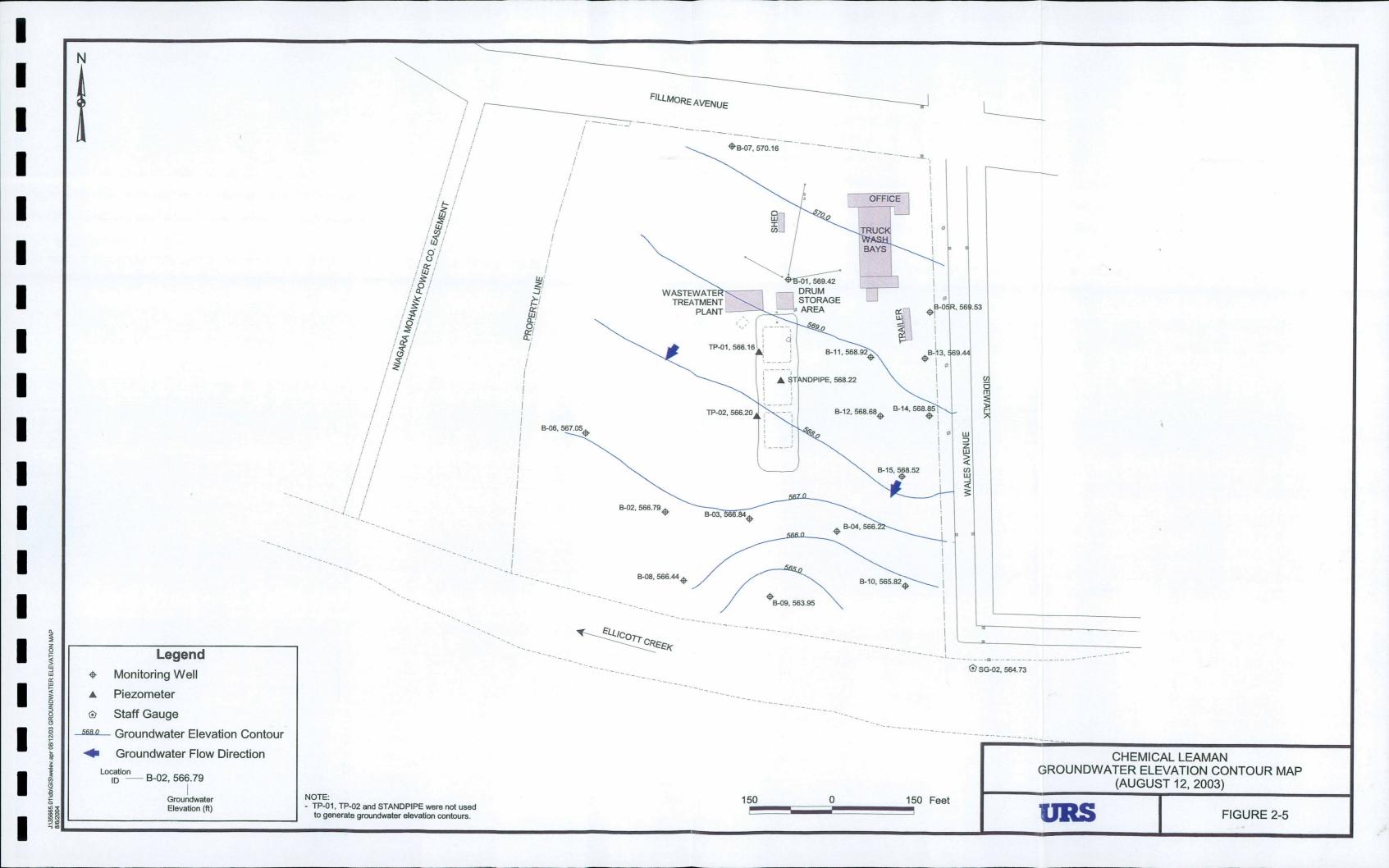
Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing ···· Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
TP-01	1098169.889	1074079.839	574.21	NA	577.46	Α	0						
PZ								8/12/2003 0000	11.30	566.16	0.00	566.16	
PZ						 		8/19/2003 0000	9.31	568.15	0.00	568.15	
PZ								9/11/2003 0000	10.55	566.91	0.00	566.91	
PZ								10/3/2003 0000	11.91	565.55	0.00	565.55	
PZ								1/13/2004 0000	11.78	565.68	0.00	565.68	
PZ								2/11/2004 0000	7.58	569.88	0.00	569.88	
PZ								3/22/2004 0000	5.96	571.50	0.00	571.5	
PZ								4/2/2004 0000	5.61	571.85	0.00	571.85	
PZ								4/21/2004 0000	5.71	571.75	0.00	571.75	
PZ								5/3/2004 0000	6.20	571.26	0.00	571.26	
PZ								6/3/2004 0000	6.67	570.79	0.00	570.79	
PZ								7/22/2004 0850	8.38	569.08	0.00	569.08	
TP-02	1098046.975	1074076.420	575.40	NA	578.39	A	0]				
PZ							_	8/12/2003 0000	12.19	566.20	0.00	566.2	
PZ								8/19/2003 0000	10.69	567.70	0.00	567.7	
PZ								9/11/2003 0000	11.68	566.71	0.00	566.71	
PZ								10/3/2003 0000	11.96	566.43	0.00	566.43	
PZ								1/13/2004 0000	11.91	566.48	0.00	566.48	
PZ								2/11/2004 0000	7.96	570.43	0.00	570.43	
PZ								3/22/2004 0000	6.01	572.38	0.00	572.38	
PZ								4/2/2004 0000	6.05	572.34	0.00	572.34	
PZ								4/21/2004 0000	5.99	572.40	0.00	572.4	
PZ								5/3/2004 0000	6.29	572.10	0.00	572.1	
PZ								6/3/2004 0000	7.01	571.38	0.00	571.38	
PZ								7/22/2004 0900	9.46	568.93	0.00	568.93	

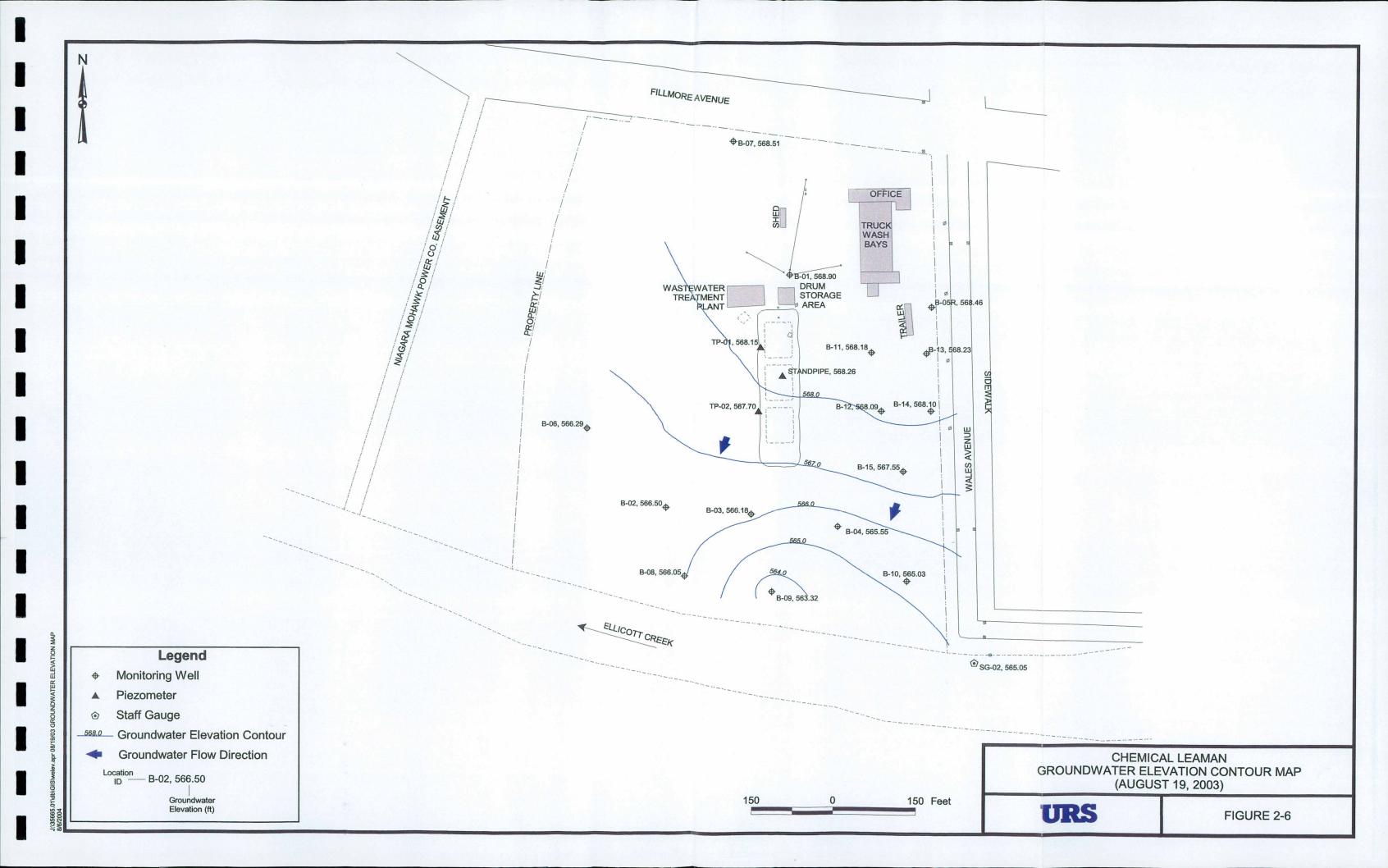
NM - No Measurement

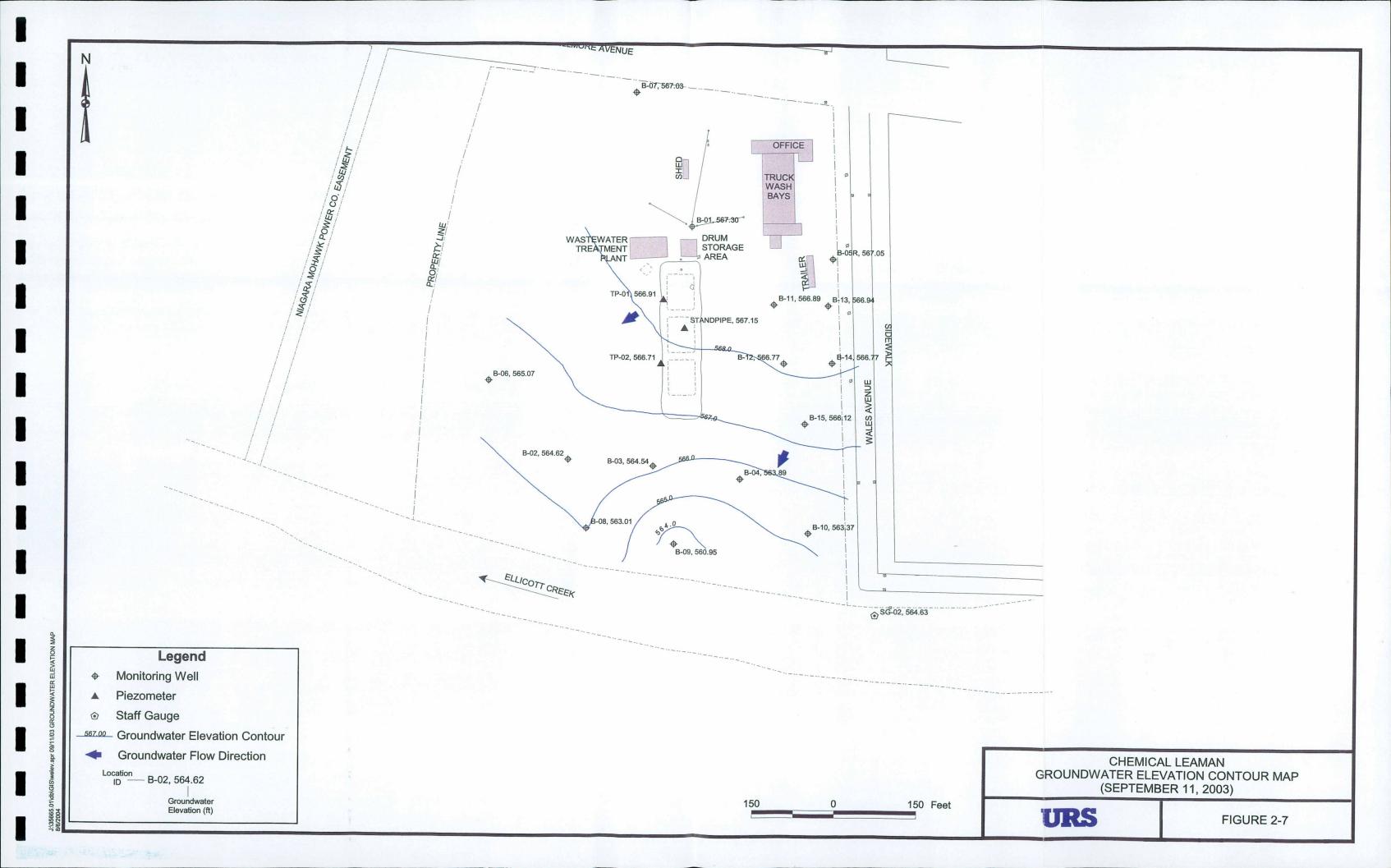

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

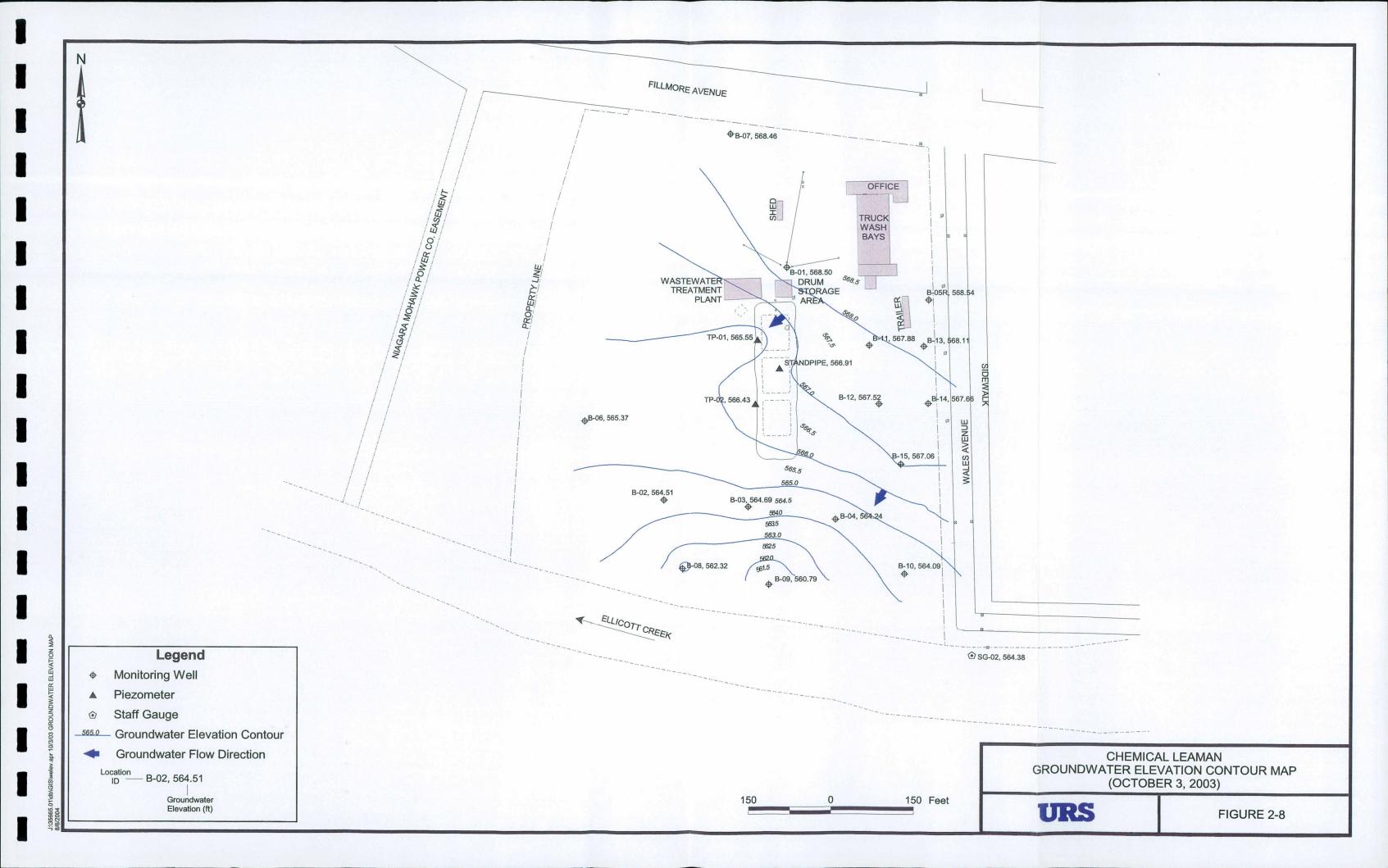

Geologic Zone:

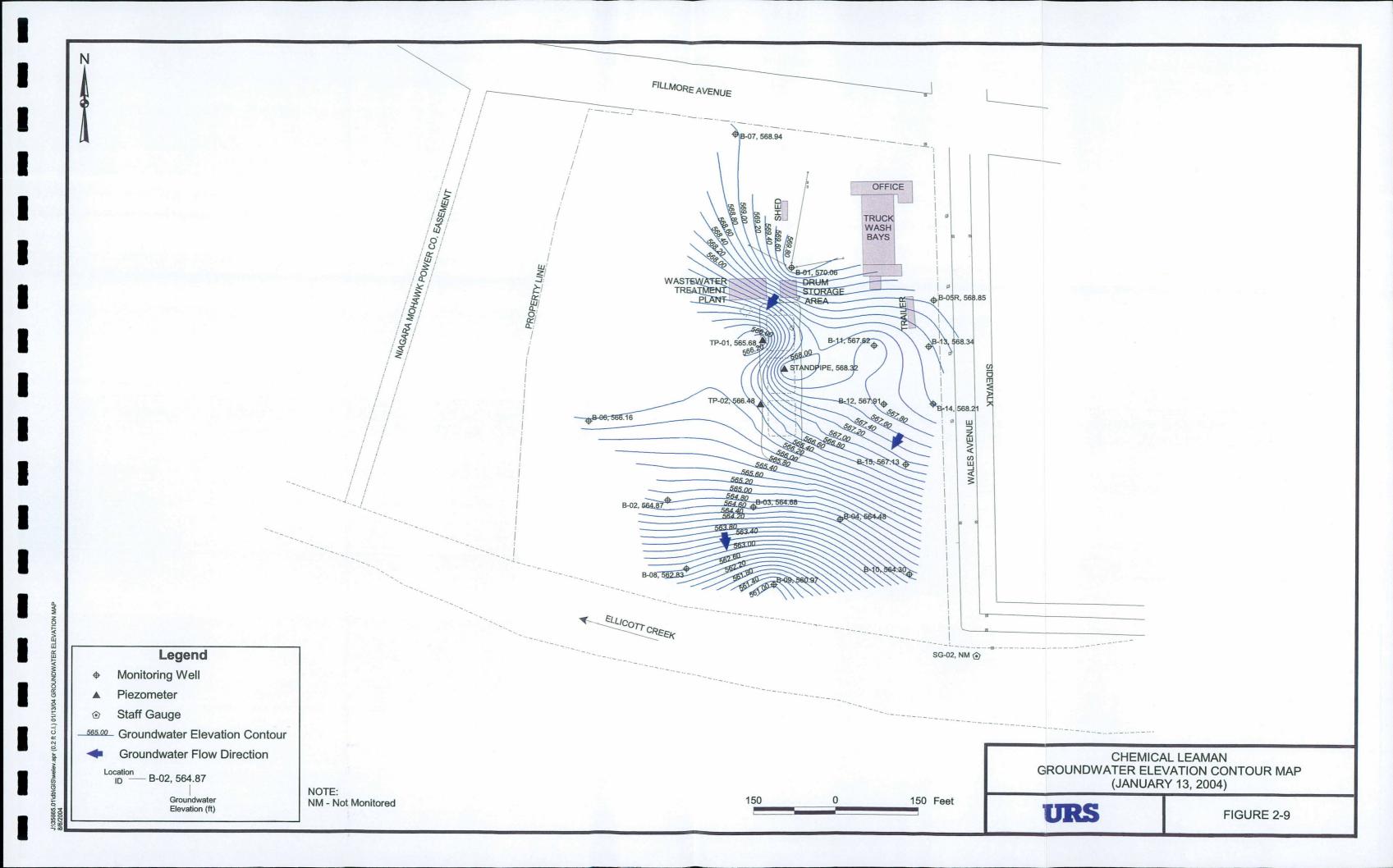

A Aquiter

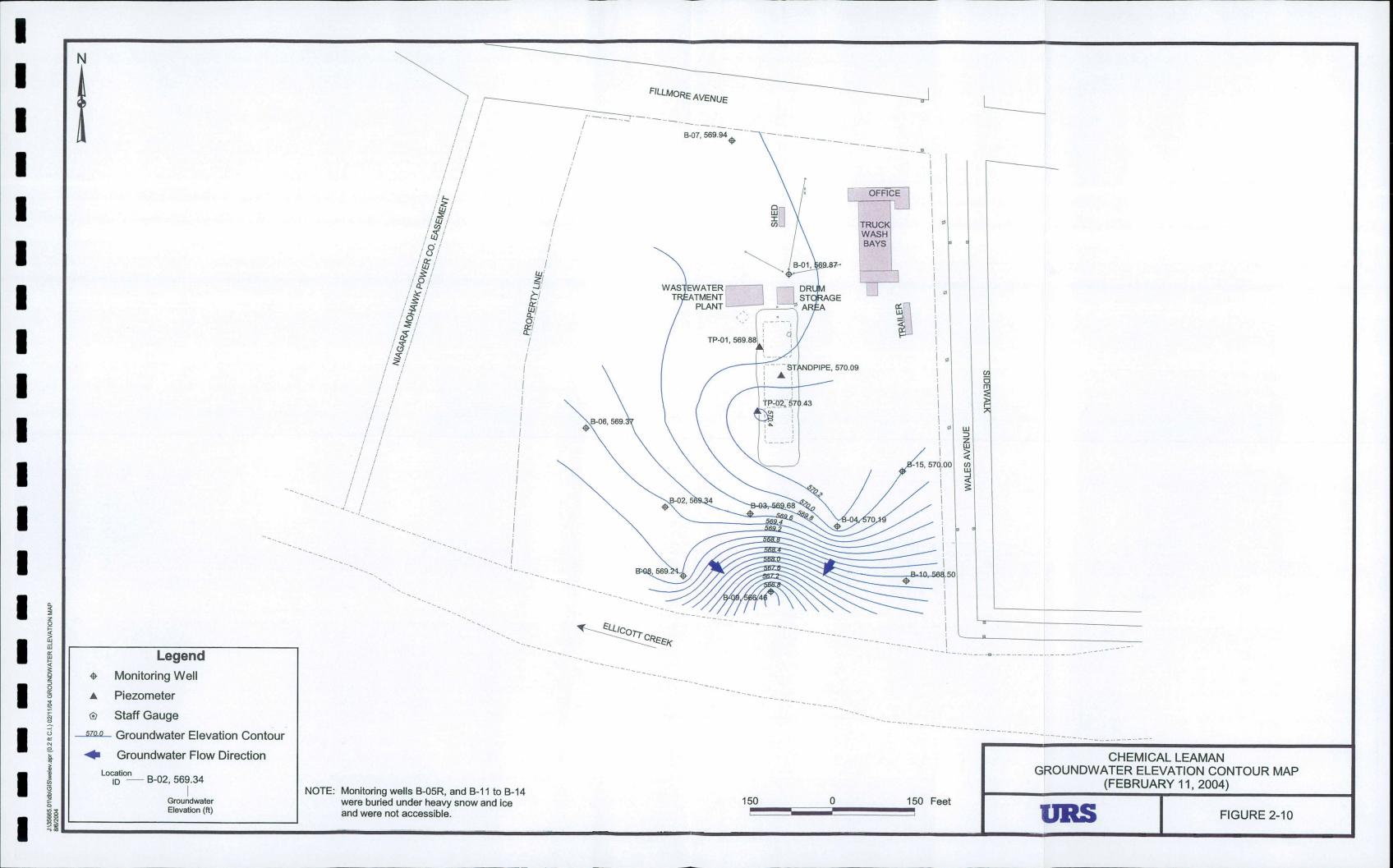

Type:

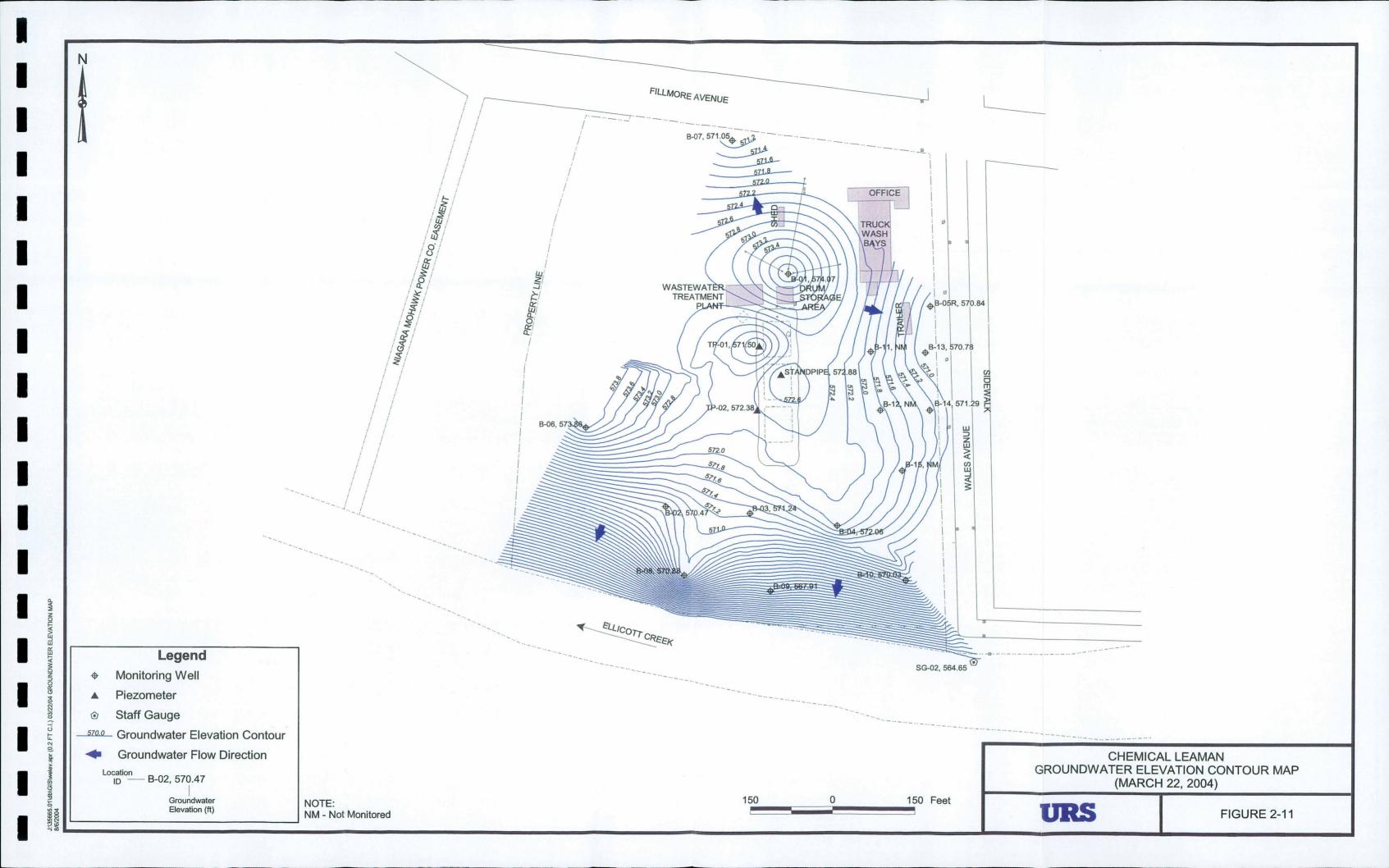

MNW PZ Monitoring Well

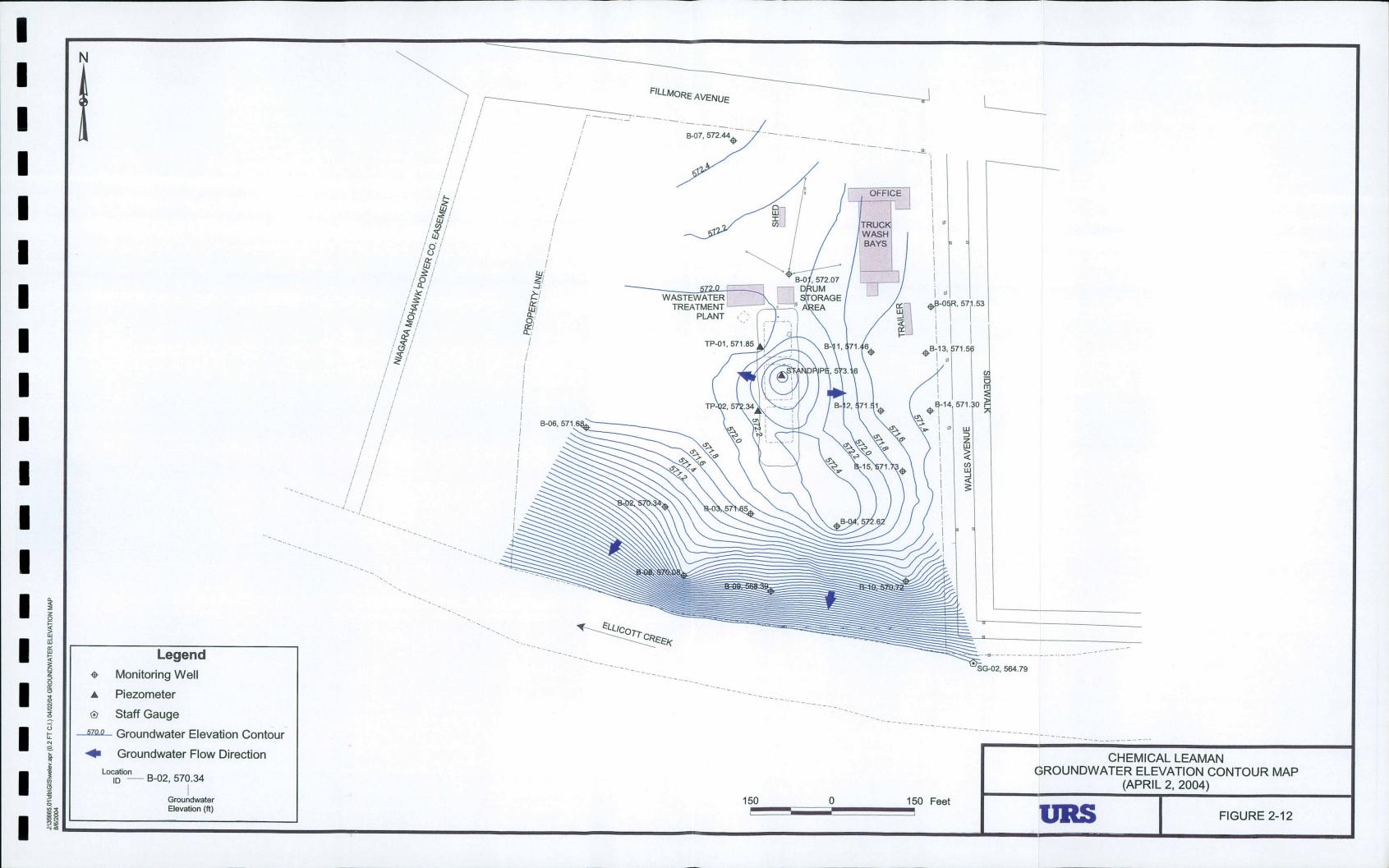


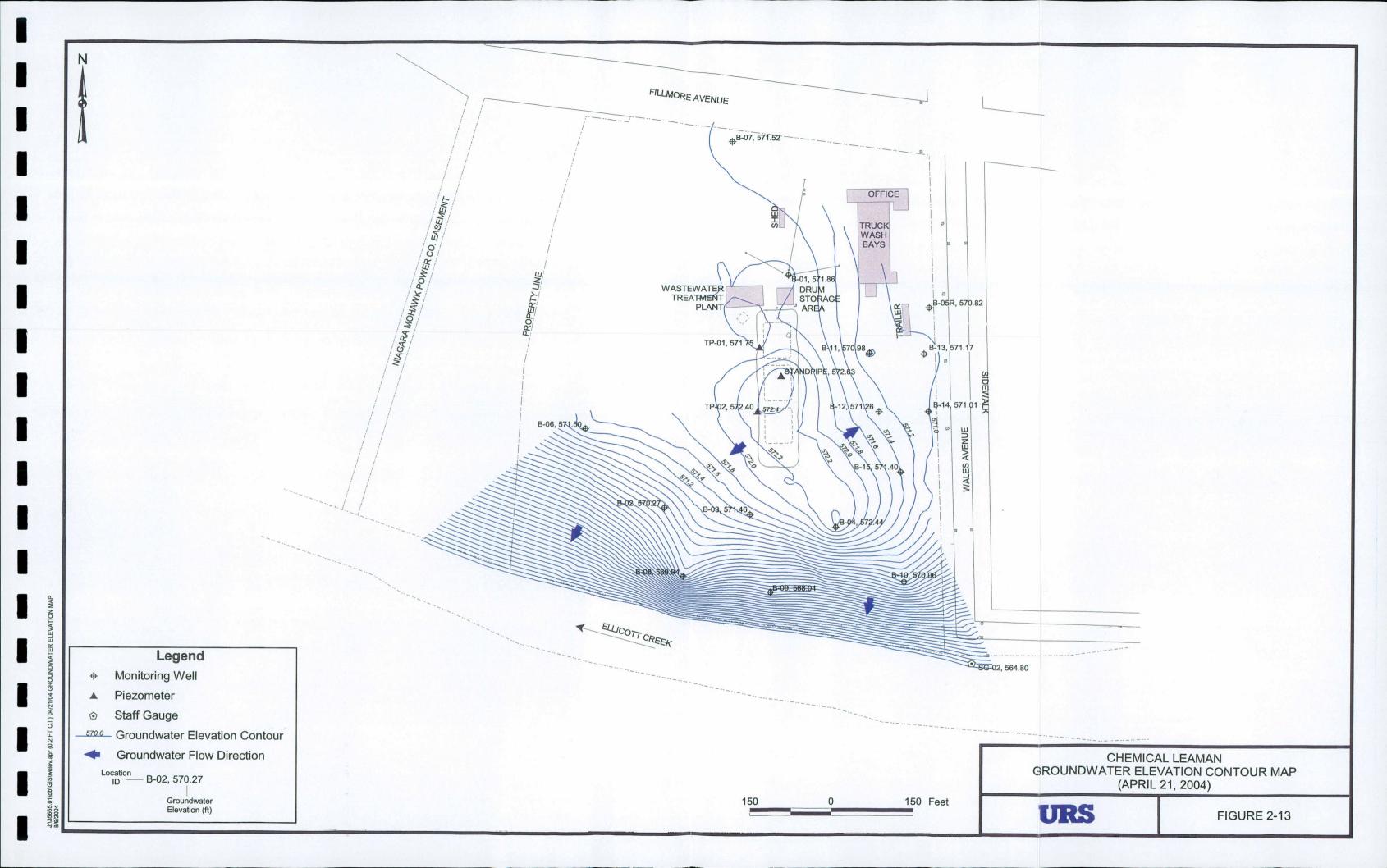


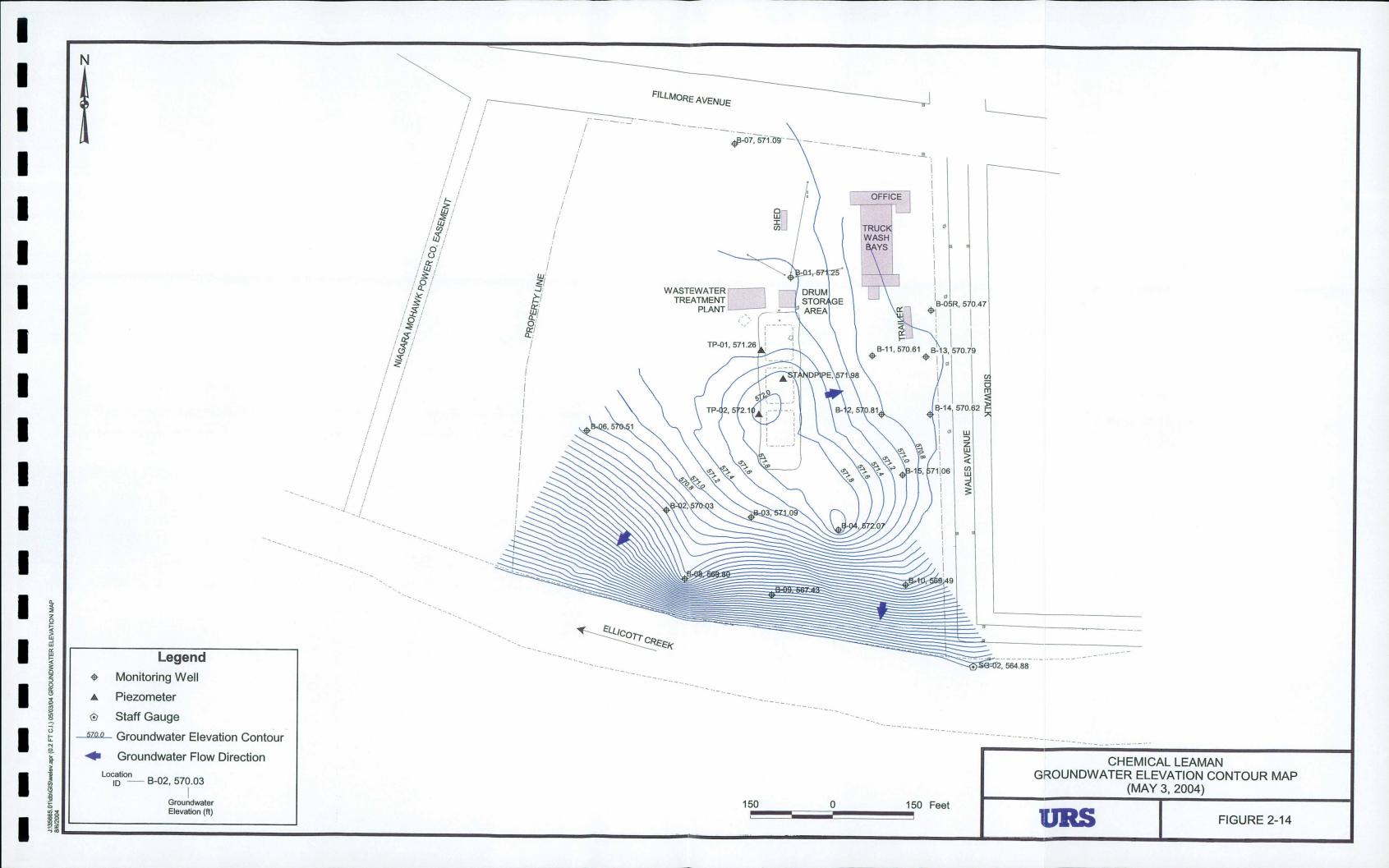


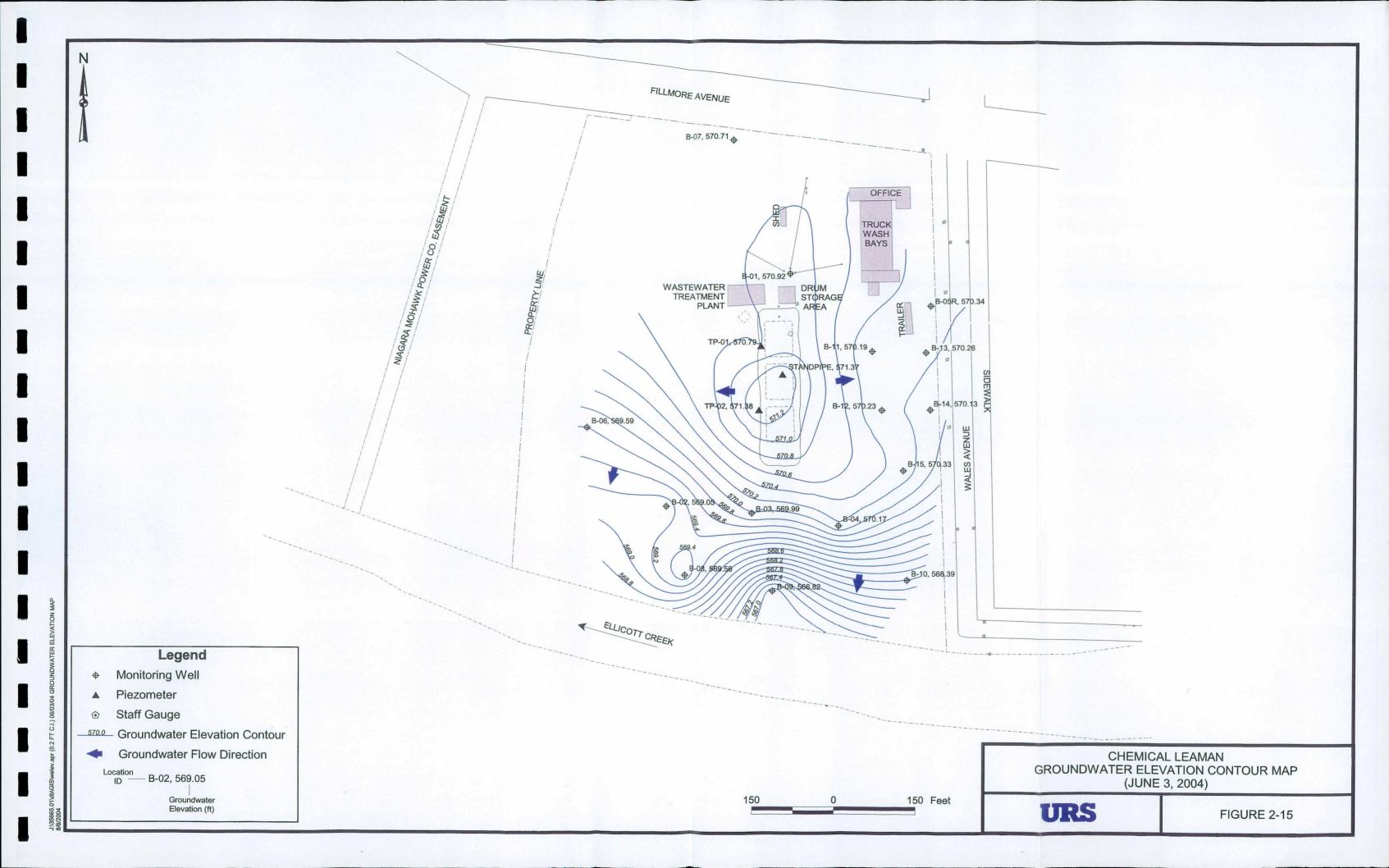


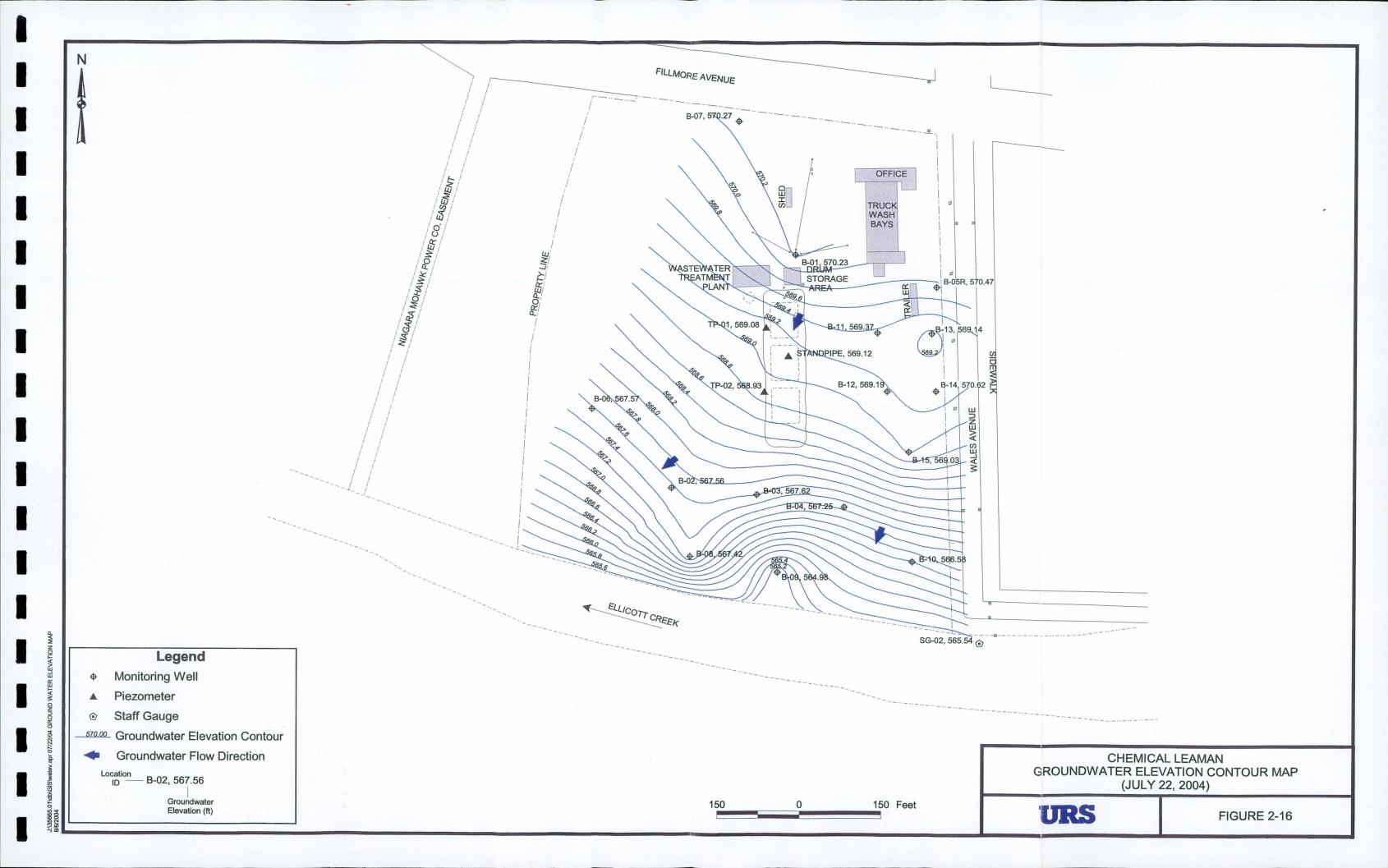












minimize the water level drawdown. From the Geopump 2[®], tubing was connected to a collection vesicle (i.e. bucket). Purged water would flow through the tubing and into the bucket. The tubing allowed for easy field parameter collection and sampling. Field parameters were collected using a YSI[®] Flowthru cell and HACH[®] Turbidity meter. Field parameters and water levels were checked every 3 to 5 minutes depending on flow rate until three consecutive parameter readings were within tolerance limits (see purge logs) and the water level stabilized. VOC samples were collected directly from the tubing attachment. The bottle was sealed, placed in an ice-filled cooler, and transported to the Analytical Services Center (ASC) laboratory in Lancaster, New York under proper chain-of-custody at the end of each day. All instruments were decontaminated between wells using an Alconox wash and de-ionized water rinse and fresh tubing was used between wells. This process was repeated until all 15 monitoring wells were sampled. Appropriate Quality Assurance samples also were collected. The samples were analyzed for VOCs in accordance with NYSDEC ASP procedures. Copies of the well purging records are contained in Appendix C.

2.2.4.2 Storm Sewers

As outlined in the approved investigation work plan, surface water/groundwater samples were collected from four catch basins associated with the storm sewer along Wales Avenue. Two catch basins on the west side of the street (CB-NW and CB-SW) and two on the east side of the street (CB-NE and CB-SE) were utilized to collect the samples. The locations are shown on Figure 2-1. The two northernmost basins are located almost directly east of the Truck Wash Building, and are essentially upgradient of the study area during non-mounding periods of the year. The two southern basins are located east of monitoring well B-04, and essentially downgradient of the study area during non-mounding periods of the year. The grates were removed from each of the catch basins and a 'grab-sampler' was used to collect a sample of the water. The water sample was placed in a laboratory sample bottle, sealed, placed in an ice-filled cooler and transported under proper chain-of-custody to ASC at the end of the day. The four samples were analyzed for VOCs in accordance with NYSDEC ASP procedures.

The catch basins were approximately 2.5 - 3.0 feet deep. At the time of sampling there was a few inches of water in the catch basins and flow was very minimal to the south.

Additionally, a water sample was collected from the outfall of the storm sewer where it discharges to Ellicott Creek (Figure 2-1). The outfall consists of a 30 inch diameter corrugated metal pipe set in the bank of the creek. At the time of sampling, flow in the pipe was about 0.5 inches deep, and estimated to be on the order of 1-2 gpm. There was no observable "underflow" in the gravel bedding beneath the outfall pipe, as the bedding was not exposed, and no water was observed seeping from the soil. A 'grab-sampler' was used to collect a sample of the water. The water sample was placed in a laboratory sample bottle, sealed, placed in an ice-filled cooler and transported under proper chain-of-custody to ASC at the end of the day. The sample was analyzed for VOCs in accordance with NYSDEC ASP procedures.

3.0 RESULTS OF INVESTIGATIONS

3.1 Groundwater Flow Conditions

As discussed above, groundwater level readings were obtained during the period of June 17, 2003 through July 22, 2004 and utilized to develop groundwater contour maps. Based on these maps, groundwater flow directions at the site from June 2003 up until March 2004 (Figures 2-2 to 2-11) were relatively constant. In general, groundwater flow was southerly across the site towards Ellicott Creek, with the gradient steepening in the southern portion of the site (i.e. south of monitoring wells B-02, B-03 and B-04). The groundwater surface appears to be reflective of surficial topography in that it is flat in the area north of monitoring wells B-02, B-03 and B-04, wherein the ground surface is very level, and slopes steeply in that portion of the site south of monitoring wells B-02, B-03 and B-04, wherein the ground surface slopes steeply toward the creek. There was no appreciable evidence of mounding noted on the site during this period. This groundwater data is consistent with data collected during the RI for the summer months.

More specifically, in the eastern portion of the site in the vicinity of B-05R and the five new monitoring wells (B-11 to B-15), the groundwater contour maps indicate that the groundwater surface is very flat during the early summer months (i.e. June and July). Groundwater elevations between the various monitoring points in this area only varied on the order of 0.1 to 0.47 feet during this period (Figures 2-2 to 2-4). Whereas the groundwater elevations in monitoring wells in this area are very similar, there is a general decrease in the groundwater elevations in a southerly direction.

During the period of August 2003 to March 2004, the difference in groundwater elevations between the various points in the eastern area was more notable, being on the order of 1.0 to 1.5 feet from B-05R to B-15. The groundwater contour maps (Figures 2-5 to 2-10) indicate that the primary component of flow during this period is to the south with a minor component trending to the south-southwest. During this period, the groundwater flow direction is roughly parallel to the alignment of Wales Avenue or slightly from Wales Avenue towards the site.

Beginning with the March 22, 2004 readings (Figure 2-11), and continuing through June 3, 2004 (Figures 2-11 to 2-15), groundwater mounding at the site is evident. Although the location of the mound varies somewhat during this period, it is generally centered in the vicinity of the former lagoons. This is consistent with the groundwater data collected during the RI in the spring months (i.e. April 2001). As shown on these maps, the groundwater flow is radial outward from the former lagoon area. In the eastern portion of the site (i.e. wells B-05R and B-11 through B-15), groundwater flow is relatively flat with a slight gradient (i.e. on the order of 0.008 ft/ft) to the east towards Wales Avenue.

Based on the information gathered during this SI, it appears that the inverts of the four storm sewer catch basins and the interconnecting pipes along Wales Avenue are above the water table during most times of the year. The ground elevation around B-05R and B-13 is about 574 ft. The catch basins in this area are only about 2.5 - 3.0 feet below ground surface, or roughly elevation 571 - 571.5 feet. This places the bottom of the catch basins about the same elevation as the top of the groundwater surface (typically $571 \pm$ feet) during mounding conditions. During the remainder of the year, when the groundwater surface is lower, the storm sewers would not intersect the groundwater at all. As a result, the storm sewers are not likely to act as a groundwater "sink" as initially speculated, with the possible exception of during mounding conditions. And even then, the influence on groundwater flow is likely to be minimal.

3.2 Nature and Extent of Contamination

3.2.1 **Soils**

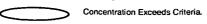
During drilling of geoprobe borings B-11 to B-15, no soil staining and/or PID readings were observed in any of the borings with the exception of B-13 (Appendix A). In this boring, black stained soils were noted at 1.5 - 3.0, 4.0 - 7.0, and 8.0 - 8.5 feet. Additionally PID readings ranging from 14.7 to 16.8 ppm were observed between the ground surface and 8.0 feet. The PID readings dropped to around 4 ppm below 8 feet, but persisted to a depth of about 16 feet before they dissipated to 0.0.

This is consistent with results obtained from soil borings GP-26, GP-27, GP-28 and GP-29 that were installed during the RI in the same area as B-13. These borings all showed PID readings in the range of 10 - 100 ppm. Additionally, soil samples from GP-28 (2 - 6 foot depth) showed elevated levels of acetone, phenol and 1,2,4 - Trichlorobenzene.

3.2.2 Groundwater

All analytical data generated during this SI was reviewed and validated by URS chemists. The resulting Data Usability Summary Report (DUSR) is included as Appendix E, and serves as the basis for the analytical results discussed below. A summary of the detected VOCs is presented in Table 3-1. As in the RI, the concentrations of the detected VOCs have been compared with the standards contained in NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998. Specifically, for the groundwater samples, the standards for Class GA (potable groundwater) have been utilized. A summary of the constituents that exhibit concentrations that exceed the Class GA standards is presented on Table 3-1 and Figure 3-1. For comparison purposes, the VOCs detected in soil and groundwater samples during the RI at concentrations exceeding the Class GA standards are presented on Figure 3-2.

Based on the groundwater data collected during the RI and the Supplemental Investigation, the following conclusions have been drawn concerning the nature and extent of groundwater contamination at the CLTL site. For ease of review, the applicable sections of the RI Report that discuss groundwater quality in the various areas of the site have been reproduced below. Each section from the RI is followed by a discussion of the results from the SI. Additionally, a discussion of the changes, if any, that have occurred since the RI is presented.


3.2.2.1 Upgradient and Sidegradient Areas (Wells B-07 and B-06):

Wells B-07 and B-06 are located hydraulically upgradient and sidegradient, respectively, from the formerly active portion of the CLTL facility, based on a predominant north-to-south groundwater flow direction (i.e. during non-mounding periods).

CHEMICAL LEAMAN TABLE 3-1 SUMMARY OF ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Location ID			B-01	B-02	B-03	B-04	B-05R
Sample ID			B-01	B-02	B-03	B-04	B-05R
Matrix			Ground Water				
Depth Interval (1			-	-	-	-	-
Date Sampled		ï.	06/04/04	06/04/04	06/07/04	06/07/04	06/04/04
Parameter	Units	Criteria*					
Volatiles			-				
1,1,1-Trichloroethane	UG/L	5		1.36 J			
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5		1.54 J			
1,1-Dichloroethane	UG/L	5		11.3			
1,1-Dichloroethene	UG/L	5					1.37 J
1,2,4-Trichlorobenzene	UG/L	5					2.88 J
1,2-Dichlorobenzene	UG/L	3					54.0
1,2-Dichloroethane	UG/L	0.6		3.66 J			
1,3-Dichlorobenzene	UG/L	3			1.03 J		12.0
1,4-Dichlorobenzene	UG/L	3					30.0
Acetone	UG/L	50					
Benzene	UG/L	1	16.4	3.70 J	4.36 J		2.21 J
Chlorobenzene	UG/L	5	280 D		6.98	2.80 J	8.45
Chloroethane	UG/L ·	5		1.92 J			
Chloroform	UG/L	7		4.46 J			
cis-1,2-Dichloroethene	UG/L	5		5.73		1.30 J	12.2
Cyclohexane	UG/L		1.71 J				
Isopropylbenzene	UG/L	5	0.408 J				
Methylene chloride	UG/L	5		1.26 J			
Tetrachloroethene	UG/L	5					56.5
Toluene	UG/L	5		0.828 J			0.151 J
trans-1,2-Dichloroethene	UG/L	5					
Trichloroethene	UG/L	5		10.3			35.6
Vinyl chloride	UG/L	2		2.21 J	19.0	2.30 J	6.90 J

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA Flags assigned during chemistry validation are shown.

CHEMICAL LEAMAN TABLE 3-1

SUMMARY OF ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Location ID			B-06	B-07	B-08	B-09	B-10
Sample ID			B-06	8-07	B-08	B-09	B-10
Matrix			Ground Water				
Depth Interval (1	t)		-	-	-	-	-
Date Sampled			06/04/04	06/04/04	06/07/04	06/07/04	06/07/04
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5					
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5			3.76 J		
1,1-Dichloroethene	UG/L	5					
1,2,4-Trichlorobenzene	UG/L	5					
1,2-Dichlorobenzene	UG/L	3					
1,2-Dichloroethane	UG/L	0.6					
1,3-Dichlorobenzene	UG/L	3					
1,4-Dichlorobenzene	UG/L	3					
Acetone	UG/L	50				2.00 J	
Benzene	UG/L	1					0.556 J
Chlorobenzene	UG/L	5		· ···			
Chloroethane	UG/L	5					
Chloroform	UG/L	7					· ',-
cis-1,2-Dichloroethene	UG/L	5			7.91		
Cyclohexane	UG/L	-					
Isopropylbenzene	UG/L	5					
Methylene chloride	UG/L	5					
Tetrachloroethene	UG/L	5				_	
Toluene	UG/L	5					
trans-1,2-Dichloroethene	UG/L	5					
Trichloroethene	UG/L	5			1.39 J		
Vinyl chloride	UG/L	2				1.70 J	26.8

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

CHEMICAL LEAMAN TABLE 3-1

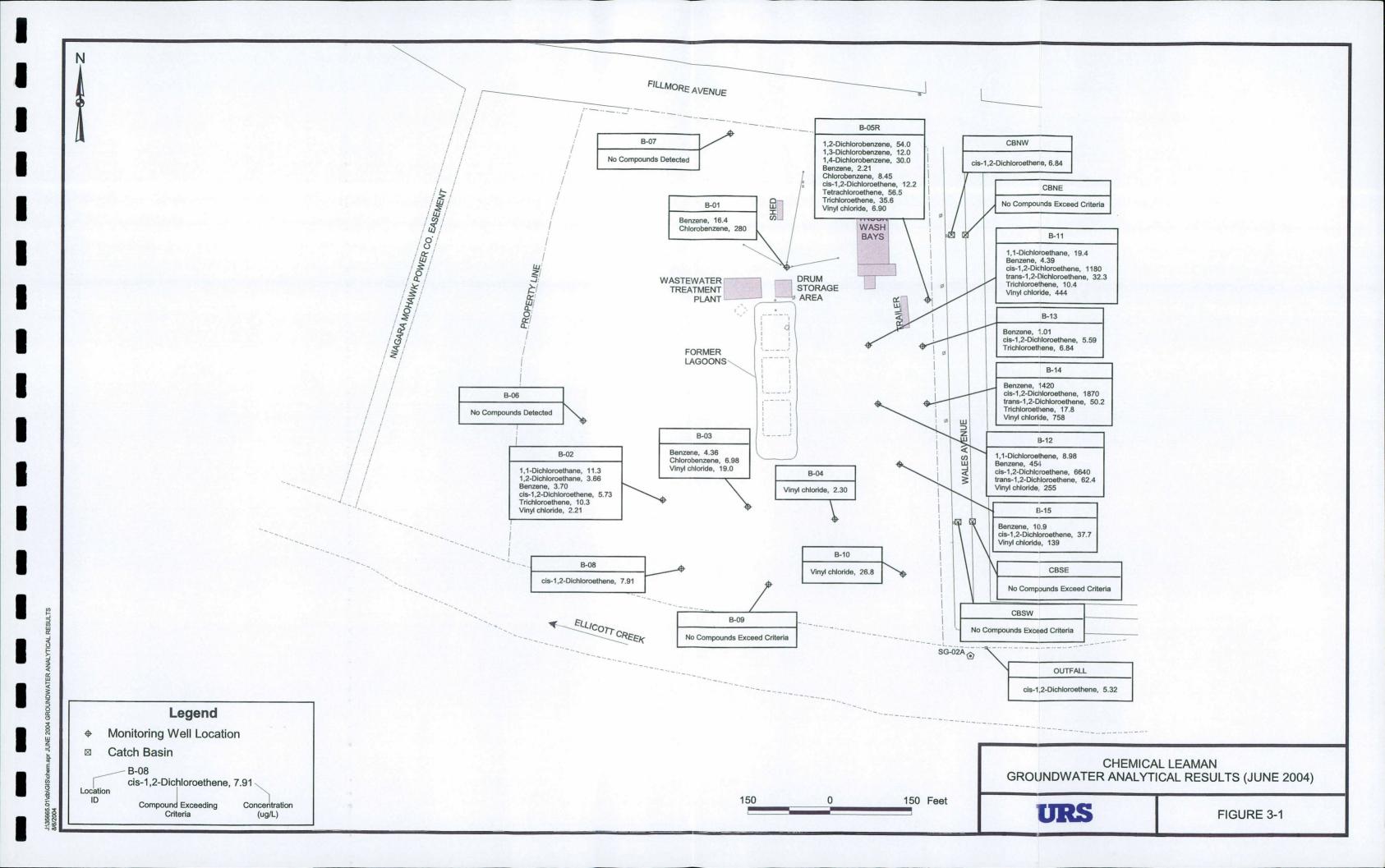
SUMMARY OF ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

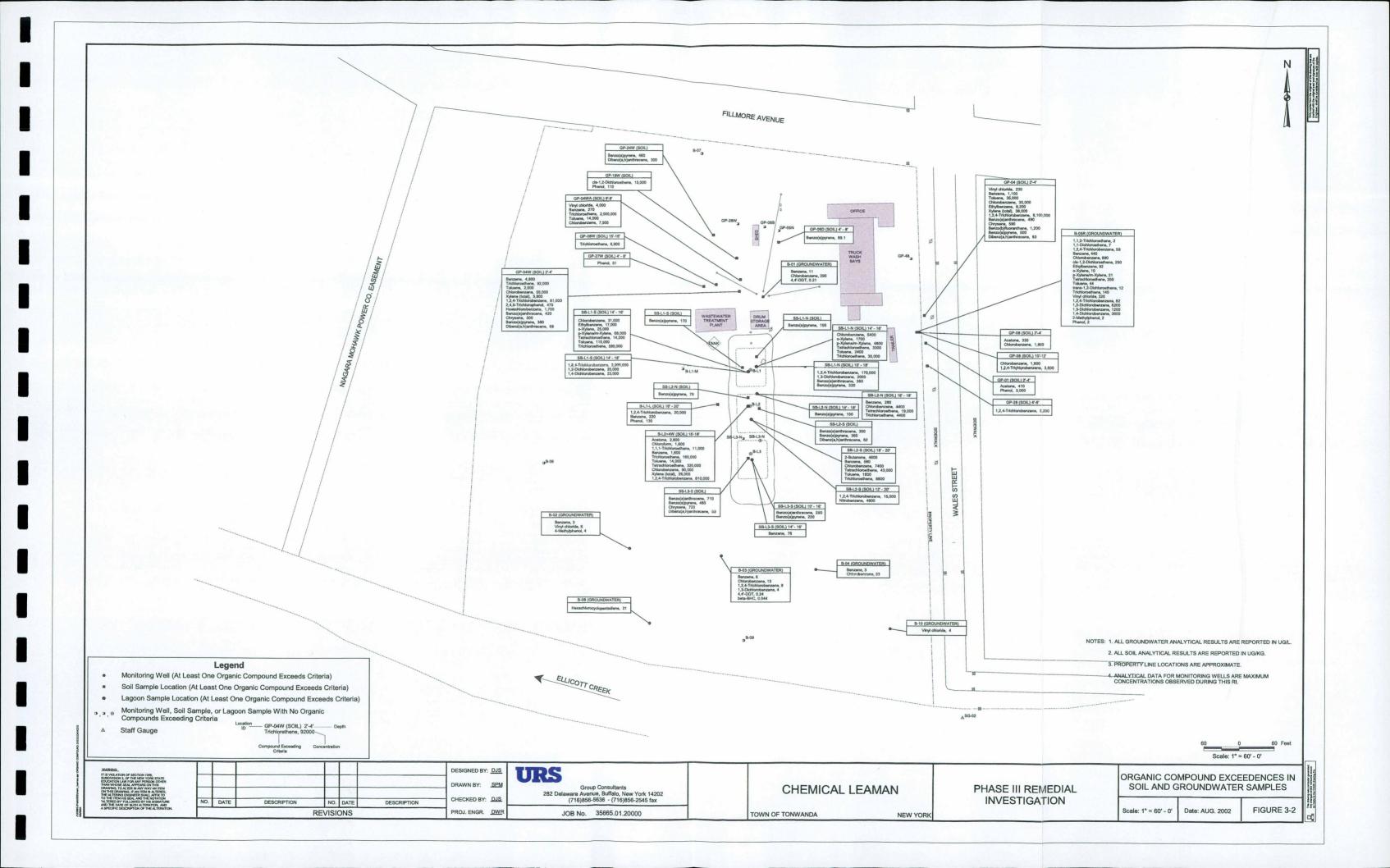
Location ID			B-11	B-12	B-13	B-14	B-15
Sample ID			B-11	B-12	B-13	B-14	B-15
Matrix			Ground Water				
Depth Interval (f	t)		-	-	-	-	•
Date Sampled			06/04/04	06/04/04	06/04/04	06/04/04	06/07/04
Parameter	Units	Criteria*					
Volatiles						====	
1,1,1-Trichloroethane	UG/L	5					
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5	19.4				
1,1-Dichloroethene	UG/L	5		8.98			
1,2,4-Trichlorobenzene	UG/L	5					
1,2-Dichlorobenzene	UG/L	3					
1,2-Dichloroethane	UG/L	0.6		4			
1,3-Dichlorobenzene	UG/L	3			:		
1,4-Dichlorobenzene	UG/L	3					
Acetone	UG/L	50					
Benzene	UG/L	1	4.39 J	454 D	1.01 J	1,420 D	10.9
Chlorobenzene	UG/L	5					1.34 J
Chloroethane	UG/L	5					
Chloroform	UG/L	7					
cis-1,2-Dichloroethene	UG/L	5	1,180 D	6,640 D		1,870 D	37.7
Cyclohexane	UG/L						
Isopropylbenzene	UG/L	5					
Methylene chloride	UG/L	5					
Tetrachloroethene	UG/L	5			0.394 J		
Toluene	UG/L	5			_		
trans-1,2-Dichloroethene	UG/L	5	32.3	62.4		50.2	2.77 J
Trichtoroethene	UG/L	5	10.4	2.80 J	6.84	17.8	3.81 J
Vinyl chloride	UG/L	2	444 D	255 DJ		758 D	139

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

CHEMICAL LEAMAN TABLE 3-1 SUMMARY OF ANALYTICAL RESI


SUMMARY OF ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS


Location ID			CBNE	CBNW	CBSE	CBSW	OUTFALL-1
Sample iD			CBNE	CBNW	CBSE	CBSW	OUTFALL-1
Matrix			Surface Water				
Depth Interval (f	t)		•	-	•	•	-
Date Sampled			06/04/04	06/04/04	06/04/04	06/04/04	06/04/04
Parameter	Units	Criteria*					
Volatiles			****				
1,1,1-Trichloroethane	UG/L	5					2.48 J
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5					
1,1-Dichloroethene	UG/L	5					
1,2,4-Trichlorobenzene	UG/L	5					
1,2-Dichlorobenzene	UG/L	3					!
1,2-Dichloroethane	UG/L	0.6			`		
1,3-Dichlorobenzene	UG/L	3					
1,4-Dichlorobenzene	UG/L	3					
Acetone	UG/L	50	12.0	6.81 J		8.82 J	
Benzene	UG/L	1					
Chlorobenzene	UG/L	5					
Chloroethane	UG/L	5					
Chloroform	UG/L	7					
cis-1,2-Dichloroethene	UG/L	5	1.34 J	6.84	0.956 J	1.05 J	5.32
Cyclohexane	UG/L	-					
Isopropylbenzene	UG/L	5					
Methylene chloride	UG/L	5					
Tetrachloroethene	UG/L	5	0.506 J				
Toluene	UG/L	5					
trans-1,2-Dichloroethene	UG/L	5		_			
Trichloroethene	UG/L	5			1.45 J		1.92 J
Vinyl chloride	UG/L	2					

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

RI Results: Groundwater at the location of these wells has not been impacted by site activities, as indicated by the fact that there were no exceedances of Class GA groundwater standards in either well by organic compounds (VOCs, SVOCs, Pest/PCBs); and the only compounds detected in either well (Acetone and bis(2-Ethylhexyl)phthalate) occurred at trace levels and are common laboratory contaminants. Several metals exceeded Class GA standards in one or both wells, including: Antimony, Iron, Lead, Magnesium, Manganese, Sodium and Thallium. However, based upon the location of the wells and the absence of organic contaminants within them, it is concluded that these metals are not site-related contaminants.

SI Results: No VOCs were detected in either of these wells during the SI. Consequently, the conclusion reached during the RI that groundwater at the location of these wells has not been impacted by site activities is still valid.

3.2.2.2 Area North of Former Wastewater Treatment Plant:

Well B-01 is located in this area, which is upgradient from the former lagoons under predominant groundwater flow conditions.

RI Results: Organic contaminants detected in this well at concentrations exceeding Class GA criteria were: Benzene (10 and 11 micrograms per liter (µg/L), or parts per billion (ppb)); Chlorobenzene (240 and 290 µg/L); and 4,4'-DDT (0.21 µg/L during the first Phase I groundwater sampling event only). The Class GA criteria for these compounds are 1 µg/L (Benzene), 5 µg/L (Chlorobenzene), and 0.2 µg/L (4-4'-DDT). The only metals exceeding criteria were also detected as exceedances in the upgradient and sidegradient wells, and are not considered to be site-related. The above results are similar to those observed during the 1991 and 1993 sampling of well B-01 for aromatic hydrocarbons (Benzene and Chlorobenzene). However, the chlorinated hydrocarbons exceeding Class GA standards during the previous sampling (1,2-Dichloroethene and Vinyl Chloride) were not detected during this RI. The pesticide 4,4'-DDT is not considered to be a significant groundwater contaminant in the area, since it exceeded its Class GA standard (0.20 µg/L) only marginally during the first Phase I sampling event, and was not detected at all during the second.

SI Results: During this SI, the only VOCs detected in B-01 at concentrations exceeding Class GA standards were benzene and chlorobenzene at 16.4 ug/L and 280 ug/L, respectively. These are the same two aromatic hydrocarbons that were detected in B-01 during the RI. The concentrations were relatively unchanged from the previous concentrations (i.e. 11 ug/L and 290 ug/L).

3.2.2.3 Area South of Former Lagoons

Six wells were monitored in the area south (downgradient) of the former lagoons area: B-02, B-03, B-04, B-08, B-09 and B-10.

RI Results: Wells B-02 through B-04, which were installed in 1981 and are located along a line approximately 150 feet south of Lagoon #3 (Figure 3- 2), showed the following results:

The following compounds exceeded Class GA standards in one or more of these three wells: Benzene (6 μ g/L); Chlorobenzene (23 μ g/L); Vinyl Chloride (6 μ g/L); 1,2,4-TCB (9 μ g/L); 1,3-DCB (4 μ g/L); 4-Methylphenol (4 μ g/L); 4,4'-DDT (0.24 μ g/L); beta-BHC (0.044 μ g/L); and generally the same set of metals that exceeded standards in the upgradient and sidegradient wells.

The above (maximum) concentrations for benzene and chlorobenzene are much less than observed during the 1991 and 1993 sampling events. For example, benzene was previously detected in well B-03 at 130 µg/L in 1991 and 710 µg/L in 1993, versus 3 µg/L and 6 µg/L during the two RI Phase I sampling events. On the other hand, the other RI organic compound exceedances, though very low-level, were not observed during 1991 or 1993 sampling events. Vinyl chloride was not used or handled at the site, and may be a natural attenuation daughter product of the chlorinated organic contaminants detected in site soils and groundwater.

Wells B-08 through B-10, which were installed during the Phase III RI, are located along a line between wells B-02 through B-04 and Ellicott Creek (Figure 3-2). Analytical results from

these wells during the RI indicate that the only organic compounds exceeding Class GA standards were Vinyl Chloride (4 μ g/L in well B-10) and Hexachloropentadiene (21 μ g/L in well B-08). The latter compound has not been detected in any other onsite well except B-09 (at 5 μ g/L), nor in any of the soil samples from the site.

SI Results: During this SI the following VOCs exceeded the Class GA standards in one or more of wells B-02 to B-04: benzene (4.36 μ g/L); chlorobenzene (6.98 μ g/L); vinyl chloride (19.0 μ g/L). These compounds were previously detected in these wells at similar or slightly higher concentrations. The aromatic hydrocarbons previously detected in these wells (i.e. 1,2,4-dichlorobenzene and 1,3-dichlorobenzene) were not detected this time. Additionally, the following chlorinated hydrocarbons, which were not previously observed at concentrations exceeding the SCGs, were detected: 1,1-DCA (11.3 μ g/L); 1,2-DCA (3.66 μ g/L); cis-1,2-DCE (5.73 μ g/L); and, TCE (10.3 μ g/L).

The only VOCs detected in wells B-08 through B-10 at concentrations exceeding Class GA standards were vinyl chloride (26.8 μ g/L) in well B-10 and cis-1,2-DCE (7.91 μ g/L) in well B-08. No compounds exceeding Class GA standards were detected in well B-09.

The above data indicate that groundwater contamination from the CLTL site is not moving at significant concentrations toward, or discharging into, Ellicott Creek via the predominant north-to-south flow pathway across the site.

3.2.2.4 <u>East Area (Wells B-05R and B-11 to B-15)</u>

Well B-05R and the five newly installed wells B-11 to B-15 are located in the area east of the lagoons, between the lagoons and Wales Avenue.

RI Results: Groundwater on the east side of the site remains contaminated, as indicated by the data from well B-05R (Figure 3-2). Metals are not a concern, since they occur at similar concentrations in upgradient and sidegradient wells. However, there are numerous organic compounds that exceed Class GA groundwater standards in this well. The following list indicates

the categories of these contaminants and the maximum concentrations of individual compounds within each category that exceed Class GA criteria:

Aromatic hydrocarbons – Benzene (440 μ g/L); Toluene (44 μ g/L); Ethylbenzene (92 μ g/L); Xylenes (30 μ g/L); Chlorobenzene (890 μ g/L); 1,2,4-TCB (82 μ g/L); 1,2-DCB (6,200 μ g/L); 1,3-DCB (1,200 μ g/L); 1,4-DCB (3,600 μ g/L)

Chlorinated hydrocarbons – PCE (250 μ g/L); TCE (140 μ g/L); 1,1,2-Trichloroethene (2 μ g/L); cis-1,2-Dichloroethene (250 μ g/L); trans-1,2-Dichloroethene (12 μ g/L); Vinyl Chloride (320 μ g/L)

Phenolic compounds – Phenol (2 μg/L); 2-Methylphenol (2 μg/L)

SI Results: During this SI, the VOCs detected at concentrations exceeding the Class GA standards included the following:

Aromatic hydrocarbons – Benzene (2.21 μ g/L); Chlorobenzene (8.45 μ g/L); 1,2-DCB (54.0 μ g/L); 1,3-DCB (12.0 μ g/L); 1,4-DCB (30.0 μ g/L)

Chlorinated hydrocarbons – PCE (56.5 μ g/L); TCE (35.6 μ g/L); cis-1,2-Dichloroethene (12.2 μ g/L); Vinyl Chloride (6.90 μ g/L)

Based on the recent data, the number and concentrations of VOCs detected in B-05R has reduced considerably. There are only five aromatic hydrocarbons vs nine previously, and the concentrations are about two orders of magnitude lower. Similarly, only four chlorinated hydrocarbons vs. six previously were detected, and the concentrations were only about 20 percent of the previous levels.

This would indicate that contamination in groundwater in the vicinity of B-05R, is still present, however, at considerably reduced levels.

As noted above, five new monitoring wells (B-11 through B-15) were installed in the area bounded by the former lagoons on the west, Wales Avenue on the east, B-05R to the north and B-04 to the south (Figure 3- 1) to investigate contamination in the east area of the site. Several VOCs were detected in these wells. The following list indicates the categories of these contaminants and the maximum concentrations of individual compounds within each category that exceed the SCGs:

Aromatic hydrocarbons – Benzene (1420 µg/L)

Chlorinated hydrocarbons – TCE (17.8 μ g/L); cis-1,2-Dichloroethene (6640 μ g/L); trans-1,2-Dichloroethene (62.4 μ g/L); Vinyl Chloride (758 μ g/L); 1,1-DCA (19.4 μ g/L); 1,1-DCE (8.98 μ g/L).

For the most part, these compounds are not the same as those detected in the shallow soils along the eastern edge of the site. They are similar to some of the constituents detected in well B-05R, although they are generally at higher concentrations. Additionally, the aromatic hydrocarbons detected in B-05R, with the exception of benzene, are not present in the five east area wells. Benzene and TCE were observed in the soils associated with the lagoons. Benzene was observed at similar concentrations to those observed in groundwater in B-11 to B-15. TCE was observed at much high concentrations (590,000 ug/L) in the Lagoon 2 area. The remaining chlorinated hydrocarbons observed in wells B-11 to B-15 are typical daughter products resulting from TCE degradation. In that wells B-11 to B-15 are downgradient of the lagoons during periods of mounding and cross gradient during the rest of the year, it is possible that the source of the benzene and chlorinated hydrocarbons is the soils under the lagoon. Alternatively, based on the fact that the concentrations of the VOCs in the five east area wells are typically higher than the concentrations observed in the soils along the eastern edge of the site and/or the groundwater in B-05R, it is possible that localized spills or leaks associated with tanker trucks parked in the east area may have been the source of the contamination.

3.2.2.5 Storm Sewer Along Wales Avenue and Outfall to Ellicott Creek

As shown on Figure 3-1, there are catch basins located on the north and south sides of Fillmore Avenue, the west and east sides of Wales Avenue, and the north and south sides of Vickers Avenue. These catch basins are interconnected and ultimately discharge via a 30-inch diameter corrugated metal pipe (CMP) to Ellicott Creek.

RI Results: These storm sewers/catch basins were not sampled during the RI.

SI Results: VOCs were detected in the water samples in all four catch basins located along Wales Avenue and the outfall to Ellicott Creek. The catch basins on Fillmore Avenue and Vickers Avenue were not sampled during the SI. However, only cis-1,2-DCE was detected in

CB-NW and the outfall at concentrations (i.e. 6.84 and 5.32 ug/L, respectively) that slightly exceed the Class GA standards (i.e. 5.0 ug/L). (There is no surface water standard for this compound). This compound was observed at higher concentrations in B-05R and all five of the east area wells. It was not observed in the soils associated with the lagoons.

Throughout most of the year (i.e. non-mounding periods), the groundwater surface elevation is below the storm sewer invert elevation. It is possible that there is some very limited migration of VOCs from the site to the east towards Wales Avenue and into the storm sewers during mounding periods. During the remainder of the year, groundwater flow is to the south, parallel to the storm sewer alignment, or to the southwest, towards the site. During these periods, it is unlikely that any VOCs are discharged to the east and/or into the storm sewers.

3.3 **Summary and Conclusions:**

Based on the results from the RI and SI the following conclusions were made:

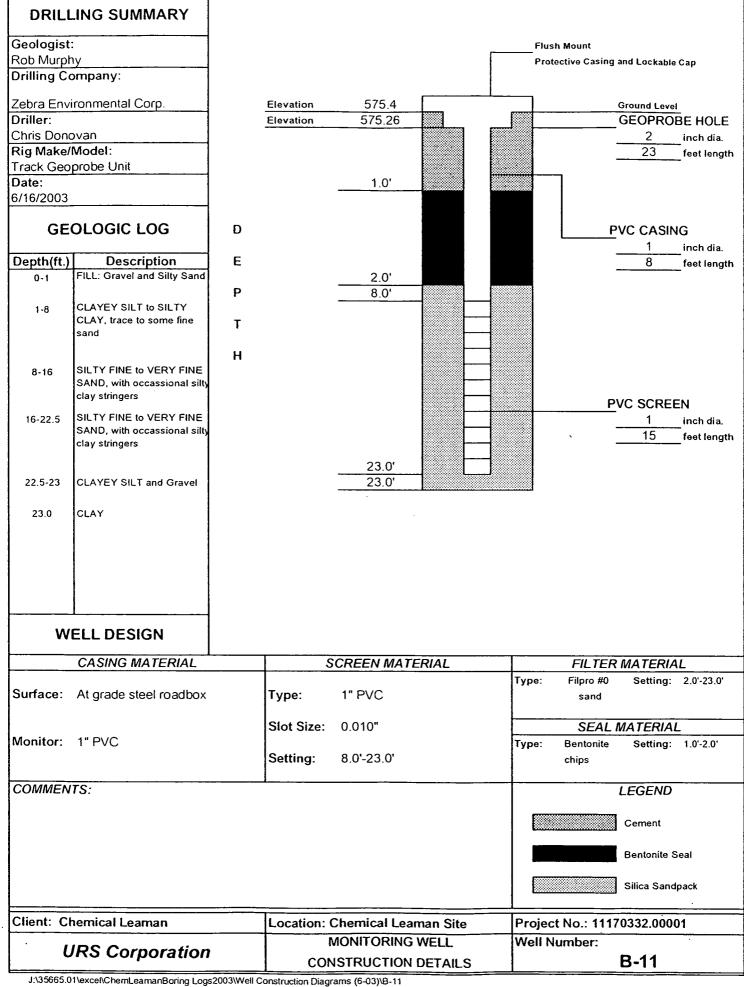
- Groundwater on the north (upgradient) and west (sidegradient) sides of the CLTL site
 has not been impacted by site operations. In the area north of the former lagoons and
 wastewater treatment plant, groundwater is contaminated by two aromatic
 hydrocarbons (Benzene and Chlorobenzene) that exceed Class GA groundwater
 standards.
- Downgradient from the lagoons, approaching Ellicott Creek, contaminant concentrations diminish, and there does not appear to be any significant evidence of groundwater contaminant migration offsite to the Creek via the primary north-tosouth groundwater flow pathway.
- Groundwater on the east side of the site, at well B-05R, remains contaminated, by a number of aromatic hydrocarbons and chlorinated hydrocarbons. However, no phenolic compounds were observed during the latest round of sampling. Additionally, the number of organic constituents detected and the concentrations were considerably less than in earlier sampling events.

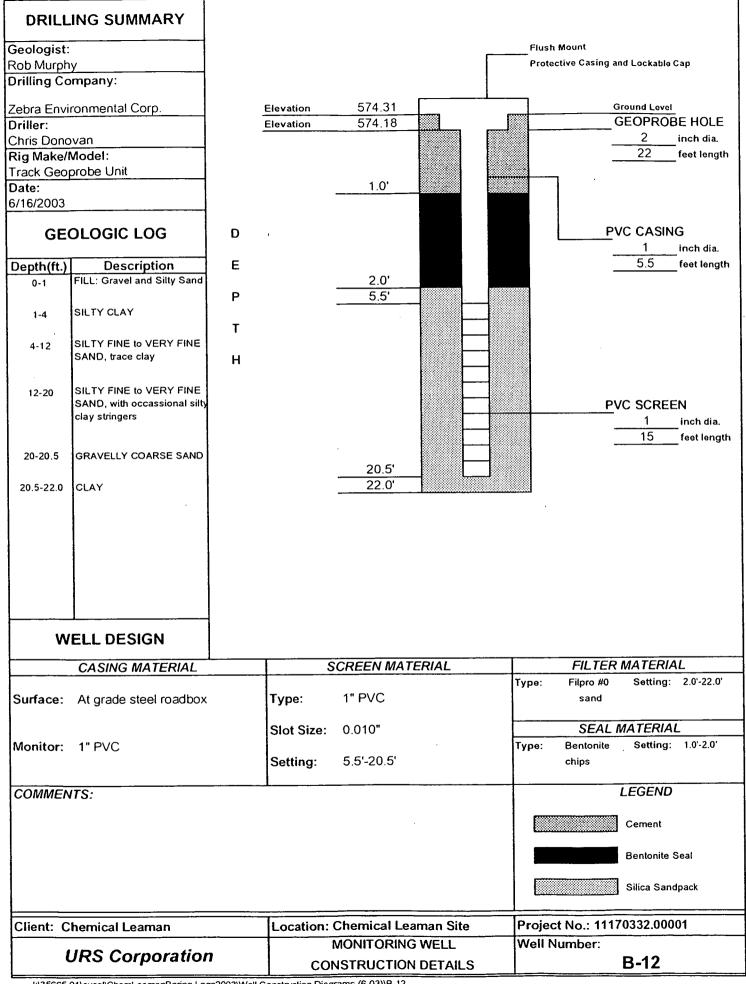
- Groundwater in the area east of the lagoons (Wells B-11 to B-15) is contaminated by a number of aromatic hydrocarbons and chlorinated hydrocarbons that exceed the Class GA standards. For the most part these constituents include benzene and TCE and a number of daughter products typical of TCE degradation. During the RI, Benzene, PCE and TCE were detected in soils under the lagoons, but were not detected in soils along the eastern edge of the site. The source of the contaminants may be the spills or leaks that may have occurred historically in the tanker truck parking area.
- Water samples collected from the storm sewer along Wales Avenue and the outfall to
 Ellicott Creek under mounding conditions, indicated concentrations of one VOC (cis1,2 dichloroethene) at levels that just slightly exceed the Class GA standards.
 There is no standard for this compound for surface waters.
- The analytical data indicates that some organic contaminants may be entering the storm sewer along Wales Avenue during mounding periods. However, throughout most of the year (i.e. non-mounding periods) the groundwater surface is below the storm sewer invert elevation. The storm sewers do not typically act as a groundwater 'sink'. Therefore, the source of the organic contaminants is uncertain.

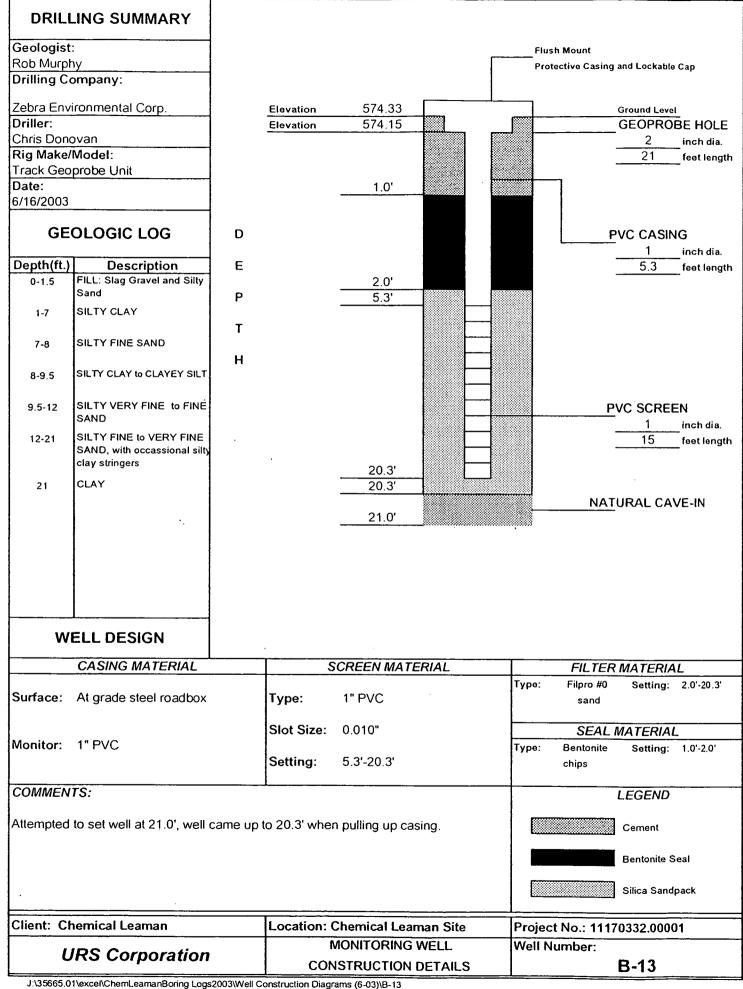
In general, groundwater contamination does not appear to be moving offsite in a southward direction toward Ellicott Creek. Likewise, it appears that contaminant migration offsite to the east and/or into the storm sewers along Wales Avenue is unlikely during most of the year, and could only occur under mounding conditions in the Spring when groundwater flow is to the east. During the remainder of the year, groundwater flow is to the south, parallel to the storm sewer alignment, or to the southwest towards the site. Whereas, the water in the storm sewers discharges to Ellicott Creek, the contaminant concentration does not contravene any surface water standards.

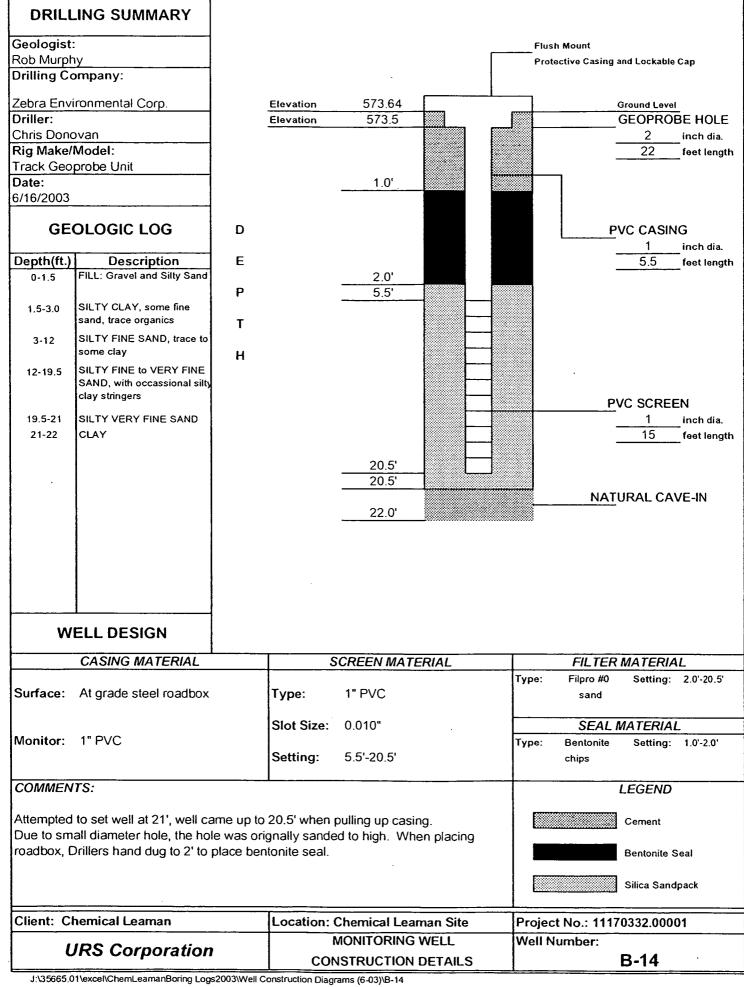
APPENDIX A BORING LOGS

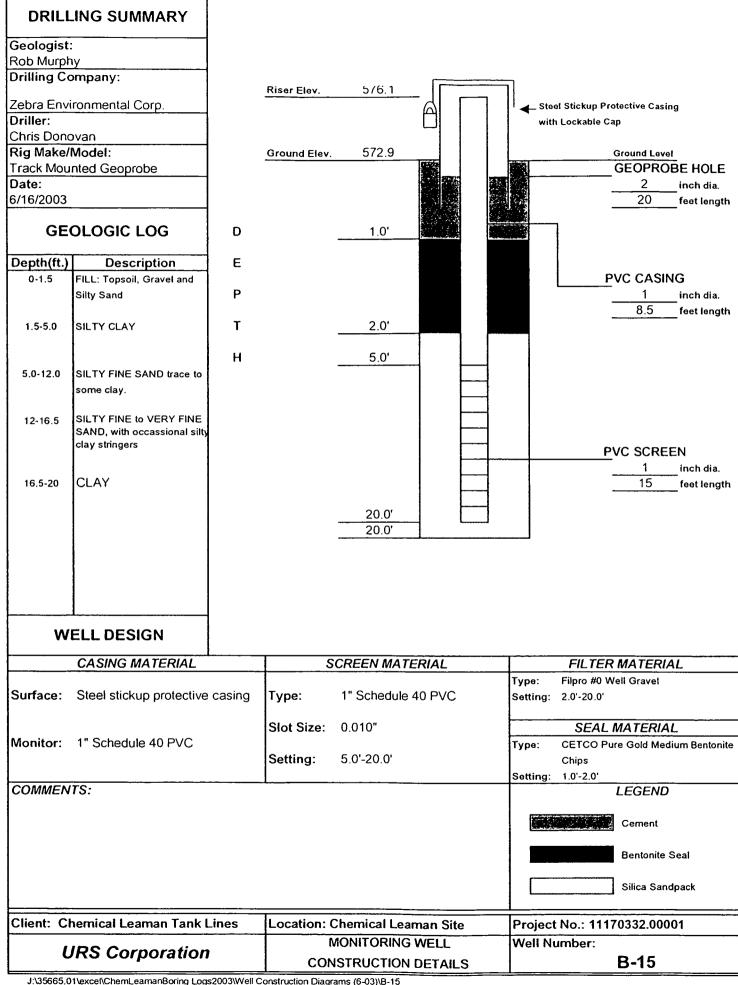
	URS Corporation											GEOPROBE BORING L		
			(UKS	Corpor	auc)				BORING I	10:	B-11	
PROJE	CT:	Chem	nical Le	aman RI/F	S-Phase IV						SHEET: 1	of 1		
CLIENT	:	Chem	nical Le	aman Tan	ık Lines						PROJECT NO.: 11170332.00001			
BORING	CONTRA	CTOR	:		Zebra Environn	nental Co	orp.				BORING I	OCATI	ON:	
GROUN	DWATER:						CAS.	SAMPLER	.CORE	TUBE	GROUND	ELEVA	TION: 575.40	
DATE	TIME		LEV	EL	TYPE	TYPE		Macro-core			DATE STARTED: 6/16/03			
			-			Dia.		2"						
						Length		48"			DRILLER:	C. Don	ovan	
						Liner		Acetate			GEOLOG			
<u> </u>											REVIEWE	D BY:	R. Henschel	
							9	AMPLE						
DEPTH		"S"	%	COLOR	CONSISTENCY			MATERIAL	,		uscs	PID	REMARKS	
FEET	STRATA	NO.	Rec.	COLOR	HARDNESS							(ppm)		
	$\times\!\!\times\!\!\times\!\!\times\!\!\times$			Gray	not logged	0-1.0' Fil	ll: Grave	land Silty S	and.		Fill	0.0	dry	
	4	1	83%	Gray		Clavey S	Silt to Sil	Ity Clay, with	brown r	nottling,	CL-ML	1	moist	
	7	' '	63%	1				ery fine sand		3.				
4	كسب			•									wet at 3.9'	
	7			1 1					•			0.0		
	4	2	100%	Reddish	1							Ì	·	
	1		100 /6	Brown	•	1	-more I	Fine Sand				1		
8	-			1]									
				1		Silty Fine	e to Ver	y Fine Sand		_	SM	0.0	·	
	٠,	3	100%											
	\	3	100 /8	<u> </u>								}		
12	C			▼	1						·			
	3			Brown		-12.0-16.0 Less fines, less						0.0		
	\	4	38%		1			ve, very wet.				ļ		
	ر		30 %			1						ļ	1	
16)			\ \		L								
				Dark Gray	1			Fine to Very			1	0.0	Drove Sample # 5 extra	
<u> </u>						occassic	onal silty	clay stringe	rs (1/8"-	1/16"			foot because clay was	
		5	100%			unck,							expected at 21'.	
20						1								
<u> </u>												ļ	,	
ļ		6	100%	▼				•				0.0	,	
23 `	0000			Light Gray	4	22.5-23.	0' Claye	y Silt and an	gular f.	gravel			·	
ļ				Red		23.0' Cla	ay				CL		Clay observed on end of	
 			·		·							ļ	sampler.	
<u> </u>].		End of E	Boring at	t 23.0'						
 									•			1		
 											1	ļ		
 			·]								1		
 					1	İ		4						
ļ												1	,	
 				1		'			·		1			
 					1							1	·	
 			1	1]			•			1		
 				j	1						1			
-	-1			<u> </u>		<u> </u>					<u> Li</u>	<u> </u>	J	
1					mounted Geopro	De Asser	nbly.			1			D 44	
Installed	1-inch PV	C piez	ometer	at 23.0 fee	et bgs.					BORING NO.: B-11				


URS Corporation											GEOPROBE BORING LOG				
				UKS	Corpor	rauc)[i	···			BORINĢ	NO:	B-12		
PROJE	CT:	Cher	mical L	eaman RI/	/FS-Phase IV						SHEET:	1 of 1			
CLIENT				_eaman Tar	nk Lines						PROJEC		11170332.00001		
BORIN	G CONTRA	ACTO	R:		Zebra Environn	mental Co	orp.				BORING				
GROU	NDWATER:	:					CAS.	SAMPLER	CORE	TUBE	GROUND	GROUND ELEVATION: 574.31			
DATE	TIME		LEV	/EL	TYPE	TYPE		Macro-core			DATE ST	ARTED:	: 6/16/03		
	<u> </u>	ــــــــــــــــــــــــــــــــــــــ				Dia.		2"	<u> </u>			· .			
<u> </u>	<u> </u>	↓			ļ	Length	<u> </u>	48"	<u> </u>	<u> </u>	DRILLER: C. Donovan				
	L	 			 	Liner Acetate					GEOLOG				
	<u> </u>	Щ			<u> </u>	<u> </u>					REVIEWE	ED BY:	R. Henschel		
<u> </u>		1						AMPLE				T	,		
DEPTH		"S"	%	COLOR	CONSISTENCY	4		MATERIAL		!	uscs	PID	REMARKS		
FEET	STRATA	NO.	Rec.	\leftarrow	HARDNESS	15.4.01.58		10%.0				(ppm)	 		
	XXXXX	! '		Gray	I ' i		_	and Silty Sa			Fill	0.0	dry		
	4	1	80%					y, possibly re			CL	l	moist		
لـــبـــا		i !	1	Black/Gray	1	1.5-4.0' 8	Silty Clay	y with brown	mottling	1.	ļ				
4		 '	—	♥	1							<u> </u>			
	+	1 1	1	Gray	1	Silty Very	y Fine to	Fine Sand,	trace cla	ay.	SM	0.0	wet at 4.5'		
<u> </u>	1	2	90%	▼	1					J	l	l			
<u>-</u> -	5 6	1 1		Reddish	l 1			•		- 1	ı	ĺ	[
8	3	igsqcup		Brown		1				- 1					
		1 1	'		1 1	1				1	I	0.0			
		3	90%	1 1	1			.5 Less fines,	, less co	hesive,	!				
	()	1 1	'	🔻	1	1	very we	at.]					
12	المستنين	لــــا	<u> </u>	Gray to R. Brown				:					1		
	A	1 1	 '	D. Gray				y Fine Sand w 1/8"-1/12" thi		Isional		0.0			
		4	68%	to	i I	Siny Clay	layers (1/6 - 1/ 12 um	CK)	1	İ	j			
		1 1	l '	D. Brown		1					1				
16	1	igsqcut	 	4 1		1					!	 			
	\$	1 1	 			l					!	0.0	ļ		
		5	75%			1				1	ļ				
اسييا	3	1	('			1				1					
20	.o.a.o.o	igsqcup	<u> </u>	▼		ļ									
$\vdash \vdash$		6	75%	D. Brown	1 +	$\overline{}$		lly Coarse Sa	and			0.0			
22		igwdap	 '	Red		20.5-22.0)' Clay				CL	<u></u>			
 		1 1	<i>l</i> '		ı			=			,				
		1 1	1 1			End of Bo	oring at	22.0'		- 1		i l			
 		1	1 1		1	1					ļ	i I			
 	i }	1 1	1 1]	1	1					1	1 1			
 		1 1	1 '		i	l .				1		1 1			
			1 '		i	·						i l			
⊢—	i I	1 1	1 1			l						1			
	i •	1 1	1 1		i	:					ļ	i			
		, 1	1 1		i J	l .				1					
	i	. 1	1 1		i	1				l	ł				
	i l	, ,	1 1		i I	i									
		, ,	1 1		1	1				1					
	i l	, ,	1 1		ı	i				ļ					
Commer	nts: Boring	advan	ced usi	ing a track r	mounted Geoprot	oe Assem	bly.								
Installed	1-inch PV	C piez	ometer	at 20.5 feet	t bgs.					BORING	NO.:		B-12		
	nstalled 1-inch PVC piezometer at 20.5 feet bgs.														


PROJECT: Chemical Leaman RI/FS-Phase IV CLIENT: Chemical Leaman RI/FS-Phase IV CLIENT: Chemical Leaman Tank Lines PROJECT No. 11170332.0 BORING CONTRACTOR: Zebra Environmental Corp. BORING CONTRACTOR: Zebra Environmental Corp. BORING CONTRACTOR: DORING LOCATION: GROUNDWATER: CAS. SAMPLER CORE TUBE GROUND ELEVATION:574. DATE TIME LEVEL TYPE TYPE Macro-core DATE STARTED: 6/16/03 Length 48° DRILLER: C. Donovan REVIEWED BY: R. Hensch REVIEWED BY: R. Hensch REVIEWED BY: R. Hensch REVIEWED BY: R. Hensch REVIEWED BY: R. Hensch REVIEWED BY: R. Hensch REVIEWED BY: R. Hensch REVIEWED BY: R. Hensch Reviewed BY: R. Hensch R	GEOPROBE BORING LOG			
CLIENT: Chemical Leaman Tank Lines PROJECT NO.: 11170332.01	BORING NO: B-13			
BORING CONTRACTOR: Zebra Environmental Corp. CAS. SAMPLER CORE TUBE GROUND ELEVATION: 574. DATE TIME LEVEL TYPE TYPE Macro-core DATE STARTED: 6/16/03 Length 48* DRILLER; C. Donovan Liner, Acetate GEOLOGIST; R. Murphy REVIEWED BY: R. Hensch SAMPLE DEPTH - "S" % COLOR FROM MATERIAL WISCS PID REM (ppm) 1 83% Gray 1 83% Gray 3 100% Brown/Gray Gray to Brown Dark Gray 1 1 83% Gray DATE STRATA ON DARK Gray T.O-8.0 Sitly Fine Sand SM SM 12 100% Brown Dark Gray DATE STRATA SIT DATE OF THE STRATA SITLY STRATA SI	SHEET: 1 of 1			
GROUNDWATER: DATE TIME LEVEL TYPE TYPE Macro-core DATE STARTED: 6/16/03 Length 48" DRILLER: C. Donovan Liner Acetate GEOLOGIST: R. Murphy REVIEWED BY: R. Hensch SAMPLE DEPTH STRATA NO. Rec. Gray Gray not logged Gray and Silty Clay. trace wood. 1 83% Gray 10 8.0-9.5' Silty Clay w/ brown mottling , trace v/ sand 1 83% Gray to R. Brown Brown Dark Gray Dark Gray Dark Gray Dark Gray thick) 1 38% Gray to R. Brown Dark Gray Dark Gray Dark Gray thick) 1 100% R. Brown Dark Gray Dark Gray Dark Gray 20 21.0' Clay. trace angular gravel. 2 100% C. L. M. 4.1 -black stainin 2 100% C. L. M. 4.1 -black stainin 3 100% Gray to R. Brown Dark Gray	0001			
DATE TIME LEVEL TYPE TYPE Macro-core DATE STARTED: 6/16/03 Dia. 2" DRILLER: C. Donovan				
Dia. 2" DRILLER: C. Donovan Liner Acetate GEOLOGIST: R. Murphy REVIEWED BY: R. Hensch SAMPLE DEPTH STRATA "S" % Rec. GCONSISTENCY HARDNESS 1 83% Gray 1 83% Gr	33			
Length 48" DRILLER: C. Donovan Liner Acetate GEOLOGIST: R. Murphy REVIEWED BY: R. Hensch SAMPLE DEPTH FEET STRATA NO. Rec. COLOR Gray 1 83% Gray 1 1 83% Gray 2 100% Brown/Gray 8 8 8 8 7 100% Brown/Gray 8 8 8 8 7 100% Brown/Gray 1 1 83% Gray to 100% Brown mottling. Trace vf sand 100% Brown 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 11 8 100% R. Brown 12 8 100% Brown 11 9.5-12.0 Sitty Fine Sand 12 9.5-12.0 Sitty Fine to Very Fine Sand with occassional sitty clay stringers (1/8"-1/4" thick) 16 10 0.0 Drove Sample foot because expected at 2 2 2 100% Clay observes sampler.				
Liner Acetate GEOLOGIST: R. Murphy REVIEWED BY: R. Hensch SAMPLE SAMPLE STRATA NO. Rec. COLOR HARDNESS Gray not logged of 1.5° Fill: Slag Gravel and Sithy Sand. Fill of 14.7 dry moist, highes from black st wet at 4.0° 1 83% Gray to 8.0°9.5° Sithy Clay to Clayey Sith CL-ML occassional sithy Very Fine Sand with occassional sithy Clay stringers (1/8"-1/4" thick) 1 38% Gray to 1.00% Brown Dark Gray occasional sithy Clay stringers (1/8"-1/4" thick) 2 100% Brown Dark Gray occasional sithy Clay trace angular gravel. 2 100% Color occasional sithy Clay trace angular gravel. CL Clay observes sampler.	1			
DEPTH STRATA NO. Rec. COLOR Rec. Gray not logged of 1.5°-3.0° Stained Silty Clay, trace wood. 1 83% Gray 1 1.5°-3.0° Stained Silty Clay, trace wood. 2 100% Brown/Gray Gray to R. Brown Brown Dark Gray Dark Gray 1.100% R. Brown Dark Gray 1.100% R. Brown Brown Dark Gray 1.100% R. Brown Dark Gray 1.100% R. Brown Brown Dark Gray 1.100% R. Brown Dark Gray 1.				
SAMPLE DEPTH FEET STRATA NO. Rec. COLOR Rec. Gray 1 1 83% Gray 1 1 83% Gray 1 1 83% Gray 1 1 83% Gray 1 1 83% Gray 1 1 83% Gray 1 1 1 83% Gray 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
DEPTH FEET STRATA NO. Rec. COLOR CONSISTENCY HARDNESS Color HARDNESS	nel			
FEET STRATA NO. Rec. COLOR HARDNESS				
FEET STRATA NO. Rec. HARDNESS not logged Gray Gray Gray Gray Gray Gray 1 83% Gray Gray Brown/Gray Gray 1 100% Brown/Gray Gray 1 100% Brown/Gray Gray 1 100% Brown Mark Gray 1 100% Brown Dark Gray 1 100% Dark Gray 1 100% Brown Brown Dark Gray 1 100% Brown Brown Dark Gray 1 100% Brown Brown Dark Gray 1 100% Brown	ARKS			
1 83% Gray 1 1 83% Gray 1 1 83% Brown/Gray Gray to R. Brown Dark Gray 4 38% 16 16 16 16 16 16 16 16 16 16 16 16 16 1				
Silty Clay w/ brown mottling , trace vf sand 2 100% 8 7.0-8.0 Silty Fine Sand 8.0-9.5' Silty Clay to Clayey Silt 9.5-12.0' Silty Very Fine to Fine Sand 12 100% Brown Dark Gray Dark Gray 12 100% 12 12.0-21.0' Silty Fine to Very Fine Sand with occassional silty clay stringers (1/8"-1/4" thick) 16 10 10 10 10 10 10 10 10 10 10 10 10 10				
Silty Clay w/ brown mottling , trace vf sand Silty Clay w/ brown mottling , trace vf sand SM	it PID reading			
Brown/Gray Gray to R. Brown Brown Dark Gray 4 38% 16.8 16.9 16.	ained wood.			
Brown/Gray Gray to R. Brown Brown Dark Gray 4 38% 100% 2 100% 3 100% Brown Brown Dark Gray 2 100% 2 100% 2 100% Brown Dark Gray 2 100% 2 100% 2 100% 2 100% 3 100% Brown Dark Gray 2 100% 2 1				
8	g 4.0-7.0'			
8				
Gray to R. Brown Brown Dark Gray 4 38% 100% 5 100% 12 2 3 100% 12 3 100% Brown Dark Gray 4 38% 12 3 100% 13 100% 14 38% 15 100% 16 2 3 100% 16 2 3 100% 17 1.5-12.0 Less cohesive, very wet. 12.0-21.0' Silty Fine to Very Fine Sand with occassional silty clay stringers (1/8"-1/4" thick) 18 0-9.5' Silty Clay to Clayey Silt 9.5-12.0' Silty Very Fine to Fine Sand 12 0 2 1.0' Clay, trace angular gravel. 18 0-9.5' Silty Clay to Clayey Silt 19 0.5-12.0' Silty Very Fine to Fine Sand 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
3 100% R. Brown Brown Dark Gray 4 38% 16 16 17 18 19.5-12.0' Silty Very Fine to Fine Sand 12.0-21.0' Silty Fine to Very Fine Sand with occassional silty clay stringers (1/8"-1/4" thick) 18 19.5-12.0' Silty Very Fine to Fine Sand 12.0-21.0' Silty Fine to Very Fine Sand with occassional silty clay stringers (1/8"-1/4" thick) 19.5-12.0' Less cohesive, very wet. 10.0 Drove Sample foot because expected at 2 21.0' Clay, trace angular gravel. 21.0' Clay, trace angular gravel. CL Clay observer sampler.				
12 Brown Dark Gray 16 38% 4 38% 16 0.0 Drove Sample foot because expected at 2 21.0' Clay, trace angular gravel. 21.0' Clay, trace angular gravel. CL Clay observer sampler.	g 8.0 -8 .5'			
Dark Gray 4 38% Dark Gray 4 0.0 Dark Gray 4 0.0 Dark Gray 4 0.0 Dark Gray 4 0.0 Drove Sample foot because expected at 2 21.0' Clay, trace angular gravel. CL Clay observer sampler.				
Dark Gray 4 38% Dark Gray 4 0.0 Dark Gray 4 0.0 Dark Gray 4 0.0 Dark Gray 4 0.0 Drove Sample foot because expected at 2 21.0' Clay, trace angular gravel. CL Clay observer sampler.				
occassional silty clay stringers (1/8"-1/4" thick) 0.0 Drove Sample foot because expected at 2 21.0' Clay, trace angular gravel. CL Clay observer sampler.				
thick) 16 0.0 Drove Sample foot because expected at 2 21.0' Clay, trace angular gravel. CL Clay observer sampler.				
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
foot because expected at 2	. 46			
20 23 21.0° Clay, trace angular gravel. CL Clay observer sampler.				
20 20 20 21.0' Clay, trace angular gravel. CL Clay observed sampler.	•			
21.0' Clay, trace angular gravel. CL Clay observer sampler.				
21.0' Clay, trace angular gravel. CL Clay observed sampler.				
<u></u>	d on end of			
End of Boring at 21.0'				
Comments: Boring advanced using a track mounted Geoprobe Assembly.				
Installed 1-inch PVC piezometer at 21.0 feet bgs. BORING NO.: B-13				
Y				
3				
χ^{o} .3				


	URS Corporation											GEOPROBE BORING LOG				
							<i>)</i>				BORING		B-14			
PROJE	CT:	Cher	mical L	.eaman RI/	FS-Phase IV						SHEET:	1 of 1				
CLIENT				_eaman Tar							PROJEC		11170332.00001			
	G CONTRA		₹:		Zebra Environn	nental Co			·		BORING					
	NDWATER:	:			,	-	CAS.	SAMPLER		TUBE			ATION: 573.64			
DATE	TIME	—	LEV	/EL	TYPE	TYPE	<u> </u>	Macro-core	<u></u>	L	DATE ST	ARTED	: 6/16/03			
<u> </u>	 	↓			<u> </u>	Dia.	<u> </u> '	2"		L						
ı 	 	—			 	Length	 '	48"			DRILLER					
 	<u> </u>	├			-	Liner	L	Acetate			GEOLOG					
<u> </u>	ļ	<u> </u>				<u> </u>					REVIEW	ED BY:	R. Henschel			
	 	T ====			1			AMPLE				1	,			
DEPTH		"S"	%	COLOR	CONSISTENCY	ł		MATERIAL		ļ	uscs	PID	REMARKS			
FEET	STRATA	NO.	Rec.		HARDNESS	0.4 51 511	. Cravo	Land Cilby Co				(ppm)				
 	\bigotimes	1		Gray/	l ' ' I	 		I and Silty Sa			Fill	0.0	dry			
 	FF	1	90%	Brown	1	I		d Silty Clay, s	some fin	e sand,	CL		moist			
	ارس	I = I		▼			trace or									
4	1.5-	igsqcup	<u> </u>	Gray		1	-	Sand, trace		· 1	SM		wet at 3.9'			
		1 1		_ ₩_				enish brown	mottling	! -		0.0				
 	. 31	2	90%	Brown-		5.0-12.0'	Silty Fin	ie Sand.		1	ļ					
8	S 1	1 1	'	Light Gray	ı J	į				[ļ					
	ς		 '	1	ı İ	i				- 1	ı					
	/ J	1	! !		,	i					1		Sample 3 fell out of liner			
	. (3	- '			i				1		1	when removing. Could			
12			l '	₩	i	i				- 1	ļ		not measure recovery.			
	***************************************		 	Dark Gray	, }	12 0-19.5	' Silty F	ine to Very Fi	ine San	d with	ļ	0.0	1			
	3	. 1	1	to Gray				clay stringers				0.0				
	إنونين	4	70%	"		thick)		• -	,	1]					
16	(1	'			I				1	ļ					
			 	1	. 1	Į				1		0.0				
		5	67%			ı				}		J. J				
	-	.		₩	. 1				****							
20				Brown	1	19.5-21.0	' Silty V	ery Fine Sand	d	1	1	0.0				
	09030	6	80%	1 1	1			Fine Gravel		f clay						
22		.		Red		21.0-22.0'					CL					
,	.			1 1	j.	End of Bo	oring at 2	22.0'		- 1		1				
	. [. 1		İ		•			- 1	I	1				
	, ,		1 1	i 1						ì	- 1	I				
	ı İ	. 1		1							1	1				
	ı	.	, 1	1	1					- 1	ł	I				
	. 1	.		1						1	İ	I				
		.	j	1 1							1	1				
		.	, 1	1							-	i				
		}	, 1		1					- 1						
	,	1	,]									- 1	. !			
			, }	1							1	1	, , , , , , , , , , , , , , , , , , ,			
		- 1	, ,							1	- 1					
Commer	its: Boring a	advand	ced usi	ng a track n	nounted Geoprob	e Assemt	oly.									
Installed	1-inch PVC) Diezo	meter	at 20.5 feet	bgs.				E	ORING	NO.:		B-14			
		<u> </u>								D-14						


				HRS	Corpo			GEOF	PROB	E BORING LOG					
					Corpo	lauc) 				BORING	NO:	B-15		
PROJE	CT:	Cher	mical L	eaman RI/	FS-Phase IV						SHEET:	1 of 1			
CLIENT	r:	Cher	mical L	eaman Tar	nk Lines						PROJEC		11170332.00001		
BORIN	IG CONTRA	CTO	R:		Zebra Environn	mental Co	orp.				BORING	LOCAT	^{10N:} 572.90		
GROU	NDWATER:						CAS.	SAMPLER	CORE	TUBE		GROUND ELEVATION:			
DATE	TIME		LEV	EL	TYPE	TYPE		Macro-core	1		DATE ST	DATE STARTED: 6/16/03			
						Dia.		2"							
						Length		48"			DRILLER	: C. Don	iovan		
						Liner		Acetate			GEOLOG		Murphy		
											REVIEWE	ED BY:	R. Henschel		
							s	AMPLE							
DEPTH		"S"	%	201.08	CONSISTENCY	1		MATERIAL			uscs	PID	REMARKS		
FEET		NO.	1	COLOR	HARDNESS	1				!		(ppm)			
	XXXX	 	\vdash	Brown		0-1.5' Fil	l: Topso	oil, Gravel and	d Silty S	and.	Fiff		dry		
	2000	1	!	Black				y, possibly re			CL	1	moist		
	15-41	1 1	70%	Gray to	'	t .		y with brown			1	l	inois.		
4	المديرا	l '	1 1	Brown	1			e Sand layer	_	" 1	l '	ł			
	H	$\vdash \vdash$	 	1 1	1	1	-1 1,,,,,	, cana ia, a	at 5.5	1	l '	0.0	1		
 		i '	/	Brown	1	Silty Van	· Fine S	Sand, trace to		-lav	SM	1 0.0	wet at 5.0'		
 	اكسيدا	2	100%	BIOWII	1 1	1			Some	lay.	SIVI	1	wet at 5.0		
8	1	I = I	1 1		1	trace gra	Vei to 6.	,u·.		J	i !	1			
_ ^ 	المذا	igwdapprox I	 		. !	1				1	i !		1		
		1 1	1	1 1 1	1	1				J	, !	0.0	!		
		3	100%	1 1 1	. 1	1		.0 Less fines,	, less co	hesive,	i !				
<u></u>		1 1		1 1	i !	1 . '	very we	at.		j	j 1	!	ļ		
12		igsqcup	├	V	1						, !	لا	ļ		
	-	1 1	1	D. Gray				y Fine Sand v 1/8"-1/4" thic		asional	, !	0.0			
	(2	4	63%	1	1	Silly Clay	layera (1/8 - 1/4 0 110	K)	1	, 1				
	C T	1 1		1	l	ĺ				I	, !		!		
16	5.00 B		igsquare	1 L 1		i				- 1	į P	<u> </u>			
<u> </u>		1 1	1 1	▼				Fine to Very	/ Fine S	and		0.0			
		5	100%	Red		16.5-20.0)' Clay			I	CL	! !			
<u> </u>		1 1		1 1]	l				ŀ		! !	, ``]		
20				L	L	<u> </u>									
	<u> </u>		[·]												
<u>['</u>	1 1	1 1	1 1	1 1		End of Bo	oring at	20.0		1	. !		ļ		
	1 1	1 1	1 1	<i>l</i> [ĺ				- 1	,	l ļ	[
[1 1	1 1	i		l				1	. !		l		
[1 1	1 1	1 1	i J		l				1					
		$\Gamma = 1$	1	1 1		i						·			
				1 1	ı	i									
	l 1	I = I	1 1			i				1					
	1 1	1 1		i }		i					. 1				
	1 .]	i 1		i		i				1	. 1	i			
		1	1 1	i		İ				1	1				
	1	1 1	 		,	į					}	i			
<u>-</u>	1 1	1 1	1 1	i	,	i				1	1				
	1 1	, ,	1 1	i		İ				1	,				
	1 1	, ,	1 1	1 . 1		i				1	,				
	1 1	, ,	[]		ļ	i				1	,				
	=ta: Parina	24:420	Land usi	an a track	- custed George	ha Assom	56.								
					mounted Geoprot	Je Maaciiii	Diy.						D 45		
Installed	11-inch PVC	2 piezo	ometer a	at 20.0 feet	t bgs.					BORING	NO.:		B-15		
1									1				11		


APPENDIX B MONITORING WELL CONSTRUCTION DETAILS

APPENDIX C WELL DEVELOPMENT AND PURGING LOGS

PROJECT TITLE: Chemical	Leaman R	I/FS-Phase	e IV		WELL NO.: B-11					
PROJECT NO.: 11170332	.00001					Page: 1	of 1			
STAFF: Rob Murphy										
DATE(S): 6/23/03										
1. TOTAL CASING AND SCRI	EEN LENG	STH (FT.)			=	21.30	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW TO					=	5.93	 2"	0.17		
3. NUMBER OF FEET STAND	ING WAT	ER (#1 - #2	2)		=	15.37	3"	0.38		
4. VOLUME OF WATER/FOO	T OF CASI	ING (GAL.)		=	0.04	4"	0.66		
5. VOLUME OF WATER IN CA	ASING (GA	AL.)(#3 x #-	4)		=	0.6		1.04		
6. VOLUME OF WATER TO R	EMOVE (GAL.)(#5 x)		=		6"	1.50		
7. VOLUME OF WATER REM	OVED (GA	NL.)			=	20	8"	2.60		
		· · · · · · ·				VOLUME PURGED	(GALLONS)	1		
Time PARAMETERS	1738 Initial	1743 5	1749 10	1755	1801					
FARAIVIETERS	ıııııaı	3	10	15	20					
На	6.39	6.44	6.49	6.5	6.83					
SPEC. COND. (umhos)	NM	NM	NM	NM	NM		ı			
TEMPERATURE (°F)	65.7	60.9	57.0	56.6	57.1					
TURBIDITY (NTU)	>999	195	53.8	17.6	12.9					
DISSOLVED OXYGEN (ppm)										
Eh (mV)										
COMMENTS: Pumped	water with	h an Isco	peristaltio	pump ar	nd disposi	able HDPE tubing).			
								•		

PROJECT TITLE: Chemical	Leaman F	RI/FS-Phas	WELL NO.: B-12					
PROJECT NO.: 11170332	2.00001					Page: 1	of 1	
STAFF: Rob Murphy								
DATE(S): 6/23/03								··
	· · · · · · · · · · · · · · · · · · ·	<u> </u>						
TOTAL CASING AND SCR	FFN I FNO	STH (FT)			=	. 20.20	WELL ID.	VOL. (GAL/FT)
2. WATER LEVEL BELOW TO						20.20	1"	0.04
					=	4.69	2"	0.17
3. NUMBER OF FEET STAND					=	15.51	3"	0.38
4. VOLUME OF WATER/FOO			•		=	0.04	4"	0.66
5. VOLUME OF WATER IN C					=	0.6	5"	1.04
6. VOLUME OF WATER TO F	REMOVE (GAL.)(#5 x)		=		6"	1.50
7. VOLUME OF WATER REM	OVED (GA	AL.)			=	20	8*	2.60
				400111				
Time	1645	1652	1657	1703	1710	VOLUME PURGED (C	GALLONS)	
PARAMETERS	Initial	5	10	15	20			
рН	8.95	8.44	8.82	8.90	8.50	·		
SPEC. COND. (umhos)	NM	NM	NM	NM	NM			
TEMPERATURE (°F)	58.7	56.9	56.2	56.2	54.4			
TURBIDITY (NTU)	>999	93.0	19.5	7.53	5.91			
DISSOLVED OXYGEN (ppm)								
Eh (mV)								
COMMENTS: Pumped	water with	n an Isco	peristaltic	pump an	d disposa	able HDPE tubing.		
				٠				
			-					

PROJECT TITLE: Chemica	l Leaman F	RI/FS-Phase	e IV		WELL NO.: B-13				
PROJECT NO.: 1117033	2.00001					Page: 1	of 1		
STAFF: Rob Murphy	- .								
DATE(S): 6/23/03			····			·			
TOTAL CASING AND SCF	REEN LENG	GTH (FT.)			=	18.65	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)			=	4.68	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #2	2)		=	13.97	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	ING (GAL.)		=	0.04	4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	4)		=	0.6	5"	1.04	
6. VOLUME OF WATER TO	REMOVE (GAL.)(#5 x)		=		6"	1.50	
7. VOLUME OF WATER REM	OVED (GA	AL.)			=	20	8"	2.60	
Time	1 4040	1010				VOLUME PURGED (G	ALLONS)	I	
Time PARAMETERS	1843 Initial	1849 5	1858 10	1906 15	1913 20				
рН	6.77	6.58	6.55	6.53	6.55				
SPEC. COND. (umhos)	NM	NM	NM	NM	NM				
TEMPERATURE (°F)	65.7	56.2	54.7	54.6	54.4				
TURBIDITY (NTU)	>999	305.0	110	7.91	3.06				
DISSOLVED OXYGEN (ppm)									
Eh (mV)									
COMMENTS: Pumped	water wit	h an Isco	peristaltic	pump an	d disposa	able HDPE tubing.	<u> </u>		
A lot of s	sediment r	emoved f	rom withir	n well.					
		 							

PROJECT TITLE: Chemical	Leaman F	RI/FS-Phas	e IV		WELL NO.: B-14			
PROJECT NO.: 1117033	2.00001					Page: 1	of 1	
STAFF: Rob Murphy				··				
DATE(S): 6/23/03								
				-				
1. TOTAL CASING AND SCR	EEN LENG	GTH (FT.)			=	19.55	WELL ID.	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TO	OP OF CA	SING (FT.)	ı		=	4.06	2"	0.17
3. NUMBER OF FEET STANK	DING WAT	ER (#1 - #	2)	=	15.49	. 3"	0.38	
4. VOLUME OF WATER/FOO	T OF CAS	ING (GAL)	=	0.04	. 4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	4)		=	0.6	. 5"	1.04
6. VOLUME OF WATER TO F	REMOVE (GAL.)(#5 x)		=		6"	1.50
7. VOLUME OF WATER REM	IOVED (GA	AL.)			=	20	8"	2.60
T:	T	T				VOLUME PURGED (GALLONS)	
Time PARAMETERS	1610 Initial	1616 5	1623 10	1631 15	1640 20			
рН	6.68	6.63	7.11	8.87	8.29			
SPEC. COND. (umhos)	NM	NM	NM	NM	NM			
TEMPERATURE (°F)	63.4	57.9	58.0	57.2	59.6			
TURBIDITY (NTU)	>999	84.3	8.42	56.8	8.95			
DISSOLVED OXYGEN (ppm)								
Eh (mV)								
COMMENTS: Pumped	water witl	n an Isco	peristaltic	pump an	d disposa	able HDPE tubing.		
<u> </u>								

PROJECT TITLE: Chemical	Leaman RI	/FS-Phase	e IV		WELL NO.: B-15			
PROJECT NO.: 11170332	.00001	· · · · · · · · · · · · · · · · · · ·				Page: 1	of 1	
STAFF: Rob Murphy								
DATE(S): 6/23/03								
1. TOTAL CASING AND SCRI	EEN LENG	TH (FT.)			=	23.01	WELL ID.	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TO	P OF CAS	ING (FT.)			=	6.96	2"	0.17
3. NUMBER OF FEET STAND	ING WATE	ER (#1 - #2	2)		=	16.05	3"	0.38
4. VOLUME OF WATER/FOO	T OF CASI	NG (GAL.))		=	0.04	4"	0.66
5. VOLUME OF WATER IN CA	ASING (GA	.L.)(#3 x #4	4)		=	0.6	5"	1.04
6. VOLUME OF WATER TO R	EMOVE (C	SAL.)(#5 x)		=		6"	1.50
7. VOLUME OF WATER REM	OVED (GA	L.)			=	20	8"	2.60
Time	1521	1527	1534	ACCUM 1540	ULATED V	VOLUME PURGED (GALLONS)	
PARAMETERS	Initial	5	10	1540	20			
рН	6.55	6.36	6.53	6.46	6.76			
SPEC. COND. (umhos)	NM	NM	NM	NM	NM			
TEMPERATURE (°F)	64.0	62.5	59.7	55.7	57.0			
TURBIDITY (NTU)	>999	75.1	65	11.7	9.15			
DISSOLVED OXYGEN (ppm)								
Eh (mV)								
COMMENTS: Pumped	water witl	n an Isco	peristaltio	pump ar	ıd dispos	able HDPE tubing.		
					•			
!								

Project:	11170332.00001		Site:	Chemical Le	eaman Samplin	g	Well #:		
Date:	6/4/2004	Sampling	Personnel:	Tim Burmei	er/D. Tobin		Company:	URS Corporati	on
Purging/ Sampling Device:	Geopump 2		Tubing Type:	I DDE 1/4"			Pump Inlet:	Midpoint of saturated of screen	portion
	Below Top of Initial Depth Riser to Water (ft):	5.33	Depth to Well Bottom (ft): Vol. in 1 Well	20'	Well _ Dlameter:	2"		Screen Length (ft):_	10'
Casing:	PVC		Casing (liters):	9.00	_	Estimated P	urge Volume (liters):		
	B-01(060404) le Parameters: VOCs Comments:	Sample Time:	. 12	:14	QA/QC: <u>N</u>	lone			

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
11:46	7.91	12.04	2.054	90.1	79.4	-85.1	400	6.31	
11:49	7.45	10.44	2.057	0.58	39.9	-80.0	400	7.35	
11:54	7.36	10.41	1.896	0.26	95.6	-68.3	400	8.60	
11:59	7.37	10.39	1.868	0.27	68.8	-67.9	400	9.10	
12:04	7.42	10.48	1.890	0.23	49.5	-65.0	380	9.43	-
12:09	7.44	10.45	1.919	0.21	44.6	-63.9	370	9.61	
12:14	7.44	10.41	1.949	0.23	41.8	-63.7	375	9.23	
Tolerance:	0.1		3%	10%	10%	+ or - 10			

information:

WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft ($vol_{col} = \pi r^2 h$)

Project:	11170332.0000)1	Site:	Chemical L	eaman Samplir	ng	Well #:	B-02	
Date:	6/4/2004	Sampling	Personnel:	Tim Burme	ier/D. Tobin		Company:	URS Corporat	ion
Purging/ Sampling Device:	Geopump 2		Tubing Type:	I DDE 1//"			Pump Inlet:	Midpoint of saturated of screen	J portion
	Below Top of Initial Depth Riser to Water (ft):		Depth to Well Bottom (ft):	19	Well Dlameter:	2"		Screen Length (ft):_	10'
Casing:	PVC	<u></u>	Vol. in 1 Well Casing (liters):	7.9	_	Estimated	Purge Volume (liters):	8.4	
Sample ID:	B-02(060404)	Sample Time:	14	:51	QA/QC: <u>N</u>	None			
Sampl	le Parameters: VOCs Comments:								

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
14:30	7.26	10.95	2.225	6.04	8.9	8.9	450	7.38	
14:33	7.12	10.12	2.212	0.70	3.3	-0.5	410	8.20	
14:36	7.06	10.07	2.185	0.42	4.1	-4.6	390	8.20	
14:39	7.04	10.07	2.164	0.33	4.1	-7.2	390	8.21	
14:42	7.03	10.01	2.151	0.29	3.4	-9.7	400	8.21	
14:45	7.04	9.95	2.139	0.27	4.5	-12.0	400	8.22	
14:48	7.04	9.94	2.126	0.25	5.5	-13.6	400	8.22	
14:51	7.01	9.97	2.108	0.22	4.9	-16.4	400	8.22	
Tolerance:	0.1		3%	10%	10%	+ or - 10			

Information:

WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft ($vol_{col} = \pi r^2 h$)

Project:	1	1170332.0000	1	Site:	Chemical L	eaman Samplin	ng	Well #:	B-3	
Date:	6/7/2004	•	Sampling	Personnel:	Tim Burme	ier/J.Christy	 	Company:	URS Corporation	
Purging/ Sampling Device:	Geopump 2			Tubing Type:	LDPE 1/4"			Pump Inlet:	Midpoint of saturated of screen	d portion
	Below Top of Riser	Initial Depth to Water (ft): _	7.50	Depth to Well Bottom (ft): Vol. in 1 Well	22.60	Well Diameter: _	2"		Screen Length (ft):_	10'
Casing:	P\	/C		Casing (liters):	9.30	-	Estimated P	urge Volume (liters):	11.3	
Sample ID:	B-3(06	60704)	Sample Time:	14	:59	QA/QC: <u>1</u>	None			
Sample	Parameters: Comments:									

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
14:38	7.48	14.0	0.989	4.78	101	60.1	700	7.91	
14:41	6.93	10.4	1.021	0.86	34.9	60.0	500	8.04	
14:44	6.67	10.02	1.035	0.37	11.4	49.5	550	8.07	
14:47	6.63	9.62	1.288	0.28	4.42	36.5	500	8.09	
14:50	6.59	9.43	1.854	0.23	5.34	26.3	500	8.09	
14:53	6.65	9.49	1.940	0.21	2.94	18.9	500	8.09	
14:56	6.67	9.51	1.953	0.19	2.34	15.8	500	8.12	
14:59	6.75	9.52	1.950	0.18	1.60	12.0	500	8.12	
			,						
olerance:	0.1		3%	10%	10%	+ or - 10			

Information:

WATER VOLUMES--0.75 Inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (vol_{ori} = $\pi r^2 h$)

Project:	11	170332.000	01	Site:	Chemical L	eaman Samplin	g	Well #:	B-4	
Date:	6/7/2004		Sampling	Personnel:	Tim Burmei	ier/J.Christy		Company:	URS Corporation	
Purging/ Sampling Device:	Geopump 2			Tubing Type:	LDPF 1/4"			Pump Inlet:	Midpoint of saturated of screen	f portion
Measuring Point:	Below Top of Riser	Initial Depth to Water (ft):		Depth to Well Bottom (ft): Vol. in 1 Well	15	Well Diameter:	2"		Screen Length (ft):_	10'
Casing:	2" SCH	40 PVC		Casing (liters):	5.04		Estimated F	urge Volume (liters):	9.00	
Sample ID:	B-4(06	0704)	Sample Time:	12	:01	QA/QC:_ <u>N</u>	lone			
Sampl	e Parameters: Comments:	VOCs Slight sulfur o	dor		-			<u>-</u>		

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
11:43	7.68	14.43	1.687	10.19	8.0	-49.9	600	7.75	
11:46	6.79	10.95	1.548	0.86	4.8	-22.7	450	7.79	
11:49	6.54	11.14	1.272	0.42	5.5	-12.6	500	7.92	
11:52	6.41	11.26	1.193	0.63	2.9	-3.1	500	8.23	
11:55	6.30	11.16	1.242	0.70	2.6	0.2	450	8.50	
11:58	6.22	10.99	1.320	0.68	2.5	0.2	450	8.65	
12:01	6.20	10.84	1.420	0.68	3.2	0.6	450	8.75	
	-								
		_							
								<u> </u>	
Tolerance:	0.1		3%	10%	10%	+ or - 10		<u></u>	

Information:

WATER VOLUMES-0.75 (nch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (vol_{cyl} = $\pi r^2 h$)

Project:	11170332.000	01	Site:	Chemical L	eaman Samplin	g	Well #:	B-05R	
Date:	6/4/2004	Sampling	Personnel:	Tim Burmei	er/D. Tobin		Company:	URS Corporati	on
Purging/ Sampling Device:	Geopump 2		Tubing Type:	LDPF 1/4"			Pump Inlet:	Midpoint of saturated of screen	l portion
Measuring Point:	Below Top of Initial Depth to Water (ft):		Depth to Well Bottom (ft): Vol. in 1 Well Casing	14.50	Well Dlameter:	2"	No.	Screen Length (ft):_	10'
Casing:	PVC	-	(liters):	6.70	_	Estimated F	orge Volume! - 		
Sample ID:	B-05R(060404)	Sample Time:	11	:08	QA/QC: <u>N</u>	lone			
·	Comments:								

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µS)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
10:46	8.25	11.74	2.204	6.42	>1000	33.8	350	4.14	
10:49	7.57	13.95	1.972	0.83	145	41.0	340	4.25	
10:52	7.51	14.20	2.004	0.63	31.8	44.3	340	4.33	
10:56	7.46	14.23	2.016	0.46	27.4	44.7	400	4.42	
10:59	7.44	14.21	2.003	0.39	24.0	43.1	400	4.52	
11:02	7.42	14.30	1.981	0.32	20.5	41.9	400	4.58	
11:05	7.39	14.10	1.970	0.30	20.3	42.4	400	4.61	
11:08	7.37	14.06	1.952	0.29	20.1	40.7	400	4.63	
		ļ	-						
		-							
					·			 	
		ļ						<u> </u>	
Tolerance:	0.1		3%	. 10%	10%	+ or - 10		<u> </u>	

Information

WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{ref} = \pi r^2 h$)

Project: 11170332.00	001 Site	: Chemical L	_eaman Sampling	Well #:	B-06
Date: 6/4/2004	Sampling Personne	I: Tim Burme	eier/D. Tobin	Company:	URS Corporation
Purging/ Sampling Device: Geopump 2	Tubin Typ	e:		Pump inlet:	Midpoint of saturated portion of screen
Measuring Below Top of Initial Depth Point: Riser to Water (ft): Casing: PVC	9.62 Depth to We Yol. In 1 We Casing (liters):	t): <u>15.00</u>	Well Diameter:	2" Estimated Purge Volume	
Sample ID: B-06(060404) Sample Parameters: VOCs Comments:	Sample Time:1		QA/QC: No	(liters):_	6.0

PURGE PARAMETERS

TIME	рН	TEMP (C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
13:42	7.48	11.37	1.663	12.07	11.3	117	300	9.88	
13:45	7.20	10.60	1.635	1.82	3.8	99.6	300	10.11	
13:48	7.12	10.56	1.634	1.44	4.3	96.7	300	10.21	· · · · · · · · · · · · · · · · · · ·
13:52	7.07	10.48	1.650	1.28	5.7	97.5	300	10.43	
13:55	7.04	10.36	1.685	1.13	6.9	97.5	300	10.48	
13:58	7.02	10.30	1.697	1.04	6.9	97.9	300	10.58	
14:01	7.00	10.22	1.715	0.99	6.6	97.6	300	10.60	
	<u>.</u>								
Tolerance:	0.1		3%	10%	10%	+ or - 10			

Information:

WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (volce = xr2h)

Project:	11	170332.0000	1	Site:	Chemical L	eaman Samplin	ıg	Well #:	B-07	
Date:	6/4/2004		Sampling	Personnel:	Tim Burmei	er/D. Tobin		Company:	URS Corporat	ion
Purging/ Sampling Device:	Geopump 2			Tubing Type:	I DDE 1/4"			Pump Inlet:	Midpoint of saturated of screen	l portion
	Below Top of Riser	Initial Depth to Water (ft): _		Depth to Well Bottom (ft):	15.00	Weli Diameter:	2"		Screen Length (ft):_	10'
Casing:	PV	<u>′c</u>		Vol. In 1 Well Casing (liters):	7.20		Estimated	Purge Volume (liters):	10.3	
Sample ID:	B-07(06	50404)	Sample Time:	13	:01	QA/QC: <u>h</u>	None			
Sampl	e Parameters:									

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µS)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
12:34	7.43	12.23	1.423	48.1	627	-5.8	390	3.92	
12:37	7.06	12.35	1.397	39.7	384	17.4	380	4.75	
12:40	7.03	12.50	1.327	0.45	355	-8.7	380	5.08	
12:45	7.06	12.62	1.197	0.36	87.5	-16.2	380	5.35	
12:50	7.05	12.83	1.200	0.36	70.0	-16.4	380	5.44	
12:55	6.99	12.59	1.240	0.29	25.2	-18.2	380	5.53	
12:58	6.90	12.53	1.274	0.28	25.8	-19.2	380	5.51	
13:01	6.81	12.54	1.301	0.27	23.4	-21.1	380	5.56	
	 ,			1					
Tolerance:	0.1		3%	10%	10%	+ or - 10		<u> </u>	

Information:

WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{col} = \pi r^2 h$)

Project:	11	170332.0000)1	Site:	Chemical L	eaman Samplii	ng	Well #:	B-8	
Date:	6/7/2004		Sampling	Personnel:	Tim Burmei	ier/J.Christy		Company:	URS Corporat	ion
Purging/ Sampling Device:	Geopump 2			Tubing Type:	LDDE 1/A"			Pump Inlet:	Midpoint of saturate	d portion
Measuring Point:	Below Top of Riser	Initial Depth to Water (ft):		Depth to Well Bottom (ft):	18.50	Well _ Dlameter: _	2"		Screen Length (ft):_	10'
Casing:	PV	c		Vol. in 1 Well Casing (liters):	8.40		Estimated	Purge Volume (liters):	9.8	
Sample ID:	B-8(06	0704)	Sample Time:	14	:05	_ QA/QC: I	None			
Samp	le Parameters: \(\) Comments: \(\)									

PURGE PARAMETERS

TIME	рН	TEMP (C)	COND. (μS)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
13:44	7.66	11.44	1.519	4.91	71.3	-27.5	450	5.12	
13:47	7.10	10.98	1.507	0.41	87.6	-12.8	450	5.18	
13:50	7.03	10.86	1.496	0.32	72.1	-12.9	450	5.18	
13:53	7.02	10.87	1.490	0.26	46.5	-13.9	450	5.18	
13:56	7.02	10.93	1.488	0.18	32.5	-15.0	500	5.18	
13:59	7.01	11.01	1.488	0.18	21.6	-16.4	450	5.18	
14:02	6.99	11.07	1.489	0.17	19.2	-17.7	500	5.18	-
14:05	6.95	10.97	1.495	0.19	19.4	-18.3	500	5.18	
			.,						
						•			
-									
-									
Tolerance:	0.1		3%	10%	10%	+ or - 10			

WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{col} = \pi r^2 h$)

Project:	11170332.00	0001	Site:	Chemical L	eaman Sampli	ng	Well #:	B-9	
Date:	6/7/2004	Sampling	Personnel:	Tim Burmei	ier/J.Christy		Company:	URS Corporat	ion
Purging/ Sampling Device:	Geopump 2		Tubing Type:	I DPF 1/4"			Pump inlet:	Midpoint of saturated of screen	d portion
	Below Top of Initial Dept Riser to Water (ft	h): <u>7.69</u>	Depth to Well Bottom (ft):	17.00	Well Dlameter:	2"	-	Screen Length (ft):_	10'
Casing:	2" SCH 40 PVC		Vol. In 1 Well Casing (liters):	5.70	_ 	Estimated	Purge Volume (liters):		
Sample ID:	B-9(060704)	Sample Time:	10	:45	QA/QC:_j	None			
Sampl	e Parameters: VOCs								
	Comments: None								-

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
10:30	7.44	11.12	2.647	6.99	132.0	20.4	500	8.19	
10:33	7.17	9.76	2.264	0.44	23.7	13.2	450	8.85	
10:36	7.10	9.63	2.253	0.26	13.7	11.2	400	9.18	
10:39	7.06	9.57	2.258	0.16	9.7	8.6	500	9.32	
10:42	7.05	9.53	2.260	0.14	9.7	7.2	400	9.32	
10:45	7.03	9.51	2.258	0.14	9.4	4.7	400	9.33	
							· · · · · · · · · · · · · · · · · · ·		
Tolerance:	0.1		3%	10%	10%	+ or - 10		<u></u>	

Information:

WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{col} = \pi r^2 h$)

Project:	11170332.0000)1	Site:	Chemical L	eaman Samplin	g	Well #:	B-10
Date:	6/7/2004	Sampling	Personnel:	Tim Burmei	ier/J.Christy		Company:	URS Corporation
Purging/ Sampling Device:	Geopump 2		Tubing Type:	LDDE 1///"			Pump Inlet:	Midpoint of saturated portion of screen
Measuring Point:	Below Top of Initial Depth Riser to Water (ft):		Depth to Well Bottom (ft):	17.50	Well- Dlameter:	2"		Screen Length (ft): 10'
Casing:	PVC		Vol. In 1 Well Casing (liters):	8.30		Estimated P	urge Volume (liters):	6.6
Sample ID:	B-10(060704)	Sample Time:	9:	53	QA/QC: N	one		
Sampl	e Parameters: VOCs	_						
	Comments: None							
	 							

PURGE PARAMETERS

TIME	pH	TEMP (C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
9:28	7.55	10.12	1.610	3.73	329	-44.6	400	6.05	-
9:31	7.21	9.59	1.592	0.63	70.9	-19.3	400	6.34	
9:34	7.14	9.47	1.591	0.24	60.8	-13.8	350	6.34	
9:37	7.12	9.44	1.587	0.27	21.9	-11.7	350	6.37	
9:40	7.10	9.23	1.587	0.27	7.4	-9.7	350	6.37	
9:43	7.09	9.19	1.582	0.23	5.3	-7.2	350	6.37	
9:53	7.05	9.16	1.565	0.22	5.2	-7.0	400	6.40	
Tolerance:	0.1		3%	10%	10%	+ or - 10			

Information:

WATER VOLUMES=0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{vel} = \pi r^2 h$)

Project:	1117	11170332.00001 Site		Site:	Chemical L	eaman Samplin	g	Well #:	B-11	
Date:	6/4/2004		Sampling	Personnel:	Tim Burmei	er/D. Tobin		Company:	URS Corporati	ion
Purging/ Sampling Device:	Geopump 2			Tubing Type:	LDPE 1/4"			Pump Inlet:	Midpoint of saturated of screen	f portion
Measuring Point:	Below Top of In Riser to	itial Depth Water (ft):	5.23	Depth to Well Bottom (ft): Vol. in 1 Well	23.00	Well Dlameter:	1"		Screen Length (ft):_	15'
Casing:	PVC			Casing (liters):	2.70	_	Estimated P	urge Volume (liters):	6.0	
Sample ID:	B-11(0604	107) s	ample Time:	9:	47	QA/QC: <u>N</u>	lone			
Samp	le Parameters: VC Comments: Ru									

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
9:22	7.33	14.40	3.377	145.7	451	88.6	230	5.79	
9:25	6.87	12.01	3.689	1.57	558	70.4	230	5.82	
9:28	6.82	12.03	3.767	1.02	332	60.1	240	5.83	
9:31	6.82	11.92	3.842	0.51	81.9	42.8	250	5.85	
9:35	6.82	12.02	3.845	0.39	44.5	39.5	250	5.85	
9:38	6.81	11.97	3.866	0.29	32.3	36.8	250	5.85	
9:41	6.80	- 12.00	3.881	0.23	20.9	36.0	250	5.84	
9:44	6.80	12.06	3.884	0.19	18.5	35.2	250	5.84	
9:47	6.79	12.13	3.882	0.16	18.9	37.1	250	5.84	
Tolerance:	0.1		3%	10%	10%	+ or - 10			

Information:

WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{ox} = \pi r^2 h$)

Project:	11170332.0000	01	Site:	hemical Lea	aman Sampling	l	Well #:	B-12	
Date:	6/4/2004	Sampling	Personnel:	Tim Burmeier/D. Tobin			Company:	URS Corporation	
Purging/ Sampling Device:	Geopump 2		Tubing Type:	LDPF 1/4"			Pump Inlet:	Midpoint of saturated of screen	d portion
Measuring Point:	Below Top of Initial Depth to Water (ft):	4.07	Depth to Well Bottom (ft):	20.50	Well Diameter:	1"		Screen Length (ft):_	15'
Casing:	PVC		Vol. in 1 Well Casing (liters):	2.50	-	Estimated	Purge Volume (liters):	6.20	
Sample ID:	B-12(060407)	Sample Time:	8:	55	QA/QC: I	MS/MSD			
Sampl	le Parameters: VOCs								
	Comments: None								
				-			· · · · · · · · · · · · · · · · · · ·		

PURGE PARAMETERS

TIME	pH	TEMP (°C)	COND. (μS)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
8:28	6.86	12.23	2.678	off scale	>1000	35.7	220	4.53	
8:31	6.77	11.99	2.697	1.59	>1000	37.4	225	4.57	
8:34	6.75	11.48	2.719	0.75	685	36.4	225	4.58	
8:37	6.72	11.40	2.728	0.36	375	35.9	225	4.60	
8:40	6.73	11.29	2.739	0.27	211	35.1	225	4.61	
8:43	6.72	11.34	2.744	0.24	113	34.7	225	4.61	
8:46	6.72	11.29	2.753	0.18	75.2	34.8	250	4.62	
8:49	6.71	11.28	2.759	0.21	49.0	35.0	250	4.63	
8:52	6.71	11.25	2.771	0.19	34.8	35.8	225	4.63	
8:55	6.72	11.24	2.782	0.16	25.7	36.8	250	4.64	
Tolerance:	. 0.1		3%	10%	10%	+ or - 10			

information:

WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{ce}$ = π ²h)

Project:	11170332.00001			Chemical Lo	eaman Samplin	ıg	Well #:	B-13	
Date:	6/4/2004	Personnel: Tim Burmeier/D. Tobin				Company:	URS Corporation		
Purging/ Sampling Device:	Geopump 2		Tubing Type:	I DPE 1/4"			Pump Inlet:	Midpoint of saturated of screen	portion
	Below Top of Initial Depth to Water (ft):		Depth to Well Bottom (ft):	20.30	Well Dlameter:	1"		Screen Length (ft):_	15'
Casing:	PVC	-	Vol. In 1 Well Casing (liters):	2.50	_	Estimated P	urge Volume (liters):		
Sample (D:	B-13(060407)	Sample Time:	10	:28	QA/QC:_ <u>N</u>	None			
Samp	le Parameters: VOCs								
	Comments:								· · · · · · · · · · · · · · · · · · ·

PURGE PARAMETERS

TIME	рН	TEMP (C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
10:06	9.32	13.28	0.517	118.9	136	56.0	250	5.22	
10:09	9.61	12.78	0.459	3.1	169	30.1	250	5.56	
10:13	9.65	12.69	0.440	2.9	90.5	26.0	250	5.90	
10:16	9.64	12.50	0.436	2.8	52.0	28.7	260	5.97	
10:19	9.72	12.38	0.436	2.6	43.0	27.3	250	5.98	
10:22	9.70	12.35	0.435	2.6	23.6	27.0	275	5.99	
10:25	9.71	12.27	0.436	2.5	18.2	29.0	275	6.01	
10:28	9.76	12.34	0.436	2.3	18.6	26.5	275	6.02	
	-								
	-		•						
		<u> </u>				ļ	<u></u>		
		<u> </u>			·				
		<u> </u>							
		 							
Tolerance:	0.1		3%	10%	10%	+ or - 10			

Information:

WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{col} = xr^2h$)

Project:	11170332.000	001 Site:	Chemical L	eaman Samplin	g W el	II #: B-14
Date:	6/4/2004	Sampling Personnel:	g Personnel: Tim Burmeier/D. Tobin			ny: URS Corporation
Purging/ Sampling Device:	Geopump 2	Tubing Type:	I DPE 1/4"		Pump li	nlet: Midpoint of saturated portion of screen
	Below Top of Riser to Water (ft):	6/3/04 3.37 Depth to Well 6/4/04 3.53 Bottom (ft):	20.50	Well Dlameter:	1"	Screen Length (ft): 15'
Casing:	PVC	Casing (liters):	2.64	-	Estimated Purge Volution (Ilte	ume ers): 4.00
Sample ID:	B-14(060407)	Sample Time: 8:	01	QA/QC: N	one	
Sampl	e Parameters: VOCs Comments: Turbidity reac	dings not collected on 6/3/04				
					·-··	

PURGE PARAMETERS

TIME	ρН	TEMP (°C)	COND. (μS)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
14:10	7.14	12.2	2.822	5.10	-	78.0	500	3.37	
14:15	6.94	13.4	2.840	2.60		66.5	250	4.10	
				Stopped p	ourging and re	eturned 6/4/04			
7:48	7.55	12.3	2.856	3.50	127	92.6	300	3.97	
7:46	7.16	11.5	2.916	0.51	170	87.8	220	4.02	
7:49	7.05	11.4	2.948	0.50	161	83.2	225	4.04	
7:52	7.00	11.4	2.954	0.44	99.4	80.9	225	4.05	
7:55	6.94	11.6	2.967	0.39	56.8	74.6	225	4.06	
7:58	6.91	11.7	2.980	0.27	54.5	68.2	225	4.06	
8:01	6.87	11.5	2.992	0.26	51.8	64.0	225	4.07	
		-							
		-							
						 			
Tolerance:	0.1		3%	10%	10%	+ or - 10			

information

WATER VOLUMES -0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft ($vol_{col} = \pi r^2 h$)

Project:	11170332.00001 Si			: Chemical Leaman Sampling				B-15	
Date:	6/7/2004	Personnel:	onnel: Tim Burmeier/J.Christy			Company:	URS Corporat	ion	
Purging/ Sampling Device:	Geopump 2		Tubing Type:	LDDE 4/A"			Pump Inlet:	Midpoint of saturated of screen	d portion
Measuring Point:	Below Top of Riser to Water (ft):		Depth to Well Bottom (ft): Vol. in 1 Well	20.50	Well Diameter:	1"		Screen Length (ft):_	10'
Casing:	PVC	-	Casing (liters):	2.20	_	Estimated F	urge Volume (liters):		
Sample ID: Sampl	B-15(060704) e Parameters: VOCs	Sample Time:	8:	31	_ QA/QC: <u>I</u>	None			
	Comments:								

PURGE PARAMETERS

TIME	рΗ	TEMP (°C)	COND. (μS)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor) (ft)	Comments
7:43	8.50	12.03	0.572	2.00	16.3	-14.4	300	6.64	
7:46	8.10	10.46	0.569	0.47	44.0	-11.6	350	7.56	
7:49	7.90	10.17	0.583	0.48	41.5	-2.6	300	7.49	
7:52	7.80	10.12	0.605	0.46	26.4	1.3	300	7.50	
7:55	7.60	9.99	0.665	0.51	17.4	8.0	300	7.52	
7:58	7.50	9.93	0.758	0.52	10.7	13.9	300	7.54	
8:01	7.40	9.88	0.877	0.42	5.9	19.2	350	8.55	
8:04	7.20	9.88	1.025	0.39	5.6	23.7	300	8.55	
8:14	7.10	9.91	1.228	0.41	4.46	27.1	350	8.59	
8:24	6.90	9.90	1.391	0.34	2.64	27.7	350	7.61	
8:28	6.90	9.93	1.443	0.34	2.81	27.7	350	7.62	
8:31	6.90	9.92	1.476	0.33	2.71	27.2	350	7.62	
									
Tolerance:	0.1		3%	10%	10%	+ or - 10			

Information

WATER VOLUMES=0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{col} = \pi r^2 h$)

APPENDIX D DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT

CHEMICAL LEAMAN TANK LINES, INC. TONAWANDA, NY FACILITY (SITE # 9-15-014) SUPPLEMENTAL INVESTIGATION EASTERN AREA

Analyses Performed by:

ECOLOGY AND ENVIRONMENT, INC.

Prepared by:

URS CORPORATION
640 ELLICOTT STREET
BUFFALO, NY 14203

TABLE OF CONTENTS

	<u>Pa</u> g	ge No
I.	INTRODUCTION	1
П.	ANALYTICAL METHODOLOGIES	1
III.	DATA DELIVERABLE COMPLETENESS	1
IV.	PRESERVATION/HOLDING TIMES/SAMPLE RECEIPT	1
V.	NON-CONFORMANCES	2
VII.	SUMMARY	3

TABLES (Following Text)

Table 1 Validated Groundwater Sample ResultsTable 2 Validated Catch Basin and Outfall Sample Results

Table 3 Validated Field QC Sample Results

APPENDICES

Appendix A - Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR discusses groundwater, catch basin, and outfall samples collected on June 4 and 7, 2004.

II. ANALYTICAL METHODOLOGIES

The data being evaluated is from the June 4 and 7, 2004 sampling of 15 groundwater samples, 4 catch basin samples, 1 outfall sample, and 2 trip blanks. The analytical laboratory that performed the analyses is Ecology and Environment, Inc. (Lancaster, NY). The samples were analyzed for the target compound list (TCL) volatile organic compounds (VOCs) following USEPA Method 8260B.

A limited data validation was performed following the guidelines in USEPA Region II Standard Operating Procedure for the Validation of Organic Data Acquired Using SW-846 Method 8260B (SOP No. HW-24, Revison I, June 1999). Qualifications applied to the data include "J" (estimated), "UJ" (estimated quantitation limit), or "U" (non-detect). The validated analytical results are presented in Tables 1, 2, and 3. Documentation supporting the qualification of data is presented in Appendix A. Only problems affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

The laboratory deliverable data packages were in accordance with NYSDEC Analytical Services Protocol (ASP) Category B requirements.

IV. PRESERVATION/HOLDING TIMES/SAMPLE RECEIPT

All samples were received by the laboratory intact and properly preserved, and were analyzed within the technical and contractual holding times.

V. NON-CONFORMANCES

Continuing Calibrations

The percent difference (%D) between the initial calibration (ICAL) average relative response factor (RRF) and the continuing calibration (CCAL) RRF exceeded the quality control (QC) limit (i.e., >20%D) for 1,2-dibromo-3-chloropropane in a CCAL standard analyzed on June 9, 2004. The non-detect results for 1,2-dibromo-3-chloropropane in associated samples B-02, B-06, B-07, B-11, B-12, B-13, B-14, and TB-1 (6/4/04) have been qualified "UJ."

The %D between the ICAL average RRF and the CCAL RRF exceeded 20% for 1,1,2-trichloro-1,2,2-trifluoromethane, carbon tetrachloride, cyclohexane, dichlorodifluoromethane, isopropylbenzene, methylcyclohexane, and tetrachloroethene in a CCAL standard analyzed on June 9, 2004. The results for these compounds in associated samples B-01, B-03, B-04, CBNE, CBNW, CBSE, CBSW, and Outfall-1 have been qualified "J" or "UJ."

The %D between the ICAL average RRF and the CCAL RRF exceeded the 20% for acetone in the CCAL standard analyzed on June 10, 2004. The results for acetone in associated samples B-5R, B-08, B-09, B-10, B-15, and Trip Blank (6/7/04) have been qualified "J" or "UJ."

Documentation supporting the qualification of data (i.e., Continuing Calibration Forms, analysis run logs) is presented in Appendix A.

Blanks

The concentration of cis-1,2-dichloroethene in sample B-11 exceeded the linear range of the calibration. The laboratory analyzed an instrument blank (file ID N0827) immediately following the sample. The concentration of cis-1,2-dichloroethene in the instrument blank was less than the reporting limit (i.e. 5 ug/L). The concentration in sample B-13, which was analyzed immediately following the instrument blank was

less than five times the amount detected in the instrument blank. Therefore, the result for cis-1,2-dichloroethene in sample B-13 was qualified "U" at the quantified value.

Documentation supporting the qualification of data (i.e., instrument blank raw data, analysis run log) is presented in Appendix A.

<u>Dilutions</u>

Samples B-01, B-11, B-12, and B-14 were initially analyzed undiluted, but required secondary dilution analyses because of the high concentration of target compounds. Data qualified "D" indicate results reported from a secondary dilution analysis.

VII. SUMMARY

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified "J" (estimated) or "UJ" (estimated reporting limit) are considered conditionally usable. Those results qualified "U" are considered non-detect. All other sample results are usable as reported.

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The sample results are reported from a separate secondary dilution analysis.

Location ID		B-01	B-02	B-03	B-04	B-05R
Sample ID Matrix		B-01	B-02	B-03	B-04	B-06R
		Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
Depth Interval (ft)		-	-	-		
Date Sampled		06/04/04	06/04/04	06/07/04	06/07/04	06/04/04
Parameter	Units					
Volatiles						
1,1,1-Trichloroethane	UG/L	5.00 U	1.36 J	5.00 U	5.00 U	5.00 U
1,1,2,2-Tetrachforoethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.00 UJ	1.54 J	5.00 UJ	5.00 UJ	5.00 U
1,1,2-Trichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 Ų
1,1-Dichloroethane	UG/L	5.00 U	11.3	5.00 U	5.00 U	5.00 U
1,1-Dichloroethene	UG/L	5.00 U	5.00 U	5.00 ป	5.00 U	1.37 J
1,2,4-Trichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	2.88 J
1,2-Dibromo-3-chloropropane	UG/L	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U
1,2-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 บ	54.0
1,2-Dichloropropane	UG/L	5.00 U	3.66 J	5.00 U	5.00 U	5.00 U
1,3-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,4-Dichlorobenzene	UG/L	5.00 ป	5.00 U	1.03 J	5.00 U	12.0
2-Butanone	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	30.0
2-Hexanone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
4-Methyl-2-pentanone	UG/L	10.0 ป	10.0 U	10.0 U	10.0 U	10.0 U
Acetone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Benzene	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ
Bromodichloromethane	UG/L	16.4	3.70 J	4.36 J	5.00 U	2.21 J
	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromonorm	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane Code disultide	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Carbon disulfide	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Carbon tetrachloride	UG/L	5.00 UJ	5.00 U	5.00 UJ	5.00 UJ	5.00 U

Flags assigned during chemistry validation are shown.

Location ID	-	B-01	B-02	B-03	B-04	B-05R
Sample ID Matrix Depth Interval (ft)		B-01	8-02	B-03	B-04	B-06R
		Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
		-	-	-	-	
Date Sampled		06/04/04	06/04/04	06/07/04	06/07/04	06/04/04
Parameter	Units					
Volatiles						
Chlorobenzene	UG/L	280 D	5.00 U	6.98	2.80 J	8.45
Chloroethane	UG/L	10.0 U	1.92 J	10.0 U	10.0 U	10.0 U
Chloroform	UG/L	5.00 U	4.46 J	5.00 U	5.00 U	5.00 €
Chloromethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
cis-1,2-Dichloroethene	UG/L	5.00 U	5.73	5.00 U	1.30 J	12.2
cis-1,3-Dichloropropene	UG/L	5.00 U	5.00 U	5.00 U	5.00 บ	5.00 U
Cyclohexane	UG/L	1.71 J	5.00 U	5.00 UJ	5.00 UJ	5.00 U
Dibromochloromethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Dichlorodifluoromethane	UG/L	10.0 UJ	10.0 U	10.0 UJ	10.0 UJ	10.0 U
Ethylbenzene	UG/L	5.00 U	5.00 U	5.00 บ	5.00 U	5.00 U
Isopropylbenzene	UG/L	0.408 J	5.00 U	5.00 UJ	5.00 UJ	5.00 U
Methyl acetate	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylcyclohexane	UG/L	5.00 UJ	5.00 U	5.00 UJ	5.00 UJ	5.00 U
Methylene chloride	UG/L	5.00 U	1.26 J	5.00 U	5.00 U	5.00 ህ
Styrene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Tetrachloroethene	UG/L	5.00 UJ	5.00 U	5.00 UJ	5.00 UJ	56.5
Toluene	UG/L	5.00 U	0.828 J	5.00 U	5.00 U	0.151 J
trans-1,2-Dichloroethene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,3-Dichloropropene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Trichloroethene	UG/L	5.00 U	10.3	5.00 U	5.00 U	35.6
Trichlorofluoromethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Vinyl chloride	UG/L	10.0 U	2.21 J	19.0	2.30 J	6.90 J
Xylene (total)	UG/L	5.00 U	5.00 U	5.00 U	5.00 ป	5.00 U

Flags assigned during chemistry validation are shown.

Location ID		B-06	B-07	B-08	B-09	B-10
Sample ID		B-06	B-07	8-08	B-09	8-10
Matrix		Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
Depth Interval (ft)		-	-	•	-	-
Date Sampled		06/04/04	06/04/04	06/07/04	06/07/04	06/07/04
Parameter	Units					
Volatiles					<u> </u>	
1,1,1-Trichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1,2,2-Tetrachloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.00 U	5.00 ป	5.00 U	5.00 U	5.00 U
1,1,2-Trichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1-Dichloroethane	UG/L	5.00 U	5.00 U	3.76 J	5.00 U	5.00 U
1,1-Dichloroethene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2,4-Trichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dibromo-3-chloropropane	UG/L	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 U
1,2-Dibromoethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichloroethane	UG/L	5.00 U	5.00 ป	5.00 U	5.00 U	5.00 U
1,2-Dichloropropane	UG/L	5.00 U	• 5.00 U	5.00 U	5.00 U	5.00 U
1,3-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,4-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
2-Butanone 2-Hexanone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
4-Methyl-2-pentanone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Acetone	UG/L	10.0 U	10.0 U	10.0 UJ	2.00 J	10.0 UJ
Benzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	0.556 J
Bromodichloromethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromoform	UG/L	5.00 U	5.00 U	5.00 €	5.00 U	5.00 U
Bromomethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Carbon disulfide	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Carbon tetrachloride	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U

Flags assigned during chemistry validation are shown.

Location ID		B-06	B-07	B-08	B-09	B-10
Sample ID		B-06	B-07	B-08	B-09	B-10
Matrix		Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
Depth Interval (ft)		-	-	-	-	-
Date Sampled		06/04/04	06/04/04	06/07/04	06/07/04	06/07/04
Parameter	Units					
Volatiles						
Chlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chloroethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Chloroform	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chloromethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
cis-1,2-Dichloroethene	UG/L	5.00 U	5.00 U	7.91	5.00 U	5.00 U
icis-1,3-Dichloropropene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Cyclohexane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Dibromochloromethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Dichlorodifluoromethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Ethylbenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Isopropylbenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 บ
Methyl acetate	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylcyclohexane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylene chloride	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ป
Styrene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Tetrachloroethene	UGAL	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ป
Toluene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,2-Dichloroethene	UG/L	5.00 U	5.00 ป	5.00 U	5.00 ป	5.00 U
trans-1,3-Dichloropropene	UG/L	5.00 ∪	5.00 U	5.00 U	5.00 U	5.00 U
Trichloroethene	UG/L	5.00 U	5.00 U	1.39 J	5.00 U	5.00 U
Trichlorofluoromethane	UG/L	5.00 U	5.00 ป	5.00 U	5.00 U	5.00 U
Vinyl chloride	UG/L	10.0 U	10.0 U	10.0 U	1.70 J	26.8
Xylene (total)	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ∪

Flags assigned during chemistry validation are shown.

Location ID	·	B-11	B-12	B-13	B-14	B-15
Sample ID		B-11	B-12	B-13	B-14	B-16
Matrix		Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
Depth Interval (ft)		, -	•	-	-	-
Date Sampled		06/04/04	06/04/04	06/04/04	06/04/04	06/07/04
Parameter	Units					
Volatiles						
1,1,1-Trichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1,2,2-Tetrachloroethane	UG/L	5.00 ∪	5.00 U	5.00 U	5.00 U	5.00 ป
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ป
1,1,2-Trichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ป
1,1-Dichloroethane	UG/L	19.4	5.00 U	5.00 U	5.00 U	5.00 U
1,1-Dichloroethene	UG/L	5.00 U	8.98	5.00 U	5.00 U	5.00 U
1,2,4-Trichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dibromo-3-chloropropane	UG/L	10.0 UJ	10.0 UJ	10.0 UJ	10.0 UJ	10.0 U
1,2-Dibromoethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,3-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,4-Dichlorobenzene	UG/L	5.00 U	5,00 U	5.00 U	5.00 U	5.00 U
2-Butanone	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
2-Hexanone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
4-Methyl-2-pentanone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Acetone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Benzene	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ
Bromodichloromethane	UG/L	4.39 J	454 D ,	1.01 J	1,420 D	10.9
Bromoform	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Carbon disulfide	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Carbon tetrachloride	UG/L	5.00 U	5.00 U	_ 5.00 U	5.00 U	5.00 U
on on to addition to	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U

Flags assigned during chemistry validation are shown.

Location ID		B-11	B-12	B-13	B-14	B-15
Sample ID Matrix Depth Interval (ft)		8-11	B-12	B-13	. B-14	B-15
		Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			-	-	-	
Date Sampled		06/04/04	06/04/04	06/04/04	06/04/04	06/07/04
Parameter	Units					
Volatiles						
Chlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 ∪	1.34 J
Chloroethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Chloroform	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chloromethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
cis-1,2-Dichloroethene	UG/L	1,180 D	6,640 D	5.59 U	1,870 D	37.7
cis-1,3-Dichloropropene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Cyclohexane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ป
Dibromochloromethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Dichlorodifluoromethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 ป
Ethylbenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Isopropylbenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl acetate	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylcyclohexane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylene chloride	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Styrene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Tetrachloroethene	UG/L	5.00 U	5.00 U	0.394 J	5.00 U	5.00 U
Toluene	UG/L	5.00 U	5.00 บ	5.00 U	5.00 U	5.00 U
trans-1,2-Dichloroethene	UG/L	32.3	62.4	5.00 U	50.2	2.77 J
trans-1,3-Dichloropropene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Trichloroethene	UG/L	10.4	2.80 J	6.84	17.8	3.81 J
Trichlorofluoromethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Vinyl chloride	UG/L	444 D	255 DJ	10.0 U	758 D	139
Xylene (total)	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U

Flags assigned during chemistry validation are shown.

TABLE 2 VALIDATED CATCH BASIN AND OUTFALL SAMPLE RESULTS CHEMICAL LEAMAN TANK LINES

Location ID		CBNE	CBNW	CBSE	CBSW	OUTFALL-1
Sample ID		CBNE	CBNW	CBSE	CBSW	OUTFALL-1
Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	•	-	-	-
Date Sampled		06/04/04	06/04/04	06/04/04	06/04/04	06/04/04
Parameter	Units					
Volatiles			.,			
1,1,1-Trichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	2.48 J
1,1,2,2-Tetrachloroethane	UG/L	5.00 U	5.00 ป	5.00 U	5.00 U	5.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ
1,1,2-Trichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1-Dichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1-Dichloroethene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2,4-Trichlorobenzene	UG/L	5.00 U	5.00 ป	5.00 U	5.00 U	5.00 U
1,2-Dibromo-3-chloropropane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
1,2-Dibromoethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichloroethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ป
1,2-Dichloropropane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,3-Dichlorobenzene	. UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,4-Dichlorobenzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
2-Butanone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
2-Hexanone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
4-Methyl-2-pentanone	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Acetone	UG/L	12.0	6.81 J	10.0 U	8.82 J	10.0 U
Benzene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromodichloromethane	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromoform	UG/L	5.00 ∪	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane	UG/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Carbon disulfide	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Carbon tetrachloride	UG/L	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ

Flags assigned during chemistry validation are shown.

TABLE 2 VALIDATED CATCH BASIN AND OUTFALL SAMPLE RESULTS CHEMICAL LEAMAN TANK LINES

Location ID		CBNE	CBNW	CBSE	CBSW	OUTFALL-1
Sample ID		CBNE	CBNW	CBSE	CBSW	OUTFALL-1
Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	•	-	•	-
Date Sampled		06/04/04	06/04/04	06/04/04	06/04/04	06/04/04
Parameter	Units					
Volatiles						
Chlorobenzene	UG/L	5.00 U				
Chloroethane	UG/L	10.0 U				
Chloroform	UG/L	5.00 U				
Chloromethane	UG/L	10.0 U				
cis-1,2-Dichloroethene	UG/L	1.34 J	6.84	0.956 J	1.05 J	5.32
cis-1,3-Dichloropropene	UG/L	5.00 U				
Cyclohexane	UG/L	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ
Dibromochloromethane	UG/L	5.00 U				
Dichlorodifluoromethane Ethylbenzene	UG/L	10.0 UJ	10.0 UJ	10.0 UJ	10.0 UJ	10.0 UJ
	UG/L	5.00 U				
Isopropylbenzene Methyl acetate	UG/L	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ
Methyl tert-butyl ether	UG/L	5.00 U	5.00 U	5.00 U	5.00 ∪	5.00 U
	UG/L	5.00 U				
Methylcyclohexane	UG/L	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ
Methylene chloride	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ป
Styrene	UG/L	5.00 U				
Tetrachloroethene	UG/L	0.506 J	5.00 UJ	5.00 UJ	5.00 UJ	5.00 UJ
Toluene	UG/L	5.00 U	5.00 U	5.00 U	、 5.00 U	5.00 U
trans-1,2-Dichloroethene	UG/L	5.00 U	5.00 U	5.00 U	5.00 U	5.00 ∪
trans-1,3-Dichloropropene	UG/L	5.00 U				
Trichloroethene	UG/L	5.00 U	5.00 U	1.45 J	5.00 U	1.92 J
Trichlorofluoromethane	UG/L	5.00 U				
Vinyl chloride	UG/L	10.0 U	10.0 U	10.0 U	10.0 ป	10.0 U
Xylene (total)	UG/L	5.00 U				

Flags assigned during chemistry validation are shown.

MADE BY GEK 07/27/04 CHECKED BY JML 07/27/04

TABLE 3 VALIDATED FIELD QC SAMPLE RESULTS CHEMICAL LEAMAN TANK LINES

Location ID		FIELDQC	FIELDQC
Sample ID		TB-1	Trip Blank
Matrix		Quality Control	Quality Control
Depth Interval (ft)		•	•
Date Sampled	06/04/04	06/07/04	
Parameter	Units	Trip Blank (1-1)	Trip Blank (1-1)
Volatiles			
1,1,1-Trichloroethane	UG/L	5.00 U	5.00 U
1,1,2,2-Tetrachloroethane	UG/L	5.00 U	5.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane	· UG/L	5.00 U	5.00 U
1,1,2-Trichloroethane	UG/L	5.00 U	5.00 U
1,1-Dichloroethane	UG/L	5.00 U	5.00 U
1,1-Dichtoroethene	UG/L	5.00 U	5.00 U
1,2,4-Trichlorobenzene	UG/L	5.00 U	5.00 U
1,2-Dibromo-3-chloropropane	UG/L	10.0 UJ	10.0 U
1,2-Dibromoethane	UG/L	5.00 U	5.00 U
1,2-Dichlorobenzene	UG/L	5.00 U	5.00 U
1,2-Dichloroethane 1,2-Dichloropropane	UG/L	5.00 U	5.00 U
1,3-Dichlorobenzene	UG/L	5.00 U	5.00 U
1,4-Dichlorobenzene	UG/L	5.00 U	5.00 U
·	UG/L	5.00 U	5.00 U
2-Butanone 2-Hexanone	UG/L	10.0 U	10.0 U
	UG/L	10.0 U	10.0 U
4-Methyl-2-pentanone Acetone	UG/L	10.0 U	10.0 U
	UG/L	10.0 U	10.0 UJ
Benzene	UG/L	5.00 U	5.00 U
Bromodichloromethane	UG/L	5.00 U	5.00 U
Bromoform	UG/L	5.00 U	5.00 U
Bromomethane	UG/L	10.0 U	10.0 U
Carbon disulfide	UG/L	5.00 U	5.00 U
Carbon tetrachloride	UG/L	5.00 U	5.00 U

Flags assigned during chemistry validation are shown.

MADE BY GEK 07/27/04 CHECKED BY JML 07/27/04

TABLE 3 VALIDATED FIELD QC SAMPLE RESULTS CHEMICAL LEAMAN TANK LINES

Location ID		FIELDQC	FIELDQC
Sample ID	-	TB-1	Trip Blank
Matrix		Quality Control	Quality Control
Depth Interval (ft)		•	
Date Sampled	06/04/04	06/07/04	
Parameter	Units	Trip Blank (1-1)	Trip Blank (1-1)
Volatiles			
Chlorobenzene	UG/L	5.00 ป	5.00 U
Chioroethane	UG/L	10.0 U	10.0 U
Chloroform	UG/L	5.00 U	5.00 U
Chloromethane	UG/L	10.0 U	10.0 U
cis-1,2-Dichloroethene	UG/L	5.00 U	5.00 U
cis-1,3-Dichloropropene	UG/L	5.00 U	5.00 U
Cyclohexane	UG/L	5.00 U	5.00 U
Dibromochloromethane	UG/L	5.00 U	5.00 U
Dichlorodifluoromethane	UG/L	10.0 U	10.0 U
Ethylbenzene	UG/L	5.00 U	5.00 U
Isopropylbenzene	UG/L	5.00 U	5.00 U
Methyl acetate	UG/L	5.00 U	5.00 U
Methyl tert-butyl ether	UG/L	5.00 U	5.00 U
Methylcyclohexane	UG/L	- 5.00 U	5.00 U
Methylene chloride	UG/L	5.00 U	5.00 U
Styrene	UG/L	5.00 U	5.00 U
Tetrachloroethene	UG/L	5.00 U	5.00 U
Toluene	UG/L	5.00 U	5.00 U
trans-1,2-Dichloroethene	UG/L	5.00 U	5.00 U
trans-1,3-Dichloropropene	UG/L	5.00 U	5.00 ป
Trichloroethene	UG/L	5.00 U	5.00 U
Trichlorofluoromethane	UG/L	5.00 U	5.00 U
Vinyl chloride	UG/L	10.0 U	10.0 U
Xylene (total)	UG/L	5.00 U	5.00 U

Flags assigned during chemistry validation are shown.

MADE BY GEK 07/27/04 CHECKED BY JML 07/27/04

APPENDIX A

SUPPORT DOCUMENTATION

CHAIN OF CUSTODY RECORD			TESTS		124		RS	*	
PROJECT NO. SITE NAME						LAB E	2		
SAMPLERS (PRINT/SIGNATURE)	ВОТ	ILE TYP	E AND P	RESERV	ATIVE	PAGE	or of		
DELIVERY SERVICE: LOCATION COMP/ B A SAMPLE ID MATRIX COMP/ B A SAMPLE ID COMP/ B A SAMPLE I	100mc					REMARKS	SAMPLÉ TYPE	DEPTH (IN FEET) ENDING DEPTH (IN FEET)	FIELD LOT NO. #
B-4 6-4-04-08-01 G B- (060404) WG 3	3						N-		
13-12 B-12 (060404)	3	-					<u>N</u> -		-
B-17- 0855 B12(060404MS)	3				<u>·</u>		MS		
D 11 0000 12 11 1000 1000 1	3		·				MSD-		
1029 BH (CAAA)	3						17		\perp
B052 1108 B058(060404)	3						7		
12-01 1214 B-01 (060A0A)	3						12		二
B-07 1301 B-07(1604045)	3						N		
B-06 140 1 B-06(060404)	3						12		
B-02 (060404)	3						12-		
CB NW 530 CBNW(060404)WS	3					STORM	17-		
MATRIX SE - SEDIMENT SH - HAZARDOUS SOLID WASTE MATRIX SE - SEDIMENT SH - HAZARDOUS SOLID WASTE WB - DRINKING WATER WW - WASTE WATER WC - DRILL CUTTINGS	GS - 8	LEACHATE SOIL GAS DRILLING WA	ATER		AN WATER FACE WATER ER FIELD QC	LH - HAZARDOUS LIC LF - FLOATING/FREE			BLE
SAMPLE TB# - TRIP BLANK RB# - RINSE BLANK N# - NORMAL ENVIR TYPE CODES SD# - MATRIX SPIKE DUPLICATE FR# - FIELD REPLICATE MS# - MATRIX SPIKE		LE (#·s	SEQUENTIAL	NUMBER (FR	ОМ 1 ТО 9) ТО	ACCOMMODATE MULTIPLE	SAMPLES IN	A SINGLE	DAY)
RELINQUISMED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE) DATE TIME SPECIAL INSTRUCTIONS QUESTIONS									
RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED FOR LOR BY (SIGNATURE) DATE TIME CALL C									
Distribution: Original accompanies shipment, copy to coordinator field files				@ 9	56-5	203/0			

SAMPLERS (PRINT/SIGNATURE) DELIVERY SERVICE: SET ARBILL NO: DELIVERY SET	CHAIN OF CUSTODY RECORD	N	1	TESTS	S		URS				
DELIVERY SERVICE: AIRBILL NO: AIRBILL NO: DELIVERY SERVICE: AIRBILL NO: AIRBILL NO: DELIVERY SERVICE: AIRBILL NO: AIRBIL	PROJECT NO. 332 SITE NAME SITE NAME SITE NAME										
DELIVERY SERVICE: AIRBILL NO: OF STATEMENT		T						of _	·		
DELIVERY SERVICE: AIRBILL NO: DESCRIPTION OF TIME COMP. SAMPLE ID MATRIX DOT FALL		BOILE	EIYP	E AND	PRESERV	ATIVE	PAGE	_ of _			
BSW 9404 1540 Cg. CBW 060404 WS \$ 3 3 SELECTION OF THE PROPERTY OF THE PROPERY	DELIVERY SERVICE: AIRBILL NO.: VONTY WILL NO.: COMP/ GRAB SAMPLE ID MATRIX DELIVERY SERVICE: AIRBILL NO.: VONTY WILL NO.:	190 M					REMARKS	SAMPLE TYPE	BEGINNING DEPTH (IN FEET)	ENDING DEPTH (IN FEET)	FIELD LOT NO. # (ERPIMS)
MATRIX CODES SESEMBLAN SIN TRIP BLANK CODES SIN SEDIMENT SIN SEDIMENT SIN TRIP BLANK CODES SIN SEDIMENT SIN TRIP BLANK CODES SIN TRIP B		1.					STORM	2	_		
MATRIX CODES Se-Sediment AIR SI-SEDIMENT ARE ALL AMBIENT AIR SI-SEDIMENT AIR S	ANTE LIE				_		SEWERS	1		_	
MATRIX CODES SE SEDIMENT AIR SE SUFFACE WATER WY WATER FIELD OR WATER FIELD OR WATER FIELD OR MATERIX SPIKE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FREE PRODUCT ON OW TABLE LF - FLOATING/FRE							OUT FOL	-		_	
MATRIX CODES SE - SEGINETAR SE - SEG	- ID (COEFOL) MA	1					THIP DUTK	B			7
SAMPLE THE CODES SH - HAZARDOUS SOLID WASTE WP - DRINKING WATER WW - WASTE WATER DC - DRILL CUTTINGS SC - SOIL GAS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC SAMPLE THE - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE RB# - RINSE BLANK FR# - FIELD REPLICATE MS# - MATRIX SPIKE WP - DRINKING WATER DC - DRILL CUTTINGS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC LF - FLOATING/FREE PRODUCT ON GW TABLE UF - FLOATING	4				_						
SAMPLE THE CODES SH - HAZARDOUS SOLID WASTE WP - DRINKING WATER WW - WASTE WATER DC - DRILL CUTTINGS SC - SOIL GAS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC SAMPLE THE - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE RB# - RINSE BLANK FR# - FIELD REPLICATE MS# - MATRIX SPIKE WP - DRINKING WATER DC - DRILL CUTTINGS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC LF - FLOATING/FREE PRODUCT ON GW TABLE UF - FLOATING											
SAMPLE THE CODES SH - HAZARDOUS SOLID WASTE WP - DRINKING WATER WW - WASTE WATER DC - DRILL CUTTINGS SC - SOIL GAS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC SAMPLE THE - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE RB# - RINSE BLANK FR# - FIELD REPLICATE MS# - MATRIX SPIKE WP - DRINKING WATER DC - DRILL CUTTINGS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC LF - FLOATING/FREE PRODUCT ON GW TABLE UF - FLOATING											\neg
SAMPLE THE CODES SH - HAZARDOUS SOLID WASTE WP - DRINKING WATER WW - WASTE WATER DC - DRILL CUTTINGS SC - SOIL GAS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC SAMPLE THE - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE RB# - RINSE BLANK FR# - FIELD REPLICATE MS# - MATRIX SPIKE WP - DRINKING WATER DC - DRILL CUTTINGS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC LF - FLOATING/FREE PRODUCT ON GW TABLE UF - FLOATING			·								
SAMPLE THE CODES SH - HAZARDOUS SOLID WASTE WP - DRINKING WATER WW - WASTE WATER DC - DRILL CUTTINGS SC - SOIL GAS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC SAMPLE THE - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE RB# - RINSE BLANK FR# - FIELD REPLICATE MS# - MATRIX SPIKE WP - DRINKING WATER DC - DRILL CUTTINGS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC LF - FLOATING/FREE PRODUCT ON GW TABLE UF - FLOATING											
SAMPLE THE CODES SH - HAZARDOUS SOLID WASTE WP - DRINKING WATER WW - WASTE WATER DC - DRILL CUTTINGS SC - SOIL GAS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC SAMPLE THE - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE RB# - RINSE BLANK FR# - FIELD REPLICATE MS# - MATRIX SPIKE WP - DRINKING WATER DC - DRILL CUTTINGS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC LF - FLOATING/FREE PRODUCT ON GW TABLE UF - FLOATING											
SAMPLE THE CODES SH - HAZARDOUS SOLID WASTE WP - DRINKING WATER WW - WASTE WATER DC - DRILL CUTTINGS SC - SOIL GAS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC SAMPLE THE - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE RB# - RINSE BLANK FR# - FIELD REPLICATE MS# - MATRIX SPIKE WP - DRINKING WATER DC - DRILL CUTTINGS WC - DRILLING WATER WC - DRILLING WATER WC - DRILLING WATER WC - WATER FIELD GC LF - FLOATING/FREE PRODUCT ON GW TABLE UF - FLOATING											
RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED FOR LAB BY (SIGNATURE) DATE TIME RECEIVED FOR LAB BY (SIGNATURE) DATE TIME RECEIVED FOR LAB BY (SIGNATURE) BY (SIGNATURE) DATE TIME RECEIVED FOR LAB BY (SIGNATURE) DATE TIME BY (SIGNATURE) DATE TIME BY (SIGNATURE) DATE TIME BY (SIGNATURE) DATE TIME BY (SIGNATURE) DATE TIME BY (SIGNATURE) DATE TIME BY (SIGNATURE) DATE TIME	MA: HIX SE - SEDIMENT SH - HAZARDOUS SOLID WASTE WW - WASTE WATER DC - DRILL CUTTINGS	GS - SOI	L GAS	ATER	WS - SURF	ACE WATER	LH - HAZARDOUS LIQI LF - FLOATING/FREE F	JID WAS	TE TON GV	W TABL	E
RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED FOR LAB BY (SIGNATURE) DATE TIME 6//04 1/64 10/404 1/64 DATE TIME 6//04 1/649	SAMPLE TB# - TRIP BLANK RB# - RINSE BLANK N# - NORMAL ENVIRONMENTAL SAMPLE (# - SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)						DAY)				
6/104 1648			DATE	TIME	SPECIA	L INSTRU	JCTIONS	··· ··· · ·			
	RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED FOR LAB BY (SIGNATURE)				<u>-</u>			•			
	Distribution: Original accompanies shipment, copy to coordinator field files										

CHAIN OF CU	STODY RECORD	TESTS	1 1 -	URS		
PROJECT NO.	SITE NAME			LABERE		
SAMPLERS (PRINT/SIGNATURE)	THE POLICE CONTROL	9		COOLER / of /		
LIBURMEIER	in Bruen	BOTTLE TYPE AND PR	RESERVATIVE	PAGE		
	AIRBILL NO: OF TOTAL NO # OF TOTAL NO	100 MU 2005 2007		SAMPLE TYPE BEGINNING DEPTH (IN FEET) ENDING DEPTH (IN FEET) FIELD LOT NO. #		
B-15 6-7-040831 C				0 40 40 40		
B-10 4-7-04 0953 6						
B-9 6-7-04 10:45 6	1 B-9(060704) WG 3					
B-4 6-7-04 12:01 G						
3-3 67-04 14:59 6	B-3(060704) WG 3					
3-8 6-7-04 14:05 6	7 B-8 (060704) WG 3					
· · · · · · · · · · · · · · · · · · ·						
				·		
MATRIX CODES AA - AMBIENT AIR SE - SEDIMENT SH - HAZARDOUS SOLID WASTE SAMPLE TB# - TRIP BLANK	SL · SLUDGE WG · GROUND WATER WP · DRINKING WATER WW · WASTE WATER DC · DRILL CUTTINGS RB# · RINSE BLANK N# · NORMAL ENVIRONM	GS - SOIL GAS V WC - DRILLING WATER V	VO - OCEAN WATER VS - SURFACE WATER VQ - WATER FIELD QC	LH - HAZARDOUS LIQUID WASTE LF - FLOATING/FREE PRODUCT ON GW TABLE		
TYPE CODES SO# - MATRIX SPIKE DUPLICATE	FR# - FIELD REPLICATE MS# - MATRIX SPIKE	(# - SEQUENTIAL NU	MBER (FROM 1 TO 9) TO A	CCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)		
HELINGUISHED BY (SIGNATURE)	DATE TIME RECEIVED BY (SIGNATURE) DATE TIME SPECIAL INSTRUCTIONS 1-201/108 COLUMN TO THE TIME SPECIAL INSTRUCTIONS					
RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED FOR LAB BY (SIGNATURE) DATE TIME COED, KISWIK @ Distribution: Original accompanies shipment, copy to coordinator field files						
Distribution: Original accompanies shipme	ent, copy to coordinator field files		מרים מרכו	0'54		
IRSE-075C/1 OF 1/CofCR/GCM	·					

; .

Ecology & Environment, Inc.

CONTINUING CALIBRATION SUMMARY REPORT

Job Number: 0406072 Batch Number: 200406094n1

Column ID: DB-624

Date Analyzed: 09-JUN-2004 Time Analyzed: 10:47 Initial Cal Start Date/Time

Initial Cal: N8BW40 Instrument: niles Fraction:

VOA Data File ID: n0809

Initial Cal	End Date/Time:	13-MAY-2004 13-MAY-2004	
· .			

	1	- 1		MIN		MAX	l
COMPOUND	RRF	/ AMOUNT	RF50	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	=== ===	=======				========	
77 1,3,5-Trimethylbenzene	1	2.45758	2.50053	0.010	-1.74793	100	Averaged
78 tert-Butylbenzene	1	1.93266	2.07231	0.010	-7.22584	100	_
79 1,2,4-Trimethylbenzene	1	2.35001	2.41183	0.010	-2.63043	100	•
80 3,4-Dichlorobenzotrifluorid	1	0.56878	0.58563	0.010	-2.96358	100	
81 sec-Butylbenzene	1	2.59008	2.70852	0.010	-4.57277	•	•
82 1,3-Dichlorobenzene	1	1.50507	1.49617	0.010	0.59146	•	_
83 4-Isopropyltoluene	1	2.62343	2.69644 (0.010	-2.78320		
85 l,4-Dichlorobenzene	ĺ	1.59820	1.54685	•		•	
36 2,4-Dichlorobenzotrifluorid	i	0.53212	0.54349	•			-
37 2,5-Dichlorobenzotrifluorid	i	0.58474	0.59183	•	•		
8 1,2-Dichlorobenzene	i	1.48197	1.49355	•		'	
9 n-Butylbenzene	ì	2.13072	2.2660410	•			
00 1,2-Dibromo-3-Chloropropane	i	0.13319	0.16130 0				
1 Dichlorotoluene(2,4+2,5+2,6	i	1.19711	1.33491	•			
2 1,3,5-Trichlorobenzene	i	0.935921	1.00237 0		•		
3 Dichlorotoluene(2,3+3,4)	i	1.30834	1.49182	•	•	1	
4 1,2,4-Trichlorobenzene	i	0.83397	0.94147 0	•			
5 Hexachlorobutadiene	ì	0.27198	0.30205 0	•	•		
6 Naphthalene	i	2.43802	3.19040 0		•	•	
7 1,2,3-Trichlorobenzene	ı	0.75339	0.89029 0	•	•	· · · ·	
8 2,4,5-Trichlorotoluene	l L	0.75339	•	•	•		
9 2,3,6-Trichlorotoluene	j 1	•	0.62961 0				
> 2/3/3 Tricinolocordene	1	0.41161	0.55727 0	.010	-35.38736	100	Averaged
· · · · · · · · · · · · · · · · · · ·	I			ا			

M = Summary Compound, \$ = Surrogate Compound

Initial Cal:

Data File ID:

Instrument:

Fraction:

R8BW11

robert

r1704

AOV

Ecology & Environment, Inc.

CONTINUING CALIBRATION SUMMARY REPORT

Job Number: 0406072 Batch Number: 200406094 Column ID: DB-624

Date Analyzed: 09-JUN-2004
Time Analyzed: 18:15
Initial Cal Start Date/Time: 18-APR-2004 07
Initial Cal End Date/Time: 18-APR-2004 10

•	1					
	'		MIN	f	MAX	
COMPOUND	RRF / AMOUNT	RF50	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	===========	=========	=====	========		========
Dichlorodifluoromethane	0.18102	0.13589	0.010	24.92786	5 100	Averaged
Chloromethane	0.27301	0.22932	0.100	16.00342	100	Averaged
Vinyl Chloride	0.26333	0.21419	0.010	18.66264	20.00000	Averaged
Bromomethane	0.16749	0.16505	0.010	1.45846	100	Averaged
Chloroethane	0.14855	0.13135	0.010	11.58118	100	Averaged
Trichlorofluoromethane	0.15138	0.12244	0.010	19.11215	100	Averaged
1,1-Dichloroethene	0.21616	0.18060	0.010	16.44867	20.00000	Averaged
Acetone	0.07513	0.07704	0.010	-2.53766	100	Averaged
1,1,2-Trichloro-1,2,2-trif1	0.22268	0.15594	0.010	29.97357	D 100	Averaged
) Methyl iodide	0.36232	0.35089	0.010	3.15441	100	Averaged
Carbon Disulfide	0.75602	0.67034	0.010	11.33265	100	Averaged
Methyl Acetate	0.19607	0.21473	0.010	-9.51918	100	Averaged
Methylene Chloride	0.28248	0.26080	0.010	7.67379	100	Averaged
Acrylonitrile	0.06676	0.08341	0.010	-24.94597	100	Averaged
trans-1,2-Dichloroethene	0.26976	0.23016	0.010	14.67918	100	Averaged
Methyl tert-Butyl Ether	0.51280	0.50607	0.010	1.31305	100	Averaged
1,1-Dichloroethane	0.42580	0.37358	0.100	12.26409	100	Averaged
Vinyl Acetate	0.49275	0.53968	0.010	-9.52506	100	Averaged
19 1,2-Dichloroethene (total)	0.27852	0.24954	0.010	10.40528	100	Averaged
cis-1,2-Dichloroethene	0.28728	0.26892	0.010	6.39201	100	Averaged
2-Butanone	0.09831	0.11327	0.010	-15.22541	100	-
2,2-Dichloropropane	0.26300	0.22793	0.010	13.33396	100	Averaged
Bromochloromethane	0.14880	0.14194	0.010	4.60699	100	Averaged
Chloroform	0.42565	•	•		•	- '
25 Dibromofluoromethane	0.238691	•	•	-	• •	5 ,
1,1,1-Trichloroethane	0.35437	•			•	.
Cyclohexane	•	•	•			٠,
1,1-Dichloropropene	0.305831	•	•	-		3 . (
Carbon Tetrachloride		•	•			
30 1,2-Dichloroethane-d4			•			- ,
•	·		•	<u>'</u>		- .
1,2-Dichloroethane	•		•			, ,
· ·	•					٠, ١
· ·	•	•			<u>.</u>	
	•	•				
	0.24080	0.228581	0.0101	0.12344	20.000001	Averaged
(12345673 OL234 5, 1)	Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone 1,1,2-Trichloro-1,2,2-trifl 0 Methyl iodide 1 Carbon Disulfide 2 Methyl Acetate 3 Methylene Chloride 4 Acrylonitrile 5 trans-1,2-Dichloroethene 6 Methyl tert-Butyl Ether 7 1,1-Dichloroethane 8 Vinyl Acetate 19 1,2-Dichloroethene 12 -Butanone 12 -Butanone 13 Cis-1,2-Dichloromethane 14 Chloroform 15 Dibromofluoromethane 16 Chloroform 17 Cyclohexane 18 1,1-Trichloropropene 18 Carbon Tetrachloride	Chloromethane 0.27301 Vinyl Chloride 0.26333 Bromomethane 0.16749 Chloroethane 0.14855 Trichlorofluoromethane 0.21616 Acetone 0.07513 1,1,2-Trichloro-1,2,2-trifl 0.22268 0 Methyl iodide 0.36232 1 Carbon Disulfide 0.75602 2 Methyl Acetate 0.19607 3 Methylene Chloride 0.28248 4 Acrylonitrile 0.06676 5 trans-1,2-Dichloroethene 0.26976 6 Methyl tert-Butyl Ether 0.51280 7 1,1-Dichloroethane 0.42580 8 Vinyl Acetate 0.49275 19 1,2-Dichloroethene (total) 0.27852 0 cis-1,2-Dichloroethene 0.28728 2-Butanone 0.09831 2 2,2-Dichloropropane 0.26300 8 Bromochloromethane 0.14880 6 Chloroform 0.42565 25 Dibromofluoromethane 0.35437 Cyclohexane 0.4129 1,1-Dichloropropene 0.30583 0 Carbon Tetrachloride 0.32572 30 1,2-Dichloroethane 0.2	Chloromethane	Chloromethane 0.27301 0.22932 0.100 Vinyl Chloride 0.26333 0.21419 0.010 Bromomethane 0.16749 0.16505 0.010 Chloroethane 0.14855 0.13135 0.010 Trichlorofluoromethane 0.15138 0.12244 0.010 1,1-Dichloroethene 0.21616 0.18060 0.010 1,1,2-Trichloro-1,2,2-trif1 0.22268 0.15594 0.010 0 Methyl iodide 0.36232 0.35089 0.010 1 Carbon Disulfide 0.75602 0.67034 0.010 2 Methyl Acetate 0.19607 0.21473 0.010 3 Methylene Chloride 0.28248 0.26080 0.010 4 Acrylonitrile 0.06676 0.08341 0.010 5 trans-1,2-Dichloroethene 0.26976 0.23016 0.010 6 Methyl tert-Butyl Ether 0.51280 0.50607 0.010 6 Winyl Acetate 0.49275 0.53968 0.010 10 Cis-1,2-Dichloroethene (total) 0.27852 0.24954 0.010 10 Cis-1,2-Dichloroethene 0.26300 0.22793 0.010 11 C2-Butanone 0.28728 0.26892 0.010 12 C3-Dichloroethane 0.28728 0.26892 0.010 13 Bromochloromethane 0.14880 0.11327 0.010 14 Chloroform 0.42565 0.40275 0.010 15 Chloroform 0.42565 0.40275 0.010 16 Carbon Tetrachloride 0.30583 0.24180 0.010 17 (1,1-Dichloroethane 0.35437 0.28904 0.010 18 Carbon Tetrachloride 0.32572 0.24694 0.010 18 Carbon Tetrachloride 0.32572 0.24694 0.010 18 Carbon Tetrachloride 0.32572 0.24694 0.010 19 (2,2-Dichloroethane 0.30583 0.24180 0.010 19 (2,2-Dichloroethane 0.30583 0.24180 0.010 10 (2,2-Dichloroethane 0.30583 0.24694 0.010 11 (2,2-Dichloroethane 0.25509 0.21764 0.010 11 (2,2-Dichloroethane 0.25509 0.21764 0.010 11 (2,2-Dichloroethane 0.25509 0.27421 0.010	Chloromethane 0.27301 0.22932 0.100 16.00342 Vinyl Chloride 0.26333 0.21419 0.010 18.66264 Bromomethane 0.16749 0.16505 0.010 1.45846 Chloroethane 0.14855 0.13135 0.010 11.58118 Trichlorofluoromethane 0.15138 0.12244 0.010 19.11215 1,1-Dichloroethene 0.21616 0.18060 0.010 16.44867 Acetone 0.07513 0.07704 0.010 -2.53766 1,1,2-Trichloro-1,2,2-trif1 0.22268 0.15594 0.010 29.97357 0 Methyl iodide 0.36232 0.35089 0.010 3.15441 1 Carbon Disulfide 0.75602 0.67034 0.010 11.33265 2 Methyl Acetate 0.19607 0.21473 0.010 -9.51918 3 Methylene Chloride 0.28248 0.26080 0.010 7.67379 4 Acrylonitrile 0.06676 0.08341 0.010 -24.94597 5 trans-1,2-Dichloroethene 0.26976 0.23016 0.010 14.67918 6 Methyl tert-Butyl Ether 0.51280 0.50607 0.010 1.31305 7 1,1-Dichloroethane 0.42560 0.37358 0.100 12.26409 3 Vinyl Acetate 0.49275 0.53968 0.010 -9.52506 19 1,2-Dichloroethene (total) 0.27852 0.24954 0.010 14.040528 0 cis-1,2-Dichloroethene 0.28728 0.26892 0.010 6.39201 2 2-Butanone 0.09831 0.11327 0.010 -15.22541 2 2,2-Dichloropropane 0.26300 0.22793 0.010 13.33396 3 Bromochloromethane 0.14880 0.14194 0.010 4.60699 3 Chloroform 0.42565 0.40275 0.010 13.33396 3 Chloroform 0.42565 0.40275 0.010 5.37937 25 Dibromofluoromethane 0.35437 0.28904 0.010 18.43515 4 Cyclohexane 0.34129 0.29885 0.010 22.93293 3 1,1-Dichloropropene 0.3583 0.24181 0.010 24.18702 3 1,1-Dichloropropene 0.3583 0.24181 0.010 24.18702 3 1,1-Dichloroethane 0.35437 0.28904 0.010 18.43515 4 1,1-Dichloroethane 0.34259 0.24181 0.010 14.68300 4 1,1-Dichloroethane 0.34259 0.24181 0.010 14.68300 4 1,1-Dichloroethane 0.35437 0.28904 0.010 18.43515 5 Dibromofluoromethane 0.35437 0.28904 0.010 18.43515 5 Dibromofluoromethane 0.35437 0.28904 0.010 18.43515 5 Dibromofluoroethane 0.35599 0.24126 0.010 14.68300 5 Chloroform 0.25509 0.21764 0.010 14.68300 5 Methyleyclohexane 0.25509 0.277621 0.010 15.59008	Chloromethane 0.27301 0.22932 0.100 16.00342 100 Vinyl Chloride 0.26333 0.21419 0.010 18.66264 20.00000 Bromomethane 0.16749 0.16505 0.010 1.45846 100 Chloroethane 0.14855 0.15135 0.010 11.58118 100 Trichlorofluoromethane 0.15138 0.12244 0.010 19.11215 100 Include 0.21616 0.18060 0.010 16.44867 20.00000 Acetone 0.07513 0.07704 0.010 -2.53766 100 I,1,2-Trichloro-1,2,2-trif1 0.22268 0.15594 0.010 29.97357 100 Methyl iodide 0.36232 0.15089 0.010 3.15441 100 Carbon Disulfide 0.75602 0.67034 0.010 11.33265 100 Methyl Acetate 0.19607 0.21473 0.010 -9.51918 100 Methyl Acetate 0.19607 0.21473 0.010 -9.51918 100 Methyl Acetate 0.06676 0.08341 0.010 7.67379 100 Methyl Acetate 0.28248 0.26080 0.010 7.67379 100 Methyl Acetate 0.26296 0.3016 0.010 14.67918 100 Methyl Acetate 0.26296 0.3016 0.010 14.67918 100 Methyl Acetate 0.262976 0.23016 0.010 14.67918 100 Methyl Acetate 0.262976 0.33016 0.010 12.26409 100 Methyl Acetate 0.49275 0.53968 0.010 -9.52506 100 Methyl Acetate 0.49275 0.53968 0.010 -9.52506 100 Methyl Acetate 0.49275 0.53968 0.010 -9.52506 100 Methyl Acetate 0.28728 0.26892 0.010 6.39201 100 Methyl Acetate 0.28728 0.26892 0.010 6.39201 100 Methyl Acetate 0.28728 0.26892 0.010 6.39201 100 Methyl Acetate 0.28728 0.24954 0.010 10.40528 100 Methyl Acetate 0.28728 0.24954 0.010 10.40528 100 Methyl Acetate 0.28728 0.24954 0.010 10.40528 100 Methyl Acetate 0.28728 0.24954 0.010 10.40528 100 Methyl Acetate 0.28728 0.24954 0.010 10.40528 100 Methyl Acetate 0.28728 0.24954 0.010 10.40528 100 Methyl Acetate 0.28728 0.24954 0.010 11.53846 100 Methyl Acetate 0.28728 0.24955 0.010 11.53846 100 Methyl Acetate 0.2417 0.23355 0.010 -4.18308 100 Methyl Acetate 0.2417 0.23355 0.010 -4.18308 100 Methyl Acetate 0.24217 0.23355 0.010 -4.18308 100 Methyl Acetate 0.24217 0.23355 0.010 -4.18308 100 Methyl Acetate 0.24217 0.23355 0.010 -4.18308 100 Methyl

Ecology & Environment, Inc.

CONTINUING CALIBRATION SUMMARY REPORT

Job Number: 0406072 Batch Number: 200406094 Column ID: DB-624

Date Analyzed: 09-JUN-2004

Time Analyzed: 18:15

Initial Cal Start Date/Time: 18-APR-2004 07 Initial Cal End Date/Time: 18-APR-2004 10

Initial Cal: R8BW11 Instrument: robert Fraction: VOA

Data File ID: r1704

•				MIN	ł	MAX	1
ŀ	COMPOUND .	RRF / AMOUNT	RF50	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
==		~~~~~~				=========	========
37	Dibromomethane	0.15509	0.15224	0.010	1.84027	100	Averaged
3 8	Bromodichloromethane	0.30999	0.28978	0.010	6.52051	100	Averaged
39	2-Chloroethyl Vinyl Ether	0.13317	0.15570	0.010	-16.91743	100	Averaged
40	cis-1,3-Dichloropropene	0,38650	0.37437	0.010	3.13947	100	Averaged
41	4-Methyl-2-Pentanone	0.29207	0.33273	0.010	-13.92108	100	Averaged
\$	42 Toluene-d8	1.23029	1.23629	0.010	-0.48721	100	Averaged
43	Toluene	0.89232	0.76363	0.010	14.42199	20.00000	Averaged
44	trans-1,3-Dichloropropene	0.44491	0.43269	0.010	2.74584	100	Averaged
45	1,1,2-Trichloroethane	0.25165	0.23793	0.010	5.45253	100	Averaged
46	Tetrachloroethene	0.38844	0.30055	0.010	22.62645	100	Averaged
47	1,3-Dichloropropane	0.50353	0.46116	0.010	8.41475	100	Averaged
48	2-Hexanone	0.17695	0.20170	0.010	-13.98901	100	Averaged
49	Dibromochloromethane	0.36226	0.32941	0.010	9.06666	100	Averaged
50	1,2-Dibromoethane	0.31580	0.31277	0.010	0.95894	100	Averaged
52	1-Chlorohexane	0.32458	0.21523	0.010	33.68888	100	Averaged
53	3-Chlorobenzotrifluoride	0.56331	0.42809	0.010	24.00409	100	Averaged
	Chlorobenzene	1.03296	0.88691	0.300	14.13887	100	Averaged
55	4-Chlorobenzotrifluoride	0.51716	0.40977	0.010	20.76528	100	Averaged
56	1,1,1,2-Tetrachloroethane	0.37107	0.33061	0.010	10.90594	100	Averaged
57	Ethylbenzene	0.54629	0.43775	0.010	19.86872	20.00000	Averaged
8	Xylene (m+p)	0.67690	0.55276	0.010	18.33975	100	Averaged
1	59 Xylene (total)	0.66712	0.54688	0.010	18.02393	100	· Averaged
50	Xylene (o)	0.64755	0.53511	0.010	17.36365	100	Averaged
1	Styrene	1.11496	0.97730	0.010	12.34658	100	Averaged
2	Bromoform	0.24513	0.24191	0.100	1.31408	100	Averaged
53	2-Chlorobenzotrifluoride	0.55498	0.44160	0.010	20.42873	100	Averaged
i 4	Isopropylbenzene	1.61794	1.20930	0.010	25.25704) 100	Averaged
;	65 Bromofluorobenzene	0.81367	0.84606	0.010	-3.98105	100	Averaged
6	Bromobenzene	0.78959	0.73092	0.010	7.43091	100	
7	1,1,2,2-Tetrachloroethane	0.74615	0.75041	0.300	-0.57147	100	Averaged
8	1,2,3-Trichloropropane	0.22831	0.24079	0.010	-5.46541	100	
9	trans-1,4-Dichloro-2-butene	0.17002	0.17724	0.010	-4.25174	100	Averaged
0	n-Propylbenzene	0.85607	0.63991	0.010	25.25073	100	٠,
1	2-Chlorotoluene	0.77113	0.64651	•		•	'
2	3-Chlorotoluene	0.82862	0.66132	•			3
3	4-Chlorotoluene	2.37071	1.96917			•	,

Initial Cal:

Instrument:

Fraction:

Data File ID:

N8BW40

niles

n0835

AOV

Ecology & Environment, Inc.

CONTINUING CALIBRATION SUMMARY REPORT

Job Number: 0406072 Batch Number: 200406104n1

Column ID: DB-624 Date Analyzed: 10-JUN-2004

Time Analyzed: 06:28

Initial Cal Start Date/Time: 13-MAY-2004 18 Initial Cal End Date/Time: 13-MAY-2004 22

			MIN		XAM	Ι΄
Сомьо́пир	RRF / AMOUNT	RF50	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
	=======================================	==========	====	========		
Dichlorodifluoromethane	0.24197	0.23283	0.010	3.77745	100	Average
Chloromethane	0.38713	0.38232	0.100	1.24226	100	Average
Vinyl Chloride	0.37435	0.35551	0.010	5.03258	20.00000	Average
Bromomethane	0.29780	0.29774	0.010	0.02099	100	Average
Chloroethane	0.24333	0.24601	0.010	-1.10129	100	Average
Trichlorofluoromethane	0.34437	.0.33988	0.010	1.30530	100	Average
1,1-Dichloroethene	0.33824	0.30133	0.010	10.91222	20.00000	Average
Acetone	0.18013	0.14041	0.010	22.04841	D 100	Average
0.1,1,2-Trichloro-1,2,2-trifl	. 0.33319	0.29605	0.010	11.14447	100	Average
l Methyl iodide	0.40374	0.43377	0.010	-7.43578	100	Average
2 Carbon Disulfide	. 0.81156	0.83337	0.010	-2.68752	100	Average
3 Methyl Acetate	0.24123	0.24578	0.010	-1.88648	100	Average
4 Methylene Chloride	0.28506	0.30111	0.010	-5.62911	100	Average
5 Acrylonitrile	0.09617	0.09548	0.010	0.71530	100	Average
6 trans-1,2-Dichloroethene	0.27099	0.28335	0.010	-4.55849	100	Average
7 Methyl tert-Butyl Ether	0.52876	0.50937	0.010	3.66668	100	Average
9 1,1-Dichloroethane	0.45683	0.47213	0.100	-3.34914	100	Average
Vinyl Acetate	0.62690	0.55668	0.010	11.20090	100	· Average
21 1,2-Dichloroethene (total)	0.28342	0.29463	0.010	-3.95328	100	Average
cis-1,2-Dichloroethene	0.29585	0.30591	0.010	-3.39893	100	Average
3 2,2-Dichloropropane	0.27811	0.30176	0.010	-8.50090	100	: Average
1 2-Butanone	0.15606	. 0.15318	0.010	1.84783	100	Average
5 Bromochloromethane	0.15546	0.16276	0.010	-4.69382	100	Average
Chloroform .	0.50258I	0.51051	0.010	-1.57789	20.000001	Average
27 Dibromofluoromethane	0.27919	0.27785	0.010	0.47770	100	_
1,1,1-Trichloroethane	0.39778	•		•		_
Cyclohexane .	0.40501			٠.		
1,1-Dichloropropene	0.32901					
Carbon Tetrachloride	0.390391			•		
32 1,2-Dichloroethane-d4	0.30272					
Benzene I	1.05792					
1,2-Dichloroethane	0.37805			•		
Trichloroethene	0.26717					_
Methylcyclohexane	0.40197					_
1,2-Dichloropropane	0.274001	0.27134		•	· ·	·

M = Summary Compound, \$ = Surrogate Compound

Data File: /var/chem/niles.i/0406094n1r.b/n0827.d

Report Date: 20-Jul-2004 09:12

Ecology & Environment, Inc.

Data file : /var/chem/niles.i/0406094n1r.b/n0827.d Lab Smp Id: iblk

Inj Date : 09-JUN-2004 21:07

Inst ID: niles.i : rj Operator

: iblk Smp Info

Misc Info: 0406094nlr.b;n8bw40;{},,samp,5ml,,01

Comment

: /var/chem/niles.i/0406094n1r.b/n8bw40.m Method

Quant Type: ISTD Meth Date: 10-Jun-2004 14:31 wangp Cal File: n0259.d Cal Date : 13-MAY-2004 22:30

Als bottle: 1

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: chemsrv2

Concentration Formula: Amt * DF * Uf/Vo * CpndVariable

	Name	Value	Description
	DF Uf Vo	1.00000 5.00000 5.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL)
C pn	d Variable		Local Compound Variable

pnd Variable

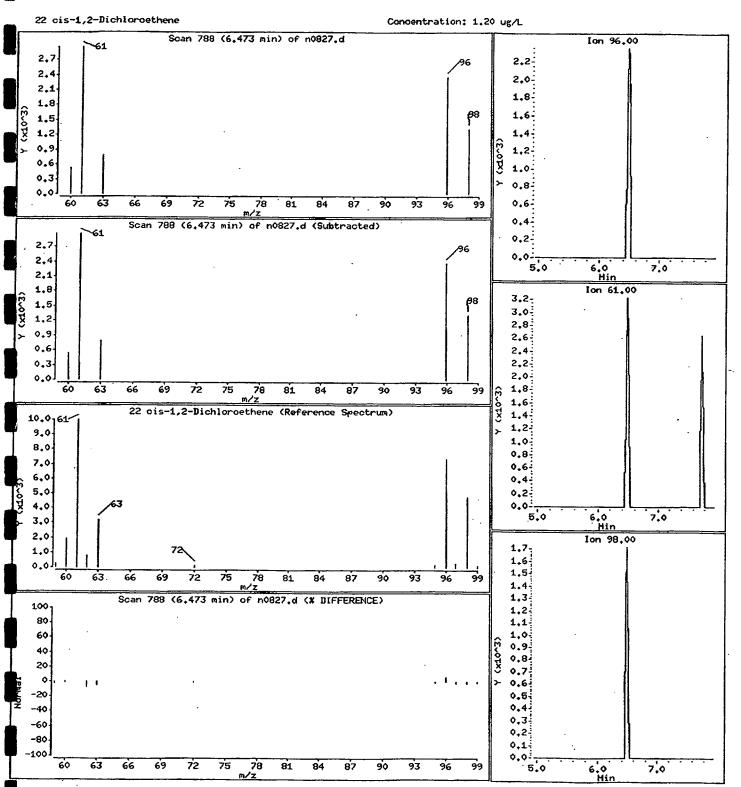
_					CONCENTRATIONS				
H			QUANT SIG					ON-COLUMN	FINAL
	ompounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
-	===		====	e te	==== 0		****	*****	======================================
**	21	1,2-Dichloroethene (total)	96				8149	1.20322	1,20(a)
	22	cis-1,2-Dichloroethene	96	6.473	6.455	(0.779)	8149	1.20322	(1.20(a)
-	27	Dibromofluoromethane	113	7.239	7.209	(0.872)	311803	48.7871	48.8
\$	32	1,2-Dichloroethane-d4	65	7.757	7.726	(0.934)	343794	49.6108	49.6
	35	Fluorobenzene	96	8.304	8.274	(1.000)	1144597	50.0000	
	45	Toluene-d8	98	10.877	10.853	(0.817)	1044612	48.6153	48.6
	54	Chlorobenzene-d5	117	13.311	13.287	(1.000)	850852	50.0000	
\$	68	Bromofluorobenzene	95	15.385	15.367	(0.881)	361641	51.0498.	51:0
	84	1,4-Dichlorobenzene-d4	152	17.466	17.442	(1.000)	444736	50.0000	•

QC Flag Legend

Target compound detected but, quantitated amount Below Limit Of Quantitation (BLOQ).

Date: 09-JUN-2004 21:07

Client ID:


Instrument: niles.i

Sample Info: iblk

Purge Volume: 5.0 Operator: rj

Column phase: DB-624

Column diameter: 0.53

SOURCE AND STREET			GCM	IS VO	A INJEC	TIO	NL	ωOG	ВООК	`	
Batch Number	NL	10609	4110					Tre	ooohilitz.	·	
Method Performed	i 1	?260B			Daily Cal	ibration S	tanda		ceability	Book-Page-Ni	umban
Date Analyzed		0/9/04		<u>~</u>					:	ļ	<u>.</u>
Analyst Signature			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					570 250	1734-100	<u> </u>
Sequence	1-5	ones						-		1734-100	<u>-7</u>
Method	-	KFB1	<u> </u>	· · · · · · · · · · · · · · · · · · ·		· ·		<u>v</u>) (PRA 250	1734-101	-4
Maintenance		BABN	/1860	<u> </u>	Spike Star	idarde: N	1501	26		-	
		•		•	IS/SS 1				le One)	1734-101	-2
· i			•		Tune Refe					1734-101-	
		Container	Dilution	Analyst's	Data	Purge	· · · · · ·	ALS		1734.86	6
Lab Sampl		Number	Factor	Initials	Filename	Amt.	pН	No.		ts and QC Action	L
010	50 mg	 		KJ	N0808	1 ulia			@10:23)	
	<u> </u>	· · · · ·	 		D0809	5rug			20mlAiB	c/100mlt	IS/S
	<u>-89-1</u>		ļ		W0810	1			20ml DiBio	1100ml	1
MB 1780		ļ ·			US811						
MB 1780	<u>-89-2</u>				N0813					• .	
D40609	0-01A	01	IX		N0813		7				
781	K 15A				N0814						
040607	2 - 07/A 236/919	01	١×		U0812		7				
-0		 } -	-1		N0816		7				
	-08A	· · ·			N0817		2			· - · · · · · · · · · · · · · · · · · ·	
	09A				N0818		7				
	-OIA	4	٩		D0819		7				1
Z-81	1	<u> </u>			n0820		_				T
	-OZA	01	ί×		70821		2				
	-DZA	ರಿವಿ			U0833		2		8.6.DDB,	(143D)	
MSD :-	AGO-	03	+	1.	n0823		7		<u>'</u>		1
FBI	K/1BUN				n08a4	1	_	·			
	-03A	01	Ι×		N08286		1				
TBIK					n08261		-				
	A140-	01	١×	1 1	N08378		7				
IBIK			_		008389		_		•		
	05A	61	١ẍ́	,	108243	,	1				
IRIK		_		1 1	70830	1-1.				_	
Vitnessed and Unders	•	a II	1, 1	-	1000 Prio	837			Date /	1	
\sim \sim	ens	r s	ryli			7			le DII	SY	
		-	1					_	7 7		

347

Sandon of socious and socious			GCM	S VO	A I	NJEC	ΓI	ON	L	OGI	воок			
Batch Number	040616	O4NIR.								Tra	ceability			
Method Performed	1	? 5 m	O Wat	20		Daily Calib	ratio	on St	andar	is		В	ook-Page-Numl	ber
Date Analyzed	6/10/	1 .	P P PV IX	<u> </u>	· · · ·				_(/	11 <	10250	17	34 100	5
Analyst Signature	20 W	Olis			•				_	-	MZD	1	100	
Sequence .	BFBN									— ——	1A25D	17	-101-	4
Method		1/N8B	WYD			·					<u> </u>			
Maintenance						Spike Stan	dard	s: M	SZ	50(70		-101-2	>
@ms/msi	ALRE	ADY RA	W AT	14.4	\$7	(IS/SS) IS	only	y * S	S only	(Circle	One)	1	102:	ユ
,					•	Tune Refer	rence	(BFI	В)			V	1-89-6	<u> </u>
Lab Sample	: ID	Container Number	Dilution Factor	Analyst's Initials	Τ,	Data Filename	Pur	~ 1	рĦ	ALS No.	Comme	ents an	d OC Action	
BFB :				Dur	1-	0834	_	nl	2		6:03)			-
VSTNOS	0			1		0835		m	D	Z	WARCI	1000	al + 44.	70
105-1780-9	0-1				—	2836	-1			m	Declosel	18,	CP/42.0	ì
4CSD-1780	_					0837					10		1	
MB-1780						0838					,			
KMB-1780						0839							-	
0406072		3	1		1	1840			7					
	orA	3	10		$\overline{}$	0841			7		5/50			
	02A0	フ	40		W	0842			7		2.5/100			
i lr	03A	3	10		W	0843			7		5/50			
0406091-		Z	1		N	10844			7			•		
	04A	Z.	1		N	10895			7					
]].	95A	2			No	0846			7					
	26A	· Z	1		ı	0847			7					
1 1/	07A	٧_	1		1	10848			7					
0406044-		1	1		N	10849				-				
0406040-0		/	1		N	0850								
0406039-		2	5		W.	085BI	4	10/0	13					
0406040-1		1	1		- [9852	~					•		
	BLH		<u> </u>			0853								
	ZA	1	1			0854				4	,			
	BCK	-			_	0855						-	1	,
1/	3A	1	. /	V	1/	0856	1						1	
Witnessed and Under		iss .	Still	dia	N	857/5	8	2	TEL	KS(Z	Date /Z	1/0	rel	
	7		1									\mathcal{T}	83	

Book No.: 1780 Page 90 of 100

Batch Number									Tra	ceability	· · · · · · · · · · · · · · · ·	
Method Performed	formed 0406094721					Daily Calit	ration St	·	Book-Page-Number			
Date Analyzed	Analyzed 8260									a x2	1734 108 5	
Analyst Signature	4/9/04 3/10/250							H1280	1134 -100 - 7			
Sequence	Mila flaglar							CRA250	134-101-4			
Method	154	Bh Shw	16					<u>, C</u>		10125U		
 Maintenance	DP/9/	C 780W	<i>y</i> ·			Spike Stan	dards: N	1S /		M5250	1134-101-2	
• • •			(is/ss) is	only *	SS only	(Circle	e One)	13-1-100-3				
						Tune Refe	ence (BF	В)			1738-89-6	
Lab Sample l	m	Container Number	Dilution Factor		lyst's tials	Data Filename	Purge Amt.	Вq	ALS No.	Comme	nts and QC Action	
HER SONG		idanoet Pactor				21499	Jul	P	1	504		
14 11 2111						K1900	<i>//</i>			50 V		
						K1701				Mev	·	
		-				L1702				50 2/		
V51D 050		,				R1713				17:50		
						£1104	5 m/			2011STD FI	OYLRA /101 m/s	
US 1815.42	2-1					R1705				INM MS, F	PH. CRASOM,	
MANC 1815.47	2./					KITOC						
MANK 1815 4.	2.2		·			KITUT			 			
0406072-1	4A		1			A1708	·	7	·		· .	
, ,	31		1	·		R1709		7				
	194					R1710		7				
	11A					14111	· · · ·	7				
	18A		1			R1712		7				
t : 10	064		1		ļ	K1713		7				
the not reported	- 1	2	20	-	<u> </u>	R/714		 /		28M/50 M	· · · · · · · · · · · · · · · · · · ·	
<i>(</i> !	03A 02A	2/4	20		-	R1715		3	<u> </u>	25 pt /50 mg	50/,	
		-/-7	75		·	R1716/17		7	 	10ple /50ml		
/	CRAMS	.5	5	\vdash		21718		1		1	all Dell)	
γ	02A150	6	5	\vdash		14719		1_		VIN MSC (10)	ul/sorth	
1BUK,)			4			K1720/21	-	 	 	 		
0406 891-61A	/BU	<u> </u>	/	$oxed{oxed}$	/	Km2/23	<u> </u>	7	-			

Book No.: 1815 Page 42 of 100